
Diego Tosato

Tensor Representations for Object
Classification and Detection

March 23, 2012
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Abstract

A key problem in object recognition is finding a suitable object representation. For
historical and computational reasons, vector descriptions that encode particular
statistical properties of the data have been broadly applied. However, employing
tensor representation can describe the interactions of multiple factors inherent
to image formation. One of the most convenient uses for tensors is to represent
complex objects in order to build a discriminative description.

Thus thesis has several main contributions, focusing on visual data detection
(e.g. of heads or pedestrians) and classification (e.g. of head or human body ori-
entation) in still images and on machine learning techniques to analyse tensor
data. These applications are among the most studied in computer vision and are
typically formulated as binary or multi-class classification problems.

The applicative context of this thesis is the video surveillance, where classi-
fication and detection tasks can be very hard, due to the scarce resolution and
the noise characterising sensor data. Therefore, the main goal in that context is
to design algorithms that can characterise different objects of interest, especially
when immersed in a cluttered background and captured at low resolution.

In the different amount of machine learning approaches, the ensemble-of-
classifiers demonstrated to reach excellent classification accuracy, good general-
isation ability, and robustness of noisy data. For these reasons, some approaches
in that class have been adopted as basic machine classification frameworks to build
robust classifiers and detectors. Moreover, also kernel machines has been exploited
for classification purposes, since they represent a natural learning framework for
tensors.
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1.1 Structure of the Thesis

The goal of computer vision is to extract useful information from images. This has
proved to be a surprisingly challenging task. Part of the problem is the complexity
of visual data. Consider the image in Fig. 1.1. There are many people in this video
surveillance scene. Almost none of these are presented in a typical pose. Almost all
of them are partially occluded. For a computer vision algorithm, it is not even easy
to establish where one person ends and another begins. However, computer vision
is not impossible, but it is very challenging. Perhaps this was not appreciated at
first because what one perceives when looks at a scene is already highly processed.
Nonetheless, computer vision algorithms can sometimes beat the human vision
system. For example, consider Fig. 1.2, where the goal is to infer the orientation
of the head. Observing the smallest images, it appears quite difficult to guess
the orientation for the human eye, but in this thesis a framework able to infer
the orientation for those images with a surprisingly good accuracy is proposed.
Another example is the case of a network of security cameras which should be
monitored in order to find abnormal events. A human cannot focus his attention
to many video stream provided by cameras, while a computer vision algorithm can
control all the streams at the same time, having a “global” understanding of the
monitored area.

At an abstract level, the goal of computer vision approach is to use the ob-
served image data to infer something about the world. For example, one may
build a method that, observing a frame of a video sequence, detects the objects
contained automatically. To solve a (computer vision) problem of this type, one
needs three components: (1) a model that mathematically relates the visual data
x and the world state c (considering the proposed example, c is the category of
the objects). The model specifies a family of possible relationships between x and
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Fig. 1.1. On the top, a visual scene containing many people, almost all of which are
partially occluded. On the bottom the processing of the scene where orientated boxes
indicate a rough classification of the human gaze that can be used in video surveillance
applications.

Fig. 1.2. The object resolution issue.

c and the particular relationship is determined by the model parameters Θ; (2) a
learning algorithm that allows to fit the parameters Θ using paired training exam-
ples {xi, ci}i=1,...,N , where N is the number of training examples; (3) an inference
method that takes a new observation x and uses the model to return the posterior
P (c|x, Θ) over the world state c.

The first and most important component of the solution is the model [Bel06,
HTF11, Pri12]. Every model relating the data x to the world c falls into one of
two categories.

• Models that directly infer the world state on the data as P (c|x).
• Models that indirectly infer the world state on the data modelling P (x|c) or

P (x, c).

The first type of model is termed discriminative. The second is termed generative
and can be used to generate new observations. It is not possible to establish which
is the best type of model that should be adopted, but it depends on the problem
tackled. Among the computer vision problems, in this thesis the classification and
detection of defined class of objects are faced.

Ideally, when one trains a model for detection or classification, this could be
generative: it must produce a probability distribution p(x|c) to measure the statis-
tics for an object x and its class label c. Unfortunately, generative models are often
out of reach or their computational burden is too high. For example, cars are a
relatively easy class to study, but there is no existing generative model which
captures all the variations such as, texture, multi-view, shape, etc. Alternatively,
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one can look for a discriminative model p(c|x) in which c is a simple label that
identifies the object class. I am interested in the latter type of models.

However, for classification and detection purposes, there is another important
aspect to be considered, that is how to represent an object. This issue concerns
how the measurement vector x was created. In state-of-the-art vision systems,
the image pixel data is almost always processed to form the measurement vector.
The idea under this measurement process is the following: the image data may be
contingent on many aspects of the real world that do not pertain to the task at
hand. For example, in an object detection task the RGB values change depending
on the camera gain, illumination, object pose and particular instance of the object
(some examples are reported in Fig. 1.3). Therefore one may want to remove

Fig. 1.3. Some issues of the real world images.

as much “noise” as possible while retaining the aspects of the image that are
critical to the final decision (the choice of the c label). It should be emphasized
that this step, also known as feature extraction, is very important. In practice the
choice of the right features can influence the performance of vision systems at
least as much as the choice of model. For robust object classification and detection
it is crucial to characterize the regions of an image in a way that is compact
and stable to changes in the image. To this purpose, Lazebnik et al. [LSP06]
use SIFT (Scale-Invariant Feature Transform) descriptor extracted from a regular
grid; Dalal & Triggs develop the HOG descriptor [DT05]; Forssen & Lowe (2007)
develop a descriptor for use with maximally stable extremal regions; local binary
patterns are implemented in Ojala et al. [OPM02]; Tuzel et al. [TPM06] develop
a very effective descriptor based on region covariance information. Recent works
on image descriptors have applied machine learning techniques to optimize their
performance in Brown et al. [BHW11] and Philbin et al. [PISZ10]).

For the detection or classification of visual objects the human vision system
uses several cues. Therefore feature extraction phases which consider only a single
source of information (like using the colour information, the shape information or
the motion information) rarely achieve good accuracy performances if compared
with the human vision system. So the feature extraction can be handled extracting
and combining multiple meaningful features in one tensor (non-vector) represen-
tation. The reliability of a tensor representation depends on the robustness to
operate on noisy data.

Tensor representation meets a dramatic limitation of the classical machine
learning techniques that is the assumption that the object representation is a vec-
tor. However, in the recent past, a rising interest in how to deal with tensor data
is clearly visible. In fact, some machine learning approaches have been proposed
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for smooth manifolds (Stiefel manifolds, Grassmann manifolds, Riemannian man-
ifolds, etc.), where tensors can be properly represented. In this thesis, I present
different tensor representations for visual objects. I focus my attention on the sym-
metric, symmetric positive-definite tensors (or SPD tensors), and set-of-vectors of
real numbers.

For computational purposes, one can directly use a flat Euclidean structure to
define a metric on tensors. This is an efficient solution, but, in general, it is not
always satisfactory. In fact, tensors have a specific matrix structure, that can be
better managed with other more appropriate metrics. In this thesis an effective
measure of the non-flatness of a set of tensors is proposed. This can be used to
estimate the error occurring due to the use of the Euclidean distance.

My thesis is organized as follows. In Chapter 2, the fundamental mathematical
tools used to deal with tensors are described; this because tensors have a “non-
vector” form, so that the basic tools utilized to manipulate them are different from
the standard vector ones.

In Chap. 3, the discriminative learning models adopted are introduced. I have
striven considerably to extend some methods belonging to the discriminative class
and to build different approaches to learn from tensors, for object detection and
multi-class classification problems at the same time.

In Chap. 4, a new tensor descriptors of image features (like colour, gradient
information, etc.) computed inside an image region is described. It is shown that
these tensor representations lead to better performances compared with state-of-
the-art tensor representations for classification and detection problems.

In Chap. 5 the attention is focused on the object detection (i.e. pedestrian
detection) task. Here different detection architectures are proposed in order to
tackle several issues related to the detection, as the efficiency, the problem of the
object occlusion, and the problem of the detection of small pedestrians (which are
typical in video surveillance scenarios). At the end of this Chapter, the application
of some of the proposed detection frameworks is shown, applied to the data used
in the SAMURAI video surveillance project [sam].

In Chap. 6, different frameworks for the classification and regression problems
exploiting the tensor representation are described. In this Chapter the most impor-
tant theoretical contributions regarding how to exploit tensors and their manifold
structure in a theoretically sound way are contained. Moreover, an important ap-
plication of one of the framework presented into a social-signalling application is
described.

Finally, conclusions and possible new directions for future research are pre-
sented in Chap. 7.

1.2 Contributions of the Thesis

The thesis presents several contributions, for the classification and detection prob-
lems. It proposes different tensor representations of visual objects to characterizing
their content (Sec. 4.2.1, 4.2.2, 4.2.3) and structure (Sec. 4.2.3, 4.2.4). In particular,
for what regards the pedestrian detection task, four object architectures, exploring
different kinds of tensors are outlined; i.e. a framework based on automatic fea-
ture selection made using Boosting (Sec. 5.2) which improves the state-of-the-art
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pedestrian detector [TPM08], a part-based pedestrian detector on multiple tangent
spaces (one for every part) based on covariance tensors (Sec. 5.3), a low resolution
pedestrian detector based on self-similarity tensors (Sec. 5.4), and a robust to oc-
clusion set-based pedestrian detection framework where the body configuration is
not fixed (Sec, 5.5). Moreover, it proposes a new class of features referred to as
ARCO (Sec. 6.3) which is further evolved to WARCO (Sec. 6.4) and FWARCO
(Sec. 6.4) for the description of low resolution objects on different regression and
multi-class computer vision tasks, such as head orientation classification, human
orientation classification, pedestrian classification, head pose estimation. For all
these tasks novel datasets are introduced (Sec. 6.4.4); they are freely available at
[Tosa]. In addition, it introduces a novel criterion (Sec. 6.3.2,6.4.2), based on the
Riemannian curvature, to estimate the non-flattens of a set of tensors, which can
be used to estimate the error committed in approximating tensors on a Euclidean
manifold for learning purposes. That criterion is valid over any connected Rie-
mannian manifold. Besides, it describes a way to find possible approximations of
the actual distance among tensors that can be combined with standard machine
learning algorithms for multi-class classification and regression problems. Finally,
it presents novel classification architecture for embedded computer vision devices
exploiting tensors (Sec. 5.6).
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2.1 Introduction

The problems involving matrix (tensor) manifold appear in a wide variety of ma-
chine learning and computer vision tasks. In this Chapter, the fundamental tools
to manipulate matrices are presented. They will be used in several parts of the rest
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of the thesis. For a thorough treatment the reader is referred to the related bib-
liography [Kel75, DC92, FK97, Bre97, DK00, Spe, AMS08, PP08, Hat02, Ber03,
BBBK08, GHL04, Gal11]. To write this Section concepts from different books and
lecture notes are merged, i.e. [AMS08, Spe, Ber03, PP08] adding examples of ma-
trix manifolds utilized in this thesis and discussing the concepts as simply as possi-
ble to provide the reader with the necessary tools to understand the mathematical
problems tackled in the thesis together with its mathematical contributions.

The concept of matrix manifold, and in general of manifold, is one of the
most important in mathematics. To get an idea of what a manifold is, think of
the surface of a sphere, or of a torus. If you cut out a very small piece of one
of these surfaces, then it looks like a sheet of paper or, to be more precise, it is
locally Euclidean. This means that if you consider a very small region in a surface,
then its geometry is just like the ordinary two-dimensional geometry of the plane.
However, the global behaviour of manifolds is not Euclidean in general.

There are two important points to make about manifolds. First, recalling the
previous examples, a sphere and a torus are naturally visualized as surfaces that
live inside a three-dimensional space, but it is possible to talk about manifolds
intrinsically. That is, you can discuss the geometry of a manifold by focusing on
the points in the manifold itself and making no reference to any external space
in which the manifold lives. Secondly, there can be manifolds of any dimension.
In this thesis I use matrix manifolds which are not easy to visualize, but exist
abstractly. To conclude this brief explanation of the concept of manifold, I wish
to make an important comment. From the previous characterisation it is obvious
that manifolds are topological objects and they do not involve a priori a notion of
distance between points. However, we shell deal with manifolds equipped with a
metric, namely, Riemannian manifolds.

This chapter is organized as follows: Sec. 2.2 presents some fundamental op-
erations on matrices which are necessary to understand both the theoretical part
of this thesis and also the proposed approaches. Sec. 2.3 describe a minimal set
of concepts to approach the manifolds’ universe. In Sec. 2.4 matrix manifolds are
introduced with particular attention to the quotient manifolds which are widely
exploited on this thesis. Then the Riemannian geometry, Lie Groups, and sym-
metric spaces are introduced in Sec. 2.5. Finally, two matrix manifolds of interest
are described in detail in Sec. 2.6.

2.2 Fundamental Matrix Algebra

Matrices are used extensively throughout this thesis and are written in bold (e.g.,
X,Y). I introduced some fundamental operations on matrices sampling form the
excellent Matrix Cookbook reported in [PP08] and adding some notions which are
specific for the SPD and symmetric matrices.

2.2.0.1 Matrices

Here, the attention is focused on square matrices (same number of columns and
rows). They are always indexed by row first and then column, so xij denotes the
element of matrix X at the i-th row and the j-th column.
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X diagonal matrix is a square matrix with zeros everywhere except on the
diagonal. An important special case of a diagonal matrix is the identity matrix I.
This has zeros everywhere except for the diagonal where all the elements are equal
to 1.

2.2.0.2 Matrix Multiplication

To take the matrix product Z = XY where X is an m× k matrix, Y is k×n and
Z is m× n, ones has to compute the elements of zij as

zij =

k∑
h=1

xihyhj .

Observe that this is defined only when the number of columns in X equals the
number of rows in Y. Also matrix multiplication is associative so that

X(YZ) = (XY)Z = XYZ.

However it is not commutative so that in general XY 6= YX, even when they are
both meaningful.

2.2.0.3 Transpose

The transpose of a matrix X m × n is written as XT n × m and is formed by
reflecting it around the principal diagonal, so that the k-th column becomes the
k-th row and vice-versa. If one wants to compute the transpose of a matrix product
XY, note that

(XY)T = YTXT .

2.2.1 Inverse

A square matrix X may have an inverse X−1 or not. If it has an inverse, then
I = X−1X = XX−1. If a matrix does not have an inverse, it is called singular.
The inverse of the identity matrix is the identity matrix itself. Taking the inverse
of a matrix product XY then, it is possible to equivalently take the inverse of each
matrix individually, and reverse the order of multiplication

(XY)−1 = Y−1X−1.

2.2.2 Determinant

Each square matrix X has a scalar determinant denoted by det(X). A matrix is
singular if and only if determinant is zero. For a diagonal matrix the determinant
is the product of the diagonal values. It follows that the determinant of I is 1.
Determinants have the following properties:

• det(XT ) = det(X)
• det(XY) = det(X) det(Y)
• det(X−1) = 1

det(X) if X is non singular.
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2.2.3 Trace

The trace of a matrix X is the sum of the diagonal values (the matrix itself needs
not to be diagonal). The traces have the following properties:

• tr(XT ) = tr(X)
• tr(XY) = tr(YX)
• tr(X + Y) = tr(Y) + tr(X)
• tr(XYZ) = tr(ZXY) = tr(YZX),

where in the last relation the trace is invariant for cyclic permutations only, so
that in general tr(XYZ) 6= tr(XZY).

2.2.4 Symmetric positive-definite (SPD) matrices

A d × d real symmetric matrix X is positive definite if yTXy > 0 for all non-
zero vectors y. Every positive definite matrix is invertible and its inverse is also
positive definite. The determinant and trace of a symmetric positive definite ma-
trix are always positive (they equal the product and the sum of its eigenvalues,
respectively).

2.2.5 Singular value decomposition

The singular value decomposition (SVD) is a factorization of a (general) matrix
X m× n such that X = ULVT , where U m×m is an orthogonal matrix, L is a
L m× n diagonal matrix and V n× n is an orthogonal matrix. Note that, if X is
SPD singular value decomposition it is also the eigenvalue decomposition (EVD).

The number of non-zero singular values is called the rank of the matrix. The
ratio of the smallest to the largest singular value is known as the condition number:
it is roughly a measure of how invertible the matrix is.

2.2.6 Symmetric Matrices Vectorization

Given a d×d symmetric matrix X, it has only d(d+1)/2 independent coefficients,
which are the upper triangular or lower triangular part of the matrix. Thus, the
vector operator is defined as:

y = vec(X) = [x1,1 x1,2 . . . x1,d x2,2 x2,3 . . . xd,d], (2.1)

where y is the map of X ∈ Rm, with m = d(d+ 1)/2.

2.2.7 Matrix Differentiation

In this thesis I am often called upon to take derivative of matrices. The derivative
of a differentiable function f(X) returns to a scalar, with respect to X is a matrix
Y of the same dimension with elements

yij =
∂f

∂xij
.

Useful cases of matrix differentiation are the following:
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Derivative of determinant: ∂ det(X)
∂X = det(X)X−T .

Derivative of log determinant: ∂ log(det(X))
∂X = X−T .

Derivative of inverse: ∂X−1

∂x = X−1 ∂X∂x X−1.

Derivative of trace: ∂ tr(X)
∂X =

(
∂(X)
∂X

)T
.

2.3 Elements of Topology

Topology is the mathematical area that studies the properties that are preserved
through deformations, twistings, and stretchings of shapes and in general of man-
ifolds. To present some concepts of topology I exploited [AMS08, Spe, Ber03].

2.3.1 Topological Space

In this Section the basic definition of a topological space is given.

Definition 1 (Topology) Let X an nonempty set. A topology on X is a collec-
tion of T subsets of X which are termed opensets with the following properties:

• X , ∅ ∈ T (X and ∅ are open).
• The union of any collection of sets in T is in T .
• The intersection of any finite number of sets in T is in T .

Definition 2 (Topological Space) A topological space is a pair (X , T ) where X
is a set and T is a topology on X . When the topology is made clear by the context
or is irrelevant, the topological space is simply referred to as X .

Definition 3 (Continuous Function between Topological Spaces) Let (X , TX )
and (Y, TY) two topological spaces. A function f : X → Y is termed continuous if

∀V ∈ TY ,U := f−1(V) ∈ TX ,

where namely, the pre image of any open set in Y is an open set in X .

Definition 4 (Base of a Topological Space) Given a topological space (X , T ),
a subset B ⊂ T is termed base of T if it is a collection of open sets in T such that
every open set in T can be written as a union of elements of B

∀A ∈ T , A =
⋃
λ∈Λ

Bλ(∈ B).

If Λ is countable then B is a countable base.

Definition 5 (Relative Topology) Let A ⊂ (X , T ), the relative topology TA
is naturally defined on A. Given an open set U ∈ TA, if U = A ∩ V and V ∈ T ,
then (A, TA) is termed topological subspace of (X , T ).

Definition 6 (Product Topology) Let (X , TX ) (Y, TY) two topological spaces,
X ×Y is equipped with the product topology TX ×TY such that A ⊂ X ×Y is open
if it is the union of open rectangles AX ×AY , where AX ∈ TX and AY ∈ TY .
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Definition 7 (homeomorphism) Let f : X → Y is an homeomorphism it f is
bijective and bicontinuous, i.e. continuous together with its inverse.

Definition 8 (Homeomorphic Spaces) (X , TX ) and (Y, TY) are homeomor-
phic (X ≈ X ) if it exists an homeomorphism f : X → Y.

Example 2.1 (The standard topology of the real line). A set A is called open if it
is the union of open intervals (see Fig. 2.1), that can be possibly empty. This is

Fig. 2.1. It is easy to see that every open interval is the union of open intervals limited.

equivalent to the following property:

∀X ∈ A, ∃ I3X s.t. I ⊂ A.

A graphical representation of the property is depicted in Fig. 2.2. In this example
it is easy to see that all the previous conditions are satisfied.

Fig. 2.2. An example of the union of open intervals.

A fundamental concept of geometry is the distance among points. Choosing a
distance is equivalent to defining a metric on a space and it can be used to quantify
the concepts of near and far. For example, using the Euclidean metric on real line
space you can pick a point and say that all points located less than one meter
from it are near while the others are far. Thus, the set of all the near points falls
into a ball of a one-meter radius. This idea can be generalized for arbitrary spaces.
The notion of ball allows defines an open ball. Colloquially, a set X is open if any
point X ∈ X can be moved in a small neighbourhood UX remaining in X . The
notion of an open set provides a fundamental way to speak of nearness of points
in a topological space, without having explicitly a concept of distance defined.
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2.3.2 Fundamental Properties of a Topological Space

Let X be a topological space. A subset A of X is defined to be closed if the set

X −A := X ∈ X : X /∈ A

is open. A neighbourhood of a point X ∈ X is a subset of X that includes an open
set containing X.

Let X be a topological space. A collection A = {Aα} (α ∈ R) with R any
index set, defined as a covering of X , if

⋃
α∈RAα = X . The space X is termed as

compact if every open covering1 A of X contains a finite sub-collection that also
covers X . The Heine-Borel theorem says that a subset of Rm is compact if and
only if it is closed and bounded.

A topological space is second-countable if it has a countable base.

2.3.3 The Hausdorff separation axiom

In order to start working with manifolds it is necessary to introduce the Hausdorff
separation axioms. A topological space is a Hausdorff or T2 space if ∃UX1 3 X1,
UX1
63 X2, ∃UX2

3 X2, UX2
63 X1, and UX1

∪ UX2
= ∅.

2.4 Manifolds

Definition 9 (Topological Manifold) A topological space M is said to be a
n-dimensional topological manifold if

• M is T2.
• M admits a countable base.
• M is locally Euclidean such that ∀X ∈M, ∃UX 3 X (a neighbourhood of X),
∃V ⊂ Rn, with n fixed, and a homeomorphism ϕ : U → V called local chart.

The composition of one chart with the inverse of another chart is a diffeomorphism
of class Ck called a transition map (see Fig. 2.3):

ϕβ ◦ ϕ−1α : ϕα(Uα ∪ Uβ)→ ϕβ(Uα ∪ Uβ),

given Uα ∪ Uβ 6= ∅. A smooth manifold is a topological manifold where transition
maps are all smooth.

In principle, there are two classes of manifolds that I wish to consider: embed-
ded submanifolds of Rm and quotient manifolds of Rm. Embedded submanifolds
are the easiest to understand, as they have the natural form of an explicit con-
straints set in Rm. Quotient spaces are more difficult to visualize, as they are not
defined as sets of matrices; rather, each point of the quotient space is an equiv-
alence class of Rm. A concrete example is the space of the SPD (or covariance)
matrices.

Recalling Definition 9, an m-dimensional manifold can be defined as a set M
covered with a collection of coordinate patches, or charts, that identify certain
subsets of M with open subsets of Rm. So the formal definition of a manifold
relies on the concepts of charts and atlases.

1 A is called an open covering of X if its elements are open subsets of X
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Fig. 2.3. Transition map.

Example 2.2 (The Cartography Case). One of the fundamental problems in is cre-
ating a planar map of the Earth depicted in Fig.2.4, which reproduces, in an
optimal way, the distances between geographic objects. Mathematically this prob-
lem corresponds to the problem of mapping isometrically a sphere to R2. It is
known that, as a consequence of the “Theorema egregium” by Gauss [Ber03], it
is impossible to create a map of the Earth that preserves all (geodesic) distances
because the Earth is not flat or, more precisely, its Gaussian curvature is positive.

(a) (b)

Fig. 2.4. The cartography problem of creating a planar map of the Earth: the spherical
surface of the Earth in (a) is to be mapped into a local chart (b) so that it preserves the
geodesic distances.

LetM be a set. A bijection (one-to-one correspondence) φ of a subset U ofM
onto an open subset of Rm is called a m-dimensional chart of the set M, denoted
by (U , φ). Given a chart (U , φ) and X ∈ U , the elements φ(X) ∈ Rm are called the
coordinates of X in the chart. Thus, it is possible to study objects associated with
U by bringing them to the subset φ(U) of Rm. For example, if f is a real-valued
function on U , then the function composition f ◦ φ−1 is a function from Rm to
R, with domain φ(U), to which methods of real analysis can be applied. To take
advantage of this idea, you must require that each point of the set M be at least
in one chart domain. I give an intuitive example considering the space of the SPD
tensor commonly known as covariance matrices.
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Bringing together all the charts ofM the concept of atlas naturally pops out. A
C∞ (smooth, i.e., differentiable for all degrees of differentiation) atlas ofM→ Rd
is a collection of charts (Uα, φα) of the set M such that

•
⋃
α Uα =M,

• for any pair α, β with Uα∪Uβ 6= ∅, the set φα(Uα∪Uβ) and the set φβ(Uα∪Uβ)
are open sets in Rm and the change of coordinates φβ ◦ φ−1α : Rm 7→ Rm is
smooth.

Given an atlas A, let A+ be the set of all charts (U , φ) such that A∪ {(U , φ)}
is also an atlas. It is easy to see that A+ is also an atlas, called the maximal atlas
(or complete atlas) generated by the atlas A. Two atlases are equivalent if and
only if they generate the same maximal atlas. A maximal atlas of a set M is also
called a differentiable structure on M.

Given a manifold (M,A+), a chart of the set M that belongs to A+ is called
a chart of the manifold (M,A+), and its domain is a coordinate domain of the
manifold. With a chart around a point X ∈M, I mean a chart of (M,A+), whose
domain U contains X. The set U is then a coordinate neighbourhood of X.

A manifold is connected if it cannot be expressed as the disjoint union of two
nonempty open sets. Equivalently (for a manifold), any two points can be joined
by a piecewise smooth curve segment. The connected components of a manifold
are open, thus they admit a natural differentiable structure as open submanifolds.

2.4.1 Embedded manifolds

This kind of manifolds is almost everywhere. In fact, all tangible objects can be
represented as smooth two-dimensional manifolds residing in the three-dimensional
Euclidean space. Such manifolds are often referred as embedded manifolds, as they
constitute subspaces of a larger ambient space (the 3-dimensional world) and are
embedded into it.

They can be described by a smooth map φ : U 7→ Rm from a subset U of Rm−1.
In this case the set U is called a parametrization domain, while M = φ(U) in Rm
is referred to as a parametric manifold.

Let (M,A+) and (N ,B+) be manifolds such that N ⊂M. The manifold N is
called an immersed submanifold ofM if the inclusion map f : N →M : X 7→ X is
an immersion. The concepts of immersion (and submersion) will make it possible
to define submanifolds in a concise way. Let f : M → N be a differentiable
function from a manifold M of dimension m1 into a manifold N of dimension
m2. Given a point X of M, the rank of f at X is the dimension of the range of
df̂(φ1(X)) : Rm1 → Rm2 , where f̂ = φ2 ◦ f ◦φ−11 (where φ1 and φ2 are charts in a

neighbourhood of X) is a coordinate representation of f around X, and df̂(φ1(X))

denotes the differential of f̂ at φ1(X).The function f is called an immersion if its
rank is equal to m1 at each point of its domain (hence m1 ≤ m2 ). f is a submersion
and the rank of its differential is m2, that is, df is surjective (therefore m2 ≥ m1).

SinceM and N are manifolds, they are also topological spaces with their man-
ifold topology. If the manifold topology of N coincides with its subspace topology
induced from the topological spaceM, then N is called an embedded submanifold
of M. In particular, an N in RN is locally a level set of a smooth submersive
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function f : RN → Rm (N is m + k dimensional and k is the dimension of N
): without loss of generality, any point X ∈ N has an open neighbourhood given
by f−1(0) (0 ∈ Rm) (obviously f(X) = 0, and N is endowed with the relative
topology inherited from RN .

2.4.2 Quotient manifolds

Fig. 2.5. Quotient Manifold.

Intuitively, quotient manifolds are built from suitable identification of points of
a given manifold. More formally letM be a manifold equipped with an equivalence
relation (reflexive, symmetric, and transitive) ∼. The set

[X] := {Y ∈M : X ∼ Y}

that is of all elements that are equivalent to a point X is called the equivalence
class containing X. The set M/ ∼:= {[X] : X ∈ M} of all equivalence classes of
∼ in M is called the quotient of M by ∼. The mapping π :M→M/ ∼ defined
by X 7→ [X] is called the natural projection or canonical projection.

Let (M,A+) be a manifold with an equivalence relation ∼ and let B+ be a
manifold structure on the setM/ ∼. The manifold (M/ ∼,B+) is called a quotient
manifold of (M,A+) if the natural projection π is a submersion (see the previous
Subsection for details). Examples of quotient manifolds are the real projective
space, Grassmann manifolds and the space of SPD matrices. To “visualize” the
concept of quotient manifold, an example is depicted in Fig. 2.5.

When M is Rd×d or a sub-manifold (or embedded manifold) of Rd×d, I call
M/ ∼ a matrix quotient manifold. I call a matrix manifold any manifold that is
constructed from Rd×d by the operations of taking embedded sub-manifolds and
quotient manifolds.

2.4.3 Tangent vectors and tangent spaces

At each point of a differentiable manifoldM you can draw a tangent space (tangent
plane in the 2D case). Tangent spaces (see Fig. 2.6) are of fundamental importance
in the theory of differentiable manifolds, because they are needed if one wishes to
make sense of the notion of the directional derivative. Intuitively speaking, you
think of the tangent space at a point as the best linear approximation of the
manifold near that point.



2.5 Riemannian Geometry 17

Fig. 2.6. Tangent vectors and tangent spaces.

Let M be a manifold. A smooth mapping γ : R → M : t 7→ γ(t) is called a
curve in M. The idea of defining a derivative

γ(t) := lim
r→0

γ(t+ r)− γ(t)

r

requires a vector space structure to compute the difference γ(t + r) − γ(t) thus
fails for an abstract nonlinear manifold. To overcome this problem one proceed as
follows, given a smooth realvalued function f on M, the function

f ◦ γ : t 7→ f(γ(t))

is a smooth function from R to R with a well-defined classical derivative.
Let FX(M) denote the set of smooth real-valued functions defined on a neigh-

bourhood of X. A tangent vector ξX to a manifold M at a point X is a mapping
from FX(M) to R such that there exists a curve γ on M with γ(0) = X which
satisfies

ξX = γ̇(0)f :=
d(f(γ(t)))

dt
,

where t = 0 for all f ∈ FX(M). Such a curve γ is said to realize the tangent vector
ξX. The tangent space to M at X, denoted by TXM, is the set of all the tangent
vectors to M at X. This set admits a structure of vector space as follows. Given
γ̇1(0) and γ̇2(0) in TXM and a, b ∈ R, define

(aγ̇1(0) + bγ̇2(0))f := a(γ̇1(0)f) + b(γ̇2(0)f).

In other words, the tangent vectors (the elements of TXM) are the “velocities” of
the curves inM issuing from X ∈M or, equivalently, the “directional derivatives”
of the smooth functions defined in a neighbourhood of X.

2.5 Riemannian Geometry

As we have seen, tangent vectors on manifolds generalize the notion of a direc-
tional derivative, but to define the concept of length of a curve it is necessary to
make a step further. This is done by endowing every tangent space TXM with an
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inner product 〈.〉X, i.e., a bilinear, symmetric positive-definite form and the inner
product induces a norm

||ξX||X :=
√
〈ξX, ξX〉X,

and therefore a distance between points on M.
A manifold whose tangent spaces are endowed with a smoothly varying inner

product is called a Riemannian manifold. The smoothly varying inner product is
called the Riemannian metric g. I will use interchangeably the notation

g(ξX, ζX) = gX(ξX, ζX) = 〈ξX, ζX〉 = 〈ξX, ζX〉X

to denote the inner product of two elements ξX and ζX of TXM. A vector space en-
dowed with an inner product is a particular Riemannian manifold called Euclidean
space. It is worth noting that any manifold admits a Riemannian structure.

The Riemannian distance on a connected Riemannian manifold M is

d :M×M→ R : d(X,Y) = inf
Γ
L(γ),

where Γ is the set of all curves in M joining the points X and Y, γ ∈ Γ , and

L(γ) =
∫ b
a

√
〈γ̇(t), γ̇(t)〉. It can be shown that the Riemannian distance defines a

metric; i.e.,

(positive-definiteness) d(X,Y) ≥ 0, with d(X,Y) = 0 iff X = Y;
(symmetry) d(X,Y) = d(Y,X);
(triangle inequality) d(X,Z) + d(Z,Y) ≥ d(X,Y).

2.5.1 Exponential mapping

Fig. 2.7. Exponential Mapping.

In Riemannian geometry the exponential mapping (see Fig. 2.7) can be thought
as a way to a map point ξX from one of the tangent spaces TXM toM. To intro-
duce the exponential mapping, it is necessary to define a geodesic curve. A geodesic
γ on a Riemannian manifoldM is a smooth parametric curve, with parameter pro-
portional to the arc-length s induced by the metric (ds =

√
g(ξX, ζX) dt) which

(locally) minimises the distance between two points onM (the latter given by the
infimum of the lengths of all curves connecting the points in question. They are
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also given by the parallel curves (with respect to the Levi-Civita connection), but
I shall not elaborate on this point any further, since this is not strictly needed for
our purposes.

For every ξ ∈ TXM, exists a unique geodesic γ(t; X, ξ) : I → M such that
γ(0) = X and γ̇(0) = ξ. Moreover, you have the homogeneity property γ(t; X, ξ) :=
γ(at; X, ξ). The mapping

expX : TXM→ X : ξ 7→ expX ξ = γ(1; X, ξ)

is called the exponential map at X. When the domain of definition of expXM is
the whole TXM for all X ∈M, the manifoldM is termed (geodesically) complete.
It can be shown that expX defines a local diffeomorphism (smooth bijection) of a
neighbourhood of 0X ∈ TXM onto a neighbourhood UXM, therefore, in general,
it is not a global diffeomorphism.

2.5.2 Lie Groups

Lie groups are, by definition, are both groups and manifolds and their group oper-
ations are differentiable. Group operations are then automatically C∞. Examples
of Lie groups are Gl(n,R) (the general linear group), O(n) (the orthogonal group),
SO(n) (special orthogonal group), O(p, q), and SO(p, q).

2.5.3 Homogeneous Spaces

Many geometric objects appear, not as a Lie group, but as a quotient of a Lie
group by a subgroup. Such objects are called homogeneous spaces. Consider, for
example, the set of all k-dimensional vector subspaces of Rm. I denote this set
by Grass(k, d) and call it a Grassmann manifold. It is also a quotient of Lie
groups. Introduce the orthogonal group O(n) of all linear isometries of Rm, so
that Grass(k, d) = O(d)/(O(k) × O(d − k)). Another important group which is
also a quotient manifold is Sym+

d , composed by the SPD matrices. It can be
defined as Sym+

d = Gl(n,R)/O(d,R). The name homogeneous space expresses
their fundamental property: colloquially, each point sees the same landscape.

Recall that quotient manifolds are defined by equivalence relations. In the case
G/H of a Lie group G divided by some subgroup H, the manifold character of the
quotient is guaranteed as long as the subgroup H is closed in G. Moreover, compact
subgroup(s) H will produce Riemannian geometry on the quotient. Assuming a
Riemannian metric g on G and wants to push it down to the quotient G/H. Thus,
you need that g is invariant under the action of H that is called the isotropy group
of G/H.

Let G any Lie group and consider the left translation map λY : G→ G : X 7→
YX as in Fig. 2.8. It is a diffeomorphism by definition2, so its differential dλY is a
linear isomorphism between the two tangent spaces TXG and TYXG. Picking any
Euclidean structure (any positive definite quadratic form) on TIG (the tangent
space to G at the identity element I) and transporting it to TYG by demanding

2 A (smooth) diffeomorphism f : M1 → M2 is a bijection such that f and its inverse
are both smooth.
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Fig. 2.8. Left Translation Map.

that dλY be an isometry, namely a mapping which preserve the distance among
points, a Riemannian metric can be built. In particular, doing this for every Y ∈ G,
one gets a Riemannian metric on G which is invariant under left multiplication,
and thus it is called left invariant. In general it will not be also right invariant.
When G is compact, a bi-invariant Riemannian metric always exists.

2.5.4 Symmetric Spaces

Fig. 2.9. A Symmetric Space.

A symmetric space is a connected Riemannian manifold. Locally symmetric
spaces are defined as the Riemannian manifolds for which the local geodesic sym-
metry around any point is a local isometry. This symmetry around X, denoted by
iX, is defined as the (geodesic) map changing γ(t) into γ(−t) for every geodesic
γ through X = γ(0), depicted in Fig. 2.9; i.e. geodesic are indefinitely extendible.
If the manifold is complete, then one can define a global symmetry iX :M→M
and the manifoldM is then called symmetric if all the iX are isometries. ThusM
is symmetric.

Example 2.3. This example shows the effect of composing isometries on a sym-
metric space. Let γ a geodesic curve, iX and iY two isometries, and γ(0) = X,
γ(c) = Y. If γ(t) and γ(t+2c) are defined, then iXiY(γ(t)) = γ(t+2c) as depicted
in Fig. 2.10

Here I point out some interesting facts about symmetric spaces. First, if M is a
symmetric space then M is complete. Moreover iX is univocally defined. Second,
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Fig. 2.10. Composition of isometries on a symmetric space.

if M is simply connected3 and locally symmetric, then it is (globally) symmetric.
Third, imagine to remove a point from M. So, M is no longer complete and
therefore symmetric, but it is still locally symmetric. Last but not least, Lie groups
can be symmetric spaces. Let G a Lie group with a (bi)invariant metric, then G
is a symmetric space.

To conclude I relate geodesics to one parameter group. It could be defined as
a one-parameter group. In fact, let γ : R→ G geodesic and γ(0) = I. Then

iγ(t)iI(γ(u)) = γ(u+ 2t),

but iγ(t)iI(σ) = γ(t)σγ(t), then iI(σ) = σ−1 and

iγ(t)(σ
−1) = γ(t)σγ(t).

Therefore
γ(u+ 2t) = γ(t)γ(u)γ(t),

and if u = 0 γ(2t) = γ(t)2, so γ(nt) = γ(t)n. It follows that

γ(t1 + t2) = γ(t1)γ(t2).

If t1/t2 is rational, the hypothesis always holds. Vice versa, given a one-parameter
group, it coincides with the geodesic starting from the identity with the same
velocity vector.

2.6 Cases of Interest

This Section contains two case studies of matrix manifolds: Sym+ and Grass(p, n)
which are exploited in this thesis for practical applications.

2.6.1 Sym+ and Sym

Sym+, the space of the SPD matrices, can be turned into is a symmetric Rieman-
nian manifold. More precisely, Sym+ can be built as a quotient manifold G/H,
where G = GL(n,R) and H = O(n). Given a point X in Sym+, a map ϕ, and its

3 A connected topological space is simply connected if any loop (with a base point P)
can be continuously shrunk to the constant loop P (abuse of notation)
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(a)

(b)

Fig. 2.11. Metric Invariance of Sym+.

differential ϕ∗ (also termed push-forward map) between two tangent spaces, then
the (Euclidean) metric on the tangent spaces is invariant and can be written as
follow (see Fig. 2.11(a)):

〈ξX, ζX〉X = 〈ϕ∗(ξX), ϕ∗(ζX)〉ϕ(X).

Given A ∈ O(n), the action of H on Sym+ is shown in the following case:

I ∈ Sym+ 7→ AIAT = AAT = X ∈ Sym+,

which correspond to the following mapping between tangent spaces

ζI 7→ AζIA
T = ζX,

as shown in Fig. 2.11(b). From the last equation one derives that

ζI = A−1ζXA
−T .

To measure the distance between pair of elements on TISym
+ the usual Frobe-

nius (Euclidean) norm
〈ξI, ζI〉I := tr(ξIζ

T
I )

is adopted. By imposing 〈ξI, ζI〉I = 〈ξX, ζX〉X, one obtain that

〈ξX, ζX〉X = tr(A−1ξXA−TA−1ζXA−T )

= tr(A−1ξX(AAT )−1ζXA−T )

= tr(A−TA−1ξX(AAT )−1ζX)

= tr(AAT )−1ξX(AAT )−1ζX)

= tr(X−1ξXX−1ζX).
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If ζX = ξX
||ξX||2X = tr((X−1ξX)2),

which is the Riemannian metric on Sym+.
The geodesic curves on Sym+ are one-parameter (sub)groups. In particular

γ(t; X, ξX) = exp(tA)X exp((tA)T )

= exp(tA)︸ ︷︷ ︸
1+tA+...

