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ABSTRACT

In the last decade, there has been an explosive growth in different applications of wireless tech-
nology, due to users’ increasing expectations for multi-media services. With the current trend,
the present systems will not be able to handle the required data traffic. Lattice codes have
attracted considerable attention in recent years, because they provide high data rate constella-
tions. In this thesis, the applications of implementing lattice codes in different communication
systems are investigated. The thesis is divided into two major parts. Focus of the first part is
on constellation shaping and the problem of lattice labeling. The second part is devoted to the
lattice decoding problem.

In constellation shaping technique, conventional constellations are replaced by lattice codes
that satisfy some geometrical properties. However, a simple algorithm, called lattice labeling,
is required to map the input data to the lattice code points. In the first part of this thesis, the
application of lattice codes for constellation shaping in Orthogonal Frequency Division Mul-
tiplexing (OFDM) and Multi-Input Multi-Output (MIMO) broadcast systems are considered.
In an OFDM system a lattice code with low Peak to Average Power Ratio (PAPR) is desired.
Here, a new lattice code with considerable PAPR reduction for OFDM systems is proposed.
Due to the recursive structure of this lattice code, a simple lattice labeling method based on
Smith normal decomposition of an integer matrix is obtained. A selective mapping method
in conjunction with the proposed lattice code is also presented to further reduce the PAPR.
MIMO broadcast systems are also considered in the thesis. In a multiple antenna broadcast
system, the lattice labeling algorithm should be such that different users can decode their data
independently. Moreover, the implemented lattice code should result in a low average transmit
energy. Here, a selective mapping technique provides such a lattice code.

Lattice decoding is the focus of the second part of the thesis, which concerns the operation
of finding the closest point of the lattice code to any point in N-dimensional real space. In
digital communication applications, this problem is known as the integer least-square problem,
which can be seen in many areas, e.g. the detection of symbols transmitted over the multiple
antenna wireless channel, the multiuser detection problem in Code Division Multiple Access
(CDMA) systems, and the simultaneous detection of multiple users in a Digital Subscriber
Line (DSL) system affected by crosstalk. Here, an efficient lattice decoding algorithm based
on using Semi-Definite Programming (SDP) is introduced. The proposed algorithm is capable
of handling any form of lattice constellation for an arbitrary labeling of points. In the pro-
posed methods, the distance minimization problem is expressed in terms of a binary quadratic
minimization problem, which is solved by introducing several matrix and vector lifting SDP
relaxation models. The new SDP models provide a wealth of trade-off between the complexity
and the performance of the decoding problem.
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NOTATIONS

Following notations are used throughout the thesis. Plain letters x and X are used for scalars.

Boldface letters are used for vectors (lower case) or matrices (upper case), i.e. x or X. For a

K × N matrix X the (i, j)th element is represented by xi j, where 1 ≤ i ≤ K, 1 ≤ j ≤ N, i.e.

X = [xi j]. Also, xi denotes the ith element of the vector x. For N × K matrix X, the notation

X(1 : i, 1 : j), i < N and j < K denotes the sub-matrix of X containing the first i rows and the

first j columns.

RN N-dimensional real space

ZN N-dimensional integer space

MK×N The space of K × N real matrices

MN The space of N × N real matrices

SN The space of N × N symmetric matrices

eN (0N) The N × 1 vector of all ones (zeros)
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xT ,XT Transpose of a vector x or matrix X

x∗,X∗ Hermitian transpose of a vector x or matrix X

X−1 Inverse of a square matrix

X† Pseudo inverse (Moore-Penrose inverse [78]) of a matrix X

‖x‖ The Euclidean norm of the vector x

‖X‖F The Frobenius norm of the matrix X (‖X‖2
F
= trace(XXT ))

X � 0 Positive semi-definiteness matrix X ∈ SN

X � 0 Positive definite matrix X ∈ SN
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vec(X) For X ∈ MN×K , the NK-D vector, formed by columns of X
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diag(x) A diagonal matrix with elements of x

rank(X) The rank of matrix X

det(X) The determinant of matrix X

R(.) The real part of a matrix or vector

I(.) The imaginary part of a matrix or vector

{.} The nearest integer vector or matrix
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|.| The cardinality of a set

conv(.) The convex hull of a set

E{u} Average of a random vector u

H(u) The entropy of a random vector u with probability density f (u),

H(u) = − ∫ f (u) log f (u)du [39]

log(.) Logarithm in base 2

ln(.) Logarithm in base e
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N(μ, σ2) Gaussian distribution with mean μ and variance σ2

U(R) Uniform distribution over region R

P{.} Probability distribution of an event

Fγ(x) The probability distribution of γ
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CHAPTER 1

INTRODUCTION

Due to the recent developments and available processing power in digital receivers, there is a

lot of interest in the design of dense signal constellations. They have been used extensively in

different applications such as code design for single antenna Rayleigh fading channel [110],

design of dense lattices for Gaussian channel [10], and design of space-time block codes for

coherent multiple antenna channels [12, 13]. The theory of Euclidean lattices is shown to be

a very powerful tool in the design of such constellations. These constellations are constructed

as multidimensional lattice signal sets having some desired geometric properties. An attractive

feature of these signal sets is that a significant improvement in error performance is obtained

without requiring the use of any conventional channel coding.

Research on coded modulation schemes obtained from lattice constellations began more

than twenty years ago, and extensive work has been done to improve the performance of these

lattice constellations in different applications. A basic schematic block diagram of a system

employing lattice constellations is shown in Figure 1. The main part of this system is a lattice

constellation which is defined as a finite subset of points of an N-Dimensional lattice bounded

within a support region in RN . This collection of points is also called a lattice code. There are

two important tasks in any such system employing a lattice code:

1. Enumeration of lattice points within a lattice constellation, and

2. Search for the nearest neighbor point in a bounded lattice constellation.

Enumerating lattice code points is called lattice labeling. The main challenge in lattice

labeling is to find a simple algorithm to map the input information bits to lattice constellation

points such that the mapping (performed at the transmitter side) and its inverse (performed at

1
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Figure 1: Basic Schematic of a System Employing Lattice Codes

the receiver side) can be implemented with a reasonable complexity. This operation can be

potentially of enormous complexity because the lattice constellation typically possesses a huge

number of points. Moreover, the lattice codes are designed to satisfy some geometric properties

as well, e.g. a reduced peak to average power. This may be very critical for the complexity

of practical implementations, as labeling such a lattice code may not always be an easy task.

Therefore, an important feature in designing lattice codes is to avoid the use of a huge look-up

table to perform lattice labeling while satisfying the desired geometrical property.

The second important feature to consider when utilizing a lattice code is its decoding. In

the receiver, a corrupted version of a lattice constellation point affected by the channel and

noise is received (see Figure 1). Decoding concerns the operation of recovering the transmit-

ted point form the designed lattice code from the received signal. This problem is known as

lattice decoding, which is defined as finding the nearest point (in the sense of minimum Eu-

clidean distance) of a lattice code to any point in RN . Due to the huge number of points in a

lattice code, this operation can also be potentially of enormous complexity. Therefore, in any

system employing lattice codes a lattice decoding algorithm is desired to avoid the exhaustive

enumeration of all points of the lattice constellation. Moreover, due to extensive applications

of arbitrary lattice codes in different systems, a universal lattice decoding algorithm is desired

that can be used in any such system employing lattice codes.

In this thesis, the applications of implementing lattice codes in different communication

systems are investigated. The thesis is divided to two major parts. The focus of the first part is

on constellation shaping and the problem of lattice labeling and the second part is devoted to

the lattice decoding problem.

Constellation shaping is one of the main reasons that lattice codes are used in different
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applications. The aim in constellation shaping is to replace the conventional constellations by

lattice codes that satisfy some geometrical properties, e.g. reducing the peak to average power

ratio or reducing average energy. In the first part of this thesis, the application of lattice codes

for constellation shaping in two different scenarios are considered, while having a simple lattice

labeling algorithm.

• In Orthogonal Frequency Division Multiplexing (OFDM) systems, a lattice code with

low Peak to Average Power Ratio (PAPR) is desired. Here, a lattice code based on

Hadamard matrix is designed which results in a low PAPR. Moreover, the lattice labeling

algorithm for this lattice constellation (lattice code) is a simple algorithm based on using

Smith Normal Form (SNF) of an integer matrix.

• In multiple antenna broadcast systems, a lattice code resulting in low average transmit

energy is required. However, design of such a constellation shaping is not an easy task

since the corresponding lattice labeling algorithm should be such that different users can

decode their data independent of each other. Here, a Selective Mapping (SLM) technique

is introduced to provide a lattice code resulting in a low average transmit energy, while

users can decode their data independent of each other.

Lattice decoding problem is the focus of the second part of the thesis. In mathematics,

lattice decoding algorithm is known as a universal decoding algorithm for any arbitrary lattice

code. This problem is equivalent to finding the closest point of the lattice code to any point in

RN . In digital communication applications, this problem is known as the integer least-square

problem, which can be seen in many areas, e.g. the detection of symbols transmitted over

the multiple antenna wireless channel [134], the multiuser detection problem in Code Division

Multiple Access (CDMA) systems [41], and the simultaneous detection of multiple users in

a DSL system affected by crosstalk [50]. In this part of thesis, a lattice decoding algorithm

based on Semi-Definite Programming (SDP) is proposed. Several relaxation models based

on vector lifting and matrix lifting SDP are introduced. It should be mentioned that although

the lattice decoding algorithms and analysis are general in nature, and applicable in a wide

variety of scenarios in communication systems, in this thesis, the problem of lattice decoding

is presented in the context of detection in multiple antenna systems.

1.1 Contributions and Outline

The aim of this thesis is to investigate the applications of lattice codes in different communica-

tion systems and their corresponding problems. The thesis is divided into two parts. The first

part (Part I including Chapters 2 and 3) is focused on constellation shaping and lattice labeling
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algorithms. The second part (Part II including Chapters 4, 5, and 6) is devoted to the lattice

decoding problem in communication systems.

The focus of Part I and Part II are different in nature. In Part I, the main focus is finding a

proper lattice code whose labeling algorithm is simple and it satisfies some geometric property.

In an OFDM system a lattice code resulting in a low PAPR is desired. Multiple antenna broad-

cast systems require a lattice code resulting in a low average transmit energy, while keeping an

independent decoding for users. In Part II, dealing with lattice decoding problem, the focus is

finding a decoding algorithm with low complexity based on SDP.

1.1.1 Part I - Lattice Labeling and Constellation Shaping

The focus of the first part is on constellation shaping and the corresponding problem of lattice

labeling. Constellation shaping is a method to replace the conventional constellations by lattice

codes that satisfy some geometrical properties. In this part, the application of lattice codes for

constellation shaping in OFDM systems and MIMO broadcast systems are considered.

In Chapter 2, a constellation shaping method with a considerable PAPR reduction is pro-

posed for an OFDM system. The boundary of this cubic constellation, called the Hadamard

constellation, is along the bases defined by the Hadamard matrix in the transform domain.

In addition, this constellation can be employed in conjunction with another PAPR reduction

method. Here, an SLM method is applied in conjunction with the proposed Hadamard constel-

lation to further reduce the PAPR. The encoding method for this shaping technique is derived

from the Smith Normal Form (SNF) decomposition, and has a minimal complexity. This new

technique offers a PAPR that is significantly lower than that of the best known techniques re-

ported in the literature without any loss in terms of the energy and/or spectral efficiency and

without any side information being transmitted. The material in this chapter have been previ-

ously published in the works listed below.

• [96] Amin Mobasher and Amir K. Khandani, “PAPR Reduction in OFDM Systems

Using Constellation Shaping", In Proc. 22nd Biennial Symposium on Comm., Kingston,

ON, Canada, May 31 - June 3, 2004

• [97] Amin Mobasher and Amir K. Khandani, “PAPR Reduction Using Integer Structures

in OFDM Systems", In Proc. IEEE Vehicular Technology Conference, VTC, LA, CA,

USA, Sept. 26 - Sept. 29, 2004

• [98] Amin Mobasher and Amir K. Khandani, “Integer-Based Constellation Shaping

Method for PAPR Reduction in OFDM Systems," IEEE Trans. on Comm., Vol. 54,

Issue 1, pp 119-127, Jan. 2006
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Chapter 3 is devoted to finding a lattice code with a low average transmit energy in multiple

antenna broadcast systems with channel inversion techniques. By using channel inversion, the

decoding at the receiver side is independent of channel matrix. However, because the channel

is not orthogonal, the energy of the transmit signal can be very high. Therefore, a lattice code

with low average transmit energy is desired in this application. Here, a Selective Mapping

(SLM) technique is introduced to provide a lattice code with a low average energy for the

transmitted signal in a broadcast system. Using the strong literature on quantization [54, and

ref. therein], the gain that the SLM technique can provide is derived. In order to implement the

SLM method effectively, using lattice decomposition techniques is proposed. The material in

this chapter have been recently submitted for publication.

• [101] Amin Mobasher and Amir. K. Khandani, “Precoding in Multiple-Antenna Broad-

cast Systems with a Probabilistic Viewpoint", In Proc. the 10th Canadian Workshop on

Information Theory, CWIT’07, Edmonton, Alberta, Canada, June 6 - June 8, 2007

• [102] Amin Mobasher, and Amir. K. Khandani, “Probabilistic Behavior of Average

Transmit Energy in Broadcast Systems with Precoding", To be shortly Submitted to IEEE

Trans. on Info. Theory, 2007

1.1.2 Part II - Lattice Decoding

Lattice decoding is the focus of the second part of the thesis, which concerns the operation

of finding the closest point of the lattice code to any point in N-dimensional real space. In

Chapter 4, this problem is expressed with the terminology and assumptions of detection in

multiple antenna systems.

