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Abstract

The Internet of things (IoT) is expected to connect physical objects and end-users

using technologies such as wireless sensor networks and radio frequency identifica-

tion (RFID). In addition, it will employ a wireless multi-hop backhaul to transfer

data collected by a myriad of devices to users or applications such as digital twins

operating in a Metaverse. A critical issue is that the number of packets collected and

transferred to the Internet is bounded by limited network resources such as band-

width and energy. In this respect, IoT networks have adopted technologies such as

time division multiple access (TDMA), signal interference cancellation (SIC) and

multiple-input multiple-output (MIMO) in order to increase network capacity. An-

other fundamental issue is energy. To this end, researchers have exploited radio

frequency (RF) energy-harvesting technologies to prolong the lifetime of energy-

constrained sensors and smart devices. Specifically, devices with RF energy har-

vesting capabilities can rely on ambient RF sources such as access points, television

towers, and base stations. Further, an operator may deploy dedicated power bea-

cons that serve as RF-energy sources. Apart from that, in order to reduce energy

consumption, devices can adopt ambient backscattering communication technolo-

gies. Advantageously, backscattering allows devices to communicate using negligible

amount of energy by modulating ambient RF signals.

To address the aforementioned issues, this thesis first considers data collection

in a two-tier MIMO ambient RF energy-harvesting network. The first tier consists
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of routers with MIMO capability and a set of source-destination pairs/flows. The

second tier consists of energy harvesting devices that rely on RF transmissions from

routers for energy supply. The problem is to determine a minimum-length TDMA

link schedule that satisfies the traffic demand of source-destination pairs and energy

demand of energy harvesting devices. It formulates the problem as a linear program

(LP), and outlines a heuristic to construct transmission sets that are then used

by the said LP. In addition, it outlines a new routing metric that considers the

energy demand of energy harvesting devices to cope with routing requirements of

IoT networks. The simulation results show that the proposed algorithm on average

achieves 31.25% shorter schedules as compared to competing schemes. In addition,

the said routing metric results in link schedules that are at most 24.75% longer than

those computed by the LP.

This thesis then considers ambient backscattering tags. Specifically, it considers

a two tier IoT network where its first tier is a multi-hop wireless backhaul and its

second tier contains a multi-hop ambient backscattering communication network.

Both tiers have a set of flows. The goal is to maximize the total flow rate in both

tiers. The main problem is to jointly determine the data rate at each source router

and tag, a TDMA-based schedule for RF links and backscattering links, the amount

of traffic routed over each link, and the transmit power/backscattering coefficient

at each router/tag. This thesis formulates the problem as a mixed-integer linear

program (MILP). It then outlines a heuristic to construct transmission sets for

both RF links and backscattering links as well as to optimize the transmit power

of router and tags. For large scale IoT networks, it outlines a novel heuristic that

jointly optimizes scheduling and routing in the said two-tier network. The simulation

results show that the proposed link scheduler results in network throughput that is

on average 29.80% higher as compared to competing link scheduling methods that

do not consider backscattering. In addition, the proposed heuristic leads to network

throughput that is on average 21.36% lower than the throughput computed by MILP.

Lastly, this thesis considers a power beacon that uses RF to charge devices on
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a multi-hop path to a sink. The problem is to optimize the total transmit power

of the power beacon. A challenging aspect is that the power beacon has imperfect

CSI. Further, it must ensure samples arrive at the sink by a deadline with a given

probability. To this end, this thesis formulates a chance-constrained stochastic model

to optimize the charging policy of the power beacon. It also contains two novel

practical algorithms that can be used to approximate the optimal charging policy

that meets the said probabilistic deadline requirement. The simulation results show

that the performance of S-POPA and BO-POPA is on average 86.91% and 79.25%

of the transmit power computed by Sample Average Approximation (SAA).
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Chapter 1
Introduction

1.1 Background

The Internet of things (IoT) provides a communication channel to a myriad of

“things”, such as physical objects instrumented with a transceiver, one or more

sensors or/and actuators [1]. Further, IoT facilitates cooperative operation and

management of “things” by leveraging their information sharing and communication

capabilities to provide high-quality services to users. Consequently, IoT networks

have a broad range of applications; see Table 1.1 for details. For example, in [2], a

smart home application allows users to remotely monitor and control lights, smart

furniture and a security system via a smartphone. Further, IoT networks will play a

key role in the upcoming Metaverse [3], whereby heterogeneous IoT devices collect

and update digital twins that model physical objects or processes.

Figure 1.1 shows a three-layer IoT architecture [13] that consists of a perception,

network and application layer. The perception layer consists of devices that transmit

samples to access points. Further, these devices may receive control messages from

access points to affect an environment. The network layer helps with the exchange

of information between devices in the perception layer and the application layer

via communication technologies such as Wi-Fi [14], Bluetooth [15], Zigbee [15] and

WiMAX [16] to name a few. Moreover, access points or routers may form a multi-
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Field IoT applications

Smart
home

Environment monitoring, IoT devices operation control, and security
systems control [2].
Energy management and electrical loads control in smart homes [4].

Smart
city

Real-time traffic monitoring and tracking systems [5].
Low-cost purchasing and product delivery systems [6].
Real-time smart parking systems that find open parking spaces for
drivers in a short time [7].

Smart
agriculture

Remote controlled robot systems to perform agriculture tasks such as
spraying and crop protection [8].
Cloud computing and wireless sensor networks to monitor agriculture-
related data, e.g., temperature and humidity[9].

Healthcare
Low-power and low-latency healthcare monitoring and alarm systems,
e.g., cloud services assisted wearable sensor platforms [10].

Industrial
Air, soil, water, plant and animal monitoring systems [11].
Food safety monitoring and quality control systems, which allows users
to access food supply chains, freshness, and logistics information[12].

Table 1.1: Examples of IoT networks and applications.

hop wireless backhaul to help relay samples generated by devices. The application

layer visualizes and processes data from devices, provides inference services, and

may sell collected data [17]. It also provides an interface between IoT applications

and users.

Data collection is a major function of IoT networks. To do so, an IoT network

can employ one or both of the following wireless network architectures: single-hop

or/and multi-hop [18]. In single-hop IoT networks, a device communicates directly

with a sink/gateway. However, a limitation of single-hop communications is that

devices far from a sink may require a high transmit power [19]. By contrast, in a

multi-hop wireless IoT network, devices are interconnected, meaning each device can

help route data from devices to a sink [20]. Advantageously, a multi-hop wireless

network provides better connectivity and coverage. In addition, devices are able to

reduce their transmit power and have a high data rate.

Interference is a major factor that limits capacity as well as the amount of

data collected in a multi-hop wireless network. Devices in a multi-hop network

may interfere with each other because they share limited wireless channel resources.

Interference degrades channel quality. As a result, a high interference level can cause
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AP1

AP2

AP3 Internet

Tag

WSN

Perception Layer Network Layer Application Layer 

a b

c d

Figure 1.1: An example three-layer IoT architecture. Sensors a, b, c, and d form a
wireless sensor network (WSN); see yellow box. Each arrow denotes a direct link
between two devices. In the network layer, access points (APs) form a wireless
multi-hop backhaul to relay data from IoT devices to the Internet.

packet loss. Further, it reduces capacity as per the Shannon-Hartley theorem [21],

which relates the theoretical capacity of a channel to the signal-to-interference-radio

(SINR) at a receiver. To this end, a key research direction is to design physical and

channel access technologies that embrace interference such as successive interference

cancellation [22]. Another direction is the development of link schedulers that aim to

derive a time division multiple access (TDMA) schedule that minimizes interference

as well as ensure high network capacity [23].

Limited energy resource is another critical challenge that impacts data collec-

tion [24]. This is because IoT devices powered by batteries have a limited operation

time, i.e., a device that transmits frequently will experience an energy outage quickly.

In multi-hop networks, devices that are close to a sink or connected with multiple

other devices may transmit more frequently to help relay data packets to a sink. As

a result, a multi-hop network may be disconnected once these devices experience an

energy shortfall [24]. To this end, many prior works focus on energy-aware rout-

ing [25] and transmit power control schemes [26]. Their goal is to balance the energy

utilization of devices in order to maximize network lifetime. Of interest in this thesis

is wireless power transfer (WPT) technologies [27] and ambient backscattering [28].
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These technologies are elaborated in the following sections.

1.1.1 Wireless Power Transfer

Wireless power transfer (WPT) technologies allow an energy source to deliver energy

to a device via an electric field, magnetic field, or electromagnetic radiation [27]. The

energy transfer range of WPT can be classified into near-field and far-field [27].

Near-field WPT techniques include inductive, magnetic, resonant, and capacitive

coupling. Their most significant feature is that they provide efficient transfer of

power in the kilowatts range [29]. Thus near-field WPT techniques are suitable

for charging electric vehicles [30]. Near-field WPT, however, suffers from severe

energy attenuation and has a short energy transfer distance, e.g., from millimeters to

several centimeters [31]. In addition, near-field WPT technologies require alignment

of transmission and reception coils [32]. To this end, there are works that aim to

improve charging efficiency via coils alignment, e.g., [33]. However, a disadvantage

is a charger cannot track and serve multiple harvesters simultaneously.

Far-field WPT exploits electromagnetic radiation, i.e., RF signals, which operate

in frequencies ranging from 3 kHz to 30 GHz. Compared with near-field techniques,

far-field WPT technologies promise a longer energy transfer distance, e.g., from

meters to several kilometers [31]. Advantageously, far-field WPT technologies do

not require alignment between energy charger and energy harvester. Further, a

charger can serve multiple harvesters simultaneously. However, compared with near-

field WPT, far-field WPT circuits achieve a lower energy conversion efficiency and

limited output power [34], which mainly depend on the received power strength at

a harvester. For example, for the harvester in [35] and input power -20 dBm, its

energy conversion efficiency reaches only 18.2%. To this end, far-field techniques are

suitable for charging low-power sensor networks.

RF energy harvesting/charging technologies can be classified into ambient and

dedicated charging [36]. Ambient RF energy charging allows IoT devices to obtain

4



energy from existing RF sources, e.g., television signals, Wi-Fi signals (2.4 GHz/5

GHz), and GSM signals (900 - 950 MHz). As a downside, the energy delivered

by an ambient RF source is unpredictable and uncontrollable. Hence, dedicated RF

chargers are useful as devices can request energy whenever they experience an energy

shortfall. However, employing dedicated RF chargers incur additional infrastructure

costs. To date, existing works have focused on antenna circuits design [37], waveform

design [38] and beamforing [39] technologies in order to improve energy transfer

efficiency. Another direction focuses on technologies that improve the spectrum

efficiency of dedicated RF-charging systems, e.g., simultaneous wireless information

and power transfer (SWIPT) [40].

1.1.2 Backscatter communication systems

Backscatter communication systems play a significant role in ultra-low-power IoT

networks; see reference [28] and therein. A backscatter transceiver/tag harvests

and reflects external RF signals from transmitters. For example, a tag absorbs or

reflects an RF signal to represent bits in a two-state modulation mechanism [41].

This means backscatter tags do not need an RF chain for transmission. As a result,

they consume orders of magnitude less power than devices with a conventional RF

radio. For example, tags that are equipped with a Wi-Fi backscatter transmit with

power as low as 1 µW [28]. The downside is that they have a low data rate and

limited transmission range, see Table 1.2.

Backscatter communication systems can be classified into three categories based

on their architectures, e.g., monostatic, bistatic, and ambient backscatter communi-

cation systems; as shown in Figure 1.2. Monostatic backscatter systems are similar

to conventional RFID systems, whereby a reader emits an RF carrier to activate

backscatter and collects data simultaneously. This, however, causes self-interference

at the reader’s end. In addition, radio signals experience attenuation twice, i.e.,

from a reader to a backscatter and from a backscatter to a reader, which leads
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Prototype Frequency Max Data Rate (range) Consumption

Wi-Fi Backscatter [42] 2.4 GHz 1 kbps (2.1 meter) ≤ 1 µW

BackFi [43] 2.4 GHz 1/5 Mbps (5/1 meter) N/A

Frequency-shift
backscatter

[44] 2.4 GHz 48.7 kbps (4.8 meter) 45 µW

Television
backscatter

[45] 536-542 MHz 10 kbps (2.5 meter) 0.79 µW

Phase-shift keying
backscatter

[46] 539 MHz 20 kbps (0.75 meter) N/A

LoRa Backscatter [47] 900 MHz 37.5 kbps (2.8 km) 9.25 µW

Frequency-Modulation
backscatter

[48] 98.5 MHz 2.5 kbps (5 meter) 1.4 µJ/bit

Backscattering
tag-to-tag
network

[49] 915 MHz 5 kbps (3 meter) 260 µW

Table 1.2: Example backscatter prototypes and their performance.

to significant loss and causes the doubly near-far problem [28]. Consequently, a

backscatterer must be deployed near a reader in monostatic backscatter systems.

This means monostatic backscatter systems have a limited communication range.

Backscatter 

Transmitter
Backscatter 

Transmitter

Backscatter 

Receiver

Backscatter 

Transmitter

Backscatter 

Receiver

Reader

RF Carrier

Generator

Ambient

RF source

(a) (b) (c)

Backscatter 

Transmitter

Figure 1.2: Example backscatter communication systems: (a) monostatic, (b)
bistatic and (c) ambient. The green and red arrow denote the RF carrier signal
and backscattered signal, respectively.

In bistatic backscatter communication systems, RF sources and backscatter re-

ceivers are physically separately. This avoids self-interference at a reader. In addi-

tion, compared with monostatic systems, bistatic backscatter communication sys-

tems achieve a longer transmission range as one or multiple RF sources can be placed

near to tags [50]. However, a disadvantage of bistatic backscatter communication

6



systems is they require more infrastructure costs.

Ambient backscatter communication systems allow tags to exploit existing mod-

ulated RF signals from television towers, Wi-Fi access points, and cellular base

stations; see Table 1.2. To this end, ambient backscatter communication systems do

not require dedicated RF sources, thereby reducing infrastructure costs. In addition,

they have a higher spectrum utilization efficiency as compared to bistatic backscat-

ter communication systems [51]. However, ambient RF signals generated by access

points or television towers may interfere with backscatter signals. In particular,

the signal strength of RF signals is usually much higher than that of a backscat-

tered signal at a backscatter receiver. To this end, many works have focused on

physical layer solutions, e.g., frequency-shift [44], multi-phase transmitter [49], and

modulation schemes [46], to enable a backscatter receiver to decode backscattered

signals in the presence of external modulated RF signals. Another issue is that am-

bient RF sources are unpredictable and uncontrollable, which may result in a short

transmission range and limited amount of generated data.

Recently, researchers have shown the possibility of tag-to-tag backscatter com-

munications. It differs from the above backscatter communication technologies be-

cause it does not require a dedicated reader for data collection. In addition, a multi-

hop tag-to-tag communication system achieves wider coverage than monostatic and

bistatic backscatter technologies. A major application of a tag-to-tag backscatter

system is to overcome interruption of data collection due to energy outages. As

demonstrated in [52], multi-hop tag-to-tag communication can assist in relaying

data when devices do not have sufficient energy to emit an RF signal. Existing

works have also investigated centralized or distributed multi-access control proto-

cols [53], resource allocation methods [52], and routing protocols [54] to maximize

the throughput of multi-hop tag-to-tag systems.
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1.2 Research Statement

This thesis focuses on data collection in a two-tier IoT network. An example is

shown in Figure 1.3, which consists of routers at Tier-1 and devices/tags at Tier-

2. The first tier is a multi-hop wireless backhaul that consists of routers powered

by the grid, i.e., routers have an unlimited power supply. Routers are responsi-

ble for forwarding data packets from source to destination routers or a sink. In

addition, routers can collect data packets from devices located in the second tier.

Specifically, the second tier consists of an RF energy-harvesting network and an am-

bient backscatter communication network. Energy-harvesting devices are powered

by ambient or dedicated RF signals from routers. They use a harvest-then-transmit

protocol; they first harvest energy from routers, then transmit data packets if they

have a sufficient energy. In other words, they have an energy requirement for data

transmission. In addition, they are able to perform multi-hop communications; see

path e− f − g. Tier-2 also consists of tags that use multi-hop tag-to-tag communi-

cations. There is a flow from tag a to tag d, which is routed over path a− b− c− d.

They are battery-free and can be activated only when their neighboring routers,

e.g., router A and C, are transmitting.

Given the above IoT network, this thesis aims to investigate the following re-

search questions:

• How to jointly optimize energy provision and device activation in a two-tier

multi-hop IoT network for data collection? This question relates to the de-

velopment of algorithms that ensure ambient RF energy-harvesting devices

and ambient backscatter tags have sufficient energy for data transmissions. A

challenge is that devices transmit data via multi-hop communications, mean-

ing a sink can collect from a source device only when all devices on a path

have sufficient energy. To this end, a major problem is to meet the energy de-

mand of devices. Another problem is to schedule the transmission of devices

according to their energy arrival and channel conditions. Specifically, devices
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c
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Figure 1.3: An example IoT network. Router A, B, C, D, E form a multi-hop wire-
less backhaul network. Ambient tag a, b, c, d form a backscattering communication
network. IoT device e, f , g form an energy-harvesting network. Each solid and
dotted arrow represent a direct data link and an ambient energy link, respectively.
Each red arrow represents a backscattering link.

with high energy arrivals can be allocated more transmission opportunities.

Alternatively, devices can wait for a good channel. However, this may cause

high transmission latencies. Alternatively, they can transmit as soon as they

can. This, however, may require a high transmit power.

• How to optimize routing and antenna power allocation of routers in a two-

tier multiple-input multiple-output (MIMO) network for both data transmis-

sion and energy harvesting? Routing affects data transmissions and energy

delivery to devices. Specifically, routing has an impact on the traffic load of

links. The traffic load over each link will determine how often a link is acti-

vated, which in turn determines the energy arrivals at devices located in the

second tier of the network. For example, referring to Figure 1.3, assume router

A aims to transmit to router E, and there are two available paths: A−B−E

and A − C − D − E. Router A can route all traffic over the shorter path.

However, devices d, c, and e will experience an energy shortage due to the
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lack of RF sources. Antenna allocation in a MIMO system is another chal-

lenge. Specifically, routers with MIMO will have diversity gain, whereby each

transmit antenna has a random channel gain towards each receive antenna.

This means a random antenna allocation may cause low SINR at routers and

low harvestable energy at devices. To this end, routers must decide their an-

tenna power allocation to maximize energy transfer efficiency and the number

of concurrent links.

• How to construct a link schedule for both RF links and backscatter links in

a two-tier ambient backscattering network? The major challenge is that the

length of a link schedule is limited by interference. In addition, link scheduling

is a classic NP-hard problem [55]. Deriving the optimal link schedule requires

an exhaustive collection of transmission sets; each transmission set includes a

group of transmitting links. This is challenging because the number of trans-

mission sets grows exponentially with the network scale. For example, there

are ten links in Tier-1 of Figure 1.3. This can result in 210 − 1 possible trans-

mission sets. Another challenge is that the active time of backscattering links

is closely associated with the transmission time of their neighboring routers.

For example, referring to Figure 1.3, a sink can collect more data from tags

when routers A and C are given more transmission opportunities. In addi-

tion, tags also need to share channel resources and avoid interference. To this

end, a major problem is to jointly determine the active time of RF links and

backscattering links in order to maximize network throughput.

• How to efficiently deliver energy to devices for multi-hop data collection with

imperfect CSI? A router is able to power all energy harvesting devices with

switch-beam antennas; see Figure 1.4. The goal is to minimize the energy

consumption of a transmitting router and ensure energy-harvesting devices

can forward a sample to a sink by a deadline with a given probability. The

key problem is to decide the switched-beam pattern used by a transmitting
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router in each time frame. The major challenge is imperfect CSI knowledge for

RF-charging. This means a transmitting router cannot decide its switched-

beam pattern based on channel power gains and the amount of harvested

energy at devices. Another challenge is that the required energy to transmit

a sample also varies with random channel gains in each frame. As shown in

Figure 1.3, the sample is forwarded in a multi-hop manner, i.e., over path

e − f − g, meaning an energy shortage at any node will result in a sample

delivery failure.

A

CDE D C

A

E

（a） （b）

B B

Figure 1.4: Example switched-beam antenna patterns for RF-charging. There are
five energy-harvesting devices, namely A, B, C, D, E, in pattern (a) and (b). The
selected single-lobes are colored by green and form a beam pattern. Note that beam
pattern (a) only allows device A and B to harvest energy and device B and D are
able to harvest energy in pattern (b).

1.3 Contributions

This thesis aims to jointly optimize energy delivery and device activation in a two-

tier multi-hop IoT network for data collection. It presents solutions to the follow-

ing problems: (i) joint routing, link scheduling, and antenna power allocation in

a two-tier MIMO RF energy-harvesting network, (ii) joint routing, link scheduling,

transmit power/backscattering coefficient control in a two-tier IoT network with am-

bient backscattering tags, and (iii) transmit power control of a power beacon that is
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used to charge energy-harvesting devices efficiently with imperfect CSI. Figure 1.5

illustrates the connection among these topics.

1.3.1 Joint link scheduling and routing in two-tier RF energy-

harvesting IoT Networks

This thesis first aims to answer the first and second research questions. It considers

a two-tier ambient RF energy-harvesting IoT network. The first tier is a multi-hop

wireless backhaul network that consists of routers with MIMO capability. The goal

is to derive the minimum-length link schedule and routing policy to meet a given

traffic and energy demand of routers and energy harvesting devices, respectively.

Specifically, the problem is to determine the active time of each link, the antenna

power allocation of routers, and the amount of traffic routed over each link.

The major challenge is that link scheduling is NP-hard. The second challenge is

to optimize antenna power allocation of routers with MIMO capability to maximize

network capacity and energy transfer efficiency. The third challenge is that routing

must ensure routers transmit sufficiently frequently to deliver energy to devices

located at Tier-2 of the network.

To achieve the said goal, this thesis first outlines a linear program (LP) that

jointly optimizes the active time of transmission sets and also the routing of each

session. As link scheduling is NP-hard, it presents a novel heuristic called Trans-

mission Set Generator (TSG) to generate transmission sets for use by the LP. In

addition to considering the SINR of links, it also maximizes both the number of links

and energy delivered to energy-harvesting nodes. Lastly, it outlines a novel rout-

ing metric that quantifies the number of energy-harvesting nodes that are charged

on a given path. Advantageously, this metric can then be used by the well-known

Dijkstra’s algorithm [56] to select a path for each session.
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1.3.2 Maximizing flow rates in multi-hop two-tier IoT net-

works with ambient backscattering tags

The second major work considers a two-tier IoT network with routers and ambient

backscattering tags. Specifically, the first tier has a set of flows/source-destination

pairs. The second tier consists of ambient tags that rely only on the RF signals emit-

ted by routers for backscattering. In addition, tags are equipped with a frequency-

shift transmitter, which allows tags to shift the backscattered signal to an adjacent

channel of incident RF signal from routers. The goal is to derive the optimal TDMA

link schedule and routing policy to maximize the sum throughput of both tiers over

a given time duration. The major challenge is that the optimal link schedule must

consider the active time of both RF links and backscattering links.

To achieve the said goal, this thesis presents a mixed integer linear program

(MILP) to jointly optimize the active time of RF links, the active time of backscatter-

ing links, and multi-hop routing. Next, it outlines a novel heuristic called Algorithm

Transmission Set Generator (ALGO-TSG) that constructs a set of transmission sets

for active RF links and backscattering links. ALGO-TSG aims to maximize the

number of concurrent links and activates additional power links to assist backscatter

communications. The transmission sets generated by ALGO-TSG are used by MILP

to derive a final schedule that maximizes network throughput at both tiers. Lastly,

it outlines a novel heuristic called Centralized Max-Flow (CMF), which jointly con-

siders scheduling and routing in a two-tier network. It aims to maximize flow rates

at both tiers by determining: (i) the transmission set activated in each time slot,

(ii) a path used by each session, and (iii) flow rates.

1.3.3 Optimizing sample delivery in RF-charging multi-hop

IoT networks

The third work considers a power beacon that is deployed to deliver RF energy to

devices on a multi-hop path. A source device generates a sample and other devices
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on the path help forward the sample to the sink. In this setup, the main aim is to

ensure a sample arrives at the sink by a deadline with a given probability. To do

so, the power beacon must supply sufficient energy to all devices. However, a key

challenge is that the power beacon has imperfect CSI knowledge of channel gains

and energy level at devices. The problem at hand is to minimize the power beacon’s

transmit power when charging devices. A key constraint is that samples must arrive

at the sink by a given deadline with a given probability.

To address the said problem, this thesis formulates a chance-constrained stochas-

tic program to determine the transmit power allocation of the power beacon. This

program is then solved using the sample average approximation (SAA) method [57].

In addition, this thesis contains two algorithms named sampling based probabilistic

optimal power allocation (S-POPA) and Bayesian Optimization based probabilistic

optimal power allocation (BO-POPA) to approximate the optimal solution for our

problem. Briefly, S-POPA generates a set of candidate solutions and iteratively

learns the solution that returns a high probability of success. On the other hand,

BO-POPA applies the Bayesian Optimization framework to construct a surrogate

model to predict the reward value of each transmit power allocation.

Network capacity issues 

Goal:Data collection in 
two-tier IOT networks 

Energy distribution issues 

Link scheduling Routing 

Power control Beamforming 

Major optimization problems

Capacity of a IOT network
determines the amount of 
data it can transfer 

Devices and tags must harvest 
sufficient energy from routers 
for data transmission

Contribution 2: Maximize the flow rates in a two-tier 
IoT network with ambient backscattering tags 

Contribution 1: Maximize backhaul netwrok capacity 
and provide energy provision for underlying devices

Contribution 3: Privide robust charing policy solutions
for real-time IoT data collection with imperfect CSI 

Figure 1.5: Connections among the topics and contributions in this thesis.
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1.4 Publications

The research carried out in this thesis has appeared or submitted to the following

venues:

1. M. Jiang, K-W Chin, T He, S. Soh, L. Wang, Joint Link Scheduling and

Routing in Two-Tier RF-Energy-Harvesting IoT Networks, in IEEE Internet

of Things Journal, vol.9, no. 1, pp. 800-812, Jan. 2022.

2. M. Jiang, K-W Chin, S. Soh, Maximizing Flow Rates in Multi-hop Two-Tier

IoT Networks With Ambient Backscattering Tags, in IEEE Internet of Things

Journal, vol.9, no. 24, pp. 24628 - 24642, Dec. 2022.

3. M. Jiang, K-W Chin, Optimizing Sample Delivery in RF-Charging Multi-Hop

IoT Networks, in IEEE Transactions on Green Communications and Network-

ing, 2023. Under major revision.

1.5 Thesis Structure

1. Chapter 2. This chapter provides a comprehensive literature review of exist-

ing works on resource allocation, routing and scheduling works in RF energy-

harvesting networks and backscattering networks. It also discusses multi-hop

packet delivery with timeliness or energy harvesting requirement. It also high-

light the novelties of this thesis.

2. Chapter 3. This chapter answers the first and second research questions. It

outlines an LP for a joint routing and link scheduling problem in a two-tier

RF energy harvesting MIMO network. It also outlines a heuristic to generate

transmission sets for the LP, and proposes a new metric to compute paths for

routers to charge energy harvesting devices.

3. Chapter 4. This chapter answers the first and third research questions. It

outlines a MILP. In addition, it also proposes a heuristic to generate RF trans-
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mission sets and backscattering sets in order to maximize network capacity.

Lastly, it outlines a heuristic to jointly compute a link scheduling and a single

path for each flow.

4. Chapter 5. This chapter answers the first and the last research questions. It

presents a chance-constrained stochastic program to cope with the uncertainty

in imperfect CSI in a real-time packet delivery system. It approximates the

optimal solution by using the SAA method and two novel proposed sampling

methods.

5. Chapter 6. This chapter concludes this thesis and outlines future works.
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Chapter 2
Literature Review

This chapter first discusses resource allocation in multi-user RF energy-harvesting

networks, including works that consider one or more hybrid access points or power

beacons, multi-hop RF energy-harvesting networks, and cognitive radio RF energy-

harvesting networks. Next, it focuses on link scheduling with routing works that con-

sider SISO, MIMO, and RF energy-harvesting networks. Thirdly, ambient backscat-

ter networks, backscatter-aided WPCNs, and a novel passive tag-to-tag network are

highlighted. Fourth, it reviews packet delivery strategies in real-time multi-hop net-

works that consider information freshness and timeliness metrics under uncertainty.

Lastly, it provides an analysis of prior works and highlights the novelties of this

thesis.

2.1 Multi-user RF energy-harvesting networks

This section presents multi-user RF energy powered networks. These works focus on

optimizing energy utilization, whereby their major aims are divided into two general

categories: (i) maximize sum-throughput subject to energy constraints, or achieve

throughput fairness among energy-constrained users, and (ii) minimize the energy

consumption of RF sources subject to certain quality of service (QoS) demands at

rechargeable users, or achieve a fair energy distribution among users. The following
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sections discuss three categories of works based on their network: (i) single-hop

RF energy-harvesting networks, (ii) RF energy powered wireless sensor networks

(WSNs), and (iii) multi-layer RF energy-harvesting networks.

2.1.1 Single-hop RF energy-harvesting networks

This section presents research into single-hop wireless energy and information trans-

fer. This section first discusses a simple network where a hybrid access point (HAP)

broadcasts energy signals to charge all energy-harvesting users, and collects data

from all users via single-hop transmissions [58, 59]. However, the amount of har-

vested energy and the transmit power of users for data transmissions are highly

dependent on the distance to the HAP. This means users that are far away from

the HAP harvest less RF energy, and have to transmit to the HAP with a high

power to overcome significant path loss. This phenomenon is known as the doubly-

near far problem. To this end, this section next focuses on works that aim to

improve single-hop energy transfer efficiency by adopting multiple HAPs [60–63]

or beamforming [64–68]. The focus is to optimize the placement or beamforming

vectors of HAP(s). Lastly, this section reviews works that consider simultaneous

wireless information and energy transfer (SWIPT) systems with single-hop commu-

nications [69–71]. The main focus is to optimize a so-called power-splitting ratio

and a time-switching ratio to maximize energy utilization.

Prior works that study single-hop RF energy-harvesting networks where a HAP

charges all energy-harvesting devices aim to maximize network throughput. Typi-

cally, a HAP has a constant power supply, e.g., from power grids, and serves as a

dedicated RF source. Users leverage their harvested energy to power their circuits.

There are two types of links: (i) downlink, which is used for charging devices by

the HAP, and (ii) data uplinks from users. The example work in [58] considers a

half-duplex HAP, and proposes a harvest-then-transmit protocol to schedule both

wireless energy transfer and information transmission. Briefly, all users first simul-
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taneously harvest energy in a charge slot. Next, each user transmits to the HAP

using time-division multiple-access (TDMA). Advantageously, each user only trans-

mits in an assigned data slot to avoid any redundant energy consumption due to

collisions. In [59], the authors extend the said RF energy-harvesting network with a

full-duplex HAP. A full-duplex HAP broadcasts downlinks and receives uplinks at

the same time. Advantageously, users are able to continuously harvest energy until

it transmits in an assigned slot. This promises a higher amount of harvested energy

for users and thus supports a higher data rate. The authors consider a weighted

throughput maximization problem in two scenarios, i.e., the HAP has either perfect

or imperfect self-interference cancellation. The problem is to jointly optimize the

transmit time of energy transfers and uplink transmissions.

There are also works that consider the use of multiple omni-directional HAPs

or PBs to overcome the doubly-near far problem. The focus is to determine the

number of HAPs or PBs and their placement in order to maximize energy transfer

efficiency and achieve fairness in energy distribution. An example work in [60] aims

to minimize the number of PBs subject to a given number of users with given energy

demand. The location of energy-harvesting users is also given. Users transmit

data packets to APs. The authors consider two network scenarios. In the first

scenario, APs have a fixed location. The authors proposed a greedy algorithm to

iteratively deploy PBs and determine their location. In the second scenario, the

problem is to jointly optimize the location of each PB and each AP. In [61], the

authors investigate a trade-off between the maximum energy harvested by users

and the fairness of distributed energy among users. The goal is to maximize a

utility value that is jointly determined by the sum harvested energy of users and

the minimum harvestable energy among users. In a different work [62], the authors

consider a network where users harvest energy from both a HAP and multiple PBs.

Three energy-harvesting modes are considered: (i) users only harvest energy from

the HAP, (ii) users harvest energy from all PBs until they transmit, and, (iii) each

user only requests energy from the nearest PB. The authors aim to optimize the
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location of a given number of PBs to minimize the SNR outage probability of users.

In [63], the authors consider the PB deployment problem under imperfect CSI. In

addition, the PB does not know the location of nodes. The goal is to minimize the

number of PBs while ensuring energy outage occurs within a given probability.

