120 research outputs found

    Wireless Power Transfer Technologies, Applications, and Future Trends: A Review

    Get PDF
    Wireless Power Transfer (WPT) is a disruptive technology that allows wireless energy provisioning for energy- limited IoT devices, thus decreasing the over-reliance on batteries and wires. WPT could replace conventional energy provisioning (e.g., energy harvesting) and expand for deployment in many of our daily-life applications, including but not limited to healthcare, transportation, automation, and smart cities. As a new rising technology, WPT has attracted many researchers from academia and industry in terms of technologies and charging scheduling within a plethora of services and applications. Thus, in this paper, we review the most recent studies related to WPT, including the classifications, advantages, disadvantages, and main application domains. Furthermore, we review the recently designed wireless charging scheduling algorithms and schemes for wireless sensor networks. Our study provides a detailed survey of wireless charging scheduling schemes covering the main scheme classifications, evaluation metrics, application domains, advantages, and disadvantages of each charging scheme. We further summarize trends and opportunities for applying WPT at some intersections

    Power Beacon’s deployment optimization for wirelessly powering massive Internet of Things networks

    Get PDF
    Abstract. The fifth-generation (5G) and beyond wireless cellular networks promise the native support to, among other use cases, the so-called Internet of Things (IoT). Different from human-based cellular services, IoT networks implement a novel vision where ordinary machines possess the ability to autonomously sense, actuate, compute, and communicate throughout the Internet. However, as the number of connected devices grows larger, an urgent demand for energy-efficient communication technologies arises. A key challenge related to IoT devices is that their very small form factor allows them to carry just a tiny battery that might not be even possible to replace due to installation conditions, or too costly in terms of maintenance because of the massiveness of the network. This issue limits the lifetime of the network and compromises its reliability. Wireless energy transfer (WET) has emerged as a potential candidate to replenish sensors’ batteries or to sustain the operation of battery-free devices, as it provides a controllable source of energy over-the-air. Therefore, WET eliminates the need for regular maintenance, allows sensors’ form factor reduction, and reduces the battery disposal that contributes to the environment pollution. In this thesis, we review some WET-enabled scenarios and state-of-the-art techniques for implementing WET in IoT networks. In particular, we focus our attention on the deployment optimization of the so-called power beacons (PBs), which are the energy transmitters for charging a massive IoT deployment subject to a network-wide probabilistic energy outage constraint. We assume that IoT sensors’ positions are unknown at the PBs, and hence we maximize the average incident power on the worst network location. We propose a linear-time complexity algorithm for optimizing the PBs’ positions that outperforms benchmark methods in terms of minimum average incident power and computation time. Then, we also present some insights on the maximum coverage area under certain propagation conditions

    Low-Power Pıc-Based Sensor Node Devıce Desıgn And Theoretıcal Analysıs Of Energy Consumptıon In Wıreless Sensor Networks