Chapter 5 develops an efficient approximate Maximum Likelihood (ML) decoder for Mul-

tiple Input Multiple Output (MIMO) systems based on Vector Lifting Semi-Definite Program-

ming (VLSDP). In the proposed method, the transmitted vector is expanded as a linear com-

bination (with zero-one coefficients) of all the possible constellation points in each dimension.

Using this formulation, the distance minimization in Euclidean space is expressed in terms of a

binary quadratic minimization problem. The minimization of this problem is over the set of all

binary rank-one matrices with row sums equal to one. In order to solve this minimization prob-

lem, two relaxation models (Model III and IV) are presented, providing a trade-off between the

computational complexity and the performance (both models can be solved with polynomial-

time complexity). The decoding algorithms built on these models have a near-ML performance

with polynomial computational complexity. The material in this chapter have been previously

published in the works listed below.
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• [93] Amin Mobasher, Mahmoud Taherzadeh, Renata Sotirov, and Amir K. Khandani,

“An Efficient Quasi-Maximum Likelihood Decoding for Finite Constellations", In Proc.

the 39th Conference on Information Sciences and Systems, CISS’05, Baltimore, MD,

USA, Mar. 16 - Mar. 18, 2005

• [92] Amin Mobasher, Mahmoud Taherzadeh, Renata Sotirov, and Amir K. Khandani,

“A Randomization Method for Quasi-Maximum Likelihood Decoding", In Proc. the 9th

Canadian Workshop on Information Theory, CWIT’05, Montréal, Québec, Canada, June

5 - June 8, 2005

• [91] Amin Mobasher, Mahmoud Taherzadeh, Renata Sotirov, and Amir K. Khandani,

“A Near Maximum Likelihood Decoding Algorithm for MIMO Systems Based on Graph

Partitioning", In Proc IEEE International Symposium on Information Theory, ISIT’05,

Adelaide, Australia, Sept. 4 - Sept. 9, 2005

• [94] Amin Mobasher, Mahmoud Taherzadeh, Renata Sotirov, and Amir K. Khandani,

“A Near Maximum Likelihood Decoding Algorithm for MIMO Systems Based on Semi-

Definite Programming," to appear, IEEE Trans. on Info. Theory, Vol. 53, No. 11, Nov.

2007

In Chapter 6, an algorithm based on Matrix Lifting Semi-Definite Programming (MLSDP)

[40, 11] is introduced for any constellation (QAM or PSK) and any labeling method. This

algorithm is inspired by the method proposed in Chapter 5 with an efficient implementation

resulting in a better performance and lower computational complexity. In SDP optimization

problems, the computational complexity is a polynomial function of the number of variables.

Using the proposed method, the number of variables in Chapter 5 is decreased from (NK +

1)2 to (2N + K)2, where N is the number of antennas and K is the number of constellation

points in each real dimension. Since the computational complexity of solving MLSDP is a

polynomial function of the number of variables, a significant complexity reduction is achieved.

The material in this chapter has been recently published in the following papers.

• [99] Amin Mobasher and Amir. K. Khandani, “Matrix-Lifting Semi-Definite Program-

ming for Decoding in Multiple Antenna Systems", In Proc. the 10th Canadian Workshop

on Information Theory, CWIT’07, Edmonton, Alberta, Canada, June 6 - June 8, 2007

• [100] Amin Mobasher, and Amir. K. Khandani, “Matrix-Lifting Semi-Definite Pro-

gramming for Decoding in Multiple Antenna Systems", Submitted to IEEE Trans. on

Info. Theory, Aug. 2007
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1.1.3 Some Other Contributions by the Author During his PhD Studies

In this section, some contributions relating to the field of digital communications which does

not fall within the scope of the thesis are briefly presented.

Lattice Basis Reduction in Communication in Multiple Antennas Systems

In the recent years, communications over multiple-antenna fading channels has attracted

the attention of many researchers. Multiple-antenna systems are the only solution to realize

the capacity increase required in the next generation of wireless networks. It has been shown

that multi-user systems can exploit most of the advantages of multiple-antenna systems. This

section considers a multiple-antenna broadcast system. In a broadcast system, different users

should be able to decode the transmitted data independently. Channel inversion at the transmit-

ter is a technique that can simply separate the data for different users. However, this method

may result in a very high transmitting power. In [115], the authors have introduced a vector

perturbation technique which has a good performance in terms of symbol error rate. In this

paper, a new viewpoint for the MIMO broadcast channel based on the lattice-basis reduction

ie presented. Instead of approximating the closest lattice point in the perturbation problem,

the lattice-basis reduction is applied to reduce the average transmitted energy by reducing the

second moment of the fundamental region generated by the lattice basis. The theoretical as-

pects of this method have also been proven in the following papers. Moreover, the introduced

theoretical methods have been applied to the lattice basis reduction technique used in decoding

of multiple-antenna systems.

• [132] Mahmoud Taherzadeh, Amin Mobasher, and Amir K. Khandani, “Lattice-Basis

Reduction Achieves the Precoding Diversity in MIMO Broadcast Systems", In Proc. the

39th Conference on Information Sciences and Systems, CISS’05, Baltimore, MD, USA,

Mar. 16 - Mar. 18, 2005

• [133] Mahmoud Taherzadeh, Amin Mobasher, and Amir K. Khandani, “LLL Lattice-

Basis Reduction Achieves Maximum Diversity In MIMO Systems", In Proc. IEEE In-

ternational Symposium on Information Theory ISIT’05, Adelaide, Australia, Sept 4. -

Sept. 9, 2005

• [131] Mahmoud Taherzadeh, Amin Mobasher, and Amir K. Khandani, “Communication

Over MIMO Broadcast Channels Using Lattice-Basis Reduction," In Proc. the 42nd An-

nual Allerton Conference on Communication, Control, and Computing, Allerton, Mon-

ticello, IL, USA, Sept. 29 - Oct. 1, 2004
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• [129] Mahmoud Taherzadeh, Amin Mobasher, and Amir K. Khandani, “Communication

over MIMO Broadcast Channels Using Lattice-Basis Reduction," to appear, IEEE Trans.

on Info. Theory, Vol. 53, No. 12, Dec. 2007

• [130] Mahmoud Taherzadeh, Amin Mobasher and Amir K. Khandani, “LLL Reduction

Achieves the Receive Diversity in MIMO Decoding," to appear, IEEE Trans. on Info.

Theory, Vol. 53, No. 12, Dec. 2007

Fairness in Multiuser Systems

In multi-user systems, multiple transmitters and/or receivers share a common communica-

tion medium, and therefore, users should compete for available resources. Different informa-

tion theoretic criteria lead to several alternatives for distributing the limited resources among

users. For example, achieving a high spectral efficiency results in assigning a higher portion

of the resources to the users with stronger channels. However, this criterion ignores fairness

among the users. Usually, there is a trade-off between global performance and the system

fairness. Therefore, providing fairness, while achieving a high performance, is a desired so-

lution. A lot of research has addressed this problem and suggested different criteria to design

a fair system. However, the computational complexity of such algorithms is high. The main

purpose of this paper is to find a point on the sum-capacity facet which satisfies a notion of

fairness among active users. This problem is addressed in two cases: (i) where the complexity

of achieving interior points is not feasible, and (ii) where the complexity of achieving interior

points is feasible. For the first case, the corner point for which the minimum rate of the active

users is maximized (max-min corner point) is desired for signaling. A simple greedy algorithm

is introduced to find the optimum max-min corner point. For the second case, the polymatroid

properties are exploited to locate a rate-vector on the sum-capacity facet which is optimally

fair in the sense that the minimum rate among all users is maximized (max-min rate). In the

case that the rate of some users can not increase further (attain the max-min value), the algo-

rithm recursively maximizes the minimum rate among the rest of the users. This work has been

published in the following papers:

• [87] Mohammad A. Maddah-Ali, Amin Mobasher, and Amir. K. Khandani, “On the

Fairest Corner Point of the MIMO-BC Capacity Region," In Proc. the 43rd Annual

Allerton Conference on Communication, Control, and Computing, Monticello, IL, USA,

Sept. 28 - Sept. 30, 2005

• [88] Mohammad A. Maddah-Ali, Amin Mobasher, and Amir. K. Khandani, “Using

Polymatroids to provide Fairness in Multi-User Systems", In Proc. IEEE International
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Symposium on Information Theory, ISIT’06, Seattle, WA, USA, July 9 - July 14, 2006

• [89] Mohammad Ali Maddah-Ali, Amin Mobasher, and Amir K. Khandani, “Fairness

in Multiuser Systems with Polymatroid Capacity Region", IEEE Trans. on Info. Theory,

Revised, Expected publication, Jul. 2007

1.2 Background on Lattice Theory

Since some basic knowledge of lattices is required for this thesis, this section recalls elementary

definitions and properties of lattices. For more details, the reader is referred to [28].

Defenition 1 A Group G is a set that is closed under an operation ∗, and has an identity

element e ∈ G and an inverse g−1 for each g ∈ G.

The identity element e ∈ G is defined as an element such that e ∗ g = g ∗ e = g∀g ∈ G. The

inverse of each element g is an element g−1 such that g ∗ g−1 = g−1 ∗ g = e. A group G is called

Abelian if the operation ∗ is cummulative, i.e., if g ∗ h = h ∗ g,∀g, h ∈ G. the order of a group

G is the number of its elements, |G|.

Defenition 2 A subgroup G1 of G is a subset of G that is a group under the operation of G.

A coset of a subgroup G1 is defined as a subset g ∗G1 = {g ∗ g1 : g1 ∈ G1} of G, where g ∈ G.

Two cosets of G1 are either equal or disjoint. Every element of G belongs to one of these

cosets. Hence, the set G/G1 of the cosets of G1 in G is a partition of G. All the cosets of G1

have the same size of |G1|. Thus, the number of elements of G/G1, called the index of G1 in G,

is equal to |G|/|G1|. It can be seen that G/G1 forms a group under the operation • defined by

(g ∗G1) • (g′ ∗G1) = (g ∗ g′) ∗G1. This group is called the quotient group (of G modulo G1).

Defenition 3 Let G and G′ be groups under the operations ∗ and ◦, respectively. A group

homomorphism Ψ : G −→ G′ is a mapping such that Ψ(g ∗ h) = Ψ(g) ◦ Ψ(h),∀g, h ∈ G. G

and G′ are called isomorphic if there exists a group homomorphism Ψ : G −→ G′ that is both

one-to-one and onto.

In the M-dimensional (M-D) real vector space RM the Euclidean distance is defined as ‖x‖ =<
x, x >

1
2 . A set of vectors V is called discrete if there exists a positive number ρ such that any

two vectors of V have distance greater than or equal to ρ.

Defenition 4 A real lattice Λ is a discrete set of M-D vectors in the real Euclidean space RM

that forms a group under ordinary vector addition. The set of M-D integer vectors, ZM, is

called integer lattice.
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Every lattice Λ is generated as an Abelian group by the integer linear combinations of a set of

linearly independent vectors b1, · · · ,bN ∈ Λ, where the integer N(≤ M) is called the dimension

of the lattice Λ.On the other hand,

Λ = {y =
N∑

i=1

xibi, xi ∈ Z}.

The set of vectors b1, · · · ,bN is called a basis of Λ, and the M × N matrix B = [b1, · · · ,bN]

which has the basis vectors as its columns is called the basis matrix (or generator matrix) of

Λ. Any point y in the lattice can be represented by y = Bx, where x ∈ ZN . The matrix

G = BT B is called the Gram matrix for the lattice Λ. The determinant of the lattice is defined

as det(Λ) = det(G).

Defenition 5 A coset of a lattice Λ, denoted by Λ+ c, is the set of all N-dimensional vectors of

the form λ + c, where λ is any point in Λ and c is some constant vector, known as coset leader,

that specifies the coset.

Geometrically, the coset Λ + c is a translate of Λ by c. Two N-tuples are equivalent modulo Λ

if their difference is a point in Λ. Thus, the coset Λ + c is the set of all points equivalent to c

modulo Λ.

Defenition 6 A subset of the elements of Λ, e.g. Λs, that is itself a lattice is called sublattice.

This sublattice induces a partition of Λ into equivalent classes modulo Λs. The order of this

partition is shown by |Λ/Λs|.

Defenition 7 Fundamental region of a lattice is a building block which when repeated many

times fills the whole space with just one lattice point in each copy.

The fundamental parallelotope is an example of a fundamental region for the lattice Λ. It is

defined as the parallelotope consisting of the points xib1 + · · · + xNbN , for 0 ≤ xi < 1.

Voronoi region is another example of a fundamental region. Around each lattice point

yi ∈ Λ is its Voronoi region V(yi) consisting of all points of the underlying space which are

closer to that point than to any other point of lattice Λ. More precisely,

V(yi) =
{
x ∈ RN : ‖x − yi‖ ≤ ‖x − y j‖ for all j � i

}
(1)

Any translate Λ + c of Λ is the union of |Λ/Λs| cosets of Λs. A Voronoi Constellation is the

set of these coset leaders, which fall within the Voronoi region around the origin of Λs. More

generally, a Lattice constellation (lattice code) is a finite set of points from an N dimensional

lattice Λ that lies within a finite region R ⊂ RM. This constellation is known as a lattice code
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Defenition 8 The basis for representing a lattice is not unique. The procedure of finding a

basis for a lattice, which is composed of relatively short and nearly orthogonal vectors, is

called Lattice Basis Reduction.

Several distinct notions of reduction have been studied, including those associated to the names

Minkowski, Korkin-Zolotarev (KZ), and more recently LLL reduced basis, which can be com-

puted in polynomial time.