Another key issue is to use beamforming to overcome path loss. The goal is

to maximize energy-harvesting efficiency or maximize the sum network throughput

by optimizing the beamforming vector at HAP. In their systems, a multi-antenna

HAP is responsible for charging all users and collecting data from them. Under

static channel state information, the HAP decides the optimal beamforming pattern

that allows the transmit signal from multiple antennas to constructively combine at

users and maximize the amount of harvestable energy. Advantageously, the HAP

is able to focus its energy on users that experience an energy shortage thereby

preventing network outages. There are works that consider to charge a single user

at a time with beamforming. An example is [64], where users contend to request

energy or transmit data from/to the HAP based on CSMA/CA. Each user maintains

a probability of sending an RTS frame to request energy from the HAP, whereby

the probability is inversely proportional to its residual energy level. The goal is to

minimize throughput degradation due to energy requests. In a different work [65],

the HAP is able to charge all users in an energy-harvesting phase. Next, users

transmit to the HAP via space-division-multiple-access in a data transmission phase.

The authors present a mathematical program to jointly optimize the beamforming

vectors, the duration of the energy-harvesting phase and transmission phase, and

the transmit power at users. As the problem is proven to be non-convex, the authors

present a two-step solution. In the first step, they determine the transmit and receive

beamforming vectors and the transmit power allocation among users under a given

charging and transmission schedule. In the second step, they compute the optimal

duration of charging and transmission by an exhaustive search in order to maximize

the minimum throughput among users.

Prior works such as [64, 65] assume the CSI knowledge is perfectly known at
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the HAP. In practice, HAPs are not able to operate by using perfect CSI knowl-

edge due to many factors, such as channel estimation error, feedback error, and

delay. To this end, there are a number of works that focus on beamforming design

to provide robust transmissions over imperfect CSI. The main consideration is to

avoid network outages or allow network outages to occur only within a given prob-

ability. There are works that consider stochastic models to characterize imperfect

CSI, whereby CSI errors are modeled as a zero-mean Gaussian variable with a given

variance. Their aim is to maximize network throughput in the presence of channel

estimation error. Example works include [66] and [67]. In [66], the CSI information

for both charging and collecting data is imperfect at the HAP. In each time slot,

users are assigned into two groups based on their operation: only transmit data

to the HAP or only harvest energy from the HAP. They formulate a non-convex

program to jointly optimize the transmit and receive beamforming vector of the

HAP, grouping strategy and transmit power of users, and convert the problem to

an equivalent weighted minimum-mean-square error minimization problem. In [67],

the objective is to maximize the sum throughput at users, whereby the SNR of each

user must meet a threshold value at a given probability. The authors present a

chance-constrained program that jointly optimizes the beamforming vector and the

transmission time of users. In a different work [68], the authors use a deterministic

model to characterize imperfect CSI. Specifically, the authors give the worst-case

channel realization instead of a distribution of channels. To this end, they focus on

avoiding network outages for the worst channel realization. The authors consider

a HAP that uses imperfect CSI knowledge to transmit data to an information re-

ceiver and transfer energy to an energy receiver. The objective is to maximize the

energy harvested by the energy receiver. In addition, the data rate at the informa-

tion receiver must exceed a threshold for any channel condition. The problem is

to optimize the beamforming vector of the HAP. The problem cannot be directly

solved as it requires all possible CSI realizations. To this end, the authors capture

the optimal solution by reformulating the problem as a semidefinite program.
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Works that study resource allocation in SWIPT systems aim to balance the

information rate and the harvestable energy at users. Typically, SWIPT consists

of two architectures, namely time-switching and power-splitting receivers. Time-

switching receivers dedicate time to harvest energy as well as communication. The

fraction of time between energy harvesting and information decoding over a given

period of time is adjusted by a time-switching ratio. Alternatively, receivers can

split a received signal to decode information and harvest energy. The amount of

power dedicated for each part is determined by a power-splitting ratio. In [69],

the authors study the achievable rate-energy region for time-switching receivers and

power-splitting receivers in different network settings, respectively.

Reference [70, 71] considers optimizing the time-switching ratio and power-

splitting ratio at receivers. In [70], each user decides its power-splitting ratio. In

addition, each user maintains a minimum harvested energy threshold and a mini-

mum SINR threshold. The aim is to minimize the transmit power at a HAP subject

to a given energy and SINR requirement of users. The work in [71] studies SWIPT

in a multi-user orthogonal frequency division multiplexing (OFDM) system. Users

employ TDMA or OFDM. Specifically, time-switching receivers use TDMA, and

those that use power-splitting employ OFDM. The aim is to maximize the sum-

throughput subject to the energy demand of users.

2.1.2 RF powered WSNs

This section presents RF energy powered WSNs. Of interest are works on designing

energy-efficient MAC protocols [72–75]. The objective of these works is to maximize

the throughput of rechargeable users and maximize their harvested energy. Differ-

ent from conventional MAC protocols, these energy-efficient MAC protocols consider

metrics such as energy arrivals and energy level at devices. In WSNs, employing

relays shortens transmission distances, which helps to improve energy efficiency and

overcome the doubly near-far problem. To this end, there are many works that con-
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sider a RF energy powered WSN with multi-hop communications [76–83], whereby

some works also consider routing protocol, beamforming, MIMO, and SWIPT. The

major objectives of these works are to maximize network throughput or minimize

energy consumption subject to QoS demands.

Example works such as [72–75] study the design of medium access control (MAC)

protocol for RF powered WSNs. The work in [72] considers a WSN where sensors

are powered by one or multiple PBs. The authors present a CSMA/CA-based MAC

protocol to maximize the average harvested energy by users. The protocol jointly

controls (i) the transmission schedule of PBs and their transmit power, (ii) the

charging time of users, and (iii) the priority of nodes to transmit data and request

energy. A major challenge is that the RF signals from multiple power beacons can

combine destructively at some users due to phase cancellation, thereby degrading the

energy harvested by these users. To this end, PBs are assigned into two groups upon

receiving an energy request from a user, whereby PBs in different groups transmit

at a different center frequency.

Many works consider energy-harvesting in slotted Aloha-based networks [73, 74].

In [73], Moradian et al. designed a slotted Aloha-based MAC protocol to maximize

throughput. Energy arrives randomly at a node. Energy-harvesting nodes transmit

data by choosing a random waiting time in a contention window. The problem is to

optimize the energy arrival rate and contention window size to avoid collision and

maximize throughput. In [74], the authors propose a distributed harvest-until-access

protocol based on slotted Aloha. This work aims to maximize network capacity

without knowledge of full channel state information. A HAP charges all users and

collects data from users. They focus on determining the optimal number of random

access slots in each frame. In each frame, users randomly select a slot to access the

channel, continuously harvest energy until they are allowed to access the channel.

The energy-harvesting time of nodes depends on when these nodes start to transmit

data. To avoid collisions, at any random access slot, only one wireless device trans-

mits data to a hybrid access point while other wireless devices continuously harvest
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energy from a hybrid access point.

The work in [75] presents a probabilistic polling-based MAC for multi-hop RF

powered WSNs. The goal is to maximize network throughput. There are a set of

rechargeable users. Users continuously harvest ambient RF sources and have ran-

dom energy arrivals. Each active sensor first waits for a random time to access

channel, and transmits a poll packet to request data from other active users. Upon

receiving a poll packet, an active user transmits its data packet according to a prob-

ability, whereby the probability is inversely proportional to the estimated number of

neighboring active users. Users store received data packets and transmit in response

to poll packets.

The work in [76, 77] studies multi-hop WSNs powered by ambient RF sources.

The goal is to design energy-aware routing schemes for WSNs. In [76], the au-

thors present a distributed energy-harvesting-aware routing algorithm (EHARA) to

jointly manage the energy-harvesting time of users and a path used for each source-

destination pair. In terms of routing, the authors define a new metric to calculate

the cost of each link, where it takes both the energy level of the transmitter and

receiver on the link and their spatial distance into consideration. EHARA ensures

nodes with a high energy level are used for routing. The work in [77] outlines

a routing protocol named energy-harvesting Aware Ad hoc On-Demand Distance

Vector (AODV-EHA). It aims to minimize the total transmission cost for routing;

the transmission cost of a node is defined by the energy it uses for data transmission

minus its harvested energy.

Works that studied multi-hopWSNs powered by dedicated RF sources include [78–

80]. Their aim is to improve network throughput. The main focus is to study the

optimal charging policy in order to satisfy the energy demand of energy-harvesting

devices. An example work is [78], where relays first broadcast RF energy signals to

charge energy-harvesting users. After that, they collect data from users and forward

data to a sink. The author aims to maximize network throughput by jointly optimiz-

ing the transmit power at each relay and user. The work in [79] considers a two-hop
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WSN that consists of a source node, a relay, and a sink. The sink harvests energy

from the relay and decodes information via SWIPT. The authors aim to jointly op-

timize the transmit power and relay placement to minimize a given data rate outage

probability. In [80], the authors consider a two-hop network. Relays harvest energy

from the HAP and operate in two modes, namely, amplify-and-forward and decode-

and-forward. The authors aim to maximize the sum throughput by determining

the optimal transmission time of relays. Next, the authors present algorithms when

relays operate in amplify-and-forward and decode-and-forward mode, respectively.

A major direction is to adopt energy beamforming technology in RF-powered

multi-hop WSNs to improve energy transfer efficiency. Some works consider a

HAP/power beacon with multiple antennas to charge sensors with beamforming.

The major problem is to determine the beamforming pattern and charging time of

the HAP. Example works include [81] and [82]. In [81], a HAP uses beamforming

and focuses its beam on one user at a time. Each user is able to transmit to the

HAP via one-hop or two-hops. In addition, the authors prove that users have a

higher throughput and energy efficiency under TDMA. In [82], the authors consider

a WSN that consists of multiple sensors, PBs, and a sink. PBs use beamforming to

charge sensors and each sensor transmits to the sink via multi-hops. The authors

aim to maximize the minimum data rate among users by jointly optimizing the

data rate and routing of users, beamforming vectors of PBs and their charging time.

The challenge is the data rate and route for sensors are dependent on their energy

level. The authors first present a centralized algorithm given by a set of pre-defined

beamforming vectors, then outline a distributed algorithm for large-scale networks.

There are also works that consider joint energy sharing and energy beamforming

problems in multi-hop RF-powered WSNs. An example work is [83]. Relays are

equipped with multiple antennas and have SWIPT capability. Hence, each relay

only harvests energy upon receiving the RF signal transmitted by a neighboring

relay. The authors consider beamforming optimization in a power-splitting case and

a time-switching case. For both cases, the authors optimize the beamforming vector
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at relays to maximize the data rate subject to energy storage and transmit power

constraints.

2.1.3 Multi-layer RF energy-harvesting networks

This section presents works that consider multi-layer RF energy-harvesting net-

works. In multi-layer RF energy-harvesting networks, rechargeable users harvest

energy directly from devices in an existing network rather than from dedicated

HAPs or PBs. Multi-layer RF energy-harvesting networks enable spectrum reuse,

which advantageously ensures efficient energy and spectrum utilization. This section

considers two categories of multi-layer RF energy-harvesting networks: (i) cognitive

wireless powered communication networks [84–90], and (ii) WSNs powered by co-

operative APs [91–93].

Past works aim to maximize the sum throughput of secondary users, while pro-

tecting the transmissions of primary users in cognitive wireless powered communica-

tion networks [84–90]. A typical cognitive wireless powered communication network

consists of a primary network and an underlying energy-constrained secondary net-

work. The transmissions in the primary network power a set of underlying secondary

users, e.g., a WSN. Primary users share the spectrum with secondary users, mean-

ing secondary users access the channel opportunistically as the transmission of a

secondary user may interfere with primary users. The main problems relate to (i)

channel access for secondary users [84–86], which determines the time and spectrum

used by users for channel access, and (ii) determining forwarding path(s) for each

source-destination pair, and the data rate of relays, e.g., [87–90].

References [84–86] study channel access in cognitive wireless powered commu-

nication networks. In [84], the secondary network consists of a HAP and multiple

secondary users. Secondary users harvest RF energy from the HAP and primary

transmitter, and send data packets to the HAP. Secondary users access the channel

via TDMA. The authors consider two spectrum sharing models. Their main dif-
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ference lies in whether the HAP has the CSI from the primary transmitter to the

primary receiver and to the HAP. The authors jointly optimize the time allocation

for energy-harvesting and information transmission, and the transmit power of each

secondary user. In [85], the authors extend the system in [84] with MIMO, i.e., sec-

ondary users have multiple antennas. The goal is to maximize the sum throughput

of secondary users by optimizing the beamforming vector at the HAP, and the time

allocation for energy-harvesting and information transmission. In a different work,

the authors of [86] study a dynamic spectrum access problem. Primary users oper-

ate on orthogonal channels. In each time slot, a secondary user accesses a channel

licensed to a primary user and switches between energy harvesting and data trans-

mission. Specifically, the secondary user sends data only when the primary user

is idle. The authors aim to maximize the long-term throughput by optimizing the

channel selection policy of the secondary user.

The following works consider cognitive wireless powered communication networks

with relays. The work of [87] and [88] studies a relay selection problem, where the

secondary network is a multi-hop WSN. In [87], secondary users are provided with

a set of orthogonal channels. To improve spectrum utility, secondary users are also

able to sense idle channels licensed to primary users. The authors aim to maximize

the spectrum utilization subject to an SINR requirement of primary users. To this

end, the authors propose algorithms to sequentially compute the shortest path for a

flow, the transmit power of users over the path, and the channel allocation of users.

In another work [88], Nguyen et al. consider relay selection problems with imperfect

CSI. The aim is to minimize network outage probability by jointly optimizing the

time allocation for energy harvesting and transmission, the path for a flow in the

secondary network, and the transmit power of relays. In addition, they present two

relay selection metrics to minimize the outage probability over two consecutive hops,

and minimize the end-to-end outage probability of the flow.

Many works study collaborative relaying systems in cognitive wireless powered

communication networks. This means secondary users are able to help relay data
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from a primary transmitter to a primary receiver in order to primary network out-

age. The objective of these works is to maximize the secondary network throughput

subject to a rate outage requirement of the primary receiver. In [89], a primary

transmitter splits its transmit power into two portions. One portion is used to

support its transmission, and the other portion is used to charge a secondary trans-

mitter. The problem is to jointly optimize the beamforming vector of the secondary

transmitter, and the power allocation at the primary transmitter. In [90], primary

users harvest RF energy from a HAP and secondary users. The bandwidth of sec-

ondary users is split into two portions: one portion is used for cooperative data relay

by primary users, and the other portion is used for secondary data transmissions.

The problem is to jointly determine the time allocation of primary users that is used

for energy-harvesting and data transmissions, the bandwidth allocation of secondary

users, and the density of secondary users in an energy-harvesting area of primary

users.

The following works consider a novel two-layer RF-EHN, where the primary layer

is a set of APs or routers, and the underlying layer is a set of RF energy-harvesting

devices; see [91–93]. Devices are only powered by the transmissions of APs. The

focus is to schedule the RF transmissions of APs subject to the energy demands

of energy-harvesting devices. For example, reference [91] considers a network that

consists of multiple APs and energy-harvesting sensors. The data arrival at each

AP is random. The objective is to maximize an expected reward value, whereby

the reward is a function of the sum throughput of APs and sum-energy harvested

at sensors. To this end, the authors of [91] formulate the problem as a Markov

decision process (MDP) and optimize the transmission schedule of APs. In [92],

routers operate on the same channel and need to decide their transmit power in

order to avoid interference. In addition, routers are able to transmit dedicated

energy links to charge energy-harvesting devices. The authors aim to derive the

minimum schedule length that activates each data link once subject to the energy

demands of underlying sensors. To this end, the author presents a heuristic to jointly
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optimize the transmission order of data links and energy links, and the transmit

power of routers. In [93], the authors consider a two-tier OFDMA RF energy-

harvesting network. The bandwidth is divided into multiple sub-carriers. Links

over the same sub-carrier may interfere with each other. The aim is to minimize

the sum transmit power of APs subject to data rate demand and energy demand at

underlying users. The problem is to jointly determine the sub-carrier allocation for

each AP to transmit data links and energy links, and the transmit power of each

AP over each sub-carrier.

To date, numerous standards exist to help facilitate the implementation of RF-

energy harvesting networks. For example, the Zigbee protocol cluster [94] specifies

that battery-less devices in a wireless mesh network are able to perform ambient

energy harvesting to support communications and other operations such as sensing

and computing. Another industry standard concerns RF energy charging is AirFuel

RF [95]. AirFuel RF provides commercial RF energy chargers and receivers, whereby

a single charger is able to simultaneously charge multiple mobile energy harvesters

located several meters away. In addition, it also specifies regulation for the use of RF

energy harvesting technologies in terms of application scenarios, frequency bands,

and human safety concerns.

2.2 Joint routing and link scheduling

This section presents works that jointly consider link scheduling and routing issues.

Link scheduling is a data link layer technique that exploits spatial reuse in order to

activate as many links as possible simultaneously. However, finding the optimal link

schedule for a given network is an NP-hard problem [96]. To this end, many efforts

have been devoted to developing efficient link scheduling algorithms. In addition,

there are many works that propose cross-layer solutions that jointly consider routing

and link scheduling, whereby the derived link schedule must ensure links have the

capacity to route a given amount of traffic.
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Next, this section categorizes cross-layer solutions based on their network archi-

tecture: (i) in single-in single-out (SISO) networks, where both transmitters and

receivers are equipped with a single antenna. In addition, all transmissions operate

on a single frequency band, (ii) multiple-input multiple-output (MIMO) networks,

where nodes are equipped with multiple antennas. As compared with SISO net-

works, nodes are able to actively cancel co-channel interfering streams by consuming

antenna elements, and (iii) in RF energy-harvesting networks, whereby nodes are

energy-constrained and powered by ambient or dedicated RF sources.

2.2.1 Cross-layer approaches

This section divides cross-layer approaches into two categories. The works in the

first category employ the protocol interference model; see in [97–102]. These works

consider nodes that maintain a transmission range and an interference range. The

works in the second category employ the physical interference model [96, 103–111].

A link can be activated if the SINR at its receiver meets a threshold. The remainder

of this section discusses these works in detail.

In general, link scheduling works that study the protocol interference model aim

to maximize network throughput [97–102]. Typically, these works construct a con-

flict graph based on the interference range of nodes to derive an interference-free

schedule. The interference range of nodes depends on their transmit power. There

are a set of works that aim to optimize STDMA links schedule for a routing strategy,

which specifics paths for flows and their traffic demand. For example, reference [97]

considers a wireless mesh network where routers operate on a fixed number of or-

thogonal channels. The problem is to jointly determine link scheduling, channel

assignment, and routing. To this end, they first determine a joint channel assign-

ment and traffic routing solution to minimize interference between nodes. Next, a

link schedule is computed based on the given traffic routing. Similarly, the work

in [98] considers a joint link scheduling, transmit power control, and routing prob-
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lem. The throughput maximization problem is decomposed into sub-problems: the

first sub-problem is to determine the traffic over each link. The second sub-problem

is to determine the transmit power of nodes in order to ensure links have sufficient

capacity for their routed traffic. In another work [99], the authors propose a cross-

layer solution, whereby links that interfere with the least number of neighboring

transmissions are first scheduled. For a given routing that specifies the amount of

traffic routed over links, links carrying more traffic will be activated in multiple

time slots. In [102], the authors propose a delay-aware routing and link scheduling

scheme. The aim is to minimize the maximum end-to-end delay among flows subject

to flow deadline. To this end, the authors propose a Lagrangian scheme, where in

each iteration, it checks whether there is a feasible link schedule for a computed

path.

The works that consider routing for a computed STDMA schedule aim to max-

imize network throughput. Specifically, these works first compute a schedule that

meets a certain link QoS demand, which also reveals the capacity of links. Next,

they determine the optimal traffic allocation scheme that maximizes the sum flow

rate. For example, in [100], the authors study both sum-throughput maximization

and throughput fairness maximization for a WSN. They propose a polynomial-time

scheduling method that preferentially activates links with a small interference range.

Next, the author formulates a linear program to determine the amount of traffic

placed over links. In [101], Sivrikaya et al. aim to minimize the end-to-end delay

from a source to a destination. The problem is to find the optimal routing for a com-

puted STDMA schedule. To this end, the authors propose routing protocols that

aim to ensure fairness in terms of data distribution over links and minimize path

length. Further, they consider two cases: nodes can or cannot aggregate packets

from multiple transmitters.

Another category of works aims to maximize network throughput based on the

physical interference model [112]. Specifically, these works address the problem

of constructing a minimum-length schedule subject to end-to-end traffic demands
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or maximizing the long-term flow rates over a frame with a fixed number of time

slots. Many works consider constructing a non-interfering links schedule based on

column generation algorithms. Specifically, a set of non-interfering links form a

column/transmission set. This means the capacity of links is dependent on the

activation of a set of computed transmission sets. Example works that propose

a column-generation-based scheme for joint routing and scheduling problems in-

clude [96, 103–109]. In [103], the aim is to compute the minimum-length schedule

subject to flow demand. The authors formulate a dual problem to minimize the

schedule length. Specifically, there is a master problem that aims to determine the

active time of transmission sets and the traffic routed over each link subject to a

set of end-to-end traffic demands. The slave problem is to determine the activa-

tion of links to construct a new transmission set that improves the objective of the

master problem. In [104], the goal is to minimize the schedule length subject to

flow demand. To this end, the authors first compute a set of transmission sets and

their length. The length of each transmission set is minimized subject to the data

demand of all links in the transmission set. Next, the problem is to determine the

activation of transmission sets to form the minimum-length link schedule. Similarly,

reference [105] derives a traffic-aware link schedule by considering a dual problem.

The master problem is to determine the active time of each given transmission set.

The sub-problem is to generate a new transmission set. The aim is to activate links

that lead to the maximum sum data rate. In [106], the problem is joint path se-

lection and links schedule. The authors propose an algorithm to iteratively select

a path for each session, and compute a link schedule given the selected paths in

order to maximize the sum throughput of sessions. The work in [107] considers the

joint routing and scheduling problem with dynamic routing conditions. The aim is

to find a schedule that minimizes the worst-case network congestion level among all

possible end-to-end traffic demand realizations. The problem is to jointly determine

the amount of traffic routed over links and the active time of transmission sets.

Research into joint routing and link scheduling problems has also considered
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graph-theory based schemes. In some prior works, link scheduling is solved by a

vertex coloring algorithm, whereby each vertex is a direct link. Two vertices are

connected by an edge only if links on the vertices interfere with each other based

on the physical interference model [112]. Next, the algorithm aims to minimize the

number of colors used for vertices so that no two vertices connected by an edge

share the same color. A transmission set includes a set of links with the same color.

Consequently, a link schedule is computed by determining the activation of each

transmission set in order to support the traffic of flows. An example work is [108],

whereby the aim is to maximize network throughput subject to a node lifetime

requirement. To this end, the authors formulate a problem to jointly determine the

traffic routed over each path of each session and the active time of each transmission

set. The authors in [109] consider a joint transmit power control, routing, and link

scheduling problem based on vertex coloring, whereby the aim is to construct a link

schedule subject to the traffic of flows. Paths are computed by a weighted Dijkstra’s

algorithm [56], and routers use the minimum transmit power to meet SINR in the

link schedule. In [96], the authors propose an approximation algorithm to schedule

links with traffic demand. The idea is first to assign links with similar SNR values

into a cluster. Next, non-interfering links in a cluster are scheduled in the same time

slot based on vertex coloring; the length of a time slot is depended on the traffic

demand of active links. The algorithm terminates if all links are scheduled into a

certain time slot.

Many works have considered energy-efficient routing over the physical interfer-

ence model. In general, these works aim to minimize the sum transmit power at

nodes subject to flow rate demands. For example, in [110], Cruz et al. consider a

network with multiple routers and a set of links. The authors first generate transmis-

sion sets by optimizing the transmit power of routers. For each given transmission

set, the goal is to minimize the sum average transmit power of nodes subject to the

minimum capacity of links. Next, the authors compute a link schedule by determin-

ing the active time of each transmission set. Given the computed link schedule and
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the shortest path for each session, the authors optimize routing by allocating traffic

routed over links. In [111], the authors propose an algorithm to jointly determine

the path for a session, link scheduling and transmit power of nodes. Briefly, the

algorithm first determines a path for a session, where links over the path use the

minimum data rate to meet the traffic demand of a session. Next, the link schedul-

ing problem is solved by an edge coloring algorithm, whereby each edge represents

a direct link between two nodes. The goal is to minimize the number of colors used

for edges so that no adjacent edges share the same color. Links that share the same

color can be active at the same time.

2.2.2 MIMO Networks

This section reviews works that consider joint link scheduling and routing issues

in MIMO networks. Unlike SISO networks, MIMO networks additionally concern

antenna allocation at a transmitter and a receiver in order to suppress co-channel

interference. In particular, antenna elements are allocated depending on the number

of streams transmitted over a link as well as interfering streams from neighboring

nodes. In addition, the use of antenna elements can be characterized by the degree-

of-freedom (DoF) model proposed in [113]; the available DoF resource at a node is

equivalent to the number of antenna elements.

This section considers two categories of works based on their antenna allocation

model. For works that employ the DoF model, e.g., [114–121], the main problem is

to allocate DoF resources at nodes. On the other hand, the works that do not employ

DoF focus on beamforming optimization and transmit power control at nodes; e.g.,

[122–125].

In DoF-based MIMO works, the data rate of a link is dependent on the number

of DoF resources. Specifically, both the transmitter and receiver of a link consume

a DoF to transmit a data stream, where streams have an identical data rate. The

sum rate of a MIMO link depends on the number of data streams received at the
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receiver of the link. In addition, a MIMO receiver is able to null a co-channel

interfering stream for a neighboring transmitter by consuming one DoF. To this end,

prior works have studied DoF allocation for spatial multiplexing and interference

suppression, along with MIMO links scheduling and routing. The main aim is to

maximize network sum throughput. An example work is [114], whereby the authors

formulate a linear program to select a single path for each flow, and determine the

DoF allocation at each node. The work in [115] extends [114] to a multi-path routing

case. The aim is to minimize the TDMA schedule length subject to traffic demand.

To this end, the authors jointly determine relay selection, MIMO link scheduling,

and antenna allocation. In [116], the authors consider a multi-hop MIMO system

with multiple nodes and gateways. Each transmitter exploits spatial multiplexing

to communicate with different neighboring receivers. The goal is to derive the

minimum-length schedule so that each node receives data packets from a gateway.

The problem is to determine the path for each flow, activation of links, and DoF

allocation for data transmission and interference cancellation. In [117], the authors

consider a multi-radio MIMO network. Each node is equipped with multiple radios

that operate on orthogonal channels, whereby each radio has multiple antennas.

Nodes are able to simultaneously transmit to multiple receivers, where the outgoing

links at a transmitter cannot exceed the number of its antennas. The aim is to

minimize the schedule length subject to traffic demand of flows. The problem is to

jointly optimize the link scheduling, the traffic routed over each link, the channel

assignment, and the DoF allocation.

Many past DoF-based works aim to achieve rate fairness by maximizing the

minimum source rate of flows; see [118–121]. Their main concern is to optimize DoF

allocation for data transmission and interference cancellation, along with routing

and MIMO links scheduling. In [118], the authors consider both spatial multiplexing

and diversity, whereby each antenna experiences a different path loss. Consequently,

streams on different spatial paths have different rates. The problem is to determine

DoF allocation for both data transmission and interference cancellation based on
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the interference level at nodes, the path for each flow, and the activation of links.

In [119], the authors propose an efficient ordering model to allocate DoF resources

during interference cancellation. Specifically, nodes are arranged in an order. Each

node only suppresses interference streams from/to nodes that are ordered before

it. The problem is to explore the optimal DoF allocation at nodes, the ordering

metric of all nodes, links scheduling, and the routes of flows. The authors propose

a distributed protocol, whereby nodes are allowed to exchange their DoF allocation

with their neighbors. In another work [120], the authors aim to achieve a fair

rate allocation among flows. They first propose a heuristic to generate a set of

transmission sets for MIMO links, whereby each transmission set also specifies the

DoF allocation over links and their link rate. Next, the authors use a relaxed linear

program to jointly optimize the traffic of each flow routed over each link, the source

rate of each flow, and the active time of each transmission set. Reference [121]

considers a multi-ratio multi-channel MIMO network, where each node has one or

multiple radios that operate on orthogonal channels. The challenge is the dynamic

traffic of flows. The problem is to jointly optimize the channel assignment of nodes,

links activation, DOF allocation, relay selection, and traffic allocation.

The following works concern MIMO links scheduling and routing along with

beamforming and antenna power allocation; see [122–125]. In this set of works, the

data rate of a MIMO link depends on the actual SINR value at receivers, which

is determined by a beamforming vector and MIMO channel gains matrix. They

address a problem of beamforming vector and power allocation optimization at the

transmitters end, in order to minimize network energy consumption or improve net-

work throughput. For example, in [122], the authors consider a multi-hop network

that consists of a set of sources and destinations. Each link has a pre-defined weight

of activation. The objective is to maximize a weighted sum network throughput.

To this end, the authors jointly optimize the beamforming vector of nodes, relay

selection for sources, and the traffic of each flow routed over each link. The work

of [123] studies resource allocation based on a column generation method. A set
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of pre-defined interference-free transmission sets for MIMO links are given, along

with the power allocation over antennas of transmitters and the data rate of MIMO

links in each transmission set. This means the transmit power at nodes and net-

work throughput is determined by the activation and active time of transmission

sets. The aim is to maximize the minimum fairness among flows, whereby the fair-

ness of a flow refers to the ratio between the actual data rate and the rate demand

on it. The problem is to jointly determine the active time of each transmission

set, and the fraction of traffic of each flow routed over each link. In [124], Lin

et al. propose a distributed resources allocation mechanism in multi-hop MIMO

networks. The challenge is that spatial channels between transmit and receive an-

tennas are time-varying. This means the data rate of links in each time slot depends

on the beamforming vector at their transmitter and channel conditions. The aim

to minimize the sum transmit power of all nodes subject to the rate demand of

flows. To this end, the authors formulate a dual problem to jointly determine the

beamforming vector, links scheduling, and routing. In [125], the authors consider a

robust resource allocation mechanism against imperfect CSI. The authors consider

an orthogonal frequency division multiplexing MIMO network. The objective is to

maximize the worst case network throughput subject to flow rate demand and co-

channel interference constraint. The problem is to jointly optimize the scheduling,

channel assignment, and power allocation among nodes and beamforming vector at

each node.

2.2.3 RF energy-harvesting networks

This section reviews works that consider joint routing and link scheduling in RF

energy-harvesting networks. Unlike the works in the previous two sections, this sec-

tion reviews works that consider both network capacity and energy provision require-

ments. Their main objectives include (i) maximizing network sum-throughput [126–

129], or ensuring fair data transmissions [130–133], and, (ii) developing energy-
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efficient routing and links scheduling schemes [134–136].

References [126–128] aim to maximize network sum-throughput in RF energy-

harvesting networks. In this set of works, devices harvest energy from ambient

energy sources or dedicated power beacons that emit a signal with a fixed power

level, meaning nodes experience different energy arrival. They address the problem

of optimizing links scheduling, relay selection, and energy distribution at devices.

For example, in [126], the authors consider a multi-hop network that has a set

of rechargeable nodes and routers. Rechargeable nodes rely on data transmission

among routers to replenish their battery level. To assist energy-harvesting devices,

routers also use energy links to charge these nodes. Energy links carry no information

and cause interference. The work in [126] aims to minimize the schedule length

subject to the data demand of flows and the energy demand of rechargeable nodes.

The problem is to determine the active time of each link, and the traffic of each

flow routed over each link. In [127], the authors consider a network powered by a

single power beacon. Links are scheduled based on the protocol interference model.

In addition, each flow uses a path determined by a tree routing protocol. Nodes

send data packets to a sink via multi-hop communications. The aim is to maximize

a utility function, which is determined by the sum data rate of all source nodes.

The problem is to jointly optimize the sampling rate of each source node and the

amount of data routed over each link. In [128], multiple power beacons are used

to charge an energy-harvesting multi-hop network. Nodes transmit to an access

point based on an ad-hoc on-demand distance vector routing protocol [137]. The

access point assigns the best path for use by each source node. The authors aim to

maximize throughput subject to the rate demand of links and the lifetime demand of

nodes. The problem is to jointly determine the routing of flows, data transmission,

and energy-harvesting time of each node. In another work of [129], nodes harvest

ambient energy and have finite energy storage. This means the consumed power of

each node in a time slot cannot exceed an upper bound. In addition, each node is

able to decide whether to harvest energy in each slot. The goal is to maximize the
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average network sum-throughput subject to limited energy arrivals at nodes. The

problem is to jointly determine the transmit power allocation of nodes and links

activation in each time slot and the traffic of flows placed on each link.

Works consider joint routing and link scheduling in dedicated RF energy-harvesting

networks aim to maximize network throughput. The main focus is to derive the op-

timal charging policy to dedicate energy to devices that have data to transmit. In

addition, these works also concern path selection, link scheduling, and transmit

power control of nodes subject to their energy level. An example work is [130], Roh

et al. consider a WSN powered by a single PB that transmits with a fixed power

level. The problem is to determine the activation of links in each slot, and transmit

power of nodes and relays selected by each source. Works including [131–133] fur-

ther consider to improve charging efficiency by optimizing the deployment of PBs

or their beamforming vectors, in order to distribute energy to nodes according to

their assigned data traffic. For example, in [131], the authors consider an RF energy

powered WSN, where sensors transmit data to a sink via multi-hop transmissions.