    Get PDF
    Teknolojinin ilerlemesi, daha enerji verimli ve daha ucuz elektronik bileşenlerinin daha küçük üretilmesini sağlamıştır. Bu nedenle, daha önce mevcut birçok bilgisayar ve elektronik bilim-mühendislik fikirleri uygulanabilir hale gelmiştir. Bunlardan birisi de kablosuz sensör ağları teknolojisidir. Kablosuz algılayıcı ağlar, düşük enerji tüketimi ve gerekli teknik gereksinimlerin gerçekleşmesi ile uygulanabilir hale gelmiştir. Ayrıca, Kablosuz algılayıcı ağlarının tasarımında iletişim algoritmaları, enerji tasarruf protokolleri ve yenilenebilir enerji teknolojileri gibi diğer bilimsel çalışmalar zorunlu hale gelmiştir. Bu tez, mikroelektronik sistemler, kablosuz iletişim ve dijital elektronik teknolojisinin ilerlemesiyle uygulanabilir hale gelmiş sensör ağları teknolojisini kapsamaktadır. Birincisi, algılama görevleri ve potansiyel algılayıcı ağ uygulamaları araştırılmış ve algılayıcı ağlarının tasarımını etkileyen faktörlerin gözden geçirilmesi sağlanmıştır. Ardından sensör ağları için iletişim mimarisi ana hatlarıyla belirtilmiştir. Ayrıca, tek bir düğümün WLAN ile iletişim kurabilmesi için yeni donanım mimarisi tasarlanmış ve düğümlerde yenilenebilir enerji kaynakları kullanılmıştır. Bu tezde WSN, analitik bilim ve uygulamalı bilim açısından incelenmiştir. Düşük enerji tüketimi ve iletişim protokolleri arasındaki ilişki değerlendirilmiş ve bilimsel sonuçlara varılmıştır. Teorik analizler bilimsel uygulamalarla desteklenmiştir. Çalışmalar, düşük enerji ve maksimum verimlilik prensibinin gerçekleştirilmesine dayalı kablosuz sensör ağları üzerinde gerçekleştirilmiştir. Kablosuz sensör ağlari sistemi tasarlandıktan sonra; sensör düğümlerinin enerji tüketimi ve kablosuz ağdaki davranışları test ve analiz edilmiştir. Düşük enerji tüketimi ile sensör düğümleri arasındaki ilişki detaylı olarak değerlendirilmiştir. PIC Tabanlı mikro denetleyiciler sensör düğümlerinin tasarımında kullanılmış ve çok düşük maliyetli tasarım için ultra düşük güçte, nanoWatt teknolojisi ile desteklenen sensör düğümleri tasarlanmıştır. İşleme birimi, bellek birimi ve kablosuz iletişim birimi sensör viii düğümlerine entegre edilmiştir. Tasarlanan sensör düğümünün işletim sistemi PIC C dili ile yazılmıştır ve PIC işletim sistemi nem, sıcaklık, ışığa duyarlılık ve duman sensörü gibi farklı özelliklerin ölçülmesine izin vermiştir. Sensörlerden gelen verilerin merkezi bir konumdan kaydedilmesi ve izlenebilmesi için, C# programlama dili ile bilgisayar yazılımı geliştirilmiştir. Gelişmiş algılayıcı düğümler tarafından alınan kararların uygulanması için yazılım algoritması ve donanım modüllerini içeren karar verme sistemi tasarlanmıştır. Gelişmiş PIC Tabanlı sensör düğümleri, enerji üretimi ve enerji tasarrufu için, güneş enerjisi paneli, şarj edilebilir pil ve süper kapasitör gibi yenilenebilir enerji kaynakları ile benzersiz bir PIC Kontrollü voltaj birimi ile desteklenmiştir. Geliştirilmiş kablosuz sensör ağları sistemi, endüstri uygulamaları, akıllı fabrikalar ve akıllı evler gibi günlük hayat uygulamaları için de kullanılabilecektir. Kablosuz algılayıcı ağlar geniş bir aralıkta kullanılmak üzere tasarlanmıştır. Tezin sonuçları, özellikle yenilenebilir enerji kaynakları ile WSN'nin geliştirilmesine yardımcı olmayı amaçlamaktadır

    Turneffe Atoll Marine Reserve Control and Vigilance System Design

    Get PDF
    The main objective of this assessment is to design a cost effective control and vigilance system for the newly created Turneffe Atoll Marine Reserve (TAMR). The specific objectives are: 1. Develop a practical control and vigilance system for the TAMR based on interviews of local enforcement actors, analysis of existing co-management strategies, and a comprehensive site visit of the Turneffe Atoll. 2. Prioritize a series of recommendations to optimize patrol costs as well as increase detection efficacy using Electronic Monitoring Systems (EMS). The final recommendations will include the surveillance system design including potential electronic systems, patrol vessels, human resource requirements, energy supply needs, and overall cost estimate: Capital Expenses (CAPEX) and Operating Expenses (OPEX) for a five-year investment plan.WildAid focuses on the law enforcement chain, that encompasses the activities of detection, interdiction, prosecution, and the fining of lawbreakers. An effective law enforcement system should dissuade potential lawbreakers from committing illegal activities as the consequences/risks associated with apprehension outweigh economic gain. The law enforcement chain requires that each link function effectively and complementarily. Also critical, yet not part of the enforcement chain, is the vital role that outreach and stakeholder education plays in MPA acceptance and compliance. For the purpose of this project, the primary focus will be on the surveillance, interdiction, and systematic training components. It is worth noting that Belize possesses a very unique regulatory framework that: 1) empowers Fishery officials with arrest authority and the right to bear firearms; 2) allows the Fisheries Department to delegate arrest authority to partner organizations including NGOs for the enforcement of MPAs; and 3) the Fisheries Department can directly litigate in a Belizean court of law. This is advantageous as the overall enforcement process from detection to sentencing is streamlined and enforcement officials are empowered with sufficient authority to apply the law