A basis {b1, · · · ,bN} is Minkowski-Reduced Basis [61] if

• b1 is the shortest nonzero vector in the lattice Λ, and

• For each k = 2, ...,N, bk is the shortest nonzero vector in Λ such that {b1, · · · ,bk} may

be extended to a basis of Λ.

Finding Minkowski reduced basis is equivalent to finding the shortest vector in the lattice and

this problem by itself is NP-hard. Thus, there is no polynomial time algorithm known for this

reduction method.

A basis {b1, · · · ,bN} is KZ Reduced basis [71] if for its equivalent lower triangular form in

equation (2)

B̂ =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

b̂1

b̂2
...

b̂N

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
=

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

b̂11 0 · · · 0

b̂21 b̂22 · · · 0
...

...
. . .

...

b̂N1 b̂N2 · · · b̂NN

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
, (2)

either N = 1 or

• b̂1 is the shortest nonzero vector in lattice generated by B̂, and

• |b̂i1| ≤ |b̂11|/2 for i = 2, · · · ,N, and

• the submatrix

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
b̂22 · · · 0
...
. . .

...

b̂N2 · · · b̂NN

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦ (3)

is KZ reduced.

It can be shown that for each lattice there is at least one KZ basis [119]. There is no polyno-

mial time algorithm known for KZ reduction; however, the fastest known algorithm for this

reduction is due to Schnorr [119]. This algorithm is an improved version of Kannan’s shortest

lattice vector algorithm [68].
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A basis {b1, · · · ,bN} is LLL Reduced Basis [80] if for its equivalent lower triangular form

in equation (2) either N = 1 or

• ‖b̂1‖ ≤ (2/
√

3)‖b̂2‖, and

• |b̂i1| ≤ |b̂11|/2 for i = 2, · · · ,N, and

• the submatrix in equation (3) is LLL reduced.

LLL reduced basis has extended applications in several contexts due to the polynomial time

algorithm for computing this basis.
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Lattice Labeling and Constellation

Shaping



CHAPTER 2

PAPR REDUCTION IN OFDM SYSTEMS

Abstract – The problem of reducing the Peak to Average Power Ratio (PAPR) in an Orthogonal

Frequency Division Multiplexing (OFDM) system is considered. A cubic constellation, called

the Hadamard constellation, is designed whose boundary is along the bases defined by the

Hadamard matrix in the transform domain. Then, the PAPR is further reduced by applying

the Selective Mapping technique. The encoding method, following the method introduced

in [75], is derived from a decomposition known as the Smith Normal Form (SNF). This new

technique offers a PAPR that is significantly lower than that of the best known techniques

without any loss in terms of energy and/or spectral efficiency and without any side information

being transmitted. Moreover, it has a low computational complexity.

2.1 Introduction

Orthogonal Frequency Division Multiplexing (OFDM) is a multi-carrier transmission tech-

nique which is widely adopted in different communication applications. OFDM prevents inter

symbol interference by inserting a guard interval and mitigates the frequency selectivity of a

multi-path channel by using a simple equalizer. This simplifies the design of the receiver and

leads to inexpensive hardware implementations. Also, OFDM offers some advantages in higher

order modulations and in the networking operations. These advantages position OFDM as the

technique of choice for the next generation of wireless networks. However, OFDM systems

suffer from a large Peak to Average Power Ratio (PAPR) of the transmitted signals, requiring

power amplifiers with a large linear range.

Figure 2 shows a basic block diagram of an OFDM transmitter and its receiver. Let x =

[x0, x1, · · · , xN−1]T denote a vector of 2N Dimensional (2N-D) constellation points. This vector

14
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is selected from a set of N identical 2-D sub-constellations, {s1, · · · , sK}, and it is transmitted

by using one OFDM vector of size N; namely, y.

Data In

Data Out

Baseband
OFDM Signal

Baseband
OFDM Signal

Modulation

Demodulation

IFFT
(FN)

A/D
FFT

(FN)-1

D/A

Transmitter

Receiver

x y

x y

Figure 2: Basic OFDM transmitter and receiver

The discrete time samples of the OFDM signal can be expressed as

yn =
1√
N

N−1∑
k=0

xke
j2π nk

N . (4)

The matrix representation of this signal is

y = FNx, (5)

where y =
[
y0 · · · yN−1

]T , x = [x0 · · · xN−1]T , and FN is the IFFT matrix,

FN =
1√
N

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 · · · 1 · · · 1
...
. . .

...
. . .

...

1 · · · e j2π nk
N · · · e j2π n(N−1)

N

...
. . .

...
. . .

...

1 · · · e j2π k(N−1)
N · · · e j2π (N−1)2

N

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
. (6)

The 2-D constellation points, {x0, x1, · · · , xN−1}, may add constructively and produce a time

domain signal with a large amplitude. Thus, the output signal y may have high output levels,

which leads to the requirement of an expensive analog front end.

Usually, the level of the amplitude fluctuation of the discrete time OFDM signal is measured

in terms of the ratio of the peak power to the average envelope power of the signal as

PAPR(y) =
‖y‖2∞

Ey

[
1
N ‖y‖2

] . (7)

The continuous time PAPR is typically estimated by the discrete time PAPR by employing

the IFFT of length LN for the zero padded sequence of length LN derived from the sequence
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{x0, x1, · · · , xN−1} in (4) [136, 153, 109]. Therefore,

yn =

√
L√

LN

LN−1∑
k=0

x′ke
j2π nk

LN , (8)

where

x′k =

⎧⎪⎪⎨⎪⎪⎩ xk, for k < N,

0, for k ≥ N,
(9)

and L is the oversampling factor.

In the sequel, the concentration is on matrices and equations with real entries and complex

equations like (5) are represented by real matrices as⎡⎢⎢⎢⎢⎢⎣ R(y)

I(y)

⎤⎥⎥⎥⎥⎥⎦=
⎡⎢⎢⎢⎢⎢⎣ R(FN) −I(FN)

I(FN) R(FN)

⎤⎥⎥⎥⎥⎥⎦
⎡⎢⎢⎢⎢⎢⎣ R(x)

I(x)

⎤⎥⎥⎥⎥⎥⎦ , (10)

In [75], this model is used for representing the OFDM signal by real matrices.

A large number of methods for the PAPR reduction has been proposed [36, 113, 116, 81,

120,108,109,104,17,149,21,26,72,62,107,75,76,77]. In [36,113], coding techniques are used

for PAPR reduction; however, codes offering a low PAPR can be constructed only at the cost of

sacrificing the data rate. Clipping the OFDM signal before amplification is a simple and typical

method for the PAPR reduction [116, 81, 120]. The effects of over-sampling and clipping for

an OFDM signal are analyzed in [116, 120, 109]. The authors in [26] propose a new lattice-

based multicarrier modulation technique for Digital Subscriber Line (DSL) applications with

a low PAPR; however, this technique is not based on a sinusoidal modulation that is usually

employed for OFDM systems.

Another types of PAPR reduction methods are the probabilistic schemes. These schemes

are classified in two known groups. One is the Partial Transmit Sequence (PTS) [104] in which

each sub-block of subcarriers is multiplied by a constant phase factor, and these phase factors

are optimized to minimize the PAPR. The other scheme is Selective Mapping (SLM) in which

multiple sequences are generated from the same information, and the sequence with the lowest

PAPR is transmitted [17, 149, 21]. Typically, the receiver needs to know which sequence is

selected in order to recover the data. However, the methods introduced in [104, 17, 149, 21]

eliminate the need for this explicit side information.

Constellation shaping is another important technique in PAPR reduction. In the method

proposed in [72], the outer constellation points are extended to minimize the PAPR of the

OFDM symbol. The idea of applying the trellis shaping technique to reduce PAPR in OFDM

systems is introduced in [62]. This line of research is further investigated in [107] by exploiting

the property that the autocorrelation of the data sequence in the frequency domain and the
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power spectrum in the time domain form a Fourier transform pair. Therefore, minimizing the

sidelobe of the autocorrelation of the data sequence is equivalent to reducing the PAPR of

the OFDM signal. A comparison with [107] will be provided later. In [75, 76, 77], another

constellation shaping technique is proposed to reduce the PAPR of the OFDM signals. The

encoding and decoding algorithms of this method are based on the relations and generators in a

free Abelian group. Due to the large complexity of this algorithm, its practical implementation,

in the case of Fourier transformation in OFDM systems, is very challenging.

In this chapter, a constellation shaping method in an OFDM system with a considerable

PAPR reduction is proposed. The boundary of this cubic constellation, called the Hadamard

constellation, is along the bases defined by the Hadamard matrix in the transform domain.

In addition, this constellation can be employed in conjunction with another PAPR reduction

method. Here, an SLM method is applied in conjunction with the proposed Hadamard constel-

lation to further reduce the PAPR. The encoding method for this shaping technique, following

the method introduced in [75], is derived from the Smith Normal Form (SNF) decomposition,

and has a minimal complexity. This new technique offers a PAPR that is significantly lower

than that of the best known techniques reported in the literature without any loss in terms of

the energy and/or spectral efficiency and without any side information being transmitted.

2.2 Constellation Shaping

In the constellation shaping technique, a constellation in the frequency domain must be found

such that the resulting shaping region in the time domain has a low PAPR. A new constellation

shaping method is introduced in [75, 76, 77] by Kwok and Jones. Based on the encoding algo-

rithm introduced in [75, 76, 77], a cubic constellation, along with an SLM method is proposed

to reduce the PAPR in an OFDM system.

In a PAPR reduction problem, the peak value of the signal vector is bounded by a specified

value ‖y‖∞ ≤ β (without loss of generality, assume β = 1). If the time domain signal is related

to the frequency domain constellation point by y = Ax, this inequality on the time domain

boundary translates to a parallelotope1 in the frequency domain, defined by A−1. Indeed, the

constellation boundary is a parallelotope, defined by QN =
[
αA−1

]
. The parameter α is the

smallest value that guarantees the number of points in the shaped constellation is the same as

the number of points in unshaped constellation. The rounding operation is required to impose

the constraint that the parallelotope corners lie in an integer lattice. The main challenge in con-

stellation shaping is to find a unique way to map the input data to the constellation points such

that the mapping (encoding) and its inverse (decoding) can be implemented by a reasonable

1The parallelotope bases are defined along the columns of A−1.
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complexity. Kwok in [75] proved that the shaped constellation for an OFDM system is the

points inside the quotient group ZN/Λ(QN), where Λ(QN) is the lattice defined by QN , which

is based on rounding off the scaled version of the inverse of the IFFT matrix. The points inside

this parallelotope (lattice code) are used as the constellation points in transmitting the OFDM

signals. Using the relations and generators in a free Abelian group, the points inside this con-

stellation are encoded (labeled) in [75]. The following theorem provides the mathematical tool

for the encoding procedure of these points:

Theorem 1 ( [75]) Any relation matrix QN can be decomposed into QN = UDV, where D is

diagonal with the entries {σi}Ni=1 such that σ1 | σ2 | · · · | σN, and U and V are unimodular

matrices2.

The decomposition of the relation matrix QN is performed via column and row operations [75],

which is impractical for an OFDM system.

It can be observed that this decomposition is known as the Smith Normal Form (SNF) de-

composition of an integer matrix [24] in the mathematical literature, and the matrix D is called

the SNF of the matrix QN . The SNF decomposition is a diagonalization of a matrix in the

integer domain. Introduced by Smith [122], this concept has been used in many applications

such as solving linear diophantine equations, finding the permutation equivalence and simi-

larity of matrices, determining the canonical decomposition of the finitely generated Abelian

groups, integer programming, computing additional normal forms, including Frobenius and

Jordan normal forms, and separable computing of the discrete Fourier transform. For more

historical remarks and applications of the SNF, see [105, 126, 16].

The major contributions to the computational complexity in [75] are the decomposition of

the matrix QN , the off-line procedure, and the encoding algorithm for this constellation, the

online procedure. The interpretation of the column and row operations as SNF of an inte-

ger matrix links the problem to a rich body of knowledge developed in the context of SNF

decomposition. Unfortunately, computing the SNF decomposition for an OFDM system is

impractical due to the rapid growth in the size of the intermediate integer values. Moreover,

in [75], it is shown that the complexity of the encoding procedure is O(N2), i.e. for a realistic

OFDM system the complexity of the online procedure remains very high.

If the SNF decomposition of the matrix QN is given, the encoding algorithm for the shaped

2The condition σ1 | σ2 | · · · | σN in Theorem 1 is defined for finding a unique decomposition and can be
ignored in the encoding procedure.
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constellation can be represented by [75]

x̂ = Uλ

γ =
⌊
Q−1

N x̂
⌋

x = x̂ −QNγ,

(11)

where N = 2n, λ is the canonical representation of an integer I which represents the data to be

sent, and x is the constellation point corresponding to I. The time domain signal is computed

using the IFFT operation. The canonical representation of an integer I can be calculated by the

recursive modulo operation; namely,

λ1 = I modσ1

I1 =
I − λ1

σ1

λi = Ii−1 modσi

Ii =
Ii−1 − λi

σi
,

(12)

where 1 ≤ i ≤ N.