The problem is to jointly determine the active time of links, the traffic of each flow

routed over each link, and the deployment of PBs. There are also works that con-

sider the use of energy-constrained power beacons. For example, in [132] and [133],

power beacons are powered by solar and experience random solar energy arrival.

In addition, they are equipped with multiple antennas and charge nodes via beam-

forming. In [132], the authors consider a non-linear energy conversion rate, whereby

the harvested energy at a node depends on its incident power level. The problem is

to jointly determine links scheduling, beamforming vector at PBs, transmit power

of nodes, and routing. In [133], He et al. consider distributed resource allocation

scheme in a cognitive wireless powered network. The secondary network consists of

PBs/nodes, which are able to operate on orthogonal channels licensed to primary

users. In each time slot, a PB/node only operates on one channel, thereby each

node only harvests RF energy from PBs in the same channel. The problem is to

jointly determine the channel assignment of PBs and nodes, the beamforming vector
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of PBs, the transmit power of nodes, the traffic allocated to links, and the active

time of links.

The following works aim to study energy-efficient routing schemes. The main

aim of these works is to minimize energy consumption subject to flow rate demand

and QoS demand of users. They address problems such as charging time alloca-

tion, transmit power control, and relay selection and link scheduling. For example,

in [134], the authors consider a multi-hop network where nodes are powered by a

charger. The authors consider an energy-balanced routing scheme for flows. Specifi-

cally, each node selects a relay by jointly considering the energy level of the next-hop

relay and the distance between nodes. The aim is to maximize the minimal resid-

ual energy among nodes. The problem is to jointly optimize the charging policy,

path selection and links activation over time slots. In [135], the authors propose an

energy-aware cluster-based routing scheme. They consider an RF energy-harvesting

network with a set of nodes and two sinks. In addition, nodes are divided into

multiple non-overlapping clusters. In each cluster, a cluster head collects data from

all nodes via multi-hop transmissions, then sends the aggregated data to a sink.

Each node maintains a probability to be a cluster head, which is determined by

its residual energy. The problem is to jointly optimize cluster head selection, link

activation in each cluster, and routing in each cluster. In another work [136], the

authors propose an energy-efficient routing framework to jointly optimize network

lifetime and throughput. Nodes have a fixed energy-harvesting rate. Links access

channel by TDMA. The aim is to maximize network throughput while avoiding en-

ergy outages, i.e., to achieve perpetual network lifetime. The problem is to jointly

determine a path for each flow, the transmission order of links and their data rate,

and the transmit power of nodes.
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2.3 Passive backscatter communication networks

This section presents works that consider resource allocation issues in passive backscat-

ter communication systems. Rather than using conventional radios, a passive backscat-

tering node relies on an external RF signal to power its circuit and transmits by

reflecting incident RF signals.

Prior works can be divided into three categories according to their system. The

first category of works focuses on single-hop communication systems where passive

tags communicate with a reader directly. These works consider bistatic and ambient

backscatter communications systems, whereby an energy source can either be an

access point or a dedicated power beacon, or an ambient RF source. A disadvantage

of single-hop backscatter communication systems is that they have small coverage

due to the short transmission range of backscatter transceivers.

The works in the second category consider multi-hop passive tag-to-tag systems,

whereby passive backscatters are able to communicate with each other when assisted

by RF energy sources. Advantageously, multi-hop backscatter communication sys-

tems have better network coverage and energy efficiency than single-hop backscatter

systems.

The third category concerns backscatter-assisted WPCNs. The works in this cat-

egory consider hybrid devices that have both an RF signal transmitter and a passive

backscatter module. Advantageously, hybrid devices are able to transmit when they

harvest sufficient amount of energy, or perform passive backscatter communications,

which help reduce communication cost. The remainder of this section will present

resource allocation issues in backscatter communication networks in detail.

2.3.1 Single-hop passive backscatter communications

This section reviews works that consider single-hop passive backscatter communi-

cation systems in two categories: bistatic [138–140], and ambient [141–145]. Unlike

conventional RFID works, readers and RF energy emitters are separated. Readers
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have unlimited energy supply and collect data from tags directly. Passive backscat-

ters/tags are battery-free and rely solely on external RF signals to backscatter their

data to a reader.

The first category of works considers resource allocation problems in bistatic

backscatter communication systems, whereby the aim is to improve energy efficiency

or throughput. In their system, one or multiple RF sources are used to power tags.

In addition, one or multiple readers collect data from tags. The main problem

is to schedule backscatter communications and the transmit power of RF sources.

For example, the work in [138] jointly determines the transmit power of an RF

source, and the backscatter coefficient of tags. The authors of [138] further consider

imperfect CSI and network outage requirement.

Prior works that consider multiple RF emitters and readers in bistatic commu-

nication systems aim to improve network throughput and energy efficiency. Un-

like works with a single reader, tags are able to communicate with and harvest

energy from a nearby reader. Further, these works address the doubly near-far

problem [58]. The main focus of these works is RF carriers and backscatter com-

munications scheduling. Specifically, carrier scheduling methods aim to determine

which RF emitters are active in each time so that the data demand of tags is satisfied

with the maximum energy efficiency. In addition, a scheduler is used to ensure tags

backscatter without interference in the presence of RF carriers. Example scheduling

works include [139] and [140]. Their major aim is to maximize the energy efficiency of

readers subject to the QoS demand of tags. In their system, readers are half-duplex,

meaning each reader either collects data from tags or emits an RF carrier to enable

backscatter communications in each time slot. To this end, these works consider an

RF carrier scheduling problem to determine which readers simultaneously emit an

RF carrier in each time slot in order to minimize the sum-energy consumption of

readers. In addition, tags scheduling is needed to improve network throughput. For

example, the work in [140] constructs a minimum-length tag schedule assuming the

protocol interference model, where they also minimize the number of readers used
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to power tags in each time slot.

A common aim is to maximize network throughput in ambient backscatter com-

munication systems. A major issue is spectrum sensing. In each time slot, a tag

needs to first perform spectrum sensing in order to detect a strong ambient frequency

signal to enable passive backscatter communications. After that, the tag carries out

channel access in the presence of an ambient RF signal. The length for each time slot

is usually fixed. Consequently, there is a trade-off between the duration allocated

to spectrum sensing and backscattering communications, which respectively decides

the number of detected RF signals and backscattering data rate. Example works

that consider the said optimal time allocation include [141, 142], whereby they also

optimize the power split ratio at tags. The power split ratio determines the amount

of harvested energy used for spectrum sensing and backscattering communications.

In addition, the work in [142] considers imperfect spectrum sensing process, meaning

tags may experience energy shortage when a detected RF signal has a low power.

Another issue is that tags need to perform spectrum sensing to avoid interfering

with legacy RF users. This means tags only backscatter when neighboring RF users

are idle. An example work is [143], where tags adopt a backoff mechanism during

channel sensing.

Multi-user scheduling is a key problem in ambient backscatter communication

systems. The main focus is on network throughput optimization via contention-free

or contention-based protocols. Firstly, works such as [146–149] study TDMA-based

multi-user scheduling algorithms for ambient backscatter communication systems.

Usually, a centralized controller governs the channel access of tags. These works

aim to design tag selection rules for a controller to compute a TDMA schedule in

order to maximize network throughput and improve energy efficiency. For example,

a scheduler activates a backscattering link with the maximum SNR [146] or best

channel gain [148] in each time slot. However, these approaches result in unfair

channel access among tags, i.e., only links with the best channel quality are activated.

To address this problem, there are also works that study a scheduler that allows
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tags to backscatter opportunistically. For instance, the authors of [147] propose

fairness-based schedulers. Briefly, the probability of activating a backscattering link

is proportional to its SNR value. In [149], the authors use reinforcement learning

to construct a TDMA schedule, whereby a tag with new data transmits at a higher

probability in each time slot. There are also works that consider contention-based

protocols. For example, works such as [150] and [151] respectively study Aloha-

based protocol and CSMA-based protocols for multi-user access, along with channel

assignment and backscatter coefficient optimization problems.

Research into passive backscatter communications has also considered cognitive

radio networks. A typical system consists of one or multiple primary users, which

serve as ambient RF sources for a set of underlying tags. Tags are able to transmit

whenever primary users transmit. The major issue is the interference caused by

secondary users at primary receivers. To this end, the research goal of these works is

to enable backscatter communication systems and prevent primary users outage, i.e.,

to meet certain rate or SINR at primary receivers. Example works such as [144, 145]

aim to maximize the throughput of a secondary network. In [144], the problem is

to jointly determine the transmit power of a primary transmitter, backscattering

coefficient of tags, and time allocation for each tag to backscatter. In [145], a reader

performs spectrum sensing and controls channel access for all tags. The authors

consider imperfect CSI between primary transmitters and tags, meaning a reader is

unaware of the incident power level at a tag. To this end, they aim to maximize the

average data rate by optimizing the transmission schedule of tags.

Note that a number of industry standards have been developed for passive

backscattering communication systems. Existing global industry standards for pas-

sive backscattering communication systems include EPCglobal Gen2 [152] and ISO

18000-6C [153], whereby tags are able to communicate with readers over ultra-high-

frequency bands via one-hop communication. These standards specify regulations

for passive backscattering communication systems in terms of equipment architec-

ture and functionality, physical layer parameters such as modulation coding schemes,
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and data link layer technologies such as multiple access control (MAC) protocols.

Specifically, they apply slotted Aloha to avoid collisions among backscattering links.

2.3.2 Passive tag-to-tag communication systems

In passive tag-to-tag communication systems, backscatter transceivers communicate

with each other. Unlike monostatic and bistatic communication systems, dedicated

readers are optional. A typical tag-to-tag backscatter network consists of an RF

energy source and a set of passive backscatter transceivers/tags. Passive tags have

no battery or energy storage for communications. To establish communication, a

transmitter tag backscatters external RF signals to a receiver tag. In practice, the

incident power strength at a receiving tag must exceed a sensitivity level to enable

demodulation and to meet a certain SNR demand, which has a range from -25 dBm

to -5 dBm. Moreover, in multi-hop tag-to-tag communication systems, a reader

serves as both an RF energy source, and a controller to coordinate the operation

of tags. In addition, a reader is able to collect data from tags via either direct

or multi-hop transmissions, which is a promising solution to the doubly near-far

problem [58].

The next set of works consider hardware design issues [45, 49, 154, 155] and rout-

ing protocols for multi-hop tag-to-tag communication systems [53, 156–159]. Their

major design goal is to reduce the energy consumption of backscatter transceivers

and enable tag-to-tag communications. They consider the use of low-power con-

sumption components. As the received power level of an external RF carrier at a

receiving tag is usually much higher that of a backscattered signal, a challenge is

to extract backscattered information in the presence of excitation RF signals. To

this end, many works consider modulation schemes for backscatter communications.

For example, in [154], tags adopt an amplitude modulation scheme. Specifically, a

backscattered signal is successfully decoded only when its modulation depth meets

a threshold; the modulation depth at a receiver is the ratio of two voltage levels
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that respectively represent two modulation states. In addition, tags are equipped

with an envelope detector and analog-to-digital converter to decode backscatter

signals. However, analog-to-digital demodulators consume significant amount of en-

ergy, which is not suitable for battery-free passive backscatter transceivers. To this

end, there are also works further consider energy-efficient modulation and decoding

methods. For example, in [45], Liu et al. avoid the use of any high-power com-

ponents such as analog-to-digital modules and oscillators. In their work, receivers

are equipped with an envelope detector to decode backscattered information with

an averaging mechanism. The proposed averaging mechanism allows receivers to

identify backscattered signals and RF signals due to the fact that their data rate

are significantly different.

Another major concern is the phase cancellation problem in tag-to-tag commu-

nication systems. In practice, RF excitation signals and backscattered signals arrive

at a receiver with different phases, which can combine destructively resulting in a

decoding failure. Example works include [49] and [155]. In [49], the authors design

a multi-phase backscatter modulator that allows transmitters to decide the phase

of their backscattered signal, called a phase channel. In addition, they integrate

ultra-low power consumption circuits at tags for both modulation and demodula-

tion. Further, in [155], the authors propose a collaborative multi-phase backscatter

system. Briefly, only one pair of transmit and receive tag communicate at a time.

Other tags decide their phase channel and collaboratively backscatter to a trans-

mitting tag, which aims to increase the incident power at a transmit tag. This in

turn increases the backscattered signal strength at a receiving tag.

There are also works that consider multi-user access and routing protocols design

for multi-hop tag-to-tag communication networks. The main focus is on the opti-

mization of network throughput and end-to-end transmission reliability. Similar to

routing in conventional networks, routing methods in tag-to-tag communication net-

works can either be performed in a centralized or distributed manner. In centralized

routing protocols, a reader serves as a controller, whereby the reader computes the
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optimal path for flows. There are numerous issues when designing centralized rout-

ing protocols for tag-to-tag communications. The first issue is tag identification. To

this end, a reader first queries all tags in order to check whether they have a packet

to transmit. Next, the reader computes the best path for each flow. For example,

in [157], a reader first runs a depth-first-search algorithm to compute all possible

paths for each flow. Next, the reader selects a path that has the minimum end-to-

end bit error rate. In [156], a reader computes paths that lead to the maximum

network sum-throughput. The second issue is co-channel interference between tags.

This means a reader needs to schedule the transmission of tags so that any interfer-

ing tags cannot backscatter simultaneously. To this end, past works have employed

channel access schemes such as TDMA or STDMA under the physical interference

model, see [156]. In another work [158], the authors consider a frequency shift de-

sign for multi-hop tag-to-tag communications, which allows tags to backscatter at

different frequencies. The third issue is the optimization of backscatter coefficients.

For example, in [156], tags have an adjustable backscattering coefficient, meaning

they are able to reduce interference caused at neighboring receivers by attenuating

their backscattered power.

There are a number of works that aim to develop distributed routing methods.

Each tag maintains a routing table. To establish their routing table, tags need

to sense neighboring tags and exchange their local information. An example work

is [159], whereby the aim is to reduce the energy consumption of multi-hop tag-to-tag

communications. To this end, tags preferentially route traffic over a path with the

shortest distance. In another work [53], tags operate based on a continuous carrier

sensing mechanism. To reduce power consumption, tags switch between listening

and sleep mode periodically. Rather than adopting any specific routing protocol, a

flooding-based mechanism is used to forward data.
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2.3.3 Backscatter Assisted WPCNs

This section reviews works that consider backscatter assisted WPCNs. Unlike tags

in previous sections, the devices in these works simultaneously backscatter and har-

vest energy in the presence of ambient RF signals, or actively initiate a RF trans-

mission by exploiting their stored energy without the help of RF sources. These

works consider backscatter communications in single-hop networks [160–163], relay

networks [164, 165] and cognitive radio networks [166–170].

Numerous works use the harvest-then-transmit protocol in [171] to schedule

active RF and passive backscatter transmissions. Briefly, a time slot consists of

three sub-slots, namely energy-harvesting phase, backscattering phase and active

transmission phase. In some works, energy-harvesting and backscattering phase

are merged into the same sub-slot, namely two-phase harvest-then-transmit proto-

col [171]. In the first phase, a set of devices perform backscatter communications

in the presence of RF sources while other devices harvest energy for future active

transmissions. In the second phase, devices access channel to transmit. To this

end, the main focus of these works is on time allocation for each phase in order

to improve network performance. For example, the work in [160] and [163] consid-

ers a network with a single hybrid device, a receiver and an ambient RF source.

In [160], the problem is to optimize the time allocation for each phase. Further,

the authors of [160] study how a fixed and variable backscattering coefficient affects

the performance of a hybrid device. However, this work assumes non-causal CSI.

In practice, future CSI knowledge is not available. To this end, many works have

considered causal CSI. For example, in [163], each device is unaware of its future

battery level. To this end, the authors formulate a stochastic program to maximize

the average long-term network throughput over a fixed number slots. The problem

is to determine the operation mode selection of a hybrid device in each time slot,

and time allocated to each operation mode.

Multi-user scheduling is another key issue. The main aim is to maximize the
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sum-throughput of a set of hybrid devices in WPCNs. These works consider the use

of multiple hybrid devices that directly communicate with a hybrid access point via

either active RF or passive backscatter commendations. As these works consider

a harvest-then-transmit protocol, hybrid devices first backscatter and then initiate

RF transmissions in each time slot. To this end, a common problem is to construct

an interference-free schedule for both backscatter communications and RF trans-

missions. A classic multi-access control method is TDMA; see in [161]. Each device

sequentially accesses the channel and operates under the harvest-then-transmit pro-

tocol [171], meaning there is no interference among each type of links. The problem

is to jointly determine the time allocated for energy-harvesting, backscattering and

RF transmission of each hybrid device. There are also works consider to improve

network throughput by constructing a STDMA schedule. An example is [162],

where Liu et al. schedule backscatter communications assuming the protocol in-

terference model. The problem is to jointly determine sensing time, backscattering

time, energy-harvesting time and RF transmission time of devices.

Past works that consider backscatter-assisted relaying in WPCNs aim to max-

imize end-to-end flow rates. Unlike previous backscatter-assisted WPCNs works,

devices communicate via multiple hops. In addition, hybrid devices are able to route

data over both passive backscattering links and active RF transmissions. Compared

with conventional WPCNs, hybrid devices are able to route data when they do not

have sufficient energy level to transmit RF signals. In practice, hybrid devices per-

form backscattering and harvesting in the same time phase. This means that the

more time allocated to backscattering, the less energy is harvested for future active

transmissions. To this end, these works mainly focus on developing a scheduling

and routing strategy, i.e., to optimize the active time of each backscattering link

and RF link, along with the amount of traffic of each flow routed over each types

of link. For example, in [164] and [165], the authors consider multi-path routing,

i.e., multiple hybrid devices are able to serve as relays to cooperatively forward data

towards a receiver. The combination of incident RF signals and backscattered sig-
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nals jointly determines the data rate of a receiver. The problem of the work [164]

is to jointly optimize the traffic routed over each link, and the active time of each

RF link and backscattering link, which in turn decides the data rate of each link.

The same problem as [164] is considered in [165] along with the optimal charging

problem. A charging policy used at each power beacon affects the available energy

at each hybrid devices, which further affect the data rate of each type of links.

Some prior works consider backscatter assisted wireless powered cognitive radio

networks. Unlike wireless powered cognitive radio networks, secondary users rely

on active RF to backscatter their data and carry out active transmissions. In addi-

tion, secondary users adopt the harvest-then-transmit protocol [171], whereby they

backscatter or harvest energy when licensed or primary users transmit, and initiate

active RF transmission when channels are idle. The general research aim of these

works is to maximize secondary network throughput subject to primary network

outage conditions. The first set of works consider time allocation for each phase in a

harvest-then-transmit protocol, along with joint RF transmissions and backscatter-

ing communications scheduling [166], or joint transmit power of primary users and

backscatter coefficient of tags optimization [167].

A major issue is that channel conditions in primary and secondary networks are

dynamic. In practice, future CSI knowledge is not available. However, solutions of

previous works in [166] and [167] assume non-causal and complete CSI knowledge,

meaning they are not practical. To this end, there are also works that study solutions

based on dynamic optimization with causal CSI. Their main aim is to maximize long-

term network throughput. An example work [168] considers reinforcement learning

against random CSI, whereby the problem is to optimize the energy-harvesting time,

backscattering time, and RF transmission time of a secondary user in each time slot.

The authors of [169] address the same problem by formulating a Markov decision

process (MDP) based stochastic programming.

Another issue is imperfect spectrum sensing; see in [170, 172]. As a result,

backscatter communications in a secondary network can interfere with primary re-

53



ceivers. To this end, the authors in [170] consider an imperfect spectrum sensing

process as a Stackelberg game; primary receivers tolerate a certain interference level.

The aim is to maximize a utility function, which is dependent on the throughput of

secondary users and interference price of primary users. The problem is to jointly op-

timize time allocation for each phase in the harvest-then-transmit protocol, and the

interference price of primary users. Another work in [172] considers opportunistic

and imperfect spectrum sensing of ambient backscatters in cognitive radio systems.

The problem is to jointly optimize a detection threshold for spectrum sensing, and

time allocation for each phase, subject to probabilities of spectrum sensing errors.

2.4 Real-time packet delivery

This section reviews resource allocation issues in multi-hop real-time communica-

tions. A major goal is to derive energy-efficient packet delivery policies to guarantee

network performance in terms of delay and information freshness. To this end, works

with real-time considerations are classified into two general categories. The first cat-

egory considers delay-sensitive networks with a timeliness requirement, i.e., packets

must arrive at their destination by an end-to-end deadline. A major challenge is

packet delivery under dynamic network conditions. Works in the second category

aim to optimize the freshness of packets characterized by an age of information (AoI)

metric. Unlike delay or latency metric, AoI denotes the time elapsed at a destination

since the latest update packet was generated by a source. The remainder of this

section discusses these works in details.

Works that study routing issues with a hard timeliness requirement aim to mini-

mize network power consumption. A key requirement is that the worst-case end-to-

end delay is less than some threshold. In these studies, devices are usually energy-

constrained, meaning relays that route more packets are likely to experience energy

shortfall and cause network outage. In addition, the power consumption for a relay

to transmit also varies with dynamic network conditions. Consequently, routing
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decisions may vary with the energy level of relays. To this end, the problem is to

jointly determine one or more paths for flows and the amount of packets of each

flow routed by each relay. For example, the work in [173] considers a dynamic flow

rate scheduler under pre-defined paths, whereby flows with the earliest deadline are

assigned a higher flow rate in each time slot. In [174], the authors propose a rein-

forcement learning approach based energy-efficient routing scheme against dynamic

relay topology, whereby the routing decision for each time slot is based on the energy

level of relays and their deadline.

Another category of works considers energy-efficient routing policies with proba-

bilistic or soft timeliness requirements. The main aim of these works is to minimize

network power consumption under dynamic network conditions. Unlike previous

works that consider a hard timeliness requirement, these works assume a network

is able to tolerate an end-to-end packet delivery failure within a certain probability.

Many works consider distributed energy-efficient routing protocols against dynamic

channel conditions. Example works include [175] and [176]. In these works, re-

lays maintain a neighbor table, whereby the neighbor table records the estimated

one-hop delay for each feasible forwarding decision. Using such a neighbor table,

a routing protocol determine one or more paths that satisfy the deadline of flows

with the minimum total energy consumption under certain uncertainties. Another

energy-aware routing protocol is [177], whereby a source first identifies a set of paths

that are able to meet a deadline with a probability, and selects a path according to

a computed probability. Specifically, the probability of selecting a path is inversely

proportional to the total energy consumption of relays over the path. Apart from

routing protocols, there are also works on studying the trade-off between network

reliability and power consumption under dynamic network environments. For ex-

ample, the aim of the work in [175] and [176] is to maximize the probability of a

sample being delivered by a deadline and minimize relay energy consumption. To

this end, they derive the optimal routing policy based on a Markov decision process.

Moreover, there are established industry standards apply to real-time data collec-
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tion in IoT networks, e.g., IEEE 802.15.4 [178] and 6LoWPAN [179]. However, thses

existing industry standards do not include a joint data collection solution with both

network capacity and energy provision considerations.

Prior research has also consider multi-hop packet delivery policy that optimizes

AoI. Specifically prior works aim to minimize the average or the maximum AoI over

multiple time frames. The problem is to optimize packet delivery policy for multi-

hop networks, which can include packet rate control, path selection, links scheduling

and transmit power control. An example work is [180], whereby the authors aim

to maximize network throughput and minimize AoI across multiple flows. They

propose a linear program to determine the optimal routing and scheduling solution

subject to interference and transmit power constraints. A limitation of these works

is that they do not consider the energy level of relays. To this end, works such

as [181, 182] consider AoI minimization in ambient energy-harvesting networks. In

these works, both data packet arrivals and energy arrivals at relays are known. In

addition, packet delivery decisions are subject to the energy level of relays. For ex-

ample, in [181], the authors consider a two-hop ambient energy-harvesting network.

The problem is to determine the transmission time of each packet at a source and a

relay subject to causal energy and data constraints. Another work in [182] considers

a multi-hop linear topology. The problem is to optimize links schedule and trans-

mit power control based on both the physical and the protocol interference model.

Rather than using a given packet arrival rate, the work in [183] considers multi-hop

packet delivery based on the just-in-time policy [184], i.e., a source immediately gen-

erates a new packet whenever the current packet arrives a destination. The main

problem is to optimize the beamforming weight of power beacons to charge relays

that forward data. A sub-problem is to determine the route of flows.
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2.5 Research gaps

In summary, this chapter has reviewed resource allocation problems in WPCNs,

joint routing and scheduling problems in SISO, MIMO and RF-energy-harvesting

networks. Next, it examines past works that consider resource allocation problems

in passive backscatter communication networks. Lastly, it discussed real-time multi-

hop packet delivery problems. The following sections outline how the works in this

thesis differ from prior works.

2.5.1 Resource allocation, routing and link scheduling

The works in Section 2.1 that consider resource allocation problems in multi-user

WPCNs only focus on either the MAC or network layer, meaning they do not have

a cross-layer solution that addresses routing and link scheduling jointly. In addition,

they aim to use one or multiple hybrid access points, power beacons or ambient RF

sources to power energy-harvesting devices. This means their systems are single-

tier, i.e., they do not leverage RF transmissions in an existing network to power

energy-harvesting devices. Existing works such as [84–93] consider resource alloca-

tion problems in multi-tier WPCNs, e.g., time allocation, channel assignment and

transmit power control. They, however, do not consider the trade-off between rout-

ing and the transmission opportunities of primary users, which affect the energy

provision of energy-harvesting devices.

Table 2.1 compares prior joint routing and links scheduling problems and their

system. Past research into the classic joint link scheduling and routing problem in

SISO and MIMO networks does not consider energy-harvesting nodes. Thereby their

solutions cannot be applied in RF-energy-harvesting networks because their solu-

tions do not take harvestable energy and energy level of devices into consideration.

Some prior works further study joint routing and scheduling in RF-energy-harvesting

networks. However, they only focus on energy-aware routing or charging policy in

single-tier ambient or dedicated RF-energy-harvesting networks instead of multi-tier
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networks. In addition, they do not consider MIMO technology.

To fill these research gaps, Chapter 3 studies joint resource allocation, routing

and link scheduling in a two-tier RF-energy-harvesting MIMO network. Different

to prior works, energy-harvesting devices harvest energy from RF-transmissions of

routers in a MIMO network. The aim is to construct the minimum-length schedule

of MIMO links, along with routing and antenna power allocation of routers in order

to meet any traffic demand of flows and energy demand of energy-harvesting devices.

Reference Power Control
EH

Devices
MIMO

Energy-aware
Routing

Charging Multi-Tiers

[97, 99–102] ✗ ✗ ✗ ✗ ✗ ✗

[96, 103–108] ✓ ✗ ✗ ✗ ✗ ✗

[110, 111] ✓ ✗ ✗ ✓ ✗ ✗

[114–121] ✗ ✗ ✓ ✗ ✗ ✗

[122, 123, 125] ✓ ✗ ✓ ✗ ✗ ✗

[124] ✓ ✗ ✓ ✓ ✗ ✗

[126–129] ✓ ✓ ✗ ✓ ✗ ✗

[130–136] ✓ ✓ ✓ ✓ ✗ ✗

Table 2.1: A comparison of cross-layer joint scheduling and routing works.

2.5.2 Passive backscatter communication networks

Table 2.2 shows a comparison between prior works related to passive backscatter

communications. The work in [141–145] only studies link scheduling over single-hop

networks. Although some past works consider multi-hop tag-to-tag communication

systems, they focus on hardware prototype or routing protocol design. Their systems

do not involve RF transmissions.

Prior works that study backscatter-assisted WPCNs, e.g., [160–165], assume the

harvest-then-transmit protocol [171]. Consequently, RF transmissions and backscat-

tering links cannot co-exist simultaneously in their systems as they are activated in

a distinct phase. Moreover, these works only consider single-tier networks, i.e.,
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backscatter transmissions are powered by an HAP rather than data signals from an

existing RF network. Hence, they do not consider RF carrier scheduling and power

control for multiple RF sources/readers.

To this end, no prior work has investigated how the traffic allocated to routers

and their transmissions affect the flow rates of an underlying passive multi-hop tag-

to-tag network. In addition, a router that transmits at a high power can enable more

passive backscatter communications at the expense of causing higher interference to

neighbouring routers. Therefore, router collaboration in terms of power control and

interference management is necessary. To fill these research gaps, Chapter 4 aims

to construct a joint activation schedule and routing strategy for routers, along with

a backscattering links schedule, in order to maximize the sum-network throughput

of both router and tag tier.

Reference Schedule
Power
Control

Routing
Multiple
Tier

Tag-to-Tag
Multiple
Reader

[138] ✗ ✓ ✗ ✗ ✗ ✗

[139, 140] ✓ ✓ ✗ ✗ ✗ ✓

[141, 142] ✗ ✓ ✗ ✗ ✗ ✗

[146–149] ✓ ✗ ✗ ✗ ✗ ✗

[143–145] ✓ ✗ ✓ ✓ ✓ ✗

[45, 53]
[49, 154, 155]

✗ ✗ ✗ ✗ ✓ ✗

[156–159] ✓ ✓ ✓ ✗ ✓ ✗

[160–163] ✓ ✓ ✗ ✗ ✗ ✗

[164, 165] ✓ ✓ ✓ ✗ ✓ ✗

[166–170] ✓ ✓ ✗ ✓ ✗ ✗

Table 2.2: A comparison of passive backscatter communication networks.

2.5.3 Real-time packet delivery

Existing works on real time multi-hop sample delivery consider a hard [173, 174] or

soft [175–177] timeliness requirement. However, these works do not involve energy-
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harvesting, i.e., devices are battery-powered.

Prior works that study AoI optimization in multi-hop RF-energy-harvesting net-

works focus on routing. For example, the work in [180–182] considers ambient RF-

energy-harvesting. They do not consider any energy allocation and charging policy

to avoid energy outage at devices. Although the work in [183] studies charging

policy, the authors assume causal data/energy arrival information and perfect CSI

knowledge. This means their solutions do not guarantee any robustness against

uncertainty in imperfect CSI.

In summary, no prior work has studied energy-efficient charging policy for a

multi-hop RF-energy-harvesting network with imperfect CSI knowledge, dynamic

channel conditions and probabilistic timeliness requirement; see Table 2.3. To fill

these research gaps, Chapter 5 presents a charging policy with imperfect CSI for

a power beacon with switched-beam antennas in order to support real-time sample

delivery over energy-harvesting devices.

Reference Uncertainty Harvesting Dynamic CSI Imperfect CSI Charging Policy

[173, 174] ✗ ✗ ✓ ✗ ✗

[175–177, 185] ✓ ✗ ✓ ✗ ✗

[180] ✗ ✗ ✗ ✗ ✗

[181, 182] ✗ ✓ ✗ ✗ ✗

[183] ✗ ✓ ✗ ✗ ✓

Table 2.3: A comparison of real-time multi-hop communication networks.

Given the aforementioned research gaps, in the following chapters, this thesis

considers data collection in the following multi-hop IoT networks: (i) Chapter 3 aims

to jointly optimize link scheduling and routing in a two-tier RF energy-harvesting

MIMO network, (ii) Chapter 4 aims to jointly consider link scheduling and routing

in a two-tier ambient backscattering communication network, and (iii) Chapter 5

aims to optimize the energy delivery policy of a power beacon that is responsible

for charging devices on a multi-hop path.
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Chapter 3
Data collection in a two-tier RF energy

harvesting network

This chapter considers data collection in a two-tier IoT RF energy-harvesting net-

work. It considers two types of nodes: (i) routers with MIMO capability, and (ii) RF

energy-harvesting devices that rely on routers for energy. The goal is to determine

a link schedule that satisfies the traffic and energy demand of routers and energy-

harvesting devices, respectively. The problem at hand is to determine the active

time of links, the amount of traffic routed over each link, and the antenna power

allocation of transmitting routers. To this end, it proposes an LP to jointly derive

the minimum-length schedule and routing in a centralized manner. It also outlines

a heuristic link scheduler to generate a set of transmission sets along with antenna

power allocation of routers. Lastly, it outlines a new routing metric for routers to

maximize the amount of energy harvested by devices.

To illustrate the said research problem and its corresponding challenges, consider

the example two-tier IoT network shown in Figure 3.1. All routers have two anten-

nas. Routers B, C, and D are able to charge energy-harvesting device N whenever

they transmit. There are two paths from router A to the sink. Figure 3.2 shows two

example link schedules. First consider Schedule-1. Observe that router A is able to
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route its traffic over both paths. This is because all links have a transmission oppor-

tunity in Schedule-1. Further, notice that in slot-3, both link (C, ⋆) and (D, ⋆) are

active, meaning both routers are able to charge energy-harvesting device N together.

Now consider Schedule-2. We see that links (A,D) and (D, ⋆) have not been given

an opportunity to transmit. Hence, their link capacity is zero. This means router A

can only route its traffic on path A–B–C–⋆. Moreover, energy-harvesting device N

is only able to harvest energy from one router. Hence, Schedule-1 is preferred given

that all links have non-zero link capacity and energy-harvesting device N receives

energy from two routers. Moreover, Schedule-1 has a high capacity as each slot has

two active links.

f2
N

B

D

C

f1

A

Figure 3.1: An example of a two-tier RF-energy harvesting network. Each dotted
circle denotes the transmission range of a router. There are two paths, denoted as
a red or blue line, from source router A to the sink ⋆.