    State-of-the-Art Assessment of Smart Charging and Vehicle 2 Grid services

    Get PDF
    Electro-mobility – especially when coupled smartly with a decarbonised grid and also renewable distributed local energy generation, has an imperative role to play in reducing CO2 emissions and mitigating the effects of climate change. In parallel, the regulatory framework continues to set new and challenging targets for greenhouse gas emissions and urban air pollution. • EVs can help to achieve environmental targets because they are beneficial in terms of reduced GHG emissions although the magnitude of emission reduction really depends on the carbon intensity of the national energy mix, zero air pollution, reduced noise, higher energy efficiency and capable of integration with the electric grid, as discussed in Chapter 1. • Scenarios to limit global warming have been developed based on the Paris Agreement on Climate Change, and these set the EV deployment targets or ambitions mentioned in Chapter 2. • Currently there is a considerable surge in electric cars purchasing with countries such as China, the USA, Norway, The Netherlands, France, the UK and Sweden leading the way with an EV market share over 1%. • To enable the achievement of these targets, charging infrastructures need to be deployed in parallel: there are four modes according to IEC 61851, as presented in Chapter 2.1.4. • The targets for SEEV4City project are as follow: o Increase energy autonomy in SEEV4-City sites by 25%, as compared to the baseline case. o Reduce greenhouse gas emissions by 150 Tonnes annually and change to zero emission kilometres in the SEEV4-City Operational Pilots. o Avoid grid related investments (100 million Euros in 10 years) by introducing large scale adoption of smart charging and storage services and make existing electrical grids compatible with an increase in electro mobility and local renewable energy production. • The afore-mentioned objectives are achieved by applying Smart Charging (SC) and Vehicle to Grid (V2G) technologies within Operational Pilots at different levels: o Household. o Street. o Neighbourhood. o City. • SEEV4City aims to develop the concept of 'Vehicle4Energy Services' into a number of sustainable business models to integrate electric vehicles and renewable energy within a Sustainable Urban Mobility and Energy Plan (SUMEP), as introduced in Chapter 1. With this aim in mind, this project fills the gaps left by previous or currently running projects, as reviewed in Chapter 6. • The business models will be developed according to the boundaries of the six Operational Pilots, which involve a disparate number of stakeholders which will be considered within them. • Within every scale, the relevant project objectives need to be satisfied and a study is made on the Public, Social and Private Economics of Smart Charging and V2G. • In order to accomplish this work, a variety of aspects need to be investigated: o Chapter 3 provides details about revenue streams and costs for business models and Economics of Smart Charging and V2G. o Chapter 4 focuses on the definition of Energy Autonomy, the variables and the economy behind it; o Chapter 5 talks about the impacts of EV charging on the grid, how to mitigate them and offers solutions to defer grid investments; o Chapter 7 introduces a number of relevant business models and considers the Economics of Smart Charging and V2G; o Chapter 8 discusses policy frameworks, and gives insight into CO2 emissions and air pollution; o Chapter 9 defines the Data Collection approach that will be interfaced with the models; o Chapter 10 discusses the Energy model and the simulation platforms that may be used for project implementation