X exp(tAT )︸ ︷︷ ︸
1+tAT+...

= X + t(AX + XAT︸ ︷︷ ︸
ξX

),

thus
ξX = AX + XAT .

If X = I, then ξX = A + AT , moreover, if ξI is known, one can define A = 1/2ξI,
so

γ(t; I, ξI) = exp(
t

2
ξI) exp(

t

2
ξI) = exp(ξI).

Finally, it is worth noting the relation between Sym+ and Sym, the space of
the symmetric matrices. Sym is the vector space of real symmetric matrices. By
definition

TXSym
+ := Sym ∀X ∈ Sym+.

In fact, the tangent space of Sym+ at any point, is Sym, the space of symmetric
matrices. Indeed, let us consider an interval J ⊂ R containing 0, and let us consider
a smooth curve of matrices J 3 t 7→ γ(t) ∈ Sym+ with Σ(0) = I. Its “velocity”
at I, namely γ̇(0), belongs to Sym, since the derivative of γ(t) is still a symmetric
matrix. Vice versa, given a matrix ξ∈Sym, it is possible to find a curve in Sym+

starting at I with velocity given by ξ = γ̇(0). Taking for instance γ(t) = exp(tξ),
if we diagonalize the matrix W and denote its eigenvalues by wi, i = 1, 2, . . . , d,
then the eigenvalues of γ(t) are exp(twi) > 0, i = 1, 2, . . . , d. Therefore, the matrix
is positive definite. By continuity, any curve with the same velocity at I is locally
in Sym+.

2.6.2 Grass(p, n)

Let n be a positive integer and let p be a positive integer not greater than n. Let
Grass(p, n) denote the set of all p-dimensional subspaces of Rn, it can be endowed a
matrix manifold structure. In particular, The Grass(p, n) is a p×(np)-dimensional
compact Riemannian manifold derived as a quotient space of orthogonal groups

Grass(p, n) = O(n)/O(p)×O(n− p),

where O(m) is the group of m×m orthonormal matrices.
Let ∼ denote the equivalence relation on Rn defined by

X ∼ Y ⇐⇒ span(X) = span(Y),
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where span(X) denotes the subspace {Xα : α ∈ Rp} spanned by the columns of
X. The set of all matrix representations of span(X) is the equivalence relation
necessary to define the quotient manifold and can be denoted as

π−1(π(X)) = {XM : M ∈ Rp×p}.

If a matrix X and a subspace X satisfy X = span(X), one can say that X is the
span of X ∈ Rn×p, or that X is the matrix representation of X .

The associated Riemannian metric with Grass(p, n) can be used to scalar prod-
uct between X and Y at Z as

〈X,Y〉Z =
〈X,Z〉
||Z||2

.

In order to show that Grass(p, n) admits a structure of a Riemannian quotient
manifold, it is necessary to show that

〈ξYM, ζYM〉YM = 〈ξY, ζY〉Y

for all M ∈ Rp×p as follows. Given Y ∈ Rn×p and ξ ∈ TYGrass(p, n) (n×p), then

ξYM = ξYM, ∀M ∈ Rp×p.

Using the last equation

〈ξYM, ζYM〉YM = 〈ξYM, ζYM〉YM

= tr
(
((YM)TYM)−1(ξYM)−1(ξYM)T (ζYM)

)
= tr

(
M−1(YTY)−1M−TMT ξTYζYM

)
= tr

(
(YTY)−1ξTYζYM

)
= 〈ξY, ζY〉Y.

This shows that Grass(p, n), endowed with the Riemannian metric

〈ξ, ζ〉Y := 〈ξY, ζY〉Y

is a Riemannian quotient manifold of Rn×p.
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3.1 Introduction

To solve a computer vision problem one needs three components. (1) A model
that relates the visual data x and the world state c mathematically. The model
specifies a family of possible relationships between x and c and it is governed by
the model parameters Θ. (2) A learning algorithm that allows to fit Θ using paired
training examples {xi, ci}i=1,...,N where N is the number of training examples. (3)
An inference method that takes a new observation x and uses the model to return
the posterior P (c|x, Θ) over the world state c.

In this thesis, the model, which is the most important ingredient, is fixed.
The discriminative models are chosen. These models are used to obtain P (c|x, Θ)
directly, that means to learn a direct map from inputs x to the world states (or
class label) c. There are several reasons for choosing discriminative rather than
generative models (that lean the joint probability P (c,x)) listed by Vapnik [Vap98].
To summarise, he says that “one should solve the learning problem directly and
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never solve a more general problem as an intermediate step (such as learn P (x|c)
as done by generative models)”.

Discriminative models learn the posterior probability P (c|x, Θ) making the
distribution parameters a probabilistic function of the data x and the parameters
Θ. Therefore the goal of a (supervised) learning algorithm is to fit the parameters
Θ using paired training couples {xi, ci}i=1,...,N where ci ∈ C, i.e. the set of all
the classes of the problem. This can be done using either the maximum likelihood
(ML) approach, or the maximum a posteriori (MAP) one or the Bayesian one
[Bel06, HTF11, Pri12].

In this Chapter, the machine learning techniques to train the adopted discrim-
inative models are described.To be more precise, in Sec. 3.2 boosting methods are
presented and in particular an approach of this family termed LogitBoost, inspired
by [TPM08]. This because it is one of the most successful works that combine
LogitBoost and tensor representation to describe the visual objects. Then, I de-
scribe the Random Forest framework [Bre01] for its neutral capacity to manage
multi-class classification problems and their robustness and efficiency.

Since boosting and random forests (RFs) are strictly related, at this introduc-
tory level it is interesting to give a picture of which is the relation between these
approaches, as done in Fig. 3.1, inspired by [KSB]. In this Figure, there are three

Fig. 3.1. Boosting and Tree-structured Classifiers.

main actors (depicted as the axis): Bagging, Boosting, and Tree Hierarchy. Bag-
ging, or bootstrap aggregation [Bre96], is a technique used to reduce the variance
of an estimated prediction function. Bagging seems to work particularly well for
high-variance, low-bias procedures, such as trees. For regression or “continuous”
classification problems, one can simply fit the same regression tree many times, to
bootstrap sampled versions of the training data, and average the result. For classi-
fication, each committee of trees casts a vote for the predicted class. Boosting was
initially proposed as a committee method as well, although, unlike bagging, the
committee of weak learners evolves over time, and the members cast a weighted
vote. Boosting appears to dominate bagging on most problems, and became the
preferred option. RF [Bre01] is a substantial modification of bagging that builds a
large collection of decorrelated trees, and then averages them. On many problems
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the performance of RF is very similar to boosting, and they are simpler to train
and tune. As a consequence, RF is popular.

Sec. 3.4, with relation to the support vector machines (SVMs) classification,
shows how to learn naturally from tensor data using kernel methods. This family
of methods allows to deal with widely different kinds of input examples (i.e. ten-
sors), so it overcomes the limitation of the previous machine learning approaches
(Boosting and RF) which are designed to deal with vector examples and can be
used with tensors only “reducing” tensors to vectors.

Finally, Sec, 3.5, as done for the previous Chapter, instantiates the presented
approaches to some cases of interest.

3.2 Boosting

Boosting is one of the most powerful learning ideas introduced in the last twenty
years. It was originally designed for classification problems and can be extended
profitably to regression as well. The motivation for boosting was a procedure that
combines the outputs of many “weak” classifiers to produce a powerful committee.
I begin by describing the most popular boosting algorithm, called AdaBoost.M1
(or just AdaBoost), to give a rough idea of how boosting works. Consider a two-
class problem, with the output variable coded as C ∈ {−1, 1}. Given a vector of
features x, a classifier G(x) produces a prediction taking one of the two values
{−1, 1}. The error rate on the training sample is

ε =
1

N

N∑
i=1

1{ci 6= G(xi)},

where 1{·} is an indicator function. A weak classifier is one whose error rate is
only slightly better than random guessing. The purpose of boosting is to apply
the weak classification algorithm sequentially updating the weight of each example
after every round, thereby producing a sequence of weak classifiers Gm(X),m =
1, 2, . . . ,M . The predictions from all of them are then combined through a weighted
majority vote to produce the final prediction:

G(x) = sign

(
M∑
m=1

αmGm(x)

)
.

Here α1, α2, . . . , αM are computed by the boosting algorithm, and weight the con-
tribution of each respective Gm(x). Their effect is to give higher influence to the
more accurate classifiers in the sequence.

Alg. 1 shows a schematic of the AdaBoost procedure. Initially, all of the
weights are set to wi = 1/N , so that the first step simply trains the classifier
on the data in the usual manner. For each successive iteration m = 2, 3, . . . ,M ,
the observation weights are individually modified and the classification algorithm
is reapplied to the weighted observations. At step m, the observations that were
misclassified by the classifier Gm−1(x) induced at the previous step have their
weights increased, whereas the weights are decreased for those that were classified
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Algorithm 1: AdaBoost

Data: A dataset of N couples {(x1, c1), . . . , (xN , cN )}, ci ∈ {−1, 1}.
Result: The classifier G.
begin

Initialize the observation weights wi = 1/N, i = 1, 2, . . . , N ;
for m = 1, 2, . . . ,M do

Fit a classifier Gm(x) to the training data using weights wi;
Compute

εm =

∑N
i=1 wi1{ci 6= G(xi)}∑N

i=1 wi
;

Compute αm = log
(

1−εm
εm

)
;

Set wi = wi exp[αm1{ci 6= Gm(xi)}, i = 1, 2 . . . , N ;

correctly. Therefore, as the iterations proceed, the observations, that are difficult
to classify correctly, receive ever-increasing influence. Each successive classifier is
thereby forced to concentrate on those training observations that are missed by
the previous ones in the sequence. Many variations of AdaBoost are formalised
in a unified gradient descent procedure, proposed in [MBB00]. A recent advance-
ment in the theory of boosting is represented by [WSJ+11], where the concept of
Equilibrium margin (Emargin) is given. It suggests not only that the minimum
margin, that means a high classification confidence, may be inessential for the
generalization error [HTF11], but also that a large Emargin and a small empirical
error imply a smaller bound of the generalization error.

In the follows, after a state-of-the-are characterization of boosting approaches,
the binary and multi-class logistic regression boosting (LogitBoost), which are the
probabilistic versions of Boosting, are described.

3.2.1 State of The Art of Boosting Methods

First of all it is necessary to highlight that in the past few years a lot of new boost-
ing frameworks have been presented, thus being impossible to report all of them.
See the chosen references to be introduced to boosting and start to deal with the
most popular state-of-the-art approaches. [Bel06, Sch02] are deep introductions in
boosting theory, while in [MR03, Pri12] a good (but more essential) theoretical
introduction is provided, in addition to the state-of-the-art approaches. Moreover,
[MR03] presents an interesting list of open issues of boosting approaches which
must be known by everyone wants to use and develop boosting approaches. The
Friedman et al. paper [FHT00], on statistical (probabilistic) boosting, is funda-
mental to understand the theory under LogitBoost. If one already knows the basic
concepts of Boosting, [KSB] is a good tutorial to touch the edge of the research of
boosting methods for computer vision problems.
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3.2.1.1 Binary Methods

I start with the so-called AdaBoostREG [ROM01], where examples that are mis-
labelled and usually more difficult to classify should be forced to have a positive
margin. Assuming that the hard examples are noisy, the algorithm chooses the mis-

trust parameter at iteration m, ζ
(m)
n , an amount by which the example (xn, cn)

influenced the decision in the previous iterations.
Another solution is called BrownBoost algorithm [Fre01], which is based on the

Boosting by Majority (BBM) algorithm [Fre95]. An important difference between
BBM and AdaBoost is that BMM uses a pre-assigned number of iterations. This
strategy leads to the fact that only the examples which have a large margin will
eventually be correctly labelled.

SmoothBoost [Ser04] is an intelligent solution to solve the problem of outliers in
which the skewness of the data distributions is taken into account. SmoothBoost
is similar to AdaBoost in maintaining a set of weights at each iteration, except for
the fact that there is a cut-off to the weights assigned to the examples with very
negative margin.

The last approach is MPLBoost [BDTB08] (Multiple Pose Learning Boosting),
which introduces a new discriminative unsupervised clustering procedure embed-
ded into boosting framework. Therefore, the hard examples are split into different
categories where these are more easily classifiable. This method is also interesting
because it overcomes another limit of AdaBoost and LogitBoost, namely the ne-
cessity of aligned visual examples to achieve good classification results. Typically,
this operation is done manually by users and it is laborious, but with MPLBoost
it is possible to learn and align data simultaneously.

A recent interesting boosting approach, termed UBoost [SWSW11], presents
a way to exploit the “universum data”, i.e. data which belongs to none of the
classes of the classification problem of interest, but may contain useful prior domain
knowledge to train a classifier. Another recent boosting approach, denoted Taylor-
Boost, is proposed in [SMSV11]. It supports any combination of loss function
and first or second order optimization, and includes classical algorithms, such as
AdaBoost, GradientBoost or LogitBoost as special cases.

Finally, it is worth noting that the work described in [ZLSB10], where one can
find an on-line semi-supervised learning algorithm, able to combine both boosting
and multiple instance learning which has been used to build a tracking-by-detection
framework of visual objects.

3.2.1.2 Multi-class Methods

Important approaches for multi-class boosting frameworks share one or both of the
following key concepts: first, because of large intra-class and inter-class variation, a
divide-and-conquer strategy is necessary (for example the tree-structure described
in [WN07]). Second, to share features, which is an effective and efficient strategy
for multi-class learning [TMF07]. Moreover, if the two previous key concepts are
integrated with a cascade decision strategy (see [VJV03]), a robust multi-class
object detector is built.

In [TMF07], for the first time, it is proposed to share features in a boosting
framework termed JointBoost. Each feature in any boosting algorithm determines
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uniquely a weak classifier, so sharing features means sharing weak classifiers. The
underlying idea of [TMF07] is that when detectors are trained jointly, the sys-
tem looks for features that generalize across multiple classes. Conversely, when
detectors are trained independently, the system learns class-specific features. The
disadvantage of class-specific features is that for a large number of classes there are
not enough computational resources. There is an unclear point in [TMF07], namely
how to compute a posterior distribution after a tree classifier is built. This issue is
taken seriously into account by [Tu05], where a general boosting-based classifica-
tion model called Probabilistic Boosting Tree (PBT) is proposed. Furthermore, the
PBT builds a tree structure recursively from posterior distribution. At each level
the input training set is divided into two new sets, in which AdaBoost is applied
to make two new strong classifiers.

Vector Boosting, presented in [HALL05], is a multi-class extension of AdaBoost,
whose weak learners and final output are vectors rather than scalars. This method
produces a multi-class multi-label classifier and is used in [HALL05] to learn
branching nodes of a WFS (Width-First-Search) tree structure. The combination
of WFS and VectorBoost is adopted to achieve higher performances in both speed
and accuracy for multi-class problem. The main limit of the approach is that the
tree structure is fixed, so one needs to select sub-categories manually. Multi-class
Bhattacharyya boosting (MBHBoost) [LL05] avoids the computational burden to
build a tree-structured classifier using a single cascade of classifiers where only the
most significant information in the training set are considered.

In [ZZMC07, ZPG+06] the multi-class LogitBoost framework is implemented
with good results. In [ZPG+06], the multi-class classifier is combined with a tree
structure and a cascade structure, but, unlike previous works, the dividing opera-
tion at each node is operated at a class level rather than at a sample level. This
strategy leads to a lower risk of over-fitting. [ZZMC07] extends [ZPG+06] with a
learning procedure called probabilistic boosting network (PBN) for joint real-time
object detection and pose estimation. PBN integrates evidence from two building
blocks, namely a multi-class boosting classifier for pose estimation as in [ZPG+06]
and a boosted detection cascade for object detection. Following the approach in
[TMF07], an efficient shared multi-class detection cascade is proposed in [ZMG08],
where the detector uses a cascade that joins the handling of similar object classes,
separating off classes at appropriate levels of the cascade at the same time.

A recent advancement in multi-class boosting frameworks is represented by
[MS11], where a theory of multi-class boosting is presented by making more accu-
rate and identifying the optimal requirements for convergence on the weak classi-
fiers in a multi-class setting. Another interesting work is described in [GB11], in
which the authors give the theoretical guarantees necessary for the convergence of
smooth convex objective functions with the existing gradient boosting framework
[MBB00]. Finally, totally-corrective multi-class boosting is presented in [SH11],
that formulates a direct optimization method for training multi-class boosting,
unlike most previous multi-class boosting algorithms which decompose a multi-
boost problem into multiple independent binary boosting problems.
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3.2.2 Binary Logistic Regression Boosting

This Section describes the probabilistic version of boosting family of approaches,
which shares the same underlying idea as AdaBoost (see Alg. 1) and that is called
LogitBoost (Logistic Regression Boosting). It is proposed in [FHT00]. An adapted
version of LogitBoost, able to deal with tensor representation, is used in Chap. 5
for detection problems.

This procedure fits additive logistic regression models by stage-wise optimiza-
tion of the Bernoulli log-likelihood L that is formulated for a dataset example x
as follows:

L = log(P (c = 1|x)) + (1− (c = 1)) log(1− P (c = 1|x)),

where c ∈ C = {0, 1} is the label associated with x and P (c = 1|x) is the (poste-
rior) probability to be labelled as 1. It can be written as

P (c = 1|x) = P (x) =
e(G(x))

e(−G(x)) + e(G(x))
.

Alg. 2 details binary LogitBoost for two class classification problems, so that C ∈
{−1, 1}.

Algorithm 2: Binary LogitBoost

Data: A dataset of N couples {(x1, c1), . . . , (xN , cN )}, ci ∈ {0, 1}, G(xi) = 0, and
probability estimates p(xi) = 1

2
.

Result: The classifier G.
begin

Initialize the observation weights wi = 1/N, i = 1, 2, . . . , N ;
for m = 1, 2, . . . ,M do

Compute the working responses zi and weights wi

zi = ci−P (xi)
P (xi)(1−P (xi))

;

wi = P (xi)(1− P (xi);

Fit a the function fm(x) by a weighted last-square regression of zi to xi
using weights wi;
Update G(xi) = G(xi) + 1

2
fm(xi) and p(xi) as

P (xi) =
e(G(xi))

e(G(xi)) + e(−G(xi))
;

3.2.3 Multi-class Logistic Regression Boosting

Here LogitBoostis described in its general setting, namely the multi-class case. An
adapted version of multi-class LogitBoost, able to deal with tensor representation,
is used in Chap. 6 for classification problems.
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Let {(x1, c1), . . . , (xN , cN )} be a dataset where c = {1, 2, . . . ,K}. The log-
likelihood function, which generalize the binary one described previously, can be
constructed as in [Bis05]

L =

N∑
n=1

K∑
k=1

[1{cn = k} logP (k|xn) + (1− 1{cn = k})(1− logP (k|xn))], (3.1)

where 1{cn = k} is an indicator function and P (k|xn) is the model probability
that xn belongs to the k-th class which can be computed as follows.

P (k|xn) = Pk(xn) =
eGk(xn)∑K
j=1 e

Gj(xn)
, Gk(xn) =

K∑
i=1

hk(xn), (3.2)

in which eGk(xn)/
∑K
j=1 e

Gj(xn) is also called softmax approximation. The exact
form of hk(xn) is

hk(xn) =
K − 1

K

fk(xn)− 1

K

K∑
j=1

fj(xn)

 ,

where fk(xn) is a binary weak hypothesis.
Alg. 3 details multi-class LogitBoost for K class classification problem. In

Algorithm 3: Multi-class LogitBoost

Data: A dataset of N couples {(x1, c1), . . . , (xN , cN )}, ci ∈ {1, 2, . . . ,K},
G(xi) = 0, and probability estimates Pk(xi) = 1

K
.

Result: The classifier G = {G1, G2, . . . , GK}.
begin

Initialize the observation weights wik = 1/N, i = 1, 2, . . . , N ;
for m = 1, 2, . . . ,M do

for k = 1, 2, . . . ,K do
Compute the working responses zik and weights wik for the k-th class

zik = 1{c}i−Pk(xi)
Pk(xi)(1−Pk(xi))

;

wik = Pk(xi)(1− Pk(xi);

Fit a the function fmk(x) by a weighted last-square regression of zik
to xi using weights wik;

Set fmk(x) = K−1
K

(fmk(x)− 1
K

∑
j=1)Kfmj(x);

Set Gk(x) = Gk(x) + fmk(x);
Update Gk(xi) = Gk(xi) + 1

2
fm(xi) and p(xi) as

Pk(xn) =
eGk(xn)∑K
j=1 e

Gj(xn)
;

[FHT00] the superior performance of LogitBoost is proved, with respect to the
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other generalization obtained from AdaBoost algorithm, including Gentle Ad-
aBoost, AdaBoost.MH and AdaBoost.MR (see [FHT00, MR03] for the details
of these algorithms). This is due to the fact that the mentioned competitors of
LogitBoost turn multi-class classification problems into a sequence of binary clas-
sification problems, so the final classifier is build with a set of separate two-class
weak classifiers. Differently LogitBoost deals with multi-class classification prob-
lems without split them into sequences of binary classification problems.

The most recent advancement about the theory of multi-class Logitboost is
described in [SZ11] with a framework called AOSO-LogitBoost(AdaptiveOne-vs-
One LogitBoost). This new LogitBoost behaves as if it combined many one-vs-one
binary classifiers adaptively and demonstrates that it leads to higher classification
accuracy and faster convergence rate on a number of public datasets.

3.3 Bagging and Random Forests

Before starting to detail the RF method, it is necessary to recall the intuition
under Bagging, shared with RF. Bagging is a technique to reduce the variance
of an estimated prediction function. Consider first a regression problem. Suppose
to fit a model to the training data Z = {(x1, c1), (x2, c2), . . . , (xz, cz)}, obtaining
the prediction f(x) at input x. Bootstrap aggregation, or bagging, averages this
prediction over a collection of bootstrap samples, thereby reducing its variance.
For each bootstrap sample Zt, t = 1, 2, . . . , T , the model is fitted, giving prediction
ft(x). The bagging estimate is defined by

f(x) =
1

T

T∑
t=1

ft(x).

Bagging seems to work particularly well for high-variance, low-bias procedures,
such as trees. As previously shown, for regression or “continuous” classification
problems, one can simply fit the same regression tree many times to bootstrap
sampled versions of the training data, and average the result. For classification,
each committee of trees casts a vote for the predicted class.

RF [Bre01] is a substantial modification of bagging that builds a large collec-
tion of decorrelated trees, and then averages them. On many problems the RF
performance is very similar to boosting, and they are simpler to train and tune.

3.3.1 State of The Art of Random Forests methods

There is a rising interest on an ensemble of classifiers supervised learning approach
called RF [Bre01] for computer vision tasks. RF has demonstrated to be better or
at least comparable to other state-of-the-art methods in classification and regres-
sion tasks [CNM06]. RF has been applied to keypoint matching [LLF05, MTJ06],
segmentation [YCWE07], head pose estimation [FGVG11], human pose detec-
tion [SFC+11], object detection and recognition [GYR+11], image classification
[BZM07b, MNJ08] and semantic image segmentation [SJC08]. Recently RF has
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been combined with several other techniques for several supervised and unsuper-
vised learning tasks. It is worth noting that the most interesting one, which is
the combination of RF with Multiple Instance Learning [LSB10], Hough Trans-
form [GYR+11], Conditional Random Field [PT10]. Another interesting reference
is a recent generalization of RF [CSK11], termed Decision Forest, used for clas-
sification, regression, density estimation, manifold learning and semi-supervised
learning problems.

3.3.2 Random Forests

The basic ingredient of a (random) forest is a tree. Trees are ideal candidates for
bagging and RF, since they can capture complex interaction structures in the data,
and, if grown sufficiently deep, have relatively low bias. Since trees are notoriously
noisy, they benefit greatly from the averaging. Moreover, because of the fact that
each tree generated in bagging is identically distributed (i.d.), the expectation of
the average output is the same as the expectation of any tree. This means the bias
of bagged trees is the same as that of the individual trees, and the only prospect
to improve is through variance reduction. This is in contrast to boosting, where
the weak learners are computed in an adaptive way to remove bias, and hence
are not i.d.. An average of T i.i.d. (independent i.d.) random variables, each with
variance σ2, has variance 1

T σ
2. If the variables are simply i.d. with positive pairwise

correlation ρ, the variance of the average is

ρσ2 +
1

T
σ2.

As T increases, the second term disappears, but the first remains, hence the size
of the correlation of pairs of bagged trees limits the benefits of averaging. The
idea in RF (Alg. 4) is to improve the variance reduction of bagging by reducing
the correlation between the trees, without increasing the variance too much. This
is achieved in the tree-growing process through random selection of the input
variables, which, roughly speaking, corresponds to the different dimensions of a
feature vector x (utilized to describe a dataset example). Specifically, when growing
a tree on a bootstrapped dataset, before each splits, select m ≤ n of the input
variables at random as candidates for splitting. Typically, a value for m is

√
n.

Intuitively, reducing m the correlation between any pair of trees reduces in the
ensemble, and therefore reduces the variance of the average. To make a prediction
at a new example represented by x exploiting a RF learned as in Alg. 4, one should
do as follows.

Regression f(x) = 1
T

∑B
b=1 Tb(x).

Classification Let cb(x) be the class prediction of the b-th random-forest tree.
Then c = arg maxc∈{1,2,...,K}{cb(x)}T1 .

Each tree Tb in a forest is built and tested independently of other trees, hence
the overall training and testing procedures can be performed in parallel. During
the training, each tree receives a new bootstrapped training set generated by sub-
sampling with replacement of the original training set. I refer to the samples which
are not included during the training of a tree as the Out-Of-Bag (OOB) samples of
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Algorithm 4: Random Forest

Data: A dataset of z couples {(x1, c1), . . . , (xz, cz)}, ci ∈ {1, 2, . . . ,K}.
Result: A Random Forest {Tb}T1 .
begin

for t = 1, 2, . . . , T do
Draw a bootstrap sample of size n from the training data;
Grow a random-forest tree Tb to the bootstrapped data, by repeating
recursively the following steps for each terminal node of the tree;
repeat

Select m variables at random from the n variables;
Pick the best variable/split-point among the m;
Split the node into two daughter nodes;

until z ≥ zmin;

that tree. These samples can be used to compute the Out-Of-Bag-Error (OOBE)
of the tree, in addition to the ensemble which is a low-biased estimate of the
generalization error. An OOBE estimate is almost identical to the one obtained by
K-fold cross validation. Hence, unlike many other non-linear estimators, RF can be
fit in one sequence, with cross-validation being performed along the way. Therefore,
a standardized stop criterion to terminate automatically the training phase is to
look at the OOBE and, once it stabilizes the training, it can be terminated.

RF also uses the OOB samples to construct a different variable importance
measure (similarly to boosting), to calculate the prediction strength of each vari-
able. When the b-th tree is grown, the OOB samples are passed down the tree,
and the prediction accuracy is recorded. Then the values for the j-th variable are
randomly permuted in the OOB samples, and the accuracy is computed again.
The decrease in accuracy, as a result of this permuting, is averaged over all trees,
and is used as a measure for the importance of the variable j in the random forest.

Finally, before analysing the Kernel Methods, a simple comparison between
RF and LogitBoost is made, which can be useful to choose the right model in
practice. For what concerns RF: (1) it has good generalization performances, (2)
it has very fast learning and testing phases, (3) it is inherently multi-class, and
(4) it has few parameters for the training phase. Unfortunately, the learning of
different RF on the same data could be not consistent and it is not adaptive as
Boosting because different iterations of the algorithm, during the training phase,
are not tweaked in favour of the instances misclassified by previous iterations.
For what concerns LogitBoost,(1) it has a much stronger theoretical background
if compared with RF, because its consistency is proven, (2) it guarantees good
generalization performances, (3) it is characterized by a fast training and testing
phase, even if RF is faster in the training phase.

3.4 Kernel Methods

For what concerns the kernels methods and in particular SVMs with kernels, they
are a way to learn and apply discriminative models efficiently in very high dimen-
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sional (such as infinite-dimensional) feature spaces or/and dealing with non-vector
(i.e. tensor) inputs. Before detailing how to build a kernel and learn from it ex-
ploiting SVMs, I briefly give the idea under SVMs using the introduction given by
Andew Ng [Ng07]. To learn more about kernel methods and SVMs, good books
are [CST04, Bel06, HTF11, Pri12].

SVMs are built on the concept of (geometric) margin that can be considered
as a sort of “confidence” of the predictions made by an SVM classifier. Given a
training set, the goal is to try to find a decision boundary that maximizes the
margin, since this would reflect very confident predictions on the training set and
therefore a good “fit” of the discriminative model to the training data. Specifically,
this will result in a classifier that separates the positive and the negative training
examples with a “gap” (margin). Assuming to be given a training set that is
linearly separable (i.e. that it is possible to separate the positive and negative
examples using some separating hyperplane), to find the maximum (or optimal)
margin one should solve the following optimization problem:

max
γ,w,b

γ, s.t. ci(w
Tx + b) ≥ γ, i = 1, . . . ,m.

This corresponds to maximize the margin γ subject to each training example
having margin at least γ. (w,b) are the parameters that govern the separation
hyperplane. To the above-mentioned formulation, in order to find the optimal
solution, the constrain ||w|| = 1 should be imposed. But this constraint is a non-
convex one, so the optimization problem certainly is not in any format that can
be plugged into standard optimization software to solve. However one can add an
arbitrary scaling constraint on w and b without changing anything. So, after some
math, one can reformulate the previous optimization problem as

min
γ,w,b

1

2
||w||2, s.t.ci(w

Tx + b) ≥ 1, i = 1, . . . ,m.

Now the problem is transformed into a form that can be efficiently solved. The
above-mentioned problem is an optimization one, with a convex quadratic objec-
tive and only linear constraints. Its solution gives the optimal margin classifier.
This optimization problem can be solved using the commercial quadratic program-
ming (QP) code.

Since Kernel Methods are a family of standardized methods I refer to [CST04,
Bel06, HTF11, Pri12] for a good state of the art.

3.4.1 Fundamental Concepts of Kernel Methods

Many linear models for regression and classification (e.g. linear regression) can be
reformulated into an equivalent dual representation in which also the predictions
are based on linear combinations of a kernel function evaluated at the data. For
models based on a fixed non-linear feature space mapping φ(x), the kernel function
is given by the relation

k(xi,xj) = φ(xi)
Tφ(xj).

From this definition, one can see that the kernel is a symmetric function of its ar-
guments such that k(xi,xj) = k(xj ,xi). Intuitively, one can consider the function
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k as a similarity measure among examples. Obviously, in general, given complex
examples, a non-linear measure should be used to model that complexity. Then,
kernel methods represent an example in the dataset as the collection of similarities
between that example and all the other examples in the dataset. Hence, rather than
applying SVMs using the original input attributes x, my purpose is to learn using
some features φ(xi). Since the SVM optimization problem can be written entirely
in terms of inner products xTi xj this means that one can replace all those inner
products with φ(xi)

Tφ(xj). Therefore, given φ, one can easily compute k(xi,xj)
by finding φ(xi) and φ(xj) and taking their inner product. But what is more
interesting is that k(xi,xj) is often relatively inexpensive to calculate.

Consider some finite sets of m points {x1, . . . ,xm}, and let a square, m ×m
matrix K be defined so that its (i, j)-entry is given by Kij = k(xi,xj). This matrix
is called the Kernel matrix. If K is a valid Kernel, which imply a fast convergence
of the learning (optimization) procedure, then

Kij = k(xi,xj) = φ(xi)
Tφ(xj) = φ(xj)

Tφ(xi) = k(xj ,xi) = Kji,

hence K must be symmetric. Moreover, let φk(x) denote the k-th coordinate of
the vector φ(x), so that one find for any vector z the following condition

zTKz =
∑
i

∑
j ziKijzj

=
∑
i

∑
j ziφ(xj)

Tφ(xi)zj

=
∑
i

∑
j zi

∑
k φk(xj)

Tφk(xi)zj

=
∑
k

∑
i

∑
j ziφk(xj)

Tφk(xi)zj

=
∑
k

∑
i (ziφk(xi))

2

≥ 0.

Hence, if K is symmetric positive semi-definite. This condition for K it necessary
and sufficient to be a valid kernel (also called a Mercer kernel). The following result
is due to Mercer.

Theorem 3.1 (Mercer). Let K : Rn × Rn → R be given. Then for K to be
a valid (Mercer) kernel, it is necessary and sufficient that for any {x1, . . . ,xm},
(m <∞), the corresponding kernel matrix is symmetric positive semi-definite.

All the ingredients of a kernel machine have been presented, and the four key
aspects characterizing a kernel method can be presented using the schematic in
Alg. 5

3.4.2 Design Kernels from Tensor Metrics

Regarding the design of kernel for covariance matrices, the following procedure is
adopted. Given a dataset {Xi, yi}i=1,...,N where Xi are tensors and yi the associ-
ated labels

1. Choose a distance between a pair of tensors d(Xi,Xj) (See Sec. 3.5.2 to get
confident about tensor distances).
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Algorithm 5: Kernel Machine

Data: A dataset of m couples {(x1, c1), . . . , (xm, cm)}, ci ∈ {1, 2, . . . ,K}.
Result: A Kernel Machine.
begin
{x1, . . . ,xm} are embedded into a vector space, called the feature space, using
a kernel function k(xi,xj);
Linear relations are sought among the images of the data items in the feature
space and stored in the kernel matrix K(xi,xj);
The learning algorithms (i.e. SVM) are implemented in such a way that the
coordinates of the embedded points are not needed, only their pairwise inner
products;
The pairwise inner products can be computed efficiently directly from the
original data items using k(xi,xj);

2. Build a distance (dissimilarity) matrix D(Xi,Xj) as

D(Xi,Xj) =


d(X1,X1) · · · d(Xn,X1)

...
. . .

...

d(X1,Xn) · · · d(Xn,Xn)

 .
3. Turn D into a kernel (similarity) matrix as

K = exp

(
−1

µ(D)
D

)
where −1/µ(D) is a regularization term in which µ(D) is the average value of
D.

Since valid kernels are symmetric and positive semi-definite, it is not possible to
use directly those distances to build a valid kernel matrix. Hence, I apply a simple
and effective mapping which permits to turn a distance (dissimilarity) matrix into
a kernel matrix. A distance matrix D is made by the distance among all pairs of
training covariance matrices, therefore it is a symmetric matrix. It can be turned
into a similarity matrix applying the above-mentioned (non-linear) exponential
transformation of its entries.

3.4.3 Learning from Tensors with Kernel Methods

A kernel machine can be built using the procedure as follows.

1. Choose a kernel function k(Xi,Xj), where Xi,Xj are two tensors.
2. Define kernel matrix (also known as Gram matrix ) K(Xi,Xj) as

k(X1,X1) · · · k(Xn,X1)

...
. . .

...

k(X1,Xn) · · · k(Xn,Xn)

 ,
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3. Choose and apply a machine learning algorithm (i.e. an SVM) to learn the
parameters {αi}i=1,...,n of model f .

4. Apply the model to a new tensor Xn+1:

f(Xn+1)

n∑
i=1

αik(Xi,Xn+1).

where n is the number of examples in your dataset.

The most interesting characteristics of that procedure are: (1) the fact that ex-
ploiting their dual representation they only need inner products between dataset
examples (not their coordinates), therefore kernel machine is a perfect tool to
manage tensor representation; (2) their modularity. In fact, using this family of
methods it is possible to separate the design of the machine learning algorithm
from the design of the kernel matrix.

3.5 Cases of Interest

3.5.1 A Vector Classification Framework for Sym+
d

Alg. 6 describes a generic training framework for multi-class classification problems
using SPD tensors. It can use whatever binary or multi-class vector supervised
classification algorithm (i.e. LogitBoost and RFs) and in this thesis is use, in
Sec. 5.3,5.6,6.3,6.5, and 6.6. The idea under this simple generalization is to linearise
Sym+

d which is actually non-flat “hoping” that the distortion introduced by the
approximation is low. Hence, Alg. 6 is a valid procedure to learn a discriminative
model on Sym+

d . Now, it is simple to specialize this procedure (Alg. 6) for RF

Algorithm 6: A Vector Classification Framework for Sym+
d

Data: (X1, y1), . . . , (Xn, yn) with Xi ∈ Sym+
d and yi ∈ {1, . . . ,K} the class label.

Result: The classifier C.
begin

Linearise Sym+
d computing the standard log of a matrix ξXi = log(Xi);

Vectorize ξXi as ξxi(∈ Rd) = vec(ξXi) as described on Sec.2.2.6;

Learn a classifier C(ξxi) : Rd 7→ {1, . . . ,K} using any standard (vector)
supervised learning technique (RFs, Boosting, etc.);

(Alg. 4) and LogitBoost (Alg. 2 and Alg. 3). It is necessary to highlight that in
Alg. 6 the log operator in the standard logarithm of a matrix one.

3.5.2 Kernel Frameworks

3.5.2.1 Sym+
d

Alg. 7 describes a simple learning procedure which trains a kernel machine on
Sym+

d which exploits a distance measure among SPD matrices which is used in
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Sec. 4.3,5.4,6.4,and 6.7. I refer to the training set by {Xi, yi}i=1,...,n, where Xi are
SPD matrices. Alg. 7 exploits introduces an approximation of Sym+

d and it works

Algorithm 7: Kernel Methods on Sym+
d

Data: (X1, y1), . . . , (Xn, yn) with Xi ∈ Sym+
d and yi ∈ {1, . . . ,K} the class label.

Result: K and the SVM parameters.
begin

Build a Distance Matrix D(Xi,Xj) = tr((log(Xi)− log(Xj))
2);

Build a Kernel Matrix K(ξXi , ξXj ) as described in Sec. 3.4.2;
The learning algorithms (i.e. SVM) are implemented in such a way that the
coordinates of the embedded points are not needed, only their pairwise inner
products;

well only if the curvature of Sym+
d is low. To adopt more sophisticated distances

among SPD tensors, refer to Sec. 6.4.

3.5.2.2 Grass(p, n)

As shown in Sec. 2.6.2, a point X ∈ Grass(p, n) is a (p-dimensional) subspace
of Rn. One can easily build a “collection” of p n-dimensional vectors, but may
ask what is possible to describe with a collection of vectors. The most representa-
tive examples are action classification [TVC08, LBK10] and object categorization
[LYT06, HL08, TVC08, HL09, CV09]. Grass(p, n) math for computer vision and
machine learning problems is well explained in [TVC08, HL08, SM09].

Given one of the distances between two subspaces X,Y of Rn described in
[TVC08], for example

d(X,Y) = (n−
n∑
i=1

cos2 θi)
1/2, (3.3)

where θi is a singular value (see Sec. 2.2.5) of X′Y, I can easily derive a kernel for
Grass(p, n), exploiting the procedure described in Sec. 3.4.2. Therefore, similarly
to the previous case, Alg. 8 describes how to learn a kernel machine on Grass(p, n)

3.5.2.3 Hausdorff Spaces

Finally, I show the procedure to learn a kernel machine on a tensor space in
which the Hausdorff distance is used. Even though the procedure to build a kernel
machine on a tensor space is surely clear, at this point, it is worth noting this
case for two reasons: first, this method is used in Sec.5.4; second, it is a procedure
that can be handled as a flexible object description. To be more precise, given two
sets of vectors X and Y, they do not need to contain the same number of vectors.
Therefore, if X ∈ Rm and Y ∈ Rn, then m and n can be different. The Hausdorff
distance is formulated as:
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Algorithm 8: Kernel Methods on Grass(p, n)

Data: (X1, y1), . . . , (Xn, yn) with Xi ∈ Grass(p, n) and yi ∈ {1, . . . ,K} the class
label.

Result: K and the SVM parameters.
begin

Build a Distance Matrix D(Xi,Xj) = (n−
∑n
i=1 cos2 θi)

1/2;
Build a Kernel Matrix K(Xi,Xj) from D(Xi,Xj) as described in Sec. 3.4.2;
The learning algorithms (i.e. SVM) are implemented in such a way that the
coordinates of the embedded points are not needed, unlike their pairwise inner
products;

d(X,Y) = max[max
x∈X

(min
y∈Y

(||x,y||)),max
y∈Y

(min
x∈X

(||y,x||))] x,y ∈ Rz, (3.4)

and it has been used in object classification and detection [HKR93, SKP99,
JKF01]. Alg. 9 describes how to learn a kernel machine on Hausdorff spaces.