(A, B)
(A, D)

(B, C)
(D, (A, B) (B, C)

Schedule 1 Schedule 2

Slot 1

） (D, ） (C, ）
Slot 2 Slot 3 Slot 1 Slot 2 Slot 3

(C, ）

Figure 3.2: Example link schedules. Each block denotes a time slot.

In the previous example, given the respective traffic and energy demand from

routers and energy-harvesting devices, the goal is to answer the following open

questions:

• How does a source router forward its traffic to a destination router to ensure
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routers on a path have sufficient transmission opportunities to charge their

energy-harvesting devices? As an example, in Figure 3.1, the amount of flow

routed over f1 and f2 will determine how often router C and D charge energy-

harvesting device N .

• How to construct a link schedule that meets the traffic demand of sources

and energy requirement of energy-harvesting devices? Referring to Figure 3.1,

one possible link schedule is to activate link (A, D) in Slot-t followed by link

(D, ⋆) in Slot-(t + 1). Although this schedule affords path f2 with a high

capacity, it may not satisfy the energy requirement of energy-harvesting device

N , especially if router D has a poor channel gain to energy-harvesting device

N .

• When constructing a link schedule, how to optimize the transmit power of

routers to meet the Signal-to-Interference-plus-Noise Ratio (SINR) require-

ment of links and also the energy delivered to energy-harvesting devices? A

high transmit power benefits energy-harvesting devices but reduces link or

network capacity, and vice-versa.

The remainder of the chapter is structured as follows. Section 3.1 and Section 3.2

formulate the system and problem, respectively. Section 3.3 presents the details of

TSG, and Section 3.3.3 shows how it determines the transmit power allocation of

routers. Section 3.5 presents some properties of the proposed LP and heuristic.

After that, Section 3.6 presents numerical simulation results. Lastly, Section 3.7

concludes this chapter.

3.1 Preliminaries

Table 3.1 lists necessary notations. Consider a multi-hop two-tier network modeled

as a directed graph G(V , E), where V and E denote the set of nodes and links,

respectively. Let VR and VE denote the set of routers and energy-harvesting devices,
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respectively, where it has V = VR ∪ VE. The routers in set VR are half-duplex and

transmit on the same channel. Each router i has a set of antenna elements denoted by

Ki. The neighbors of router i are recorded in the set Ri = {j | dij ≤ rd, j ∈ VR \ i},

where dij denotes the Euclidean distance between router i and j, and rd is the

communication range. Router i is able to charge energy-harvesting devices in the

set Ni = {j | dij ≤ r̄d, j ∈ VE}; in practice, the charging range r̄d is dependent on

the RF input power of an RF-harvester; e.g., the harvesters reported in [186] have

a received sensitivity range of -14 to -22 dBm. Let F = {(s, t) | s, t ∈ VR, s ̸= t} be

a set of sessions with source s and destination t. Its traffic demand is D̂st.

This chapter assumes block Rayleigh channel fading [187]. In other words, it

assumes an environment with multi-path fading. Let hxyij denote the channel gain

between antenna x and y of router i and j, respectively. It thus has

hxyij = χα

(
dij
d0

)β

,∀lij ∈ E ,∀x, y ∈ Ki,Kj, (3.1)

where χ is drawn from an Exponential distribution with unit mean, α is the path-

loss at reference distance d0 meter, and β is the path-loss exponent. Let hijk =

{hxkij }∀x∈Ki
be a vector of channel gains from router i to the k-th antenna of router

j.

Let pik denote the transmit power on antenna k of router i. Define the vector

of antenna weights as pi={pik}k∈Ki
. Each router has a maximum power threshold

Pmax. Formally, the transmit power of each router must satisfy

∑
k∈Ki

pik ≤ Pmax,∀i ∈ VR. (3.2)

3.1.1 Link model

All links in the set E operate on the same frequency band. Each direct link is denoted

as lij, where router i is the transmitter. Links are scheduled into a transmission set.
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Table 3.1: A summary of notations

1. Sets

VR A set of routers
VE A set of energy-harvesting devices
E A set of directed links
F A set of sessions
Ki A set of antennas on router i

R̂n The set of routers adjacent to energy-harvesting device n

2. Constants

hijk A vector of channel gains from
router i to the k-th antenna of router j

gin A vector of channel gains from
router i to energy-harvesting device n

γz The SINR threshold of transmission set Sz

σ2 Noise power
Emin

n The energy demand of energy-harvesting device n

D̂st Traffic demand of session (s, t)
Pmax The maximum transmit power over

all antennas of a router
Cz

ij Capacity of link lij in transmission set Sz

A Transmission set matrix
azij Each entry of matrix A
N The total number of transmission sets
Φ Antenna weights matrix
pz
r The vector of antenna weights of router r

in transmission set Sz

H Energy harvesting rate matrix

3. Variables

xz The activation time of transmission set Sz

Ez
n The harvested energy at node n from

transmission set Sz

f st
ij Traffic fraction of session (s, t) on link lij
δzn Energy harvesting rate at node n from Sz

Iznm An indicator to identify whether the input power
at energy-harvesting device n falls into interval m in transmission set Sz
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Let the z-th transmission set be Sz = {lij, lxy, . . . }. To record transmission sets,

this chapter uses a matrix called A that has dimension |E| × N , where column z

represents transmission set Sz, and N is the total number of transmission sets. Each

element of A has value azij ∈ {0, 1}. Specifically, variable azij equals one if link lij

belongs to transmission set Sz; otherwise, it equals zero.

This chapter considers the physical interference model [188] when construct-

ing a transmission set. Specifically, links can be activated only if their Signal-to-

Interference-plus-Noise Ratio (SINR) exceeds a given threshold. Let γz be the SINR

threshold of transmission set Sz. Further, the capacity of link lij ∈ Sz operating in

transmission set Sz is denoted as Cz
ij. In practice, the value of γz corresponds to

the desired Modulation coding Scheme (MCS); e.g., an IEEE 802.11 radio requires

a SINR threshold of 4 to 6 dB in order to support 6 Mbps. All links in transmission

set Sz must satisfy

∑
k∈Kj

pz
ih

T
ijk∑

lrs∈Sz\lij

∑
k∈Kj

pz
rh

T
rjk + σ2

≥ γz,∀lij ∈ Sz, (3.3)

where pz
i denotes the antenna weights of router i when it is activated in transmission

set Sz. The term T denotes the transpose and σ2 is the noise power level.

A link schedule consists of one or more transmission sets. Each transmission

set is associated with an active duration. Let xz denote the proportion of time (in

seconds) that the transmission set Sz is active in a link schedule. A link schedule is

defined as F = {x1, x2, . . . , xN}. The aim of this chapter is to generate a schedule

length that is no more than a given time unit, which is normalized to one for ease

of exposition as all link capacity is in units of bits per second. Further, it allows us

to use the terms power and energy interchangeably. Formally, the total activation

time of all transmission sets is
N∑
z=1

xz ≤ 1. (3.4)
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3.1.2 Routing model

Let f st
ij ∈ [0, 1] be the fraction of traffic demand from session (s, t) that is routed over

link lij. All routers must satisfy the standard flow conservation constraint. That

is, the total incoming and outgoing traffic flow of routers on the path of a session

must be equal, except for the source and destination node. Formally, for each router

i ∈ VR, and each session (s, t) ∈ F , there is a flow conservation constraint as per

∑
j∈Ri

f st
ij −

∑
j∈Ri

f st
ji =



1 i = s,

−1 i = t,

0 otherwise.

(3.5)

The total traffic routed on each link cannot exceed its capacity; the capacity of

a link depends on its total active time in each transmission set. Mathematically,

there is the following capacity constraint for each link in set E ,

∑
(s,t)∈F

D̂stf
st
ij ≤

N∑
z=1

azijxzC
z
ij, ∀lij ∈ E , (3.6)

where the left side of (3.6) is the total traffic routed on a given link lij and the right

side is the capacity of link lij.

3.1.3 Energy harvesting model

The energy harvested by energy-harvesting device n whenever router i transmits

depends on (i) the antenna weights of router i in transmission set Sz; i.e., p
z
i , and

(ii) the channel gain from each antenna of router i.

Let gink be the channel gain from the k-th antenna of router i to energy-

harvesting device n. Define gin = {gink}k∈Ki
as a vector of channel gains. The

receive power at energy-harvesting device n when router i transmits in transmission
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set Sz is

P z
in = pz

ig
T
in. (3.7)

Let R̂n = {r | dnr ≤ r̄d, r ∈ VR} be a set of routers that are able to charge

energy-harvesting device n. Then its total received power P z
n when transmission set

Sz is active is calculated as follows:

P z
n =

∑
i∈R̂n

P z
in,∀n ∈ VE, z = 1, 2, . . . , N. (3.8)

The energy conversion efficiency of energy-harvesting devices has the range [0, 1].

It varies non-linearly with the received power. Let ηzn be the energy conversion

efficiency used by energy-harvesting device n for transmission set Sz. Let E
z
n denote

the amount of harvested energy at energy-harvesting device n when transmission set

Sz is active. The amount of energy harvested by energy-harvesting device n when

transmission set Sz is active for xz seconds is

Ez
n = δznxz,∀n ∈ VE, z = 1, 2, . . . , N, (3.9)

where δzn = ηznP
z
n is the energy harvesting rate.

Each energy-harvesting device has a minimum energy requirement of Emin
n , where

n ∈ VE. Note, in practice, energy-harvesting devices will have a given energy budget

to support their operation; e.g., an energy-harvesting device may be tasked with

sampling and transmission over a given period of time. Thus, Emin
n corresponds

to the amount of energy over the said time period. Specifically, for each energy-

harvesting device n ∈ VE, there is an energy-harvesting constraint as per

N∑
z=1

Ez
n ≥ Emin

n ,∀n ∈ VE. (3.10)

That is, the total energy harvested from the activation of transmission sets must be

at least Emin
n .
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3.2 Problem Definition

The aim of this chapter is to minimize the schedule length
∑N

z=1 xz subject to

meeting the traffic demand of each session (s, t) ∈ F and also the energy requirement

of energy-harvesting device n in VE. The problem at hand is to determine the active

time xz of each transmission set Sz, and to determine the fraction of traffic f st
ij routed

on each link for all given sessions. Mathematically, the problem is

minimize
f st
ij , xz

N∑
z=1

xz

subject to (3.4)− (3.6), (3.9)− (3.10).

(3.11)

This chapter concludes with a few remarks. First, problem (3.11) is an LP that

accepts a given collection of transmission sets, i.e., matrix A. Note that the number

of transmission sets, i.e., N , increases exponentially with the number of links. In-

deed, link scheduling is a classic NP-hard problem [188]. This motivates the heuristic

in Section 3.3, which this chapter will use to generate a collection of transmission

sets. In addition, note that LP (3.11) determines the active time of each trans-

mission set. Once the activation of a transmission set is determined, the transmit

power of active routers associated with this transmission set is used for data trans-

mission and energy transfer. Second, in order to address (11), this chapter requires

(i) topological information, which can be obtained during network deployment, (ii)

channel state between routers and from routers to devices. This information can be

obtained via a measurement campaign conducted during the deployment of routers

and devices. The worst or nominal channel gain information can then be used in the

proposed solution, and iii) session or flow information between routers, which can

be obtained by polling routers periodically to determine the total traffic destined for

a router acting as the gateway to the Internet. In this respect, the proposed solu-

tion will be critical to future software-defined wireless backhaul networks, see [189],

where a controller gathers traffic statistics and computes one or more paths using
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the solution proposed in this chapter. Third, the antenna weights of routers and the

energy conversion efficiency at energy-harvesting devices are computed when form-

ing a transmission set; see Section 3.3. Lastly, the previous formulation assumes

that traffic from a source can be split over multiple paths. In practice, a source uses

only one path. This limitation is addressed in Section 3.4.

3.3 Transmission Set Generator (TSG)

This section now presents a heuristic called TSG. It has two phases. The first phase

constructs N transmission sets by greedily adding links according to the number of

energy-harvesting devices they are able to charge. That is, TSG prefers links that

charge a high number of energy-harvesting devices. This ensures devices have a

high energy harvesting rate whenever a transmission set is active. The second phase

of TSG aims to improve link or network capacity by adding more links into each

transmission set. Specifically, in the first phase, each link only exists in one of the N

transmission sets. In this second phase, TSG attempts to add a link into multiple

transmission sets.

3.3.1 Phase-1

Referring to Algorithm 1, TSG calls the function Sort (E) to return a sorted set

Ê ; the links in E are sorted in descending order according to the number of energy-

harvesting devices each link charges. After that, TSG proceeds to construct a trans-

mission set by greedily adding a link lij from the set Ê . For each link lij, it calls the

function HalfDuplex (lij,Sz) to ensure all communications are half-duplex. Specifi-

cally, the function returns FALSE if neither router i nor j exists in the transmission

set Sz. In this case, link lij is added into the set Ŝz. After that, it calls the function

P-Allocation() to determine the optimal antenna weights at all routers that lead to

the highest energy harvesting rate at all energy-harvesting devices. It returns (i) a

flag to indicate whether the link lij can be added into the transmission set Sz, (ii)
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the antenna weights of routers, denoted as Φ⋆ = {pz
1, . . . ,p

z
|VR|}, and (iii) the en-

ergy harvesting rate of energy-harvesting devices, denoted as H⋆ = {δz1 , . . . , δz|VE |}.

If link lij can be added into Sz, TSG adds it into Sz, removes link lij from fur-

ther consideration, and updates the antenna weights and energy harvesting rate of

energy-harvesting devices in line-10.

3.3.2 Phase-2

In Phase-1, each link in E exists in one transmission set only. In Phase-2, TSG checks

whether any other links can be added into a transmission set Sz from Phase-1.

Lines 18-27 of Algorithm 1 check whether a link in E can be added into transmis-

sion set Sw. The function P-Allocation() and HalfDuplex() are then used to check

whether a link can be added into Sw. Lastly, in line 28, TSG updates transmis-

sion set Sw in matrix A, antenna weights for Sw, and the energy harvesting rate of

energy-harvesting devices Hw.

3.3.3 P-Allocation

TSG uses P-Allocation() to determine whether all links in a given transmission set,

say Ŝz, satisfy their SINR threshold γz. It returns the corresponding antenna weights

Φ⋆ and energy harvesting rate H⋆. To determine these quantities, P-Allocation()

solves the following Non-Linear Program (NLP):

max
pzik

∑
n∈VE

δzn (3.12a)

s.t.
∑
k∈Ki

pzik ≤ Pmax,∀lij ∈ Ŝz, (3.12b)∑
k∈Kj

pz
ih

T
ijk∑

lrs∈Ŝz\lij

∑
k∈Kj

pz
rh

T
rjk + σ2

≥ γz,∀lij ∈ Ŝz (3.12c)

The goal of NLP (3.12) is to optimize the antenna weights of routers in order to

maximize the sum of energy harvesting rates at energy-harvesting devices; the sum
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Algorithm 1: Transmission sets generation.

Input: G(V , E), γz
Output: Transmission set matrix A

Antenna weight matrix Φ
Energy conversion efficiency matrix H

1 // Phase-1

2 Set z = 1, Ê = Sort(E)
3 while Ê ̸= ∅ do
4 Sz = Φz = Hz = ∅
5 for lij ∈ Ê do
6 if HalfDuplex (lij,Sz) == FALSE then

7 Ŝz = Sz ∪ lij
8 [Flag, Φ⋆, H⋆] = P-Allocation (Ŝz,γz)
9 if Flag = TRUE then

10 Sz = Ŝz, Φz = Φ⋆, Hz = H⋆

11 end

12 end

13 end

14 Ê = Ê \ Sz, z = z + 1

15 end
16 // Phase-2
17 for w = 1 −→ z − 1 do
18 for lij ∈ E do
19 if (lij /∈ Sw ∧ HalfDuplex (lij,Sw) == FALSE) then

20 Ŝw = Sw ∪ lij
21 [Flag, Φ⋆, H⋆] = P-Allocation(Ŝw,γw)
22 if Flag = TRUE then

23 Sw = Ŝw

24 Φw = Φ⋆, Hw = H⋆

25 end

26 end

27 end
28 Update(A, Sw, Φw, Hw)

29 end
30 return A, Φ, H

of these weights must not exceed Pmax, see (3.12b). An important constraint (3.12c)

is to ensure links in Ŝz satisfy their SINR threshold γz. Note that once the antenna

weights of routers are decided, each energy harvesting rate δzn can be then retrieved

via Equ. (3.7) and (3.8).
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3.3.4 Linearization of energy conversion efficiency

The objective of NLP (3.12) is non-linear because of the conversion process ηzn of

energy-harvesting device n. To this end, the conversion process is approximated

using piece-wise linear segments. Specifically, it divides the domain of received

power into M received power intervals; each interval m has a corresponding energy

conversion efficiency ηznm. These intervals are non-overlapping, where each interval

has the range [lm, hm). For each received power P z
n value, the goal is to determine

the corresponding interval m that P z
n falls into. To this end, define Iznm as a binary

indicator that equals one when interval m is active. Further, only one ofM intervals

is allowed to be active. This can be formally represented as per

0 ≤
M∑

m=1

Iznm ≤ 1,∀n ∈ VE, z = 1, 2, . . . , N, (3.13)

For each transmission set Sz and energy-harvesting device n ∈ VE, the next

expression calculates the received power P z
n as

M∑
m=1

[lmI
z
nm + (hm − lm)ν

z
nm] = P z

n . (3.14)

Here, νznm is a real variable constrained as

0 ≤ νznm ≤ Iznm, 1 ≤ m ≤M. (3.15)

Expression (3.15) determines the interval that can be used to determine P z
n . As

an example, assume P z
n = 0.7, and there are two (M = 2) intervals: [0, 0.5] and

[0.5, 1.0]. Hence, the received power falls in the interval [0.5, 1.0]. As per (3.14),

only one interval is allowed to be active; in this example, it has Izn2 = 1. This means

(3.14) is written as 0.5(1) + 0.5νznm = 0.7, where it has νznm = 0.4. This also means

for the received power P z
n = 0.7, this chapter uses the energy conversion efficiency

associated with the second interval.
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To linearize NLP (3.12), replace each non-linear term δzn by variable δ̂zn. Formally,

variable δ̂zn is given by

δ̂zn =
M∑

m=1

ηznmI
z
nmP

z
n , ∀n ∈ VE. (3.16)

The equation (3.16) is still non-linear due to the products of two decision vari-

ables, i.e., Iznm and P z
n . In order to formulate the model as a MILP, an additional

continuous variable P̂ z
nm is introduced. The equation (3.16) is then linearized by

replacing the products of Iznm and P z
n with P̂ z

nm. For each energy-harvesting device

n ∈ VR, the value P̂ z
nm is set as follows:

P̂ z
nm ≤ IznmPmax, 1 ≤ m ≤M, (3.17)

P̂ z
nm ≤ P z

n , 1 ≤ m ≤M, (3.18)

P̂ z
nm ≤ P z

n − (1− Iznm)Pmax, 1 ≤ m ≤M. (3.19)

In the previous set of inequalities, i.e., constraint (3.17)-(3.19), observe that P̂ z
nm =

P z
n if Iznm = 1. Otherwise, variable P̂ z

nm is forced to zero.

Finally, after the above linearization process, NLP (3.12) can be formulated as

the following mixed integer linear program (MILP):

maximize
pzik, I

z
nm, ν

z
nm

∑
n∈VE

δ̂zn

subject to (3.12b)− (3.12c),

(3.13)− (3.19).

(3.20)

This chapter solves MILP (3.20) using Gurobi 9.0.1 [190].

3.4 A novel routing metric

In LP (3.11), routing paths are decision variables. Specifically, a source is allowed to

divide its traffic onto all paths leading to its destination node. However, in practice,
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a source uses only one path. To this end, this chapter develops a novel routing

metric that can be used to select a path for each session in F that charges the most

RF-harvesting devices. This metric can then be used by Dijkstra’s algorithm; this

chapter refers to the version of Dijkstra’s algorithm that uses the novel metric as W-

Dijkstra. The path for each session then serves as an input to LP (3.11). Specifically,

let p∗(s,t) be the path chosen by a routing protocol for session (s, t). Then the flow

variable f st
ij only exists for links on path p∗(s,t). Next, the following paragraphs show

how to calculate p∗(s,t).

A novel weight is defined for each link. Specifically, let the weight of a link lij

be Wij, which is defined as the number of energy-harvesting devices charged by the

link. Formally, the weight of a link is defined as

Wij = |Ni|,∀lij ∈ E (3.21)

Let P(s, t) be a path for session (s, t) in F . Further, denote P(s,t) as the set of

all paths for session (s, t). The weight of a path P(s, t) is defined as

WP(s,t) =
∑

lij∈P(s,t)

Wij,∀(s, t) ∈ F . (3.22)

Then for each session (s, t) ∈ F , it selects a path as per

p∗(s,t) = argmax
p∈P(s,t)

Wp. (3.23)

The previous problem can be solved using Dijkstra’s algorithm by setting the weight

of link lij ∈ E to Wij.

3.5 Analysis

This section presents (i) the total number of decision variables and constraints of

the LP (3.11); both of which affect the LP’s computation time, (ii) the total number
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of decision variables and constraints in MILP (3.20), which affect the computation

time of heuristic TSG, (iii), the time complexity of heuristic TSG, (iv) the lower

and upper bound of the link schedule length.

Now first define a few necessary notations in this section. All routers have |Ki|

number of antennas, and all links have a theoretical capacity of C. The maximum

number of hops and traffic demand of sessions is Ĥ and Dmax, respectively. The

maximum energy demand of energy-harvesting devices is set to Emax. Let ĥij and

h̃ij be a vector of the best and worst channel gains vector from router i to router

j, respectively. Similarly, define ĝin and g̃in to be the best and worst channel gains

from router i to energy-harvesting device n, respectively. Lastly, let η̂ and η̃ to be

the highest and lowest energy conversion efficiency, respectively.

Proposition 1. LP (3.11) has N + |E||F| decision variables and |E| + |VR||F| +

|VE|(N + 1) + 1 constraints.

Proof. First, consider the decision variables of LP (3.11). The decision variable

xz exists for each transmission set Sz, meaning there are N such decision variables.

Next, for each session (s, t), the decision variable f st
ij is used to represent the fraction

of demand on each link lij, meaning there are |E||F| such decision variables in

total. Therefore, in total, there are N + |E||F| decision variables for LP (3.11), as

claimed. Next, consider the constraints of LP (3.11). There is a flow conservation

constraint (3.5) for each router i ∈ VR and each session (s, t) ∈ F . This gives us

|VR||F| constraints. Next, for each link in E , there is a capacity constraint (3.6).

For each energy-harvesting device n ∈ VE, constraint (3.9) and constraint (3.10) are

used to calculate its total harvested energy and demand, respectively. This results

in another |VE|(N + 1) constraints. Lastly, constraint (3.4) specifies the schedule

length. In total, there are |E| + |VR||F| + |VE|(N + 1) + 1 constraints, as claimed.

This completes the proof.

The next proposition shows the number of decision variables and constraints for

MILP (3.20), which is used by TSG to validate a transmission set.
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Proposition 2. MILP (3.20) has |Ki||VR| + 2|VE|M decision variables and |E| +

|VR|+ |VE|(4M + 3) constraints.

Proof. First, consider the decision variables of MILP (3.20). Given transmission

set Sz, TSG uses the function P-Allocation() to determine the transmit power at

each antenna of each router. As there are |Ki| antennas per router, this gives a

total of |Ki||VR| number of decision variables. For the non-linear conversion rate,

there is a binary variable Iznm and an auxiliary real variable νznm for each energy-

harvesting device n in a given transmission set. Given that M intervals, there are

thus 2|VE|M decision variables. This gives a total of |Ki||VR| + 2|VE|M number of

decision variables, as claimed.

As for constraints, there are |VR| constraints of type (3.12b) and |E| constraints

of each type (3.12c). Each energy-harvesting device n has a corresponding energy

conversion efficiency ηznm in each interval m ∈ M and in each transmission set Sz.

Hence, there is a total of 3|VE| constraints of each type (3.13), (3.14) and (3.16),

respectively. Next, there are in total 4|VE|M constraints of type (3.15), (3.17), (3.18)

and (3.19) as they consider each energy-harvesting device n in each interval M. In

total, there are |E| + |VR| + |VE|(4M + 3) number of constraints for MILP (3.20).

This completes the proof.

The next proposition shows the time complexity of TSG.

Proposition 3. TSG has time complexity O(|E|2ϵ).

Proof. Algorithm 1 first sorts |E| links, which takes time complexity O(|E| log(|E|)).

After that, TSG generates each transmission set in an iterative manner. TSG checks

|E| links to generate each transmission set in Phase-1; see lines 4-14. Note that

the function HalfDuplex() has time complexity O(1). The function P-Allocation()

takes time complexity O(ϵ). The NLP (3.12) can be solved using the interior-point

method that takes time complexity O(ϵ) = O(n3/log(n)) [191]. In the worst case,

TSG checks |E| links to generate each transmission set. This requires a total time

of O(|E|2ϵ) for Phase-1. For lines 17-30, TGS checks |E| links for each transmission
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set in the worst case. As a result, it requires time O(N |E|ϵ) for Phase-2. Note

that the number of transmission sets satisfies: N ≤ E . Hence, TSG in total takes

O(|E|2ϵ).

The next proposition shows the lower bound of the schedule length generated by

the LP (3.11).

Proposition 4. The lower bound of schedule length is MAX{ 2Emax

|E|η̂Pmaxĝin
, Dmax

C
}.

Proof. First, consider the lower bound of the schedule length. In the ideal case,

all links are active simultaneously in one transmission set. As a result, all active

routers perform charging and routing capabilities simultaneously. As routers are

half-duplex, there are at most |E|
2

links or routers that are able to charge energy-

harvesting devices simultaneously. This results in all energy-harvesting devices har-

vesting at most |E|
2
η̂Pmaxĝinxs amount of energy. To this end, the shortest required

time to simultaneously charge all energy-harvesting devices is 2Emax

|E|η̂Pmaxĝin
seconds.

The schedule length is minimum when all sessions have only one hop. In this case,

the time required to simultaneously route all sessions is Dmax

C
. Formally, the lower

bound of schedule length is MAX{ 2Emax

|E|η̂Pmaxĝin
, Dmax

C
}.

The next result shows the upper bound of schedule length generated by the

LP (3.11).

Proposition 5. The upper bound of schedule length is |VE |Emax

η̃Pmaxg̃in
+ |F|ĤDmax

C
.

Proof. Now consider the upper bound of the schedule length. In the worst case, the

routing and charging process of routers are separated into different transmission sets.

As a result, the upper bound of schedule length is derived by combining the charging

and routing time. This means each link is scheduled in a distinct transmission set to

route sessions due to interference. In addition, energy-harvesting devices are not able

to harvest ambient RF energy from transmission sets where routers route sessions.

This means additional transmission sets that only consider energy transfer must be

enabled to charge energy-harvesting devices. First, calculate the time required to
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satisfy the energy demand of energy-harvesting devices. In the worst case, an energy-

harvesting device only harvests energy from one router over the worst channel. As

a result, each energy-harvesting device harvests η̃Pmaxg̃inxz amount of energy in

transmission set Sz. Hence, fully charging each energy-harvesting device n requires

at most Emax

η̃Pmaxg̃in
seconds. In the worst case, energy-harvesting devices are not able to

harvest energy simultaneously. Consequently, to fully charge all energy-harvesting

devices, the total required active time of transmission sets is |VE |Emax

η̃Pmaxg̃in
. Next, calculate

the time required to route all sessions. Routing each session (s, t) ∈ F on each link

lij requires a time of Dmax

C
seconds at most. In the worst case, each link is able to

route one session in each transmission set. As there are |F| sessions and each has Ĥ

hops, routing all sessions requires at most |F|ĤDmax

C
. Formally, by summing charging

time and routing time, the upper bound of schedule length is |VE |Emax

η̃Pmaxg̃in
+ |F|ĤDmax

C
,

as claimed.

3.6 Evaluation

This chapter conducts all experiments in Python 3.8, and solves the proposed

MILP (3.20) and LP (3.11) using Gurobi 9.0.1. Energy harvesting devices have

one antenna and minimum energy requirement of Emin
n = 20 µJ, unless stated

otherwise. In addition, each router i is equipped with Ki = 3 antennas, unless

otherwise specified. The RF energy conversion efficiency values, see Table 3.2, are

derived from the datasheet of the Powercast RF harvester [192]. The noise power

σ is set to −90 dBm; see Table 3.3 for details. TSG benchmarks against a simple

scheduler called Set Division Link Scheduling (SDLS), whereby each transmission

only has one distinct link. Moreover, in each transmission set Sz, the transmitter

of a link allocates a transmit power of Pmax

|Ki| to each antenna. In each experiment,

the same SINR threshold γz is used to calculate the link capacity for both TSG and

SDLS. Additionally, W-Dijkstra will benchmark against the optimal routing solu-

tion where paths are determined as per constraints (3.4) and (3.5). Table 3.4 shows
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all proposed approaches. All these approaches use LP (3.11) to generate the final

schedule. The main difference is how they construct transmission sets, determine

the transmit power allocation of routers and select a path. Figure 3.3 illustrates

how the proposed methods in Section 3.3 and 3.4 work cooperatively to solve the

data collection problem in a two-tier RF energy harvesting network subject to given

demands of routers and energy-harvesting devices.

Goal: 
Data collection in a two-tier RF 
energy harvesting network

Constraint 1:
Data flow rate demands 

Constraint 2:
Device energy demands 

Component 1:
Link scheduling algorithms

Component 2:
Transmit power control 

Component 3:
Routing schemes

TSG SDLS

Linear Programming

W-Dijkstra metric

Figure 3.3: Approaches to derive the final schedule for data collection in a two-tier
RF energy harvesting network.

Interval Received power (in mW) η
I6 ≥ 10.0 5%
I5 [5.0, 10.0] 55%
I4 [0.8, 5.0] 60%
I3 [0.6, 0.8] 55%
I2 [0.08, 0.6] 35%
I1 [0.0, 0.08] 5%

Table 3.2: Received power and conversion rates.

3.6.1 Fixed Topology

This section studies all proposed solutions using a fixed topology, with five routers

and one energy-harvesting device; see Figure 3.4. In addition, this section sets the

transmission range of routers, namely rd, and the energy harvesting range rc of the

energy-harvesting device to 10 meters. The SINR threshold γz is 3 dB, and there

are four sessions, namely, F = {(A,E), (C,E), (A,D), (C,B)}.
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Parameter Values Parameter Values

L 50× 50 m2 |Ki| 1 to 9
|VR| 20 Pmax 1 to 5 Watts
|VE| 5 B 20 MHz
rc 10 m rd 10 to 17 m
γz 3 to 30 dB σ -90 dBm

Emin
n 20 to 50 µJ D̂st 1 to 10 Mb/s

d0 20 dB β 2

Table 3.3: Parameter Values.

Approach Scheduler Power al-
location

Routing

TSG-OP TSG MILP (3.20) Optimal routing
SDLS-OP SDLS Pmax

|Ki| Optimal routing

TSG-Dijkstra TSG MILP (3.20) W-Dijkstra
SDLS-Dijkstra SDLS Pmax

|Ki| W-Dijkstra

Table 3.4: Approaches to derive the final schedule.

This section first studies how the energy requirement of the energy-harvesting

device affects the schedule length. This section sets the traffic demand of all sessions,

namely D̂st, to 1 Mb/s. From Figure 3.5, we see that the schedule length of TSG-OP

is on average 66.7% shorter than that of SDLS-OP. This is because TSG-OP activates

on average two routers to simultaneously charge the energy-harvesting device during

each active transmission set. Hence, the energy-harvesting device achieves a higher

N

A B

C D

E

（0，0）

（0，10）

（5， 5）

（10，10）

（10，0）

（17，5）

Figure 3.4: A fixed topology with five routers and one energy-harvesting device.
Solid arrows denote direct communication, and dashed arrows denote RF-energy
transfer. The coordinate of nodes is shown at the bottom.
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energy-harvesting rate when using TSG-OP. When its energy demand is less than 25

µJ, the schedule length of TSG-Dijkstra and SDLS-Dijkstra does not change, which

is 0.19 and 0.37, respectively. This is because the schedule length that they derived

for supporting traffic demands is also sufficient to fulfill the energy requirement of

the energy-harvesting device.

Next, this section considers to vary the traffic demand of sessions. Energy-

harvesting device N has fixed energy demand of Emin
N = 10 µJ. Referring to Fig-

ure 3.6, the schedule length of TSG-OP is on average 92.3% shorter than that of

SDLS-OP. This is because it uses transmission sets that contain multiple links. On

the other hand, SDLS activates one link per transmission set. Hence, TSG-OP

allows links to have a higher capacity (in bps) as compared to using SDLS-OP,

meaning a shorter schedule length is sufficient to meet traffic demands. From Fig-

ure 3.6, both TSG-Dijkstra and SDLS-Dijkstra respectively have a longer schedule

length than that of TSG-OP and SDLS-OP. This is because W-Dijkstra uses longer

routing paths for session (A,E) and (C,E). Specifically, when the energy demand

Emin
N is 10 µJ, LP (3.12) uses the path A− B − E for session (A,E). By contrast,

W-Dijkstra uses A− C −D − B − E. In both cases, a long schedule is required to

support the links on both paths.