    Towards self-powered wireless sensor networks

    Get PDF
    Ubiquitous computing aims at creating smart environments in which computational and communication capabilities permeate the word at all scales, improving the human experience and quality of life in a totally unobtrusive yet completely reliable manner. According to this vision, an huge variety of smart devices and products (e.g., wireless sensor nodes, mobile phones, cameras, sensors, home appliances and industrial machines) are interconnected to realize a network of distributed agents that continuously collect, process, share and transport information. The impact of such technologies in our everyday life is expected to be massive, as it will enable innovative applications that will profoundly change the world around us. Remotely monitoring the conditions of patients and elderly people inside hospitals and at home, preventing catastrophic failures of buildings and critical structures, realizing smart cities with sustainable management of traffic and automatic monitoring of pollution levels, early detecting earthquake and forest fires, monitoring water quality and detecting water leakages, preventing landslides and avalanches are just some examples of life-enhancing applications made possible by smart ubiquitous computing systems. To turn this vision into a reality, however, new raising challenges have to be addressed, overcoming the limits that currently prevent the pervasive deployment of smart devices that are long lasting, trusted, and fully autonomous. In particular, the most critical factor currently limiting the realization of ubiquitous computing is energy provisioning. In fact, embedded devices are typically powered by short-lived batteries that severely affect their lifespan and reliability, often requiring expensive and invasive maintenance. In this PhD thesis, we investigate the use of energy-harvesting techniques to overcome the energy bottleneck problem suffered by embedded devices, particularly focusing on Wireless Sensor Networks (WSNs), which are one of the key enablers of pervasive computing systems. Energy harvesting allows to use energy readily available from the environment (e.g., from solar light, wind, body movements, etc.) to significantly extend the typical lifetime of low-power devices, enabling ubiquitous computing systems that can last virtually forever. However, the design challenges posed both at the hardware and at the software levels by the design of energy-autonomous devices are many. This thesis addresses some of the most challenging problems of this emerging research area, such as devising mechanisms for energy prediction and management, improving the efficiency of the energy scavenging process, developing protocols for harvesting-aware resource allocation, and providing solutions that enable robust and reliable security support. %, including the design of mechanisms for energy prediction and management, improving the efficiency of the energy harvesting process, the develop of protocols for harvesting-aware resource allocation, and providing solutions that enable robust and reliable security support

    Data Collection in Two-Tier IoT Networks with Radio Frequency (RF) Energy Harvesting Devices and Tags

    Get PDF
    The Internet of things (IoT) is expected to connect physical objects and end-users using technologies such as wireless sensor networks and radio frequency identification (RFID). In addition, it will employ a wireless multi-hop backhaul to transfer data collected by a myriad of devices to users or applications such as digital twins operating in a Metaverse. A critical issue is that the number of packets collected and transferred to the Internet is bounded by limited network resources such as bandwidth and energy. In this respect, IoT networks have adopted technologies such as time division multiple access (TDMA), signal interference cancellation (SIC) and multiple-input multiple-output (MIMO) in order to increase network capacity. Another fundamental issue is energy. To this end, researchers have exploited radio frequency (RF) energy-harvesting technologies to prolong the lifetime of energy constrained sensors and smart devices. Specifically, devices with RF energy harvesting capabilities can rely on ambient RF sources such as access points, television towers, and base stations. Further, an operator may deploy dedicated power beacons that serve as RF-energy sources. Apart from that, in order to reduce energy consumption, devices can adopt ambient backscattering communication technologies. Advantageously, backscattering allows devices to communicate using negligible amount of energy by modulating ambient RF signals. To address the aforementioned issues, this thesis first considers data collection in a two-tier MIMO ambient RF energy-harvesting network. The first tier consists of routers with MIMO capability and a set of source-destination pairs/flows. The second tier consists of energy harvesting devices that rely on RF transmissions from routers for energy supply. The problem is to determine a minimum-length TDMA link schedule that satisfies the traffic demand of source-destination pairs and energy demand of energy harvesting devices. It formulates the problem as a linear program (LP), and outlines a heuristic to construct transmission sets that are then used by the said LP. In addition, it outlines a new routing metric that considers the energy demand of energy harvesting devices to cope with routing requirements of IoT networks. The simulation results show that the proposed algorithm on average achieves 31.25% shorter schedules as compared to competing schemes. In addition, the said routing metric results in link schedules that are at most 24.75% longer than those computed by the LP

    A Comprehensive Survey on RF Energy Harvesting: Applications and Performance Determinants