Algorithm 9: Kernel Methods on Hausdorff Spaces

Data: (X1, y1), . . . , (Xn, yn) where Xi is a set of vectors in Rz and
yi ∈ {1, . . . ,K} the class label.

Result: K and the SVM parameters.
begin

Build a Distance Matrix
D(Xi,Xj) = max[maxx∈Xi(miny∈Xj (||x,y||)),maxy∈Xj (minx∈Xi(||y,x||))];
Build a Kernel Matrix K(ξXi , ξXj ) from D(Xi,Xj) as described in Sec. 3.4.2;
The learning algorithms (i.e. SVM) are implemented in such a way that the
coordinates of the embedded points are not needed, unlike their pairwise inner
products;





4

Tensor Representation for Object Description

Contents
4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43
4.2 Tensor Representations . . . . . . . . . . . . . . . . . . . . . . . . . . . 44

4.2.1 Covariance Tensors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44
4.2.2 Entropy-Mutual Information Tensor . . . . . . . . . . . . . . . 45
4.2.3 Self-Similarity Tensor . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46
4.2.4 Grassmann Tensor . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47

4.3 An Experimental Study on Tensor Representation . . 48
4.3.1 HOC Human Dataset . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49
4.3.2 ViPER Human Dataset . . . . . . . . . . . . . . . . . . . . . . . . . . 49
4.3.3 QMUL Head Dataset . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52
4.3.4 HIIT Head Dataset . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52
4.3.5 CIFAR10 Object Dataset . . . . . . . . . . . . . . . . . . . . . . . . 54

4.1 Introduction

A key problem in object recognition is finding a suitable object representation (or
description). For historical and computational reasons, vector descriptions that
encode particular statistical properties of the data have been broadly applied.
However, by employing tensor (matrix) representation, one is able to describe the
interactions of multiple factors inherent to image formation. A successful work,
which inspired mine, is the covariance matrix [TPM06, TPM08], briefly described
in Sec. 4.2.1, that has demonstrated to lead to state-of-the-art results for sev-
eral classification and detection tasks. More generally, structure and deformation
tensors are used in image understanding, especially for segmentation, grouping,
motion analysis and texture segmentation [BWBM06], and can also be utilized
in regularization approaches for medical image registration [ACW+07, FPAA07].
My goal is to understand if one can exploit the tensor representation to build a
more powerful object descriptor with respect to the covariance, combining differ-
ent sources of information to obtain better classification and detection accuracy
results.
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In this Chapter, novel kinds of tensor representation are proposed. Sec. 4.2.2
introduces EMI (Entropy and Mutual Information), a tensor composed of mixing
entropy and mutual information, which shows its potentiality in visual object
classification problems, where it outperforms covariance representation. Sec. 4.2.3
presents SST (Self Similarity Tensor), which measures the self-similarity of object
parts or image features similarly to COV and EMI. Finally, Sec. 4.2.4 describes the
Grassmann tensor, that, unlike the previous matrix tensors, represents an object
in the form of a set of feature vectors.

For what concerns the EMI tensor, it has a Symd structure and, for each
source of information, it uses histogram as intermediate representation. Then, the
entropy and mutual information measures are computed from the histograms to
populate the entries of the tensor. EMI is applied to general object classification
problems and finer human body part classifications, discovering that EMI tensor
leads to considerably better performances than the COV representation, even if its
computational cost is higher if multiple instances of EMI are utilized to describe
an object, due to the usage of histograms1.

The SST has been used in two different settings: first, using a robust regular
grid structure [DT05, LSP06, TFC+10] and a single source information coming
from all the patches, the structural information of an object is characterized. Sec-
ond, exploiting multiple sources of information and comparing each other, the con-
tent of an image is described. I expect that, utilizing the first setting, SST should
be better suited for the detection task; while, employing the second setting, SST
should be more appropriate for classification purposes.

Regarding the Grassmann tensor, similarly to the structural SST, it is used
to characterise the structure of an object, but it uses a set of vectors instead of
a matrix representation. It has a fundamental advantage if compared to matrix
tensors: the possibility to represent an object with a variable number of vectors.
This feature can be useful in case of occlusions or crowded scenarios.

Finally, in Sec. 4.3 an experimental study on object representation using the
tensor description is presented.

4.2 Tensor Representations

4.2.1 Covariance Tensors

In this Section, I briefly recap how to build a covariance matrix for classification
and detection purposes as depicted in Fig. 4.1, which is well described in [TPM06].

Mathematically speaking, a covariance tensor corresponds to an SPD (Symmet-
ric Positive Definite) matrix and the value of its determinant is a direct measure
of the dispersion of the associated Gaussian multivariate random variable.

Given an image I of the image, one can compute the covariance tensor COV
of d image features

Φ(I) = [F1(I), F2(I), . . . , Fd(I)]

1 EMI cannot exploit the integral histogram representation proposed in [Por05]. This is
because it does not provide a way to compute the joint histogram which is necessary
for EMI tensor.
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Fig. 4.1. COV descriptor. The d-dimensional feature map set Φ(I) is constructed from
input image I.

such as color, image derivatives, etc., according to:

COVij(I) =
1

|I| − 1

∑
p∈I

(Fi(p)−µ(Fi))(Fj(p)−µ(Fj))
T , i, j ∈ {1, . . . , d}. (4.1)

where µ is the mean operator and | · | denotes the set size operator. To visualize
a covariance matrix, one can act in the following way. A COV matrix is a Sym+

d

matrix where the diagonal elements encode the variance, while the off-diagonal ele-
ments cipher the correlation between each pair of image features in Φ(I). Therefore
a COV matrix is defined as follows:

COV(I) =


var(F1(I), F1(I)) · · · corr(F1(I), Fd(I))

...
. . .

...

corr(Fd(I), F1(I)) · · · var(Fd(I), Fd(I))

 . (4.2)

The covariance matrix is a very informative descriptor, in fact it encodes the
spatial layout of the features and their variance and correlation. Exploiting the
fact that covariance coefficients can be expressed in terms of first and second
order integral images [TPM06, TPM08] the computation of a covariance matrix
can cost only O(d2) operations.

4.2.2 Entropy-Mutual Information Tensor

Similarly to covariance matrices, EMI tensor is a dense region descriptor. In fact,
given an image I of W ×H pixels and a set of d feature maps Φ(I) of W ×H × d
pixels:

Φ(I) = [F1W×H
(I)), F2W×H

(I), . . . , FdW×H
(I)], (4.3)

where F1, . . . , Fd are the image features. Then, one can use Φ(I) to build d his-
tograms of n bins:

H(Φ(I)) = [h(F1(I))1×n, h(F2(I))1×n, . . . , h(Fd(I))1×n], (4.4)

in which h is the operator used to build a histogram. In order to obtain a prob-
ability distribution from each feature, it is necessary to normalize each row of
H(Φ(I)), such as

∑n
i=1 h(Fj(I))n = 1 and j ∈ {1, . . . , d}. The normalized version

of H(Φ(I)) is denoted as Ĥ(Φ(I)):

Ĥ(Φ(I)) = [ĥ(F1(I))1×n, ĥ(F2(I))1×n, . . . , ĥ(Fd(I))1×n]. (4.5)
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Using Eq. (4.5), the EMI tensor is defined as:

EMI(I) =


E(Ĥ1(Φ(I))) · · · MI(Ĥ1d(Φ(I)))

...
. . .

...

MI(Ĥd1(Φ(I))) · · · E(Ĥd(Φ(I)))

 , (4.6)

where E(Ĥi(Φ(I))) is the entropy operator defined as

E(Ĥi(Φ(I))) =

n∑
j=1

ĥ(Fi(I))j log(ĥ(Fi(I))j) i ∈ {1, . . . , d}, (4.7)

and MI(Ĥd1(Φ(I))) is the mutual-information operator

MI(Ĥij(Φ(I))) =

n∑
l=1

n∑
k=1

ĥ(Fi, Fj(I))lk log(
ĥ(Fi, Fj(I))lk

ĥ(Fi(I))lĥ(Fj(I))k
) i, j ∈ {1, . . . , d}.

(4.8)

The joint probability is represented in Eq. (4.8) as ĥ(Fi, Fj(I)). As previousle men-
tioned, EMI matrix belongs to Symd of real numbers. For classification purposes,
a minimal representation EMI is defined. Since it has only d(d+ 1)/2 independent
coefficients, which are the upper triangular or lower triangular part of the matrix,
I decide to consider only the upper triangular part and vectorize it. The resulting

vector belongs to R
d(d+1)

2 and the standard machine learning framework can be
used with this representation.

4.2.3 Self-Similarity Tensor

This Section investigates a tensor called Self-Similarity Tensor (SST) which can
be used to describe an object robustly both for classification and detection pur-
poses. SST is similar in spirit to structure tensors, which are powerful tools that
can be used in such computer vision tasks as edge or corner detection [Tri04],
spatio-temporal recognition [LCSL07] and the similarity-based pattern recognition
approaches [BMF04, CCFM08, BP09]. The concept of self-similarity is explored
in two ways: first, considering an object as composed by parts, the distance (or
alternatively similarity) among different parts represented by the same (unique)
feature description is compared. This to obtain a sort of structural characterization
of an object. Second, combining the ideas below the object bank representation
[LSXFF10] and the dual representation of kernel methods (see Sec. 3.4), the dis-
tance of some image features is compared to provide a sort of content characteri-
zation of an object.

From a mathematical point of view, in the first case (structural characteriza-
tion) the intuition is that, given a patch-based representation of an object, it can be
possible to find a compact and useful object description capturing the relationship
between patches: SSTstruct. It is a Sym matrix of distances among the patches (or
parts). Then, SSTstruct can be vectorized and used as an object descriptor. More
precisely, given an image I of W ×H pixels and a set Λ(I) of W ×H×m pixels of
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m image patches described by any kind of feature description (like HOG [DT05],
COV [TPM06], LBP [MYL+08], etc.):

Λ(I) = [f1×n(P1(I)), f1×n(P2(I)), . . . , f1×n(Pm(I))], (4.9)

where f is a function which produces an n-dimensional vector descriptor (see
Eq.(2.1)) and P extracts a patch from the image I. Using Eq. (4.9), the SSTstruct

is defined as:

SSTstruct(I) =


d(f(P1(I)), f(P1(I))) · · · d(f(P1(I)), f(Pm(I)))

...
. . .

...

d(f(Pm(I)), f(P1(I))) · · · d(f(Pm(I)), f(Pm(I)))

 . (4.10)

For what concerns the second case (content characterization), the idea is sim-
ilar to COV tensor (see Sec.4.2.1), but in this case a vector distance (like the
Euclidean distance) is utilized to measure the “difference” between image features
(like color, image derivatives, etc.), so a Sym matrix of distances can be built. It is
called SSTcontent tensor. Then, SSTcontent can be vectorized and used as an object
descriptor. More precisely, given an image I of W × H pixels and a set Φ(I) of
W ×H × d image features (like color, directional derivatives, etc.):

Φ(I) = [f(F1W×H
(I))), f(F2W×H

(I)), . . . , f(FdW×H
(I))], (4.11)

where f is a function which produces an n-dimensional vector descriptor (see
Eq.(2.1)) and F extracts a feature from the image I. Using Eq. (4.11), the
SSTcontent is defined in the following way:

SSTcontent(I) =


d(f(F1(I)), f(F1(I))) · · · d(f(F1(I)), f(Fd(I)))

...
. . .

...

d(f(Fd(I)), f(F1(I))) · · · d(f(Fd(I)), f(Fd(I)))

 , (4.12)

where d represents any distance function for a pair of n-dimensional vectors.

4.2.4 Grassmann Tensor

This Section describes how to exploit a different tensor representation in the form
of a set of feature vectors. Each set can be represented as a point of a Grassmann
manifold for which the learning schematic defined in Alg. 8 is adopted. Typically
this tensor is used in the following scenarios: action classification [TVC08, LBK10]
and object categorization [LYT06, HL08, TVC08, HL09, CV09]. The idea, in the
latter case, is to represent a visual object from multiple pictures of the individ-
ual, taken from different angles, under different illumination or at different places.
When comparing such sets of image vectors, one can define the similarity be-
tween sets, considering those sets as linear submanifolds of a Euclidean space (see
Sec. 2.4.1 for details). Therefore, the problem of learning from submanifolds is
formulated on a Grassmann manifold.

Due to the fact that only one image is available for an object, recalling the
idea under SSTstruct, an object is represented as a set of parts (i.e. patches) of
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an image I. Hence, the set of vectors Λ(I) (4.9) is exactly the object descriptor.
According to the experiments, I found that the best choice to represent each single
feature vector is to adopt the LBP [OPM02] features which perform much better
if compared to HOG features. This is because the adopted datasets contain low
resolution objects and, in this condition, LBP has demonstrated to lead to state-
of-the-art performances.

It must be highlighted that, to obtain the best performances from the Grass-
mann tensor (GRT), its normalised version must be computed. Given a pair of
submanifolds X and Y, one has to compute the matrix product Z = XY′ first, to
compute the distance between them. Therefore, the idea is to replace Z with its
normalised version Ẑ that can be computed as:

Ẑ = diag

(
1√
Z

)
Z diag

(
1√
Z

)
, (4.13)

where diag(M) is equal to M, at the diagonal entries, and the rest is truncated
to zero. The same normalization is used to compute normalized kernel matrices
[CST04] and a similar one is utilized for COV tensors [TPM08]. Then, to compute

the distance between X and Y using Ẑ, the projection distance (3.3) is adopted.
Besides, the set of vector representation has a fundamental advantage than the

matrix one, that is the possibility to represent an object with a variable number
of vectors that can be useful in case of occlusions or crowded scenarios. On the
contrary, the main drawback is represented by its computational cost that is higher
if compared to the previous matrix tensor one. This is because the distance between
a pair of (Grassmann) tensors needs the usage of the SVD decomposition (see
Sec. 2.2.5). It must be highlighted that GRT performs poorly if it is exploited
to characterise the content of an image using different image features. This is
due to the fact that the sub-manifold, built by the vectorised image features, is
meaningless.

4.3 An Experimental Study on Tensor Representation

In this experimental section, a kernel SVM is learned as described in Alg. 7 and
LibLinear [FCH+08], in order to compare COV, EMI, SSTcontent, SSTstruct, and
GRT tensors. For all of these, in the training phase an 8-fold cross-validation
strategy is adopted. For what concerns the learning parameter C, the grid-search
is used varying it in 2−3, . . . , 2 with step 1.

Owing to the fact that some tensors (i.e. COV, EMI, and SSTcontent) and the
others (SSTstruct, GRT) are devoted to characterize the content of an object and
the structure respectively, the results keep these two classes separated. At the
end of this experimental section, one should be able to decide which is the best
way to represent the content and the structure of an object, exploiting the tensor
representation. This could be useful to choose the best tensor and to combine
tensor representations with different functions.

With regard to the adopted feature, for COV, EMI, and SSTcontent tensors,
given an image I in the dataset, a set Φ(I) of d features, where d = 13 and x, y
are the pixel location, is composed of:
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Φ(I, x, y) =
[
F1(Y ) . . . F8(Y ) Y Cb Cr G| |(Y ) GO(Y )

]
, (4.14)

where F1(Y ) . . . F8(Y ) is the filter bank, consisting of scaled symmetric DOOG
(Difference Of Offset Gaussian) [Dol], applied only on the luminance channel of
the perceptually uniform CIELab color space. Y , Cb and Cr are the three color
channels obtained by transforming the original RGB image. G| |(Y ) and GO(Y )
are the gradient magnitude and orientation calculated on the Y channel map,
respectively.

On the contrary, SSTstruct and GRT are based on the LBP features [VF08] with
a patch dimension of 16 × 16 pixels. As mentioned in Sec.4.2.4, LBP represents
the best choice for tiny or low resolution objects.

In the following experiments, two main types of classification tasks for the
experimental comparison of the tensors are considered: (1) human characterization
tasks, such as body or head orientation estimation (Sec. 4.3.1,4.3.2, 4.3.3, and
4.3.4); and (2) object classification (Sec. 4.3.5).

Finally, it is worth highlighting that different tensors lie in different spaces,
i.e. Sym+ and to Sym, so different metrics are adopted. In particular, for COV
tensors the geodesic CBH distance (see Sec. 6.4 where is treated in greater detail)
is adopted.

4.3.1 HOC Human Dataset

For the body orientation task, the results on a dataset named Human Orientation
Classification (HOC) [Tosa] are reported. HOC is derived by the ETHZ [Sch, SD09]
human re-acquisition dataset, representing pedestrians in different orientations and
(background) conditions, captured by hand-held cameras. More precisely, the data
was recorded using a pair of AVT Marlins mounted on a chariot, with a resolution
of 640×480, a frame-rate of 13−14 fps, and with a camera baseline of 0.4 meters.
The images suffer from unbayering artefacts, slight motion blur, and sometimes
missing contrast.

ETHZ is structured in three sequences of busy shopping streets for a total of
8555 images, each image 64× 32 pixels containing a pedestrian. The images into 4
orientation classes (Front, Back, Left, and Right) are manually split, individuating
a training and a testing partition. The dataset is complex due to the low resolution,
the severe illumination artefacts, the occlusions and the consistent scale changes.
According to the results in Fig. 4.2 regarding the content tensors, one could notice
that EMI beats all the other tensor representations with an average accuracy of
68%. For what concerns the structural tensors, Fig. 4.3 shows that GRT beats
SSTstruct with a 72%. This suggests that the set of tensor representation is more
accurate with noisy data.

4.3.2 ViPER Human Dataset

The ViPER human orientation dataset [Tosa] is derived from [GBT] and contains
two camera views of 632 pedestrians. Each pair contains some images of the same
pedestrian taken from different cameras, under different viewpoints, orientations
and illumination conditions. All images are normalized to 128 × 48 pixels. Most
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Fig. 4.2. A comparison of content tensors on the HOC dataset. Confusion matrices
showing the performances of COV (a), EMI (b), and SSTcontent (c) tensor representations
on the HOC dataset [Tosa].
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Fig. 4.3. A comparison of structural tensors on the HOC dataset. Confusion matrices
showing the performances of SSTstruct (a) and GRT (b) tensor representations on the
HOC dataset [Tosa].
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of the examples contain a viewpoint change of 90 degrees. Since the task is the
human orientation classification, the images of the two views are joined. Then, all
the images are reflected vertically and small translations are performed to build a
dataset of 8969 pedestrian images, finally. To build a balanced training set, about
1500 images are randomly sampled for each class and the testing set is composed
of the remaining images. As in the previous case, the images into 4 orientation
classes (Front, Back, Left, and Right) are manually split, individuating a training
and a testing partition.

In this dataset the head appearance variability is very high, so, according to
[EG10], it is difficult to build a reliable model, able to discriminate the front/back
classes. It is necessary to remark that this fact does not affect the goodness of the
other results in this Section, because all of the datasets are still challenging for
other different reasons (light conditions, occlusions, etc.). Not surprisingly, the
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Fig. 4.4. A comparison of content tensors on the ViPER dataset. A Comparison of
content tensors on the ViPER dataset. Confusion matrices showing the performances
of COV (a), EMI (b), and SSTcontent (c) tensor representations on the ViPER human
orientation dataset [Tosa].

results in Fig. 4.4 have a low average accuracy with all the tensors; however it
is interesting to highlight that, among the content tensors, EMI is the best with
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Fig. 4.5. A comparison of structural tensors on the ViPER dataset. Confusion matrices
showing the performances of SSTstruct (a) and GRT (b) tensor representations on the
ViPER human orientation dataset [Tosa].

41%, as in the previous case. Observing Fig. 4.5, one can notice that GTR beats
SSTcontent again, with 62% of average accuracy.

4.3.3 QMUL Head Dataset

The QMUL head dataset is formed by the head images taken from the i-LIDS
dataset [Off08], which portrays an airport indoor scenario. To be more precise,
i-LIDS consists of extensive CCTV footages of a busy underground scene cap-
tured under challenging lighting and viewing conditions. The video data are from
two underground stations with video frame size of 640 × 480 recorded at 25 fps.
Typically, the head image size varies from 60× 60 to 10× 10 pixels depending on
the distance to the camera. They had been normalised to a size of 50× 50. These
scenes were crowded most of the time with many people, present at any given
time. People were often under some degrees of occlusion and exhibited large head
pose variations. Appearance variation of people includes beard faces, bold heads,
light and dark hair and skin colours, all of which challenge modelling head/face
image appearance with any assumption on clear-cut hair, skin and background
segmentation.

The classification dataset obtained is composed of 18667 images, uniformly
partitioned into 5 classes: Back (BA), Front (FR), Left (LE), Right (RI), and
Background (BG). Background images contain portions of the background scene.
The images are 50×50 pixels. The challenges of this dataset consist in scarce/non-
homogeneous illumination, and quite severe occlusions. As for the HOC dataset
(see Sec. 4.3.1), the results in Fig. 4.6 show that EMI achieves the best perfor-
mances and that GRT outperforms SSTstruct (Fig. 4.7).

4.3.4 HIIT Head Dataset

The HIIT head dataset has been built combining some indoor image data cap-
tured in a controlled scenario (a vision lab) and the Pointing04 [Gou], Multi-
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Fig. 4.6. A comparison between content tensors on the QMUL dataset. Confusion ma-
trices showing the performances of COV (a), EMI (b), and SSTcontent (c) tensor repre-
sentations on the QMUL head dataset [TFC+10].
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Fig. 4.7. A comparison between structural tensors on the QMUL dataset. Confusion
matrices showing the performances of SSTstruct (a) and GRT (b) tensor representations
on the QMUL head dataset [TFC+10].
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PIE [GMC+07], and QMUL [Tosa] datasets. The Pointing04 and the Multi-PIE
[GMC+07] are briefly described to characterise completely the HIIT data.

The Pointing04 corpus was included as part of the Pointing 2004 Workshop
on Visual Observation of Deictic Gestures to allow the uniform evaluation of head
pose estimation systems. It was also used as one of two datasets to evaluate head
pose estimators in the 2006 International Workshop on Classification of Events Ac-
tivities and Relationships (CLEAR’06) [SBB+06]. Pointing04 consists of 15 sets of
near-field images, with each set containing 2 series of 93 images of the same person
at 93 discrete poses. The discrete poses span both pitch and yaw, ranging from
−90◦ to 90◦ in both DOF. The subjects range in age from 20 to 40 years old, five
possessing facial hair and seven wearing glasses. Each subject was photographed
against a uniform background, and the heads were manually cropped. Head pose
ground truth was obtained by directional suggestion. The CMU Multi-PIE (Pose,
Illumination, and Expression) face database contains more than 750000 images of
337 people recorded in up to four sessions over the span of five months. Subjects
were imaged under 15 view points and 19 illumination conditions while displaying
a range of facial expressions.

The resulting (HIIT) dataset has 6 classes, each composed of 2000 examples.
The size of the examples is 50× 50 pixels, without any margins around the heads.
The main characteristic of this dataset is that it has a stable background and
no occlusions. However, in this dataset the facial appearance of the people varies
significantly in a number of factors, including identity, illumination, pose, and
expression. Therefore it represents the ideal scenario where to evaluate how an
head orientation classifier is robust to changes in the appearance. The results
reported in Fig.4.8 show the power of the COV tensor in ideal conditions, where
the examples in the dataset are not noisy, even if the appearance variability is high.
In fact it outperforms with 79% of average accuracy all the other representations.
On the other hand, for what concerns the structural tensors, Fig.4.9 shows the
power of the GRT tensor in its natural applicative scenario. In fact, in this case
GRT tensor leads to an average accuracy of 93%.

4.3.5 CIFAR10 Object Dataset

The CIFAR10 is a dataset used for object classification and it has 10 object cat-
egories, namely aeroplane, bird, car, cat, deer, dog, frog, horse, ship, and truck.
The training set has 5000 examples per class, while the test set has 1000 examples
per class. The 32× 32 resolution of the images in the dataset and their variability
make recognition very difficult. In fact a traditional method, based on features
extracted at interest points, does not work. Observing the results in Fig. 4.10,
even considering the challenging object recognition task, EMI confirms its supe-
rior performances. On the other hand, SSTcontent performs poorly. However, the
performance of SSTcontent is extremely different if the set of image features used to
build the tensor has been changed. In particular, augmenting the number of fea-
tures adopting a feature set learned by a Restricted Boltzmann Machine (RBM)
[BdFL+11], SSTcontent, one can obtain the best average classification accuracy, if
compared to EMI and COV tensors. Fig. 4.12(a)(b)(c) shows the results using the
feature set obtained convolving the filters depicted in Fig. 4.12(d) with the dataset
images to build the tensor representations.
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Fig. 4.8. A comparison of content tensors on the HIIT dataset. Confusion matrices
showing the performances of COV (a), EMI (b), and SSTcontent (c) tensor representations
on the HIIT head dataset [Tosa].
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Fig. 4.9. A comparison of structural tensors on the HIIT dataset. Confusion matrices
showing the performances of SSTstruct (a) and GRT (b) tensor representations on the
HIIT head dataset [Tosa].
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Fig. 4.10. A comparison of content tensors on the CIFAR10 dataset. Confusion matrices
showing the performances of COV (a), EMI (b), and SSTcontent (c) tensor representations
on the CIFAR10 object dataset [KH06].
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Fig. 4.11. A comparison of structural tensors on the CIFAR10 dataset. Confusion ma-
trices showing the performances of SSTstruct (a) and GRT (b) tensor representations on
the CIFAR10 object dataset [KH06].
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For what concerns structural tensors, GRT with 52% show the best perfor-
mance as for all of the previous cases (see Fig. 4.11). However, the computational
cost of GTR is much higher than SSTstruct.
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Fig. 4.12. A Comparison between content tensors on the CIFAR10 dataset using
RBM features. Confusion matrices showing the performances of COV (a), EMI (b), and
SSTcontent (c) tensor representations using RMB features (d) [BdFL+11] on the CIFAR10
object dataset [KH06].
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5.1 Introduction

This Chapter is focused on the object detection task and in particular the pedes-
trian detection task. This because people are among the most important “objects”
that can be detected from images and videos. Detecting and tracking people are
thus important areas of research, and computer vision is bound to play a key role.
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Applications include robotics, entertainment, surveillance, and care for the elderly
and disabled.

To represent a person COV (covariance) tensors (introduced in Sec. 4.2.1) and
SST tensors (i.e. SSTstruct) (described in Sec. 4.2.3) are utilized. The main contri-
butions of this chapter are the following: four object architectures and the relatives
learning frameworks are outlined; i.e. a framework based on automatic feature
selection made using Boosting which improves the state-of-the-art pedestrian de-
tector [TPM08], a part-based pedestrian detector on multiple tangent spaces (one
for every part) based on COV tensors, a low resolution pedestrian detector based
on SSTstruct, and a robust to occlusion set-based pedestrian detection framework,
where the body configuration is not fixed.

In particular, in Sec. 5.2 a fast machine learning framework derived from
[TPM08] is described: it is able to manage the covariance matrices as OI (Objects
of Interest) descriptors into a binary boosting classification framework. This work
shows that the detection performances of the state-of-the-art approach [TPM08],
which combines boosting and the use of covariance matrices, can be greatly im-
proved, from both a computational and a qualitative point of view, by considering
practical and theoretical issues, and allowing also the estimation of occlusions in
a fine way.

The previous work introduces different contributions that are useful to speed
up the model training phase and the accuracy of the final detection. However,
since the covariances are embedded in a boosting framework which selects them
in an unsupervised way, the model remains quite expensive to be computed. In
fact, thousands of covariances are selected to build the final detector. Since the
OIs are the people (i.e. pedestrians), it is possible to exploit the human knowl-
edge to impose a fixed human part-based layout which can be composed by few
semantic parts. In particular, to model a human a hierarchy of fixed overlapped
parts is adopted; each part is described by COV tensors. Each part is modelled by
a boosted classifier, trained using boosting on different tangent spaces of a Rie-
mannian manifold (see. 2.4.3 for details). All the classifiers are then linked to form
a high-level classifier, through weighted summation, whose weights are estimated
during the training phase. This classification approach, described in Sec. 5.3, is
simple, light and robust.

In Sec. 5.4 SSTstruct tensors can be used to measure the self-similarity of the
parts of a human body for the detection task. So, a framework for this task is pro-
posed, where pedestrians can be at very low resolution. Since parts are tricky to be
modelled from low resolution images, a pyramidal regular grid of patches [LSP06]
is adopted. Then it is shown how SSTstruct beats the COV tensor representation
for the low resolution pedestrian detection task on a state-of-the-art pedestrian
detection benchmark.

In Sec. 5.5 the attention is focused on the capability to detect people in crowded
scenes. In fact, if people detection is performed in a non-problematic scenario
(e.g. one where people are not occluded, with a limited range of scales and pose
variations), a lot of effective existing frameworks can be used to solve this task.
On the other hand, if the scenario is problematic, only few of these systems are
really useful. Since none of the above-mentioned frameworks is able to solve all
of the previous problems, a unified framework capable to jointly cope with those
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issues is studied. Therefore, the goal is to detect as many people as possible even
when the human body layout cannot be inferred.

In Sec. 5.6 an effective, low-latency, affordable detection architecture is pro-
posed, especially suited for embedded platforms. In particular, a highly-parallelizable
classification framework is designed for an implementation based on FPGA (Field
Programmable Gate Array) implementation, which is suitable for generic detec-
tion problems. The underlying model consists in a weighted sum of boosted binary
classifiers, trained on a set of overlapped image patches. Each patch is described
by estimating the COV tensor of a set of image features. COV tensors live on
Riemannian Manifolds (see Sec. 2.6 for details), and can be approximated in the
Euclidean Vector Space in a cheap and conservative way. The hardware design has
been developed in parallel and with specific architectural solutions, allowing a fast
response without degrading the functional performances. The proposed architec-
ture has been finally specialized in the challenging pedestrian detection problem.

Sec. 5.7 shows the results of the human detection module developed for the
SAMURAI (Suspicious and Abnormal behaviour Monitoring Using a netwoRk of
cAmeras) project, in which some of the previous introduced frameworks are im-
plemented. The project aims to develop and integrate an intelligent surveillance
system for robust monitoring of both inside and surrounding areas of a critical pub-
lic infrastructure. SAMURAI employs networked heterogeneous sensors, so that
multiple complementary sources of information can be fused to create a visualisa-
tion of a more complete “big picture” of a crowded public space.

5.2 Fast Unsupervised Covariance Tensor Selection for
Pedestrian Detection

In this Section, draw attention to the state-of-the-art method in [TPM08], where a
human is modelled by covariance matrices of image features. This representation is
convenient: covariances allow a great robustness, regarding for example the number
of elements employed for its calculus, i.e. the size of the pedestrian. The method
reaches its best performances on the INRIA dataset [Dal05], but such tools have
a considerable computational burden. In fact, covariance matrices, which belong
to Sym+ 2.6.1, live in a Riemannian manifold 2.5. This implies a high effort to
compute all the operators needed in the boosting framework.

A set of improvements is proposed, that tackle the framework of [TPM08] under
both a theoretical point of view, managing the Riemannian geometry in a finer
and economic way, and a practical point of view, suggesting tricks that lead to a
more robust and faster detection framework, also able to finely model occluded
individuals.

The proposed improvements are: extracting candidate weak classifiers using
an a priori probability distribution on the human shape (Sec. 5.2.2.1); building
the training set based on a low level semantic that decreases the cascade [VJ01]
complexity (Sec. 5.2.2.2); working more efficiently on the space of the covariance
matrices, using hybrid operators (Sec. 5.2.2.3); creating a more effective weak
classification method, based on polynomial regression (Sec. 5.2.2.4).
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5.2.1 Binary Classification on Riemannian Manifolds

First the binary LogitBoost on Riemannian manifold [TPM08], that extends the
standard LogitBoost (see Alg. 2), is briefly introduced.

Let {Xi, yi}i=1,...,N be the set of training examples of fixed size, with labels yi ∈
{1 = human, 0 = other} and Xi ∈M, i.e. the Riemannian manifold of covariance
matrices. The goal is to find a strong classifier F (Xi) :M 7→ {0, 1}, formed by an
ensemble of weak learners (WLs), that partitions the input space into 2 classes,
according to the labelling. The probability of Xi being in class 1 is represented by

p(Xi) =
eF (Xi)

eF (Xi) + e−F (Xi)
, (5.1)

where

F (Xi) =

Nl∑
l=1

fl(Xi), (5.2)

and {fl}l=1,...,Nl
is the set of WLs. Iteratively, each WL is selected by fitting

a weighted least-square regression function fl of training points Xi to response
values zi and weights wi:

fl = arg min
f∈F

N∑
i=1

wi|zi − f(Xi)|2. (5.3)

where F is the set of possible WLs. Note that each WL fl focuses on a patch
bl, whose size and position over all data are selected by evaluating a bunch of
candidate sizes and positions, sampled uniformly over the pedestrian image.

5.2.2 Improvements

5.2.2.1 Towards a faster, more informative WLs selection

Sampling Prior Map 

Stable 

Unstable 

Fig. 5.1. Opt 1. A prior map (on the left) is built on which stable regions are highlighted.
WLs are selected (on the right) sampling this prior distribution over the whole pedestrian
image.
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The process of selection of the patches bl is accelerated, by sampling only
over interesting position values, i.e. those pixels representing people with higher
probability. This means exploiting a prior map of human appearance. A subset of
positive samples is built, masking with 1 the pedestrian and 0 the background, and
computing the per-pixel mean. Normalizing the result by the number of positives
the prior map is provided. The addition goes beyond the mere acceleration. In
fact, it minimizes the selection of patches on the background area, that can be
discriminative in an erroneous way. For example, if the positive dataset depicts
people with a similar background, whose visual layout differs from the content of
the negative dataset, the background information is very discriminative and it has
to be selected by the WLs. This makes a classifier incapable of generalizing about
different backgrounds. This optimization is referred as Opt 1 and it is depicted
in Fig. 5.1.

5.2.2.2 Avoiding the overtraining

HARD 

EASY 

Input Image Edge Map 

Edge Frequency Map Easy/Hard Segmentation 

Fig. 5.2. Opt 2. To avoid the overtraining an ordered training set of negative examples
is built according to a easy/hard negatives segmentation.

Building the negative set {Bi}i=1,...,NBG
is very compelling, being it repre-

sentative of everything but humans. The Bi negative samples are fed gradually
and randomly into the training of the classifier, exploiting the classic boosting
cascade structure [VJ01] that allows a very fast classification. Considering these
facts a strategy to use the negative samples is devised. They are ordered by dif-
ficulty : easy negatives are clearly different to humans, while hard negatives are
not. Experimentally, I discovered that the negative examples harder to classify
are characterised by a high textural or structural content. Therefore, a criterion
regarding difficulties can be based on the high frequency content of the images is
proposed. For each Bi, a map containing the edge response is built to compute
the number ci of pixels whose, edge response is above a threshold τ . Sorting the
Bis according to ci allows to assign a difficulty score to the samples. During the
learning phase, one can adopt this ordering to feed the negative examples to the
classifier (Opt 2) and it is depicted in Fig. 5.2. This permits first to construct sim-
ple decision boundaries, and then to build the more complex ones. This strategy
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decreases the risk of overtraining and improves the efficiency of both the learn-
ing and the detection phase, because the simplest negatives are filtered out very
quickly.

5.2.2.3 More efficient analysis on M

In the Riemannian manifold M, there are three fundamental operations needed
for boosting purposes. The first one is a mapping logµl

: M 7→ Rn, called loga-
rithmic map, that projects the input covariance matrices into the vector tangent
space at a point µl ∈ M; in the tangent space, standard WLs like regressors or
linear discriminants can be estimated. The second operation is the inverse map-
ping expµl

: Rn 7→ M, called exponential mapping. The third one is the centroid
calculation, i.e. the operator selecting the projection point µl, that is the mean of
an arbitrary set of points on M.

The affine-invariant Riemannian framework of [PFA06] deals with Sym+ ma-
trices. On one hand, the log and exp mapping can be easily computed exploiting
the Sym+ matrices properties. On the other hand, the calculation of centroid has
no closed form, that makes it very slow.

Recently, a novel metric family called Log-Euclidean is proposed in [AFPA08];
they are similarity-invariant and have a closed form for the computation of the
centroid µl. However, the computation of logµl

and expµl
with these metrics is

tricky and expensive, involving matrix differential calculations.
Before to present the improvement, in Tab. 5.2.2.3 the influence of the different

metrics on the basic operation on a Riemannian manifold is summarized. Let
X1,X2 ∈ Sym+

d , x ∈ Symd the tangent vector in TX1
Sym+

d associate with the
unique geodesic between X1 and X2. The log and exp maps have a well known

Euclidean Log-Euclidean [AFPA08] Natural 2.6.1

x = X1 −X2 x = logX1
(X2) x = logX1

(X2)
X2 = X1 + x X2 = expX1

(x) X2 = expX1
(x)

dist(X1,X2) = ||X1 −X2|| dist(X1,X2) = ||x||X1 dist(X1,X2) = ||x||X1
1
N

∑
i Xi expId

( 1
N

∑
i logId

(Xi)) expµt( 1
N

∑
i logµt(Xi))

swelling effect similarity-invariant affine-invariant

Table 5.1. Basic operations on a Riemannian Manifold.

formulation for Natural metric, while are complicated for Log-Euclidean metric.
Moreover, from the table it easy to understand why the Euclidean is not considered.
In fact it leads to the swelling effect: the determinant of the Euclidean mean
of tensors can be larger than the determinants of the original tensors, which is
physically unrealistic.

Consequently, the idea is to combine the similarity-invariant and affine-invariant
frameworks (Opt 3) to gain efficiency. The log and exp operators are computed in
the affine-invariant way as in [PFA06]. µl, instead, is calculated in the similarity-
invariant way as:

µl = exp

(
1∑N
i=1 wi

N∑
i=1

wi log(Xi)

)
, (5.4)
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where log(X) = U log(D)UT with X = UDUT is the eigenvalue decomposition
of X, and log(D) is the diagonal matrix composed of the eigenvalues’ logarithms.
The following equivalences are highlighted:

log(X) = logId
(X), X ∈ Sym+ (5.5)

exp(x) = expId
(x), x ∈ Rn, (5.6)

where Id ∈ Sym+ is the identity matrix. This fact comes from the corollary 3.7
in [AFPA08], where the equivalence of the tangent space at the identity matrix of
Sym+ and Sym is proved. This means that computing µl as in Eq. (5.4) implies
to work on the Euclidean space of symmetric matrices Sym. Points from Sym+

can be mapped to Sym simply using the log operator. The result obtained on Sym
is then mapped back to the Sym+ domain with the exponential map. Thanks to
this formulation, a centroid can be calculated approximately 20 times faster than
using the formulation in [PFA06].

5.2.2.4 More powerful WLs

The type of WLs that form the boosting ensemble is carefully analysed. In
[TPM08], the authors employ linear regression functions, suggesting that a further
study on this aspect would be useful. In this analysis, after a preliminary study on
several WLs, the polynomial functions are selected (Opt 4). In fact, some WLs,
as for example linear regression functions, are unable to represent complex deci-
sion boundaries, while complex WLs, as for example piecewise constant regression
functions, quickly lead to overfitting. This class of WLs has several advantages: it
is easily implementable, efficiently computable and flexible. In fact, weighted mul-
tidimensional polynomial fitting can be formalized as a linear problem [MSD97].
A k-th degree polynomial in R is defined as follows:

y = a0 + a1x+ . . .+ akx
k, (5.7)

where y, a0, . . . ak, x, . . . x
k ∈ R. The matrix form for the least-square fit can be

obtained by writing the Vandermonde matrix as a linear system:
1 x1 · · · xk1
... x2

. . . xk2

1 xn · · · xkn



a0
...

ak

 =


y1
...

yk

. (5.8)

Eq. (5.8) in matrix notation is
X a = y, (5.9)

where each row in X represents an example of the training set. Generalizing, the
matrix form to a k-th order polynomial in Rn, with no mixed terms. The least
square fit could be formalised as a linear system:

[
X1 . . . XN

] 
a1

...

aN

 =


y1

...

yN

. (5.10)
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After different trials, in the experiments the second degree polynomials have
always been considered.

5.2.2.5 Occlusion modelling by WLs analysis

This feature (Opt 5) aims to refine a positive detection output, highlighting when
and where the detected person is occluded by an object (the modelling of occlusions
caused by people is already faced in [TPM08]). This helps whenever the mere de-
tection is followed by further analysis. In people re-identification, for example, the
availability of genuine person’s details, minimizing the clutter, is very useful. The
idea is to analyse the responses of the WLs, looking for possible agglomerations.