3.6.2 Random Topologies

Next, this section considers to study random typologies. In each run, 20 routers and

five energy-harvesting devices are placed randomly in the given area. All routers

are randomly deployed on a 50 × 50 m2 square area. They have |Ki| = 3 antennas

and a maximum transmit power of Pmax = 30 dBm, unless state otherwise. The

channel bandwidth is B = 20 MHz. It considers the following SINR threshold γz

(in dB): {3, 6, 10, 20, 30}. It deploys |F| = 2 sessions, unless otherwise stated. In

each experiment, a topology contains at least ten different flows that can be routed

over a multi-hop path. Each energy-harvesting device is located within the charging
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Figure 3.5: Schedule length with increasing energy requirements for the fixed topol-
ogy.
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Figure 3.6: Schedule length with increasing traffic demands for the fixed topology.
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range rc of at least one router. Each result shows an averaged schedule length over

50 simulation runs.

Optimality gap

Recall that computing the optimal solution of problem (3.11) requires all possible

transmission sets and realizations of power allocation, which is computationally

intractable for large-scale networks. To this end, this section considers small-scale

networks, whereby the number of routers ranges from five to ten and there is only

one RF-energy harvesting device. The value of Emin
n and D̂st is set to 20 µJ and 5

Mb/s, respectively. To compute the optimal solution of problem (3.11), this section

applies exhaustive search to generate all possible transmission sets, and determines

the transmit power allocation by solving MILP (3.12). Referring to Figure 3.7, as

the number of routers increases from five to ten, the schedule length computed by

exhaustive search reduces from 0.51 to 0.26 and the schedule length of TSG reduces

from 0.51 to 0.29. This means the optimality gap between the optimal solution grows

with network scale. This is because TSG only computes a portion of transmission

sets, which grows linearly with network scale; see Algorithm 1. Further, the number

of possible transmission sets grows exponentially with network scale. As a result, the

gap between TSG-OP and the optimal solution increases accordingly with network

scale, the gap between TSG-OP and the optimal solution also increases.

Impact of energy demand

In this experiment, the SINR threshold is set to γz = 10 dB, and each traffic demand

is set to D̂st = 1 Mb/s.

As per Figure 3.8, the schedule length of TSG and SDLS increases when energy-

harvesting devices have a higher energy demand Emin
n . This is reasonable because

links need to be active longer to ensure energy-harvesting devices receive their re-

quired energy demand. The schedule length of TSG is on average 30.19% shorter

than SDLS under the same energy requirement. This is because TSG allows multiple
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Figure 3.7: Optimality gap between TSG-OP and the optimal solution computed
by exhaustive search.

links to charge energy-harvesting devices simultaneously in each transmission set.

In addition, for TSG, its average transmit power per transmission set is larger than

that of SDLS. On the other hand, although SDLS allows routers to transmit with the

maximum power Pmax, it only allows one router to charge energy-harvesting devices

in each transmission set. This results in a longer charging time on average. Addi-

tionally, the overall performance of W-Dijkstra routing algorithm is within 98.5%

of the optimal solution computed by LP (3.11). This means the paths computed by

W-Dijkstra result in a near-optimal schedule when the flow demand is small, i.e., 1

Mb/s.

Impact of traffic demand

To study how traffic demands impact the schedule length, this section considers

demands ranging from 1 Mb/s to 10 Mb/s. The energy demand Emin
n is set to 20

µJ, and the SINR threshold γz is 10 dB. Referring to Figure 3.9, for both TSG and

SDLS, the schedule length increases significantly when the traffic demand increases

from 1 to 10 Mb/s. This is because links need to be activated longer to transmit

a higher amount of traffic. The difference between the schedule length achieved by
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Figure 3.8: Average schedule length with increasing energy requirements.

LP (3.11) and W-Dijkstra becomes larger as traffic demand increases; see Figure 3.9.

The reason is because W-Dijkstra computes longer paths. Recall that W-Dijkstra

computes a path for each session that has the highest weight. Hence, more routers

need to be activated to route sessions. Figure 3.10 shows the impact of increasing

traffic demands, which ranges from 1 Mb/s to 2.4 Mb/s. There are two to 10

different sessions; see Figure 3.10. The schedule length of TSG-OP and SDLS-OP

becomes longer under the same traffic demand D̂st. Referring to the link capacity

constraint (3.6), a shorter schedule length is achieved when a network requires fewer

transmission sets.

Impact of SINR threshold

Here, this section considers five SINR thresholds (in dB): γz = {3, 6, 10, 20, 30}. The

energy demand of energy-harvesting devices is set to 30 µJ and each flow demand

is set to 1 Mb/s. Referring to Figure 3.11, the schedule length of SDLS-OP and

SDLS-Dijkstra decreases slightly by 4.81% and 9.2%, respectively. However, the

schedule length generated by TSG-OP and TSG-Dijkstra increases significantly by

135% and 120%, respectively. The schedule length of TSG-OP is 60.19%, 54.91%,
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Figure 3.9: Average schedule length with increasing traffic demands.
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47.64%, 16.13% and 3.4% lower than that of SDLS-OP when the SINR threshold

is 3, 6, 10, 20 and 30 dB, respectively. This is because a higher SINR threshold

γz translates to a higher theoretical link capacity, but smaller transmission sets

for TSG. As expected, each active router transmits at a higher power to meet the

higher γz value from 3 to 30 dB. However, each transmission set is smaller, meaning

fewer routers are able to charge energy-harvesting devices when the SINR threshold

is high. As a result, TSG generates more transmission sets to schedule |E| links.

Moreover, each transmission set is active longer to satisfy the energy demand of

energy-harvesting devices. When γz = 30 dB, each transmission set only contains

one active router. Hence, for both TSG-OP and TSG-Dijkstra, further increases in

SINR threshold do not cause longer schedule lengths. As compared to TSG, SDLS

schedules each link into a distinct transmission set for each γz. Thus SDLS-OP and

SDLS-Dijkstra are able to satisfy the traffic demand of links quicker. In addition,

energy-harvesting devices continue to harvest RF energy from one active router in

each transmission as each γz increases. Consequently, they have a shorter schedule

length when links have a higher theoretical capacity.

The difference between the schedule length achieved by LP (3.11) andW-Dijkstra

reduces from 3.61% to 0.52%. This is because W-Dijkstra’s path is fixed. Hence,

if the link capacity increases, routers will require a shorter active time to satisfy

the traffic demand of sessions. Hence, the schedule length is mainly affected by the

RF-energy harvesting time of energy-harvesting devices. In this respect, W-Dijkstra

activates routers that charge the most number of energy-harvesting devices. This in

turn improves the energy harvesting rate at energy-harvesting devices. As a result,

the schedule length of W-Dijkstra is within 99.48% computed by LP (3.11) after γz

reaches 30 dB.

Next, this section studies how SINR threshold γz affects the schedule length when

each D̂st is set to 10 Mb/s. Each energy demand is set to 20 µJ. From Figure 3.12,

the schedule length of TSG-OP first gradually reduces from 0.69 to 0.55 as the SINR

threshold increases from 3 to 10 dB, and reaches the lowest length at 10 dB. This
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is because each traffic demand D̂st becomes higher as compared to 1 Mb/s. Further

increasing each γz results in fewer transmitting routers to charge energy-harvesting

devices per transmission set. This indicates a trade-off between network capacity

and energy provisioning when using different SINR thresholds.
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Figure 3.11: Average schedule length with different SINR thresholds for Emin
n = 30

µJ and D̂st = 1 Mb/s.

Number of antennas

To study the impact of antenna numbers, this section sets the traffic demand to 1

Mb/s and the energy demand is set to 20 µJ. The SINR threshold is set to 10 dB.

Figure 3.13 shows the schedule length of TSG-OP and SDLS-OP with increasing |Ki|

values. The schedule length of both TSG-OP first decreases, and stops decreasing

when there are eight antennas. This is because channel diversity increases when

routers have more antennas, which helps energy-harvesting devices harvest energy

more efficiently. For instance, the average channel gain used for energy harvesting

when |Ki| = 9 is 1.31 times larger than when |Ki| = 1; see Figure 3.13. On the

contrary, we see the schedule length of SDLS-OP does not reduce consistently when

the number of antennas at routers increases. This is because each antenna has the

same transmit power of Pmax

|Ki| . Hence the transmit power per antenna reduces when
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Figure 3.12: Average schedule length with different SINR thresholds for Emin
n = 20

µJ and D̂st = 10 Mb/s.

|Ki| increases, leading to a poorer received power at energy-harvesting devices from

each antenna.

Maximum transmit power

Here, this section studies how the maximum transmit power of routers affects the

frame length. To this end, it increases the value of Pmax from 1 to 5 Watts, with

an interval of 0.5. The session demand of each session is 1 Mb/s and the SINR

threshold γz is 10 dB. Devices have an energy demand of 50 µJ.

Referring to Figure 3.14, when the maximum transmit power of routers increases

from 1 to 5 W, the schedule length of TSG-OP, TSG-Dijkstra, SDLS-OP and SDLS-

DIjkstra reduces by 84.33%, 82.72%, 84.64% and 83.92%, respectively. This is be-

cause energy-harvesting devices harvest more energy as they use a higher energy

conversion efficiency; see Figure 3.15 and 3.16. For example, when using TSG, the

percentage of received power that falls into the power interval I3 increases from

6.34% to 28.92%. As devices harvest more energy, the schedule length of TSG is on

average 47.43% shorter than that of SDLS. Furthermore, TSG is able to charge 2.96

times more energy-harvesting devices as compared to SDLS. This is because TSG
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Figure 3.13: Average schedule length with different antenna numbers on routers.

uses multiple routers to cooperatively charge energy-harvesting devices. Hence, TSG

requires fewer transmission sets and provides a higher amount of RF energy than

SDLS. When the maximum transmit power at routers increases further, the schedule

length of TSG-OP and TSG-Dijkstra will not reduce. This is because in MILP (3.20)

routers control their transmit power so that energy-harvesting devices are able to

harvest RF energy with the highest rate of 60%. Hence, the maximum energy har-

vested at each energy-harvesting device per second is 10× 0.55 = 5.5J . However, in

SDLS-OP and SDLS-Dijkstra, routers transmit at Pmax Watts in each transmission

set. Hence, when the maximum power Pmax increases, the received power P z
n at

each node also increases as per constraints (3.7) and (3.8). Given that routers use a

fixed transmit power, energy-harvesting devices may harvest less energy due to the

non-linear energy conversion rate. For instance, the schedule length of SDLS-OP

and SDLS-Dijkstra increases when the received power at energy-harvesting devices

exceeds ten mW in each transmission set.
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Figure 3.14: Average schedule length with different transmit power at routers.
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Figure 3.15: Percentage of received power in each power interval with different
maximum transmit power of routers for SDLS-OP.
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Figure 3.16: Percentage of received power in each power interval with different
maximum transmit power of routers for TSG-OP.

Impact of router density

In this experiment, the traffic demand is set to 1 Mb/s and the energy demand is

set to 30 µJ, respectively. In addition, routers have a 10-meter transmission range.

The SINR threshold is set to 10 dB.

Figure 3.17 shows the schedule length when the number of routers ranges from

20 to 30. The schedule length of TSG-OP, TSG-Dijkstra, SDLS-OP and SDLS-

Dijkstra on average reduces by 26.98%, 24.15%, 24.31%, 20.10%, respectively. This

is because the number of links grows from 48 to 89 when the number of routers

increases from 20 to 30. TSG and SDLS are able to generate more transmission sets

when the number of links |E| becomes larger. For TSG-OP, referring to Figure 3.18,

we see that (i) its average number of concurrent links per active transmission set

rises from 3.42 to 5.16, (ii) its average total transmit power per active transmission

set rises from 2.24 to 2.36 W. As a result, by using additional transmission sets that

have more active routers and concurrent links, energy-harvesting devices are able to

harvest energy quicker. Moreover, the number of paths increases for each session.

This means there is a higher probability of establishing a short path for each session

93



or a path that is able to charge energy-harvesting devices quicker. For SDLS-OP, the

schedule length becomes shorter by activating routers that are able to charge more

energy-harvesting devices or are located closer to energy-harvesting devices. We see

the difference between the schedule length achieved by LP (3.11) and W-Dijkstra

becomes larger with additional links. This is because W-Dijkstra computes longer

paths that aim to charge more energy-harvesting devices. As a result, W-Dijkstra

on average results in longer path lengths with additional links. For instance, the

path length per session of 98 links is on average 3.34 times longer than the paths

computed for 48 links. In addition, the path weight per session achieved under 98

links is 2.24 times longer than the weight for 48 links. Thus W-Dijkstra results in

longer routing time as the number of routers increases. However, W-Dijkstra is able

to reduce the required time for charging energy-harvesting devices; see Figure 3.17.

Hence, we see a trade-off between charging time and routing time using W-Dijkstra.
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Figure 3.17: Average schedule length with different number of routers.

3.7 Conclusion

This chapter studies a novel challenging problem that requires joint optimization of

routing, RF energy charging, transmit power allocation and link scheduling in a two-
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Figure 3.18: Average total transmit power and concurrent links per transmission set
using TSG under different number of routers.

tier network. It presents the first LP, heuristic and a novel routing metric to solve

the said problem. Advantageously, these solutions can be used to benchmark against

future distributed solutions and applied in software defined wireless networks. The

results show (i) TSG achieves shorter schedule as compared to other link schedulers,

(ii) the proposed novel routing metric yields link schedule lengths that are 75.25%

that of the LP solution, (iii) the schedule length is impacted directly by session

and energy requirements, (iv) diversity gain improves both wireless power and data

transfer.

This chapter only aims to meet the energy demand of energy-harvesting devices

operating in tier-2. It does not consider scheduling the transmissions of these devices

according to their energy arrival. In addition, it does not consider communication

between energy-harvesting devices. To this end, the next chapter considers data

transmissions in a multi-hop wireless backhaul with an underlying multi-hop ambient

backscattering communication network.
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Chapter 4
Data collection in a two-tier IoT network

with ambient backscattering tags

This chapter considers data collection in a two-tier IoT network with ambient

backscattering tags. The first tier is a wireless backhaul composed of routers and

the second tier is an ambient backscattering communication network. The goal is to

maximize the network throughput in both tiers. The problem at hand is to jointly

determine: (i) the active time of each RF link and backscattering link, (ii) the

amount of traffic routed by each link, (iii) the data rate of each flow, and (iv) the

transmit power/backscattering coefficient of each transmitting router/passive tag.

To this end, it outlines a MILP that jointly optimizes routing, link scheduling and

transmit power control. As link scheduling is NP-hard [193], it presents a heuristic

called ALGO-TSG to compute transmission sets for use by the proposed MILP. In

addition, it also outlines a heuristic called CMF to maximize network throughput

by jointly considering routing and link scheduling.

To elaborate on the said system and research problem, consider the two-tier IoT

network shown in Figure 4.1. Assume there is a flow at tier-1 from router A to D.

It is routed over two paths A − B − D and A − C − D. At tier-2, there are the

following data flows: (i) a − b − D, and (ii) c − d − e. The aim of this chapter is
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to maximize the flow of router A, tag a and c. Observe that the flow rate of tags,

which use backscatter communications, is dependent on the routing of router A.

Specifically, the transmissions of these tags are determined by the amount of flow

from router A that is routed to router B and C. To elaborate, assume router A

only uses path A−B−D. This means only tags a and b will be able to backscatter

their data. Alternatively, router A can choose to split its traffic by placing its data

on both paths A − B − D and A − C − D. Consequently, all sources A, a, and c

have an opportunity to route data to their respective destination. Note that routers

and tags may interfere with each other. Hence, a link schedule, which governs links

that are active in each time slot. Further, it determines the capacity of links. This

in turn limits the amount of flow on each link.

c d e

a

b

A C D

B

Figure 4.1: An example two-tier network with four routers and five tags. The
transmission from router B enables the backscattering communication of tag a and
b. Similarly, the transmission of router C enables backscattering communication of
tag c, d and e. The routers are located in tier-1, whereas tags are in tier-2.

In the previous example, we see that there are flows at each tier of the IoT

network. Specifically, there are flows from tags to gateways at tier-2, and flows

between routers at tier-1. To this end, the objective of this chapter is to maximize

the sum rate of these flows. This objective is significant because it allows an IoT

operator to collect the maximum amount of data from devices. To this end, this

chapter aims to (i) derive a link schedule that affords high link capacity between

routers and also facilitates backscattering between tags. In particular, the link

schedule will determine when routers transmit, and in turn, determines the set of
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backscattering links enabled by router transmissions. Further, when deriving a link

schedule, a major problem is to ensure routers use a transmit power that minimizes

co-channel interference, and provides sufficient power to tags for backscattering.

Further, a short link schedule ensures a high link capacity, meaning links are able to

transmit frequently [194], and (ii) multi-hop routing, which governs the flow between

routers and their transmission time. Critically, the routing adopted by routers

determines how often their surrounding tags initiate backscatter communications

to forward sensed data. As we will see later, the routing adopted by routers has

a direct impact on the link schedule, which in turn affects the transmission rate of

both routers and tags.

The remainder of the chapter is organized as follows. Section 4.1 presents system

model. The problem is formulated as an MILP in Section 4.2. Section 4.3 and 4.4

present the details of ALGO-TSG and CMF, respectively. The computational com-

plexity of MILP, ALGO-TSG and CMF are discussed in Section 4.5. Section 4.6

presents simulation results. Section 4.7 concludes this chapter.

4.1 Preliminaries

4.1.1 Network Model

Consider a network or graph G(V , E), where V is the set of nodes, and E contains

links. There are two types of nodes: (i) routers at Tier-1, and (ii) tags at Tier-

2. Let VR and VT denote the set of routers and tags, respectively; hence, V =

VR ∪ VT . Let x or y denote either a router or a tag, i refers to a router, and n

represents a tag. Each node x has a transmission range Rx. Let dxy denote the

Euclidean distance between transmitter x and receiver y. All neighbors of router

or tag x are recorded in set Nx, where Nx = {y | dxy ≤ Rx, y ∈ V}. Tags

have no battery/energy storage. They rely solely on the transmissions of routers

for communications. Define the set N (n) to record routers that enable tag n to
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backscatter, whereN (n) = {i | din ≤ Ri, i ∈ VR}. All tags have an omni-directional

antenna, and they are half-duplex.

Routing is carried out at both tiers, where at Tier-1, source routers forward

traffic to their corresponding destination router, and similarly at Tier-2, source tags

route their traffic to a corresponding destination tag or router. Lastly, let T be a

set of discrete time slots indexed by t ∈ {1, . . . , |T |}. For convenience, assume each

time slot has duration τ = 1 second. Table 4.1 lists necessary notations.

4.1.2 Link Types

Let lxy denote a link in E , where x, y ∈ V . There are three types of links in set E :

inter-router, backscattering, and power. These link types are defined as follows:

• Inter-router. Routers communicate via an inter-router link. Record all inter-

router links in the set ER, where ER = {lij | dij ≤ Ri,∀i, j ∈ VR}. As an

example, Figure 4.1 has ER = {lAB, lAC , lBD, lCD}.

• Backscattering links. Tags communicate over inter-tag backscattering links,

and use an uplink to communicate with a router. They are recorded in the set

EB, where EB = {lnx | dnx ≤ Rn,∀n ∈ VT , x ∈ V}. For example, Figure 4.1

has EB = {lab, lcd, lde, lbD}.

• Power links. These links are used by routers to transmit a dedicated RF signal

to enable backscattering between tags. These power links are recorded in the

set EP , where EP = {lin | din ≤ Ri,∀i ∈ VR, n ∈ VT}.

4.1.3 Router Model

The routers in the set VR are half-duplex. They transmit on channel f1, and have an

omni-directional antenna. In each time slot, a router activates either an inter-router

link or a power link. For each router i, its transmit power is pi, which is bounded
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Table 4.1: A summary of notations

1. Sets

V A set of nodes
VR A set of routers
VT A set of tags
E A set of all type of links
ER A set of directed inter-router links
EB A set of directed backscattering links
EP A set of directed power links
FR A set of sessions where routed via inter-router links
FT A set of sessions where routed via backscattering links
T A set of discrete time slots

2. Constants

S A collection of router transmission sets
Sz The z-th router transmission sets in collection S
B A collection of backscattering sets
Bz
m The m-th backscattering sets derived from Sz

pzi The transmit power of router i in Sz

P z
nxm The received power of backscatter x

from the transmitting backscatter n in Bz
m

Cz
ij The capacity of RF link lij in Sz

Cz
nxm The capacity of backscattering link lnx in Bz

m

τ Duration of each time slot
Gij Channel gains from router i to the router j in slot t
γ The SINR threshold for RF links
θ The SINR threshold for backscattering links
σ Noise power
Pmax The maximum transmit power of a router
dij The Euclidean distance between transmitter i

and receiver j
azij An indicator to show whether an inter-router link lij

exists in transmission set Sz

bznym An indicator to show whether a backscattering link lnx
exists in transmission set Bz

m

3. Variables

αz
t The activation of transmission set Sz in slot t

xzmt The activation of backscattering set Bz
m in slot t

fst
ij Traffic fraction of session s on inter-router link lij
f̂st
nx Traffic fraction of session s on backscattering link lnx
r̂sn The data generated at source tag n of session s
rsi The data generated at a source router i of session s
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by Pmax. Formally, the transmit power of each router must satisfy

0 ≤ pi ≤ Pmax, ∀i ∈ VR. (4.1)

This chapter assumes Rayleigh fading for inter-router links [187]; i.e., it assumes

environments with multi-path propagation. Let Gt
ij denote the channel power gain

of the link between transmitter i and receiver j. Formally, it is

Gij = χα

(
dij
d0

)β

,∀lij ∈ ER, (4.2)

where χ is an Exponential distributed random variable with unit mean, where α is

the path-loss at reference distance d0 meter, and β is the path loss exponent.

4.1.4 Backscattering Links

As tags have a short communication range, this chapter only considers line-of-sight

and free space propagation for backscattering communications [53]. They backscat-

ter over frequency f2. A backscattering link in set EB only exists when the incident

power of transmissions from routers at a tag is higher than the sensitivity threshold

Ψmin. As per [54], a modified Friis equation is employed to model the channel of

backscattering links in set EB and power links in set EP . The total received power

Pn at tag n is calculated as

Pn =
∑

i∈N (n)

pi

(
λ

4πdin

)2

,∀n ∈ VT , (4.3)

where λ denotes the wavelength. Note, Eq. (4.3) assumes tag n is able to backscatter

multiple RF-signals from active routers in the set N (n).

Consider a tag n that is backscattering signals from routers. The received power

of these signals at a neighboring router or tag x depends on Pn and is formally
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defined as

Pnx = Pnρn

(
λ

4πdnx

)2

, (4.4)

where ρn ∈ [0, 1] is the backscattering coefficient of tag n when it transmits to

receiver node x. This coefficient allows a tag to attenuate its backscattered power.

A set of backscattering links are created for each set of transmitting routers and

transmit power configuration. Specifically, each set of inter-router links induces a

corresponding set of backscattering links. Moreover, each transmit power setting

of the said inter-router links yields a set of backscattering links. Let Sz denote

a transmission set that contains a set of inter-router and power links, where z

is its index. Define set R(Sz) to contain the transmitting router of each link in

transmission set Sz. Let P(Sz) record the transmit power of each router of links in

set Sz. Next, define a backscatter communication graph as GSz(Vz, Ez
B), where Vz

is a set of transmitting tags and their receiver. The set Ez
B contains backscattering

links that are enabled by one or more routers in set R(Sz), where Ez
B = {lnx|Pnx ≥

Ψmin, lnx ∈ EB}. This means the incident power at the receiver of each link lnx in

set Ez
B meets a given receiver sensitivity Ψmin. Note that in set Ez

B, each Pnx is

calculated as per Eq. (4.3) and (4.4).

Lastly, this section makes a few remarks. One main concern is that tags must

be able to extract data from backscattered signals in the presence of ambient RF-

signals. Hence, assume all tags are equipped with frequency shifting capability as

per [44]. It allows a tag to shift a router’s transmission frequency f1 to f2, where

frequency f1 and f2 are orthogonal to one another. This means a backscattering

link and an inter-router link do not interfere with each other. Hence, they are able

to co-exist in the same time slot. In addition, as reported in [72], RF-signals from

multiple routers may combine either constructively or destructively. To this end,

methods such as [72] can be used to ensure the phases of RF-signals emitted by

routers add constructively at tags.
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4.1.5 Link Schedule Model

Recall that inter-router and backscattering links do not interfere because they op-

erate on frequency f1 and f2, respectively, whereby f1 ̸= f2. Hence, a fundamental

problem is to ensure links operating on the same frequency do not interfere. To

this end, define two transmission sets: (i) router transmission sets – they consist of

non-interfering inter-router and power links, (ii) backscattering sets – they consist

of non-interfering backscattering links. Next, the following sections make specific

these transmission sets, and define constraints relating to active transmission sets

in each time slot.

Router transmission sets

In total, there are |S| router transmission sets. Define a collection of router trans-

mission sets as S = {S1,S2, . . . ,S |S|}; the z-th transmission set is Sz. Let indicator

azij ∈ {0, 1} indicate whether a link lij exists in transmission set Sz. Specifically, it

equals one when link lij exists in transmission set Sz. Otherwise, it equals zero.

Inter-router links must adhere to the physical interference model [112]. Specif-

ically, a set of inter-router links that belong to transmission set Sz must meet a

common Signal-to-Interference-Noise Ratio (SINR) threshold γz. In this respect,

denote the theoretical capacity for SINR threshold γz as Cz
ij, which can be calcu-

lated using the Shannon-Hartley theorem. For each inter-router link lij, the SINR

at receiver j must satisfy

pziGij∑
u∈VR\i p

z
uGuj + σ

≥ γz,∀lij ∈ Sz, (4.5)

where the numerator is the received power at receiver j of link lij, and the denom-

inator is the interference from other active routers with background noise σ. In

addition, let pzi denote the transmit power of router i in transmission set Sz.

Note that interfering inter-router links and power links must not be activated

simultaneously in the same transmission set. Otherwise, activating power links will
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reduce network capacity because they carry no information and can interfere with

data links. Hence, the last transmission set in collection S activates all power links

simultaneously with maximum transmit power.

Backscattering transmission sets

A backscattering set contains backscattering links that are only activated whenever

a router transmission set is active. Each router transmission set Sz results in a

communication graph between tags; i,e., the transmitting routers in R(Sz) enable

a subset of backscattering links in Ez
B. The goal of a link scheduler is to schedule

all backscattering links in set Ez
B into a set of backscattering sets. Define M z as the

number of backscattering sets for a given router transmission set Ez
B. Denote by

Bz
m as the m-th backscattering sets. The collection of backscattering sets for trans-

mission set Sz is defined as B(Sz) = {Bz
1,Bz

2, . . . ,Bz
Mz}. In addition, let indicator

bznxm ∈ {0, 1} equal one if link lnx exists in the backscattering set Bz
m.

This chapter employs the physical interference model [112] to construct backscat-

tering sets. Let θz be the SINR threshold for the collection of backscattering sets

B(Sz). Formally, for each backscattering link lnx in set Bz
m, its SINR must satisfy

P z
nxm∑

u∈VT \n P
z
uym + σ

≥ θzm,∀lnx ∈ Bz
m, (4.6)

where P z
nxm denotes the received power of link lnx at receiver x when tag n transmits

in backscattering set Bz
m.

To illustrate the construction of backscattering sets, see an example with topol-

ogy in Figure 4.2. There are three router transmission sets: S1= {lAB}, S2=

{lBA} and S3= {lAa, lBa} Here, set S3 contains two power links. For transmis-

sion set S1, its router set is R1 = {A}. This in turn creates a graph GR1(V1, E1
B),

where set E1
B = {lab, laB}. The corresponding collection of backscattering sets is

B(S1) = {B1
1,B1

2}, where B1
1= {lab} and B1

2= {laB}. Similarly for transmission set

S2, there is B(S2) = {B2
1,B2

2}, where B2
1= {lab}, and B2

2= {laA}. Lastly, for set S3,
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there is S3
1= {lab}.

a

b

A B

Figure 4.2: An example topology. Each arrow denotes an RF-signal. Each dash
arrow denotes a backscattered signal. Tag b only receives from tag a.

Transmission sets activation

Define a binary variable αz
t = {0, 1}. It is equal to one when transmission set Sz is

active in time slot t. Formally, for each time slot, transmission sets satisfy

|S|∑
z=1

αz
t = 1,∀t ∈ T . (4.7)

Next, in each time slot, the active transmission set Sz allows one or multiple

backscattering sets in collection B(Sz) to be active. Let xz
t = [xz1t, x

z
1t, . . . , x

z
|Mz |t]

record the active time of each backscattering set that exists in collection B(Sz),

where xzmt ∈ [0, 1] denotes the active time of backscattering set Bz
m in time slot t.

Note that in each time slot, the total active time of all backscattering set in collection

B(Sz) cannot exceed the active duration of transmission set Sz. Formally, for each

time slot, there exists the following activation constraint for all backscattering sets:

|Mz |∑
m=1

xzmt = αz
t ,∀t ∈ T , 1 ≤ z ≤ |S|. (4.8)

4.1.6 Routing Model

Define F as a set of sessions, each of which is indexed by s ∈ {1, . . . , |F|}. Next,

for each session s, define its source node and its destination node as Ss and Ds,
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respectively. Let FR represent a set of sessions between routers1. Next, let FT

represent a set of sessions where each source is a tag, and the destination is either

another tag or a router. In total, there exists |F| = |FR|+ |FT |.

Inter-router links

This section first considers the flow of sessions in set FR. The source router Ss of

session s generates rs bits of data over |T | time slots. Let variable f st
ij denote the

amount of flow of session s routed on link lij in time slot t.

The first set of constraints relates to flow conservation. For each session, its

source router must transmit all generated data via its outgoing links over |T | time

slots. Let NR
i be neighboring routers of router i. Formally, for each session s ∈ FR

and its source i = Ss, they must satisfy

|T |∑
t=1

∑
j∈NR

i

f st
ij = rs, (4.9)

where the left side of Eq. (4.9) is the total flow of session s transmitted by its source

router i over duration |T |. Second, for the destination of each session, it must receive

all data generated by its source over |T | time slots. Formally, for each session s ∈ FR

and its destination i = Ds, they must satisfy

|T |∑
t=1

∑
j∈NR

i

f st
ji = rs. (4.10)

For intermediate routers of sessions, their total incoming flow over |T | time slots

must equal their total outgoing flow. Formally, for all sessions s ∈ FR, they must

1In practice, the sessions between routers are decided by a transport protocol. Further, a
transport protocol such as multi-path transmission control protocol (TCP) [195] may create mul-
tiple connections to a destination router. In this case, this chapter treats each connection as an
independent session.
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satisfy

|T |∑
t=1

∑
j∈NR

i

f st
ij =

|T |∑
t=1

∑
j∈NR

i

f st
ji ,∀i ∈ VR \ {Ss, Ds}. (4.11)

The total data flow of all sessions placed on link lij cannot exceed its capacity.

The capacity of an inter-router link depends on its theoretical capacity and the total

active time over |T | time slots. Mathematically, for all time slots t ∈ T , this is a

link capacity constraint as per

|FR|∑
s=1

f st
ij ≤

|S|−1∑
z=1

azijC
z
ijα

z
t ,∀lij ∈ ER, (4.12)

Backscattering links

Let the source tag of session s in FT generate r̂s bits of data over |T | time slots.

Next, let f̂ st
nx denote the flow of session s routed over backscattering link lnx in time

slot t. Depending on whether a tag acts as a source, a destination, or an intermediate

tag, there is a set of flow conservation constraints for each tag in set VT . Let N T
x

denote neighboring tags of a tag/router x. Formally, for each session s ∈ FT and its

source tag n = Ss, they must satisfy

|T |∑
t=1

∑
y∈Nn

f̂ st
nx = r̂s. (4.13)

For each session s ∈ FT and its destination x = Ds, formally, they must meet

|T |∑
t=1

∑
y∈NT

x

f̂ st
yx = r̂s. (4.14)

For intermediate tags of each session s ∈ FT , formally, they satisfy

|T |∑
t=1

∑
x∈NT

n

f̂ st
nx =

|T |∑
t=1

∑
x∈NT

n

f̂ st
xn,∀n ∈ VT \ {Ss, Ds}. (4.15)
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Lastly, the total flow over a backscattering link cannot exceed its total capacity

in each time slot. The capacity of each backscattering link lnx depends on its total

active time in each backscattering set. Mathematically, there is the following link

capacity constraint for all backscattering links lnx ∈ EB and for all t ∈ T ,

|FT |∑
s=1

f̂ st
nx ≤

|S|∑
z=1

Mz∑
m=1

bznxmC
z
nxmx

z
mt, (4.16)

where Cz
nxm denotes the theoretical capacity of backscattering link lnx that is active

in backscattering set Bz
m.