Also, the reverse operation for finding I from the N-D vector x is [75]

λ = U−1x = (λ1, λ2, · · · , λN)T ,

λ̃i = λi modσi ,

I = λ̃1 + σ1(λ̃2 + σ2(· · · (λ̃N−1 + σN−1λ̃N) · · · )).
(13)

In [76], it is shown that if the matrix QN is replaced by the Hadamard matrix, H2n , the cor-

responding encoding and decoding algorithms for the constellation can be implemented by a

butterfly structure that uses only bit shifting and logical AND. This simplicity is due to the

following recursive formula for the Hadamard matrix:

H2n =

⎡⎢⎢⎢⎢⎢⎣ H2n−1 H2n−1

H2n−1 −H2n−1

⎤⎥⎥⎥⎥⎥⎦ , where H1 = [1] . (14)

The SNF decomposition of (14) can be easily computed as H2n = U2nD2nV2n , where

U2n =

⎡⎢⎢⎢⎢⎢⎣U2n−1 0

U2n−1 U2n−1

⎤⎥⎥⎥⎥⎥⎦D2n =

⎡⎢⎢⎢⎢⎢⎣D2n−1 0

0 2D2n−1

⎤⎥⎥⎥⎥⎥⎦
(15)

V2n =

⎡⎢⎢⎢⎢⎢⎣V2n−1 V2n−1

0 −V2n−1

⎤⎥⎥⎥⎥⎥⎦U−1
2n =

⎡⎢⎢⎢⎢⎢⎣ U2n−1 0

−U2n−1 U2n−1

⎤⎥⎥⎥⎥⎥⎦,
and U1 = U−1

1 = D1 = V1 = [1].
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2.3 Hadamard Constellation in OFDM Systems

As mentioned in Section 2.2, in OFDM systems, the boundary of the constellation that leads

to a low PAPR is along the bases of the IFFT matrix. However, the corresponding SNF de-

composition required in the encoding procedure cannot be computed. If the IFFT operation is

replaced by the Hadamard operation, a simple encoding algorithm results. However, this type

of multicarrier modulation is not very popular because it does not offer the advantages of the

conventional OFDM [23].

In this part, the conventional constellation in OFDM systems is replaced by a cubic con-

stellation, called the Hadamard constellation, whose boundary is along the bases defined by the

Hadamard matrix in the transform domain. Figure 3 shows the boundaries of these two constel-

lations. The solid line represents the boundary of the constellation which is based on the IFFT

matrix. The dashed line shows the boundary of the Hadamard constellation. The IFFT and

the Hadamard are both orthogonal matrices, and; therefore, the constellation boundaries along

these orthogonal bases are a rotated version of each other. As a result, it is expected that a large

number of points within these boundaries will be the same, as shown in Figure 3. Therefore, by

substituting the constellation along the IFFT matrix with a constellation along the Hadamard

matrix, the resulting PAPR is reduced. Moreover, the encoding of this new constellation, based

on the SNF decomposition of the Hadamard matrix, is simple and practical.

Note that in this work, the time domain signal, y, is obtained by the IFFT transformation

of the constellation point, x. This results in a traditional OFDM signal based on IFFT/FFT

operation. In other words, only the constellation boundary is determined using the Hadamard

matrix, i.e. QN = H2n in (11).

To further reduce the PAPR, the Hadamard constellation can be concatenated with other

methods for PAPR reduction. This motivates us to apply a Selective Mapping (SLM) tech-

nique [9, 42] to the Hadamard constellation. In typical SLM methods [9, 42], the major PAPR

reduction is achieved by the first few redundant bits. Employing more redundant bits necessi-

tates a high level of complexity to obtain modest improvements in the PAPR. However, in the

proposed SLM method, employing the Hadamard constellation causes a considerable PAPR

reduction by itself. As a result, by using just one or two redundant bits in SLM, this method

significantly outperforms the other PAPR reduction techniques reported in the literature. Note

that, it is also possible to apply a PTS method [17] to the Hadamard constellation.

2.3.1 Complex Representation

As stated in Section 2.1, (10) can be applied to change the complex equations of an OFDM

system to real equations. This leads to the change of the constellation boundary. Generally,
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Integer Lattice Points
Constellation Boundary Based on FFT Matrix
Constellation Boundary Based on Hadamard Matrix

Figure 3: N-D signal constellation for IFFT and Hadamard matrix.

two classes of boundaries [106,73] can be distinguished: 1) the Cartesian boundary that results

by viewing the real and imaginary parts of the signal as two separate real signals, and 2) the

Polar boundary that considers the envelope and phase of the OFDM signal in a complex plane.

The Cartesian boundary limits each component of the complex signal within a square, while the

Polar boundary limits this component within a circle. In this part, the complex representation of

the OFDM signal is avoided by treating the real and the imaginary parts of the signal separately,

which is equivalent to using a Cartesian boundary.

2.3.2 Encoding Procedure

The points inside the Hadamard constellation are mapped to the input data by the encoding

procedure, introduced in (11)–(13). The number of these points inside the shaped constellation

is determined by the determinant of the Hadamard matrix, det (H2n) [47].

Theorem 2 The size of the shaped constellation defined by a 2n × 2n Hadamard matrix is

det (H2n) = 2n2n−1
.

Proof: see Appendix A.

According to the large Hadamard constellation size, in (12), the canonical representation of

the large numbers should be computed. The canonical representation of the integer numbers
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can be simplified based on the fact that digital communication systems deal with binary input

streams. Based on (13), an integer I can be represented by

I = λ1 + σ1λ2 + σ1σ2λ3 + · · · + σ1 . . . σN−1λN , (16)

where N = 2n, and {λi}Ni=1 is the canonical representation of I, given in (12), with λ1 = 0.

According to (15), for a 2n × 2n Hadamard matrix, all {σi}Ni=1 are powers of 2, i.e.,

{σi}Ni=1 = {1, 2, 2, 4, 2, 4, 4, 8, · · · , 2n} . (17)

Let ki = log2 σi; therefore,

I = 2k1λ2 + 2k1+k2λ3 + 2k1+k2+k3λ4

+ · · · + 2k1+···+kN−1λN

= λ2 + 2λ3 + 22λ4 + 24λ5 + · · · + 2n2n−1−nλN .

(18)

The representation of d = 2n2n−1
integer numbers corresponding to the Hadamard constellation

points necessitate that nb = log2(d) = n2n−1 bits represent these numbers. Thus, the binary

representation of I is expressed as

I = b0 + 2b1 + 22b2 + 23b3 + · · · + 2nb−1bnb−1

= b0 + 2b1 + 22(b2 + 2b3) + 24b4 + 25(b5 + 2b6)

+ · · · + 2n2n−1−n(bnb−n + · · · + 2n−1bnb−1)

(19)

A comparison of (18) and (19) is depicted in Figure 4. Each λi consists of ki = log2 σi bits of

the input binary data. This representation will simplify the encoding algorithm. Moreover, the

problem of using large numbers in the encoding procedure will be avoided.

b0 b1 b2 b3 b4 b5 b6 b7 b8 · · · bnb−n · · · bnb−1︸︷︷︸︸︷︷︸︸����︷︷����︸︸︷︷︸︸����︷︷����︸︸����︷︷����︸ ︸������������������������������︷︷������������������������������︸
λ2 λ3 λ4 λ5 λ6 λ7 · · · λN

Figure 4: Mapping between binary representation of the information and {λi}.

Theorem 2 shows that the size of the Hadamard constellation for a 2n × 2n Hadamard ma-

trix is 2n2n−1
. Therefore, the transmission rate is related to N = 2n, the number of subcarriers,

in the OFDM system3. This rate is unacceptable not only because it depends on N, but also

because it is usually higher than the required value. Therefore, a subset of the points inside the

shaped constellation are selected for transmission such that they form a constellation with the

desired rate. Also, the selected points should be uniformly distributed in the original Hadamard

3 For N = 2n, the rate for each real component is log2(2n2n−1
)/N =

n
2

.
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constellation in order to maintain the same peak as well as average energy values (assuming

continuous approximation). Note that the Hadamard constellation is called the root constella-

tion for the aforementioned set of the uniformly distributed points in the sequel.

Noting (11) and (12), there is an isomorphism between the integer set

S =
{
0, 1, · · · , 2n2n−1 − 1

}
(20)

and the set of the points within the Hadamard constellation. Equivalently, the set S can be con-

sidered as a label group for the constellation points (refer to [48] for the definition). A subgroup

of the constellation points results in a uniformly distributed subset of the Hadamard constella-

tion points. Consequently, this subgroup of constellation points is isomorphic to a subgroup in

the label group S. This subgroup can be selected such that its elements are congruent to zero

modulo c, namely

P = {I ∈ S | I = 0 mod c} , (21)

where c is determined by the ratio of the size of the Hadamard constellation, 2n2n−1
, and the size

of the constellation, 2rN , with the desired rate, r. Employing (11) and (12), the labels in the

subgroup P determine the set of uniformly distributed points in the Hadamard constellation.

By relying on the continuous approximation, such a uniform distribution affects neither the

probabilistic behavior of the PAPR nor the average energy of the constellation points.

The Hadamard constellation has almost the same average energy as the constellation re-

sulted by employing QAM signalling in an OFDM system. It can be easily seen that the

Hadamard constellation points in (11) can be represented by x = HNc, where − 1
2 ≤ c < 1

2 .

Therefore, the Hadamard constellation contains all the integer points inside a hyper-cube whose

boundary is along the columns of the Hadamard matrix. By considering HNH′N = NIN , while

FNF′N = IN , the Hadamard constellation is N times smaller than a cubic constellation whose

sides are the columns of the Hadamard matrix. Then, it is straightforward that the average

energy per each dimension of the Hadamard constellation is

Eave(
n
2

) =
1
12

22n − 1
2n
. (22)

Note that (22) shows the average energy per dimension for the root constellation, i.e. the trans-

mission rate is n
2 . This energy is 2n+1

2n times the average energy of the equivalent constellation

in an OFDM system employing QAM signalling with the same transmission rate.

In the case that the transmission rate is r, as mentioned in (21), the constellation points form

a subgroup of the Hadamard constellation points (uniformly distributed subset). Therefore,

the constellation has the same energy as in (22); however, the distance among the points is

increased by a factor of 2n−2r. Therefore,

Eave(r) =
1

2n−2r
Eave(

n
2

). (23)
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Note that the average energy in (23) is 22n−1
22n × 22r

22r−1 times the average energy of the equivalent

constellation in an OFDM system employing QAM signalling with the same transmission rate.

This justifies the earlier claim that the average energy remains almost constant.

2.3.3 Decoding Procedure

At the receiver end, the time domain signal is filtered by a low pass filter and sampled at the

Nyquist rate. The samples are processed by an FFT to recover the constellation point in the

frequency domain. For an Additive White Gaussian Noise (AWGN) channel, the received

vector is given by

z = y + n, (24)

where y is the transmitted time domain signal in (11) and n is a zero-mean complex AWGN.

The approximated constellation point is written as

x̂ = FFT(z) = x + FFT(n) = x + n′, (25)

where x is the transmitted constellation point, and n′ is a zero-mean complex AWGN. Since

the FFT matrix is an orthonormal matrix, the resulting noise is still AWGN. The maximum

likelihood decoder simply rounds off the received constellation point x̂ in the integer domain.

Then, the resulting constellation point is replaced in (13) to decode the transmitted signal.

2.3.4 Example

To further clarify the algorithm, the constellation points in an OFDM system with 16 sub-

carriers are computed. Theorem 2 states that there are 232 points inside the Hadamard constel-

lation, i.e. the real and imaginary parts of the signal can be one of these points (equivalent to

using a 16-QAM in the OFDM system). The Hadamard matrix and its SNF decomposition are

calculated by (14) and (15). Then, the input data is encoded using (11). In Table 1, some of the

constellation points are computed.

The SNF decomposition of the matrix QN based on the IFFT matrix, even for this small

case, is difficult.

2.4 Selective Mapping

SLM is a method to reduce the PAPR in an OFDM system, which involves generating a large

set of data vectors that represent the same information, where the data vector with the lowest

PAPR is used for the transmission. Here, a method to apply the SLM technique is presented to

further reduce the PAPR in the constellation developed earlier.
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data b0b1b2 · · · b31 λ1λ2 · · · λ16 x0x1 · · · x15

0 00000000000000000000000000000000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
1 10000000000000000000000000000000 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 -1 0 -1 0 -1 0 -1 0 -1 0 -1 0 -1 0 -1 0
2 01000000000000000000000000000000 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 -1 -1 0 0 -1 -1 0 0 -1 -1 0 0 -1 -1 0 0
3 11000000000000000000000000000000 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 -1 0 0 1 -1 0 0 1 -1 0 0 1 -1 0 0 1
4 00100000000000000000000000000000 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 1 0 0 0 1 0 0 0 1
5 10100000000000000000000000000000 0 1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 -1 0 0 0 -1 0 0 0 -1 0 0 0 -1 0 0
6 01100000000000000000000000000000 0 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 -1 0 0 0 -1 0 0 0 -1 0 0 0 -1 0
7 11100000000000000000000000000000 0 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 1 0 0 0 1 0 0 0 1 0 0 0
8 00010000000000000000000000000000 0 0 0 2 0 0 0 0 0 0 0 0 0 0 0 0 -2 0 0 0 -2 0 0 0 -2 0 0 0 -2 0 0 0
9 10010000000000000000000000000000 0 1 0 2 0 0 0 0 0 0 0 0 0 0 0 0 -1 0 1 0 -1 0 1 0 -1 0 1 0 -1 0 1 0

10 01010000000000000000000000000000 0 0 1 2 0 0 0 0 0 0 0 0 0 0 0 0 -1 1 0 0 -1 1 0 0 -1 1 0 0 -1 1 0 0
.
.
.

. . .
. . .

.

.

.

103 00010111110000000000000000000000 0 0 0 2 0 3 3 1 0 0 0 0 0 0 0 0 -1 1 1 1 -1 0 0 0 -1 1 1 1 -1 0 0 0
.
.
.

. . .
. . .

.

.

.