In detail, the presence of 4 different synthetic occlusions is tested (see Fig. 5.3(a)):
TOP, BOTTOM, LEFT, RIGHT, parametrised by the size value s. The process
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Fig. 5.3. On the left, the occlusions used; on the right, WL responses for the image in
the centre.

exploits the fact that each WL fl focuses on a patch bl, that is, a fl judges a
portion of the test image. Therefore, a compact, localized cluster of WLs, whose
responses are positive, will indicate a human part, with high probability. On the
contrary, a set of WLs with negative responses will probably indicate an occluding
object. As shown in Fig.5.3(b), each value of s determines a bipartition of the
images, Iocc and Inocc, where Iocc (Inocc) is the occluded (not occluded) part. On
Iocc, the partial agreement

A(Iocc) = ||f−l ||/||f
+
l + f−l ||, (5.11)

that is the percentage of WLs in Iocc, is computed, not overlapping with the border
instantiated by s (the dotted line in Fig. 5.3(b), whose response is negative. A
similar reasoning holds for A(Inocc). The two measures are combined

BS = A(Iocc) +A(Inocc). (5.12)

Maximising BS over s for a single kind of occlusion gives sbest, i.e. the best oc-
clusion size. The comparison of sbests of each kind of occlusion gives the most
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probable occlusion. Experimentally, a threshold BSτ is fixed and below that BS
does not represent an occlusion. This is reasonable, since the distribution of the
WLs positive (negative) responses is uniform for a non occluded object.

5.2.3 Experimental Results

The proposed human detector is trained on INRIA Person dataset, that contains
1774 images portraying humans, doubled through mirroring, and 1671 person-free
images, all of size 64 × 128. The setting for the training phase is the same of
[TPM08]. Both the proposed approach and the original [TPM08] are implemented
with Matlab on an Intel 2.83 Ghz processor with 4 Gbytes of RAM. The training
takes three days on average with the proposed approach and more than two weeks
with the original approach.

First, the effects of each proposed improvement with respect to [TPM08] is
shown, on a randomly chosen subset of the INRIA dataset (500 positive and 1000
negative examples) in a cascade of 10 levels. The performance by computing the
Detection Error Tradeoff (DET) curve is measured. It shows the tradeoff between
true and false positives on a log-log scale. The results are on Fig. 5.4 (top). The
y-axis corresponds to the miss rate

FalseNeg/(FalseNeg + TruePos)

, and the x-axis corresponds to the false positives

FalsePos/(FalsePos + TrueNeg)

, in this case the False Positives Per tested Window (FPPW). All the improvements
Opt 1, 2, 3, and 4 provide an improvement in accuracy with respect to [TPM08].
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Fig. 5.4. Comparison on the restricted dataset, adding one-by-one the Opts.

Afterwards, a rejection cascade of 30 levels is trained using the whole INRIA
dataset, reproducing the system of [TPM08]. The effects of the proposed policy
in selecting the examples for the cascade are evident in Fig. 5.5, that shows the
number of WLs per level. The proposed improvements produce a cut of the cascade
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complexity, evaluated as number of classifiers, of the 15% and 58%, using the linear
and the polynomial regression, respectively. This results in a faster learning and
testing phase.
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Fig. 5.5. Comparison between cascades of 30 levels on the INRIA dataset. Top: random
selection of negative samples, as in [TPM08]. Centre: Opt 1,2,3 are applied. Bottom: all
optimizations are exploited.

In Fig. 5.6 the framework is compared to the state-of-the-art in terms of DET
curve. Both the proposed detectors, using linear and polynomial regressors, have
good generalization abilities, in a slightly different way. Indeed, one may notice
that in the linear case at all cascade levels, indicated by the markers, better per-
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formances in terms of miss rate are achieved, while the same performance as the
original approach in terms of false positives is maintained. The polynomial case is
instead close to the original approach in terms of miss rate, but it is the fastest
approach respect to the others.
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Fig. 5.6. Comparison between [TPM08] and the proposed method (with and without
Opt 4), on the complete dataset.

Concerning the occlusion modelling (Opt 5), the occlusions of 200 positive
detections are evaluated qualitatively, validating their correctness by subjective
judgement (no ground-truth data is available). An accuracy of 81% is reached,
where each occlusion detection can be correct (= 1) or not (= 0). Some results are
shown in Fig.5.7.

Fig. 5.7. Five examples of occlusion modelling: in red the parts detected as occlusions.

5.3 Part-based Pedestrian Detection on Multiple Tangent
Spaces

Robust object detection is important for many applications. In particular, in the
context of video surveillance, pedestrians are a very important and very challeng-
ing class of objects to detect. Among the recent approaches proposed in literature,
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part-based models [MSZ04, WN09, YTCC09] seem to provide the best perfor-
mances, as shown in [DWSP09]. This is because these models are intrinsically
robust to partial, inter-object occlusions.

Following the same direction, a new part-based model for pedestrian detec-
tion is proposed. The parts are hierarchically structured, and a priori fixed, as
in [WN09]. Each part is described by a COV tensor, that encodes information of
the variances of a set of defined features inside a region (patch), along with their
correlations and the spatial layout. This descriptor is robust to illumination and
scale variations.

In this Section, I claim that i) injecting a priori knowledge about the human
structure by suggesting the parts to be focused and ii) thanks to an adequate
training of such parts by boosting via polynomial fitting, the feature selection
phase is not necessary. The resulting framework is light (the computational cost
of the training phase is dramatically reduced with respect to [TPM08]), and it
outperforms the state-of-the-art methods on the INRIA person dataset.

The rest of the Section is organized as follows. Sec. 5.3.1 presents the archi-
tecture of the proposed classification system on Riemannian manifolds. Practical
details and experimental results are explicated in Sec. 5.3.2.

5.3.1 System architecture

Inspired by [WN09], the human body is divided into parts, according to their
semantic meaning (head, torso, etc.). These parts are then organised in a hierarchy
of three levels, for a total number of eleven parts (see Figure 5.8).

full body
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Fig. 5.8. Part-based human model. The human body is hierarchically divided into 11
parts, and each part is described by a covariance matrix descriptor.

A covariance descriptor is associated with each part, and it is estimated as fol-
lows. As in [TPM08], for each pixel (x, y) inside the region, a bunch of information
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is gathered about that pixel into a feature vector:

[ x y |Ix| |Iy|
√
I2x + I2y |Ixx| |Iyy| arctan

Ix
Iy

]T , (5.13)

where Ix, Ixx, etc. are intensity derivatives and the last term is the edge orientation.
From these vectors their covariance matrix can be estimated. This operation is
done efficiently using integral images [TPM06].

Given the descriptors, the system is composed of two phases: first, each body
part is trained separately, using LogitBoost; second, the part classifiers are com-
bined together. These two phases are detailed in the following paragraphs.

5.3.1.1 Phase 1: boosting the part models

Let {Xip, yi}i=1,...,N be the set of training examples (COV tensors), of a fixed
human part p. These examples are points in the Riemannian manifoldM. Training
a classifier on M using a boosting approach implies tp project all points into the
local tangent space TX of a point X ∈ M. TXM is a Euclidean space (so that
a standard classification algorithm can be employed on the projected points). In
[TPM08], the authors empirically show that a good choice of X is the Karcher mean
µp of {Xip}i=1,...,N , i.e. the point that minimizes the sum of squared Riemannian
distances.

The framework proposed in [TPM08] is a greedy algorithm, where at each
boosting iteration the most discriminative patch inside the detection window, i.e.
the patch on which a single weak classifier gives the best classification performance,
is selected. This implies having several covariance descriptor sets, corresponding
to each of the possible patches, projecting them into their tangent spaces Tµp

and
choosing the one where positive and negative examples are better separated.

A different direction is followed, which is simpler, less computationally expen-
sive, and gives good performances at the same time. The classifier can be instructed
about which are the most interesting (discriminative) areas for the human body,
thus concentrating on classification rather than feature selection. This means that
a strong classifier is built for each of the body parts, so that the final human detec-
tor is the composition of a few strong classifiers, instead of many weak classifiers.

In practice, for each part, µp is estimated and all the examples are projected
in Tµp

. The mapping of points on the Riemannian manifold to Tµp
and vice versa

is done using the logµp
and expµp

operators, respectively, as in [TPM08]. This

mapping is done once, because all the following reasoning are done on Tµp
directly.

The projected training examples are defined as {Σip, yi}i=1,...,N , with Σip ∈ Tµp

and labels yi ∈ {1 = human part, 0 = other}.
Using the binary LogitBoost algorithm [FHT00], a response function

Fp(Σip) : Tµp
7→ {0, 1}

is estimated. It divides the tangent space into 2 parts, according to the training
set of labelled items. This function, the strong classifier, is defined as a sum of
weak classifiers. The probability of Σip being in class 1 is represented by
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P (Σip) =
eFp(Σip)

eFp(Σip) + e−Fp(Σip)
Fp(Σip) =

Nl∑
l=1

fl(Σip), (5.14)

where {fl}l=1,...,Nl
is the iteratively selected set of WLs. Each WL is estimated by

solving a weighted least-square regression problem:

fl =

N∑
i=1

wip|zip − f(Σip)|2, (5.15)

where zip and wip denote the response values and the weights, respectively, in the
following forms:

zip =
yip − P (Σip)

P (Σip)− (1− P (Σip))
, (5.16)

wip = P (Σip)− (1− P (Σip)). (5.17)

As regressors, second degree polynomial functions with no mixed terms are
employed. This is because I experimentally found that this class of regressors is a
good compromise between classification accuracy and computational complexity.
In fact, the multidimensional polynomial fitting can be formalized as a linear
problem [MSD97], and the complexity grows linearly with the number of terms
used to solve the linear system. The second degree polynomial functions double
the complexity with respect to the linear case, but the classification performances
are clearly increased (see Fig. 5.9).
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Fig. 5.9. Performances in terms of DET curve employing different regressor models –
linear, second degree polynomial, third degree polynomial – in the proposed framework.
The best performances are obtained with the second degree polynomial.

Part rejection cascade. The LogitBoost classifier of each body part is com-
bined with a rejection cascade structure of K levels. Using a cascade makes the
part detectors more robust to false positives. Nn = 104 negative examples are
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sampled for each cascade level and joined to the Np positive examples to form a
training set of N = Np + Nn elements. Fp is rewritten in F kp to emphasize the
dependence of the classifier on the current level.

All the negative examples are classified with the cascade of the previous k − 1
classifiers, where k ∈ {2, . . . ,K}. The examples that are correctly classified (i.e.
classified as negative) are removed from the training set, nevertheless keeping at
least 1000 examples.

Training on cascade level k stops if a combined condition is satisfied. One would
impose that the learning process correctly classifies at least 99.8% of the positive
examples, and that it rejects at least 35% of the negatives. To verify this condition
the dataset is sorted according to descending probabilities (Eq. (5.14)). Then, one
can check that F kp (Σip) > 0 for at least the 99.8% of positives and F kp (Σip) < 0

for at least the 35% of negatives. The F kp value of the (0.35Nn)-th element with the

smallest probability, denoted as thrdkp, is used for testing: a point Σip is classified

as positive if F kp (Σip)− thrkkp > 0.

5.3.1.2 Phase 2: Combination of part classifier

When the robust part classifiers are trained, their strong responses are combined
into a unique human detection as follows:

Fcomb(IW ) =

11∑
p=1

wp · F ∗p (Σp), (5.18)

where IW is the detection window, Σp is the covariance matrix descriptor esti-
mated on the body part p (projected into Tµp

), and F ∗p is the classification response
produced by the rejection cascade. IW is classified as positive if Fcomb(IW ) > τ .

Since the location of the human body parts is fixed by construction and the
variability of human postures is high, it is reasonable that some part detectors are
more reliable than others. This is why a weight wp is associated with each part
classifier. Given a set of positive images, a validation dataset is instantiated, where
the number of correct detections per part is counted. The normalized resulting
values become the wps. wp is proportional to the ability of F ∗p to classify its
respective body part correctly, and it says which part is more suitable for the
detection of human bodies.

5.3.2 Experimental Results

The proposed approach is evaluated considering the INRIA Person dataset [Dal05].
The dataset is not well-suited for training part-based classifiers (even if [YTCC09]
uses it for the same purpose), because the data is not aligned, and different poses
are present. This fact and the excellent results gained by the proposed approach
witness the capability of the part-based classifier to absorb even strong pose vari-
ations.

The proposed framework is implemented with Matlab on an Intel Xeon 2.83
Ghz processor with 4.00 Gbytes of RAM. The training of the classifiers takes 15
minutes to generate a part-based classifier, for all the 11 parts, with at most 5 weak
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classifiers per level. The state-of-the-art method in [TPM08] needs more than two
weeks in the same hardware setting.

In Fig. 5.10, the proposed framework is compared with [TPM08] and the meth-
ods in [VJ02, DT05, DTTB07, SM07, MBM08], whose statistics are extracted
from [DWSP09]. The performances are evaluated by adopting the Detection Error
Tradeoff (DET) curve, that expresses the proportion of true detections against
the proportion of false positives on a log-log scale. As visible from the results, the
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Fig. 5.10. Comparison with the state-of-the methods on INRIA Person dataset. The
curves for other approaches are generated from [DWSP09] and [TPM08]. The proposed
approach is named PBA-COV.

proposed framework outperforms all the other methods reaching the best perfor-
mances, both considering the FPPW (False Positive Per Window) rate and the
miss rate. Moreover, this holds in a boosting framework with very few WLs (for
example, [TPM08] has 50% more WLs).

In Fig. 5.11 a comparison on the INRIA Persion dataset between the approach
described in Sec. 5.2 and the approach presented in this Section is made.

Tab. 5.2 shows the ability of the proposed system to detect human body parts.
The table is built by considering the cascade level k = 5. Considering that in the
INRIA Person dataset, several people are not aligned. However the proposed part
detector is able to detect single parts with high accuracy. In specific, the more
reliable region is the torso, meaning that the part descriptor is particularly suited
for that body portion, capturing all the pedestrian intra-class variability. Such
variability pops out considering the variance image of the INRIA training dataset
(see Fig. 5.12), where in each pixel the associated per-pixel variance is portrayed.
It is evident that, even if that portion is characterized by the highest variability,
it is the best modelled by the proposed framework. The weights used to build the
final detection response are proportional to the number contained in Tab. 5.2.
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Fig. 5.11. Comparison between the FUD approach described in Sec. 5.2 and the ap-
proach presented in this Section (Sec. 5.3) named PBA.

Human body part Accu.% (k = 5)

full body 99.4%

head-shoulder 93.8%
torso 97.2%
legs 92.8%

left shoulder 82.7%
head 83.6%
right shoulder 87.4%
left arm 88.6%
right arm 88.4%
left leg 81.8%
right leg 84.9%

Table 5.2. Per-part detection accuracy. The detection ability of the part detectors in
the cascade level k = 5 is shown.

Layer 2

Fig. 5.12. Capturing the intra-class variation: the central part, even if characterized by
the highest variance, is the best detected by the part classifier.
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5.4 Low Resolution Pedestrian Detection via SSTstruct

Tensors

This Section concerns with the pedestrian detection task where the human body
covers a smaller portion of the image to be detected, that means it is visible at
lower resolutions. This covers outdoor settings such as for the surveillance case.
Low resolution pedestrian detection is a difficult task from a computer vision point
of view. The absence of explicit models leads to the use of discriminative learning
techniques, where an implicit representation is learned from examples.

Here, the usage SSTstruct tensors is proposed to measures the self-similarity
of the parts of a human body and use this source of information as a feature.
Therefore, since parts are tricky to be modelled from low resolution images, a
pyramidal regular grid of patches [LSP06] is adopted. With this settings SSTstruct

beats the COV tensor representation for the low resolution pedestrian detection
task on the DaimlerChrysler [MG06] pedestrian detection benchmark.

5.4.1 Object Model for Low Resolution Pedestrians

In order to model complex objects like pedestrians, a pyramidal representation
is adopted. To build robust descriptor, one can follow the idea proposed in
[LSP06, BZM07a], where a pyramidal patch based representation is used. In par-
ticular, each image is divided into a sequence of increasingly finer spatial grids
by repeatedly doubling the number of divisions on each axis direction. A 3 level
pyramid is adopted as depicted in Fig 5.13. SSTstruct is combined with pyrami-

Original Level 1 Level 2 Level 3 

Fig. 5.13. Spatial pyramid representation. An image on the left and grids for levels 1 to
3.

dal structure, since that structure guarantees at the same time a high level of
robustness and generality to describe different classes of objects. However, how
to decide the patch size or rather the grid layout still remains a main issue. The
hypothesis is that a rougher grid layout is suitable for a task like object detection
in which the object model must be invariant (or at least less sensitive) to object
details. Adopting a finer one, the task has to be necessarily changed into an ob-
ject classification task with a higher level of details to discriminate among classes.
The next experimental section confirms that hypothesis on the DaimlerChrysler
[MG06] pedestrian detection benchmark.
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5.4.2 Experimental Results

This Section contains an experimental study to use that representation for small
pedestrian detection task in real scenarios. The DaimlerChrysler dataset [MG06]
is chosen for this purpose because it contains very small pedestrians.

The DaimlerChrysler dataset [MG06] contains 4000 pedestrian (24000 with
reflections and small shifts) and 25000 non-pedestrian images. The dataset was
organized into three training and two test sets, each of them having 4800 positive
and 5000 negative examples. The small size of the pedestrian windows (18 × 36
pixels), combined with a carefully arranged negative set, makes detection on the
DaimlerChrysler dataset extremely challenging.

SSTstructCOVvect

Pedestrian
Nonpedestrian

1

-1

1

1

-1

1

Fig. 5.14. DaimlerChrysler feature space visualization via PCA using COVvect and
SSTstruct.

For this dataset SSTstruct build upon a set of COV tensors and COVvect, that
simply concatenates all the COV tensors, are compared. Therefore COV tensors
are the basic ingredient both for the representations to make that comparison
as fair as possible. To extract COV tensors, each image is gridded extracting 8
patches using the covariance of gradient-based information for each patch. The
color information is not considered since it is not available for this dataset. More
formally, the feature set is:

Φ(I, x, y) =
[
G| |(I) GO(I) Dx(I) Dy(I) Dxx(I) Dyy(I)

]
, (5.19)

where G| |(Y ) and GO(Y ) are the gradient magnitude and orientation, and Dx(I),
Dy(I), . . . are intensity derivatives. Then a covariance matrix is computed for each
image patch using the feature set above. Covariances are vectorized and used as
feature descriptors. Then SSTstruct is built computing the distance between each
pair of descriptors as formalized in Eq. (4.2), where d is the Euclidean distance. On
the contrary, as mentioned above, COVvect is built concatenating all the vectorized
covariance matrices.
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In Fig. 5.14 PCA (Principal Component Analysis) is applied to visualize the
distribution of the negative and positive sets using the two different represen-
tations. One can observe that SSTstruct offers a more linearly separable feature
space regarding COVvect. Hence, one may expect that the detection performances
of SSTstruct are reasonably better than COVvect.

Fig. 5.15 shows another experiment in order to evaluate the behaviour of
SSTstruct at different patches resolution. For this Figure, a pyramidal SSTstruct

Pedestrian
Nonpedestrian
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1
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1

layer 1

1
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1

Fig. 5.15. DaimlerChrysler SSTstruct feature space visualization via PCA at different
patch size.

is built dividing an image into a sequence of increasingly finer spatial grids by
repeatedly doubling the number of divisions on each axis direction. Therefore,
Fig. 5.15 depicts the feature space for different layers of the spatial pyramid. For
each level of that pyramid an SSTstruct is computed and the feature space associ-
ated with each pyramid layer is visualized. One can observe that a rough grid is
more suitable for the detection task, while a finer grid subdivision can be used for
a different classification task in which a high level of details is necessary (e.g. pose
classification). To verify my assertion, the performances of the different pyramid
layers for the pedestrian detection task are compared. In Fig. 5.16(a), the DET
curve is plotted on a log-log scale, whose y-axis corresponds to the miss rate, and
the x-axis corresponds to false positives per window (FPPW). One may notice
that the first (top) layer is the most indicated for the detection task because its
rough image subdivision captures only the essential information to characterize
an object avoiding its details which are unnecessary for the detection task. In
Fig. 5.16(b) shows how adding the spatial layout (i.e. concatenating the x and y
coordinates of each patch) and an appearance prior to the feature descriptors the
detection performances can be increased. The appearance prior is injected into the
SSTstruct as a probabilistic map (where 1 means a pixel that certainly belong to
a pedestrian) added to Φ (5.19) and computed using the generative Steal model
[JPC+09]. Finally, in Fig. 5.16(c) is shown the effect of changing the metric used
to compare COV tensors and, as predictable, using the Riemannian metric instead
of the Eucledian one the the performance of the framework improve.
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Fig. 5.16. DET curve on the DaimlerChrysler dataset using the SSTstruct tensor. (a)
depicts the detection performances associated with different levels of the spatial pyramid.
(b) shows how adding the spatial layout and an appearance prior to the feature descriptors
the detection performances can be increased. (c) compares two different metrics that can
be used to build the SSTstruct.

5.5 Robust Pedestrian Detection using Hausdorff Distance

The capability to detect people in images of crowded scenes is fundamental for
a large variety of applications, such as video surveillance or automatic driver-
assistance systems. If people detection is performed in a non-problematic scenario,
such as one where people are not occluded, with a limited range of scales and
pose variations, there are already a lot of effective frameworks [DT05, TPM06,
GL09, DTPB09, FGMR10] usable to solve this task. On the other hand, if the
scenario is problematic, among these systems only few are really useful. It is worth
noting that three of them which are able to manage different difficult problems
which are typically present jointly in images of crowded scenes. [MG06] effectively
deals with small scale pedestrians, [LSS05] manages the presence of occlusions
and [FGMR10] covers extreme changes of pose or occlusions of pedestrians. Since
anyone of the previous frameworks is able to give a solution to all the above-
mentioned problems, this Section proposes a unified framework capable to jointly
cope with the described issues. Hence, the goal is to detect as many people as
possible even when the human body layout cannot be inferred.

I propose to replace the definition of a person as a set of fixed parts as a set of
non-fixed combination of human patches which share a defined space location in the
image. Initially, an image is divided into a set of multi-scale overlapping patches
on which a binary patch classifier is learned in order to highlight the patches
belongings to people. Then the human patches are assigned, if it is possible, to the
different people in the image.

The ideas below the proposed approach are: 1) a person is represented as
a variable set of patches depending on a probabilistic evaluation of the patch
visibility, or rather if a human is occluded the patches containing the occlusion are
automatically removed from the model. 2) since the number of patches is variable,
a classifier based on a set distance is used to discriminate between human and
nonhuman image ROIs (Regions of Interest).
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5.5.1 The Approach

Patched Input Image Feature 
Extraction 

Tensor Computation FG Patches Selection Human Detection 

Fig. 5.17. The proposed approach pipeline.

The proposed approach is a five-phase process. (1) A set of features is calculated
on a set of overlapping patches for each image. In the training stage, it has a set
of ROIs containing fully-visible people at the same scale. Then the training set is
populated by other problematic examples where occlusions are present. (2) From
the training ROIs a set of features is extracted, and (3) extracting a fixed number
of patches computed on a regular grid, their tensor descriptor is computed. (4) A
robust binary patch classifier is used to detect the foreground (human) patches.
(5) The survived patches are organized as sets and, using a classifier based on a
set distance, one can finally detect the presence of a human in the original ROI.
The set distance is necessary since the number of foreground patches is variable.
In Fig. 5.17 the entire approach pipeline is depicted.

5.5.1.1 Person Representation

For the pedestrian detection task the most reliable source of information is re-
lated to the image gradient. As shown in [DWSP11], that information is strictly
dependent on the image resolution. In particular, for low resolution pedestrians
(less than 30 pixels tall) Haar Wavelet features [MG06] are a simple and effective
choice, while for medium and high resolution pedestrians it is preferable to use
directly the gradient information or its orientation as done by HOG (Histogram
of Oriented Gradients) [DT05]. To be able to manage people at different resolu-
tions, combinations of the previous features are used [DTPB09]. This combination
is typically a straightforward concatenation among some of the previous features.
This leads to two problems: 1) using different features, the normalization is not
an easy task and it becomes more difficult proportionally to the number of the
features involved. 2) The dimension of the final vector representation can be ex-
tremely high, causing the curse of dimensionality problem. A more proper way
to combine different features and automatically solving these problems is using
covariance tensors as feature descriptors [TPM06]. Due to the use of integral rep-
resentation, these descriptors are fast to compute, making it suitable for detection
tasks. It has shown that there are other tensor representations (see Chap. 4) able
to outperform the covariance, but their calculation time is still too expensive for
object detection purposes.

Regular Grid Human Body Layout. It is worth noting that it is necessary
to make a step further to the definition of human body part widely used for the
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current pedestrian detectors [FGMR10] in order to find a good representation for
a person in a crowded scene where small pedestrians are present. This is because
1) a configuration of body parts changes accordingly to the object resolution.
Even if multiple models are instantiated (one for each object resolution), their
management could be tricky and computationally expensive. 2) The part alignment
problem is automatically involved in the process of defining it. Since the part
configuration can vary slightly with highly non-rigid objects (as a human) or in
case of occlusion, the research of the correct position and scale could lead to very
poor results. 3) Parts are extremely unusable descriptors in crowded situations
where it is hard to assign parts to different overlapped human bodies correctly.

The proposal is to divide an image I in overlapping patches on a regular
grid. Each patch is described by a COV tensor. More formally, a set of patches
{Pi}i=1,...,N of 4× 4 pixels is sampled from I as shown in Fig. 5.17. Unlike many
successful people detectors [TPM08, DTPB09], in this case the patch dimension p
is not optimized in order to obtain the best performance on a benchmark dataset.
This should be led to a more general detector in which the concept of fixed human
parts is replaced by one that describes it as variable human patches.

5.5.1.2 Combinations of Features

Each patch Pi is represented by a covariance matrix of d image features

Φ = [H1 H2 . . . H10 G O] , (5.20)

where d is equal to 12. H1, . . . ,H10 represent the results of the application of the
set of Haar Wavelets. the variances of the defined features and their correlations
with each other, which are useful to detect both high and low resolution people.
In order to build a set of covariance matrices quickly, given a set of feature Φ, in
[TPM06] a good solution, based on the integral representation which is adopted
in this work, is proposed.

Given a set of d × d covariance descriptors {Ci}i=1,...,N where Ci ∈ Sym+
d

(the group of the symmetric positive definite matrices), they are one-to-one with
their relative patches P1, . . . , PN . A very important preprocessing operation is
the normalization of these descriptors to enhance the robustness to include also
illumination variations in I. Unlike the local normalization in [TPM08], the idea
is to use a global normalization which is much more robust in the presence of
occlusions and noise. The normalized version of a covariance matrix Ci is denoted
as Ĉi and is computed by dividing columns and rows of Ci with the square root
of the maximum variance of the image features Φ (Eq. (5.20)):

Ĉi = diag(V)−
1
2 Ci diag(V)−

1
2 , (5.21)

where diag(V) is a diagonal matrix in which there is the maximum variance of the
image features at the diagonal entries. This is equivalent to first globally normal-
izing the feature vectors to have zero mean and unit standard deviation and then
computing the covariance descriptor.

Covariance matrices are an interesting way to combine information also owing
to their particular geometry, which provides an implicit framework to represent
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multi-modal distributions. consequently, if the focus is on a sub-set of covariances
(i.e. people patches), a set of tools is naturally provided to find a highly discrimi-
native Euclidean space to analyse them exploiting their geometry as described in
the next section.

Covariance Tensors. Since covariance matrices do not live on a vector space,
it is necessary to map them on a tangent space of this manifold (i.e. TMSym

+
d )

where the covariances can be treated as vectors. More formally, given a normalized
covariance matrix Ĉi it can be projected applying the following equation which
represents the logarithmic mapping

ci = M
1
2 logId

(M− 1
2 ĈiM

− 1
2 )M

1
2 , (5.22)

where M ∈ Sym+
d is the Karcher mean point computed considering only the

covariances belonging to people image examples and is computed [Kar77]. The
logId

(A) map is equal to U log(D)UT , where UDUT is the eigenvalue decompo-
sition of A. It should be noted that logId

and log are different operators. The first
one is a standard operator of the Riemannian geometry and the second one is the
usual logarithm of a scalar value (for further details see [TFC+10]).

Considering that ci ∈ Symd, it contains only d(d + 1)/2 independent coeffi-
cients which can be the upper triangular part of the matrix. As in [TPM08], an
orthonormal coordinate system for the tangent space is defined as in Sec. 2.2.6.

Having d = 12, a tangent vector is a 78 dimensional. Since not all the features
are informative, linear PCA (Principal Component Analysis) is applied. According
to [ZLY10] the 96% of the energy is preserved selecting the principal components,
which number is automatically selected. The principal components vector after
the projection is denoted with c̃i

c̃i = Tci, T ∈ Rd(d+1)/2×dp (5.23)

where T is learnt during the training phase and dp is automatically selected. As
done above for the patch dimension, the goal is to find the best feature set Φ
to obtain the best performance on a benchmark dataset. One should collect a
reasonable feature set that can be used to describe pedestrians at different scales
and to use PCA [ZLY10] to select automatically the most informative subset of
the original covariance Ci.

A further dimension is added to c̃i, and it contains a rough spatial information
position in order to avoid patch configuration clearly infeasible. Dividing the ROIs
in 3 equal horizontal layers 1, 0 and −1 is assigned to the top, to the middle and
to the bottom body part respectively.

5.5.1.3 Patch Classification

A large number of human and non-human patches is collected and binary classifier
is trained using RF (Random Forest). P (c̃i) is the probability of a patch to belong
to a human. That probability is computed as

P (c̃i) =
1

Tn

Tn∑
t=1

gt(c̃i), (5.24)



5.5 Robust Pedestrian Detection using Hausdorff Distance 83

where Tn is the cardinality of the trees and gt(c̃i) is a decision function given
by the t-th tree. Hence, P (c̃i) is computed as the mean of the decision responses
coming from all the decision trees. Finally, if P (c̃i) > .5 then c̃i is associated with
a human patch. Clearly, one cannot expect that this classifier is accurate, since
extracting small patches the human and non-human classes have a large overlap.
This is actually the reason why RF is chosen as classifier: it is able to manage very
noisy data and to find a rough subdivision that removes non-human patches.

5.5.1.4 Object Detection based on Hausdorff distance

After the previous pruning phase one can await to have a reliable set of patches
for each example in the training set. Then, a high-level classifier is built and it
should be able to manage a variable representation of the same object to label
a ROI as a pedestrian. So, the feature descriptors of the survived patches are
treated independently, so that the descriptors are not concatenated in a unique
vector the order among the patches is lost if some patches are removed. Moreover,
standard machine learning techniques cannot manage representation of different
dimensionality. A popular distance among two sets of points, that works regardless
the number of descriptors in each set, is the Hausdorff distance. It has already been
used for object recognition in quite recent works [DJ94, Fel01], but in these cases
object descriptions were image coordinates. Since the space on which the features
lie is Rn (n = d(d + 1)/2) , it is possible generalize the usual Hausdorff distance
using the Euclidean norm of Rn. Therefore, to compute the Hausdorff distance of
a pair of descriptor sets C̃1, C̃2 one may proceed as follows:

dH(C̃1, C̃2) = max[ max
c̃i∈C̃1

( min
c̃j∈C̃2

(||c̃i, c̃j ||)), max
c̃j∈C̃2

( min
c̃i∈C̃1

(||c̃j , c̃i||))] c̃i, c̃j ∈ Rn.

(5.25)
The Euclidean norm is chosen for computational convenience, but any norm of
Rn can be used to into Eq. (5.25). Than dH is embedded into an SSTstruct (see
Sec. 4.2.3) computed on the training set denoted as D. After that a kernel matrix
is built exploiting D. Since D cannot satisfy the Mercer inequality itself, to build
a valid kernel that can be combined with an SVM the non-linear transformation
described in Sec. 3.4.2 is applied. Applying that transformation the Mercer in-
equality is satisfied, hence the D+ is a valid kernel. In Fig. 5.18 an example of the
kernel matrix based on dH is shown.

Human Instances Nonhuman Instances Kernel Matrix 

Fig. 5.18. An example of Kernel matrix based on the proposed Hausdorff distance.

Once the kernel is built, a binary SVM is trained for the final pedestrian de-
tection task.
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5.5.2 Experimental Results

In the first experiment, the probabilistic output of the patch classifier described in
Sec. 5.5.1.3 is shown in the presence of different types of synthetic occlusions. The
goal is to find a reliable set of patches that can be used to describe a human. The
result of the application of different kinds of occlusions are shown in Fig. 5.19. One
may notice that, although the grid of image patches is quite rough, the patches
classifier provides useful information on which is the actual object ROI for each
occluded image. One can object that the segmentation should be finer, but for
detection purposes it is necessary to minimize the computational burden, therefore
a rough image segmentation is enough for this first pruning phase. In the next
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Fig. 5.19. Patch classification in the presence of different types of synthetic occlusions.
Each picture shows the occluded image (on the left) and the image patches classification
that produces a probabilistic map (on the right). Different levels of occlusion are randomly
adopted: from soft (25% of the image size) to hard (50% of the image size). Various kinds
of noise are also tried: full occlusion and salt& pepper noise.

experiment, regarding again the output of the patch classifier (Sec. 5.5.1.3), the
probabilistic map produced by the patch classifier is shown in function of the
image resolution. It is interesting to observe that the final probabilistic map is still
reliable even when the original occluded image is heavily downscaled. That means
two things: 1) the patch classifier can provide reliable information also in presence
of heavy noise and low resolution images, 2) the feature set adopted (see Eq. (5.20))
is effective, so it captures discriminating information in very low resolution images.
The proposed framework is trained exploiting the INRIA dataset [Dal05]. The

dataset is partitioned into two, where 2416 pedestrian annotations and 1218 non-
pedestrian images, from which 100000 non-pedestrian ROIs of 64 × 128 pixels,
are extracted. The remaining images compose the testing set. Since that dataset
does not include low resolution pedestrians, the proposed framework is tested on
the images of the Caltech pedestrian dataset [DWSP11], which contains several
images with both very low and hight resolution pedestrians in urban scenarios.
In Fig. 5.21 some qualitative results are depicted. The proposed method achieves
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Input Image Patch Classification Input Image Patch Classification Input Image Patch Classification 

Fig. 5.20. Patch classification at different image resolutions. The full resolution image
on the right. It is downscaled one time to obtain the central image and two times for the
left image. Each image presents two maps: on the left the occluded image and on the
right the image patches classification that produces a probabilistic map.

good performances in the pedestrian detection where the pedestrians are small.
The number of false alarm is low, but many pedestrians are lost.

Fig. 5.21. Detection examples. The classifier is trained on the INRIA dataset [DT05].
Red boxes all the detection results without filtering or maximum suppression. In the
first two rows there are good detection examples considering medium and low resolution
pedestrians. Problematic detection images are shown in the last row.

Discussion. There are two main issues that must be tackled in order to im-
prove the performance of the proposed detection approach. The first issue regards
the efficiency: in fact, the usage of kernel methods in detection problems is very
limited due to its computational burden. Since the patch detector permits to a
considerable number of false positives to reach the kernel based classifier, it is
difficult to build a light kernel that permits a fast detection. Therefore, it is nec-
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essary to improve the performance of the patch classifier using contextual and
spatial information during the pruning phase.

Another issue concerns the Hausdorff distance. That distance assumes that
the information contained into the descriptor vectors is geometrical, namely vec-
tors, should contain coordinates of a 1, 2, . . . , N dimensional space. For detection
purpose the descriptors contain different kind of information. That leads to an
unclear meaning of that distance from the geometrical point of view. However, the
proposed distance is effective on the pedestrian detection task (see Fig. 5.18).

5.6 Embedded Object Detection

In Computer Vision, the object detection problem is a fundamental task, but
only a few systems are thought to be realized on an embedded architecture. To
this end, in this Section a highly-parallelizable classification framework for an
FPGA-based implementation is designed, which is suitable for generic detection
problems. This because in this case the OI parts layout is not designed specifically
for a class of objects, in fact a regular grid of overlapped patches is used. Then,
each patch is represented by the COV tensor of a small set of features explicitly
selected for detection purposes. The model consists in a weighted sum of boosted
binary classifiers, trained the set of overlapped image patches. The hardware design
has been developed in parallel and with specific architectural solutions, allowing
a fast response without degrading the functional performances. In this case, the
weighted regression trees are adopted as basic classification tool to achieve both the
best classification performances and the maximum robustness to noise. Weighted
regression trees are an alternative method to non-linear regression, so they can be
used by LogitBoost as weak learners.

In Sec. 5.6.1, the high level architecture and some details of the software im-
plementation are presented. The hardware implementation design is reported in
Sec. 5.6.2. An experimental study on the problem of the pedestrian detection is
proposed in Sec. 5.6.3,

5.6.1 The Parallel Classification Framework

The proposed classification framework has been designed specifically to be imple-
mented on a high parallelizable architecture. In fact, as shown in Fig. 5.22, the
image containing the OIs is organized into a uniform sampled set of overlapping
patches. For every patch, a COV tensor is independently built in order to describe
it, and a binary or multi-class classifier is also applied for assigning a label.

5.6.1.1 Object Descriptors

Given a set of Np patches, the corresponding set of covariance matrices is denoted
as {Ci}i=1,...,Np

∈ Sym+
d (the space of symmetric positive definite d×d matrices),

where d is the number of features involved to build the matrices. For the sake of
clarity, here a set of clues which will be fed into the covariance matrices for their
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usage in the experiments is instantiated. Likewise [TPM08], for each pixel (x, y)
inside the patch, the following source of information is extracted:

[|Ix| |Iy|
√
I2x + I2y |Ixx| |Iyy| arctan

Ix
Iy

]T , (5.26)

where Ix, Ixx, etc. are grey-level intensity derivatives, and the last term represents
the edge orientation. From the features vector in Eq. (5.26), a 6 (d = 6) covariance
matrix can be estimated. In order to disregard the expensive computation and the
complex management of geodesic distances among COV tensors, it is recommended
to project the covariance matrices form their Riemannian manifold M to at least
one of the tangent spaces of M.

By computing the sectional curvature of M [Cha06] (i.e. the natural gener-
alization of the classical Gaussian curvature for surfaces), it is possible to show
that this space is almost flat (this is demonstrated in Chap. 6 with great detail).
This means that the neighbourhood relation between the points on M remains
unchanged, wherever the projection point is located.

Therefore, the most convenient projection point from the computational per-
spective is the d × d identity matrix Id ∈ M. The projection translates the co-
variances into {ci}i=1,...,Np

vector descriptors, such that ci ∈ Rd·(d+1)/2. More
precisely, this projection is called logarithmic mapping and it is a standard Rie-
mannian geometry operator which provides a linearised version of M.

In practice, the logarithmic mapping is formulated using the EVD decomposi-
tion (see Sec. 2.2.5 for details) as

logId
(X) = log(X) = U log(D)UT . (5.27)

Moreover, the tangent space is Symd, where there are only d(d+1)/2 independent
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Fig. 5.22. The patch-based model. Considering the human body as an OI, it is sub-
divided into 9 overlapped patches and each patch is described by a covariance matrix
descriptor.

coefficients, which are the upper triangular or lower triangular part of the matrix,
by applying the vector operator (defined in Sec. 2.2.6). It relates the Riemannian
metric on the tangent space to the canonical metric defined in Rd(d+1)/2.

5.6.1.2 Object Classification

Considering the previous set of patches
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{Ci}i=1,...,Np

, a set of classifiers
{Fi}i=1,...,Np

is trained, one for each patch, through the LogitBoost algorithm [FHT00], adapted
to work on Riemannian manifolds. This version differs from the original one for a
pre-processing step in which Eq. (5.27) and (2.1) are applied to the entire training
set (see Alg. 6 for the schematic of this procedure). When the patch classifiers are
learnt, their strong responses are combined into a unique classification response as
follows:

Fcomb(IW ) =

Np∑
p=1

wp · Fp(cp), (5.28)

where IW (⊂ I) is the detection window (of an image I), which is classified ac-
cording with the sign of Fcomb(IW ): if it is positive, IW belongs to the current
class. However, to achieve the best classification performances, a more restrictive
condition is imposed, i.e. Fcomb(IW ) > τ , where the parameter τ depends on the
specific application. Since the location of the OI patches is fixed by construction
and their variability could be high, it is reasonable that some patch detectors are
more reliable than others. This is why a weight wp is associated to each patch
classifier.