4.2 Problem Definition

The aim of this chapter is to maximize the sum of flow rates at both tiers. The

key decision variables include: (i) the amount of data generated by each source

node; namely, rsi and r̂sn, (ii) the amount of flow of each session routed over links

in set ER and EB; i.e., the quantity f st
xy and f̂ st

xy, (iii) the active time of each router

transmission set and each backscattering set in a time slot; i.e., each αz
t and xzmt.

Formally, the problem can be formulated as the following MILP:

maximize
f st
xy, f̂

st
xy, r

s
i , r̂

s
n, α

z
t , x

z
mt

(∑|FT |
s=1 r̂

s +
∑|FR|

s=1 r
s

|T |

)

subject to (4.8)− (4.16).

(4.17)

This chapter concludes with a few remarks. First, MILP (4.17) requires a col-

lection of transmission sets and backscattering sets as inputs. Second, MILP (4.17)

can be solved by a commercial solver, e.g., Gurobi, for small-scale networks. Note

that the optimal solution requires all possible transmission sets. However, the num-

ber of transmission sets grows exponentially with network scale |E|. In particular,

there are 2|E| possible transmission sets. Indeed, link scheduling is a well-known NP-

hard problem [193]. This motivates the development of a heuristic solution named
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ALGO-TSG to generate the said collection of transmission sets. Third, MILP (4.17)

assumes source nodes are able to split a fractional amount of data onto multiple

paths. However, in practice, a source node or router forwards an integral number of

packets onto the least-cost path to a destination node.

The next section outlines a heuristic to generate a collection of transmission

sets and backscattering sets. These sets are then used by a heuristic called CMF

to compute a link schedule. In particular, CMF computes a single path for each

session and the amount of data generated by each source. These quantities are then

used to determine the transmission and backscattering set that are active in each

time slot.

4.3 Heuristic algorithm: ALGO-TSG

ALGO-TSG outputs a collection of transmission sets. It requires the following

inputs: (i) network topology, i.e., graph G(V , E), and (ii) the SINR threshold for

each transmission set, i.e., γz and θz, and (iii) channel gains.

ALGO-TSG consists of two other supporting algorithms, namely (i) Router

Transmission Sets Generator (RTSG), and (ii) Backscattering Sets Generator (BSG).

ALGO-TSG first runs RTSG to generate |S| router transmission sets. It then runs

BSG to generate backscattering sets.

4.3.1 Router Transmission Sets Generator (RTSG)

RTSG outputs a collection of router transmission sets S. It has two phases. In

Phase-1, it constructs transmission sets by greedily adding inter-router links that

have the highest channel gains. It then uses an LP to check whether a link is able

to co-exist with other links in the transmission set. In Phase-2, it attempts to add

non-interfering power links into the transmission sets constructed in Phase-1. This

aims to activate more backscattering links. Apart from that, it creates a router

transmission set containing all power links.
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Phase-1 of RTSG

Algorithm 2 details Phase-1. In line 2, RTSG uses SortChannel() to sort all inter-

router links in descending order of their channel gains. In lines 3-10, RTSG schedules

each inter-router link in set ÊR once, where the schedules form collection S. In

lines 12-23, RTSG includes additional non-interfering inter-router links from set ÊR

into each router transmission set Sz in collection S. The function HalfDuplex() is

used to check whether all communications in the selected transmission set Sz are

half-duplex. Specifically, HalfDuplex(lij,Sz) returns False if neither transmitter i

nor receiver j of input link lij exists in the router transmission set Sz. After that,

RTSG calls LP1(Sz, γz) to check whether all links in Sz meet the SINR threshold

γz; see line 17. Specifically, LP1() outputs a True flag if the added link can co-exist

with the other inter-router links in the input transmission set. Otherwise, LP1()

outputs a False flag.

The function LP1() solves an LP to enable the maximum number of backscat-

tering links. Let b̂nx be a binary variable that is set to one if backscatter link lnx

can be enabled by router transmissions. Formally, there is the following LP:

maximize
pzi , b̂nx

∑
lnx∈EB

b̂nx (4.18a)

subject to pzi ≤ Pmax,∀i ∈ R(Sz), (4.18b)

pziGij∑
u∈Rz\i p

z
uGuj + σ

≥ γz,∀lij ∈ Sz, (4.18c)

Pnx − ψmin ≥ Φ(b̂nx − 1),∀lnx ∈ EB. (4.18d)

We see that its objective is to maximize the sum of active backscatter links. To do

so, it optimizes the transmit power of routers subject to the following constraints.

Constraint (4.18b) ensures that the transmit power of each transmitting router does

not exceed Pmax. Constraint (4.18c) ensures the SINR of all inter-router links must

meet the SINR threshold γz. Constraint (4.18d) ensures all enabled backscattering

links meet a given sensitivity, where tags backscatter with the maximum coefficient
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ρn = 1. Here, the constant Φ is used to disable a constraint, where Φ = Ψmin.

Algorithm 2: Phase-1 of RTSG.

Input: G(V , E), γz
Output: S

1 // Schedule each link once

2 Set z = 1, ÊR = SortChannel(ER)
3 for lij ∈ ÊR do
4 Sz = ∅
5 Sz = Sz ∪ lij
6 if z < |ER| then
7 z = z + 1
8 |S| = z

9 end

10 end
11 // Add additional data links
12 for z = 1, . . . , |S| do
13 for lij ∈ ÊR do
14 if HalfDuplex (lij,Sz) == False then
15 Sz = Sz ∪ lij
16 Flag = LP1(Sz, γz)
17 if Flag == False then
18 Sz = Sz \ lij
19 end

20 end

21 end
22 S = S ∪ Sz

23 end
24 return S

Phase-2 of RTSG

In lines 3-13 of Algorithm 3, RTSG greedily adds power links in order maximize

the number of tags in each existing transmission set. The function SortR2T() is

used to sort links in descending order of their number of neighboring tags. The

function HalfDuplex(lin,Sz) is then used to ensure each transmitting router will not

simultaneously have an outgoing inter-router link and a power link. In lines 15-18,

it creates an additional router transmission set to activate all power links simulta-

neously. After that, RTSG terminates and returns a collection S that contains |S|

router transmission sets.
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Algorithm 3: Phase-2 of RTSG.

Input: S,γz
Output: S

1 ÊP = SortR2T(EP )
2 // Add power links
3 for z = 1, . . . , |S| do
4 for lin ∈ ÊP do
5 if HalfDuplex(lin,Sz) == False then
6 Sz = Sz ∪ lin
7 Flag = LP1(Sz, γz)
8 if Flag == False then
9 Sz = Sz \ lin

10 end

11 end

12 end

13 end
14 // Include all power links
15 z = |S|+ 1, Sz = ∅
16 for lin ∈ ÊP do
17 Sz = Sz ∪ lin, pzi = Pmax

18 end
19 S = S ∪ Sz

20 return S

4.3.2 Backscattering Sets Generator (BSG)

The basic idea of BSG is to preferentially add backscattering links that use the

minimum backscattering power to meet the sensitivity threshold Ψmin. BSG aims

to enable the largest number of tags to backscatter simultaneously by reducing the

interference between tags. For each router transmission set Sz, BSG first depicts

the said backscatter communication graph GSz(Vz, Ez
B). After BSG adds a backscat-

tering link lnx into one backscattering set in collection B(Sz), it uses an LP to check

whether the routers in set Sz will enable link lnx, and whether link lnx is able to

co-exist with the other backscattering links in the backscattering set. BSG termi-

nates after it constructs a collection of backscattering sets for all existing router

transmission sets in S.

Algorithm 4 shows the details of BSG. Given each router transmission set Sz, the

function ConstructG() returns the communication graph derived by set R(Sz) and
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P(Sz), where tags use the maximum backscattering coefficient. Next, BSG greedily

adds a backscattering link from set Ez
B into each backscattering set Bz

m; see lines 7-22.

The function MinTx(E⋆
B) returns a link l⋆nx that requires the minimum backscattered

power at tag n to meet its receiver sensitivity. The function LP2(B⋆
m, θ

z
m) returns

feasible when all backscattering links in the backscattering set B⋆
m satisfy the SINR

threshold θzm. BSG allows each tag to lower its backscattering coefficient in order

to co-exist with other tags. Hence, it also determines the backscattering coefficient

of each transmitting tag of links in set B⋆
m by using the function LP2(B⋆

m, θ
z
m).

Links that have been assigned to a backscattering set are then removed from Ez
B for

further consideration. This means BSG only activates each backscattering link in

set Ez
B once in each collection B(Sz).

The function LP2() determines the backscattering coefficient at each transmit-

ting tag in set B⋆
m. It solves an LP, where the objective is to maximize the total

backscattering coefficient of all tags activated in backscattering set B⋆
m. Mathemat-

ically, LP2() solves the following LP:

maximize
ρ⋆x

∑
lnx∈B⋆

m

ρ⋆n (4.19a)

subject to 0 ≤ ρ⋆n ≤ 1,∀lnx ∈ B⋆
m, (4.19b)

P ⋆
nx∑

u∈VT \n P
⋆
uy + σ

≥ θzm,∀lnx ∈ B⋆
m, (4.19c)

P ⋆
nx ≥ ψmin, ∀lnx ∈ B⋆

m. (4.19d)

Note that the total incident power of RF-signals at backscattering tag n, i.e., Pn, is

computed as per Eq. (4.3) given set P(Sz). Constraint (4.19b) ensures the backscat-

tering coefficients will not exceed their lower or upper bound. All backscattering

links in backscattering set B⋆
m must satisfy SINR threshold θ⋆m; see constraint (4.19c).

Moreover, constraint (4.19d) states that the backscattering coefficient at tag n must

ensure that the incident power at its receiver y meets sensitivity requirement ψmin.

113



Algorithm 4: BSG.

Input: S, θzm
Output: B

1 // Construct each collection B(Sz)
2 for z = 1 −→ |S| do
3 Set each ρn = 1
4 GSz(Vz, Ez

B) = ConstructG(R(Sz),P(Sz))
5 Set m = 1, B⋆

m = ∅, E⋆
B = Ez

B

6 // Construct each set Bz
m in B(Sz)

7 while Ez
B ̸= ∅ do

8 l⋆nx = MinTx(E⋆
B)

9 if HalfDuplex (l⋆nx,Sz ∪ B⋆
m) == False then

10 B⋆
m = B⋆

m ∪ l⋆nx
11 if LP2(B⋆

m, θ
z
m) is infeasible then

12 B⋆
m = B⋆

m \ l⋆nx
13 end

14 end
15 E⋆

B = E⋆
B \ l⋆nx

16 // Add a new set in B(Sz)
17 if E⋆

B ̸= ∅ then
18 Ez

B = Ez
B \ B⋆

m, E⋆
B = Ez

B

19 B(Sz) = B(Sz) ∪ B⋆
m

20 m = m+ 1, B⋆
m = ∅

21 end

22 end
23 B = B ∪B(Sz)

24 end
25 return B

4.4 Heuristic: CMF

This section outlines a heuristic called Centralized Max-Flow (CMF) to compute

the highest flow rates over |T | time slots. Its basic idea is to iteratively find a path

for each session in order to maximize the flow rate at all sessions. CMF has two

phases, namely Phase-1 and Phase-2. In Phase-1, CMF first finds one or more paths

for each session by using a routing protocol. It then routes each session over the

shortest path first. The goal of Phase-2 is to decide a path for each session in order

to maximize the flow rate of all sessions. In Phase-2, it iteratively uses the next

shortest path to route each session. If the next path has a higher flow rate, CMF

then updates the session’s path. The process ends when CMF is not able to increase
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the flow rate of all sessions.

Algorithm 5 details the steps of CMF. The collection Hs = {Ps
1,P

s
2, . . . ,P

s
Hs}

recordsHs feasible paths for session s, where the setPs
m records all links that support

the m-th path for session s. The collection P = {P1,P2, . . . ,P|F|} represents a set

of links selected by CMF to route each session; e.g., variable Ps equals Ps
m if CMF

uses the m-th path for session s. Referring to lines 2-7, CMF routes each session

over the shortest path. The function Sortpath() is used to sort all feasible paths

of a session in ascending order of their number of hops to the session’s destination.

In line 8, CMF uses LSM(P) to derive a link schedule S⋆ for links in each set Ps

in collection P ; LSM(P) is presented in Section 4.4.1. It then uses LP3(S⋆,P) to

calculate the flow rate of each session in order to maximize the sum of flow rates.

Algorithm 5: CMF.

Input: G(V , E), {H1,H2, . . . ,H|F|}
Output: P, δ

1 // Phase-1
2 for s = 1, . . . , |F| do
3 Hs = Sortpath(Hs)

4 end
5 for s = 1, . . . , |F| do
6 Ps = Ps

1

7 end
8 S⋆ = LSM (P), δ = LP3(S⋆,P)
9 // Phase-2

10 for s = 1, . . . , |FR| do
11 for m = 2, . . . , Hs do
12 Ps = Ps

m

13 S⋆ = LSM (P), δ⋆ = LP3(S⋆,P)
14 if δ⋆ < δ then
15 Ps = Ps

m−1

16 Break

17 end
18 δ = δ⋆

19 end

20 end
21 return P, δ

In Phase-2, CMF greedily determines a path for each session and calculates the

sum of flow rates at both tiers. In lines 10-20, starting from the first session s in
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FR, CMF assigns session s a new path, where it replaces the links in Ps with those

in set Ps
m, meaning CMF routes session s over the m-th path. Note that CMF only

changes the path for the selected session s, meaning the paths for other sessions

are not changed; see line 12. Next, it uses LSM(P) to schedule links on the path

of each session in FR. The function LP3(S⋆,P) is used to calculate the maximum

sum of flow rate over all sessions. After that, CMF checks whether assigning a new

path for session s improves the sum of flow rate at both tiers; see lines 14-17. CMF

terminates after it checks all feasible paths for each session in FR.

The following paragraphs explain LP3(). Its inputs are the link schedule S⋆ and

paths in collection P . It solves a relaxed LP, where it relaxes each binary variable

of type αz
t in formulation (4.17) to be a real number in the range [0,1]. Its objective

is to maximize the sum of flow rates of all sessions in both tiers. Mathematically,

LP3() is defined as

maximize
f st
xy, f̂

st
xy, r

s
i , r̂

s
n, x

z
mt

|FT |∑
s=1

r̂s +

|FR|∑
s=1

rs (4.20a)

subject to

|T |∑
t=1

f st
ij = hsijr

s,∀s ∈ FR,∀lij ∈ ER, (4.20b)

|T |∑
t=1

f st
nx = hsnxr̂

s, ∀s ∈ FT , ∀lnx ∈ EB, (4.20c)

(4.8), (4.12), (4.16). (4.20d)

The new constraint (4.20b) and (4.20c) ensure flow conservation on each inter-router

link and backscattering link. Specifically, the indicator hsij ∈ {0, 1} and hsnx ∈ {0, 1}

equal one if link lij and lnx support the path used to route session s.

4.4.1 Link Scheduling Module (LSM)

The function LSM() aims to find a link schedule that ensures all source nodes are

able to forward data over a given path. The function LSM() has two main steps.

First, it generates a weight-aware link schedule that activates links used by one or
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Algorithm 6: LSM.

Input: P , S
Output: S⋆

1 S⋆ = ∅, [UR, UT ] = UseLink(P), K = 1
2 // Schedule each link once
3 while UR ̸= ∅ do
4 z = Index(S,UR)
5 for k = K, . . . ,K +W(Sz) do
6 yk = z

7 end
8 K = K +W(Sz), UR = UR \ Sz UT = UT \ Ez

B

9 end
10 if UT ̸= ∅ then
11 K = K + 1, yK = |S|
12 end
13 // Repeat link schedule
14 for t = 1 . . . , |T | do
15 k = t mod K
16 if k ̸= 0 then
17 z = yk, S⋆ = S⋆ ∪ Sz

18 else
19 z = |S|, S⋆ = S⋆ ∪ Sz

20 end

21 end
22 return S⋆

more paths at least once. The weight-aware schedule prioritizes links that are used

in more paths as these links must be activated more often. Next, the computed link

schedule then repeats periodically over |T | time slots.

First define the weight of each link. Specifically, the weight of link lij is defined

as the number of paths in collection P that are supported by link lij. Let the weight

of link lij be Wij. Formally, it is calculated as per

Wij =

FR∑
s=1

hsij,∀lij ∈ E . (4.21)

Next, define the weight of transmission set Sz. Formally, it is calculated as per

W (Sz) = max{Wij}lij∈Sz . (4.22)
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Algorithm 6 implements LSM(). It uses the collection of transmission sets S

constructed by ALGO-TSG. The function UseLink() is used to extract all inter-

router links and backscattering links recorded in each set of collection P . These inter-

router links and backscattering links are recorded in set UR and UT , respectively.

Next, in lines 3-12, the function LSM() derives a weight-aware link schedule, which

activates links in UR and UT at least once. Let K denote the schedule length of the

weight-aware link schedule, which is set to one initially. Each slot is indexed by k. In

line 4, the function Index(S,UR) is used to return the index of the transmission set

in collection S that matches the most number of links in set UR. Next, in lines 5-

7, the corresponding transmission set Sz is activated in W(Sz) time slots. This

aims to improve the capacity of bottleneck links. Specifically, the index of active

transmission set in slot k is recorded as yk; see line 6. Next, the function LSM() adds

an additional slot that consists of power links to activate any backscattering links

not enabled by RF links; see lines 10-12. In lines 14-21, the function LSM() repeats

the weight-aware link schedule in all time slots in set T . For instance, the router

transmission set activated in the first time slot is also activated in the (K + 1)-th

time slot.

4.4.2 Discussion

This section concludes with some remarks on the implementation of CMF. Recall

that CMF computes the following quantities: (i) the path used by each session, (ii)

the amount of data generated by each source, (iii) the amount of traffic routed over

each RF/backscattering link, (iv) a schedule that includes the transmission time of

RF/backscattering links. Moreover, ALGO-TSG has computed the corresponding

transmit power of routers and the backscattering coefficient of tags. In practice,

these quantities can be programmed into routers and tags; e.g., routers can be

configured to transmit at the computed power and at their assigned transmission

time. Also, note that CMF can be run by a controller/gateway in software-defined
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wireless networks [189]. Specifically, the controller first runs CMF to compute the

said quantities, then configures each router/backscatter accordingly. For example,

it can install rules at routers to ensure sessions are routed on a computed path.

4.5 Analysis

This section presents (i) the total number of decision variables and constraints of

MILP (4.17), (ii) the number of times ALGO-TSG calls MILP (4.18) and LP (4.19),

which affects the computation time of ALGO-TSG, (iii), the total number of deci-

sion variables and constraints in LP (4.20), which affects the computation time of

heuristic CMF, and (iv) the run-time complexity of heuristic CMF.

Proposition 6. MILP (4.17) has |S||T |(M z + 1)+|F|+|T |(|ER||FR| + |EB||FT |)

decision variables and |FR||VR|+|FT ||VT |+|T |(|EB|+ |ER|+ |S|+ 1) constraints.

Proof. First consider the number of decision variables in MILP (4.17). The decision

variable αz
t exists for each router transmission set and time slot. This gives |S||T |

decision variables of type αz
t . Each transmission set Sz supports M z backscattering

sets, which gives |S||T |M z decision variables of type xzmt. Next, the number of

decision variable rs and r̂s is equal to the number of sessions, i.e., |FR| and |FT |.

For each inter-router link lij and backscattering link lnx, variable f
st
ij and f̂ st

nx are

used to represent the traffic of session s routed over the link in each time slot t.

Hence, there are |ER||T ||FR| decision variables of type f st
nx and |EB||T ||FR| decision

variables of type f̂ st
nx. In total, there are |S||T |(M z+1)+|F|+|T |(|ER||FR|+|EB||FT |)

decision variables, as claimed.

Next, consider the constraints of MILP (4.17). There is a constraint (4.7) for

each time slot t, and constraint (4.8) for each router transmission set and time slot.

This gives |T |(1 + |S|) constraints of type (4.7) and (4.8) in total. Next, there is

a flow conservation constraint for the source node, destination node and each relay

node of each session. Hence, there are |FR||VR| constraints of type (4.9), (4.10)
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and (4.11), and |FT ||VT | constraints of type (4.13), (4.14) and (4.15) in total. Next,

each inter-router link and backscattering link has a capacity constraint for each time

slot. Hence, there are |ER||T | constraints of type (4.12), and |EB||T | constraints of

type (4.16), respectively. In total, there are |FR||VR|+|FT ||VT |+|T |(|EB| + |ER| +

1 + |S|) constraints for MILP (4.17). This completes the proof.

The next proposition shows the number of decision variables and constraints for

LP (4.20), which is used by CMF to derive the flow rate of each session.

Proposition 7. ALGO-TSG calls MILP (4.18) exactly |ER|(|ER|+ |EP |) times and

LP (4.19) |S| |EB |(1+|EB |)
2

times in the worst case.

Proof. Referring to Algorithm 2, in Phase-1, ALGO-TSG calls MILP (4.18) for

each transmission set and each inter-router links. In Phase-2, ALGO-TSG calls

MILP (4.18) for each transmission set and each power link. As there are |ER|

router transmission sets generated in Phase-1, ALGO-TSG calls MILP (4.18) exactly

|ER|(|ER|+ |EP |) times in total.

Referring to Algorithm 4, ALGO-TSG calls LP (4.19) for each backscattering set

and each backscattering link. In the worst case, each router transmission set enables

|EB| backscattering links. Note that ALGO-TSG activates at least one backscattering

link in a backscattering set, and only schedules each link once. Hence, for each router

transmission set, ALGO-TSG calls LP (4.19) the following number of times:

|EB|+ (|EB| − 1) + (|EB| − 2) + · · ·+ 1 =
|EB|(1 + |EB|)

2
. (4.23)

As there are |S| router transmission sets, in the worst case, ALGO-TSG calls

LP (4.19) |S| |EB |(1+|EB |)
2

times in total. This completes the proof.

Proposition 8. LP (4.20) has |F|+|T |(|ER||FR| + |EB||FT |) +|S||T |M z decision

variables and |FR||ER|+|FT ||EB|+|T |(|S|+ |ER|+ |EB|) constraints.

Proof. This proof starts with the decision variables of LP (4.20). The number

of variable rs and r̂s is equal to the number of source routers and source nodes,
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respectively. For each time slot and each session, there is a variable f st
ij or f st

nx for

an inter-router link or a backscattering link, and to indicate the active time of each

backscattering set. Consequently, there are |F|+|T |(|ER||FR|+|EB||FT |) +|S||T |M z

decision variables of LP (4.20) in total, as claimed.

As for the number of constraints in LP (4.20), there are |FR||ER| constraints

of type (4.20b), and |FT ||EB| constraints of type (4.20c), respectively. In addition,

there are |T ||S| constraints of type (4.8). Next, there are |ER||T | constraints of

type (4.12), and |EB||T | constraints of type (4.16), respectively.

In total, there are |FR||ER|+|FT ||EB|+|T |(|S|+|ER|+|EB|) constraints of LP (4.20),

as claimed

The next proposition concerns CMF.

Proposition 9. CMF has a run-time complexity of O((
∑|FR|

s=1 H
s(|ER|3|FR| log(|ER|)+

|T |+ n3/log(n))).

Proof. First consider to compute the time complexity of LSM(). Note that the func-

tion UseLink(P) has a run-time complexity of O(|ER|+ |EB|). In lines 3-9, the func-

tion LSM() iteratively selects a router transmission set with the maximum weight

and decides its active time. First note that Index() has time O(|ER|2 log(|ER|)). In

the worst case, each router transmission set only contains one active link and has the

highest weight W(Sz) = |FR|. This requires complexity O(|ER|3|FR| log(|ER|)) for

lines 3-9. Each line from step 10 to step 12 takes complexity O(1). Next, each line

from step 14 to step 21 has time O(1). This means lines 14-21 has a run-time com-

plexity of O(|T |). Hence, the time complexity of LSM() is O(|ER|3|FR| log(|ER|) +

|T |).

now consider the complexity of CMF. Lines 2-4 take O(|F|Hs log(Hs)) be-

cause SortPath() requires a run-time complexity of O(Hs log(Hs)) for each session

s. Lines 5-7 take O(|F|). Solving LP (4.20) requires time O(n3/log(n)) using

the interior-point method [191]; n is the number of variables. Thus, line 8 takes

O(|ER|3|FR| log(|ER|) + |T | + n3/log(n)). In Phase-2, CMF iteratively updates a
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path used by one session. Lines 11-19 in the worst case repeats Hs − 1 times, and

thus have a complexity of O(Hs(|ER|3|FR| log(|ER|) + |T | + n3/log(n))). As there

are |FR| source routers, lines 10-20 requires O(
∑|FR|

s=1 H
s(|ER|3|FR| log(|ER|) + |T |+

n3/log(n))). The run-time complexity of CMF is thusO((
∑|FR|

s=1 H
s(|ER|3|FR| log(|ER|)+

|T |+ n3/log(n))), as claimed.

4.6 Evaluation

This chapter conducts all experiments in Python 3.8, and solves the proposed MILP

using the commercial solver Gurobi 9.0.1. It considers up to 30 routers, randomly

placed on a 50 × 50 m2 square area. Each router transmits at a frequency of

f1 = 2.4 GHz. It deploys up to 60 tags. Each tag has a transmission range of 0.5

meters [54]. The receiver sensitivity at both tags and routers is set to Ψ = -75 dBm.

The SINR threshold and data rate used by inter-router links are as per the Cisco

data sheet [196]. Further, according to to [197], tags support BPSK, QPSK, and

16-PSK. The background noise level σ is -90 dBm. Table 4.2 summarizes parameter

values.

This chapter compares MILP (4.17) and CMF against Serial Linear Program-

ming Rounding (SLPR) [198]. Briefly, SLPR aims to maximize link throughput. It

solves an LP to determine the most number of links that can co-exist simultaneously.

In addition, SLPR assigns a higher capacity to links with large traffic demand. Note

SLPR does not consider routing. To employ SLPR, Dijkstra’s algorithm is used to

compute the shortest path for each session in FR. After that, SLPR is used to

schedule links on the path from each session.

ALGO-TSG benchmarks against Joint Scheduling and Power Control (JSPC) [199].

First, note that JSPC only schedules inter-router links. Thus, JSPC does not con-

sider backscattering links. Given a set of inter-router links, JSPC aims to schedule

each link at least once. JSPC generates router transmission sets as follows: (i) select

all unscheduled inter-router links into a transmission set, (ii) use an LP to optimize
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the transmit power of links selected in step (i) such that all links are able to co-

exist with one another. If no such transmit power exists, remove the link with the

minimum SINR value. The previous steps are then repeated until there is a feasible

transmit power, (iii) store the resulting transmission set of step (ii) and mark all

links in the said transmission set as scheduled. After that, repeat from step (i) until

all inter-router links have been scheduled into a transmission set.

Note that MILP (4.17) accepts router transmission sets generated by ALGO-

TSG or JSPC to derive a final schedule that maximizes the sum of flow rates at

both tiers. To compare ALGO-TSG and JSPC fairly in the problem of this chapter,

define the following two approaches:

• MILP-TSG. The transmission sets generated by ALGO-TSG are used by

MILP (4.17) to derive a schedule that maximizes the sum of flow rates at

both tiers. Specifically, MILP-TSG decides (i) the active time of each router

transmission set and backscattering set, and (ii) the traffic over each inter-

router link and each backscattering link.

• MILP-JSPC. MILP (4.17) accepts as input the router transmission sets gen-

erated by JSPC. It derives a schedule that maximizes the sum of flow rates at

Tier-1 by determining (i) the active time of each router transmission set, and

(ii) the traffic on each inter-router link.

Given the above schemes, Figure 3.3 summarizes how these schemes link together

to jointly optimize link schedule transmit power control, backscattering coefficient

control, and routing in a two-tier IoT network for data collection. The major differ-

ence lies in how they construct transmission sets, how they optimize the transmit

power of routers, how they select paths for packet delivery, and whether they apply

backscattering.

This set of simulations studies MILP-TSG, MILP-JSPC, CMF, and SLPR with

(i) a different number of routers |VR|, (ii) a different number of flows |FR| and |FT |,

(iii) maximum transmit power at routers Pmax, and (iv) different SINR thresholds γ
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Goal: 
Data collection in a 
two-tier IoT 
network with ambient 
backscattering tags

Tier 1:
Maximize the capacity
of a wireless backhaul 

Tier 2:
Maximize the number of 
active backscatter tags 

Component 1:
RF-link scheduling algorithms

Component 2:
Router transmit power control 

Component 5:
Routing schemes

MILP

CMF

Component 3:
Backscattering link scheduling 

Component 4:
Backscatter coefficient control 
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MILP+BSG

CMF+RTSG

CMF+BSG

SLPR

SLPR

MILP+JSPC

Figure 4.3: Approaches to maximize the sum flow rates in a two-tier data collection
IoT network.

and θ. Table 4.2 lists necessary parameter values. Each experiment is run 50 times;

each run has random source and destination routers and tags.

Table 4.2: Parameter values.

Parameter Value(s) Parameter Value(s)

|VR| 20 to 30 |VT | 30 to 60
|FR| 5 to 10 |FT | 5 to 10
L 50× 50 m2 |T | 30
Rx 10 m Rn 0.5 m
α 20 dB β 2
d0 1 m Pmax 1-5 watts
λ 0.125 m σ -90 dBm
γ 5 to 13 dB θ 3 to 15 dB
Ψ -75 dBm τ 1 sec

4.6.1 Optimality gap

This section aims to evaluate the optimality gap between the proposed algorithms,

i.e., Algo-TSG and CMF, to the optimal solution of problem (4.17) computed by

exhausted search. As in Section 3.6.2, exhaustive search only applies to small-

scale networks. This section considers small-scale networks with that consist of ten
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backscatter tags and at most ten routers. There are two data flows between routers,

and two data flows routed over tags; i.e., |FR| = 2 and |FT | = 2. Referring to

Figure 4.4, observe that the optimality gap between the optimal solution and the

proposed solutions grows with network scales; the gap between the optimal solution

and MILP-TSG grows from 0.01 to 0.15. This is because Algo-TSG is only capable of

computing a limited number of transmission sets, i.e.,|ER|+1 transmission sets and

|EB| backscattering sets; see Section 4.3. This means the number of transmission sets

computed by Algo-TSG increases linearly with network scale. On the other hand,

the number of all possible transmission sets grows exponentially. Consequently, the

gap between the number of available transmission sets computed by Algo-TSG and

the true number of transmission sets results in the gap between the MILP-TSG and

CMF and the optimal solution.
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Figure 4.4: The optimality gap between MILP-TSG, CMF and the optimal solution.
The reason for this gap is the proposed link schedulers only use a portion number
of feasible transmission sets.

4.6.2 Router density

This section increases the number of routers |VR| from 20 to 30. The number of tags

is set to |VT | = 60. The SINR threshold for all links is γ = 5 = θ = 5 dB. There are
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five source routers and five source tags; i.e., |FR| = 5 and |FT | = 5.

Referring to Figure 4.5, the sum of flow rates of MILP-TSG, MILP-JSPC, CMF,

and SLPR increases with more routers. This is because there are more links, which

helps avoid bottleneck links. Moreover, for MILP-TSG and CMF, the number of

tags that are able to backscatter increases when there are more routers. Hence,

there are more source tags that are able to forward their data to their corresponding

destination, leading to source tags with a higher flow rate.

As shown in Figure 4.5, for MILP-TSG, its sum of flow rates is on average 22.81%

higher than that of MILP-JSPC. This is reasonable as MILP-JSPC does not support

backscattering communications. As there are more backscattering communications

with an increasing number of routers, the gap between MILP-TSG and MILP-JSPC

gradually becomes larger. In addition, JSPC only schedules each link once, meaning

it has a small number of transmission sets. As a result, fewer routers transmit

simultaneously when they use JSPC. Moreover, MILP-TSG outperforms CMF. This

is because MILP-TSG avoids routing sessions using a long path. Note that CMF

considers routing sessions over long paths. As a result, more links and transmission

sets are activated, meaning the active time and capacity of each link is reduced.

Consequently, the sum of flow rates decreases.

4.6.3 SINR thresholds

This section sets the number of routers and tags to |VR| = 20 and |VT | = 60,

respectively. The number of source routers and source tags are set to |FR| = 5 and

|FT | = 10, respectively. First, this set of experiments studies how different SINR

thresholds at routers affect network throughput. The SINR threshold for tags is

fixed at θ = 5 dB. Referring to Figure 4.6, the sum of flow rates gradually increases

as the SINR threshold γ increases from 5 to 13 dB. This is because when the SINR

threshold increases, each link acquires a higher transmission rate, i.e., from 6 to 24

Mb/s. The sum of flow rates of MILP-TSG increases slower after γ = 7 dB. This
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Figure 4.5: Comparison of the maximum network throughput achieved by MILP-
TSG, CMF, MILP-JSPC, and SLPR with varying number of routers. The network
throughput of MILP-TSG is on average 12.43%, 22.81%, and 92.45% higher than the
throughput of CMF, MILP-JSPC and SLPR, respectively. This is because with more
routers, there are correspondingly more backscattering links in router transmission
sets, which lead to higher capacity.

is because there are fewer routers that are able to transmit simultaneously, which

results in fewer links that have a non-zero capacity. Consequently, fewer source

routers are able to forward data to their destination.