106 00000010010000101111000000000000 0 0 0 0 0 2 0 1 0 2 2 7 0 0 0 0 0 0 0 0 0 -2 0 -1 -2 0 0 1 -2 -2 0 0
.
.
.

. . .
. . .

.

.

.

232 − 1 11111111111111111111111111111111 0 1 1 3 1 3 3 7 1 3 3 7 3 7 7 15 2 -1 -1 -1 -1 -1 -1 1 -1 -1 -1 1 -1 1 1 3

Table 1: Example of the encoding procedure for the constellation points in a Hadamard con-
stellation in an OFDM system with 16 sub-carriers employing 16-QAM

Assume that the data rate is r bits per block of length-N FFT symbols. Let rs denote the

number of redundant bits specified for SLM (rs � r and r = log2(constellation size)). There-

fore, there are Ns = 2rs constellation points representing the same information for transmission

in SLM. In the proposed SLM method, the input integers, I, are mapped to the Hadamard

constellation points, and the constellation points corresponding to the integers with the same

rs Most Significant Bits (MSBs) are classified in the same subset. Note that the constellation

points in each subset represent the same information. The time domain signals corresponding

to the frequency domain constellation points are computed by the IFFT transformation, and the

constellation point with the lowest PAPR is transmitted.

The details of this scheme are described in the following. In the first step, the input binary

sequence is divided into blocks of r − rs bits. Then, rs bits of zeros are added to each infor-

mation block, and these blocks are divided into subblocks of lengths log2 σi, i = 1, · · · ,N,

bits (refer to Figure 4). The binary representations of these subblocks form the vector λ which

leads to the calculation of the constellation point using (11). The other data vectors are ob-

tained by changing the rs MSBs of the binary information sequence. Therefore, Ns Hadamard

constellation points with different values for the PAPR is calculated. Finally, the constellation

point with the lowest PAPR is selected for the transmission.

The different constellation points that represent the same information have the same r − rs

bits. Thus, at the receiver end, the constellation point is decoded by (13), and the rs extra bits

are discarded. Therefore, this method can be expressed as a variant of SLM in which no side

information on the choice of the transmit signal needs to be transmitted. The degradation in

the data rate can be ignored, since a significant PAPR reduction is obtained by using only one
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or two redundant bits. To be fair in viewing the potential loss in the data rate, the impact of

using the SLM method on the average energy of the constellation should be considered as well.

The Hadamard constellation has a zero shaping gain4 due to its cubic boundary (shaping gain

is computed using continuous approximation [49]). Numerical results show that applying the

SLM method to the resulting cubic constellation results in a reduction in the average energy,

reflected in a small, but positive shaping gain. This justifies the earlier claim that the reduction

in the PAPR is achieved at no extra cost in terms of a reduction in the spectral efficiency and/or

an increase in the average energy of the constellation.

2.5 Simulation Results

In this section, the simulation results for a complex baseband OFDM system with N = 128 sub-

channels employing 16-QAM are presented by using 107 randomly generated OFDM symbols.

First, the PAPR performance of the Hadamard constellation is showed. The next step is then

to show the capability of the SLM technique, when it is applied to the Hadamard constellation

to achieve further PAPR reduction. The simulation results are presented as the Complemen-

tary Cumulative Density Function (CCDF) of the PAPR of the OFDM signals, expressed as

follows:

CCDF {PAPR(y)} = P {PAPR(y) > γ} . (26)

This equation can be interpreted as the probability that the PAPR of a symbol block exceeds

some clip level γ (it is referred to symbol clip probability [72]).

According to (8) and (9), the continuous PAPR can be estimated by the IFFT of the zero

padded sequence of length LN. Results for the oversampling to L = 1, 2, and 4 are shown in

Figure 5. The continuous PAPR can be approximated by an oversampling factor of L = 4. As

mentioned in [136, 109, 153], further oversampling will result in minor changes. The PAPR

reduction of more than 4dB at 10−5 symbol clip probability is achieved.

Figure 6 shows the PAPR of an OFDM signal using the Hadamard constellation with dif-

ferent numbers of block length N. The effect of the constellation size is also investigated. It

is observed that the achieved PAPR is rather insensitive to the constellation size, see Figure 7.

The Symbol Error Rate (SER) of the proposed method and that of a conventional OFDM sys-

tem are compared. As shown in Figure 8, the gap is minimal.

Figure 9 shows the simulation results of applying SLM technique to the Hadamard constel-

lation. As illustrated in Figure 9, using only one bit of redundancy in 4 × 128 bits per block of

4Shaping gain is defined as the relative reduction in the required average energy for a given number of con-
stellation points with respect to a cubic constellation [49].
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Figure 5: CCDF of PAPR for a Hadamard constellation with different over-sampling factors
(128 channel OFDM system with 16-QAM constellation).

2 4 6 8 10 12 14 16

10
−4

10
−3

10
−2

10
−1

10
0

PAPR (dB)

P
 {

 P
A

P
R

(y
) 

>
 γ 

}

Conventional OFDM, N = 32
Conventional OFDM, N = 64
Conventional OFDM, N = 128
Hadamard in OFDM, N = 32
Hadamard in OFDM, N = 64
Hadamard in OFDM, N = 128

Figure 6: CCDF of PAPR for a Hadamard constellation in an N channel OFDM system em-
ploying 16-QAM constellation and L = 1.
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Figure 7: CCDF of PAPR for a Hadamard constellation in a 128 channel OFDM system
employing different QAM constellations and L = 1.
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a 128 FFT symbol5 results in a 5.6dB reduction in the PAPR. Simulation results show that by

employing more redundant bits the PAPR approaches its optimal value for a cubic constella-

tion6, namely 10 log10(3).
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Figure 9: CCDF of PAPR by SLM method based on Hadamard constellation in a 128 channel
OFDM system employing 16-QAM constellation.

2.5.1 Some Insight to the Achieved Performance

In a conventional OFDM system with N different subcarriers, the time domain samples can be

approximated by zero mean Gaussian random variables, based on adopting the central limit

theorem. Therefore, the amplitude of these samples has a Rayleigh distribution, and the CCDF

of the PAPR of the OFDM signal can be approximated as follows [79]:

P {PAPR(y) > γ} = 1 − (1 − e−γ)N . (27)

The use of Ns statistically independent vectors that have the same information for transmission

in the SLM method changes the CCDF of the PAPR of the OFDM signal such that

P {PAPR(y) > γ} =
(
1 − (1 − e−γ)N

)Ns
. (28)

Therefore, in the logarithmic CCDF vs. PAPR graph, the slope of the curve is proportional

to Ns (see Figure 10). By increasing the number of vectors with the same information, the

5By using 16-QAM in a 128 channel OFDM system, there are 16128 = 24×128 constellation points.
6The PAPR of a cubic constellation is computed using continuous approximation.



CHAPTER 2. PAPR Reduction In OFDM Systems 30

2 4 6 8 10 12 14 16

10
−4

10
−3

10
−2

10
−1

10
0

PAPR (dB)

P
 {

 P
A

P
R

(y
) 

>
 γ 

}

Conventional OFDM System
SLM in OFDM System with Successive Doubling of N

s
OFDM System with Hadamard Constellation
SLM in Hadamard Constellation, 1/2/4 Redundant Bits

Δ
3
 Δ

2
 Δ

1
 

Figure 10: CCDF of PAPR in a 128 channel OFDM system with SLM method using different
number of redundant bits, L = 1.

corresponding slope increases. Thus, the major PAPR reduction is achieved by the first few

redundant bits, as shown in Figure 10 (Δ1 > Δ2 > · · · ). In other words, a saturation effect on

the PAPR reduction is resulted by increasing rs. This is the reason that the SLM technique

have been applied to the Hadamard constellation. As mentioned in Section 2.3, the method

employing only the Hadamard constellation considerably reduces the PAPR. By adopting the

Hadamard constellation in the proposed SLM method, not only the PAPR can be lowered

considerably, but also the slope of the CCDF vs. PAPR curve can be approximately maintained.

This results in a considerably lower PAPR by using a small number of redundant bits before

reaching the saturation.

2.5.2 Comparison

In numerical simulations, the system parameters have been selected to be compatible with

some recent works on PAPR reduction reported in [17,104,135,73,79]. As a complexity mea-

surement, the main complexity of the proposed method is due to the encoding algorithm and

the multi-IFFT computations in the SLM technique. The complexity of the encoding algo-

rithm is in the matrix multiplications of (11). As mentioned in Section 2.2, all the elements of

the Hadamard matrix and its SNF decomposition matrices are +1,−1, or 0, and consequently,

these operations can be easily implemented using a butterfly structure. Note that in the SLM

technique, for each of the Ns time domain signals, one IFFT should be computed.

In [17], an SLM method based on multiplying the constellation point by Ns different
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pseudo-random but fixed vectors is introduced. For the same system as ours, with Ns = 4

different vectors, a PAPR reduction of 3dB is gained at the symbol clip probability close to

10−5. However, for the same symbol clip rate and Ns = 4, a 6dB reduction is achieved by

using the proposed SLM method. Also, the complexity of this algorithm is comparable with

the method in [17]. Note that in [17] some side information (with high sensitivity to channel

error) needs to be transmitted.

Another approach, similar to [17], is introduced for the SLM in [79]. The authors have

introduced this method for MIMO7-OFDM systems. The simulation results in [79] are similar

to [17] (the relative comparison between the proposed method and the one in [17] is explained

earlier).

The tone reservation [135] is a well known method for PAPR reduction in multicarrier sys-

tems, provided that it can quickly converge to a good solution. An efficient approximation for

the tone reservation approach with a faster convergence is developed in [73]. The complexity

of [73] is comparable with ours; however, about 3dB lower PAPR than that in [135] or [73] is

achieved for similar system parameters. Note that in the tone reservation method, some tones

are reserved for the PAPR reduction and some of the tones are not used for data transmission,

implying a loss in the data rate. Note that [73] reduces the PAPR by solving a min-max prob-

lem. This problem is solved by an interior-point method which requires a descent direction and

a constraint to find the solution recursively.

In [107], for a 256 complex channel OFDM system employing 256-QAM, a 4.5dB reduc-

tion in the PAPR is obtained using a trellis shaping technique. In the proposed method, for

a 128 complex channel OFDM system employing a 128-QAM, a 6dB reduction is gained.

In [107], the main complexity is in finding the path with minimum cost through a trellis di-

agram (this complexity is considerably higher than that of a Viterbi decoder). However, the

author investigates methods to reduce this complexity by window truncation and sacrificing

PAPR reduction, but still the overall complexity in [107] is significantly higher as compared to

the method proposed here.

There is no comparison with [75], as the method in [75] relies on using the SNF of the IFFT

matrix which is not known. Indeed, computing this SNF decomposition would be an interesting

open problem. If this matrix were available, the resulting PAPR reduction in [75] would be

asymptotically equal to the optimum value of 10 log10(3). Also, as mentioned in Section 2.2,

the computational complexity of the encoding algorithm of the constellation based on the IFFT

matrix is O(N2), while the complexity for the encoding of the Hadamard constellation in the

butterfly structure is O(
3
2

log2(N)) [75].

7Multi-Input Multi-Output
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2.6 Conclusion

A constellation shaping method is proposed that achieves a substantial reduction in the PAPR

in an OFDM system with a low complexity. The boundary of the proposed constellation is

along the basis defined by the Hadamard matrix in the transform domain. An SLM technique

is applied to this constellation to further reduce the PAPR of the OFDM signal. The proposed

scheme significantly outperforms other PAPR reduction techniques reported in the literature,

without any loss in terms of the energy and/or spectral efficiency.



CHAPTER 3

PRECODING IN MULTIPLE-ANTENNA BROADCAST

SYSTEMS

Abstract – In this chapter, the average transmit energy of a multiple antenna broadcast system

with channel inversion is investigated. It is shown that the reduction in average transmit en-

ergy, due to shaping, can be significantly higher than the conventional gains in reduction that

are mentioned in the literature. In order to approach this gain, a Selective Mapping (SLM)

technique is introduced. Using the strong literature in quantization, the gain that the SLM

technique can provide is derived. The proposed SLM method can be implemented by lattice

decomposition techniques.

3.1 Introduction

Multiuser Multi-Input Multi-Output (MIMO) antenna systems have received much attention

due to achieving a very high data rate. In a MIMO broadcast system, the sum-capacity grows

linearly with the minimum number of the transmit and receive antennas [140]. However,

achieving the sum-capacity in a MIMO broadcast system is more complicated than that in

a MIMO point-to-point system, since each user must decode its signal independently from the

other users.

Generally, there have been two different approaches in the literature for implementing a

broadcast system. To achieve the promised sum capacity while having independent decoding

ability, some information theoretic schemes provide a precoding method based on interference

cancelation methods, e.g. [154] or [155]. The alternative precoding approach is based on using

channel inversion technique, e.g. [114] or [129].

33



CHAPTER 3. Precoding inMultiple-Antenna Broadcast Systems 34

In precoding methods based on interference cancelation, the channel is first transformed

into a series of parallel sub-channels with non-causally known interference. Then, having

the interference knowledge, a signal is transmitted over these sub-channels by using a trellis

precoder [154] or nested lattice codes [155]. These methods are mainly based on the idea of

dirty-paper-coding theorem [29].

Channel inversion technique separates the data for different users at the transmitter side. By

assuming the complete knowledge of the channel, the data that is supposed to be received at

the receiver side is multiplied by the inverse of the channel and is transmitted. This operation

guarantees the independent decoding at the receiver side. However, the average transmit energy

of channel inversion technique is high, as the channel matrix is nor orthogonal. In [115], the

authors have introduced a vector perturbation technique based on channel inversion which has

a good performance in terms of symbol error rate. Nonetheless, this technique requires a lattice

decoder which is an NP-hard problem. The lattice decoder is replaced by a lattice-reduction-

aided decoding method in [129], resulting in reducing the average transmitted energy, with a

reasonable complexity.