Given a set of OI examples, a validation dataset is instantiate, where the num-
ber of correct classifications per patch is counted. The normalized resulting values
become the weights wps to be used in the testing phase. Therefore, each wp is
proportional to the ability of Fp to classify its associated patch correctly, and says
which patch is more suitable for the classification task in general.

5.6.1.3 Weak Classification Strategy

It is possible to use very different types of WLs for boosting purposes. The most
common are the decision stumps (or regression stumps), which are piecewise con-
stant regression functions or linear regression functions. To address both binary
and multi-class classification problems, the best weak classification strategy is
represented by the weighted regression trees [Bre84]. In order to avoid the risk of
overtraining of the regression tree, a minimal number η of observations per tree
leaf is experimentally estimated.

5.6.1.4 Object Model Learning

It is necessary to define some fundamental details to build the OI model. First,
it is important to specify an automatic stop criterion for the training phase. The
proposed rule is a composition of two terms. The first one takes into account the
accuracy with which the problem classes are correctly classified by setting the
maximum accuracy τacc for all the classes. The second one concerns the learning
rate, which is the difference in accuracy between two consecutive iterations of
LogitBoost. If the learning rate is less than τlr for all the classes, then the boosting
process has converged to its optimal solution. In the experiments, τacc is set to
99% and τlr to 1% to obtain the best classification performances.
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5.6.2 Implementation Design

The system described in Sec. 5.6.1 and illustrated in Fig. 5.23 has been designed
to largely fit on a FPGA, specifically, a Xilinx Spartan-3A DSP 3400A device,
which has 23872 slices and 126 hardware multipliers. This Section aims to briefly
introduces the hardware implementation design of the proposed architecture using
a limited amount of resources in order to be integrated in an existing circuit with
extended functionalities.

An overview of the proposed architecture is shown in Fig. 5.23. Its design con-
sists in a pipeline composed of five main stages which can be grouped into three
main architectural components. The first one is the Covariance Matrix Computa-
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H-V Gradient 

Gradient I - phase
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Image 50x50 
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FPGA Spartan 3A-DSP

Tensor Buffer Projection
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LogitBoost

Classifier

Classification 
Output

Covariance Matrix

Fig. 5.23. General scheme of the architecture.

tion module, which calculates the covariance matrix {Ci}i=1,...,Np of each patch
by extracting the feature vector for each incoming pixel. Then, the Logarithm Pro-
jection module targets at projecting the covariance matrices on a tangent space
in order to classify the patches. The logarithmic projection is applied according
to Eq. (5.27), which requires an eigenvalue decomposition of covariance matrices,
followed by the computation of the eigenvalue logarithm.

Since the goal is to minimize the use of hardware resources while slightly de-
grading the throughput, the eigenvalue decomposition module has been designed
using the same single processor instead of a systolic architecture. This has been
possible by adopting an iterative Jacoby-like method [GVL96], and exploiting the
sequential property of each iteration.

The last stage is the Classification module, which aims to classify the covariance
descriptor by using weighted regression trees.

The hardware implementation details of all the modules go beyond the goal of
this thesis, but can be found in [MTF+10].

5.6.3 Experimental Results

For the validation of the proposed classifier, a software-based classifier special-
ized in a binary classification problem is implemented. The challenging task of
pedestrian detection is chosen to compare the results with the large number of
competitors in the literature. The results of a preliminary accurate investigation
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of the proposed hardware architecture are reported by using a software floating-
point based on a behavioural model.

The INRIA Person dataset [Dal05] is considered for the validation of the clas-
sifier. The central region inside the pedestrian detection window (corresponding to
the actual region where the pedestrian is enclosed) is picked. The region is divided
exactly as depicted in Fig. 5.22. A covariance descriptor is associated with each
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Fig. 5.24. DET curve for pedestrian detection: comparison of the proposed framework
(ourCOV) with state-of-the-art methods.

patch, and it is estimated using the following procedure. For each patch, a binary
classifier is built as described in Sec. 5.6.1. The η parameter, ruling the complexity
of the regression trees, has been fixed on the optimal value 150. We use a rejection
cascade [VJ01] of 5 levels in which each level is populated by 10000 background
examples. Augmenting the number of cascade levels to more than 5 does not in-
crease the accuracy appreciably, since the number of covariance features remains
fixed (in [TPM08], instead, at each step a new set of features is selected).

In Fig. 5.24, the proposed framework is compared with the methods in
[DT05, TPM08, VJ02, DTTB07, SM07, MBM08], whose plots are extracted from
[DWSP09] and [TPM08]. The performances are evaluated using the Detection Er-
ror Tradeoff (DET) curve, that expresses the proportion of false negatives against
the proportion of false positives, on a log-log scale. The curve is estimated by
varying the threshold τ in the range [−1, 1]. The proposed detector defines state-
of-the-art performances, especially in terms of miss-rate. Considering that, the
framework has a extremely general and slim structure with respect to the state of
the art, this is a particularly promising result.

So far, the real time performances are not achievable in software. The im-
plementation of this classifier in hardware will allow to meet also the real time
constraint. As described in Sec. 5.6.2, the eigenvalue decomposition module is the
bottleneck of the design and determines the timing performance of the overall sys-
tem. Considering the system speed, an excellent performance would be achieved,
compared to other alternatives such as [AA04, BML+08]. Particular efforts have
been devoted during the design to the optimization of the Logarithm Mapping
Module which represents the most challenging element to be implemented, de-



5.7 An Experimental Comparison for Video Surveillance 91

manding resource and being critical from the accuracy point of view. The approx-
imation effect resulting from the porting of the classifier in hardware is evaluated
by computing the relative error as the relative value difference of the Frobenius
norm of two datasets, the set M of projected covariance matrices computed with
the floating-point classification framework described above and the set of matri-
ces projected using the Logarithm Mapping Module. The mean relative error is
0.2537%. The evaluation of the fixed-point accuracy of the Logarithm Mapping
Module is promising and it allows to go further towards a real time embedded
system for multi-class classification problems.

5.7 An Experimental Comparison for Video Surveillance

This Section shows the uses of some of the previous pedestrian detection frame-
works, applied to the data used in the SAMURAI project [sam]. SAMURAI de-
veloped robust moving object, segmentation, categorisation and tagging in video
captured by multiple cameras from medium-long range distance, e.g. identifying,
monitoring and tracking people with luggage between different locations at an
airport. Automated focus of attention and identification in a distributed sensor
network that includes fixed and mobile cameras, positioning sensors, and wearable
audio/video sensors. Global situational awareness assessment and image retrieval
of objects by types, movement patterns with incidents across a distributed network
of cameras. Online adaptive abnormal behaviour monitoring for profiling and in-
ference of abnormal behaviours/events captured by multiple cameras. One of the
goals of this project is to reveal the presence of a pedestrian by drawing a bound-
ing box surrounding each person. The detected people are then labelled according
to their appearance, posture, kinematics, and their association with luggage and
vehicles.

At the beginning of the SAMURAI project the adopted pedestrian detection
was the one built upon the binary LogitBoost method on Riemannian Manifolds as
described in Sec. 5.2, that it is renamed as FUD. This solution provides good results
for medium/high resolution pedestrians, but performs poorly with low resolution
pedestrians. To improve it, its training and testing procedures are significantly
modified adopting a regular grid set of patches to characterize a pedestrian as
described in Sec. 5.6, which is denoted by EOD. This solution permits to enhance
the robustness of the pedestrian detector, being intrinsically more robust to occlu-
sions, noise, and able to deal with very low resolution pedestrians. One may ask
why the other pedestrian detection frameworks presented in this Chapter do not
appear in this experimental section: it is due to their computational burden. FAD
and EOD are used because they can exploit the integral representation [TPM06]
that leads to a light-speed computation of the descriptors.

The comparison is made in two different test sites. The test site depicted in
Fig. 5.25 has been set up in one of the project partner company, Elsag Datamat
S.P.A., in Italy. It allows to facilitate validation of the SAMURAI architecture.
This site contains a car park. The goal is to ensure visitors register themselves
at the security check-in counter/reception building before they enter the office
building. The behaviour of not registering themselves is considered abnormal. In
this scenario the cameras cover different views of the car park.
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Fig. 5.25. Elsag Datamat test site.

The third terminal of the Heathrow Airport in the United Kingdom, depicted
in Fig. 5.26, is the other test site. In particular, where passengers usually drive
into the area, park their cars and get into the airport departure or arrival areas.
The goal is to detect the abandonment of unauthorised vehicles (except coaches,
police cars, emergency vehicles and taxi) in the inner lane of the forecourt. Timely
detection of this situation is critical for enhancing the security at the airport. In
this scenario the cameras cover different areas of the forecourt, i.e. the inner lane
of the forecourt, the car park, and the lobby at the terminal building.

Fig. 5.26. T3 Heathrow Airport test site.

The qualitative results shown in Sec. 5.7.1 for the low resolution pedestrian
detection task and in Sec. 5.7.2 medium/high resolution pedestrian detection task
are a little part of the detection results obtained for the SAMURAI project. Un-
fortunately, a ground truth is not available for the SAMURAI data, however in
this Section the different behaviour given by the FUD and the EOD detectors is
highlighted in real settings, since the quantitative statistics not always tell the
truth about the effectiveness of a detector as demonstrated in [DWSP11].

Before showing and commenting the results, it is worth noting that: (1) both the
detectors (FUD and EOD) are trained using the INRIA Person Dataset [Dal05],
so they do not contain images coming from the test sites; (2) the results shown
are not post-processed by any non-maximum suppression method in order to show
the actual output of the detectors.

5.7.1 Low Resolution Pedestrian Detection

For what concerns the low resolution pedestrian detection task, the superior per-
formance of the EOD detector in comparison with the FUD detector is shown.
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This because the FUD framework as [TPM08], which is the most similar detec-
tor, relies on many small details of a set of medium size pedestrians. So, at low
resolution these small details become unreliable and the detector fails. Here the
big region of the regular grid on which EOD is built and the compactness of the
covariance descriptor lead to a very effective detector in the low resolution case.

(a)

(b)

Fig. 5.27. Low resolution pedestrian detection examples. (a) The results given by the
EOD framework described in Sec. 5.6. (b) The results given by the FUD framework
described in Sec. 5.2

5.7.2 Medium/High Resolution Pedestrian Detection

On the contrary, when pedestrian are medium or high, a resolution FUD classifier
can use the small details to discriminate better the presence of a pedestrian in an
image. In this case, a EOD detector perform poorly because of the compactness
of the few covariance matrices on which it is based.
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(a)

(b)

Fig. 5.28. Medium/high resolution pedestrian detection examples. (a) The results given
by the EOD framework described in Sec. 5.6. (b) The results given by the FUD framework
described in Sec. 5.2
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6.1 Introduction

In video surveillance a pedestrian, detectors like those presented in Chap. 5, can
be seen as the first step towards a people tagging or re-identification module. Also
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in this case, the issue of how to represent a person for those high level tasks is
central. Recalling the good results obtained by tensors in Chap. 4 for multi-class
classification tasks, some of those tensors are exploited for people categorization
tasks. The main contribution of this Chapter are: a new class of features referred to
as ARCO which is further evolved to WARCO and FWARCO for the description
of low resolution objects on different regression and multi-class problems, such as
head orientation classification, human orientation classification, pedestrian classi-
fication, head pose estimation. For all these tasks novel datasets are introduced.
In addition, it introduces a novel criterion, based on the Riemannian curvature,
to estimate the non-flattens of a set of tensors, which can be used to estimate the
error committed in approximating tensors on a Euclidean manifold for learning
purposes. That criterion is valid over any connected Riemannian manifold. Be-
sides, it describes a way to find possible approximations of the actual distance
among tensors that can be combined with standard machine learning algorithms
for multi-class classification and regression problems.

As for the previous Chapter, the attention is focused on people in the video
surveillance context. As a first attempt of tagging a person, the problem of cat-
egorizing his head orientation is tackled. This is because the orientation of the
head allows to infer which part of the scene is observed by that person, which is
useful to infer what a person may be interested in, or to understand whether a
person is interacting with another one. So, in Sec. 6.2 the binary LogitBoost on
Riemannian Manifolds (see Sec. 5.2) is extended to the multi-class case, employ-
ing it to detect head orientations. Even if the results obtained are promising, the
computational cost of the learning phase of this solution is prohibitive for large
datasets. This prompts me to find a different learning strategy able to manage
efficiently SPD tensors for multi-class problems. As results, in Sec. 6.3, a novel
feature, the ARray of COvariances (ARCO), is proposed, and a multi-class clas-
sification framework operating on Riemannian manifolds is introduced. ARCO is
composed of a structure of covariance matrices of image features, able to extract
information from data at prohibitive low resolutions. The proposed classification
framework consists in instantiating a new multi-class boosting method, working
on the manifold Sym+

d of symmetric positive definite d × d (covariance) matri-
ces. As practical applications, different surveillance tasks are considered, such as
head pose classification and pedestrian detection, providing novel state-of-the-art
performances on standard datasets.

In Sec. 6.4 Weighted ARCO (WARCO) is presented: it represents a significant
revision and extension of ARCO. It revisits this feature reporting a comprehensive
theoretical analysis that motivates some fundamental choices with regard how it
is possible to compute the distance among covariance matrices. Moreover, the
study goes a step further proposing different approximations of that distance and
showing the goodness of this framework in both theoretical and empirical ways.
Moreover, with WARCO, a more effective and efficient statistical framework is
introduced, if compared to the one proposed in Sec. 6.4. A thorough evaluation is
finally provided, on several public datasets, specifically devoted to head orientation
classification, human body pose classification, and head orientation estimation in
real surveillance scenarios, showing that the proposed method outperforms in most
of the cases the state-of-the-art results.
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Then in Sec. 6.5, Fast WARCO (FWARCO) is introduced for fast and robust
inference, which exploits Random Forest (described in Sec. 3.3.2) to train the
WARCO patch models. This because RF is very efficient both in the training and
testing phases. Moreover, in terms of robustness, a hard negative mining strategy
is designed for RF, that is particularly useful for multi-class classification problems
where the background class is present.

Exploiting ARCO, in Sec. 6.6 a multi-class detection framework is built to
model the Visual Focus of Attention (VFOA) of a person which is a very impor-
tant cue in human behaviour analysis. VFOA classification is difficult, though,
especially in an unconstrained and crowded environment, typical of video surveil-
lance scenarios. In this Section, VFOA is estimated by defining the Subjective
View Frustum, which approximates the visual field of a person in a 3D represen-
tation of the scene. This opens up to several intriguing behavioural investigations,
in particular the proposed Inter-Relation Pattern Matrix, which suggests possible
social interactions between the people present in a scene.

Sec. 6.7 tries to understand if it is possible to exploit the tensor representation
to build a more powerful object descriptor compared to COV (Covariance) repre-
sentation for several multi-class classification problems. To that end, in Sec. 4.2.2
EMI (Entropy-Mutual Information) tensor is introduced and Sec. 4.3 shows that
EMI beats COV tensor. This experimental session completes the one started in
Sec. 4.3, providing to EMI and COV a more complex object model in the same
spirit of [BZM07a], thus using a spatial pyramid representation.

6.2 Multi-class LogitBoost on Riemannian Manifolds: A
Direct Extension

Tuzel et al. [TPM08] have recently concentrated on the use of covariance features
as human descriptors. A region is represented by the covariance matrix of im-
age features, such as spatial location, intensity, gradient values etc. Within the
context of human detection, these matrices are associated with different overlap-
ping subregions inside the detection window containing the whole human body.
Since covariance matrices lie in the Riemannian manifoldM of the SPD matrices
denoted by Sym+, a modified version, working on Riemannian manifolds, is pro-
posed in Tuzel et al. [TPM08]. This Section examines Tuzel et al.’s approach and
proposes the extension of their method to the multi-class classification case. The
obtained framework is then employed for head orientation classification.

6.2.1 Learning Framework

Assume to have a J-class classification problem. Let S = {Xi, yi}i=1,...,N be the
set of training examples, with yi ∈ {1, . . . , J} and Xi ∈ M. The goal is to find
a set F = {Fj}j=1,...,J of response functions, for F (Xi) : M 7→ {1, . . . , J}, that
divides the input space into J parts, based on the training set of labelled items.
Fj is a single class strong classifier and is defined as a sum of weak classifiers.
According to [TPM08], an incremental approach is adopted by training locally
different sets of weak learners on tangent spaces of M and then combining them
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with the boosting model. The essence of a boosting algorithm is an iterative re-
weighting system that tends to focus on the most difficult examples in the training
set. In the multi-class case, J different sets of weights can be built by the posterior
distributions. Let P(j|Xi) (= Pj(Xi) ) be the posterior probability for Xi being
in the j-th class. It is represented by:

P
j
(Xi) =

eFj(Xi)∑J
k=1 e

Fk(Xi)
, Fj(Xi) =

L∑
l=1

flj(Xi), (6.1)

where {flj}l=1,...,L is a class-specific set of weak learners. Every example in S is
associated with a weight that depends on the class considered. Considering Xi ∈ S
and the j-th class, its weight can be calculated as:

wij = P
j
(Xi)(1− P

j
(Xi)). (6.2)

At the core of the learning process, the decision boundaries are built by the weak
learners. These are simple lines fitted by solving a weighted lest-square regression
problem. To measure the goodness of the regressors one can use the response values
z. As for the weights, response values are class-specific and are defined for every
example in S as:

zij =
y∗ij − Pj(Xi)

Pj(Xi)(1− Pj(Xi))
, (6.3)

where Y∗ij = 1j = yi, with 1{·} an indicator function that takes 1 if and only if
(j = yi) is true, and y∗i = [Y∗i1, . . . ,Y

∗
iJ ]. The main difference between multi-

Algorithm 10: Multi-class LogitBoost on M
Data: (X1, y1), . . . , (XN , yN ) with Xi ∈M and yi ∈ {1, . . . , J}.
Result: The multi-class classifier F .
begin
∀i ∀j start with weights wij = 1/N and i = 1, . . . , N , Fj(Xi) = 0 and
Pj(Xi) = 1/J ;
for l = 1, 2, . . . , L (L = total number of weak learners) do

for j = 1, 2, . . . , J do
Compute the response values and weights with Eq. (6.3) and Eq. (6.2)
respectively;
Compute the weighted mean µlj of the j-th class points through (5.4);
Map the data points to the tangent space at µlj and then vectorize

them as in (2.1). xi ∈ Rn denotes a point on the tangent space;
Fit the binary function glj by weighted least-square regression of zij
to xi using weights wij ;
Set Fj(X)← Fj(X) + flj where flj is defined in Eq. (6.2.1) and Glj
from Eq. (6.5);
Update Pj(X) as in Eq. (6.1);
Fj = Fj ∪ {µlj , glj};

class LogitBoost onM and Rn is at the weak learners level. In theM case a weak
learner is defined as a map fl(X) :M 7→ R, whereas in the Rn case fl(x) : Rn 7→ R.
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The weak learners are defined as:

fl(X) = gl(vec
µl

(logµl
(X))), (6.4)

and the regression functions gl(x) : Rn → R are learned on the tangent space
Tµl
M at the weighted mean µl ∈M of the points, estimated as in Eq. (5.4). Notice

that the mapping vec (defined in Sec. 2.2.6) gives the orthonormal coordinates of
the tangent vectors in Tµl

M.
The multi-class extension of the basic binary learner is instead the same for

M and Rn. This is because the extension is done after projecting all the training
data in an appropriate class-dependent tangent space. A multi-class weak learner
is defined as in [ZPG+06]:

Glj(xi) =
J − 1

J

(
glj(xi)−

1

J

J∑
k=1

glk(xi)

)
, (6.5)

where glj(xi) is a binary classifier for class j and xi is an element of M mapped
on the tangent space of µl. Glj represents a sort of disparity from the mean of all
the binary weak classifiers responses.

A description of multi-class LogitBoost working onM is illustrated in Alg. 10.

6.2.1.1 Class-specific dense object model

Recalling that the goal is to represent an object as a set of covariance matrices,
this type of object representation is known as dense object model. In order to
select, at each iteration of the learning process, the best features (i.e. the best
sub-window inside the window box where to estimate the covariance matrices), a
two steps greedy optimization approach is proposed. The underlying idea is, first,
to optimize features selection at class level. Then, the best features combination
among all classes is optimized globally utilizing the results from the first step. This
approach is followed in order to maximize efficiency.

Assuming that each sub-window is one-to-one with a weak learner, a shared
set of weak learners {ft}t=1,...,T is selected. T is arbitrarily chosen, typically 200
in the experiments. According to Eq. (6.1), the posterior for every weak learner is
computed. Then, the weak learners are ordered for each class separately, according
to the binomial log likelihood ltj(·, ·):

ltj(y
∗,P(X)) =

N∑
i=1

y∗ij log P
jt

(Xi) + (1−Y∗ij) log(1− P
jt

(Xi))}, (6.6)

where Pjt is the posterior for class j on a sub-window t.
In the second step, the best combination of sub-windows tuple

Tm = [t1m, t2m, . . . , tJm]

is selected. The candidates are the tuples derived from the sorting in the first step,
such that Tk = [t1k, t2k, . . . , tJk] is composed by the J sub-windows at the k-th
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Algorithm 11: Multi-class LogitBoost on M with dense object model

Data: (X1, y1), . . . , (XN , yN ) with Xi ∈ S and yi ∈ {1, . . . , J}.
Result: The multi-class classifier F .
begin
∀j start with weights wij = 1/N e i = 1, . . . , N , Fj(X) = 0 and Pj(Xi) = 1/J ;
for l = 1, 2, . . . , L do

Sample T sub-windows and construct covariance matrices;
for j = 1, 2, . . . , J do

for t = 1, 2, . . . , T do
Compute the response values and weights with Eq. (6.3) and
Eq. (6.2) respectively;
Compute the weighted mean µijt of the j-th class points through
(5.4);
Map the data points to the tangent space at µijt and then
vectorize them as in (2.1). xi ∈ Rn denotes a point on the tangent
space;
Fit the function gljt by weighted least-square regression of zijt to
xi using weights wijt;

Select the best ensemble of weak classifiers {flj}j=1,...,J , with the two step
optimization;
Order the covariance descriptors with Eq. (6.6) ∀j;
Select the best combination with Eq. (6.7);
for j = 1, 2, . . . , J do

Set Fj(X)← Fj(X) + flj where flj is defined in Eq. (6.2.1) and Glj as
in Eq. (6.5);
Update Pj(X) as in Eq. (6.1);
Fj = Fj ∪ {Tm,µlj , glj};

position in the classes 1, 2, . . . , J , respectively. Tm is estimated by minimizing the
negative multinomial log-likelihood of the data:

Lk(y∗,P(X)) = −
N∑
i=1

J∑
j=1

y∗ij log P
j,tjk

(Xi) + (1−Y∗ij) log(1− P
j,tjk

(Xi))}. (6.7)

Here, Pj,tjk is the posterior estimated for class j and sub-window tjk.
To show the effect of using this strategy on the multi-class LogitBoost, Alg. 11

gives a detailed description.

6.2.1.2 Tree structured classification

Different classes have different intrinsic complexity. The more a class is compact
in the features space, the easier its learning process is. It means that each class
needs its own number of weak learners to be learned. Therefore, it is necessary
to establish a stop criteria to define when a class is learned. When all classes are
learned, the learning process terminates. At the state-of-the-art, only in [ZPG+06]
a stop criterion is proposed. This criterion is defined for detection purposes, and it
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is directly based on the strong classifier response F (X). Since F takes values in R,
their criteria has only an empirical interpretation. So, a new criteria based on pos-
terior probability P(X) is established, with a clearer probabilistic interpretation.
The proposed condition is defined by two parts, one regarding the posterior prob-
ability of the elements belonging to a class, and the other concerning the elements
that do not belong to the same class. The learning of the j-th class is stopped
when at least TH% of the examples in that class, Cj , are correctly classified, that
is to say when the following condition holds:

P
j
(Xi) > P

k
(Xi), Xi ∈ Cj , k 6= j ∈ {1, . . . , J}. (6.8)

Moreover, one may want that most of the other examples belonging to the
other classes are not wrongly classified as belonging to Cj :

P
j
(Xi) < P

k
(Xi), Xi ∈ Ck, k 6= j. (6.9)

Also in this case one may want that (6.9) holds for at least TH% of the examples
in Ck. It is possible to make the conditions in Eq. (6.8) and (6.9) more restrictive
by adding a probabilistic margin marg, i.e:

P
j
(Xi) +marg > P

k
(Xi), Xi ∈ Cj , k 6= j ∈ {1, . . . , J}, (6.10)

and
P
j
(Xi) < P

k
(Xi) +marg, Xi ∈ Ck, k 6= j. (6.11)

Assuming that classes have a different number of weak learners, it is neces-
sary to define how to compute the posterior probability. As in [ZPG+06], a tree
structure is adopted. A toy problem with 3 classes (J = 3) is used to explain the
posterior computation. Suppose that after several LogitBoost iterations the 1-st
class satisfies the stop criterion. The learning for this class is stopped, thus creat-
ing the first layer of the tree. The posterior probability p1,1(X) of the 1-st learned
class at the first tree layer (the former sub-index in p indicates the class, the latter
the three layer) is computed, according to Eq. (6.1), as:

P
1,1

(X) =
eF11(X)∑J
k=1 e

F1k(X)
. (6.12)

The sub-indexes in F has the same meaning as in p. At the next tree layer one
should remove the 1-st class and all the remaining classes share the residual pos-
terior probability:

R{2,3},1(X) = 1− P
1,1

(X). (6.13)

Now, let us suppose that the second class is learned at the second layer of the tree.
Its posterior probability becomes:

p2,2(X) =
eF22(X)∑J
k=2 e

F2k(X)
·R{2,3},1(X), (6.14)

and the residual of this second layer is
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R3,2(X) = (1− P
2,2

(X)) ·R{2,3},1(X). (6.15)

Therefore, in general the posterior probability for the j-class at the u-th tree layer
is built as

pj,u(X) =
eFjl(X)∑

k∈Ju e
Flk(X)

·
l−1∏
i=1

Rji(X), (6.16)

where
∏l−1
i=1Rji(X) is the product of the (l − 1) previous residues, and Ju is the

set of classes active at level u.

6.2.2 Experimental Results

6.2.2.1 Human Detection

Before to test the proposed framework on a multi-class classification problem, a
binary problem is considered, i.e. the pedestrian detection. The human detector
is trained on INRIA Person dataset [DT05]. In the first experiment, adopting the
improvements described in Sec. 5.2, a toy example is shown, training a cascade of 11
levels with 500 positive examples and 1000 negative examples per level, in order to
show the behaviour of the framework in the training phase. The proposed method
is compared with a standard random selection of negative examples. In Fig. 6.1,
the x-axis and the y-axis correspond to the cascade level and to the number of
weak learners per level respectively. Considering the number of weak learners of the
experiment, a cut of the 45% in the cascade complexity is obtained, evaluated as
number of classifiers, in comparison to the normal cascade. Both classifiers obtain
similar detection performances, but the proposed method is more efficient, because
of the minor number of classifiers to be evaluated.

Experiments are conducted on two challenging real video surveillance scenarios.
The first one is a home-made video that portrays an indoor coffee-room scene [Baz],
where students take coffee or discuss. This resembles a restricted surveillance area,
like a shop or a bar inside an airport. The video footage is acquired with an off-
the-shelf monocular camera, located on a upper angle of the room. This video is
particularly challenging due to shadows and reflections (on the floor and on the
coffee machines). The second one is from a publicly available dataset, PETS2007
[pet], and depicts a scene inside an airport. Even in this case the lighting conditions
are quite challenging, with a bright sun entering trough the windows.

The classifier is trained using a 22-levels cascade. A total of 3000 positive
examples are extracted, joining PETS2007 and INRIA Person datasets [Dal05],
and 5400 negative examples per level are employed. All the examples are scaled into
a fixed size of 64× 128, which includes a small margin all around the pedestrians.
The negative examples come from 1218 person-free images of the INRIA person
data set and about 100 person-free patches of PETS2007. In Fig. 6.2 plots the
number of weak classifiers at each cascade level and the accumulated rejection
rate over the cascade levels. A curve’s inflection it can be noticed at level 4. This
is due to the transition from the training with only easy negative examples to the
training with the hard ones. The performance of the proposed classifier on INRIA
person data test set are measured. The Detection Error Tradeoff (DET) curve is
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Fig. 6.1. The cascade of classifiers produced in training phase for a toy example. On the
top, a random sampling methodology is adopted; on the bottom, the proposed method-
ology based on the low level semantic.

adopted. The curve is depicted in Fig. 6.2. Compared to the results in [TPM08]
similar performances are obtained, even to with a less number of weak learners
and cascade levels.

Detection is carried out by checking each window inside the detection image.
Different scales (0.5, 0.7, 1.0, 1.5) are checked by scaling the image accordingly
and applying the classifier at the original scale. The positive detections are filtered
out by selecting the local maxima of the detection outputs.

Some detection results are shown in Fig. 6.3 for the coffee-room sequence and in
Fig. 6.4 for S08 sequence in PETS 2007. As to the coffee-room sequence, 3580/5955
people are detected, about 60%, with only 53 false positives on a total of 2408
frames of dimension [600× 384]. The false negatives are mainly due to occlusions,
since the room is very small and people tend to gather together, forming groups.
The number of false positive is very small, though. As to the PETS 2007 sequence,
the proposed method detects 1310/2050 people, about 64%, and 320 false positives
on 660 frames of dimension [720× 576]. In this case, the false negatives are due to
occlusions and the lighting conditions. The false positives, instead, are mainly con-
centrated on the back of the hall, at the border between illuminated and shadowed
area.

In these tests human detection at each frame is performed. The percentage of
false negatives can certainly be increased by integrating the background subtrac-
tion module and by adding spatio temporal considerations.
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Fig. 6.2. The number of weak classifiers at each cascade level on the top. On the bottom,
the DET curve on the INRIA test set.

Fig. 6.3. Detection examples on the coffee-room sequence [Baz]. Red dots are the local
maxima of detection outputs, and the rectangles are the averaged detection window sizes.

Fig. 6.4. Detection examples on PETS2007 [pet] S08 sequence.
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6.2.2.2 Head Pose Orientation

The multi-class framework on Riemannian manifolds is applied on the classifica-
tion of head pose orientation. Since I want to work in realistic video surveillance
scenarios, where usually pedestrians are rather small in the image, so a quite rough
estimation of head orientation is enough. For video surveillance it is sufficient to
classify 4 orientations: front, back, left and right. A training set composed by
46 × 60 head examples is built, taken from a subsequence of the coffee-room se-
quence, with about 200 examples for each class. All positive examples contain a
margin of about 10 pixels. This makes the classifier much more robust. I trained
the classifier on 5 classes (one is the background) with the tree structure, until
the stop criterion holds for each class. 20000 negative examples from the INRIA
dataset are used.

The classifier has been tested on the rest of the coffee-room sequence. The one-
third upper part of a pedestrian positive detection window is selected, as detected
by the human detector above, and the classifier is applied. The detection rates are
shown in Tab. 6.1. Some correctly classified head images are illustrated in Fig. 6.5.

TH% Back Front Left Right

80 55 64 68 67
85 75 77 78 70
90 85 82 91 79

Table 6.1. Classification performance (in percentage) with different training sets at
different detection thresholds (TH).

Fig. 6.5. Some examples of correctly classified images in [Tosb], frontal, left, right and
backward orientation respectively.

6.3 ARCO (ARray of COvariance Matrices)

Even if the results obtained in the previous Section are promising, the computa-
tional cost of the learning phase of that solution is prohibitive for large datasets.
This prompts me to find a different learning strategy able to manage efficiently
SPD tensors for multi-class problems. Therefore In this Section, a novel feature
is proposed, the ARray of COvariances (ARCO), and an efficient multi-class clas-
sification framework operating on Riemannian manifolds for video surveillance
purposes.
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An important goal of automated video surveillance is to design algorithms
that can characterize different objects of interest (OIs), especially if immersed in a
cluttered background and captured at low resolution. The detection (e.g. of faces
or pedestrians) and the classification (e.g. of facial poses) are among the most
studied applications. In the multi-faceted plethora of approaches in the literature
(see [MCT09, EG09, YKA02] for extensive reviews), boosting-based techniques
play a primary role [VJ01, LZZ+02, VJV03, HALL05, WAHL04, LZ04, BHHW05,
TPM08, YO08, WN08, PSZ08]: boosting [FS97, SS99, FHT00] is a remarkable,
highly customizable way to create strong and fast classifiers, employing various
features fed into diverse architectures, with specific policies.

Among the different features considered for boosting in object classification (see
[WN09] for an updated list), covariance features [TPM06] have been exploited as
powerful descriptors of pedestrians [TPM08, YO08, WN08], and their effectiveness
has been explicitly investigated in a comparative study [PSZ08]. When injected in
boosting systems [TPM08, YO08, WN08, PSZ08], covariances provide strong de-
tection performances. They encapsulate the high intra-class variances (due to pose
and view changes of the OI), they are in general stable in presence of noise, and
provide an elegant way to fuse multiple low-level features, as they intrinsically ex-
ploit possible inter-features’ dependencies. Moreover, thanks to the integral image
representation, they can be calculated in a very efficient way.

Since covariance matrices lie in the Riemannian manifold of symmetric positive
definite matrices Sym+

d , their usage in a boosting framework requires a careful
treatment. In [TPM08], the input covariance features are projected into the tangent
space at particular points of the manifold, where an Euclidean metric can be
instantiated, and the Logitboost framework can be applied.

In this Section, two main contributions are proposed. First, a novel kind of
feature is presented, i.e. the ARray of COvariances (ARCO), able to describe
visual objects at prohibitive low resolutions (up to 5×5 pixels): it marries the dense
descriptors philosophy, adopted for example in [DT05], with the expressivity of the
covariance information. Second, it is shown how such features can be embedded in
a multi-classification framework by boosting, extending [TPM08] to the multi-class
case. It turns out that Sym+

d has non positive curvature and in the areas where the
curvature is almost flat the Euclidean metric on the tangent space at any point
on the manifold is a good approximation of the Riemannian metric. Therefore,
unlike [TPM08], all the data is mapped in a unique tangent space, and all the
computations are performed on this (Euclidean) space where a typical multi-class
LogitBoost (see Alg. 3) algorithm can be applied.

The experimental trials show how the proposed method outperforms in two
important applications for surveillance like head pose classification and pedes-
trian detection, without adopting complex boosting schemes such as Floatboosting
for pyramids [LZ04], decision trees [VJV03], VectorBoosting for width-first-search
trees [HALL05], or Probabilistic Boosting Networks [ZZMC07]. Novel state-of-the-
art performances on standard databases are fixed. This encourages the embedding
of the proposed Riemannian framework in the above quoted boosting schemes. I
stress also the capability of dealing with compelling image resolutions, promoting
the use of ARCOs for heterogeneous applications, especially in the surveillance
field.
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The rest of the Section is organized as follows. Sec. 6.3.1 describes the proposed
ARCO feature and Sec. 6.3.2 depicts the proposed multi-class framework. Sec. 6.3.3
shows the experimental results on several surveillance applications.

6.3.1 ARCO: ARray of COvariance Matrices

p/2
p

Fig. 6.6. Array of Covariance matrices (ARCO) feature. The image is organized as a
grid of uniformly spaced and overlapping patches. On each patch, a multi-class classifier
is estimated.

The proposed classification framework has been specifically designed to deal
with low resolution images, typical of a video surveillance scenario. In such condi-
tions, the number of features that can be extracted is relatively small, and quite
unreliable. This is very challenging in problems like, for instance, head pose classi-
fication, in which the details are crucial to distinguish the different object classes.
Moreover, the classifier must cope with object (pedestrians, heads) views in a
variety of light conditions. The solution is based on two main concepts: 1) the
organization of the image into a grid of uniformly spaced and overlapping patches
(Fig. 6.6); 2) the use of covariance matrices of image features as patch descriptors,
which are classified by multi-class LogitBoost on Riemannian manifolds. To sum-
marize, each patch classifier votes for a class, and the final classification result is
the class voted by the majority of them.

In [TPM08], where the use of covariance matrix descriptors is tailored for pedes-
trian detection, LogitBoost was used both for a greedy estimation of the most dis-
criminative patches among a set of different sizes and positions, and for classifying
them, i.e., as feature selection and classification method at the same time. The
same reasoning, using boosting for feature selection and classification, has been
applied to other approaches in the literature, as for example in [WN09, YTCC09].
Here, instead, a feature selection operation is infeasible, because low resolution
images contain such scarce and noisy information that the result would be unre-
liable: it is more convenient to use all features in a suitable way. The proposed
approach draws inspiration from the literature on dense image descriptors (see
[DT05] for example). The image I is sampled into uniformly distributed and over-
lapping patches of the same dimension. Each patch is described by the covariance
matrix representation, that encodes the local shape and appearance of the (small)
region. These patches are used in a democratic way: exalting their discriminative
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power by boosting a strong multi-class classifier, and collecting their classification
results.

More formally, given a set of patches {Pi}i=1,...,NP
, a multi-class classifier is

learned for each patch {FPi}i=1,...,NP
through the multi-class LogitBoost algorithm

[FHT00], adapted to work on Riemannian manifolds.

Let ∆j =
∑NP

i=1(FPi
== j) be the number of patches that vote for the class

j ∈ {1, . . . , J}. A class label c is assigned to an image, estimating

c = arg max
j
{∆j}, j = 1, . . . , J. (6.17)

In order to increase robustness to local illumination variations, the normaliza-
tion operator introduced in [TPM08] is utilized before applying the multi-class
framework.

The ARCO representation has several advantages. First, it allows to take into
account different features, inheriting their expressivity, and exploiting possible
correlations. In this sense, it is as a compact and powerful integration of features.
Second, due to the use of integral images, ARCO is fast to compute, making it suit-
able for a possible real-time usage. Finally, as a dense representation, it is robust
to occlusions. All the characteristics above will proved during the experimental
trials in Sec. 6.3.3.

6.3.2 Multi-class Classification on Riemannian Manifolds

Let C1, C2, . . . , CJ be the data classes whose elements (the covariances) live in the
Riemannian manifoldM of d× d symmetric positive definite matrices denoted by
Sym+

d . Let S = {Xi, yi}i=1,...,N be the set of N training examples, with Xi ∈
M and label yi ∈ {1, . . . , J}. The aim is to produce a function F (Xi) : M 7→
{1, . . . , J} as

F (Xi) = arg max
j
{Fj(Xi)}, j = 1, . . . , J. (6.18)

Fj is a single-class strong classifier, and it is defined, in turn, as a sum of L
weak classifiers {flj}l=1,...,L. These weak classifiers are learned by multi-class Log-
itBoost.

6.3.2.1 Riemannian Geometry on Sym+
d

In this section, the geometry of Sym+
d is briefly reviewed, since the manifold

consists of all d × d symmetric definite positive matrices (covariance matrices),
extending the treatment given in [TPM08].

The tangent space TY at any point Y ∈ Sym+
d can be identified with Symd,

the (vector) space of d× d symmetric matrices.
The mapping of X on TY is given by the point-dependent logY operator:

logY(X) = Y
1
2 log

(
Y−

1
2 XY−

1
2

)
Y

1
2 , (6.19)

inverse to the exponential map.
The (geodesic) distance on Sym+

d is defined as
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d2(X1,X2) = tr(log(X
− 1

2
1 X2X

− 1
2

1 )2) =

d∑
i=1

(log ξi)
2 (6.20)

where the ξi’s are the (positive) eigenvalues of X
− 1

2
1 X2X

− 1
2

1 .
On the tangent space, the Euclidean distance

d2E(X1,X2) = tr[(X1 −X2)2], (6.21)

with X1 = logY X1 and X2 = logY X2 for any Y ∈ Sym+
d , is the first-order

approximation of Eq. (6.20).
In [TPM08], a boosting framework on Sym+

d for detection (i.e., binary clas-
sification) is presented. The idea is to build weak learners by regression over the
mappings of the training points on a suitable tangent plane. This tangent plane
is defined over the weighted Karcher mean [Kar77] of the positive training data
points, such that they preserve their local layout on Sym+

d . The negative points
(i.e. all but pedestrians) instead are assumed to be spread on the manifold, thus
including them in the mean estimation, which would bias the result.

