18 research outputs found

    Algebraic Topology for Data Scientists

    Full text link
    This book gives a thorough introduction to topological data analysis (TDA), the application of algebraic topology to data science. Algebraic topology is traditionally a very specialized field of math, and most mathematicians have never been exposed to it, let alone data scientists, computer scientists, and analysts. I have three goals in writing this book. The first is to bring people up to speed who are missing a lot of the necessary background. I will describe the topics in point-set topology, abstract algebra, and homology theory needed for a good understanding of TDA. The second is to explain TDA and some current applications and techniques. Finally, I would like to answer some questions about more advanced topics such as cohomology, homotopy, obstruction theory, and Steenrod squares, and what they can tell us about data. It is hoped that readers will acquire the tools to start to think about these topics and where they might fit in.Comment: 322 pages, 69 figures, 5 table

    Applications of Lattice Codes in Communication Systems

    Get PDF
    In the last decade, there has been an explosive growth in different applications of wireless technology, due to users' increasing expectations for multi-media services. With the current trend, the present systems will not be able to handle the required data traffic. Lattice codes have attracted considerable attention in recent years, because they provide high data rate constellations. In this thesis, the applications of implementing lattice codes in different communication systems are investigated. The thesis is divided into two major parts. Focus of the first part is on constellation shaping and the problem of lattice labeling. The second part is devoted to the lattice decoding problem. In constellation shaping technique, conventional constellations are replaced by lattice codes that satisfy some geometrical properties. However, a simple algorithm, called lattice labeling, is required to map the input data to the lattice code points. In the first part of this thesis, the application of lattice codes for constellation shaping in Orthogonal Frequency Division Multiplexing (OFDM) and Multi-Input Multi-Output (MIMO) broadcast systems are considered. In an OFDM system a lattice code with low Peak to Average Power Ratio (PAPR) is desired. Here, a new lattice code with considerable PAPR reduction for OFDM systems is proposed. Due to the recursive structure of this lattice code, a simple lattice labeling method based on Smith normal decomposition of an integer matrix is obtained. A selective mapping method in conjunction with the proposed lattice code is also presented to further reduce the PAPR. MIMO broadcast systems are also considered in the thesis. In a multiple antenna broadcast system, the lattice labeling algorithm should be such that different users can decode their data independently. Moreover, the implemented lattice code should result in a low average transmit energy. Here, a selective mapping technique provides such a lattice code. Lattice decoding is the focus of the second part of the thesis, which concerns the operation of finding the closest point of the lattice code to any point in N-dimensional real space. In digital communication applications, this problem is known as the integer least-square problem, which can be seen in many areas, e.g. the detection of symbols transmitted over the multiple antenna wireless channel, the multiuser detection problem in Code Division Multiple Access (CDMA) systems, and the simultaneous detection of multiple users in a Digital Subscriber Line (DSL) system affected by crosstalk. Here, an efficient lattice decoding algorithm based on using Semi-Definite Programming (SDP) is introduced. The proposed algorithm is capable of handling any form of lattice constellation for an arbitrary labeling of points. In the proposed methods, the distance minimization problem is expressed in terms of a binary quadratic minimization problem, which is solved by introducing several matrix and vector lifting SDP relaxation models. The new SDP models provide a wealth of trade-off between the complexity and the performance of the decoding problem

    On the logics of algebra.