In this chapter, the average transmit energy of a multiple antenna broadcast system with

channel inversion is investigated. By using channel inversion, the decoding at the transmitter

side is independent of the channel matrix. Due to the fact that the channel is not orthogonal,

the reduction in the average transmit energy due to constellation shaping is significantly higher

than the regular shaping gains reported in literature, e.g. [115].

In the sequel, a Selective Mapping (SLM) technique is introduced to reduce the average

energy of the transmitted signal in a broadcast system. The average transmit energy of the

proposed SLM technique is also derived. Since finding the optimum average transmit energy is

difficult, a lower bound on the average transmit energy is calculated. This lower bound is based

on the assumption that the users at the receiver side can cooperate with each other. Simulation

results show that the proposed SLM method has an average transmit energy which is close to

this lower bound. Moreover, the proposed method outperforms the other known techniques

in the literature. In order to implement the SLM method effectively, lattice decomposition

techniques are proposed.

3.2 System Model

A multiple antenna broadcast system with Ñ transmit antennas and K users, where user i =

1, · · · ,K is equipped with ni antennas (M̃ =
∑K

i=1 ni), is modeled as

ỹi = h̃ix̃ + w̃i, i = 1, · · · ,K (29)
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where ỹi is the received vector of dimension ni by user i = 1, · · · ,K, x̃ is an Ñ × 1 data vector

with E {‖x̃‖} = 1, w̃i is an ñi × 1 complex additive white Gaussian noise vector with zero mean.

The equations in (29) can be written as

ỹ = H̃x̃ + w̃, (30)

where ỹ = [ỹT
1 , · · · , ỹT

K]T , w̃ = [w̃T
1 , · · · , w̃T

K]T , and H̃ =

[
h̃T

1

... h̃T
K

]T

. H̃ is the M̃ ×
Ñ channel matrix composed of independent, identically distributed (i.i.d.) complex Gaussian

random elements with zero mean and unit variance and E{w̃w̃	} = 1
ρ

IM̃, where the parameter

ρ is the SNR per receive antenna.

To avoid using complex matrices, the system model (30) is represented by real matrices in

(31). ⎡⎢⎢⎢⎢⎢⎣R (ỹ)

I (ỹ)

⎤⎥⎥⎥⎥⎥⎦ =
⎡⎢⎢⎢⎢⎢⎣ R

(
H̃
)
I
(
H̃
)

−I
(
H̃
)
R
(
H̃
)⎤⎥⎥⎥⎥⎥⎦

⎡⎢⎢⎢⎢⎢⎣R (x̃)

I (x̃)

⎤⎥⎥⎥⎥⎥⎦ +
⎡⎢⎢⎢⎢⎢⎣R (w̃)

I (w̃)

⎤⎥⎥⎥⎥⎥⎦
⇒ y = Hx + w, (31)

where y is the received vector, x is the transmit vector, M̄ = 2M̃, and N̄ = 2Ñ.

3.2.1 Channel Inversion

It is assumed that the channel state information is available at the transmitter side and the

channel inversion precoding is performed on the input data. In this case, the decoding at the

receive side is independent of the channel matrix.

By assuming channel inversion, the transmitter sends

s = H+u, (32)

where H+ = H∗(HH∗)−1, H∗ is the Hermitian of H, u =
[
u1T

; · · · ; uKT]T
is the data vector, i.e.

ui is the data for the ith user, and s is the transmitted signal before the normalization. For the

simplicity, it is assumed M̄ = N̄ := M, i.e. the transmitted signal is

s = H−1u. (33)

As in [114], the normalized transmitted signal would be x =
s√
E{γ} , where γ = ‖s‖2 is the

energy of the transmitted signal, called transmit energy. Note that by using channel inversion,

the decoding at the transmitter side is independent of the channel matrix. Substituting (33) in

(31) results in

y =
1√
E{γ}u + n. (34)
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The problem arises when H is poorly conditioned and γ becomes very large, resulting in

a high power consumption. This situation occurs when at least one of the eigenvalues of H is

very small which results in vectors with large norms as the columns of H−1.

3.3 Average Transmit Energy of Probabilistic Constellations

In a multiple antenna broadcast system, a proper input constellation should be designed such

that given a minimum distance two conditions are satisfied: (i) data can be decoded indepen-

dently at the receivers (independency condition), and (ii) the average transmit energy is as low

as possible (energy condition). The design of the constellation is known as the shaping.

Lattice constellation shaping technique deals with the problem of finding a finite set of

points from an M dimensional lattice Λ that lies within a finite region R ⊂ RM. This con-

stellation is known as a lattice code. If C is a lattice code of reasonably large size, then the

distribution of its points in M dimensional space is well approximated by a uniform continuous

distribution over the region R (the continuous approximation) [49].

Having a uniform distribution over region R does not guarantee a uniform distribution over

each dimension. In other words, if u is selected uniformly over R, each element of u may have

a nonuniform distribution. Throughout this chapter, the probability distribution of the elements

of u is called marginal probability distribution of u.

Let Q :=
(
H−1

)T
H−1 = UΛUT, where U is the unitary matrix of eigenvectors of Q and Λ

is the diagonal matrix of the corresponding eigenvalues, λi, i = 1, · · · ,M. Assume u ∈ R be a

random vector with mean E{u} = μ and the correlation matrix E{(u − μ)(u − μ)T } = Σ > 0. In

general, the average transmit energy of the signal s = H−1u can be written as

E{γ} = E
{
uT

(
H−1

)T
H−1u

}
= E

{
uT Qu

}
= trace

(
E
{
uT Qu

})
= E

{
trace

(
uT Qu

)}
= E

{
trace

(
QuuT

)}
= trace

(
QE

{
uuT

})
= trace

(
Q(Σ + μμT )

)
= trace(QΣ) + μT Qμ. (35)

3.3.1 Average Transmit Energy in Broadcast Systems

In the literature, there have been different precoding schemes for broadcast systems, e.g. [60,

114, 115, 144, 129, 20]. Different approaches aim to reduce the average transmit energy, while

introducing minimum interference among users. In order to achieve this goal, the focus is on

choosing different shaping regionsR and their corresponding marginal probability distributions

for the vector u in (31).
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Assume that the vector u is selected from a lattice code C with shaping region R, u ∈ C.

Therefore, the transmitting vector s is selected from a lattice code C′ with shaping region

R′, where R′ = {s|s = H−1u,∀u ∈ R}. For large enough constellation sizes, continuous

approximation implies that the vectors u and s are selected uniformly over regions R and R′,
respectively. It is assumed that the region R has a volume Vol(R) = V, resulting in the entropy

of logV. Note that when there are M independent dimensions, the entropy per each dimension

isH = 1
M logV.

In the Appendix B, the average transmit energy for different known methods in the literature

is calculated, based on the probabilistic view point of (35). In all these cases, it is assumed that

the vector u is distributed uniformly over a hypercube centered at the origin with side length of

2A, R = CM(0, 2A). By using simple channel inversion, the region R′ is an orthotope centered

at the origin and along the eigenvectors of Q. In the regularization method [114], before

the channel inversion, the vector u is multiplied by a linear transformation. This reduces the

average transmit energy at the cost of introducing interference among users (see Appendix B).

In the perturbation technique [115], by increasing the constellation points and using a non-

linear modulo operation, the region R′ is the Voronoi region of the matrix τH−1, where τ is

the constellation length in each real dimension. In summary, different methods try to change

the region R′ such that, by keeping the independency condition, the average transmit energy is

reduced.

3.3.2 Lower Bound on the Average Transmit Energy

It is shown that different precoding methods change the region R′ (and its corresponding

marginal probability distribution) in order to reduce the average transmit energy. Theoreti-

cally, it is well known that by conventional shaping methods (case IV in Appendix B - vector u

with Gaussian random elements), there is at most 1.53dB more reduction in the average trans-

mit energy compared to the simple channel inversion. The question is how much further the

average energy can be reduced.

As finding the optimum average transmit energy is difficult, a lower bound for the average

transmit energy is desirable. A broadcast system can be considered as a MIMO point-to-point

system with an extra independency condition, see [117]. Therefore, in order to find a lower

bound, the energy condition is considered and the independency at the receivers is ignored.

Following theorem finds the region R (equivalently R′) in such a system by minimization of

the average transmit energy in (35) over different marginal probability distributions.

Theorem 3 Let u = [u1, u2, · · · , uM] ∈ RM be a random vector with probability distribution

f (u1, u2, · · · , uM), mean E{u} = μ, and the correlation matrix E{(u − μ)(u − μ)T } = Σ > 0, in
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the system model introduced in (31). Let H(u) denote the entropy of the data vector u. Then,

a multivariate Gaussian random vector u with μ = 0 and the covariance matrix

Σ =
M
√
Πλiσ

2Q−1 (36)

minimizes the energy of the transmit signal given a fixed entropy H(u) = log(V), where σ2 is

the variance of a Gaussian random variable with entropyH = 1
M log(V).

Proof: See Appendix A.

This choice of Σ suggests that the lower bound for the average transmit energy among

signals with different probability distributions is

Ebound = E{γ} = M M
√
Πλiσ

2 (37)

The average transmit energy in (37) corresponds to the average energy of an M-dimensional

Gaussian random vector with i.i.d. elements with zero mean and variance R2
eq =

M
√
Πλiσ

2 (each

element of vector v =
√
ΛUu has a Gaussian distribution with zero mean and variance R2

eq).

Here, the shaping problem is to select the region R or R′ to minimize the average transmit

energy, while considering the independency condition.

3.4 Selective Mapping Precoding

In this section, a Selective Mapping (SLM) technique is introduced to reduce the average trans-

mit energy. In the following, we first briefly review the principals of SLM technique.

3.4.1 An Overview on SLM Technique

The SLM technique generates a large set of data vectors that represent the same information,

where the data vector resulting in the lowest energy is selected for transmission. It is assumed

that originally the vector s is selected uniformly over region R, where the volume of this region

is fixed, Vol(R) = V. In order to provide multiple choices for the SLM method, the region is

changed to R̄ such that the volume is increased to V̄. It is assumed that for each data vector

there are N points, where

N =
V̄

V
. (38)

In other words, N i.i.d. samples of the vector s are generated in R̄, i.e. {s(1), s(2), · · · , s(N)} ∈ R̄,

and sl with the lowest energy is selected for transmission. In other words,

γ(l) = min{γ(1), γ(2), · · · , γ(N)},
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where γ(i) = ‖s(i)‖2. Consider the case that the samples of s are Gaussian random vectors,

N(0, σ2IM). By increasing the volume (entropy)1 from V to V̄ the variance would increase

from σ2 to σ′2, where
V̄

V
=

(
σ′

σ

)M

= N. (39)

The energy γ = uT Qu is a quadratic expression of random vector u. There is a lot of

research on the probabilistic relations between γ and u [90, and ref. therein]. In order statistic

references [35, and ref. therein], the relations between the probability behavior of γ(l) and γ are

discussed.

3.4.2 SLM with Gaussian Variables in Time Domain

In this section, the aim is to approach the lower bound on the average transmit energy in a

broadcast system with a theoretical point of view. The first step is to provide a high dimensional

constellation for each user. It is known that when a random vector is uniformly selected in a

D-dimensional sphere centered at the origin with radius
√

Dσ, i.e. BD(0,
√

Dσ), in the limit

of D −→ ∞, each dimension has a Gaussian distribution with zero mean and variance σ2.

Consider a time frame of L consecutive symbols for each user. If the ith user has ni anten-

nas, the L symbols corresponding to user i can be considered to be selected in a Di = 2Lni

dimensional space. In other words, the Di-dimensional vector u1:L,i = [uT
1,i,u

T
2,i, · · · ,uT

L,i]
T is

selected from the region Ri and it corresponds to L vectors ut,i of dimension 2ni which are se-

lected at time slots t = 1, · · · , L for user i. Provided that the vector u1:L,i is selected uniformly

over a Di-dimensional sphere Ri = BDi(0,
√

Diσi), the elements of this vector are i.i.d. Gaus-

sian elements with variance σ2
i (in the limit of L −→ ∞). At each time slot t = 1, · · · , L, the

M-dimensional vector ut = [uT
t,1,u

T
t,2, · · · ,uT

t,K]T , consisting the data vectors for different users,

is selected and the vector st = H−1ut is transmitted.

The next step is to apply Selective Mapping (SLM) to provide multiple choices for trans-

mitted information. In Di dimensional space of each user, the constellation is expanded to R̄i

such that the volume (also the variance) of the new constellation follows (39), i.e.

Vol(R̄i)
Vol(Ri)

=

(
σ′i
σi

)Di

= Ni. (40)

For transmitting any Di dimensional data vector to each user, Ni i.i.d. random vectors are se-

lected uniformly over the Di-dimensional region of R̄i, that isU(i)
1:L = {u(1)

1:L,i,u
(2)
1:L,i, · · · ,u(Ni)

1:L,i} ∈
1The discussion in this section and the following sections are based on the increase in the entropy, H(u) =

log(V) andH = 1
2 log(2πeσ2). In this approach, the minimum distance of the constellation is fixed. An alternative

approach can be considered based on the capacity viewpoint, where C = 1
2 log(1+ SNR) and SNR is defined based

on σ2 and noise power. This guarantees a free error transmission, as long as the size of the increased constellation
follows the capacity formula.
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R̄i, where u( j)
1:L,i = [u( j)

1,i

T
,u( j)

2,i

T
, · · · ,u( j)

L,i

T
]T corresponds to data vectors for the ith user at time

slot t = 1 · · · , L for j = 1, · · · ,Ni. These Ni data vectors are equivalent and they represent the

same information.