Once moving from binary to multi-class classification the above considerations
do not hold any longer, because one could have many “positive” classes, each
of them localized in a different part of the manifold. Therefore, 1) choosing the
Karcher mean of one class would privilege that class with respect to the others, 2)
the Karcher mean of all classes is inadequate.

A thorough analysis of Sym+
d opens a new perspective. First, its sectional cur-

vature, the natural generalization of the classical Gaussian curvature for surfaces,
is non-positive. Since Sym+

d is actually a symmetric space, the following formula
holds for computing the sectional curvature κId at Id – due to the homogene-
ity of Sym+

d [Cha06], there is no loss of generality – with x,y ∈ Symd linearly
independent:

κId(x,y) =
〈R(x,y)x,y〉

‖ x ‖2‖ y ‖2 −〈x,y〉2
=

tr[[x,y],x]y)

tr(x2) tr(y2)− (tr(xy))2
=

= 2
tr((xy)2 − x2y2)

tr(x2) tr(y2)− (tr(xy))2
, (6.22)

by the cyclical property of the trace. Here, [x,y] = xy − yx is the matrix com-
mutator, and R(x,y) : z 7→ [[x,y], z] is the Riemann curvature operator (in the
symmetric space framework). It can be shown (for the actual proof, see Appendix
in the additional material), that κId(x,y) ≤ 0.

Now, an application of Preissmann’s theorem [Cha06] shows that, taking the
geodesic triangle with vertices Id, X1, X2, one gets

dE(logId
X1, logId

X2) ≤ d(X1,X2) (6.23)

More precisely,

d(X1,X2) = dE(logId
X1, logId

X2) +Ξ(κId) (6.24)

where Ξ(κId) ≥ 0 is a function that depends on the sectional curvature. An explicit
form for Ξ cannot be easily derived, but it is evident that if the sectional curvature
is “small”, one can replace the “true” distance with the Euclidean one.
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Notice that the remark above reconciles the present “classical” approach with
the one in [Pen04, AFPA05], where the Log-euclidean metric is employed through-
out, upon endowing Sym+ with a Lie group structure.

The reasoning above suggests a practical manoeuvre to check this condition.
A representative set of covariance matrices is randomly picked from the datasets
under observation and the sectional curvature (Eq. 6.22) is estimated for each pair,
calculating the mean at the end. Experimentally, this mean value results −10−3,
that is far from the standard negative curvature of −1.

In these conditions, one can choose any point on Sym+
d on which to map

the dataset, and execute the learning on that (Euclidean) space. In practice, the
identity matrix Id is chosen, as this simplifies the computation. Indeed, Eq. (6.19)
becomes

logId
(X) = log(X) = U log(D)UT , (6.25)

where U log(D)UT is the eigenvalue decomposition of X, with X a generic point
in Sym+

d , U an orthogonal matrix, and log(D) the diagonal matrix composed by
the eigenvalues’ logarithms.

Moreover, the tangent space is the space of symmetric matrices, but there
are only d(d + 1)/2 independent coefficients, which are the upper triangular or
lower triangular part of the matrix. Therefore, by applying the vector operator,
an orthonormal coordinate system for the tangent space is defined as in Sec. 2.2.6.

6.3.2.2 Algorithm description

Following the considerations above, one can map the dataset S to the tangent
Euclidean space TIdSym

+
d , performing the classification directly on this space. In

this way, ST = {xi, yi}i=1,...,N is the mapped dataset, with xi = vec(logId
(Xi)).

The essence of a boosting algorithm (see Sec. 3.2 for details) is an iterative re-
weighting system that tends to focus on the most difficult examples in the training
set. In the multi-class classification there are J different sets of weights built from
the posterior distribution. Let Pj(xi) be the posterior probability for a training
example xi to belong to the j-th class. It is computed as:

P
j
(xi) =

eFj(xi)∑J
k=1 e

Fk(xi)
, Fj(xi) =

L∑
l=1

flj(xi), (6.26)

where {flj}l=1,...,L is a class-specific set of weak learners. Each example in the
training set ST is associated with a weight that depends on the class considered:

wij = P
j
(xi)(1− P

j
(xi)). (6.27)

The core of the learning process is the definition of the inter-class decision bound-
aries, which are carried out by weak learners. Weak classifiers glj : TIdSym

+
d →

{−1, 1} are built solving a binary classification problem, one class against the
others, then the multi-class classifiers flj : TId 7→ {1, . . . , L} derive from their
combination.

The binary weak learners glj solve a weighted regression problem, whose good-
ness of fit is measured by the response values zij , defined as:
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zij =
y∗ij − Pj(xi)

Pj(xi)(1− Pj(xi))
, (6.28)

where y∗ij = 1{j == yi} is an indicator function. The combination of a set of J
binary weak learners glj is provided by the following equation [FHT00]:

flj(xi) =
J − 1

J

(
glj(xi)−

1

J

J∑
k=1

glk(xi)

)
. (6.29)

It should be noted note that this operation is possible because the glk(·)s live in
the same domain TId . If the binary classification had been carried out mapping
each class in a different space, similarly to [TPM08], the combination of the results
would have been much more complicated and unclear. Working on TId represents
an elegant and reasonable solution to the problem.

In the following some details of the algorithm are explained, summed up in
pseudo-code 12.

Algorithm 12: Multi-class LogitBoost on Symd

Data: (X1, y1), . . . , (XN , yN ) with Xi ∈M e yi ∈ {1, . . . , J}
Result: the ensemble of classifiers {F1, . . . , FJ}.
begin

Map the data points to the tangent space TId , by xi = vec(logId
(Xi));

Start with weights wij = 1/N and i = 1, . . . , N , Fj(xi) = 0 e Pj(xi) = 1/J ∀j;
for l = 1, 2, . . . , L do

for j = 1, 2, . . . , J do
Compute the response values (Eq. 6.27) and weights (Eq. 6.28);
Fit the function glj(xi) : Rm 7→ R by weighted least-square regression
of zij to xi using weights wij ;
Set Fj(xi)← Fj(xi) + flj(xi) where flj(xi) is defined in Eq. (6.29);
Update Pj(xi) as in Eq. (6.26);

6.3.2.3 Algorithm details

Binary weak classification strategy. In boosting, it is possible to use very
different types of weak learners. The most common are the decision stumps (or
regression stumps), which are piecewise constant regression functions or linear
regression functions. The original LogitBoost algorithm adopts linear regression
functions as proposed in [FHT00]. In a binary classification task a linear regres-
sion can be sufficient to solve the problem, as shown in [TPM08] for pedestrian
detection. However, a more powerful weak classification strategy is mandatory for
the multi-class classification problem, as evidenced in [ZZMC07], where piecewise
constant functions are used.

After investigating different solutions, the weighted regression trees [Bre84]
have been selected. They are more powerful than global models, like linear or
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polynomial regressors, where a single predictive formula is supposed to hold over
the entire data space. Moreover they have lower computational costs, in both the
learning and the testing phases. In order to avoid the risk of overtraining of the
regression tree, a stopping rule is established. It consists in a minimal number τ
of observations per tree leaf, experimentally estimated (see Sec. 5.3.2).

Stop condition. It is important to specify an automatic stop criterion for the
learning phase. The proposed rule is a composition of two terms. The first term
takes into account the accuracy with which the classes are correctly classified: the
maximum accuracy τacc for all the classes is fixed. The second term concerns the
learning rate, which is the difference in accuracy between two consecutive iterations
of LogitBoost. If the learning rate is less than τlr for all the classes, one can assume
that the boosting process has converged to its optimal solution. More formally, the
learning process is stopped at the l-th iteration, when

acc
l

(j) ≥ τacc ∨ (acc
l

(j)− acc
l−1

(j)) ≤ τlr, ∀j ∈ {1, . . . , J}, (6.30)

where accl(j) counts the examples of the j-th class correctly classified at the l-th
iteration. In all the experiments, τacc is set to 99% and τlr to 1%.

Multi-class detection. The proposed multi-class algorithm can be naturally ex-
tended to detection purposes simply by adding a class that contains background
examples. It is a very large class, because it is potentially composed of all of the
possible images that do not contain foreground examples. For this reason, the
LogitBoost classifier is combined with a rejection cascade structure [VJ01].

Alg. 12 becomes the learning procedure of each cascade level. The stop condi-
tion for a cascade level is given by Eq. (6.30), except for the background class that
is optimized to classify at least the 35% of the examples in this class correctly, as
in [TPM08]. In practice, the examples in the background (BG) class are ordered,
according to PBG(x). Let xBG be the element with (0.35NBG)-th smallest prob-
ability among all the background examples. thk = FBG(xBG) is fixed, where k is
the current cascade level.

At the cascade level (k + 1), the BG class is first pruned using the cascade
of k classifiers, rejecting the samples classified correctly as background. To ob-
tain the desired rejection rate, the classification response for BG is redefined as
FBG(x) = (FBG(x)− thk).

Computational considerations. The proposed framework inherits some of the
computational characteristics of [TPM08], where the main cost is due to SVD
factorization needed for the projection of the covariance matrices on the tangent
space (see Eq. 6.25). In our case, the presence of a unique projection point decreases
the number of required SVD factorizations. This means a dramatic reduction of
the computational cost in both the learning and the testing phase.

6.3.3 Experiments

Here different video surveillance applications are shown, where the proposed frame-
work applies: head pose classification, pedestrian detection, and head detection
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+ pose classification. In the first two cases, where comparative tests on shared
databases are feasible, the relative best performances in the literature is outper-
formed. In the third case, only qualitative results can be appreciated.

6.3.3.1 Head pose classification

A multi-class classifier for head pose classification is built on the QMUL 4 Pose
Head Database [OGX09]. This dataset contains head images of dimension 50 ×
50, obtained from the i-LIDS dataset [Off08]. These images come from a real
video surveillance scene, well mirroring typical critical conditions: they are noisy,
motion-blurred, and at low resolution. The images are divided into 4 foreground
(FG) classes: Back (4200 examples), Front (3555 examples), Left (3042 examples),
and Right (4554 examples). Moreover, this dataset contains another set of 2216
background (BG) images. The FG dataset is partitioned into 2 equal parts, using
one partition for training and one for testing. From each image I a set Φ of d = 12
features is extracted an is composed of:

Φ =
[
X Y R G B Ix Iy O Gab{0,π/3,π/6,4π/3}

]
. (6.31)

X,Y represent the spatial layout in I, and R,G,B are the color channels. Ix and
Iy are the directional derivatives of I, and O is the gradient orientation. Finally,
Gab is a set of 4 maps containing the results of Gabor filtering. I would like to
stress that these features are particularly suited for head orientation classification.
Apart from the general position (X,Y ) and shape information (Ix, Iy), the co-
variance of the color channels allows to detect hair and skin textural properties.
This particularly helps in distinguishing frontal from back views. Moreover, Ga-
bor filters emphasize facial details, such as the vertical orientation for the nose, or
the horizontal orientation of the mouth, if visible. Different combinations of these
filters have been tried, and the best results are obtained with dimension 2 × 4,
sinusoidal frequency 16, and directions D = {0, π/3, π/6, 4π/3}. In order to give
an idea of how the choice of the features affects the system’s performances, Fig. 6.7
depicts the behaviour of the system in terms of mean classification accuracy by
considering different subsets of Φ.

Once the features are extracted, the covariance matrices from all the patches
of p× p pixels are calculated, on a fixed grid of p/2 pixels steps. This means that
the patches remain overlapped by half of their size. p is varied to investigate how
the dimension (and, thus, the number) of the patches modifies the classification
performances. The best performance is obtained with p = 0.32s, where s is the
image dimension. As visible in Fig. 6.8, enlarging the patch dimension to more than
this value diminishes the accuracy. This highlights that having a high number of
small patches is better than having few large ones. This because with less, large-
sized covariance matrices, all of the image details are mixed together, losing the
spatial information.

For each patch, a 4-class classifier is built, as described in Sec. 6.3.2.2. The τ
parameter, that rules the complexity of the regression trees, has been fixed to the
optimal value 150, according to the accuracy test in Fig. 6.9. It is interesting to note
that exceeding this value, the performance drops, which is a sign of overtraining
of the system.
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Fig. 6.7. Statistics on the feature vector Φ for the ARCO feature.
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Fig. 6.8. Statistics of the patch dimensions p for the ARCO feature.
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Fig. 6.9. The regression tree stop criterion (the number τ of elements per leaf) for the
ARCO feature.

A very important result is the ability to maintain a high classification accuracy
on extremely low resolution images. Fig. 6.10 shows the performance of the pro-
posed classifier varying the image dimension s (and changing proportionally the
patch parameters, with p = d0.32se). On a 5 × 5, image the proposed framework
reaches an average accuracy above 82%.

Moreover, the ability of the proposed classifier to deal with occlusions is tested.
Indeed, patch-based classifiers, as part-based classifiers, are naturally able to man-
age the presence of occlusions. In Fig. 6.11 the robustness to four types of occlu-
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Fig. 6.11. Occlusions of different strength for the ARCO feature.

sions (left-, right-, top- and bottom-side) is depicted, in different sizes. As visible,
top and bottom occlusions reduce the performances more, because they completely
hide meaningful parts of the face.

Last, the proposed framework is compared with Orozco et al. [OGX09], the
state-of-the-art method for head pose classification for low resolution data. It is
a head pose descriptor based on similarity distance maps to mean appearance
templates of head images at different poses. All images in this dataset have their
related pose descriptors, provided by the authors themselves [OGX09]. The classi-
fier is trained by Support Vector Machines (SVMs) using a polynomial kernel, as
done in [OGX09]. The result of the comparison, in terms of confusion matrix, is
reported in Fig. 6.12. The average rate is 93.5% for the proposed model, against
82.3% for Orozco’s model.

6.3.3.2 Pedestrian detection

The proposed framework is instantiated on the binary problem of pedestrian de-
tection to verify the performance of the proposed approach on a pure detection
task. The INRIA Person dataset is adapted [DT05] for testing. It contains 1212
human images for the training part of dimension 128×64 and 1133 images for the
testing part. A region of interest of 50× 50 at the center of the pedestrian images,
that corresponds to the actual region where the pedestrian is enclosed (all positive
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Fig. 6.12. In (a) the confusion matrix for the method proposed in [OGX09] and in (b)
the confusion matrix associated with ARCO for head orientation classification task.
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Fig. 6.13. DET curve for pedestrian detection, compared with the state-of-the-art meth-
ods [TPM08, DT05, SKHD09, MBM08, LD08b, WN05, DBB+08].

examples come with a quite large border) is picked. Then, the same patch config-
uration described above (Sec. 6.3.3.1) is used, but with a set of features Φ more
suitable for the detection task, i.e. the same proposed in [TPM08]. In Fig. 6.13,
the proposed framework is compared with [TPM08] and with the methods in
[DT05, SKHD09, MBM08, LD08b, WN05, DBB+08]. The performances are eval-
uated by the Detection Error Tradeoff (DET) curve, that expresses the proportion
of true detections against the proportion of false positives, on a log-log scale. The
curve is estimated by varying the threshold thk in the range [−1, 1]. A rejection
cascade of 5 levels in which each level is populated by 10000 background examples
has been applied. Augmenting the number of cascade levels to more than 5 does
not appreciably increase the accuracy, since the number of covariance features re-
mains fixed (in [TPM08], instead, at each step a new feature is selected). This
detector clearly outperforms the other methods at the state-of-the-art, especially
in terms of miss-rate.
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In Fig. 6.14 a comparison on the INRIA Person dataset between the approach
described in Sec. 5.2, the approach presented in Sec. 5.3, and the one presented in
this Section is made.
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Fig. 6.14. Comparison between the FUD approach (described in Sec. 5.2), the PBA
approach (presented in Sec. 5.3), and the one presented in this Section (Sec. 6.3).

6.3.3.3 Head pose detection and classification

One can simply add a background class to the classification problem at hand to
perform detection along with classification. Here, I show how the system works for
the problem of head pose detection and classification.

The first experiment the 4 head pose classes of the QMUL head pose dataset is
considered. Despite to Sec. 6.3.3.1, 2215 background examples are now added to the
classification problem. The same optimal settings estimated above is used, and the
performance of the proposed approach with [OGX09] are compared. Even though
the original paper performs classification only, so the comparison is a bit unfair,
its template descriptor is provided for background images also. The background
class is added to the other positive classes, and the classification is computed by
using SVMs, as described in the paper. The comparison, shown in Fig. 6.15, shows
the ability of our system to deal naturally with this task also.

On the other hand, the images of this dataset, though challenging for loca-
tion and scale variations, are all taken from the same scene, with scarce lighting
variations. So, the trained model is not general enough to work with different sce-
narios. For this reason, a second experiment is performed, building another model,
and enriching the training set with new data coming from a different, more gen-
eral, dataset. The head dataset employed in [LZHT08] is used, composed of 2736
20× 20 head images, contained in a ROI of 32× 32 pixels. This dataset is mostly
obtained from the INRIA person dataset, thus the images are taken from many
different scenes and with a large variation of illumination conditions. The set of
negative examples is composed by different real scenarios and other images con-
taining body parts. The data is organized in 4 classes (plus background) according
to head orientation, since the original dataset does not contain such information.

The positive examples from the 4 Pose Head dataset are resized to 20×20 pixels,
whereas for the other dataset the examples are cropped from the center of the ROI.
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Half of data are used for training, and the testing set is just composed of the testing
set of [LZHT08]. Fig. 6.15(c) summarizes the detection and classification results.
Due to the variations in scale and position of the head, the cropped images can
contain the head only partially. This is not a problem, though, since the proposed
model is robust to partial occlusions, as shown before.
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Fig. 6.15. Confusion matrices for the experiments on head pose detection and classifica-
tion. In (a) e (b), results for the first experiment on 5 Classes QMUL dataset (Orozco’s
method in (a) [OGX09], ARCO in (b)). (c) is the result of the second experiment with
the more general dataset (see text for details).

6.4 WARCO (Weighted ARray of COvariance) Matrices

In this Section, a significant revision and extension of ARCO, called WARCO, is
presented. It revisits this feature reporting a comprehensive theoretical analysis
that motivates some fundamental choices with regard how it is possible to compute
the distance among covariance matrices. Moreover, the study goes a step further
proposing different approximations of that distance and showing the goodness of
this framework in both theoretical and empirical ways. Moreover, with WARCO,
a more effective and efficient statistical framework is introduced, if compared to
the one proposed in Sec. 6.3. A thorough evaluation is finally provided, on several
public datasets, specifically devoted to head orientation classification, human body
pose classification, and head orientation estimation in real surveillance scenarios,
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showing that the proposed method outperforms in most of the cases the state-of-
the-art results.

In computer vision, especially in video surveillance, the capability of charac-
terizing humans is surely of primary importance. With regard to this, social signal
processing studies [VPB09] support the hypothesis that the body appearance is
critical to infer many behavioural traits, yielding to fine activity profiles. For ex-
ample, head direction is fundamental to discover the attention focus of individuals
[SBOGP08, RR11] and to detect interacting people [CBP+11], while body posture
and gestures during an interaction are typically indicators of the speaking activity
[CPV+11].

Characterizing humans is particularly troublesome when small and noisy im-
ages are handled. In such cases, tasks as body or head orientation estimation
(see Fig. 6.16(a)) become serious challenges. This fact induced researchers to de-
sign novel features, such as robust classifiers or regressors, to exploit the available
small bunch of pixels at best.

(a)

Fig. 6.16. Example of an image from a video surveillance sequence, containing pedes-
trians and close-up of their heads.

Recently, the use of covariance descriptors as composite features emerged as a
powerful means for pedestrian detection [TPM08]. In general, covariances showed
to be naturally suited for encoding classes of objects with high intra-class varia-
tion, exploiting it to encode systematically mutual relations among basic cues (as
gradient, pixel intensity, etc.) [TPM06, DB08, YO08, WN08]. For the pedestrian
case, Tuzel et al. [TPM08] employed a boosting framework on Sym+

d , namely the
set of positive definite d × d symmetric matrices (covariance matrices). The idea
was to build weak learners by regression over the mappings of the training points
on a suitable tangent space, which was defined over the weighted Karcher mean
[Kar77] of the positive training data points, so that they preserve their local layout
on Sym+

d . The negative points (i.e. all but pedestrians), instead, were assumed to
be spread on the manifold, without including them in the estimation of the mean.

My aim is to move to a multi-class classification scenario, considering head
and body orientations as object classes. In such a scenario, the above-mentioned
considerations do not hold any more, because many “positive” classes are given,
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each of them localized in a different part of the manifold. As a consequence, 1)
choosing the Karcher mean of one class would privilege that class with respect
to the others, and 2) the Karcher mean of all classes is inadequate. Therefore,
my first contribution consists in a theoretical analysis of this space, to derive a
point individuating a common suitable projection point that do not penalize any
class. Such a point is chosen by analysing the local geometry of the manifold
of the considered samples, realizing that, whenever the (sectional) curvature of
the manifold is in general weak, a good candidate is the identity. This allows to
consider covariance matrices as vectors in a Euclidean space where state-of-the-art
classifiers can be utilized.

The second contribution consists in providing a novel measure to calculate the
distances between the projected points, preserving the original geodesic distance
robustly and in a finer way, if compared to adoption of the Euclidean distance.
This comes by considering the sectional curvature of the manifold and adopting
the general Campbell-Baker-Hausdorff (CBH) expansion [DK00].

In order to give a rough idea of it, and working with (square) matrices, CBH
stems from the elementary fact that, since X and Y do not commute in general,
one also has exp X · exp Y 6= exp Y · exp X 6= exp(X + Y). Hence, the CBH-
formula, valid in any Lie algebra, is given as a series expansion in terms of nested
commutators, of the following form:

exp X·exp Y = exp(X+Y+
1

2
[X,Y]+

1

12
[X, [X,Y]]+

1

12
[Y, [Y,X]]+· · · ). (6.32)

The CBH expansion allows to detect the role of the curvature of the mani-
fold, showing that the higher the curvature, the rougher the approximation of the
distance. At the same time, our formulation provides a new approximation for
the genuine geodesic distance on the manifold, finer than the Euclidean distance
previously adopted in Sec. 6.3. It is dubbed such an approximation CBH1, i.e.
obtained by exploiting the first term of the CBH expansion.

As third contribution, a novel object descriptor is proposed, expressively de-
signed for encoding complex objects as pedestrians captured by few noisy pixels.
The resulting descriptor is dubbed Weighted ARray of COvariances (WARCO),
composed of a variable number of overlapped squared patches, each of them de-
scribed by a covariance matrix of image features. Each covariance is fed into a
local weighted classifier (a kernel classifier), where the weight - learned during the
training stage - highlights its ability in encoding a defined portion of the object
of interest. All the local classifiers are then combined linearly in a strong global
classifier.

Adopting WARCO in the proposed theoretical framework allows to build ro-
bust kernel classifiers in a very economical way, since the building of the Gram-
matrix turns out to be linear in the number of training examples as compared with
the quadratic complexity in case of the (exact) geodesic distance.

A thorough experimental section on head orientation classification/regression
and body orientation classification promotes the proposed approach as a basic
module for advanced surveillance, when fine analyses have to be carried out in
difficult scenarios. In particular, it is tested on six different benchmark datasets
(including QMUL head dataset, IDIAP head pose dataset, CAVIAR), proposing
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three novel sets for head and body orientation estimation. Excellent results are
obtained in all the cases.

The rest of the section is organized as follows. In Sec. 6.4.1, the related lit-
erature is reported evidencing the novel aspects of my proposal. In Sec. 6.4.2,
the mathematical analysis of Sym+

d is presented, which has produced interest-
ing theoretical findings exploited to design the statistical method. In Sec. 6.4.3,
the kernel-based classification model is describe, which is extensively tested using
several public datasets, whose results are illustrated in Sec. 6.4.4.

6.4.1 Related Work

Here the attention is focused on models, object representations and features for ro-
bust human body parts description and classification. In this context, the methods
can be categorised in general-purpose (e.g. [DT05, VZ10, GL09, TPM06]) and task-
specific models (e.g.[FGMR10, WN09, DTPB09, EG09, OB07, ARS09, OGX09]).

As for the task-specific models, two tasks are considered: head and body ori-
entation classification. Several successful human descriptors have been derived
in the context of the pedestrian detection problem. Typically, they represent
a human as a set of unsupervised selected parts [FGMR10, WN09, DTPB09,
SM07, TPM08, MYL+08, WS08, MCT09, WHY10, WMSS10, BHLKG10], where
such parts are represented by dense features such as Haar-wavelet-based de-
scriptors, Shapelet [SM07], covariance matrices [TPM08], part-templates [LD08b],
Joint Ranking of Granules (JRoG) [WHY10], Local Binary Patterns (LBP)
[MYL+08, WHY10], combination of HOG [FGMR10], Integral Channel Fea-
tures [DTPB09], self-similarity on color channels [WMSS10], and synthesized fea-
tures [BHLKG10]. Other works combine some of the above-mentioned features as
[WHY10], where HOG and LBP are concatenated, and [WS08], where HOG, Haar-
like, and Shapelet features are used. Most of these approaches use boosting both
for a greedy estimation of the most discriminative patches and classifying them
at the same time. A relevant exception is [FGMR10], which presents a part-based
deformable model for object detection. Considering HOG features [DT05], the ob-
ject model is defined by a constellation of discriminative learned parts that score
subwindows of a ROI (Region Of Interest) containing the OI, and the classification
framework is represented by latent Support Vector Machines (SVMs).

There is also a large literature concerning the head orientation estimation task,
[MCT09, SBB+09, BO05, FGVG11, HSDlTB11]. For high resolution images, im-
portant methods are proposed in the context of the CLEAR07 challenge [BO05].
Instead, for low resolution images, the head orientation estimation task often trans-
lates into the head orientation classification task, in which there are few works in
the state of the art. Two recent approaches [RR06, OGX09] provide valid solu-
tions to these problems. Both works organize the overall processing scheme into
two phases: detection and categorization.

Similarly to the head orientation estimation, for the human pose estimation
task there are many methods considering high-resolution images [AT06, ARS09,
BM09, TF10]. Few methods can deal with small pedestrians, classifying their body
orientation. An interesting example is [EG09], where a coarse-to-fine matching of
an exemplar-based shape hierarchy and Chamfer distance are used to find the best
template describing a candidate human orientation.
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Considering general purpose models, probably the most important example is
the detector proposed by Dalal & Triggs [DT05]. This detector, which uses the
HOG as feature, still represents an effective solution to the object detection and
classification tasks. HOG describes an object as a fine set of overlapped blocks
and the algorithms utilize a sliding window procedure, where a discriminative
SVM model is applied to all positions and scales of an image. This approach has
been used also in [AT06] for human pose estimation, which is recovered by direct
regression of the HOG descriptors. Moreover, Agarwal & Triggs have demonstrated
an application of non-negative matrix factorization that allows to discriminate
features of interest from background. Another interesting approach based on HOG
features is proposed by Lin & Davis [LD08b]. It adopts an OI model similar to the
one proposed in this Section. In fact, instead of standard concatenation-style image
location-based feature encoding, patches are evaluated independently and then a
probabilistic framework is used to link the evaluation results. Some years later
another successful work has been proposed by Schwartz er al. [SKHD09]. It uses
HOG features again, on both colour and gray scale images, and the pre-process
the feature space using partial least squares to reduce its dimensionality.

Recently, in [EG10], the HOG representation has been employed to categorize
the pedestrian orientations into few classes, considering pedestrians at low reso-
lution. Moreover, in this case HOG is combined to adaptive local receptive field
features in a multi-layer neural network architecture.

In [VZ10], a different kind of histogram-based representation is used, based on
the spatial pyramid concept [LSP06]. These two models generalize the previous
ones because a multi-layer analysis is performed, but a regular grid structure is
still used to represent the object.

A different approach is used in [GL09], where patches are sampled randomly
from images to build the object class model using Hough Forest, which is a Random
Forest that maps the image patch appearance directly to the probabilistic vote
about the possible location of the object centroid, similarly to the implicit shape
model. Since fixed size patches are used, the method is adaptable to a wide range
of tasks.

The type of OI descriptors, presented in the current section, has been already
exploited in the case of pedestrian detection [TPM08],[YO08], and, previously, also
in the biomedical research domain [FLPJ04],[FPAA07]. A mathematical derivation
is reported in [AFPA08], but the investigation of the properties of covariance
matrices as objects living in a non Euclidean space is still an active research topic,
due to their versatility and effectiveness when used as descriptors for classification
tasks [FVJ08],[SLHN10].

The proposed approach can be categorized as general purpose, and a former
version is presented in Sec. 6.3. It differs in several ways as a new weighted covari-
ance descriptor is introduced, which is then exploited adopting a kernel machine
architecture suitable both for classification and regression tasks. Moreover, the
theoretical part is consistently new. In fact, a rigorous and comprehensive mathe-
matical analysis of the covariance matrices living in a Riemannian manifold, whose
findings are utilized to justify and lay down the ground of the proposed statistical
classification method.
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6.4.2 Theoretical analysis of Sym+
d

In this Section, basic differential geometry notions about Sym+
d are gathered,

namely the set of positive definite d×d symmetric matrices (covariance matrices),
adopting the formalism of [Cha06, DK00]; this coverage will allow to introduce my
main theoretical contribution, i.e. the application of the Campbell-Baker-Hausdorff
expansion as a fast way to approximate distances in Sym+

d . In particular, after
recalling some preliminaries notions in Sec. 6.4.2.1, the fact that Sym+

d is a ho-
mogeneous space is shown (Sec. 6.4.2.2): this means that one is entitled to select
any point on Sym+

d to define a tangent space over which projecting points and
calculating distances.

In Sec. 6.4.2.3, the fact that the identity Id on Sym+
d is a particularly con-

venient choice (under a pure computational complexity aspect) as a projection
point. In Sec. 6.4.2.4, the (sectional) curvature of Sym+

d is introduced which al-
lows to measure how much Sym+

d differs from a Euclidean space, which is flat. In
particular, it turns out that Sym+

d has a negative curvature, and this will for in-
stance ensure that there is only one geodesic connecting any two points; moreover,
this will show that the first correction to the Euclidean distance provided by the
CBH-expansion, i.e. our distance approximation, is non negative. This is finally
discussed in Sec. 6.4.2.5.

6.4.2.1 Preliminaries

In general, given a Lie group G and a closed Lie subgroup H thereof, the quotient
set G/H consisting of all left cosets [g] := gH = {g h | h ∈ H} becomes in a
unique way a smooth manifold ( this is the prototype of a G-homogeneous space).
The study of the geometrical properties of homogeneous spaces is greatly eased
by the fact that all points can be treated on the same footing (colloquially, the
manifold appears to be the same when looked upon from whatever point therein).
This is quite important, from a machine learning point of view. Therefore, both
for theoretical and practical reasons, focusing the attention on the class [e] = H of
the neutral element e ∈ G is natural. A graphical example of homogeneous space
is shown in Fig. 6.17.

Fig. 6.17. Homogeneous spaces.
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6.4.2.2 Sym+
d is an homogeneous space.

The general linear group Gl(d,R), consisting of all non-singular real d×d matrices,
naturally acts on Sym+

d via congruence:

Sym+
d 3 X 7→MTXM ∈ Sym+

d ,M ∈ Gl(d,R). (6.33)

By virtue of (a corollary of) Sylvester’s theorem [Ser93], the latter action is tran-
sitive: in other words, any two positive definite symmetric matrices are congru-
ent, i.e., there is always an M that connects them. In particular, every matrix
X ∈ Sym+

d is congruent to Id (the d× d identity matrix):

X = MT · Id ·M = MTM (6.34)

for some M ∈ Gl(d,R); in this scenario one shall take, for specific calculations,

M = X
1
2 . Therefore, Sym+

d is the space of all symmetric matrices congruent to
Id. Also, Id is invariant under congruence, namely MTM = Id, if and only if
M ∈ O(d,R), the group of orthogonal d × d matrices. In other words, O(d,R) is
the isotropy group of Id. From this, one finds that Sym+

d is the homogeneous space

Sym+
d
∼= Gl(d,R)/O(d,R) ∼= Gl+(d,R)/SO(d,R) (6.35)

(one may restrict to matrices with positive determinant to get connected groups).
SO(d,R) denotes the special orthogonal group, i.e. the orthogonal matrices having
determinant +1. In view of the homogeneity, one can choose to work at the identity,
since this will ease all subsequent computations.

6.4.2.3 A Riemannian metric on Sym+
d

Recall that a Riemannian manifold (M, 〈 , 〉) is a smooth manifold equipped with a
Riemannian metric 〈 , 〉, i.e. a smoothly varying inner product 〈 , 〉P on its tangent
spaces TPM, P ∈ M. The tangent vectors (the elements of TPM) are the “ve-
locities” of the curves inM issuing from P ∈M or, equivalently, the “directional
derivatives” of the smooth functions defined in a neighbourhood of P.

The tangent space of Sym+
d at any point X (notation: TXSym

+
d ), is Symd,

the space of symmetric matrices. By homogeneity it is enough to check this at
the identity Id. Indeed, let us consider an interval J ⊂ R containing 0, and let us
consider a smooth curve of matrices J 3 t 7→ X(t) ∈ Sym+

d with X(0) = Id. Its

“velocity” at Id, namely Ẋ(0), belongs to Symd, since the derivative of X(t) is still
a symmetric matrix. Vice versa, given a matrix W ∈ Symd, it is possible to find a
curve in Sym+

d starting at Id with velocity given by W = Ẋ(0). Taking for instance
X(t) = exp(tW), if the matrix W is diagonalized and denote its eigenvalues by
wi, i = 1, 2, . . . , d, then the eigenvalues of X(t) are exp(twi) > 0, i = 1, 2, . . . , d.
Therefore, the matrix is positive definite. By continuity, any curve with the same
velocity at Id is locally in Sym+

d . Given ϕ ≡ ϕM : Sym+
d 3 X 7→MTXM ∈ Sym+

d ,
its differential ϕ∗ is:

ϕ∗ : TIdSym
+
d → TXSym

+
d , W′ 7→MTW′M =: W, (6.36)
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since in general ∂(MTXM) = MT∂XM (here ∂ denotes of course differentiation;
notice that W is symmetric as well, as asserted before). On TIdSym

+
d it is possible

to define the Frobenius inner product:

〈W′
1,W

′
2〉Id := tr(W′

1W
′
2), (6.37)

where W′
i ∈ Symd. It is extended to a Riemannian metric, invariant under con-

gruence via the formula:

〈W1,W2〉ϕ(Id)=X := 〈ϕ−1∗ (W1), ϕ−1∗ (W2)〉Id , (6.38)

namely (by a short computation using X = MTM)

〈W1,W2〉X = tr(X−1W1X
−1W2), (6.39)

where W1,W2 ∈ TXSym+
d
∼= Symd. This turns out to be well-defined since the

Frobenius inner product is O(d,R)-invariant: indeed, if O ∈ O(d,R), one has:

tr(OTW′
1O ·OTW′

2O) = tr(OTW′
1 W′

2O) = tr(W′
1W

′
2OOT ) = tr(W′

1W
′
2)

(6.40)
This further entails that, given any two points X1, X2 ∈ Sym+

d , and

ϕ ≡ ϕM : Sym+
d 3 X 7→MTXM ∈ Sym+

d ,

then
d(ϕ(X1), ϕ(X2)) = d(X1,X2), (6.41)

where d is the distance induced by the above Riemannian metric (and equals the
length of a minimal geodesic connecting the two points - in our case the latter exists
and it is unique, see also below); in other words, ϕ is an isometry. In particular,
one may compute all distances from a fixed point, the natural choice thereof being
the identity. Also, any X ∈ Sym+

d is of the form

X = exp WX, WX = log X ∈ Symd (6.42)

(spectral theorem), therefore

d2(Id,X) =‖ log X‖2= tr(log X)2) =

d∑
i=1

(log σi)
2. (6.43)

The σi’s are the (positive) eigenvalues of X and, in general (setting below MT
1 M1 =

X1, and specifically M1 = X
1
2
1 ):

d2(X1,X2) = d2(ϕM1
(Id),X2) = d2(Id, ϕ

−1
M1

(X2))

= tr(log(X
− 1

2
1 X2X

− 1
2

1 ))2) =

d∑
i=1

(log ξi)
2,

(6.44)

where the ξi’s are the (positive) eigenvalues of X
− 1

2
1 X2X

− 1
2

1 . In fact Sym+
d is

actually a Riemannian symmetric space (M, 〈, 〉), namely, for each point P ∈M,
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there exists an isometry σP fulfilling σ2
P = IdM (with IdM the trivial isometry

onM) and having P as an isolated fixed point ([Cha06]). One shall not delve any
further into the general theory of symmetric spaces, confining ourselves to recalling
specific facts when needed. For example, it follows from it that the geodesics
starting from Id are of the form

R 3 t 7→ exp(tW) ∈ Sym+
d , W ∈ Symd, (6.45)

with exp the standard matrix exponential (since, for symmetric spaces associated
to matrix groups, the Riemannian exponential coincides, at the identity, with the
matrix one). An intuitive pictorial idea of the exponential map is illustrated in
Fig. 6.18. In our case, the isometry σP of the general theory is induced at Id by

Fig. 6.18. Exponential map.

the map Symd 3W 7→ −W ∈ Symd.

6.4.2.4 Non-positivity of the sectional curvature of Sym+
d

Given a Riemannian manifold (M, 〈, 〉) its sectional curvature κP(XP,YP) at
P ∈M, if XP and YP are linearly independent tangent vectors at P, is given by

κP(XP,YP) :=
〈R(XP,YP)XP,YP〉P

〈XP,XP〉P〈YP,YP〉P − 〈XP,YP〉2P
(6.46)

where R is denoting the Riemann curvature operator (see below). Notice that the
denominator represents the area squared of the parallelogram determined by XP

and YP. It is important to pinpoint that the sectional curvature just depends on
the plane spanned by XP and YP, and indeed it turns out to coincide with the
Gaussian curvature, at P, of the parametric surface S : (u, v) 7→ expP(uXP+vYP)
(here expP denotes the Riemannian exponential at P). An example of that is shown
in Fig. 6.19.

In geometry, the (sectional) curvature is a measure of non-flatness of the man-
ifold. The local vanishing of the curvature implies that the Riemannian manifold
in question is actually a portion of a Euclidean space. One shall exploit this for
learning purposes.

a formula for the sectional curvature for Sym+
d is worked out, showing that

it is non-positive at any point. Since Sym+
d is a symmetric space, one can again
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(a)

Fig. 6.19. Gaussian curvature (κP(XP,YP)) of the 2-dimensional surface S at p.

work at the identity, whereat one gets the following expression for the Riemann
curvature operator (in the symmetric space framework, see e.g. [Cha06])

R(X,Y) : Symd 3 Z 7→ [[X,Y],Z] ∈ Symd. (6.47)

Here,
[X,Y] = XY −YX

is the matrix commutator. Then the sectional curvature κId at Id reads (with
X,Y ∈ Symd linearly independent):

κId(X,Y) =
〈R(X,Y)X,Y〉

‖ X ‖2‖ Y ‖2 −〈X,Y 〉2
= 2

tr((XY)2 −X2Y2)

tr(X2) tr(Y2)− (tr(XY))2
, (6.48)

by the cyclical property of the trace.
Again, the denominator

‖X1 ‖2‖X2 ‖2 −〈X1,X2〉2 =: A(X1,X2)2

is the area of the parallelogram determined by X1 and X2, squared. Therefore, to
prove that

κId(X,Y) ≤ 0

, it suffices to show that

tr((XY)2) ≤ tr(X2Y2), (6.49)

and that equality holds if and only if [X,Y] = 0. This is implied by the following
immediate consequence of the Schwarz inequality for (real) inner products

〈x,y〉 ≤ ‖x‖2, if ‖x‖=‖y‖ (6.50)

(equality holding if and only if x = y). Indeed, upon setting x = XY,

y = YX,

〈x,y〉 = tr(xTy) = tr(yTx)
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, and using XT = X, YT = Y, one has:

‖y‖2= tr(YX)T (YX)) = tr(XTYTYX) = tr(XYYX) = tr(X2Y2) =‖x‖2
(6.51)

As previously anticipated, for learning purposes, κP(XP,YP) provides a quantita-
tive measure of how much a Riemannian manifold differs from a flat (i.e. Euclidean)
one.