    Get PDF
    Thesis (Ph.D.)-University of KwaZulu-Natal, Westville, 2008.We present and consider a number of logics that arise naturally from universal algebraic considerations, but which are ‘inherently unalgebraizable’ in the sense of [BP89a], essentially because they have no theo- rems. Of particular interest is the membership logic of a quasivariety, which is determined by its theorems, which are the relative congruence classes of the term algebra together with the empty-set in the case that the quasivariety is non-trivial. The membership logic arises by a more general technique developed in this text, for inducing deductive systems from closed systems on the free algebras of quasivarieties. In order to formalize this technique, we develop a theory of logics over constructs, where constructs are concrete categories. With this theory in place, we are able to view a closed system over an algebra as a logic, and in particular a structural logic, structural with respect to a suitable construct, typically the construct con- sisting of all algebras in a quasivariety and all algebra homomorphisms between these algebras. Of course, in such a case, none of these logics are generally sentential (i.e., structural and finitary deductive systems in the sense of [BP89a]), since the formulae of sentential logics arise from the terms of the absolutely free term algebra, which is generally not a member of the quasivariety under interest. In such cases, where the term algebra is not a member of a quasivariety, the free algebra of the quasivariety on denumerably countable free generators takes on the role played by the term algebra in sentential logics. Many of the logics that we encounter in this text arise most naturally as finitary logics on this free algebra of the quasivariety and generally are structural with respect to the quasivariety. We call such logics canons, and show how such structural canons induce sentential calculi, which we call the induced ideal ; the filters of the ideal on the free algebra are precisely the theories of the canon. The membership logic is the ideal of the cannon whose theories are the relative congruence classes on the free algebra. The primary aim of this thesis is to provide a unifying framework for logics of this type which extends the Blok-Pigozzi theory of elementarily algebraizable (and protoalgebraic) deductive systems. In this extension there are two parameters: a set of formulae and a variable. When the former is empty or consists of theorems, the Blok-Pigozzi theory is recovered, and the variable is redundant. For the membership logic, the appropriate variant of equivalent algebraic semantics encompasses the relatively congruence regular quasivarieties. These results have appeared in [BR03]. The secondary aim of this thesis is to analyse our theory of parameterized algebraization from a non- parameterized perspective. To this end, we develop a theory of protoalgebraic logics over constructs and equivalence between logics from different constructs, which we then use to explain the results we obtained in our parameterized theories of protoalgebraicity, algebraic semantics and equivalent algebraic semantics. We relate this theory to the theory of deductively equivalent -institutions [Vou03], and as a consequence obtain a number of improved and new results in the field of categorical abstract algebraic logic. We also use our theory of protoalgebraic logics over constructs to obtain a new and simpler characterization of structural finitary n-deductive systems, which we then use to close the program begun in [BR99], by extending those results for 1-deductive systems to n-deductive systems, and in particular characterizing the protoalgebraicity of the sentential n-deductive system Sn(K,N), which is the natural extension of the 1-deductive system S(K, ) introduce in [BR99], in terms of the quasivariety K having hK,Ni-coherent N-classes (we cannot see how to obtain this result from the standard characterization of protoalgebraic n- deductive systems of [Pal03], which is very complex). With respect to this program of completing [BR99], we also show that a quasivariety K is an equivalent algebraic semantics for a n-deductive system with defining equations N iff K is hK,Ni-regular; a notion of regularity that we introduce and characterize by a quasi-Mal’cev condition. The third aim of this text is to unify as many disparate arguments and notions in algebraic logic under the banner of continuous translations between closed systems, where our use of the term continuous is in the topological sense rather than in the order-theoretic sense, and, where possible, to give elementary, i.e. first order, definitions and proofs. To this end, we show that closed systems, closure operators and conse- quence relations can all be characterized elementarily over orders, and put into one-to-one correspondence that reflects exactly, the standard correspondences between the well-known concrete notions with the same name. We show that when the order is the complete power order over a set, then these elementary structures coincide with their well-known counterparts with the same name. We also introduce two other elementary structures over orders, namely the closed equivalence relation and something we term the proto-Leibniz relation; these elementary structures are also in one-to-one correspondence with the earlier mentioned structures; we have not seen concrete versions of these structures. We then characterize the structure homomorphisms between these structures, as well as considering galois relations between them; galois relations are pairs of order-preserving function in opposite directions; we call these translations, and they are elementary notions. We demonstrate how notions as disparate as structurality, semantics, algebraic semantics, the filter correspondence property, filters, models, semantic consequence, protoalge- braicity and even the logic S(K, ) of [BR99] and our logic Sn(K,N), all fall within this framework, as does much of our parameterized theory and much of the theory of -institutions. A brief summary of the standard theory of deductive systems and their algebraization is provided for the reader unfamiliar with algebraic logics, as well as the necessary background material, including construct and category theory, the theory of structures and algebras, and the model theory of structures with and without equality

    TeV-scale gravity in Horava-Witten theory on a compact complex hyperbolic threefold