Considering all K users, {U(1)
1:L,U(2)

1:L, · · · ,U(K)
1:L }, is equivalent to the M-dimensional data

vectors of users in a time frame of length L. For any data vector in the space of each user,

there are Ni equivalent data vectors (representing the same information). Therefore, in the

ML dimensional space of all users, there are N =
∏

Ni equivalent data vectors. The cor-

responding transmitted signals are {s(1)
1:L, s

(2)
1:L, · · · , s(N)

1:L}, where s( j)
1:L = {s( j)

1 , s
( j)
2 , · · · , s( j)

L }, s( j)
t =

[s( j)
t,1

T
, s( j)

t,2

T
, · · · , s( j)

t,K

T
], s( j)

t = H−1[uT
t,1,u

T
t,2, · · · ,uT

t,K]T and ut,i ∈ U(i)
t , where U(i)

t is the set of

symbols at time slot t for the user i inU(i)
1:L, i.e. U(i)

t = {u(1)
t,i ,u

(2)
t,i , · · · ,u(Ni)

t,i }. The symbol energy

for each of N equivalent ML-dimensional data vectors are defined as

γ( j) �
1
L

L∑
t=1

‖s( j)
t ‖2, (41)

for j = 1, · · · ,N. The data vector with the lowest energy among the N equivalent data vectors

is selected for transmission, i.e.

γ(l) = min
j=1,··· ,N

γ( j).

The probabilistic behavior of γ(l) is desired. In the next section, the average transmit energy

resulted by using the proposed SLM method is analyzed.

3.5 Average Transmit Energy Analysis in SLM

In this section, the effect of applying the proposed SLM technique in broadcast systems is

analyzed. First, applying the proposed SLM method in the space of each user is considered.

Then, the results is generalized for a broadcast system with multiple users.

3.5.1 Effect of SLM for a Single User

In order to analyze this technique, first, the effect of the SLM method is considered in the m-

dimensional space of a given user. Assume that the relation between the m-dimensional vector

u and the transmit vector s is defined as s = Gu, where G is a known n×m matrix. Considering

a time frame of L consecutive symbols, the vector u1:L = [uT
1 ,u

T
2 , · · · ,uT

L ]T is selected over the

Lm-dimensional space of R.

For implementing an SLM method, N i.i.d. Lm-dimensional symbols are generated uni-

formly over the expanded region R̄, i.e. {u(1)
1:L,u

(2)
1:L, · · · ,u(N)

1:L} ∈ R̄, where Vol(R̄) = NVol(R).

Each vector u(i)
1:L = [u(i)

1

T
,u(i)

2

T
, · · · ,u(i)

L

T
]T corresponds to L vectors u(i)

j of dimension m which

will be sent at time slots j = 1, · · · , L. At each time slot, the transmit vector is defined as
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s(i)
j = Gu(i)

j , resulting in D-dimensional vector s(i)
1:L = (IL ⊗ G)u(i)

1:L, where D = Ln. Among the

corresponding N transmit vectors s( j)
1:L, the vector s(l)

1:L with the lowest transmit energy is selected

for transmission. In other words,

l = arg min
1≤i≤N

‖s(i)
1:L‖2. (42)

In order to simplify the notations in this subsection, s(i)
1:L and u(i)

1:L are denoted by s(i) and

u(i), respectively. Let s(1), s(2), · · · , s(N), be i.i.d. RD-valued random variables with distribution

F, i.e.

F(v) = P{s(i) ≤ v}
= P{s(i)

1 ≤ v1, · · · , s(i)
D ≤ vD} i = 1, · · · ,N, (43)

where v = (v1, · · · , vD) ∈ RD. For any region R, the probability F(R) is the probability that

there is at least one code point in the region R, i.e.

F(R) =
∫
R

F(dy).

Define the rth moment of the transmitted signal as

γF
r,N = min

1≤i≤N
‖s(i)‖r, (44)

where based on the previous notation γl = γ
F
2,N . In this part, the asymptotic probabilistic

behavior of γF
r,N , when L −→ ∞ (or equivalently D −→ ∞) and N −→ ∞, is investigated.

Specifically, the average transmit energy in the SLM technique is calculated.

Theorem 4 Let s(1), s(2), · · · , s(N), be i.i.d. RD-valued random variables with distribution F.

Then,

lim
N→∞ E

{
N

r
DγF

r,N

}
= B

− r
D

D Γ(1 +
r
D

)g
− r

D
ρ (45)

where B1 = 2, BD = Vol (BD(0, 1)) = πD/2/Γ(1 + D/2) for D = 2, · · · , and gρ is defined for any

ρ > 0 as

gρ := inf
δ∈(0,ρ]

F (BD(0, δ))
Vol (BD(0, δ))

.

Proof: See Appendix A.

Now, consider the special case of uniform distribution. When there is a large lattice code,

it can be assumed that there is a uniform distribution over the region where the lattice code

is defined. Applying SLM technique, over a region with uniform distribution results in the

following average for the rth moment of the transmitted signal.
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Theorem 5 Let R̄′ ⊂ RD be a compact set with volume Vol(R̄′) and let s(1), · · · , s(N) be i.i.d.

random variables with uniform distribution over R̄′. Then,

lim
N→∞ E

{
N

r
DγF

r,N

}
= B

− r
D

D Γ(1 +
r
D

)Vol(R̄′) r
D . (46)

Proof: Let F be a uniform distribution over R̄′, i.e. F = U(R̄′). Therefore,

F

⎛⎜⎜⎜⎜⎝BD(0,
v

1
r

N
1
D

)

⎞⎟⎟⎟⎟⎠ = Vol

⎛⎜⎜⎜⎜⎝BD(0,
v

1
r

N
1
D

)

⎞⎟⎟⎟⎟⎠
Vol(R̄′) , (47)

and

gρ = inf
δ∈(0,ρ]

F (BD(0, δ))
Vol (BD(0, δ))

=
1

Vol(R̄′) . (48)

Substituting (48) in (45) completes the proof.

Note that the data vectors u(1), · · · ,u(N) are i.i.d. random variables which are selected uni-

formly over a region R̄. Accordingly, the vectors s(i) = (IL ⊗ G)u(i) are selected uniformly

over the region R̄′, where it can be defined as R̄′ = (IL ⊗ G)R̄. The volume of this region is

Vol(R̄′) =
(√

det(Q)
)L

Vol(R̄), where Q = GT G.

In order to find the asymptotic average transmit energy of the SLM method, set r = 2

and F = U(R̄′), where R̄′ is the region for the transmit vector s. Therefore, according to the

expression in (46), the average transmit energy for large window size L and large enough N

can be approximated by

ES LM =
1
L

E
{
γU(R̄′)

2,N

}
=

1
L

B
− 2

D
D Γ(1 +

2
D

)N−
2
D Vol(R̄′) 2

D (49)

The volume of the region R̄′ is fixed, Vol(R̄′) =
(√

det(Q)
)L

Vol(R̄) = (
√
Πλ j)LNVL. There-

fore, the average transmit energy of the SLM method can be represented by

ES LM =
1
L
Γ(1 +

2
D

) n
√
Πλ j

(
V

L

BD

) 2
D

. (50)

For a spherical region, VL = Vol(BD(0,
√

Dσ)), where σ2 is the variance of a Gaussian

random variable with entropy H = 1
D log(VL). Considering the fact that BD is the volume of

a D-dimensional sphere with unit radius and Γ(1 + 2
D ) −→ Γ(1) = 1 for large enough D, the

average transmit energy for the SLM technique is

ES LM = nR2
eq (L,N −→ ∞), (51)

where R2
eq =

n
√
Πλ jσ

2.
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3.5.2 Broadcast System

Now, consider the original broadcast system introduced in (31) in a time frame of length L.

At each time slot, user i = 1, · · · ,K has access to only 2ni elements of each M-dimensional

vector. Therefore, considering the L time slots together, each user selects its data uniformly

over a Di = 2niL-dimensional spaceRi. In the following analysis, it is assumed that each region

Ri is a spherical region BDi(0,
√

Diσi). In order to implement the proposed SLM method, each

region Ri is expanded to R̄i such that Vol(R̄i) = NiVol(Ri). Then, for each user, Ni i.i.d.

random vectors are selected uniformly over the region R̄i. Therefore, in the broadcast system

(31), N = N1 · · ·NK data vectors u( j)
1:L = [u( j)

1:L,1, · · · ,u( j)
1:L,K] (for j = 1, · · · ,N) are selected

over the region R̄ = R̄1 × R̄2 × · · · × R̄K . Note that u( j)
1:L,i is selected in Di-dimensional space R̄i,

independent of other users’ data. Therefore, the data vectors u( j)
1:L are uniformly distributed over

R̄. Therefore, according to Theorem 5, the average energy of the SLM method in broadcast

system (31) is given by the following theorem.

Theorem 6 In a SLM technique applied to a broadcast system defined in (31), the average

energy is

lim
L,N−→∞ EBroadcast = M M

√
Πλiσ

2, (52)

where σ2 is the variance of a Gaussian random variable with entropy H = 1
M log(V) and

σM = σ2ni
1 · · ·σ2nK

K .

Proof: See Appendix A.

This implies that the average transmit energy in the proposed SLM technique can approach

the average transmit energy in the lower bound in (37).

3.5.3 Some Implementation Issues

In any practical SLM method, a lattice code C (equivalently region RC) is expanded such that

the number of constellation points are multiplied by N, resulting in a new lattice codeC′ (equiv-

alently region RC′). The new set of constellation points are grouped in |C| sets containing N

points. Transmitting any point in each set transfer the same information. The unique specifi-

cation of each set is that the N equivalent points are selected uniformly over RC′ . Moreover,

in implementing the SLM method, the shaping concept should be used in each user’s space.

It must be emphasized that the conventional precoding schemes in broadcast systems, such

as [115] and [154], or even those in MIMO point to point systems [44], treat multiple antennas

of users as different virtual users.

In order to implement an SLM method with these properties, the best approach is ap-

plying lattice decomposition [47]. Assume that in the Di-dimensional space of each user,
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there is a lattice partition Λ/Λ′, where |Λ/Λ′| = Ni. The points in Λ′ are known as a coset

code [46]. For transmitting any point in Λ′, Ni equivalent points {u(1)
1:L,i,u

(2)
1:L,i, · · · ,u(Ni)

1:L,i} are

selected in Λ. Having Ni points in the space of each user, N =
∏

Ni equivalent transmit-

ted signals {s(1)
1:L, s

(2)
1:L, · · · , s(N)

1:L} can be formed in the ML-dimensional space of all users, where

s( j)
t = [s( j)

t,1, s
( j)
t,2, · · · , s( j)

t,K] and s( j)
t = H−1[ut,1,ut,2, · · · ,ut,K]. Then among these signals the one

with the lowest average energy is transmitted.

3.6 Simulation Results

In this section, the proposed SLM method is simulated in a MIMO broadcast system. In this

system, K = 2 users with two antennas are considered, i.e. n1 = n2 = 2, resulting in M = 4.

Figure 11 shows the average transmit energy for the simple channel inversion method [114],

applying i.i.d. Gaussian random vector u (Case IV in Appendix B – conventional shaping gain),

Perturbation technique [115], the proposed SLM method, and the lower bound for MIMO

system in (37). For this simulation, a quasi static channel is assumed. Specifically, 10000

random channel matrices are generated and for each sample 1000 uniform random input vector

over the corresponding continuous constellation are generated. It is assumed that the volume

of the constellations are equal and the number of redundant symbols (if needed) is equal in all

different cases. Note that for the proposed SLM method N1 = N2 = 34 and L = 100.
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Figure 11: Average transmit energy for different methods in a quasi static channel
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Figure 12: CCDF for the gain in average transmit energy of different methods compared to
channel inversion in a quasi static channel

In the simulation, there are 10000 random samples of channel matrix. For each sample of

the channel, the gain of each method is defined as the ratio of the average transmit energy of

the simple channel inversion to the that method’s average transmit energy. Figure 12 shows

the Complementary Cumulative Density Function (CCDF) of these gains in average transmit

energy compared to the channel inversion method (at SNR = 11.7577).

3.7 Conclusion

In this chapter, a lattice code with a low average transmit energy in multiple antenna broadcast

systems employing channel inversion technique is designed. By using channel inversion, the

decoding at the receiver side is independent of the channel matrix. Here, an SLM technique

is introduced to provide the lattice code required for the constellation shaping. The average

transmit energy that the SLM technique can provide is also derived. In order to implement

the SLM method effectively, using lattice decomposition techniques is proposed. The capacity

analysis of the proposed SLM technique can be considered as a direction for the future work.
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Lattice Decoding



CHAPTER 4

LATTICE DECODING IN MIMO SYSTEMS

Abstract – In Multi-Input Multi-Output (MIMO) systems, Maximum-Likelihood (ML) decod-

ing is equivalent to finding the closest lattice point in an N-dimensional complex space. In

general, this problem is known to be NP-hard. In this part, several quasi-maximum likeli-

hood algorithms based on using Semi-Definite Programming (SDP) are proposed. The SDP

relaxation models are based on vector lifting and matrix lifting SDP. The computational com-

plexity of matrix lifting SDP models are low. However, a near-ML performance with higher

complexity with vector lifting SDP models can be achieved.

4.1 Introduction

Recently, there has been a considerable interest in Multi-Input Multi-Output (MIMO) antenna

systems due to achieving a very high capacity as compared to single-antenna systems [134,45].