6.4.2.5 An expansion of the distance via the CBH-formula

Recalling that Preismann’s theorem (see e.g. [Cha06]) says that any two points of
a complete simply connected manifold with non-positive sectional curvature are
connected by precisely one geodesic, which is minimizing, given a geodesic triangle
with sides of length a, b, c, and angle θ opposite to (the side with length) c, the a2+
b2−2ab cos θ ≤ c2 inequality holds. An application of the theorem to Sym+

d (which
indeed satisfies the above assumptions) shows that, taking the geodesic triangle
with vertices Id, X1, X2, one gets dE(logId

X1, logId
X2) ≤ d(X1,X2), where dE

denotes the standard Euclidean distance (induced by the Frobenius norm)

d2E(X1,X2) = tr((X1 −X2)2) (6.52)

with Xi = logId
Xi. But actually one can easily get approximate formulae for

the distance by exploiting the Campbell-Baker-Hausdorff formula (CBH) (see e.g.
[DK00], p.30, where the more general Dynkin’s formula is given; applying it to
the Lie algebra consisting of real d × d matrices). The crudest approximation
beyond the Euclidean distance (computed on the tangent space TIdSym

+
d ; also set

Xi := log Xi, i = 1, 2) reads:

d2(X1,X2) = d2E(X1,X2)− 1

12
〈R(X1,X2)X1,X2〉+ · · ·

= d2E(X1,X2)− 1

12
κ(X1,X2) · A(X1,X2)

2
+ · · ·

(6.53)

that it is illustrated in Fig. 6.20.

Fig. 6.20. Approximating the true distance.

The calculation employs the CBH-formula (suitably truncated to second order
commutators)
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log(eXeY) = X + Y +
1

2
[X,Y] +

1

12
[X, [X,Y]] +

1

12
[Y, [Y,X]] + · · · (6.54)

and it subsequently entails

log(eXeYeX) = 2X + Y − 1

6
[X, [X,Y]]− 1

6
[Y, [X,Y]] + · · · (6.55)

The above series are indeed convergent. Upon setting X = − 1
2X1, Y = X2, the

r.h.s. of the above formula becomes

W = X2 −X1 −
1

24
[X1, [X1,X2]] +

1

12
[X2, [X1,X2]] + · · · . (6.56)

Now, substituting the above expression in the formula for the distance (Eq. (6.44)),
it turns out that, after a short computation exploiting the properties of tr (see
Sec. 2.2.3):

d2(X1,X2) = tr[(X2 −X1)2]− 1

12
tr{[X1, [X1,X2]](X2 −X1)}

+
1

6
tr{[X2, [X1,X2]](X2 −X1)}+ · · ·

(6.57)

The last expression can be eventually transformed into Eq. (6.53) upon recalling
the formula for the Riemannian curvature operator (Eq. (6.47)), together with
the following general Riemann tensor identities (the third one being the Bianchi
identity, see e.g. [Cha06]):

R(x, y, z, t) = −R(y, x, z, t) = −R(x, y, t, z) = R(z, t, x, y) (6.58)

R(x, y, z, t) +R(y, z, x, t) +R(z, x, y, t) = 0 (6.59)

where R(x, y, z, t) is defined as 〈R(x, y)z, t〉. In particular, one has

R(X1,X2,X1,X1) = R(X1,X2,X2,X2) = 0, (6.60)

and one can easily get the sought-for approximate formula. In Sec. 6.4.4 the efficacy
of the expansion above will be shown 1. From the classification accuracy point of
view, it represent a scalable method to enhance the performance without increasing
the computational complexity.

6.4.3 The Statistical Framework

6.4.3.1 The General Architecture

The WARCO classifier has been designed specifically to deal with few visual in-
formation, that is, tiny images with noisy pixel values. It consists in a grid of NP
uniformly spaced and overlapped k × k patches Φ = {φn}n=1,...,NP

, where each

1 The first correction to the Euclidean distance is kept. One could work out more refined
expressions upon carefully keeping track of the various summands of CBH expansion.
The successive terms, depending on nested commutators, are also related to curvature.
Notice that it is not provided precise estimates for the approximation error.
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patch is described by a covariance matrix of features. For the sake of generality,
neither the degree of overlap nor the nature of the feature considered are not
specify here, postponing this aim in the experiments.

In a L−class classification scenario, ARCO instantiates an independent clas-
sifier on each patch, and provides a joint (log) posterior classification probability
which is

P(l|Φ) =

NP∑
n=1

log(P(φn)) + log(P(φn|l)). (6.61)

where l = 1, ..., L, P(φn|l) is a per-patch likelihood probability of the n−th clas-
sifier and P(φn) is a normalized weight

∑
n P(φn) = 1 that acts as a prior. This

latter has been learned during the training stage, mirroring the reliability of each
particular patch in giving the right classification score.

In a regression scenario, WARCO instantiates a regressor for each patch, and
the final output is the median of all the outputs of the single regressors.

Standard linear Support Vector Machine (SVM) is the tool employed for per-
forming classification and regression, where the Gram-matrix has been calculated
by employing three different distances, i.e.,

dE : The distance between covariance matrices based on the Frobenius norm (see
Sec. 6.4.2.3)

d2E(X,Y) = tr(logId
(X)− logId

(Y))2). (6.62)

dCBH1: The distance2 between covariance matrices exploiting the CBH expansion
limited to the first order (see Sec. 6.4.2.5)

d2CBH1(X,Y) = d2E(X,Y) + Ξ̃(κId), (6.63)

where Ξ̃(κId) = − 1
12 〈R(logId

(X), logId
(Y)) logId

(X), logId
(Y)〉.

dG : The actual geodesic distance between covariance matrices (see Sec. 6.4.2.3)

d2G(X,Y) = tr(log2
Id

(X−
1
2YX−

1
2 )). (6.64)

Given the dissimilarity matrix D built for each of these three distances, one
needs to resort to similarity relations, so that a nonlinear transformation of its
entries is applied: exp (−1/µ(D)D), where −1/µ(D) is a regularization terms in
which µ(D) is the average value ofD. In the computation ofD, the logarithmic pro-
jection is the most time-consuming operation. Looking at the three distances, one
can immediately calculate the number of logarithmic projections needed, which is
linear in (6.62) and (6.63) in the number of training examples, while it is quadratic
for the geodesic distance. This fact actually prevents the use of geodesic distances
whereas the number of training elements is considerable: to give an intuition,
whereas the learning of a classifier employing CBH1 takes one day, considering the
geodesic distance this translates in one month.
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Filter Bank fft Coverage Filter Bank Masks Filter Application Filter Application 

Fig. 6.21. On the left Symmetric DOOG (Difference Of Offset Gaussian) filters used to
populate the feature set Φ. On the right two examples of their application on an head
and a human image.

6.4.3.2 Features

In the proposed approach, from each image I (r × r pixels) is extracted a set
Φ(I,x, y) of dimension r × r × d features where d = 13 and x, y are the pixel
location. It is composed by:

Φ(I, x, y) =
[
F1(Y ) . . . F8(Y ) Y Cb Cr G| |(Y ) GO(Y )

]
, (6.65)

where F1(Y ) . . . F8(Y ) is the filter bank, depicted in Fig. 6.21, consisting of scaled
symmetric DOOG (Difference Of Offset Gaussian) [Dol], applied only on the lu-
minance channel of the perceptually uniform CIELab color space. Y , Cb, and Cr
are the three color channels obtained by transforming the original RGB image.
G| |(Y ) and GO(Y ) are the gradient magnitude and orientation calculated on the
Y channel map, respectively.

The covariance of the color channels are adopted, since it permits to implicitly
detect hair and skin textural properties. This particularly helps in distinguishing
frontal from back views (in the head orientation classification task). Moreover, the
DOOG filters emphasize facial details, such as the vertical orientation of the nose,
or the horizontal orientation of the mouth, if visible. Different combinations of
filters are tried, like Gabor filters, the Berkeley filter bank for textons, the Laptev
and Lindberg filter bank, and a set of separable steerable filters. The DOOG filters
have shown to represent the best compromise among all those tested because their
symmetry is an important characteristic for detection and classification, where the
OIs are symmetric objects like humans and heads. The combination of these filters,
codified by the covariance, is sufficiently representative to model the variability of
the classes considered also in low resolution conditions. Last but not least, the
DOOG filter set is compact enough to keep well bounded both the feature space
dimension (avoiding the curse of dimensionality) and the computational cost of
the framework.

2 Actually, here it is not check whether dCBH1 is actually a distance in a rigorous math-
ematical sense. It is indeed symmetric, positive, and zero if and only if the points
coincide, but one should further prove that it fulfils the triangle inequality; however,
for our comparison purposes, one can safely call it, informally, distance.
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6.4.4 Experiments

In this Section, the proposed approach is extensively tested for essentially achieving
two goals. The first objective (Sec. 6.4.4.2) is to show how facts and intuitions of
Sec. 6.4.2 can be observed on different real datasets, whose samples are located
in Sym+

d . More specifically, the sectional curvature κId is analysed, showing that
these values are bounded in the interval [0,−1] (Sec. 6.4.2.4). A statistics over the
intra-dataset distances employing the Frobenius distance dE (6.62) is also derived,
the CBH1 distance dCBH1 (6.63) and the geodesic distance dG (6.64), so as to
demonstrate that, in average, dE ≤ dCBH1 ≤ dG (see Sec. 6.4.2.5). In addition, these
experiments seem to indicate that the lower the covariance matrices dimension,
the higher the curvature.

As second goal, in Sec. 6.4.4.3-6.4.4.6, a simple linear SVM is tested in classifi-
cation and regression tasks, namely, head orientation classification in Sec. 6.4.4.3
and 6.4.4.4, and human orientation classification in Sec. 6.4.4.5. This is done under
different operative conditions, with in total 6 datasets, each of them bringing in dif-
ferent issues. The proposed framework is also compared with known competitors,
showing convincing performances.

6.4.4.1 Datasets

For head orientation classification, the QMUL is considered, the Heads Of Cof-
feBreak (HOCoffee), and the Heads of IIT (HIIT) [Tosa] datasets. All the datasets
are partitioned into a train and test set.

The QMUL head dataset (see Fig. 6.22(d) for some examples) is formed by head
images taken from the i-LIDS dataset [Off08] portraying an airport indoor scenario.
It is composed by 18667 images, uniformly partitioned into 5 classes: Back (BA),
Front (FR), Left (LE), Right (RI), and Background (BG). Background images
contain portions of the background scene. The images are 50× 50 pixels. The best
performances are achieved in Sec. 6.3 in this case. The challenges of this dataset
consist in scarce/non-homogeneous illumination, and quite severe occlusions.

The HOCoffee dataset (see Fig. 6.22(b)) is a novel benchmark dataset ex-
tracted from the CoffeeBreak social signal processing dataset [CBP+11], where
an outdoor coffee break session during a summer school was captured, for detect-
ing automatically social interactions. It is composed by 18117 head examples of
50 × 50 pixels, uniformly partitioned into 6 different classes (orientations): Back,
Front, Front-Left, Front-Right, Left, and Right. The images contain a margin of
10 pixels on average, so the actual average dimension of the heads is 30×30 pixels.
HOCoffee images show two main issues: the heads are captured automatically by
a head detector, therefore they are often not centered in the images. In addition,
there are several important occlusions.

The HIIT dataset (see Fig. 6.22(a)) has been built combining some indoor
image data captured in a controlled scenario (a vision lab) and the Pointing04
[Gou], Multi-PIE [GMC+07], and QMUL [Tosa] datasets. As the previous dataset,
it has 6 classes, 2000 examples each. The size of the samples is 50 × 50 pixels,
without margin around the heads. The main characteristic of this dataset is that
it has a stable background and no occlusions, so that it represents the ideal scenario
where to evaluate how well a classifier can perform at a given resolution.
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The QMUL and the HIIT dataset contains the images of the head of thousand
of different subjects, while the HOCoffee focuses on 15 subjects taken in two
different experimental sessions.

Considering the head orientation estimation, the attention is focused on two
public datasets, i.e., IDIAP and CAVIAR. The IDIAP Head Pose dataset [Odo]
(see Fig. 6.22(f)) comes from 8 meeting sequences of 360 × 288 frame resolution,
where two individuals were captured while discussing about various topics in a
4-person dialogue scenario. The total number of different subjects captured is 15.
They had their head orientations continuously annotated using a magnetic field
location and orientation sensor tracker. The video repository has been employed
for the CLEAR2007 head orientation estimation contest, following the protocol
described in [BO05] (75 × 75 21152 samples were selected as training data and
23991 as testing data). Since the training samples are particularly biased on cer-
tain orientations, they are flipped and then a subset of 5288 images is randomly
extracted, obtaining a balanced training pool. It represents a valuable benchmark
set since the annotations express the pan, tilt and roll angles of the head pose.

The CAVIAR dataset [Fis] (see Fig. 6.22(e)) is a more challenging set for
the estimation task due to the low resolution of the images and the presence of
occlusions. The considered head samples, resized to 50×50 pixels, come from a set
of sequences which have 1500 frames on average, acquired from a real surveillance
camera located in a shopping centre in Lisbon. The dataset is composed by two
subsets: the first is made by non-occluded head images for a total number of 21326
examples, the second consists in 366 occluded examples.

Finally, for the body orientation task, a novel dataset dubbed Human Orien-
tation Classification (HOC) [Tosa] is introduced. Even if this task has recently
attracted the attention of researchers (see for example [EG10]) no public available
datasets are present in the literature (excep the ViPER dataset [GBT07], but it
has a very low number of elements, limited to 632). HOC (see Fig. 6.22(c)) is
derived by the ETHZ [Sch] human re-acquisition dataset representing pedestrians
in different orientations and (background) conditions, captured by hand-held cam-
eras. ETHZ is structured in three sequences for a total of 8555 images, each image
64×32 pixels containing a pedestrian. The images are manually splat into 4 orien-
tation classes (Front, Back, Left, and Right), individuating a training and a testing
partition. The dataset is complex because of the low resolution, severe illumination
artefacts, occlusions and consistent scale changes. The main characteristics of all
the previous presented datasets and the relative WARCO architecture instances
are summarized in Tab. 6.2.

6.4.4.2 Geometrical properties of Sym+
d

The numerical evaluation of the curvature κId in correspondence of the samples
of a particular dataset allows to understand how concave is the related region
of Sym+

d . In Tab. 6.3, the mean value and the standard deviation of κId for all
the datasets are reported (note that QMUL† refers to the QMUL dataset with
the background class). These values are calculated by considering each covariance
matrix of WARCO as an independent sample, for all the WARCO descriptors of
a single dataset. First, the mean values are all negative and almost near to 0,
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(a) (b) (c)

(d) (e) (f)

Fig. 6.22. Examples of the (a) HIIT, (b) HOCoffee, (c) HOC, (d) QMUL, (e) CAVIAR,
and (f) IDIAP datasets used in the experimental part. In (a), (b), (c), and (d), each row
correspond to a different class. In (e) and (f), head orientation is estimated by regression.
Examples are ranked from the left to the right proportionally to their degree of difficulty.
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QMUL head 16k 50× 50 25 16× 16
QMUL † head 20k 50× 50 25 16× 16
HIIT head 24k 50× 50 25 16× 16
HOCofee head 18k 50× 50 25 16× 16
CAVIAR (Clean) head 21k 50× 50 25 16× 16
CAVIAR (Occluded) head 22k 50× 50 25 16× 16
IDIAP head 66k 75× 75 25 24× 24

HOC human 11k 62× 132 40 24× 24

Table 6.2. Dataset characteristics.

evidencing the presence quite flat regions. Furthermore, larger patches seem to lie
in flatter regions, and this assumption will be validated heuristically, in a more
exhaustive fashion, later in the section.

Looking at the different distance statistics in the same table, related to the
Frobenious distance dE (6.62), the CBH1 distance dCBH1 (6.63), and the geodesic
distances dG (6.64), one can note that for the mean values the inequality dE ≤
dCBH1 ≤ dG holds systematically; on the contrary, the standard deviation does not
present the same behaviour and its values look similar.
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Dataset name κId dE dCBH1 dG
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QMUL −0.035 0.017 7.78 2.72 8.21 2.70 8.78 2.62
QMUL † −0.038 0.020 8.65 3.02 9.13 3.03 9.65 2.89
HIIT −0.031 0.018 7.02 3.74 7.41 3.77 8.02 3.86
HOCofee −0.035 .0.15 6.40 2.57 8.37 3.34 8.88 3.24
CAVIAR (Clean) −0.041 0.021 8.59 2.24 9.16 2.57 9.73 2.50
CAVIAR (Occluded) −0.043 0.026 8.12 2.72 8.88 2.88 9.12 2.73
IDIAP −0.014 0.006 4.79 1.81 5.01 1.83 5.34 1.83

HOC −0.024 0.014 7.67 3.36k 7.99 3.34 8.41 3.25

Table 6.3. Curvature analysis and distance comparison of different datasets. κId , dE ,
dCBH1, and dG are compared on the same covariance representation (see Eq. (6.65)). See
Sec. 6.4.4.2 for details.

6.4.4.3 Head Orientation Classification

QMUL Head dataset. WARCO classifier is tested adopting both the Frobe-
nious and the CBH distances, against the template-based discriminative approach
presented in [OGX09] and the ARCO LogitBoost-based strategy (see Sec. 6.3),
the latter being the current best approach. To reproduce the former method, the
image features provided by the dataset authors are considered and the same exper-
imental protocol is followed. The same polynomial SVM classifier as in [OGX09] is
also used. The confusion matrices are reported in Fig. 6.23, considering 4 and 5 (4
orientations plus the background) classes. WARCO with CBH1 distances get the
highest average classification scores. One should also pay attention to Fig. 6.23(h),
where the accuracy in classifying the background class rises of about 10% with re-
spect to the previous state-of-the-art results depicted in Fig. 6.23(f). This gap
is due to the CBH distance: actually, background samples are located in zones
with higher curvature (validated experimentally), far from Id, so that the contri-
bution given by the CBH expansion becomes critical in better capturing the local
geometry.

HOCoffee dataset.
In this case, one has 6 orientations. In Fig. 6.24(e), the qualitative perfor-

mances, and in Fig. 6.24(c) and (d), the quantitative performances are reported
considering both Frobenious (FROB) dE distance (6.62) and the CBH1 dCBH1

distance.
HIIT dataset.
As one can note in Fig. 6.24(a) and (b), the performance of our framework

are rather high, in fact, using dCBH1 to measure the distance among covariance
matrices the average accuracy is 97%. This means that the proposed classifier
manages easily low resolution head images classifying the orientation precisely.
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Fig. 6.23. Examples and statistics of the 4 and 5-class original dataset taken by Orozco
et al. [OGX09]. (a) and (e): the original results by Orozco et al. approach [OGX09]. (b)
and (f): the Tosato et al. approach described in Sec. 6.3. (c), (d), (g), and (h): , the
proposed approach.

6.4.4.4 Head Orientation Estimation by Regression.

In this context, the SVM classifier is replaced with a linear SVM regressor [CL].
IDIAP Head Pose. The head orientation evaluation protocol is taken from

[BO05]: in each one of the 8 meetings of the test set, one has 1 minute of recording
for the testing, for a total of 1500 test samples. The three error measures suggested
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Fig. 6.24. Confusion matrices on the (a) and (b) HIIT, and (c) and (d) CoffeeBreak
head orienation datasets [Tosa]. (e) shows a qualitative result on the CoffeeBreak dataset.

pan tilt roll

mean std med mean std med mean std med

Hist+Correlation 16.2 13.6 13.1 22.4 15.0 19.1 15.1 12.0 12.5

Correlation+Shape 19.0 17.4 14.2 26.4 17.5 21.5 16.1 12.7 13.4

Texture 13.6 14.9 8.3 17.6 13.8 12.8 11.5 10.3 12.9

Texture+Color 8.7 9.1 6.2 19.1 15.4 14.0 9.7 7.1 8.6

Our, FROB. distance 10.90 10.75 7.87 4.81 5.98 2.93 4.65 4.22 3.80

Our, CBH1 distance 10.30 10.61 7.13 4.46 5.26 2.54 4.33 3.84 3.33

Table 6.4. Pan, tilt and roll error statistics over evaluation data of IDIAP dataset. The
first 4 methods are taken from [BO05].
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by the protocol are adopted, which are the absolute differences with the ground-
truth pan, tilt and roll angles. Table 6.4 summarizes our results considering the
methods that participated to the CLEAR2007 challenge [BO05], that defined the
best performances on this dataset. As one can observe, good results concerning
the pan are reached, while the best scores with the tilt and roll angles are defined.

CAVIAR. The best competitor for this dataset are considered, which is the

pan

mean std med

Robertson & Reid [RR06] 76.4 55.8 70.1

WARCO, Clean, FROB. distance 22.65 18.44 17.09

WARCO, Clean, CBH1 distance 22.21 18.38 16.90

WARCO, Occluded, FROB. distance 36.90 25.23 31.73

WARCO, Occluded, CBH1 distance 35.26 24.58 30.70

Table 6.5. Pan error statistics over evaluation data of CAVIAR dataset both for non-
occlluded and occluded cases.

method presented in [RR06]. Unfortunately, it is difficult to produce a fair com-
parison. In this paper [RR06], ground truth annotations are made by the au-
thors, which unfortunately are not compatible with that provided together with
the dataset. In practice, they represent a quantized version of the original anno-
tations. Employing the original annotations, two datasets are individuated, one
formed by non-occluded samples, the other with occlusions, and the pan angle are
estimated on both sets. Results are shown in Table 6.5, where, as in [RR06], the
mean, the standard deviation and the median of the errors are reported. Two main
considerations pop out. The first one is that the proposed approach gets lower er-
rors than [RR06]. Apart from the different methodologies in getting ground truth
data, that should make the task of [RR06] easier than ours, WARCO is notice-
ably more accurate. The second observation is that the errors of WARCO in the
occluded cases are not dramatically higher than the un-occluded cases, and this is
due to the nature of WARCO, i.e., an ensemble of local classifiers.

6.4.4.5 Human Orientation Classification dataset.

In this case, WARCO is computed on 40 overlapped patches of 24 × 24 pixels.
In Fig. 6.25 one can see the accuracy result achieved by our algorithm. Despite
the heavy occlusions and the bad illumination conditions, the average accuracy
reaches 79%. It is worth noting how the Front and the Back classes are nicely
separated: this is an impressive results, since here the most noticeable difference
between the two classes lies in the head portion, which is relatively small.

6.4.4.6 Scale issues.

Here, I stress the capability of WARCO of working at low resolution, and the
relation between patch dimensions and manifold curvature κId is explored. Two
additional experimental sessions are produced, where the image dimensions of
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Fig. 6.25. Confusion matrices showing the performances between the WARCO method
using (a) the Frobenius distance (dE) and (b) the CBH1 distance (dCBH1).

each dataset is reduced by a factor of 0.75 and 0.5. Consequently, the same factor
of reduction is applied to the architecture of WARCO. In Fig. 6.26, the results
concerning the classification are reported, and in Fig. 6.27 the results for the
regression task are shown. As one can note, the smaller the size of the object,
the higher the curvature. Furthermore, it is valuable to observe how the CBH1
distance-based framework behaves with respect to the Frobenious distance-based
technique at the different resolutions: the lower the resolution, the bigger the gap
between CBH1 and the Frobenious-based strategy. Once again, this demonstrates
that the contribution of CBH1 is in general more helpful in highly curved manifold
regions.

6.5 Fast and Robust Inference with WARCO

In this Section, instead of employing the linear SVM learning framework as in
Sec. 6.4, Random Forest (RF) are adopted (see Sec. 3.3.2) to train the WARCO (see
Sec. 6.4 for details) patch models because they have several interesting properties.

In fact, RF can actually be trained on large datasets with a low computational
cost and without being affected by significant overfitting: this allows to train several
classifier (or regressor) instances, one per patch, rapidly. Moreover, RF is very
efficient during the testing phase, since labelling an example against a tree has
logarithmic cost in the number of leaves, and can also tolerate a certain amount
of noise and errors in the training data labels.

The goal is to understand if, using a much efficient, robust to noisy data, and in-
trinsically nonlinear learning framework as RF, it is possible to obtain good perfor-
mances with WARCO. Therefore, I find out a model, FWARCO (Fast WARCO),
that exploits RF to use the power of WARCO efficiently.

Due to the good properties of RF, to obtain a high robustness to the false
positives during the testing phase, it is important to use large training sets of
background examples. In this situation, the training problem is highly unbalanced
because of huge cardinality of background ROIs. In the same vein of [FGMR10], a
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Dataset Obj. Size κId dE avg acc. dCBH1 avg acc.

QMUL
25× 25 −0.0509 78% 80%
38× 38 −0.0448 89% 90%
50× 50 −0.0361 91% 92%

(a)

Dataset Obj. Size κId dE avg acc. dCBH1 avg acc.

QMUL †
25× 25 −0.0571 74% 76%
38× 38 −0.0470 86% 87%
50× 50 −0.0345 90% 91%

(b)

Dataset Obj. Size κId dE avg acc. dCBH1 avg acc.

HIIT
25× 25 −0.0571 88% 90%
38× 38 −0.0571 95% 96%
50× 50 −0.0571 96% 96%

(c)

Dataset Obj. Size κId dE avg acc. dCBH1 avg acc.

HOCoffe
25× 25 −0.607 62% 66%
38× 38 −0.0430 78% 80%
50× 50 −0.0345 80% 80%

(d)

Dataset Obj. Size κId dE avg acc. dCBH1 avg acc.

HOC
66× 31 −0.0320 71% 73%
99× 47 −0.0230 77% 78%
132× 62 −0.0192 78% 78%

(e)

Fig. 6.26. Comparative study of the performances of the proposed statistical classifica-
tion framework.

hard negative mining strategy is designed for RF here. Also in this case it is possible
to prove that data-mining methods can be made to converge to the optimal model
defined in terms of the entire training set. Exploiting the proposed hard mining, it
is shown how to increase the robustness of WARCO and the experimental evidences
demonstrate this fact.

The rest of the Section is organized as follows. In Sec. 6.5.1, the classification
model able to deal with both head and body orientation classification is described
and in Sec. 6.5.2 WARCO and FWARCO are compared experimentally.

6.5.1 The Approach

The set of patches which composes FWARCO is denoted with Φ = {φi}i=1,...,NP

(the same as in WARCO), where NP is the number of image patches, described
by a set of d × d covariance matrices. Concisely, the idea below the proposed
framework is that each patch classifier votes for a class, and the final classification
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Avg Pan Err.

Dataset Obj. Size κId dE dCBH1

CAVIAR (Clean)
25× 25 −0.0437 27.15 25.63
38× 38 −0.0426 22.65 21.58
50× 50 −0.0415 19.74 19.73

(a)

Avg Pan Err.

Dataset Obj. Size κId dE dCBH1

CAVIAR (Occluded)
25× 25 −0.045 41.00 38.00
38× 38 −0.044 37.00 36.33
50× 50 −0.043 36.90 35.26

(b)

Avg Pan Err. Avg Tilt Err. Avg Roll Err.

Dataset Obj. Size κId dE dCBH1 dE dCBH1 dE dCBH1

IDIAP
38× 38 −0.0293 16.18 16.07 6.67 6.47 5.02 4.97
56× 56 −0.0175 12.35 12.03 5.18 5.01 4.94 4.82
75× 75 −0.0143 10.90 10.30 4.81 4.46 4.65 4.33

(c)

Fig. 6.27. Comparative study of the performances of the proposed statistical regression
framework.

is the weighted summation of the votes. The same model is instantiated also for the
regression task to obtain a continuous output. Since the goal is to infer the body or
head orientation, the final (output) orientation is the median orientation given by
the contribution of each model patch. As anticipated, RF is the algorithm adopted
to learn the model for each single patch, which is the same both for classification
and regression. However, the same statistical model described in Sec. 6.4.3 is used
here to assign a label.

6.5.1.1 Training Models

Starting from the Alg. 6, introduced in Sec. 3.5.1, its adaptation for RF is de-
scribed. Considering one WARCO patch, I refer to its training set by

{Xi, yi}i=1,...,S ,

where Xi are the covariance matrices of an image patch. It is worth noting that
the notation, in this case, is simplified omitting the patch index.

I recall briefly the concept under RF (see Sec. 3.3.2 for more details). It is a
combination of decision trees such that each tree depends on the values of a ran-
dom vector, sampled independently and with the same distribution for all the trees
in the forest. Trees are grown randomly using binary partitioning. In particular,
randomness is injected by growing each tree on a different random sub-sample of
the training data into the splitting process so that a small subset of randomly
selected features is used for the splitting decision. For this technique, four param-
eters must be adopted: (1) for each node, the feature to split a node is selected
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among a random subset of all the dv features; the number of candidate feature is
fixed to

√
dv; (2) to guarantee good generalization performances of the classifier

the number of samples per leaf is fixed to at least τ ; (3) each tree is trained on
a randomly drawn bootstrap sub-sample of the data, and here it is fixed using
approximately 2/3 of the examples; (4) the number of trees is fixed to T = 100 to
reduce the amount of memory necessary to instantiate the classifier, since the im-
plementation used [Jai] is not optimized. This setting holds for all the experiments
reported in Sec. 6.5.2. To maximize the speed of FWARCO, the Frobenius norm
on Symd (Eq. 6.62) is used to measure the distance between covariance matrices.

Algorithm 13: Random Forests on Symd

Data: D = (X1, y1), . . . , (XS , yS) with Xi ∈ Sym+
d and Yi ∈ {1, . . . , L}, T the

number of trees, τ the minimum number of examples per tree,
m =

√
d(d+ 1)/2 the feature to split a node.

Result: The ensemble of classifiers {g1, . . . , gT }.
begin

Normalize the covariance matrices using Eq. (5.21);

Map the data points to the tangent space TId , by X̃i = logId
Xi (Eq. (6.25));

Vectorize X̃i as xi = vec(X̃i) (Eq. (2.1));
for t = 1, 2, . . . , T do

Randomly sample the training data Di ⊂ D with replacement to produce
Di;
Create a root node, N i, containing Di;
while |N i| > τ do

Randomly select m of the possible splitting features in N i;
Grow the tree gt, splitting current node with the best variable among
the m selected;

6.5.1.2 Strategies for robust detection

The learning framework proposed in the previous section gives an effective solution
to the object classification problem, but not for detection problems. Actually, a
very large number of background patches can be computed from a single image in
the latter case. A different approach from the well-known class of bootstrapping
methods is proposed, where multiple classifiers are learned during the training
phase to enhance the final classifier robustness.

Recently, in [FGMR10], a data-mining strategy to prune easy-to-classify back-
ground examples is introduced. This technique has been designed for margin-based
classifiers like SVM, but since RF is adopted in this Section, it is necessary to
choose a slightly different strategy to tackle this problem using the same basic
idea as the one used for SVM. In any case, it is possible to prove that data mining
methods converge to the optimal model defined in terms of the entire training set.
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The main advantage in using this data pruning, instead of the cascade approach,
is related to the classification efficiency.

Before showing the data mining procedure for RF, it is necessary to define hard
and easy background examples of a training set B ⊂ S \ V as follows:

H ⊆ B =
{
x ∈ TIdSym

+
d |P(BG|x) < 1/2

}
, (6.66)

are the hard examples and, similarly, the easy examples E are defined. P(BG|x) is
the posterior probability, given by Eq. (5.24), of a background example to belong
to the background class. Given a large background training set B, the goal is to
find a smaller set of examples B∗ ⊆ B such that fn(B∗) = fn(B).

Let S1 (t = 1) an initial subset of m randomly selected examples for the BG
class joined to all the examples of the other (foreground) classes.

This method iteratively trains a model and updates the dataset in the following
way:

1) train the model fn using RF and St as training set.
2) If P∆err(B) = 0 stop and return it.
3) Let B′ = B \ B∗, where B∗ ⊂ St contains all the St background examples.
4) Compute H ⊆ B′ (Eq. (6.66)) and E ⊆ B.

5) Compute Pt(B) =
∑

i 1{fn(B)6=BG}
|B| and P∆err(B) = |Pt(B) − Pt-1(B)|, where

1{·} is an indicator function.
6) Update St by adding a subset of m examples of H and removing E . Go to 2.

In this procedure, all foreground examples are considered for each iteration, where
easy background examples are removed from the set of possible candidates and new
hard background examples are added to the current training set, pruning all the
easy negatives. Since the goal is to minimize the training set dimension, a small
number m of hard background examples is added to B∗n. At the first iteration,
the number of background examples is exactly m and grows when the number
of iterations increases. However, I observed from the experimental trials that the
final number of background examples naturally stops growing in few iterations.
In particular, it stops when the number of negatives is similar to the number of
positives.

It is also possible to build an approximate version of the previous hard mining
procedure in order to speed up its convergence in presence of noisy and mis-
labelled training data. Denoting with Perr the normalized fraction of mis-labelled
examples, the exit condition can be relaxed from Perr(Bn) = 0 to Perr(Bn) ≤ ε (ε
is fixed to 0.01 in these cases). This approximated method guarantees both good
classification performances and a fast convergence of the algorithm. It is possible
to show, with the following lemma stating, that when the method stops one has
found fn(B∗n) = fn(Bn).

Lemma 6.1. Let B∗n ⊆ Bn. If H ⊆ B∗n then fn(B∗n) = fn(Bn) in probability.

Proof. B∗n ⊆ Bn means that Perr(B
∗
n) ≤ Perr(Bn). Since H ⊆ B∗n, all the examples

in Bn \B∗n are classified correctly by fn(B∗n). For this reason P∆err(B
∗
n) = 0. One

concludes that fn(B∗n) = fn(Bn) in probability.
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The next theorem shows that this method always terminates. The idea is that the
dimension of B∗n grows at each iteration and is bounded by Bn.

Theorem 1 Let B∗n ⊆ Bn, hence the hard mining procedure terminates in a finite
number of iterations.

Proof. One can denote B∗nt
⊂ St as the set of background examples at iteration

t and fnt
as the classifier learned at t. Since B∗nt

⊆ B∗nt+1
, it implies fnt+1

≥ fnt
.

At the end of the process, B∗n contains all the hard negative examples from Bn.
This implies that fn(B∗n) = fn(Bn) in probability. During the process H ⊆ B′n at
t+ 1 contains at least one example (x, y) mis-classified by fnt

. Since B∗nt
⊆ B∗nt+1

one has fnt+1 ≥ fnt in probability. If B∗nt
6= B∗nt+1

, then fnt+1 > fnt due to (x, y).
If B∗nt

= B∗nt+1
, then fnt+1 = fnt . Therefore fnt+1 ≥ fnt , since there are finitely

many B∗n that can be built in a finite number of iterations.

6.5.2 Experimental Results

Sec. 6.5.2.1,6.5.2.2, and 6.5.2.3 presents different applications of FWARCO. In
particular head orientation classification in Sec. 6.4.4.3 and Sec. 6.4.4.4, and human
orientation classification in Sec. 6.4.4.5. The results of FWARCO with the best
ones of WARCO are compared, previously presented in Sec. 6.4.4, using the same
datasets and the same features. The goal is to understand if, using a much efficient,
robust to noisy data and intrinsically nonlinear learning framework as RF, it is
possible to obtain good performances with WARCO. In the following experiments,
to maximize the speed of FWARCO, the Frobenius norm on Symd (Eq. 6.62) is
used to measure the distance between covariance matrices. The results given by
ARCO (see Sec. 6.3) are omitted because of the clear superiority of WARCO.

As experimental data, the most interesting dataset used in Sec. 6.4) are con-
sidered. They are the QMUL Head Pose [Tosa], the IDIAP Head Pose [Odo] and
HOC [Sch]. Then a novel dataset is introduced. It is probably the most challenging
for the human orientation classification task which is extracted from the ViPER
dataset [GBT].

6.5.2.1 Head Orientation Classification

QMUL Head Pose. For the head orientation classification task, FWARCO and
WARCO are compared, described in Sec. 6.4, using the same feature set. The
result of the comparison, in terms of confusion matrix, is reported in Fig. 6.28. The
average rate is 89% for FWARCO, against 91% of WARCO, therefore FWARCO
loses only a 2% in accuracy, but it increase dramatically the performance in terms
of efficiency during the testing phase. This permits to use a much greater number
of background examples and to exploit the procedure described in Sec. 6.5.1.2, it
is possible to increase the robustness against the background almost to 99% of
accuracy for the background class, only losing 1% of the accuracy in average.
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Fig. 6.28. (a) The confusion matrices for the head orientation classification with
WARCO 6.4. (b) FWARCO results.

6.5.2.2 Head Orientation Estimation by Regression

IDIAP Head Pose. For the estimation task, FWARCO is tested on the IDIAP
Head Pose dataset, which is used for the CLEAR 2007 head orientation estimation
challenge. Tab. 6.6 summarizes the results of this system. As for the previous case,

pan tilt roll

mean std med mean std med mean std med

WARCO (Sec. 6.4) 10.30 10.61 7.13 4.46 5.26 2.54 4.33 3.84 3.33
FWARCO 13.9 12.10 10.52 5.44 4.93 2.01 4.14 3.56 3.01

Table 6.6. Pan, tilt and roll error statistics over evaluation data for the WARCO 6.4
and FWARCO.

the same experimental setting used for WARCO is reproduced and also in this case
the same feature set is adopted. RF ability to model non-linear boundaries and its
ability to manage noisy data leads for the tilt and roll, if compared to WARCO.

More detailed results of FWARCO on this database are shown in Fig. 6.29,
where it is compared with some 4 methods (M1-4) taken from [BO05]. The results
shown in this figure report how the system works for each single meeting.
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Fig. 6.29. Mean of pan, tilt and roll orientation classification errors for individual meet-
ing evaluation data of the IDIAP dataset.
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6.5.2.3 Human Orientation Classification

As in Sec. 6.4.4.5, the HOC dataset [Tosa] is used. Then, another public dataset
for the human orientation classification task introduced. It is derived from the
well known ViPER [GBT] dataset. It represents pedestrians in different orienta-
tions and (background) conditions. I named this dataset ViPER human orientation
dataset [Tosa]. However, both datasets are challenging because pedestrian images
are represented at low resolution and they are taken from video surveillance sce-
narios where many illumination changes and occlusions occur.

HOC. In Fig. 6.30 the results of the comparison between WARCO and
FWARCO are reported. FWARCO achieves the best result in accuracy thanks
to its intrinsic non-linear separation ability and its robustness to noise. Despite
the heavy occlusions and the bad illumination conditions, the average accuracy
reaches 81%.
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Fig. 6.30. Results on the HOC dataset. In (a) the confusion matrix associated with
WARCO (see Sec. 6.4) and in (b) the FWARCO one.

ViPER Human Orientation. This dataset contains two camera views of 632
pedestrians. Each pair contains images of the same pedestrian taken from different
cameras, under different viewpoints, orientations and illumination conditions. All
images are normalized to 128 × 48 pixels. Most of the examples contains a view-
point change of 90 degrees. Since the target is human orientation classification,
the images of the two views are joined. Then, all the images are reflected verti-
cally and small translations are performed to build a dataset of 8969 pedestrian
images. In order to build a balanced training set, about 1500 images per class are
randomly sampled and the testing set is composed by the remaining images. Ac-
cording to [EG10], the experiments are performed considering different numbers
of classes: three in the first case, four in the second one. This because front and
back orientation classes in this task (considering only static images) depend al-
most exclusively from the head orientations. So, it is not possible to build a reliable
model and therefore the front/back classes in this case are heavily overlapped. it
is worth noting that this fact does not affect the goodness of the results on the
other datasets, because ViPER is the most challenging one.

In Fig. 6.31 some ViPER example are shown and the confusion matrices for
the 3- and 4-class classification experiments are reported in Fig. 6.32. In this
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Fig. 6.31. Some examples of pedestrians in four orientations taken from the ViPER
human orientation dataset [Tosa].

case, the results obtained with WARCO and its linear SVM learning framework
are omitted because it perform poorly with ViPER data. This because the linear
model is too simple to obtain good performance on this dataset. FWARCO gives
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Fig. 6.32. In (a) and (b) the confusion matrices for the human orientation classification
in the 3- and 4-class cases (from the left to the right, respectively), using FWARCO.

an average accuracy of 82% on this dataset which is a very good result considering
the complexity of the data. Adding the fourth class, the performances obviously
decrease to 67% as for the comments discussed above.