Referring to Figure 4.6, the gap between MILP-TSG and CMF becomes larger

with increasing γ value. This is because CMF aims to activate all source routers.

However, MILP-TSG only considers routing sessions over links with a high capacity.

As each active link has a low capacity when using CMF, the gap between MILP-TSG

and CMF becomes larger as the SINR threshold γ increases. Moreover, the sum of

flow rates of MILP-JSPC is higher than CMF after γ = 7 dB. This is because the

capacity of inter-router links is much higher than that of backscattering links after

γ = 7 dB, which is 12 Mb/s and 1.33 Mb/s, respectively. However, CMF regularly

activates power links and route sessions using a long path, which reduces the sum

of flow rates of source routers.

Next, this set of experiments studies network throughput when tags have a high
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Figure 4.6: Impact of SINR threshold γ on the maximum network throughput when
θ = 5 dB. MILP-JSPC outperforms CMF when γ = 13 dB. This is because MILP-
JSPC achieves a higher capacity for active inter-router links.

data rate of 5 Mb/s. To this end, the SINR threshold for tags is set to θ = 15

dB. Referring to Figure 4.7, the gap between MILP-TSG and MILP-JSPC becomes

larger as compared to when θ is 5 dB. This is because tags have a high transmission

rate of 5 Mbps when θ is 15 dB. Next, the sum of flow rates of CMF and MILP-

TSG only increases slightly when γ rises from 5 to 6 dB. This is because increasing

the SINR threshold γ results in a smaller number of backscattering links that are

powered by each router transmission set. Consequently, the sum of source rates

at tags reduces. Inter-router links have a higher capacity when γ increases. This

indicates a trade-off between the source rate at routers and tags when setting the

SINR threshold γ and θ. Moreover, the gap between MILP-TSG and CMF increases

from 14.31% to 20.13% as the SINR threshold γ increases from 5 to 13 dB. This

is because CMF only activates power links for a short time as compared to MILP-

TSG. As a result, CMF results in source tags having a lower flow rate as compared

to MILP-TSG. On the other hand, the gap between CMF when θ = 5 dB and

CMF when θ = 15 dB becomes smaller as γ increases. This is because the number

of active backscattering links in each time slot is inversely proportional to SINR
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threshold γ.
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Figure 4.7: Impact of SINR threshold γ on the maximum network throughput when
θ = 15 dB. The network throughput of MILP-TSG is on average 18.51% higher than
the throughput of CMF. This is because MILP-TSG uses a small number of power
links to power tags.

4.6.4 Number of sources

This section now investigates how the number of source routers and tags impacts

the sum of flow rates. Note that the total number of routers and tags are fixed, i.e.,

|VR| = 20 and |VT | = 60. These set of experiments set the SINR threshold γ and θ

to 5 dB.

Number of source routers

This section first studies how the number of sessions routed over inter-router links

affects the sum of flow rates. To this end, these set of experiments consider |FR| ∈

{5, 6, 7, 8, 9, 10} and |FT | = 10. As per Figure 4.8, the sum of flow rates increases

when |FR| rises from five to ten. When there are more source routers, the probability

of including a session with a short path is higher. MILP-TSG and MILP-JSPC are

able to find a link schedule that often activates links used by shorter paths. In
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addition, MILP-TSG places traffic over inter-router links that power more tags,

meaning the sum of source rates at tags increases. On the other hand, we observe

that the sum of flow rates of CMF and SLPR decreases when |FR| increases from

five to ten. This is because the schedule computed by CMF and SLPR activates

links over long paths. This means CMF computes a longer schedule containing more

router transmission sets. Note that CMF outperforms SLPR. This is reasonable as

SLPR does not have backscattering communications. Moreover, CMF, with the help

of the Dijkstra algorithm, is able to decide a path for each session that leads to the

maximum sum of flow rates at routers. In addition, the schedule computed by CMF

ensures links in selected paths to have a higher capacity. This helps improve the

flow rate at each source router.
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Figure 4.8: The impact on network throughput with a varying number of source
routers. The network throughput of MILP-TSG is on average 39.53% higher as
compared to CMF. This is because CMF uses more inter-router links and router
transmission sets to route sessions with a long path.

Number of source tags

This section considers the following number of source tags: |FT | ∈ {5, 6, 7, 8, 9, 10}.

The number of source routers is set to |FR| = 5. In Figure 4.9, the sum of flow rates

increases when |FT | increases from five to ten. For MILP-TSG and CMF, this is
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reasonable as more source tags are able to forward their data to their destination.

The sum of flow rates of MILP-TSG is on average 16.93% higher than that of CMF.

This is because MILP-TSG is able to use router transmission sets that lead to more

tags performing backscattering communications. Note that the sum of flow rates of

MILP-JSPC and SLPR does not vary with an increasing number of tags. This is

because they do not support backscattering communications. As a result, the gap

between MILP-JSPC and MILP-TSG becomes larger as there are more source tags.

We see the same trend for CMF and SLPR.
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Figure 4.9: The maximum network throughput with the number of source tags.
MILP-TSG has on average 16.93% higher throughput as compared to CMF; i.e.,
MILP-TSG is able to power more tags without using a large number of inter-router
links. The number of tags does not affect the throughput of MILP-JSPC and SLPR

4.6.5 Maximum transmit power

In the following set of simulations, the maximum transmit power of routers ranges

from 1 to 5 Watts. Referring to Eq. (4.3) and (4.4), a high transmit power en-

ables more backscattering links. Referring to Figure 4.10, the sum of flow rates

of MILP-TSG and CMF increases with the maximum transmit power at routers.

Specifically, the sum of flow rates of MILP-TSG increases from 5.21 to 6.49 Mb/s,
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whereby the sum of flow rates of CMF increases from 4.55 to 5.25 Mb/s, respectively.

For MILP-TSG and CMF, more tags are able to backscatter when routers have a

higher transmit power. This reduces the probability of only using power links to

support backscattering communications, which improves the source rate at routers.

In addition, more source tags are able to forward data when there are more backscat-

tering links. As a result, the rate at source tags also increases when routers use a

higher transmit power. We observe that the maximum transmit power of routers

does not affect the throughput of MILP-JSPC. This is because JSPC only schedules

each inter-router link once. As a result, increasing the maximum transmit power of

routers does not affect the number of links in a transmission set. The throughput

of SLPR increases from 2.01 to 2.12 Mb/s. This is because SLPR allows more links

to co-exist when Pmax increases.
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Figure 4.10: A comparison of MILP-TSG, CMF, MILP-JSPC, and SLPR under
varying maximum transmit power at routers. MILP-TSG has on average 15.61%
higher throughput than CMF. This shows that a high transmit power helps increase
coverage. The maximum transmit power at routers has negligible impact on the
throughput of MILP-JSPC and SLPR.
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4.7 Conclusion

This chapter considers a novel backscatter-assisted two-tier wireless backhaul net-

work where tags communicate via passive backscattering and routers communicate

via active RF transmissions. It formulates a MILP that is used to jointly optimize

the active time of RF links and backscattering links, and traffic over links in order

to maximize the sum flow rates of source nodes. Further, this chapter outlines a

heuristic called ALGO-TSG to generate transmission sets for routers and tags. In

addition, this chapter outlines a heuristic called CMF to jointly decide the path

used for each session and a transmission schedule. The simulation results show that

network throughput can be increased by using a backscatter-aided link scheduler.

The work in this chapter assumes perfect CSI. However, in practice, devices

may not be able to afford the energy cost of estimating and transmitting CSI to

routers. To this end, the next chapter considers a problem whereby a power beacon

or charger only has imperfect CSI and does not know the energy level of devices.
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Chapter 5
Data collection in a RF-charging network

with imperfect CSI

This chapter considers data collection in an RF-charging network with imperfect

CSI. It considers a dedicated power beacon that delivers energy to devices under

imperfect CSI. These devices are responsible for relaying a sample from a source

to a sink. The goal is to minimize the energy consumption of the power beacon

and ensure the sample arrives at the sink by a deadline with a probability level.

The problem at hand is to optimize the charging policy for the power beacon to

cope with the said probabilistic requirement. To this end, this chapter contains a

chance-constrained program that can be used to determine the optimal charging

policy of a power beacon. In addition, it outlines two algorithms named S-POPA

and BO-POPA to approximate the optimal solution to the problem.

To illustrate the said research problem and corresponding challenges, consider

sample delivery in the RF-charging network shown in Figure 5.1. Source S transmits

a sample to the sink over multiple hops. There are also two relay devices, namely

N1 and N2. All devices harvest RF energy from a power beacon (PB) that uses a

switched-beam antenna. Assume the sample must arrive by ∆ = 4 frames. Con-

sider two charging policies: the PB transmits with maximum or minimum transmit
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power. In both strategies, the PB allocates its transmit power uniformly over all

its antennas. Moreover, due to time-varying channel gains, devices require different

transmit power to forward a sample in each frame. Figure 5.1 shows the cumulative

distribution function (CDF) of sample arrival times. We see that the probability

of a sample arriving before the end of frame t4 is only 30% when the PB uses the

minimum transmit power. On the other hand, this probability is approximately

90% when the PB transmits with the maximum power. Hence, there is a trade-off

between the energy consumption of the PB and the sample arrival time. A key chal-

lenge is that the PB must determine a transmit power over random channel power

gains and non-causal channel state information (CSI) and energy level information

at devices. Specifically, the PB does not know the channel gains to each device, and

also the channel gains between devices.
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Figure 5.1: An example wireless powered network with a PB. The CDF of sample
arrival times (in frames) when the PB uses the maximum and minimum transmit
power are denoted by a red and blue curve, respectively. A sample from source S
must arrive at the Sink within ∆ = 4 frames with probability (1 − ϵ). The value
of ϵ is 0.1 and 0.7 when the PB uses the maximum and minimum transmit power,
respectively.

The aim of this chapter is to design solutions that minimize the total transmit
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power of PB, and ensure samples arrive at a sink within ∆ frames with probability

(1− ϵ); the term ϵ is the probability that a sample fails to reach the sink within ∆

frames. Ideally, if the PB is aware of channel gain conditions and the energy level

of devices, it will be able to optimize its transmit power accordingly. In contrast,

this chapter considers the challenging case where the PB does not have the said

information. This assumption is made for practical reason as it is expensive to

collect CSI from devices.

Sections 5.1 and 5.2 respectively present the system and problem. Section 5.3

presents an algorithm to solve the formulated chance-constrained stochastic pro-

gram. Section 5.4 and Section 5.5 present S-POPA and BO-POPA, respectively.

Section 5.6 presents evaluation methodology and results. Finally, Section 5.7 con-

cludes this chapter.

5.1 Preliminaries

5.1.1 Network model

This chapter studies a wireless-powered network with a sink/gateway o and source

device s. The source generates a sample and sends it to the sink via multi-hop

communications over a fixed path. Let set V = {n1, . . . , n|V|} denote a set of relay

devices on the path; each element is indexed by i according to their hop number

from source s towards sink o. There is a PB, denoted as m, that charges all source

and relay devices. In addition, the PB uses switched-beam antennas, where there

are a set of K antennas; each single-lobe of a PB is indexed by k. The PB has no

energy constraint.

Time is discrete. Define T = {1, . . . , T} as a set of frames; each frame t has

duration τ . This chapter assumes a harvest-then-transmit protocol [200] for devices.

The structure of a frame is shown in Figure 5.2. Specifically, PB m first charges
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source device s and relays for duration τC . This is followed by a set of |V|+ 1 data

slots that are assigned to a distinct device on the path. This means if all devices on

the path have sufficient energy, a sample will arrive at the end of a frame. For ease

of exposition, assume τC = τD = 1 second. This allows the terms power and energy

to be used interchangeably.

...
data

|V|s n1 |V|
...

frame

charge
τDτC

n

Figure 5.2: Frame structure. An energy slot and multiple data slots are denoted as
green and yellow boxes, respectively.

This chapter assumes block Rayleigh channel fading, where channel power gains

vary independently from frame to frame but remain constant in each frame. Let gtkmi

denote the channel power gain between antenna k of PB m and receiver i in frame

t, respectively. Formally, it is

gtkmi = χα

(
dmi

d0

)β

,∀k ∈ K,∀t ∈ T . (5.1)

The Euclidean distance between PB m and receiver i is dmi, χ is the Exponential

distributed random variable with unit mean. The path loss at reference distance

d0 = 1 meter is α, and the path loss exponent is β. In addition, let gt
mi = {gtkmi}k∈K

denote a vector of channel power gains between receiver i and antennas of PB m

in frame t. Define vector g = {gt
mi}, whereby ∀i ∈ V ∪ s,∀t ∈ T , as a collection of

channel power gains from PB m to all devices over T frames.

This chapter assumes block fading Rayleigh channels. Let ĝtij denote the channel

power gain between device-i and device-j in frame t. Similarly, let the vector ĝ =

{ĝtij} denote to the channel gains between all devices including source s and sink o

across T frames, whereby ∀i ∈ V ∪ s,∀j ∈ V ∪ o,∀t ∈ T .
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Table 5.1: A summary of notations

Notation Description

V A set of relays
T A set of frames
K A set of antennas on the PB
H A set of energy conversion efficiencies
P A collection of switched-beam patterns
δ SNR threshold for transmission
ρti The required transmit power for

device i in frame t
ati Whether device i transmit in frame t
λo The sample arrival time
pzmk The transmit power over antenna k in the

z-th switched-beam pattern
wt

mz The switched-beam pattern for frame t
π A vector of wt

mz for all frame t
ξ A vector of channel power gains for

all devices and all frames
ctmi A vector of channel coefficient

between PB m and device i in frame t
eti The received power for device i in frame t
bti The energy level for device i in frame t
Bmax The battery capacity of devices
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5.1.2 Transmission model

A transmitter sends a sample to a receiver only if the Signal-to-Noise Ratio (SNR) at

the receiver exceeds a threshold δ. Hence, in each frame t, a transmitter i transmits

to receiver j when the SNR satisfies

ptiĝ
t
ij

N0

≥ δ, (5.2)

where N0 is the ambient noise power level and pti is the transmit power of device-i

in frame t. In practice, the value of δ corresponds to a desired data rate, denoted

as C(δ) in bps.

Let S denote the sample size in bits. In addition, define δmin as the minimum

SNR threshold that satisfies C(δmin)τD ≥ S. Let ρti represent the required transmit

power to send a sample in frame t, whereby each ρti is calculated as per ρti =
δminN0

ĝtij
.

Let vector ρ = {ρ1s, ρ11 . . . ρT|V|} represent the required transmit power of source s and

all relay devices over T frames. Note this chapter does not consider circuit power

as it is a constant, meaning it only scales simulation results and does not change its

findings.

Source s only generates one sample over T frames, whereby the sample is for-

warded to sink o by all relay devices in set V . Each relay device ni is able to transmit

in frame t only if it has received the sample from its neighbor ni−1. This means the

sample is forwarded hop-by-hop on the path. Let the binary variable ati ∈ {0, 1}

equal one when the source or relay device-i transmits a sample in frame t. Mathe-

matically, there exists the following so-called flow conservation constraint for each

relay device in set V :

ati ≤
t∑

z=1

azi−1,∀i ∈ V ,∀t ∈ T , (5.3)

where constraint (5.3) ensures that relay ni only transmits after the transmission of

relay ni−1. Briefly, if relay ni−1 does not transmit within t frames, the right-hand

side of Eq. (5.3) is zero. This in turn prevents relay ni from any transmission in
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frame t, i.e., the term ati is forced to zero for t, t+1, . . .. Recall that the relays in set

V are sorted according to their hop number from the source towards the sink; see

Figure 5.2. This also means relay n|V| is only able to transmit a sample in frame t if

the sample has been transmitted by each device i ∈ {s, n1, . . . , n|V|−1} in t frames.

Next, the source or each relay device only transmits at most once across T frames

as there is only one sample generated at source s. Mathematically, each relay must

satisfy
T∑
t=1

ati ≤ 1, ∀i ∈ V ∪ s. (5.4)

Let the binary variable uto ∈ {0, 1} equal one if the sample does not arrive at

sink o in frame t. This means each uto ∈ {0, 1} is set to zero only if the source and

all relays have transmitted the sample within frames 1, . . . , t. Specifically, sink o

receives a sample when relay n|V| forwards a sample. This means the value of each

uto depends on the transmission of relay n|V| in frame t. Mathematically, variable uto

is calculated as per

uto = 1−
t∑

z=1

az|V|,∀t ∈ T . (5.5)

According to constraint (5.3), any device that fails to transmit a sample within t

frames will result in the term
∑t

z=1 a
z
|V| being set to zero. This in turn sets each uto

to one as per Eq. (5.5).

Next, the sample arrival time λo is calculated as per

λo =
T∑
t=1

uto + 1. (5.6)

In other words, the sample arrival time is equal to the sum of each variable uto

across T frames plus one. As an example, if the sample arrives at the sink in

frame-2, meaning the term u1o is equal to one and each term in [u2o, . . . , u
T
o ] is zero.

Consequently, the sample arrival time is calculated as per
∑T

t=1 u
t
o + 1 = 1+ 1 = 2.
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5.1.3 Switched-Beam Antennas

The PB adopts switched-beam antennas as doing so obviates the need to collect

CSI from devices and to ensure a well-conditioned channel gain matrix. Specifically,

the PB has a set of K antennas that it uses to create switched-beam patterns. The

PB m has |K| predefined single-lobe beams; each single-lobe beam has a coverage of

360/|K| degree. Advantageously, the PB is capable of generating different switched-

beam patterns by weighting single-lobe beams. Define the maximum transmit power

at the PB as Pmax. Following [201], let P = {p1, . . . ,pZ} denote a collection of Z

available switched-beam patterns; each element is indexed by z and represents a

vector of weights of |K| beams. In addition, let pzk represent the weight allocated to

beam k for pattern pz. For each pattern pz in collection P , the weight allocated to

|K| beams must satisfy
|K|∑
k=1

pzmk ≤ Pmax. (5.7)

Define binary variable wt
mz ∈ {0, 1} to equal one when PB m uses beam pattern

pz in frame t. Mathematically, there exists the following constraint to select a

beamforming pattern for PB m in each frame t:

Z∑
z=1

wt
mz ≤ 1, ∀t ∈ T . (5.8)

5.1.4 RF Energy-harvesting

The source s and relay n are equipped with a single antenna. The received power

at devices depends on the channel power gains and switched-beam patterns at the

PB [201]. Specifically, define the received power coefficient ctmki at device-i when PB

m uses the single-lobe beam k in frame t. This coefficient corresponds to the case

when PB m uses single-lobe beam k with transmit power Pmax. Next, let vector

ctmi = {ctmki}k∈K denote a vector of the said received power coefficients between

device-i and PB m in frame t. Further, let vector c = {c1ms, . . . , c
T
m|V|} be the
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received power coefficients of all devices over T frames. Note that the received

power coefficients of devices are unknown to the PB. Let the variable eti denote

the total received power at device-i from the PB in frame t. Mathematically, the

received power at device-i in each frame t is calculated as per

eti =
Z∑

z=1

pT
zw

t
mzc

t
mi +N0, ∀i ∈ V , ∀t ∈ T , (5.9)

where the symbol T denotes the transpose of a vector, N0 is the random circuit noise

power with zero-mean.

This chapter considers a practical energy-harvesting model with non-linear en-

ergy conversion rates [192]. To be specific, the energy conversion rate is modeled as

a function of incident power, where the function is derived from an actual datasheet

of energy conversion efficiency via curve fitting [35]. Let ζ() be the said function

that takes each incident power eti as input and returns the energy conversion rate

accordingly. In addition, let bti denote the battery level of device-i at the end of

each frame t. Mathematically, the energy evolution of each device in each frame is

calculated as per

bti = bt−1
i + ζ(eti)τC − atiρ

t
iτD,∀i ∈ V ,∀t ∈ T . (5.10)

In other words, the energy level of device-i at the end of frame t is equal to the

energy level at the end of frame t− 1 plus the energy collected in frame t minus the

energy consumed by its transmission.

Each device has a battery capacity of Bmax to store its harvested energy. Energy

arrival at a device-i may exceed its available battery storage in frame t as per

Eq. (5.10), i.e., when ζ(eti)τD > Bmax − bt−1
i . To this end, an energy consumption

constraint for the source and each device-i in set V is defined as per

T∑
t=1

atiρ
t
iτD ≤ Bmax, ∀i ∈ V ∪ s, (5.11)
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where constraint (5.11) specifies that each device-i is only able to use the amount

of energy stored in its battery. This also means each device consumes a maximum

Bmax amount of energy to transmit a sample in one of the T frames.

5.2 Problem Definition

The aim of this chapter is to minimize the total transmit power of PB m, while

ensuring that the sample from source s arrives at sink o within ∆ frames with a

probability of at least (1 − ϵ). The problem at hand has the following decision

variables: (i) a beamforming pattern used by PB m in each frame t, i.e., wt
mz, and

(ii) whether each device i harvests sufficient energy in each frame t, and whether

the device transmits in each frame t, i.e., each ati.

The next discussion focuses on linearization. The first is the non-linear energy

conversion rate function ζ(). This chapter adopts the piece-wise linear approxima-

tion method in [202, 203]. Specifically, the possible received power is divided into

|H| non-overlapping intervals; each interval h has a corresponding energy conversion

efficiency ηh. Let the range of interval h be [Lh, Hh), where Lh and Hh is respec-

tively the lower and upper bound of interval h. In addition, define binary variable

I tih ∈ {0, 1}, which is set to one when the received power eti falls into interval h.

Next, Eq. (5.10) and Eq. (5.11) can be rewritten as follows:

bti = bt−1
i + τC

∑
h∈H

etiI
t
ihηh − atiρ

t
iτD,∀i ∈ V ,∀t ∈ T , (5.12)

I tihLh ≤ etiI
t
ih ≤ I tihHh,∀i ∈ V ,∀t ∈ T ,∀h ∈ H, (5.13)

∑
h∈H

I tih = 1,∀i ∈ V ,∀t ∈ T . (5.14)

Constraint (5.12) specifies an energy conversion efficiency corresponding to a given

received power level. Specifically, an energy conversion efficiency ηh is adopted when

the received power eti falls in interval h. Constraint (5.13) sets each I tih to one if the
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received power eti is within the range [Lh, Hh). Otherwise, each I tih is forced to zero.

Constraint (5.14) ensures a given received power eti only corresponds to one energy

conversion rate and one interval.

Next, constraints (5.12)-(5.13) are to be linearized due to the product of two

decision variables, i.e., eti and I
t
ih. To this end, replace etiI

t
ih with a variable X t

ih, and

rewrite them as

bti = bt−1 + τC
∑
h∈H

X t
ihηh − atiρ

t
iτD,∀i ∈ V ,∀t ∈ T , (5.15)

I tihLh ≤ X t
ih ≤ I tihHh,∀i ∈ V ,∀t ∈ T ,∀h ∈ H, (5.16)

X t
ih ≤ I tihΦ, ∀i ∈ V , ∀t ∈ T ,∀h ∈ H, (5.17)

0 ≤ X t
ih ≤ eti, ∀i ∈ V , ∀t ∈ T ,∀h ∈ H, (5.18)

X t ≥ eti − (1− I tih)Φ,∀i ∈ V ,∀t ∈ T ,∀h ∈ H. (5.19)

Constraint (5.15) is the linearized energy evolution of each device in each frame.

Constraint (5.16) specifies an interval for a given received power level eti. Next,

when the value of I tih is one, the value of X t
ih is forced to the value of eti as per

constraint (5.18) and (5.19). This means device-i adopts the energy conversion

efficiency ηh accordingly. Otherwise, variable X t
ih is set to zero by constraint (5.16)

if the value of I tih is zero. The constant Φ is the upper bound of the received power

level eti, which is set to Φ = |M|Pmax.

Next, is the definition of the probabilistic function G(π, ξ). Let the random

vector ξ = [c,ρ] correspond to (i) the received power coefficient between PB m and

energy-harvesting devices across T frames, and (ii) the required transmit power for

source and relays to send a sample across T frames. Second, the decision variable

π corresponds to a set of switched-beam patterns used by PB m in each frame.

In addition, each device needs a transmission schedule based on its energy level.
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Formally, the function G(π, ξ) is represented as

G(π, ξ) = λo −∆. (5.20)

Specifically, the value of G(π, ξ) is less than or equal to zero only if solution π

ensures the sample arrival time λo is no larger than ∆ for all realizations of ξ.

Otherwise, the value of function G(π, ξ) is larger than zero, meaning the source or

relays meet an energy shortfall over random channel gains given solution π. Next,

the probabilistic constraint for the proposed chance-constrained problem is

Pr{G(π, ξ) ≤ 0} ≥ (1− ϵ), (5.21)

where the probability ϵ and threshold ∆ are given. The symbol ϵ is the probability

that a sample fails to arrive sink within ∆ frames. Note that Eq. (5.21) requires the

joint probability distribution of all realizations of the random vector ξ.

Formally, a chance-constrained stochastic model for the proposed problem is

formulated as per

min
wt

mz ,a
t
i

T∑
t=1

|M|∑
m=1

|Z|∑
z=1

|K|∑
k=1

pzmkw
t
mz

s.t. (5.3)− (5.6), (5.7)− (5.11),

(5.12)− (5.19), (5.20)− (5.21).

(5.22)

There are a number of challenges when solving the problem of this chapter. The

first challenge is imperfect CSI and random channel power gains. This means PB m

is not able to decide its transmit power allocation or switched-beam pattern based

on channel power gains and energy level at devices. In addition, the required en-

ergy to transmit a sample also varies with random channel gains in each frame.

Consequently, when PB m randomly transmits in each frame, the source and relay

devices may experience an energy shortfall across T frames. This in turn increases
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sample arrival time. The second challenge is solving chance-constrained stochastic

problem (5.22). It is a challenging problem because (i) checking the feasibility of

a given solution π requires the calculation of a multivariate integral, and (ii) the

chance constraint function G(π, ξ) is usually not convex [204]. In addition, calcu-

lating the optimal solution for the true problem (5.22) needs the actual probability

distribution of random variables. However, the actual probability distribution is

difficult to obtain in practice.

5.3 Sample Average Approximation

This chapter adopts SAA [57] to approximate the optimal solution to the true

problem (5.22) with Monte Carlo sampling. In particular, the actual distribution of

ξ in problem (5.22) is replaced by its empirical distribution [57]. First, consider to

rewrite the probability constraint function (5.21) for a corresponding SAA problem

as follows: q(π) ≤ ϵ, where q(π) = Pr{G(π, ξ) > 0}. This means the probability of

the sample arriving after ∆ frames for all realizations of ξ is at most ϵ for solution

π. Next, let ξ1, . . . , ξN be a set of N i.i.d scenarios or realizations of the random

vector ξ derived from an empirical distribution; each scenario is denoted as ξj. This

means the probability function q(π) with N i.i.d scenarios can be approximated as

per

q̂N(π) =
1

N

N∑
j=1

1(0,∞)(G(π, ξ
j)), (5.23)

where the indicator function 1(0,∞)(G(π, ξ
j)) is equal to one when the probabilistic

function satisfies G(π, ξj) > 0. Otherwise, it returns a value of zero for the input

solution π and scenario ξj.

Next, consider to formulate a mixed integer linear program (MILP) with N i.i.d
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scenarios for the SAA problem:

min
wt

mz, a
jt
i

T∑
t=1

|M|∑
m=1

|Z|∑
z=1

|K|∑
k=1

pzmkw
t
mz (5.24a)

s.t. (5.3)− (5.6), (5.9)− (5.10), (5.14)− (5.20), (5.24b)

N∑
j=1

yj ≤ ϵN, (5.24c)

G(π, ξj) ≤ Φyj, j = 1, . . . , N (5.24d)

Note that constraints (5.24b) exist for each scenario ξj. This means each relay

can have a different activation and energy level in each scenario, which in turn results

in a different sample arrival time in each scenario ξj. To this end, let auxiliary

decision variable ajti indicate the activation of relay i in frame t under channel

conditions given in scenario ξj. Note that there is a set of new variables y1, . . . , yN ,

and new constraints in MILP (5.24). First, the binary variable yj ∈ {0, 1} equals zero

when solution π ensures the sample arrives at sink o within ∆ frames for scenario

ξj. Constraint (5.24c) specifies that the sink o fails to receive a sample within

∆ frames in at most ϵN scenarios, i.e., q̂N(π) ≤ ϵ. Constraint (5.24d) specifies

G(π, ξj) ≤ 0 only if the value of yj is zero. In addition, if the value of yj is non-zero,

constraint (5.24d) is disabled by a big number Φ1, where Φ is set to (T − ∆ + 1),

i.e., the upper bound of function G(π, ξ).

The solution for the SAA problem converges to the optimal solution to the

true problem (5.22) as the value of N approaches infinity [57]. However, notice

that MILP (5.24) becomes computationally intractable with an increasing number

of binary variables, i.e., yj. To this end, consider to use a different probability

level γ to replace ϵ in constraint (5.24c), where γ ≤ ϵ. This helps the solution for

MILP (5.24) to be a feasible point to the true problem (5.22) when there is only

given a small number of scenarios [57], e.g., N ≤ 100.

1This is also known as the big-M method.
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5.3.1 Solution Quality

This chapter adopts the validation procedure in [57] to evaluate a candidate solution

for the SAA problem (5.24) versus the optimal solution of the true problem (5.22).

Specifically, for a given candidate solution π that specifies a switched-beam pattern

schedule of the PB, the validation procedure includes (i) whether π is a feasible

point for the true problem (5.22), and (ii) if π is a feasible point, it next evalu-

ates the optimality gap between the total transmit power of the PB for the SAA

problem (5.24) and the total transmit power of the PB for the true problem (5.22).

The validation procedure starts by validating whether a candidate solution π

is a feasible solution to the true problem (5.22). To this end, it first generates a

large number of N ′ scenarios via Monte Carlo sampling, denoted as ξ1, . . . , ξN
′
.

It then estimates q(π) by computing q̂N ′(π) as per Eq. (5.23) given N ′ scenarios.

Next, it is well known that the Binomial distribution approximates the Normal

distribution for large N ′. This means the validation procedure is able to estimate

q(π) using a Normal distribution with mean q(π) and variance q(π)(1− q(π))/N ′.

Mathematically, the (1− β) confidence upper bound of q(π) estimated by q̂N ′(π) is

Uβ,N ′(π) = q̂N ′(π) + zβ
√
q̂N ′(π)(1− q̂N ′(π))/N ′, (5.25)

where zβ = Φ−1(1− β) is the (1− β)-quantile of the standard Normal distribution;

Φ−1(.) is the inverse CDF of the standard Normal distribution. When the value of

Uβ,N ′(π) is not larger than ϵ, solution π is feasible to the true problem (5.22) with

a confidence level of (1− β).

The method to validate the lower bound of the objective value of the true prob-

lem (5.22) is as follows. First, given the Binomial distribution where the probability

of success is q, then its CDF is calculated as per

B(L; q,N) =
L∑
l=0

(
N

i

)
ql(1− q)N−l, (5.26)
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where Eq. (5.26) represents the cumulative probability of at most L successes in N

trials. By Eq. (5.26), it is able to calculate the probability that the value of function

G(π, ξj) is larger than zero for at most γN times in N scenarios for solution π

accordingly. Mathematically, let θN denote the probability of q̂N(π) ≤ γ, which is

computed as per

θN = Pr{q̂N(π) ≤ γ} = B(γN ; ϵ,N). (5.27)

Next, the validation procedure generates M i.i.d samples via Monte Carlo sam-

pling, where each sample consists of N i.i.d scenarios. Let v̂ = {v̂1, . . . , v̂M} be a set

of M corresponding optimal objective value of SAA problem (5.24). Next, it sorts

all objective values in the set v̂ in ascending order, i.e., v̂1 ≤ v̂2, . . . ,≤ v̂M . Lastly,

in order to obtain the lower bound of the true objective value with a confidence

interval of (1− β), it computes the largest integer L that satisfies

B(L− 1; θN ,M) ≤ β. (5.28)

As per [57], the L-th largest objective value in the sorted set v̂, i.e., v̂L, is a lower

bound of the objective value of the true problem (5.22) with probability at least

(1− β).

5.3.2 Solutions Generation

This section outlines a procedure to generate a feasible solution to the true prob-

lem (5.22). Algorithm 7 starts by setting the failure probability ϵ and γ, and con-

fidence level (1 − β). Next, the algorithm initializes the value of M , N , and N ′,

respectively. In Phase-1, Algorithm 7 computes the (1− β) confidence lower bound

of the objective value of the true problem (5.22). After the value of M , N , ϵ and γ

are given, Algorithm 7 first computes the value of L as per Eq. (5.28). In lines 5-8,

Algorithm 7 solves MILP (5.24)M times, and generates a set of candidate solutions
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{π1, . . . ,πM} and objective values {v̂1, . . . , v̂M}. As aforementioned, Algorithm 7

sorts all objective values in ascending order, and finds the L-th largest objective

value v̂L. In line 9, Algorithm 7 selects the corresponding solution to the objective

value v̂L, and denotes the solution as π⋆.