    Full text link
    The field equations and boundary conditions of Horava-Witten theory, compactified on a smooth compact spin quotient of CH^3, where CH^3 denotes the hyperbolic cousin of CP^3, are studied in the presence of Casimir energy density terms. If the Casimir energy densities near one boundary result in a certain constant of integration taking a value greater than around 10^5 in units of the d = 11 gravitational length, a form of thick pipe geometry is found that realizes TeV-scale gravity by the ADD mechanism, with that boundary becoming the inner surface of the thick pipe, where we live. Three alternative ways in which the outer surface of the thick pipe might be stabilized consistent with the observed value of the effective d = 4 cosmological constant are considered. In the first alternative, the outer surface is stabilized in the classical region and the constant of integration is fixed at around 10^{13} in units of the d = 11 gravitational length for consistency with the observed cosmological constant. In the second alternative, the four observed dimensions have reduced in size down to the d = 11 gravitational length at the outer surface, and there are Casimir effects near the outer surface. In the third alternative, the outer surface is stabilized in the classical region by extra fluxes of the three-form gauge field, whose four-form field strength wraps three-cycles of the compact six-manifold times the radial dimension of the thick pipe. Some problems related to fitting the strong/electroweak Standard Model are considered.Comment: LaTeX2e, 315 pages. v2: corrections to subsections 5.1 and 5.3. Subsection 2.3.3 revised and extended, bibliography revised, other minor improvement

    Tensor Representations for Object Classification and Detection

    Get PDF
    A key problem in object recognition is finding a suitable object representation. For historical and computational reasons, vector descriptions that encode particular statistical properties of the data have been broadly applied. However, employing tensor representation can describe the interactions of multiple factors inherent to image formation. One of the most convenient uses for tensors is to represent complex objects in order to build a discriminative description. Thus thesis has several main contributions, focusing on visual data detection (e.g. of heads or pedestrians) and classification (e.g. of head or human body orientation) in still images and on machine learning techniques to analyse tensor data. These applications are among the most studied in computer vision and are typically formulated as binary or multi-class classification problems. The applicative context of this thesis is the video surveillance, where classification and detection tasks can be very hard, due to the scarce resolution and the noise characterising sensor data. Therefore, the main goal in that context is to design algorithms that can characterise different objects of interest, especially when immersed in a cluttered background and captured at low resolution. In the different amount of machine learning approaches, the ensemble-of-classifiers demonstrated to reach excellent classification accuracy, good generalisation ability, and robustness of noisy data. For these reasons, some approaches in that class have been adopted as basic machine classification frameworks to build robust classifiers and detectors. Moreover, also kernel machines has been exploited for classification purposes, since they represent a natural learning framework for tensors

    The Late Cenozoic history and palaeoenvironments of the coastal margin of the south-western Cape Province, South Africa

    Get PDF
    This thesis examines the Late Cenozoic history and palaeoenvironments of the coastal margin between Elands Bay on the west coast and Die Kelders on the south coast. This study is introduced with a detailed discussion of eustatic sea level oscillation. The history of the existing ice sheets, sea floor spreading, isotopic composition changes of the oceans, and isostatic responses of the crust to varying loads are reviewed with regard to their bearing on sea level changes. A detailed account of the Neogene stratigraphy of the south-western Cape Province is presented. The Middle to early Late Miocene Saldanha Formation is characterised by shallow marine phosphatic sandstone and phosphorite. It is thought to have been deposited in a warm transgressive sea. The Pliocene Varswater Formation was deposited during a secondary transgression induced by.seaward tilting of the coastal margin during a time of worldwide regression. The Varswater Formation is characterised by pelletal phosphorites. It includes marine, estuarine, and fluvial facies. The estuarine sands and peats contain a rich fossil mammal fauna. Depositional environments of the Pelletal Phosphorite Member are examined by means of conventional grain size analysis to show that deposition took place on a shallow sublittoral platform dominated on the outer edge by a breaker-bar. Accretion of the breaker-bar to form a barrier-island allowed the development of an estuarine complex on the leeward side. Post-depositional diagenetic changes were examined by means of scanning electron microscopy. A detailed account of the petrology and geochemistry of the phosphorite and pelletal phosphorite is presented. The apatite mineral is a carbonate fluorapatite. It is concluded that the phosphorite is related to upwelling of phosphorus-rich waters

    Acta Scientiarum Mathematicarum : Tomus 38. Fasc. 1-2.

    Get PDF
    corecore