6.6 Head Orientation Classification for Social Interactions

The automatic recognition of human activities in video recordings is undoubt-
edly one of the main challenges for a surveillance system. This is usually ac-
complished using a serial architecture built upon an array of techniques aimed
to extract low-level information including for example, foreground/background
segmentation [BJE+08] and object tracking [FV06]. After these early processing
stages, high-level analysis methods aim at detect atomic actions (e.g., gestures) as
well as complex activities (i.e. spatio-temporal structures composed of atomic ac-
tions) [CRCZ05], possibly exploiting ontologies for ensuring interoperability across
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different platforms and semantic descriptions understandable to human opera-
tors [FNHB05].

However, these technologies seem to forget that, for human beings, physical
and social space are tightly intertwined and no intelligent monitoring is possible
without taking account of social aspects associated with behaviours. This is es-
pecially regrettable when other domains, e.g. Affective Computing (AC) [Pic00]
or Social Signal Processing (SSP) [VPB09], pay significant attention to social,
affective and emotional aspects of human behaviour. In particular, Social Signal
Processing aims at developing theories and algorithms that codify how human
beings behave while involved in social interactions, putting together perspectives
from sociology, psychology, and computer science [Pen07, VPB09, PPN09].

The main tools for the analysis are the social signals [VPB09], i.e. temporal
co-occurrences of social cues [AR92], that can be basically defined as a set of tem-
porally sequenced changes in neuromuscular, neurocognitive, and neurophysiolog-
ical activity. Social cues are organized into five categories that are heterogeneous,
multimodal aspects of a social interplay [VPB09]: 1) physical appearance, 2) ges-
ture and posture, 3) face and eyes behaviour, 4) vocal behaviour, and 5) space and
environment.

This Section concentrates on the Visual Focus Of Attention (VFOA) cue
[SFYW99, LKTT07, SBOGP08], that belongs to the third category and is a very
important aspect of non-verbal communication, taking also into account the fifth
category, usually disregarded by social signalling studies [CVV10]. The VFOA in-
dicates where and what a person is looking at and it is mainly determined by head
pose and eye gaze estimation. In cases where the scale of the scene does not allow
to capture the eye gaze directly, viewing direction can be reasonably approximated
by simply measuring the head pose; this assumption has been exploited in sev-
eral approaches dealing with a meeting scenario [SFYW99, SYW02, VS08] or in a
smart environment [SBOGP08, LBC+09].

Following this claim, and considering a general, unrestricted scenario, where
people can enter, leave, and move freely, VFOA is approximated as the Subjective
View Frustum (SVF), first proposed in [FBMC09]. This feature represents the
three-dimensional (3D) visual field of a human subject in the scene. According to
biological evidence [PZ79], the SVF can be modelled as a 3D polyhedron delimiting
the portion of the scene which the subject is looking at (see Figure 6.33).

Employing SVF in conjunction with cues of the space and environment cat-
egory allows to detect signals of the possible people’s interest, with respect to
both the physical environment [FBMC09] and the other participants acting in
the scene. More specifically, a method to statistically infer if a participant is
involved in an interactional exchange is proposed. In accordance with cognitive
and social signalling studies, it is highly probable that the interaction takes place
when two people are closer than 2 meters [VPB09], and looking at each other
[WFDJ94, LWB00, JWVG03]. This condition can be reliably inferred by the posi-
tion and orientation of the SVFs of the people involved. This information can then
be gathered in a Inter-Relation Pattern Matrix (IRPM), that encodes the social
exchanges occurred between all the participants.
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Detecting social relations among people may be useful to instantiate a more ro-
bust definition of group in surveillance applications. Actually, in the last few years,
several applications focused on the group modelling have been proposed [MJD+00]
and re-identification [ZGX09]; in the first application a group is defined following
physically-driven proximity principles, while in the re-identification groups are as-
sumed to be detected by an external algorithm.

More broadly, the proposal is a step forward automatic inference and analysis
of social interactions in general: it is alternative to the paradigm of wearable com-
puting [Pen00, CP02], or smart rooms [WSB+03]. In the typical non-cooperative
video surveillance context or when a huge amount of data is required, wearable de-
vices are not usable. Moreover, the usage of non-invasive technology makes people
more prone to act normally.

Considering the literature (except for [FBMC09]), the “subjective” point of
view for automated surveillance systems has been taken into account in [BR09],
that draw inspiration from [RR06], therefore representing the most similar ap-
proach in the literature to the proposed one. In that paper, the goal is to address
the head orientation of low-resolution pedestrians to infer regions of interests in
the scene. However, while [BR09] modelled the gaze orientation in a continuous
way can restrict to a fixed number of orientations (= 4); in addition, in [BR09],
interaction analysis was absent, and the subjective point of view was functional
solely on the estimation of interest maps of the scene. This last point is the most
important, distinctive aspect of the proposed work.

The works of [OYTM06] and [HJB+08] are also close to the proposed one as
they estimate a sort of focus of attention of single individuals. They are also dif-
ferent because they consider a meeting scenario that is usually more constrained
than a surveillance one, and can be monitored with higher accuracy. In [OYTM06],
the gaze pose in high-resolution images is estimated to infer inter-personal rela-
tions. Due to the low resolution one can prefer to perform head pose estimation
because eye gaze is very hard. This idea is also followed by [HJB+08]. However,
they suppose that the VFOA of each person is constrained: a person can only look
at another person. This assumption could be invalid in a surveillance scenario,
where people can wander around freely, look at other objects in the environment,
be distracted by external events during a conversation in a group etc. For this
reasons, one may left unconstrained the head pose estimation.

Summarizing, the proposed framework provides two novel contributions. First,
we propose a more accurate estimation of the Subjective View Frustum: in
[FBMC09], head orientation is estimated by person walking trajectory. This is
reasonable when he/she is moving in the scene, but it is not valid in general. A
more reliable head orientation classification is introduced here, employing a multi-
class boosting algorithm, operating on covariance features [TPM08]. Second, the
Inter-Relation Pattern Matrix is introduced, to inferring social interactions among
people in a crowded, general scenario. This work not only fills a gap in the state of
the art of SSP aimed at understanding social interactions, but also represents
a novel research opportunity, alternative to the scenarios considered so far in
socially-aware technologies, where automatic analysis techniques for the spatial
organization of social encounters are taken into account.
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The rest of the Section is organized as follows. In Sec. 6.6.1, the main techniques
for estimating the VFOA in absence of gaze information and the methods for
head pose estimation are reviewed. In Sec. 6.6.2, the building process of the SVF
estimation method is described, sketching all the involved processing steps. In
Sec. 6.6.6, the Inter-Relation Pattern Matrix description is reported. In Sec. 6.6.7,
experiments on home-made and public datasets are illustrated.

6.6.1 State of the art

A person’s VFOA is determined by his eye gaze. Since objects are foveated for
visual acuity, gaze direction generally provides more precise information than other
bodily cues regarding the spatial localization of one’s attentional focus. A detailed
overview of gaze-based VFOA classification in meeting scenarios is presented in
[BO06]. However, measuring the VFOA by using eye gaze is often difficult or
impossible: either the movement of the subject is constrained or high-resolution
images of the eyes are required, which may not be feasible [MOZ02, SSdVL03], and
several approximations are considered in many cases. For example, in [SFYW99],
it is claimed that the VFOA can be reasonably inferred by head pose in many
cases. Following the same assumption, in [SBOGP08] pan and tilt parameters
of the head are estimated, and the VFOA is represented as a vector normal to
the person’s face. It is employed to infer whether a walking person focuses on
an advertisement located on a vertical glass or not. Since the situation is very
constrained, this proposed VFOA model works quite well; anyway, as observed by
the authors themselves, a more complex model, that considers camera position,
people’s position and scene structure, is required in a more general situation.
The same considerations hold for the work presented in [LKTT07], where Active
Appearance Models are fit on the person face in order to discover which portion
of a mall-shelf is observed.

In [LD08a], the visual field is modelled as a tetrahedron associated with a head
pose detector. However, their model fixes the depth of the visual field, and this
is quite unrealistic. SVF models the visual field as well, but in this case, owing
to the 3D environment in which the SVF lives, one can let the SVF be bounded
by the structure of the scene, which is more reasonable. Moreover, the proposed
formulation is not restricted to controlled environments, but it can be employed
to analyse any generic scene.

The proposal extends the work done in [FBMC09], which is the first to promote
the use of the visual focus of attention for interaction modelling in a Computer
Vision context.

6.6.2 Subjective View Frustum Estimation

The Subjective View Frustum (SVF) is defined as the polyhedron D depicted in
Figure 6.33. It is composed of three planes that delimit the angles of view on the
left, right and top sides, such that the angle span is 120◦ in both directions. The
3D coordinates of the points, corresponding to the head and feet of a subject are
obtained from a multi-target tracker, while the SVF orientation is obtained from
an head pose detector (see below). The proposed system is therefore composed of
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Fig. 6.33. Left: the SVF model. Centre: an example of SVF inside a 3D “box” scene. In
red, the surveillance camera position: the SVF orientation is estimated with respect to
the principal axis of the camera. Right: the same SVF delimited by the scene constraints
(in solid blue).

four modules operating in cascade. First, the camera is calibrated and a (rough) 3D
model of the scene is constructed. Second, a multi-target tracker detects people’s
position in each frame, and this data is used to guide the head pose detector.
Finally, all the information is used to estimate the SVF. Each single module is
detailed in the following.

3D Scene Estimation. Supposing that the camera monitoring the area is
fully calibrated, the world reference system is put on the ground plane, with the
z-axis pointing upwards. This allows to obtain the 3D coordinates of a point in
the image if the elevation from the ground plane is known.

Therefore, a rough reconstruction of the area, composed of the principal planes
present in the scene, can be carried out (an example in Fig. 6.33). This operation
requires very little effort. In principle, a more detailed 3D map can be considered,
if for example a CAD model of the scene is available or if a Structure-from-Motion
algorithm [FFGT08] is applied. The choice depends on which level of detail one
wants to gather from the SVF applications.

6.6.3 Tracking

Multi-target tracking has been well investigated in literature. In this work, a well-
known method called Hybrid Joint-Separable (HJS) filter [Lan06] is used, because
it deals with severe occlusions. It is essentially a multi-hypothesis particle filtering
approach, able to sample the joint state space of the targets efficiently.

From the Bayesian perspective, the single object tracking problem aims at
recursively calculate the posterior distribution p(xt|z1:t), where xt is the current
state of the target (e.g., its position), zt is the current measurement or observation
(e.g. the current frame), and x1:t and z1:t are the states and the measurements up
to time t, respectively:

p(xt|z1:t) ∝ p(zt|xt)
∫
p(xt|xt−1)p(xt−1|z1:t−1)dxt−1. (6.67)

This recursive formulation is fully specified by the initial distribution p(x0), the
dynamical model p(xt|xt−1), and the observation model p(zt|xt). Particle filter-
ing approximates the posterior distribution by a set of N weighted particles, i.e.
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{(x(n)
t ,w

(n)
t )}Nn=1; a large weight w

(n)
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t ) mirrors a state x
(n)
t with high

posterior probability. Hence, particle filtering consists in generating new hypoth-
esis according to p(xt|xt−1) and evaluating their likelihood p(zt|xt).

HJS filter is an extension of this framework for multiple targets. It adopts the
approximation p(xt|z1:t) ≈

∏
k p(x

k
t |z1:t), that is, the joint posterior

xt = {x1
t ,x

2
t , . . . ,x

K
t }

could be approximated via the product of its marginal components (k indexes
the individual targets). The dynamics and the observation models of HJS are
marginalized out as follows:

p(xkt |xkt−1) =

∫
p(xt|xt−1)p(x¬kt−1|z1:t−1)dx¬kt−1:t (6.68)

p(zt|xkt ) =

∫
p(zt|xt)p(x¬kt |z1:t−1)dx¬kt (6.69)

where ¬k means all the targets but the kth. These equations encode an intuitive
strategy: the dynamics and the observation models of the kth target lie upon the
consideration of a joint dynamical model p(xt|xt−1) ≈ p(xt)

∏
k q(x

k
t |xkt−1) and

p(zt|xt), respectively. The joint distribution p(xt) avoids that multiple targets with
single motion q(xkt |xkt−1) collapse in a single location. p(xkt |xkt−1) is different from
q(xkt |xkt−1), since q(xkt |xkt−1) does not take into account the interactions between
targets, unlike p(xkt |xkt−1), which is integrated over x¬kt−1:t. The joint observation
model considers that the visual appearance of a single target may be occluded by
another object simulating a z-buffer. The two models are weighted by posterior
distributions that essentially promote trusted joint objects configurations (not
considering the kth object). For more details about how to compute Eq. 6.67, 6.68
and 6.69, the HJS algorithm and the features used for tracking refer to the original
paper [Lan06].

6.6.4 Head Orientation Classification

The tracker provides the location of the head and the feet for each person in each
frame. As for the head approximate position, I define a square window I of size r×r,
where I run the multi-class algorithm that recovers the head orientation. The size
r has to be large enough to contain a head, considering the experimental physical
environment and the camera position. ARCO 6.3 is adopted as head orientation
classifier with the same settings adopted in Sec. 6.3.3.1 for what concerns the
basic image features used to form ARCO, the learning framework, and its relative
parameters.

In this case 5 classes named North, South, East, West, and Background are
used. The first four classes indicate the four directions related to the camera orien-
tation. The Background class manages the cases when the tracker fails in providing
a correct head position. Actually, the use of only four directions may lead to rough
estimates, but it should be considered that the resolution of the source video data
is very poor.
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The ARCO representation has several advantages. First, it allows to take into
account different features, inheriting their expressivity and exploiting possible cor-
relations, by using the covariance local descriptor; to such an extent that, it could
be considered as a compact and powerful integration of features. Second, due to
the use of integral images exploited in the computation of the covariance matrices
[TPM08], ARCO is fast to compute, making it suitable for a possible real-time
usage.

6.6.5 Subjective View Frustum

The SVF D is computed precisely using Computational Geometry techniques. It
can be written as the intersection of three negative half-spaces defined by their
supporting planes of the left, right and top sides of the subject, respectively. In
principle, the SVF is not bounded in depth, modelling the human capability of
focusing possibly on a remote point located at infinite distance. However, in prac-
tice, SVF is limited by the planes that set up the scene, according to the 3D scene
(see Fig. 6.33). The scene volume is similarly modelled as intersection of negative
half-spaces. Consequently, the exact SVF inside the scene can be computed solving
a simple vertex enumeration problem, for which very efficient algorithms exist in
literature [MS85].

6.6.6 The Inter-Relation Pattern Matrix

The SVF can be employed as a tool to discover the visual dynamics of the in-
teractions among two or more people. This analysis relies on few assumptions
with respect to social cues, i.e. that the entities involved in the social interaction
stands closer than 2 meters (thus covering the socio-consultive zone – between
1 and 2 meters – the casual-personal zone – between 0.5 and 1.2 meters – and
the intimate zone – around 0.4-0.5 meters) [VPB09]. Then, it is generally well-
accepted that initiators of conversations often wait for visual cues of attention,
in particular, the eye contact, before beginning a conversation during encounters
[WFDJ94, LWB00, JWVG03]. In this sense, SVF may be employed in order to
infer whether an eye contact occurs among close subjects or not. This happens
with high probability when the following conditions are satisfied: 1) the subjects
are closer than 2 meters; 2) their SVFs overlap, and 3) their heads are positioned
inside the reciprocal SVFs (see Figure 6.34). In Fig. 6.34, a 2D projection of the
3D frustum is shown for illustrative purposes. Anyway, the real intersection is cal-
culated between the genuine 3D SVFs. The Inter-Relation Pattern Matrix (IRPM)
records when a possible social interaction occurs, and it can be formalized as a
three-dimensional matrix [Fre89], where each entry (i, j, t) = (j, i, t) is set to one,
if i and j satisfy the three conditions above, during the t-th time instant.

The IRPM matrix is employed to analyse time intervals in which to look for
social interactions. Suppose to focus on the time interval [t−T+1, t] are considered.
In this case, all the IRPM slices that fall in [t−T + 1, t], summing them along the
t direction, and obtaining the condensed IRPM (cIRPM). Intuitively, the higher
is the entry cIRPMt(i, j), the stronger is the probability that subjects i and j are
related during the interval [t − T + 1, t]. Therefore, in order to detect a relation
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Fig. 6.34. Left: two people are talking to each other. Right: top view projection of their
SVFs: the estimated orientation, East for 1 and West for 2, is relative to the camera
orientation (the pyramid in red in the picture). The SVFs satisfy the three conditions
explained in Sec. 6.6.6.

between a pair of individuals i, j in the interval [t − T + 1, t], one can check if
cIRPMt(i, j) > Th, where Th is a threshold defined a priori. This threshold filters
out noisy interaction detection: actually, due to the errors in the tracking and in
the head pose estimation, the lower the threshold, the higher the possibility of
false positive detections. In the experiments, how the choice of the parameters T
and Th modifies the goodness of the results is shown, in term of social interaction
detections.

The cIRPM represents one-to-one exchanges only, but the goal is also to capture
if there are groups in the scene. The term group is used in its common definition,
i.e. “an assemblage of objects standing near together, and forming a collective
unity; a knot (of people), a cluster (of things)”. The latter significance is closer to
our aims.

Operationally, the cIRPM is treated as the adjacency matrix of a graph, with
a vertex vi for each people in the scene, and an edge eij if cIRPMt(i, j) > Th. The
groups present in the scene are detected by computing the connected components
of the graph. Some illustrative examples are depicted in Fig. 6.38, 6.39, and 6.40.

6.6.7 Experimental Results

The experiments aim to show the capabilities of the proposed approach. First,
the performance of tracking and head orientation classification are validated sep-
arately, in order to check the behaviour of the single modules. Then, it is shown
how these modules perform grouped together, by analysing the employment of the
IRPM, and its capability in individuating social exchanges.

Regarding the head orientation classification model, a multi-class classifier is
built for head pose classification on the GDet head orientation classification dataset
originally available in [Tosb]. This dataset is extracted from the GDet (Groups
Detection) Dataset [Baz] that is composed of 12 sequences, each one lasting few
minutes. The scenario is composed of a vending machines room where people take
drinks and food, and chat. The videos have been obtained from two monocular
cameras, located on a room corner close to the ceiling. The GDet head dataset is
built using a training set extracted from a different video sequence. In fact, heads
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Fig. 6.35. Examples of the GDet head orientation dataset. Each row corresponds to a
different class.

are manually cropped from the GDet [Tosb] dataset and the QMUL head pose
dataset [OGX09] are used to balance the number of examples in each class. All
the images are divided into 5 classes 1555 Back, 1992 Front, 1990 Left, 2808 Right,
and 2948 Background 20× 20 pixels images. The testing set is composed of ROIs
of variable sizes from the GDet scenario, which are manually classified as dome
for the training set. In Fig. 6.35 some examples are reported.

The confusion matrix associated with the GDet head dataset are provided in
Fig. 6.36 the confusion matrix for the enriched dataset.

.91 .02 .02 .03 .03

.05 .83 .06 .05 .01

.04 .08 .84 .02 .01

.03 .02 .01 .94

.04 .01 .02 .01 .92

BA

FR
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BA FR LE RI BG

Our, avg = .89, std = .05

Fig. 6.36. The confusion matrix for the GDet head orientation classification dataset
[Tosa].

Concerning the analysis of social exchanges, a video of about 3 hours and a
half, portraying a vending machines area where students have coffee and discuss.
The video footage was acquired with a monocular IP camera, located on an upper
angle of the room. The people involved in the experiments were not aware of
their aim, and behaved naturally. Afterwards, since creating the ground truth
by using only the video is an hard task, were asked to some of them to fill a
questionnaire inquiring if they had talked to someone in the room and to whom.
Then, a video analysis was performed by a psychologist able to detect the presence
of interactions between people. The questionnaires were used as supplementary
material to confirm the validity of the generated ground truth. This offers a more
trustworthy set of ground truth data for the experiments.

The original 3.5h video of the GDet [Baz] dataset has been reduced to this
small set of sequences for several reasons: first, a lot of frames are empty, because
the recording has been done early morning. Second, only the sequences where the
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ground truth was evident and clear, i.e. all the components of each group were
known are considered. Third, they were chosen such that to represent different
situations, with people talking in groups3 and other people not interacting with
anyone.

Fig. 6.37. Examples of tracking and head orientation classification results. The biggest
box represents the tracking estimation, the smaller box the area where the head is posi-
tioned, and the triangle depicts the estimated head orientation.

For each subsequence, tracking is estimated, head orientation classification
(some examples are shown in Figure 6.37) and the three-dimensional IRPM is
built, that tells which people are potentially interacting at a specific moment. For
the head classification part, the 4 Head Pose dataset is enriched with head images
coming from the Vending Machine dataset, in order to enrich accuracy and ro-
bustness. About 150 images are added for each FG class, and 1840 images to the
Background.

The results are compared to the ground truth. 8/12 sequences where correctly
interpreted by the system. One can be considered wrong, because there are 2 groups
in the scene, and our system reveals that they all belong to the same group. In the
other three sequences there are some imprecisions, like a person left out of a group.
These imprecisions are mainly due to error propagation from tracking and head
orientation classification, particularly challenging when people are grouped and
frequently intersect. A qualitative analysis of the results is shown in Figures 6.38,
6.39 and 6.40. The first row of each figure depicts three sampled frames from each
sequence and contains the identifiers of each person. The second row depicts the
cIRPM, on the left4, and the graph structure that defines the group interactions
on the right. In these three experiments, all the groups are detected correctly;
Fig. 6.40 shows that the proposed model is able to detect interactions when the
scene contains several groups.

A more sophisticated analysis of accuracy performances of the proposed
method is shown in Fig. 6.41 and Fig. 6.42. The graphs summarize the group

3 The groups are formed by 3 individuals, in average.
4 Blue cells mean zeros. The values of the cIRPM below Th are discarded.
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Fig. 6.38. Example of condensed IRPM analysis of sequence S04. On the top row, some
frames of the sequence. On the bottom row, on the left, the thresholded cIRPM matrix.
Being the cIRPMs symmetric and having null main diagonals, for clarity only its strictly
upper triangular part is reported. On the right, the correspondent graph. As one can
notice, only one group (composed of people 4, 5 and 7) is detected. This is correct, since
the other people of the sequence do not interact.

detection accuracy in terms of precision (on the left) and recall (on the right). In
the definition of those measurements, true positive occur when a group is detected
considering all its constitutive members. If a person that belongs to a group is
not detected, a false negative appears, and a similar reasoning applies for the false
positive.

Fig. 6.41 depicts the statistics obtained by increasing the size T of the time
interval [t−T+1, T ] (x-axis) used to accumulate the IRPM. Each curve corresponds
to a value of threshold Th (5, 20, 60 and 100). From Fig. 6.41 shows, first of all,
increasing T gives worse accuracy. Moreover, the peak of each curve depends on
both the threshold and the time interval size. The best performances by setting
the Th equal to 20 obtained; the peak of this curve corresponds to a T equal to
300. Instead, Fig. 6.42 shows the performances increasing the threshold (x-axis)
used to detect the groups. Each curve corresponds to a value of T (120, 300, 480,
720, 900, and 1200). The common behaviour of all the curves is that increasing and
decreasing too much the threshold, the accuracy decreases. This analysis confirms
that the best performances are given by setting the threshold to 20 and the time
interval to 300. When T increases the accuracy drastically decreases and the peak
of each curve is shifted, depending on the time interval size.

Intuitively, when the threshold is too low and the time window is too small, the
proposed method detects interactions that could contain false positive. Increasing
the size of the time window and the threshold permits to average these false
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Fig. 6.39. Example of condensed IRPM analysis of sequence S08. On the top row, some
frames of the sequence. On the bottom row, on the left, the threshold cIRPM matrix. On
the right, the correspondent graph. One big group (1,2,3,6,7,8,13,14) is detected. Some
people are represented by more than one track, because of severe or complete occlusions
the tracks are sometimes lost and reinitialized. The group selected is correctly composed
of the people associated to the labels. Another person (10) enters in the room and does
not interact. The same behaviour is witnessed in the cIRPM.

positives out and cancel them out, because the IRPM becomes more stable. On
the other hand, when the threshold is too high, the proposed model is not able
to detect interactions, because cIRPMT (i, j) > Th is zero for each (i, j). To deal
with this problem, the time interval can be made larger. However, in this case,
a group interaction interval could be smaller than the time window, and in any
case the threshold is too high to detect groups. For these reasons, precision and
recall in Fig. 6.41 and Fig. 6.42 decrease before and after the optimal setting of
the parameters (Th = 20 and T = 300).

6.7 Object Classification using Tensors

This Section aims to understand if it is possible to exploit the tensor representation
for classification purposes and to build a more powerful object descriptor than
COV (Covariance), exploiting more complex object representation than Chap. 4.
In this Section, a learning framework is introduced to deal with different tensors,
namely EMI (Entropy-Mutual Information) tensor and COV tensor.
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Fig. 6.40. Example of condensed IRPM analysis of sequence S01. On the top row,
some frames of the sequence. On the bottom row, on the left, the thresholded cIRPM
matrix. On the right, the correspondent graph. Three groups (1,2),(3,4,5), and (9,10,11)
are detected. Some people are represented by more than one track, because of severe
or complete occlusions the tracks are sometimes lost and reinitialized (e.g. 6,7,8 are
reinitialized as 9,10,11, respectively).
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Fig. 6.41. Evaluation of precision (left) and recall (right) of the proposed method varying
the size of the time interval [t− T + 1, t] (x-axis) used to compute the IRPM. The graph
shows one curve for each threshold (5, 20, 60 and 100). The maximum both for the
statistics is given by setting Th = 20.
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Fig. 6.42. Evaluation of precision (left) and recall (right) of the proposed method varying
the threshold Th (x-axis) used to detect the groups. The graph shows one curve for each
time window (120, 300, 480, 720, 900, and 1200). The maximum both for the statistics
is given by setting T = 300 and the peak is where Th = 20 (also according to Fig. 6.41).

The Section is organized as follows: in Sec. 6.7.1 the object model adopted for
the experiments is described in detail and in Sec. 6.7.2 a comparative evaluation
of EMI and COV on different classification tasks is shown.

6.7.1 Object Models for General Classification Problems

I recall that in Sec. 4.3 an image was represented by one tensor instance to study
the performances of the different tensors without using complex object model.
However, in order to maximize the classification accuracy, a more complex object
representation has to be adopted. To build a sufficiently general, yet discrimina-
tive, descriptor, the idea proposed in [BZM07a] is utilized. Therefore, a pyramidal
patch-based representation is used. In particular, each image is divided into a se-
quence of increasingly finer spatial grids by doubling the number of divisions in
each axis direction repeatedly. The cell counts at each level of resolution are the
bin counts for the histogram representing that level. A 3 level pyramid is adopted.

In order to make a fair comparison, the same structure is adopted for all the
matrix tensors (i.e. EMI and COV). The basic image feature sets used to build
the matrix tensors will be detailed in the experimental Section, but they are quite
similar to the ones used in Sec. 4.3.

6.7.2 A Comparative Experimental Study

In this Section, a comparative study on different public available datasets for the
object classification task is described. As done in Sec. 4.3, a kernel SVM is used
as learning framework (see Alg. 7 for details). For what concerns the learning
parameter C, the grid-search is applied varying C in 2−3, . . . , 2 with step 1.

LabelMe. The annotated LabelMe [RTMF08] dataset is exploited to test the
ability of the tensor representations to discriminate among fine categories, such as
legs and arms. LabelMe is a database and an on-line annotation tool that allows
to share images and annotations. It is designed for object class recognition and
contains various object classes. From this dataset, only 4 different object classes
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are extracted, all belonging to the same object as one can see in Fig. 6.43. The
classes are 4 human body parts: arm, head, leg and torso. Images are reflected
building a dataset of 16288 examples. Also in this case, as for Pascal VOC 2009,

LabelMe Dataset Samples 

Arm Head 

Leg Torso 

.86 .12 .01

.10 .90

.02 .01 .78 .19

.01 .19 .80

Arm

Head

Leg

Torso

Arm Head
Leg

Torso

EMI − confusion matrix (avg acc. 84%)

.84 .09 .04 .04

.11 .86 .02 .01

.04 .01 .80 .16

.03 .01 .13 .83

Arm

Head

Leg

Torso

Arm Head
Leg

Torso

COV − confusion matrix (avg acc. 83%)

Fig. 6.43. Some examples and Confusion Matrices (CMs) for the LabelMe [RTMF08]
dataset. On the left, the CM given using the EMI tensor, while on the right the CM
associated with the COV tensor.

a 5-fold cross-validation procedure has been used. During each training phase,
2000 randomly selected examples per class populate the training set and all the
remaining are used for testing purposes. Each example is described with the feature
set of Eq. (6.65) and, again, one tensor is used to describe the image of an object.
In Fig. 6.43 the CMs of EMI and COV tensors are shown. It is clear that EMI
outperforms COV also in this finer classification task. Moreover, since the classes
are highly overlapped, EMI better manages the presence of noise in images. This
is probably due to the fact that it uses the histogram intermediate representation
that improves the description robustness, if compared to COV tensors.

Pascal VOC 2009. This dataset [EVGW+] consists of a few 17895 high reso-
lution images annotated with bounding boxes for objects of twenty categories (e.g.
car, bus, aeroplane, . . . ). The goal of this challenge is to classify objects in real-
istic scenes (i.e. not pre-segmented objects). Basically, it is a supervised learning
problem where a training set of labelled images is provided. In this case the results
of the SST tensors cannot be provided because the images of the dataset have a
variable size.

In Fig. 6.44 the best confusion matrices for EMI and COV are reported. In
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Fig. 6.44. Confusion Matrices (CMs) for the Pascal VOC 2009 [EVGW+] dataset. On
the left the CM given using the EMI tensor, while on the right the CM associated with
the COV tensor.
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this experiment, EMI clearly outperforms the COV representation with an average
accuracy of 48%, against a 45% provided by the COV tensor.

Also testing tensor representations, in function of the images resolution, can
be interesting. Using the bilinear re-sampling function, provided by Dollar toolbox
[Dol], all the Pascal’s images are down-sampled. As one can see in Fig. 6.45, two
different kinds of down-sampling are adopted: in the first case it operates without
preserving the image size, while in the second case it does. This is due to the fact
that it is interesting to study the behaviour of the tensor in function both of image
size and of resolution.

Fig. 6.45. Classification performances of EMI and COV tensors on Pascal VOC 2009 in
terms of mean classification accuracy varying objects scale and resolution.

CIFAR10. The CIFAR10 dataset [KH06] is a hand-labelled subset of a larger
dataset of 80 million tiny images. These images were downloaded from the In-
ternet and down-sampled to 32 × 32 pixels. The CIFAR10 subset has 10 object

Fig. 6.46. Example of images in the CIFAR10 dataset.

categories, namely aeroplane, bird, car, cat, deer, dog, frog, horse, ship, and truck
(see Fig. 6.46). The training set has 5000 examples per class, the test set has 1000
examples per class. The low resolution and variability make recognition very diffi-



6.7 Object Classification using Tensors 163

cult and a traditional method based on features extracted at interest points does
not work.

Since the recognition task on this dataset is hard, the feature description is
enhanced using the pyramidal descriptor presented in Sec. 6.7.1 that adds 2 sub-
layers to the single (top layer) descriptor utilized before. For each patch of that
pyramidal structure a tensor is extracted, vectorized and concatenated. The di-
mension of the final object descriptor is clearly larger if compared to the one
obtained using only one tensor for object description. Therefore PCA (Principal
Component Analysis) is applied to reduce automatically the dimensionality of the
final object description [ZLY10]. The optimal feature descriptor dimensionality is
established fixing to 96% the data energy that should be preserved after the linear
projection. That procedure is used both for EMI and for COV tensors. Tab. 6.7
reports a comparison using EMI and COV tensors on CIFAR images resized at a
resolution of 128× 128. Different feature sets, already implemented in the Dollar’s
toolbox [Dol], have been applied. The first filter bank has been already presented
in Eq. (6.65). It is composed of a set of 8 DOOG filters and other Gradient and
color features. This feature set is named DOOG in Tab. 6.7. Replacing the filter
set with a different filter bank from Serge Belongie [MBLS01] composed of 40 fil-
ters, a much more informative filter representation called Belongie is reported in
Tab. 6.7. Is is possible to observe that the pyramidal EMI representation combined

Tensor Representation Filters’ Set Avg Accuracy

EMI Belongie 52%
EMI DOOG 49%
COV Belongie 40%
COV DOOG 38%

Table 6.7. Test recognition accuracy on the CIFAR10 dataset produced by different
pyramidal tensor representations.

with Belongie filter set offers the best performances, outperforming the COV rep-
resentation. To consolidate that result, the comparison between EMI and COV is
made on a much more difficult dataset in the next experiment.

CIFAR100. CIFAR100 dataset [KH06], as CIFAR10, is a hand-labelled sub-
set of a larger dataset of 80 million tiny images. Also in this case images were
downloaded from the Internet and down-sampled to 32 × 32 pixels. CIFAR100 is
composed of 100 categories of objects. Its training set and its testing set have both
100 examples per class. The same experimental setting as CIFAR10 is adopted, as
described above. In Tab. 6.8 the experimental results are reported. As for CIFAR10
the best average accuracy is obtained using pyramidal EMI tensor and Belongie
filter set, which confirms the superiority of EMI on COV tensor representation.
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Tensor Representation Filters’ Set Avg Accuracy

EMI Belongie 32%
EMI DOOG 26%
COV Belongie 19%
COV DOOG 18%

Table 6.8. Test recognition accuracy on the CIFAR100 dataset produced by different
pyramidal tensor representation.
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Conclusions

This thesis focuses on the challenging task of classification and detection of de-
fined classes of objects. For those tasks an important aspect has to be considered
to obtain good performances in terms of classification and detection accuracy, that
is how to represent a visual object. To this end, novel tensor representations are
proposed and investigated, able to combine multiple sources of information simul-
taneously. Then the models to describe objects in problematic scenarios like in
the video surveillance context are designed and implemented. Moreover, different
tensor learning frameworks are presented, based on the problem setting: object
detection, classification, and regression.

More technically speaking, a study of how to represent objects using tensors
is outlined. It is inspired by the successful performances achieved by covariance
tensors [FPAA07, TPM08], that are used to represent visual objects. Therefore,
four different tensor representations that I called Entropy-Mutual Information
(EMI), Self-Similarity Structure Tensor (SSTstruct), Self-Similarity Content Ten-
sor (SSTcontent), and Grassmann Tensor (GRT) are proposed. Depending on the
task considered (detection or classification), those lead to better performances, if
compared with covariance (COV) tensors.

EMI tensor is composed of mixing entropy and mutual information and shows
its potentiality in object classification problems where it outperforms COV rep-
resentation. SSTcontent, which measures the distance among different features, is
more lighter and efficient respect to COV and EMI. It permits to combine many
image features together with a very low computational cost. Therefore, using a
large set of image features, it shows to lead to better performances than EMI and
COV for general classification problems. SSTstruct measures the self-similarity of
an object composed of parts; it uses the structural information to discriminate
an object. SSTstruct leads to state-of-the-art performances on the DaimlerChrysler
dataset [MG06] for the low resolution pedestrian detection. Regarding GRT, sim-
ilarly to the structural SST, is used to characterise the structure of an object as
set of vectors instead of the matrix representation of SSTstruct. GRT outperform
SSTstruct in terms of classification accuracy, but its computational cost is high.

Future research on tensor representations will check whether other tensor rep-
resentations, which are well known inside and outside vision and have been studied
in fields such as physics and robotics, can be used to describe visual objects. These
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representations and the associated (manifold) geometry can be analysed for prac-
tical applications in computer vision problems based on the learning frameworks
proposed in this thesis. Moreover, it can be interesting to study the combination
of different tensor representations: for example, combining EMI and GRT could
give the best performances of all the classification datasets used in this thesis. Un-
fortunately, the computational cost can be high, so some techniques to compute
tensors and their combination efficiently must be studied.

For what concerns the problem of object detection, the thesis focuses on the
pedestrian detection drawing particular attention to build robust detectors and
exploiting tensors that can be efficiently computed (i.e. COV and SSTstruct). For
example, COV is used to improve the state-of-the-art method [TPM08] for pedes-
trian detection, allowing also an estimation of occlusions in a fine way. COV can
be also exploited to represent a pedestrian by its single body parts building part-
based human detector. In this case the learning framework combines the weighted
boosted responses of part detectors, and indicates the upper part of the body as
the best part usable to capture human beings. The resulting framework is light
and robust and it sets the state-of-the-art on the INRIA Person dataset [Dal05].
Another light detection architecture proposed in this thesis, exploits the hardware
acceleration to boost the efficiency in the usage of COV tensors extracted from a
regular grid of image patches. This without loosing detection capability respect to
the previous pedestrian detectors. In this way, this light framework can be imple-
mented into an embedded device, in particular on an FPGA board. Every single
part of the proposed framework (structure, classification approach, and features)
is easily applicable also to different detection and classification problems like the
ones in [FHT00, Bre84, TPM06].

Some of the above-mentioned pedestrian detection frameworks are imple-
mented and applied into the SAMURAI system [sam], which contains robust mov-
ing object, segmentation, categorisation and tagging in video captured by multiple
cameras from medium-long range distance.

For what regards the classification and regression problems, the thesis concen-
trates on the delineation of some descriptors based on the COV and EMI tensors
and the relative learning frameworks. The general-purpose ARCO (ARray of CO-
variance matrices, adopts a theoretical framework of multi-class classification on
Riemannian manifold Sym+

d , leading to two remarkable advancements. From a
practical point of view, ARCO can describe faces as well as pedestrians, by includ-
ing arbitrary image features, and exploiting their dependencies via spatially local
COV tensors. From a theoretical point of view, it is shown the fact that Sym+

d has
non-positive sectional curvature and that the curvature is almost flat in some of
its areas. Therefore, one can perform multi-class discriminative learning projecting
the ARCO features on a tangent space at any point of Sym+

d . The experimental
Section validates the proposed approach, with novel state-of-the-art performances.
Moreover, ARCO is applied as a part of a framework to compute the Subjective
View Frustum (SVF), which may help understand social signals in a scene. It en-
codes the visual field of a person in a 3D environment. The SVF permits to define
novel analysis tools, such as the Inter-Relation Pattern Matrix. Convincing results
are shown, that lead to several future improvements: together with a refinement
of the head pose detector (in order to find tilt and roll parameters and a more
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informative pan quantization), it may be also possible to jointly investigate ges-
ture recognition modules, useful to capture different and more complicated social
interactions. To this end, ARCO is improved both from the theoretical and the
applicative point of view, turning it into WARCO (Weighted ARCO). WARCO is
used to characterize tiny images of pedestrians in a surveillance scenario, specifi-
cally, to perform head orientation and body orientation estimation. The achieved
results indicate that the framework will be adopted as standard tool in surveillance
applications. Moreover, WARCO is valuable beyond the aim of the contingent ap-
plication. In fact, a theoretically sound way to deal with covariance matrices is
suggested, i.e. like they were points lying on a Euclidean space. This is possible
thanks to a measure to approximate geodesic distances, the CBH1 measure, that
works better than the standard Euclidean distance. Future research on this topic
will check whether the triangular inequality holds for CBH1, in order to validate
CBH1 as genuine distance. Furthermore, WARCO will be extended to became
action descriptor, including the temporal dimension in the analysis. Moreover the
theoretical analysis which has produced the CBH1 measure can be easily instan-
tiated for all the symmetric spaces, like Grassmann manifolds. Nevertheless, since
WARCO is combined with a kernel SVM framework, it has some computational
limitations on large datasets. Therefore, to maximize its efficiency, FWARCO (Fast
WARCO), for fast and robust inference, is introduced. It is based on Random For-
est which has proven its efficiency and robustness on several classification and
regression tasks. In fact, RF can be trained on large datasets with a low computa-
tional cost and without being affected by significant overfitting. In the same vein
of [FGMR10], FWARCO has been combined to a hard negative mining strategy
designed for RF. The result is an enhancement of the efficiency and the robustness
of WARCO.

In this thesis two computer vision problems are faced, the detection and classi-
fication of defined classes of objects, also in connection with the object representa-
tion issue. Different models are presented and some novel descriptors are outlined.
Notwithstanding, on one hand future research on tensor representations will reveal
if other tensor representations, well known inside and outside vision and already
studied in physics and robotics, can be utilized for visual object description. On
the other hand, future research on tensors will prove if the theoretical framework
proposed in this thesis to measure the distance among tensors living in symmetric
spaces is a good choice. All of those are challenging issues to deal with. This thesis,
far from exhausting the topics which tackles, paves the way for further research.
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