In Phase-2, Algorithm 7 evaluates whether the selected solution π⋆ from Phase-1

is a feasible point to the true problem (5.22). In lines 13-15, note that the algorithm

only needs to compute the number of times that the value of function G(π⋆, ξj)

is larger than zero. This also means N ′ can be set significantly larger than N as

Phase-2 does not involve solving MILP (5.24) exactly. In lines 16-19, if the selected

solution π⋆ is a feasible point to the true problem (5.22), Algorithm 7 returns π⋆

as an output. Otherwise, it next validates whether the corresponding solution to

the objective value v̂L+1 in the sorted set v̂ is feasible, and repeats lines 11-19. If

all candidate solutions are not a feasible point to the true problem, Algorithm 7

increases the value M and N and decreases the value of γ, and repeats lines 2-19.

Algorithm 7 needs to solve MILP (5.24) a large number of times in order to

approximate the optimal solution to the true problem. To do so, SAA requires a

large number of i.i.d scenarios to guarantee the solution is feasible with confidence

level (1 − β). Unfortunately, MILP (5.24) becomes computationally intractable as

the number of integer decision variables increases with the number of scenarios.

5.4 A sampling method for probabilistic optimal

power allocation

This section outlines a Sampling-based Probabilistic Optimal Power Allocation (S-

POPA) method to approximate the optimal solution to problem (5.22). Briefly,

S-POPA generates a set of candidate solutions, whereby each candidate solution

represents the power allocation used by the PB. In addition, S-POPA assigns each

candidate solution a reward value and a probability of being sampled based on its
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Algorithm 7: Solutions Generation Procedure.

1 Set ϵ, γ, β,M,N,N ′

2 while no solution is feasible do
3 // Phase-1: Generate candidate solutions
4 Compute the value L as per Eq. (5.28)
5 for 1,2,. . . ,M do
6 Solve MILP (5.24)
7 Add the objective value of MILP into set v̂

8 end
9 Sort the objective values in set v̂

10 // Phase-2: Solution feasibility validation
11 for L,. . . ,M do
12 Let the solution of v̂L be π⋆

13 Generate N ′ i.i.d scenarios
14 Compute q̂N ′(π⋆) as per Eq. (5.23)
15 Compute Uβ,N ′(π⋆) as per Eq. (5.25)
16 if Uβ,N ′(π⋆) ≤ ϵ then
17 return π⋆

18 end

19 end
20 Increase M and N , decrease γ

21 end

reward value. Specifically, there is a probability mass function (PMF) over these

candidate solutions. Then in each iteration, using this PMF, S-POPA samples a

candidate solution and determines its quality, i.e., whether the sampled candidate

solution is a feasible point to the true problem with confidence level (1− β). After

that, S-POPA updates the reward value of the sampled solution based on its qual-

ity and the total transmit power of the PB, and updates the PMF. After a given

maximum number of iterations, S-POPA selects the candidate solution that has the

highest reward value and checks whether the selected solution is a feasible point to

the true problem (5.22).

The following paragraphs present the main steps of S-POPA; see Figure 5.3.

It has R sampling rounds, whereby each sampling round consists of E sampling

iterations. First, S-POPA starts each round by randomly generating |A| candidate

solutions. Specifically, let A(r) = {πr
1, . . . ,π

r
|A|} represent the set of candidate

solutions for use in the r-th round; each element is denoted as πr
i . In addition,
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Reach R

Operator for R rounds

Sampling Problem

Sample one candidate solution based on the current PMF 

sampling rounds?

Operator for E sampling iterations

No

Candidate Solution Generation 

Yes

Return the optimal solution 

Output

Evaluate solution Quality

Generate a set of i.i.d scenarios 

No

Yes

Reach E
sampling iterations?

Updating 

Update the reward value as per Eq.(32) 

Update the PMF as per Eq.(29)

Computing reward value

Determine the solution quality as per Eq.(30) 
Compute a new reward value as per Eq.(31)

Figure 5.3: The main procedures of S-POPA.
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let P(πr
i ) denote the total transmit power of the PB for the candidate solution πr

i .

Next, let ω(πr
i ) and Pr(π

r
i ) denote the reward value and the PMF for the candidate

solution πr
i , respectively. In addition, the probability of selecting each candidate

solution πr
i in A(r) is computed via the Softmax function as per

Pr(πr
i ) =

eω(π
r
i )∑|A|

j=1 e
ω(πr

j )
. (5.29)

In other words, for each candidate solution, the probability of being sampled is

proportional to its reward value. In particular, S-POPA assigns each candidate

solution in A(r) with an initial reward value of one. This also means each candidate

solution has an equal probability of 1
|A| initially. Next, in each iteration of the r-th

round, S-POPA carries out the following steps:

(i) S-POPA samples a solution πr
i from the set A(r) according to its probability

Pr(πr
i ).

(ii) In order to validate the quality of the sampled solution πr
i , S-POPA gener-

ates N̂ i.i.d scenarios. Specifically, it computes the number of times that the

probabilistic constraint, i.e., G(πr
i , ξ) ≤ 0, is satisfied over N̂ trials. Let the

said number be L̂. Note that the value of L̂ follows a Binomial distribution.

To this end, S-POPA adopts the Clopper-Pearson method to validate whether

solution πr
i is a feasible point to the true problem with confidence level (1−β).

Let CLB(π
r
i ) denote the said (1−β) confidence Clopper-Pearson interval lower

bound. Mathematically, the value of CLB(π
r
i ) given solution πr

i is calculated

as per
L̂∑
l=0

(
N̂

l

)
(CLB(π

r
i ))

l(1− CLB(π
r
i ))

N̂−l =
(1− β)

2
, (5.30)

(iii) S-POPA computes a reward value for the sampled solution πr
i according to its

quality. First, let v(πr
i ) denote the reward function for solution πr

i . Mathe-
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matically, the reward function is given by

v(πr
i ) = e−P(πr

i )κ(CLB(π
r
i )), (5.31)

where the reward function (5.31) specifies that the computed reward value of

solution πr
i is inversely proportional to the sum of transmit power at the PB.

In addition, κ(CLB(π
r
i )) is a piece-wise function for the value of CLB(π

r
i ). In

particular, S-POPA sets a large value for κ(CLB(π
r
i )) when CLB(π

r
i ) is no less

than (1 − ϵ). Otherwise, it sets the value of κ(CLB(π
r
i )) to be less than one.

This ensures the computed reward value v(πr
i ) is less than the initial reward

value when the sampled solution πr
i is not a feasible point to the true problem.

(iv) The reward value ω(πr
i ) in an iteration is updated as per

ω(πr
i ) = α̂ω′(πr

i ) + (1− α̂)v(πr
i ) (5.32)

where ω′(πr
i ) is the reward value of πr

i in the previous iteration. In addition,

this chapter sets the value of α̂ to equal 0.9 as per [205].

(v) S-POPA updates the PMF over all solutions in the A(r) by using the updated

reward value ω(πr
i ), which is calculated as per Eq. (5.29) accordingly.

After E iterations of the r-th round, S-POPA selects the optimal solution πr
⋆ that

has the largest reward value. Next, S-POPA computes the (1−β) confidence upper

bound for solution πr
⋆ as per Eq. (5.25). If the value of confidence upper bound

Uβ,N ′(πr
⋆) is larger than the value of ϵ, meaning solution πr

⋆ is not feasible to the

true problem with probability (1−β), S-POPA then removes the candidate solution

πr
⋆ by replacing πr

⋆ with πr−1
⋆ . Given πr

⋆ and the value of P(πr
⋆), S-POPA generates

a set of new candidate solutions for use in the (r + 1)-th round. Specifically, the

total transmit power at the PB of each candidate solution sampled in the (r + 1)-

th round must be equal to or smaller than that of the solution πr
⋆. This helps

S-POPA to focus on candidate solutions with low transmit power as the number of
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rounds increases, thereby improving the sampling efficiency. Mathematically, a set

of available candidate solutions sampled in the (r + 1)-th round is given by

A(r + 1) = {πr+1
i |P(πr+1

i ) ≤ P(πr
⋆), 1 ≤ i ≤ |A|}. (5.33)

After R sampling rounds, S-POPA terminates and returns a candidate solution

with the highest reward value and being a feasible point to the true problem (5.22)

as output.

The next proposition states the computational complexity of S-POPA method.

Proposition 10. S-POPA has a run-time complexity of O(R(E(N̂ |V|T + 2|A| +

1) + N̂ |V|T )).

Proof. In the initialization stage of each round, S-POPA creates |A| candidate solu-

tions. This results in a computational complexity of O(|A|). Then for each iteration,

S-POPA samples one candidate solution based on its probability. This results in a

computational complexity of O(|A|). To validate the quality of a sampled solution

in each iteration, S-POPA checks whether each device harvests sufficient energy to

transmit a sample in each frame given each scenario. This gives us a time com-

plexity of O(N̂ |V|T ) as there are N̂ scenarios, |V| devices and T frames. Next,

computing each Eq. (5.30)-(5.32) incurs a computation complexity of O(1). Com-

puting the PMF for |A| candidate solutions results in a computation complexity of

O(|A|). Consequently, the combined computation complexity in each iteration is

O(N̂ |V|T + 2|A|+ 1). At the end of each round, the computation time to compute

the (1 − β) confidence upper bound for a sampled solution is N̂ |V|T . Considering

S-POPA has R rounds and each round has E iterations, the computation complexity

of S-POPA is O(R(E(N̂ |V|T + 2|A|+ 1) + N̂ |V|T )), as claimed.

155



5.5 A Bayesian Optimization algorithm for power

allocation

Bayesian optimization is a well-known method to solve expensive optimization

problems where the objective function is non-convex or cannot be mathematically

defined [206]. Given the reward function (5.31), notice that the solution with the

highest reward value is the optimal solution to the true problem with confidence

level (1 − β). However, sampling all possible power allocations from a continuous

search space is computationally intractable. In addition, the reward function (5.31)

is non-concave. This means computing the global optimal solution of a given reward

function (5.31) analytically is hard.

To this end, this chapter outlines a Bayesian Optimization based Probabilis-

tic Optimal Power Allocation (BO-POPA) algorithm to approximate the optimal

solution to the true problem (5.22). Bayesian optimization is based on Bayesian

Theorem. Specifically, Bayesian optimization allows us to construct a surrogate

model of any reward function via a number of sampling iterations. The surrogate

model approximates a given reward function, and also indicates the uncertainty level

for the prediction value at each possible power allocation. Advantageously, we are

able to compute an approximation of the optimal solution to the true problem by

evaluating the surrogate model.

First, define a new reward objective function f(π) for use by BO-POPA rather

than employing Eq. (5.31). The reward value of a solution depends on the total

transmit power at the PB and its quality, i.e., whether the solution is a feasible

point to the true problem with confidence level (1−β). Mathematically, the reward

function f(π) is given by

f(π) = P(π) + κ′(CLB(π))TPmax, (5.34)

where P(π) denote the total transmit power of the PB for power allocation π over
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T frames, the value of CLB(π) is the (1 − β) Clopper-Pearson confidence interval

lower bound when solution π is sampled as per Eq. (5.30). In addition, the binary

variable κ′(CLB(π)) is equal to zero only when the value of pLB is less than or equal

to the value of ϵ. This means the optimal solution to the objective function f(π)

must be a feasible point to the true problem with confidence level (1 − β). Next,

BO-POPA derives the optimal power allocation π⋆ that satisfies

π⋆ = argmin
π∈Π

f(π) (5.35)

where π⋆ is the optimal power allocation solution, symbol Π is the search space for

all possible power allocations used for the PB over T frames.

The surrogate model of the given objective function f(π) is defined as f̂(π). In

Bayesian optimization, the surrogate model is typically a Gaussian Process (GP)

model [207]. A GP is uniquely defined by a mean function µ(π), and a covariance

kernel function k(πi,πj) that represents the correlation between solution πi and

πj. Typically, assume values on the surrogate model f̂(π) are jointly Gaussian

distributed with zero means. In addition, BO-POPA employs the Marten class

kernel function [206]. Given a set of sampled solutions {π1, . . . ,πM}, BO-POPA is

able to compute a covariance kernel matrix K with a dimension of M ×M ; each

element is the covariance of a pair of sampled solutions. Employing the covariance

kernel matrix K allows BO-POPA to compute the GP posterior distribution of the

surrogate function f̂(π). Specifically, the prediction f̂(π′) at any possible solution

π′ that has not been sampled follows a Gaussian distribution, where its mean µ(π′)

and variance σ2(π′) are respectively calculated as per [207]:

µ(π′) = kTK−1[f(π1), . . . , f(πM)], (5.36)

σ2(π′) = k(π′,π′)− kTK−1k, (5.37)

where k = [k(π′,π1), . . . , k(π
′,πM)] is a vector of covariance terms between the
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new π′ and each sampled solution.

This paragraph now outlines the main steps of BO-POPA; see Algorithm 8. The

BO-POPA algorithm consists of M ′ sampling iterations. Let D denote a set of

sampled data, where each element (πi, f(πi)) is a tuple that represents the sam-

pled solution and its corresponding reward value in the i-th iteration. First, each

iteration i starts by selecting a power allocation πi that maximizes an acquisi-

tion function u(π|D). In practice, there are numerous acquisition functions, where

BO-POPA employs the Expected Improvement (EI) acquisition function outlined

in [208]. Specifically, the EI acquisition function u(π|D) requires the GP poste-

rior distribution computed from a set of observed samples {π1, . . . ,πi−1} and data

{f(π1), . . . , f(πi−1)} in set D. Next, BO-POPA generates a set of N̂ i.i.d scenar-

ios to evaluate the solution quality of the sampled power allocation by computing

its confidence interval lower bound pLB. After that, BO-POPA computes the corre-

sponding objective value f(πi) of solution πi, and adds the observed data (πi, f(πi))

into the set D accordingly. Next, BO-POPA updates the GP model and computes

the GP posterior distribution as per Eq. (5.36) and Eq. (5.37). After M ′ iterations,

BO-POPA fits the surrogate GP model f(π) for a set of observed samples in the set

D. Lastly, it computes an optimal power allocation π⋆ with the minimum prediction

value f̂(π⋆) on the surrogate model f̂(π).

Algorithm 8: BO-POPA.

1 for i = 1, 2, . . . , M ′ do
2 Find a power allocation πi that maximizes the acquisition function u():
3 πi = argmaxπ∈Π u(π|D)

4 Generate N̂ i.i.d scenarios and compute pLB of πi.
5 Compute the objective value f(πi).
6 Add data (πi, f(πi)) into set D
7 Update the GP model f̂(π) upon the observed data set D
8 end
9 Find the optimal solution π⋆ by evaluating GP model:

10 π⋆ = argminπ∈Π f̂(π)
11 return π⋆
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5.5.1 Discussion

Note that the major difference between SAA, S-POPA, and BO-POPA lies in how

they derive a charging policy that approximates the true problem. Specifically,

SAA determines a charging policy by repeatedly solving the MILP with N chance

constraints M times. As solving the MILP is computationally intractable when

the value of N is large, solving SAA can be time consuming and may not apply

to large-scale networks. S-POPA approximates the optimal solution to the true

problem by iteratively sampling possible solutions that have higher reward values,

and it narrows its search region in each round. To this end, a critical issue for S-

POPA is to determine the number of sampling rounds and iterations that ensure the

computed solution meets the chance requirements of the true problem. BO-POPA

constructs a GP model to approximate the true problem (5.22) and updates the

model based on sampled solutions. Advantageously, BO-POPA is able to return an

approximation to the true problem within a limited number of samples. Further,

sampling more solutions helps improve the accuracy of the GP model to the true

problem.

5.6 Evaluation

This chapter conducts all simulations in Python 3.9 and commercial solver Gurobi

9.3 [190]. The source and relays are uniformly deployed within a square area of

10 m × 10 m. Each device has a battery capacity of 200 mJ. The SNR threshold

and data rate of each device is respectively set to 5 dB and 250 kb/s based on the

datasheet of WaspMote [209] and IEEE 802.15.4 standard [210]. The non-linear

energy conversion rates at devices are derived from the datasheet of P2110B RF-

energy harvester [192]; as shown in Table 5.3. The PB has three antennas and a

maximum transmit power of 1 Watt. It is placed at the center of the said square

area. The path-loss at the reference distance of 1 m is set to 20 dB, and the path-

loss exponent β is set to 2.5. The noise power level N0 is set to -90 dBm/Hz.
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Furthermore, the value of sample arrival deadline is equal to the number of frames,

i.e., ∆ = |T |. Table 5.2 lists parameter values adopted in all simulations.

Table 5.2: Parameter values.

Parameter Value(s) Parameter Value(s)

α 20 dB β 2
|V| 1 to 9 ∆ 2 to 10
L 10× 10 m2 S 250 kb
δ 5 dB C(δ) 250 kb/s
Pmax 1 Watt N0 -90 dBm
R 20 to 100 E 200
|A| 100 M ′ 100

N ′ 105 N̂ 200

Table 5.3: Received power and energy conversion rates.

Interval Received power (in mW) η
I6 ≥ 10.0 5%
I5 [5.0, 10.0] 55%
I4 [0.8, 5.0] 60%
I3 [0.6, 0.8] 55%
I2 [0.08, 0.6] 35%
I1 [0.0, 0.08] 5%

5.6.1 Solution quality of SAA method

The first set of simulations evaluates the solution quality of SAA. This section aims

to evaluate how the 95% confidence level upper bound of the computed solution

varies with the number of scenarios. To this end, the number of scenarios in each

sample varies from ten to sixty with an interval of ten in this set of simulations. The

value of ∆ is set to three and there are three hops from the source to the destination.

The failure rate ϵ is 0.2. To apply SAA, this section considers two failure levels,

namely γ = 0.1 and γ = 0.2, to solve MILP (5.24).

Referring to Figure 5.4, the gap between the 95% confidence level upper bound

and failure rate ϵ decreases as the number of scenarios increases. As expected, the

solution quality of SAA improves with more scenarios. In addition, the gap between
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the 95% confidence level upper bound and ϵ decreases when a smaller γ is used by

MILP (5.24). For example, when there are 60 scenarios, the 95% confidence level

upper bound for γ = 0.2 remains higher than ϵ. Hence, the solution for SAA when

using γ = ϵ = 0.2 is not a feasible point to the true problem. Observe that the 95%

confidence level upper bound is 0.195 when γ = 0.1. This indicates that a small γ

helps SAA generate feasible solutions by using a small number of i.i.d scenarios.
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Figure 5.4: Confidence upper bound versus the number of scenarios. The gap be-
tween the 95% confidence level upper bound and ϵ when using γ = 0.1 reduces from
0.51 to 0.19. The gap between the 95% confidence level upper bound and ϵ when
using γ = 0.2 reduces from 0.67 to 0.34. The result shows that the solution quality
improves with more scenarios and a small γ value.

5.6.2 Robustness requirements

Here, this set of simulations investigates how different values of ϵ affect the minimum

total transmit power of the PB. The value of γ is set to half the value of ϵ. This

section fixes the number of devices to three, i.e., the source is connected to the sink

via two hops. The value of ∆ is fixed to five. As for MILP (5.24), the value of M

and N is set to 200 and 100, respectively.
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Referring to Figure 5.5(a), the minimum total transmit power at the PB reduces

with an increasing value of failure rate ϵ. For example, the minimum total transmit

power at the PB reduces from 2.22 to 1.21 Watts. The minimum total transmit

power at the PB reduces from 2.8 to 1.37 Watts and 3.02 to 1.5 Watts for S-POPA

and BO-POPA, respectively. This is because when the value of ϵ increases, the

sample arrival time is allowed to exceed the given deadline ∆ in more scenarios.

Consequently, the PB is able to use a lower transmit power to charge devices as the

power allocation permits more failures. In addition, an increasing value of ϵ allows

S-POPA and BO-POPA to sample solutions that have a lower Clopper-Pearson

interval lower bound. As a result, S-POPA and BO-POPA result in the PB using a

lower transmit power.

Referring to Figure 5.5(a), SAA outperforms S-POPA and BO-POPA. Specifi-

cally, when using SAA, the minimum total transmit power of the PB is on average

13.62% and 19.58% lower than that of S-POPA and BO-POPA, respectively. This is

because the power allocation at the PB computed by S-POPA and BO-POPA does

not change over multiple frames. This means S-POPA and BO-POPA are not able

to adjust the PB’s power allocation according to channel gains in different frames.

The PB must transmit in all frames, including frames that have low channel power

gains. In addition, the PB must also continuously transmit after all devices harvest

a sufficient amount of energy. In SAA, the PB is able to switch its beamforming

patterns to charge devices that on average have higher channel gains in each frame.

Thus, SAA results in a lower total transmit power at the PB to charge devices as

compared to S-POPA and BO-POPA. Moreover, the performance of S-POPA and

BO-POPA depends on the number of sampling iterations. The solutions computed

by S-POPA and BO-POPA approximate the optimal solution to the true problem

as more sampling iterations are employed.

The following set of experiments next investigate how the different values of ϵ

affect solutions quality. Figure 5.5(b) shows the 95% confidence level upper bound

for SAA, S-POPA and BO-POPA as per Eq. (5.25). Referring to Figure 5.5(b),
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the 95% confidence level upper bound of SAA increases from 0.098 to 0.395 as the

value of ϵ becomes larger. The reason is because an increasing ϵ value allows more

transmission failures. In addition, we note that the 95% confidence level upper

bound for SAA is lower than ϵ when the failure rate ϵ varies from 0.1 to 0.4. This

means each solution for a given failure rate ϵ is a feasible point to the true problem

with a 95% confidence level. Next, we note that the 95% confidence level upper

bound for S-POPA and BO-POPA also increases proportionally to the value of ϵ. In

addition, the gap between the upper bound for S-POPA and ϵ is on average 9.14%

lower than the gap between the upper bound for BO-POPA and ϵ. This means the

solution for S-POPA is closer to the true problem as compared to BO-POPA. The

reason is because S-POPA is able to re-sample a solution that has a Clopper-Pearson

interval lower bound that is close to ϵ. This prevents S-POPA from assigning a low

reward to a solution in one sampling iteration due to random scenarios with poor

channel power gains. However, BO-POPA only samples each point once to compute

the surrogate model. This means any infeasible solutions where the PB uses a

low transmit power is heavily punished due to poor channel gains in one iteration.

Hence, solutions that approximate the optimal solution to the true problem are more

likely to be assigned a poor objective value by the surrogate function. As a result,

when using BO-POPA, the PB uses a higher transmit power to ensure the power

allocation is a feasible point to the true problem with a high probability.

5.6.3 Number of relay devices

Here, the following set of experiments evaluates how the number of relay devices

affects the total transmit power. The number of relays |V| increases from one to

nine with an interval of one, meaning the sample is forwarded from the source to the

sink via two to ten hops. The value of ∆ is set to five. This section sets M = 200

and N = 100 scenarios. The value of ϵ is set to 0.2.

As shown in Figure 5.6, the total transmit power at the PB increases propor-
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Figure 5.5: The minimum total transmit power at the PB (a), Confidence upper
bound versus the number of scenarios(b). The result shown in (a) shows that the
minimum total transmit power at the PB decreases with the value of ϵ. This is
because a higher ϵ means a higher tolerance for transmission failures. In (b), the
result shows all solutions are feasible points to the true problem with a confidence
level of 95%.
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tionally with the number of hops. For example, the minimum total transmit power

at the PB computed by SAA increases from 1.89 to 5.49 as the number of relays |V|

increases from one to nine. Then for S-POPA and BO-POPA, the total transmit

power at the PB increases from 2.10 to 5.85 and 2.21 to 6.62 Watts, respectively.

This is because the power allocation at the PB must satisfy the energy requirement

of more relays. As there are more relays and more channel power gains, the proba-

bility that the PB charges devices even when the channel is poor increases. Hence,

the PB has to raise its transmit power to charge devices that have poor channel

gains in order to satisfy their energy requirement. In addition, the probability of

relay devices transmitting over poor channel increases as there are more transmis-

sions within ∆ frames. Relay devices that experience poor channel gains will request

more RF energy from the PB, which increases the transmit power of the PB.
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Figure 5.6: Comparison between the minimum total transmit power at the PB
computed by SAA, S-POPA, and BO-POPA. The result shows that the minimum
total transmit power at the PB increases as more relays request RF energy from the
PB.
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5.6.4 Sample arrival time threshold

In the last set of simulations, the focus is to investigate the relation between the

total transmit power at the PB and threshold ∆. The number of relay devices |V| is

fixed to three. The failure rate ϵ is set to 0.2, where this section considers M = 200

samples and each sample consists of N = 100 i.i.d scenarios.

As shown in Figure 5.7, the minimum total transmit power of the PB computed

by SAA decreases from 4.58 to 1.25 Watts as ∆ increases from one to ten. The

minimum total transmit power at the PB computed by S-POPA and BO-POPA

decreases from 5.46 to 1.61 Watts and 6.78 to 1.63 Watts, respectively. This is

because a larger ∆ value means relays have more time in order to harvest energy.

This reduces the probability that a sample fails to arrive at the sink due to the

energy shortfall at relays. In addition, relays are able to transmit in frames where

the channel gains are higher on average, which helps utilize their harvested energy

better. On the other hand, when using SAA, the PB is able to allocate its transmit

power to charge relays that transmit with a high probability in each frame. This

also helps to reduce the total transmit power of the PB.

Another observation is that the minimum total transmit power at the PB does

not reduce continuously for an increasing threshold ∆ value. This is because the

energy conversion rate is non-linear. Recall that the power allocation computed by

S-POPA and BO-POPA remains the same from frame to frame. Hence, a lower

transmit power at the PB means the transmit power in all frames decreases equally.

Consequently, if the PB reduces its transmit power to a low level, the source and

relays have to harvest energy by using a low energy conversion efficiency of 5% over

all frames. This results in devices to experience an energy shortfall as the sum of

harvested energy over all frames is insufficient for transmission. As a result, the PB

first reduces its transmit power as ∆ increases, and maintains its transmit power

level to prevent devices from using a low energy conversion efficiency in all frames.
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Figure 5.7: The minimum total transmit power of the PB versus sample arrival
threshold ∆. The objective value of the SAA in on average 23.16% and 31.90%
lower than that of S-POPA and BO-POPA, respectively. This is because S-POPA
and BO-POPA require the PB to transmit with a fixed power level. In SAA, the
switched-beam pattern of the PB in each frame depends on the sample delivery of
N i.i.d scenarios given in MILP (5.24a).
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5.7 Conclusion

This chapter has studied the problem of delivering samples to a sink node from a

source device by a given deadline. A key challenge is that the PB that charges devices

is unaware of their channel gains or energy information. To this end, this chapter

develops a chance-constrained stochastic program to minimize the total transmit

power at the PB subject to samples arriving at a sink with a given probability.

This chapter solves the program using the SAA method, and also proposes two

algorithms named S-POPA and BO-POPA to approximate the optimal solution.

Numerical results show the minimum total transmit power at the PB is dependent

on (i) the given sample delivery failure probability, (ii) the number of relay devices,

and (iii) the sample arrival threshold ∆. In addition, SAA outperforms S-POPA

and BO-POPA because S-POPA and BO-POPA are not able to adjust the beam

patterns from frame to frame. Lastly, BO-POPA uses fewer sampling iterations and

has a lower computation time as compared with SAA and S-POPA. However, the

transmit power at the PB computed by BO-POPA is higher than that of SAA and

S-POPA.
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Chapter 6
Conclusion

This thesis considers data collection problems in multi-hop two-tier IoT networks.

The first tier is a multi-hop wireless backhaul that is composed of routers. The sec-

ond tier consists of a multi-hop RF energy-harvesting network or multi-hop ambient

backscattering network. It focuses on the following research question: how to jointly

optimize energy provision and device activation in a two-tier multi-hop IoT network

for data collection? This question ensures devices in the second tier of an IoT net-

work are able to harvest sufficient energy for data transmissions. Further, it ensures

wireless links in the first tier have sufficient capacity to carry flows between routers.

A major challenge is that the energy arrivals at devices depend on the transmissions

of routers. Further, these routers operate over the same frequency band; i.e., they

share limited channel resources. Another challenge is to efficiently deliver energy to

devices and schedule the activation of devices in order to collect data.

This thesis first considers routing and link scheduling in a two-tier wireless back-

haul network. The first tier consists of routers and the second tier consists of RF

energy-harvesting IoT devices that rely on routers for energy. The goal is to derive

the shortest TDMA link schedule that satisfies the traffic demand of routers and the

energy demand of IoT devices. To this end, this thesis formulates an LP to jointly

derive a routing and link schedule solution. This thesis also proposes a heuristic

link scheduler called TSG to generate transmission sets and to derive the transmit
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power allocation of routers. In addition, this thesis outlines a novel routing metric

that considers the number of RF energy-harvesting devices on a given path. TSG on

average achieves 31.25% shorter schedules as compared to competing schemes. Fi-

nally, the proposed routing metric results in link schedules that are at most 24.75%

longer than those computed by LP.

Second, this thesis considers routing and link scheduling in a two-tier backscatter-

assisted wireless IoT network. The goal is to maximize the network throughput at

both tiers. To this end, it outlines an MILP that jointly optimizes link scheduling

for both RF links and backscattering links, and routing. It also presents a heuristic

called ALGO-TSG to compute transmission sets for use by the proposed MILP. In

addition, it also outlines a heuristic called CMF to maximize network throughput by

jointly considering routing and link scheduling. The simulation results in Chapter 4

show that 1) the network throughput achieved by ALGO-TSG at both tiers is 29.80%

higher as compared to the case without backscattering, and 2) the throughput of

CMF is on average 21.36% lower than the throughput computed by MILP.

Lastly, this thesis considers sample delivery in a multi-hop network where a

power beacon charges devices with imperfect CSI. Devices forward samples from

a source to a sink, where the sample has a deadline. The goal is to minimize the

energy consumption at a power beacon and ensure samples arrive at a sink by their

deadline with a given probability level. To cope with imperfect CSI and probabilis-

tic constraints, this thesis contains a chance-constrained stochastic program for the

problem at hand. It employs the SAA method to approximate the optimal solution

to the problem. This thesis also outlines two novel approximation methods for the

problem, namely S-POPA and BO-POPA. Numerical results show that the perfor-

mance of S-POPA and BO-POPA achieves on average 86.91% and 79.25% of the

transmit power computed by SAA.

There are many possible future research directions. First, this thesis only consid-

ers routers that operate on the same frequency band. A possible research direction

is to employ routers and devices that are equipped with multiple radios. This means
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routers and devices can operate on different channels, which yields more concurrent

transmissions and increase both network capacity and energy delivered to devices.

Consequently, an IoT system can collect more data packets from devices. A promis-

ing research problem is to jointly optimize channel assignment, link scheduling, and

routing in a two-tier RF-energy harvesting IoT network. In terms of energy delivery

and data transmission, this thesis only considers non-causal energy arrival processes

and CSI. This means a controller is aware of future CSI to compute an optimal so-

lution. A possible research direction is to consider data collection in a two-tier IoT

network with causal CSI. In this case, routers and devices only have past and present

CSI. To deal with causal CSI, a possible research problem is to adopt model predic-

tive control, Markov decision process (MDP), and reinforcement learning techniques

to name a few to optimize energy delivery policy and link scheduling. Another re-

search direction is to consider information freshness optimization in an RF-charging

network with imperfect CSI. In this case, multiple source devices will forward data

packets to a sink via multi-hop communication. Different from Chapter 5, a power

beacon needs to harvest energy from solar and experiences random energy arrival. In

addition, it may be aware of which devices samples are at. This way, a fundamental

problem is to jointly optimize energy delivery policy, routing, and device activation

schedule in order to optimize information freshness.
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Parra, L. A. Quiroz, A. Hoyos, and L. E. Garreta, “Review of IoT applications

in agro-industrial and environmental fields,” Computers and Electronics in

Agriculture, vol. 142, pp. 283–297, Nov. 2017.

[12] J. Ruan and Y. Shi, “Monitoring and assessing fruit freshness in IOT-based

e-commerce delivery using scenario analysis and interval number approaches,”

Information Sciences, vol. 373, pp. 557–570, Dec. 2016.

[13] C. le Zhong, Z. Zhu, and R.-G. Huang, “Study on the IOT architecture and ac-

cess technology,” in 2017 16th International Symposium on Distributed Com-

puting and Applications to Business, Engineering and Science (DCABES),

(Anyang, China), pp. 113–116, Oct. 2017.

173



[14] G. Hiertz, D. Denteneer, L. Stibor, Y. Zang, X. Costa, and B. Walke, “The

ieee 802.11 universe,” IEEE Communications Magazine, vol. 48, pp. 62–70,

Jan. 2010.

[15] J.-S. Lee, Y.-W. Su, and C.-C. Shen, “A comparative study of wireless proto-

cols: Bluetooth, UWB, ZigBee, and wi-fi,” in 33rd Annual Conference of the

IEEE Industrial Electronics Society, (Taipei, Taiwan), pp. 56–61, Nov. 2007.

[16] Akashdeep, K. S. Kahlon, and H. Kumar, “Survey of scheduling algorithms in

ieee 802.16 PMP networks,” Egyptian Informatics Journal, vol. 15, pp. 25–36,

Mar. 2014.
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