    Get PDF
    \ua9 2022 by the authors. Licensee MDPI, Basel, Switzerland.There has been an explosion in research focused on Internet of Things (IoT) devices in recent years, with a broad range of use cases in different domains ranging from industrial automation to business analytics. Being battery-powered, these small devices are expected to last for extended periods (i.e., in some instances up to tens of years) to ensure network longevity and data streams with the required temporal and spatial granularity. It becomes even more critical when IoT devices are installed within a harsh environment where battery replacement/charging is both costly and labour intensive. Recent developments in the energy harvesting paradigm have significantly contributed towards mitigating this critical energy issue by incorporating the renewable energy potentially available within any environment in which a sensor network is deployed. Radio Frequency (RF) energy harvesting is one of the promising approaches being investigated in the research community to address this challenge, conducted by harvesting energy from the incident radio waves from both ambient and dedicated radio sources. A limited number of studies are available covering the state of the art related to specific research topics in this space, but there is a gap in the consolidation of domain knowledge associated with the factors influencing the performance of RF power harvesting systems. Moreover, a number of topics and research challenges affecting the performance of RF harvesting systems are still unreported, which deserve special attention. To this end, this article starts by providing an overview of the different application domains of RF power harvesting outlining their performance requirements and summarizing the RF power harvesting techniques with their associated power densities. It then comprehensively surveys the available literature on the horizons that affect the performance of RF energy harvesting, taking into account the evaluation metrics, power propagation models, rectenna architectures, and MAC protocols for RF energy harvesting. Finally, it summarizes the available literature associated with RF powered networks and highlights the limitations, challenges, and future research directions by synthesizing the research efforts in the field of RF energy harvesting to progress research in this area

    Analysis, Development And Design For Early Fault Detection And Fire Safety In Lithium-Ion Battery Technology

    Get PDF
    Energy storage technologies in its natural form play a key role in the electrical infrastructure, renewable and mobility industry. This form includes the material nomenclature for cell. technology, battery module design, Battery enclosure system design, control, and communication strategy, chemistry profile of various cell technologies, formation and formfactors of cell structure, electrical and mechanical properties of a lithium-ion cell, behavior of the cell under high voltage, low voltage, elevated temperature and lower temperature, multiple charging of a lithium-ion batteries. Energy storage industry is growing rapidly, and the industry is experiencing an unprecedented safety concern and issues in terms of fire and explosion at cell and system level. There has been. other research conducted with proposed theories and recommendations to resolve these issues. The failure modes for energy storage systems can be derived using different methodologies such as failure mode effects analysis (FMEA). Early detection mode and strategies in lithium-ion batteries to overcome the failure modes can be caused by endothermic reaction in the cell, further protection. devices, fire inhibition and ventilation. Endothermic safety involves modifications of materials in anode, cathode, and electrolyte. Chemical components added to the battery electrolyte improve the characteristics helping in the improvement of solid-electrolyte interphase and stability. Traditional energy storage system protection device fuse at the cell level, and contactors at the rack level and circuit breakers, current interrupt devices, and positive temperature coefficient devices at the system level. This research will employ classical experimental methods to explore, review and evaluate all the five main energy technologies and narrow down to electrochemical energy storage technologies. with the two main market ready lithium-ion battery technology (LiFePO4/ G and NMC/G) technology cells and why are they valuable in the energy storage and E-mobility space. Also, will focus on the electrical, mechanical design, testing of the battery module into a rack system, advancements in battery chemistries, relevant modes, mechanisms of potential failures, and early detection strategies to overcome these failures. Finally, how the problems of fires, safety concerns and difficulty in transporting already fully assembled energy storage systems can be resolved and be demystified in lithium-ion technology. Keywords Control strategy, Energy storage system, electrolyte, failure mode, early detection, Lithium-Ion cell technology, Battey system

    Mixed-source charger-supply CMOS IC

    Get PDF
    The proposed research objective is to develop, test, and evaluate a mixer and charger-supply CMOS IC that derives and mixes energy and power from mixed sources to accurately supply a miniaturized system. Since the energy-dense source stores more energy than the power-dense source while the latter supplies more power than the former, the proposed research aims to develop an IC that automatically selects how much and from which source to draw power to maximize lifetime per unit volume. Today, the state of the art lacks the intelligence and capability to select the most appropriate source from which to extract power to supply the time-varying needs of a small system. As such, the underlying objective and benefit of this research is to reduce the size of a complete electronic system so that wireless sensors and biomedical implants, for example, as a whole, perform well, operate for extended periods, and integrate into tiny spaces.Ph.D
    corecore