In MIMO systems, a vector is transmitted by the transmit antennas. In the receiver, a corrupted

version of this vector affected by the channel noise and fading is received. Decoding concerns

the operation of recovering the transmitted vector from the received signal. This problem is

usually expressed in terms of “lattice decoding" which is known to be NP-hard.

To overcome the complexity issue, a variety of sub-optimum polynomial time algorithms

are suggested in the literature for lattice decoding. However, unfortunately, these algorithms

usually result in a noticeable degradation of performance. Examples of such polynomial time

algorithms include: Zero Forcing Detector (ZFD) [118,69], Minimum Mean Squared Error De-

tector (MMSED) [65,148], Decision Feedback Detector (DFD) and Vertical Bell Laboratories

Layered Space-Time Nulling and Cancellation Detector (VBLAST Detector) [52, 38].

Lattice basis reduction has been applied as a pre-processing step in sub-optimum decoding

47
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algorithms to reduce the complexity and achieve a better performance. Minkowski reduction

[61], Korkin-Zolotarev reduction [71] and LLL reduction [80] have been successfully used for

this purpose in [1, 4, 6, 7, 103, 145].

In the last decade, Sphere Decoder (SD)1 is introduced as a Maximum Likelihood (ML)

decoding method for MIMO systems with near-optimal performance [31]. In the SD method,

the lattice points inside a hyper-sphere are generated and the closest lattice point to the received

signal is determined. In [66], an exponential lower bound is derived on the average complexity

of SD, and it is shown that the worst case complexity is exponential [1, 58]. However, it is

experienced that over certain ranges of rate, Signal to Noise Ratio (SNR) and dimension the

average complexity is polynomial [58].

Recently, a variety of sub-optimum polynomial time algorithms based on Semi-Definite

Programming (SDP) are suggested for lattice decoding [124, 125, 85, 86, 143, 121, 150, 95,

91]. In all of these methods, the detection problem is lifted into a higher dimension and the

discrete set of possible vectors is replaced by a convex (and therefore connected) set. By

using the convex optimization techniques, an approximate solution to lattice decoding problem

is obtained. Overall, this procedure yields a polynomial time approximation of the difficult

optimization problem present in the ML detection problem.

This part of the thesis presents several relaxation models based on SDP for the lattice de-

coding problem. These relaxation models can be categorized in (i) Vector Lifting Semi-Definite

Programming (VLSDP) models and (ii) Matrix Lifting Semi-Definite Programming (MLSDP)

models [40, 11], where they result in different performance and computational complexity

trade-offs. In the proposed relaxation models, the transmitted vector is expanded as a linear

combination (with zero-one coefficients) of all the possible constellation points in each dimen-

sion. Using this formulation, the distance minimization in Euclidean space is expressed in

terms of a binary quadratic minimization problem. The minimization of this problem is over

the set of all binary rank-one matrices with column sums equal to one.

In order to solve this minimization problem, by using VLSDP, two relaxation models are

presented, providing a trade-off between the computational complexity and the performance

(both models can be solved with polynomial-time computational complexity). Simulation re-

sults show that the performance of the last model is near optimal for M-ary QAM or PSK

constellation (with an arbitrary binary labeling, say Gray labeling). Therefore, the decoding

algorithm built on the proposed model using VLSDP has a near-ML performance with polyno-

mial computational complexity. In the relaxation models based on MLSDP, a large reduction

1This technique is introduced in the mathematical literature several years ago [19, 43].
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in the computational complexity is achieved as compared to that in VLSDP models (the num-

ber of variables is decreased from O(N2K2) to O((N+K)2)), where N is the number of antennas

and K is the number of constellation points in each real dimension.

4.2 Lattice Decoding Problem Formulation

A MIMO system with Ñ transmit antennas and M̃ receive antennas (M̃ × Ñ MIMO system) is

modeled as

ỹ =

√
SNR

M̃Ẽsav

H̃x̃ + ñ, (53)

where H̃ =
[
h̃i j

]
is the M̃ × Ñ channel matrix composed of independent, identically distributed

complex Gaussian random elements with zero mean and unit variance, ñ is an M̃ × 1 complex

AWGN vector with zero mean and unit variance, and x̃ is an Ñ × 1 data vector whose com-

ponents are selected from a complex set {s̃1, s̃2, · · · , s̃K} with an average energy of Ẽsav . The

parameter SNR in (53) is the SNR per receive antenna.

To avoid using complex matrices, the system model (53) is represented by real matrices in

(54). ⎡⎢⎢⎢⎢⎢⎣R (ỹ)

I (ỹ)

⎤⎥⎥⎥⎥⎥⎦ =
√

S NR

M̃Ẽsav

⎡⎢⎢⎢⎢⎢⎣ R
(
H̃
)
I
(
H̃
)

−I
(
H̃
)
R
(
H̃
)⎤⎥⎥⎥⎥⎥⎦

⎡⎢⎢⎢⎢⎢⎣R (x̃)

I (x̃)

⎤⎥⎥⎥⎥⎥⎦
+

⎡⎢⎢⎢⎢⎢⎣R (ñ)

I (ñ)

⎤⎥⎥⎥⎥⎥⎦
⇒ y = Hx + n, (54)

where y is the received vector, and x is the input vector. Decoding concerns the operation of

recovering the transmitted vector x from the received signal y, based upon the knowledge2 of

y and H and produce an estimated transmitted vector x̂. Note that the representation in (54)

is known as the lattice representation of the MIMO system [30, 31, 32]. The matrix H is the

lattice generator/basis of the MIMO system in (53).

The important performance measure of the decoding algorithms is the probability of error

which is defined as the probability that the estimated transmitted vector, x̂, is not the input

vector, x, i.e.

P{x̂ � x}. (55)

2Note that, throughout the paper, it is assumed that the detector, or receiver, has access to not only the received
vector, y, but also the channel matrix, H. The problem of accessing to these quantities is not in the scope of this
thesis.
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In the sequel, different methods are compared based on the performance which is defined as

the probability of error. The method that minimizes this performance measure is known as ML

method. At the receiver, the ML decoding rule is given by [138]

x̂ = arg min
xi∈S
‖y −Hx‖2. (56)

In the context of mathematics, the problem in (56) is known as the lattice decoding problem

which encounters finding the closest point of the lattice defined by H to the received vector y. In

digital communication applications, this problem is known as the integer least-square problem,

which can be seen in many areas, e.g. the detection of symbols transmitted over the multiple

antenna wireless channel [134], the multiuser detection problem in Code Division Multiple

Access CDMA systems [41], the simultaneous detection of multiple users in a DSL system

affected by crosstalk [50], and cryptography. The results, here, can be applied to all these

applications. However, the problem of lattice decoding in MIMO systems is the focus of this

thesis.

4.3 Lattice Decoding Methods

Existing methods for solving the integer least-square problem are classified in four categories:

1. Heuristic methods

2. Lattice Basis Reduction methods

3. Sphere Decoding methods

4. Semi-Definite Programming methods

4.3.1 Heuristic Methods

ZFD [118, 69] and MMSED [65, 148] are the well known methods in heuristic methods. In

ZFD, the vector resulted by multiplying the received vector by pseudo inverse (Moore-Penrose

inverse [78]) of matrix H, denoted by H†, is rounded off to the closest integer.

x̂ =
[
H†y

]
, (57)

where this point is known as Babai point [4].

MMSED has the same principal as ZFD, but this detector considers the effect of the noise

variance. By using inter-antenna interference in ZFD, the H† in (57) is replaced by(
H∗H + σ2I

)−1
H∗, (58)
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where σ2 is the noise variance.

DFD is another type of heuristic method in which the components of the signal point are

estimated recursively by one of the aforementioned answers (ZFD or MMSED) and the effect

of each detected component is cancelled on the next ones. This procedure is also called Nulling

and Cancellation method. Nulling and cancellation method is suffering from error propagation.

If the first component is estimated wrong, it has an adverse effect on the estimation of the other

components.

In [52, 38], VBLAST detection algorithm based on DFD algorithm and an appropriate or-

dering for detecting components is introduced. The detection order is accordance with the

descending order of SNR of different elements in the received point. This algorithm has the

same answer with the Nearest Plane algorithm that Babai presented in [4] using lattice reduc-

tion concept (Babai point).

VBLAST can handle high data rates with reasonable complexity; however, the loss in perfor-

mance as compared to ML decoding is usually significant. In addition: (i) VBLAST transmits

independent data streams on its antennas, so there is no built-in spatial or temporal coding, and

(ii) the decoding scheme does not work with fewer receive than transmit antennas.

4.3.2 Lattice Basis Reduction Methods

The algorithm for finding the closest point of ZN to the received point in N-D real space is just

to round off the point components in real space. However, the rounding off procedure in ZFD

or MMSED can not always provide the right answer. It can be shown that the aforementioned

suboptimal procedures are guarantees to find the nearest point in the lattice if and only if the

basis vectors of H are mutually orthogonal. Unfortunately, such condition cannot be satisfied

for every generator matrix H.

The solution for this problem may be found in lattice basis reduction context. Lattice basis

reduction is transforming a given lattice basis into a basis consisting vectors which are short

and fairly orthogonal. In other words, the channel matrix H is decomposed to H = QH′

such that Q is unimodular3 and the matrix H′ consists of vectors which are shorter and more

orthogonal compared to the vectors defined by H.

General known procedures for lattice decoding using lattice basis reduction find the solu-

tion in three steps (see Chapter 5.5):

1. Reduce lattice basis (H = H′Q ).

2. Perform finding the point in reduced lattice (finding the closest lattice point to y in the

3A unimodular matrix is an integer square matrix whose determinant is one.
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lattice defined by H′).

3. Transform result to the original lattice (multiplying Q−1 to the answer).

It can be shown that for the decoding of a lattice, the KZ reduced basis is a more pow-

erful tool than the LLL reduced basis [6, 1] for small dimensions (N < 15) [145]. However,

for large dimensions LLL reduced basis speeds up the decoding algorithm up to two orders

of magnitude. Moreover, in [130], it is shown that the decoding algorithm using LLL basis

reduction achieves the same receive diversity as the ML decoding algorithm (which is equal to

the number of receive antennas). In [103], LLL reduced basis is used with suboptimal lattice

decoders, such as ZFD and VBLAST. Moreover, an algorithm for changing LLL reduction for

complex matrix is proposed. In [4], Babai showed the LLL assumption for the goodness of the

Babai point is essential.

4.3.3 Sphere Decoding Methods

ML decoder finds the optimal solution by searching over all lattice points in the constellation

(lattice code). This decoder is practically infeasible due to its exponential complexity [139];

however, its improvement in the bit error rate performance cannot be neglected4.

A number of algorithms can be found in mathematical contexts for general lattice decoding.

Kannan’s algorithm [67] recursively searches all the lattice points inside an N-D rectangular

parallelepiped (cube), centered at y with its edges along the Gram-Schmidt vectors of a proper

basis of the lattice. [7], [68] and [61] are different variants of Kannan’s algorithm. In Fincke

and Pohst algorithm [43] (called as sphere decoding algorithm), lattice points inside an N-D

hypersphere centered at y are searched. By finding a lattice point inside the sphere, the radius

of the sphere is updated. Later, Schnorr and Euchner [19] introduced an improved version

of Fincke and Pohst’s algorithm [43] . They suggested to enumerate the lattice points inside

the N-D hypersphere in an order which enumerates the values of components in the order of

increasing distance from the components of integer point corresponding to y.

Several applications in communications have used these algorithms. Viterbo and Boutros

[141] used an algorithm based on Fincke and Pohst’s [43] algorithm for decoding in fading

channels. Damen et. al. used this idea for decoding in MIMO channels [30, 31, 32]. They

have explored the lattice representation of a multi antenna system and the algebraic space-time

codes for any number of transmit and receive antennas. Based on this representation, they have

applied the sphere decoding algorithm of [141].

Hassibi and Vikalo introduced a sphere decoding algorithm [58, 59] for MIMO systems

4More comparisons between ML decoder and suboptimal decoders are in [57].
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based on Fincke and Pohst’s algorithm. Instead of determining the lattice points in an N-D

space, this algorithm recursively determines components of the lattice in each dimension. The

only problem here is the choice of a proper radius. Radius in [58, 59] is a scaled version of

the noise variance such that with a high probability a lattice point inside the sphere can be

found. In Closest Lattice Point Search Algorithm [1], Agrell et. al. have generalized Schnorr

and Euchner’s algorithm for decoding of any MIMO system. In this method, the radius is

ignored in the search algorithm due to the special ordering. There are several variants for this

algorithm. Chan and Lee [22] have used the same ordering as Schnorr-Euchner ordering in

Fincke and Pohst’s sphere decoding algorithm. In [103], an algorithm based on using LLL

reduction and Schnorr-Euchner ordering in Fincke and Pohst algorithm is proposed.

In [33], Finite signal sets and a fresh look at the class of decoding algorithms as stack

algorithms are considered. Based on Fincke and Pohst’s algorithm and Schnorr and Euchner’s

algorithm two reduced complexity algorithms for general lattice codes are proposed. By using

efficient pre-processing stage a near ML decoding algorithm that uniformly outperforms all

known sphere decoders in terms of receiver complexity is introduced.

It has been shown that sphere decoding gains huge improvement over VBLAST decoding

method, full diversity of coded multi antenna systems, high spectral efficiency, independency of

the constellation size, and maximum likelihood performance. There have been several attempts

for improving the sphere decoding algorithm specially because of ML decoder performance.

However, in [66], an exponential lower bound is derived on the average complexity of sphere

decoding, and it is shown that the worst case complexity is exponential [1, 58]. However, it

is experienced that over certain ranges of rate, SNR and dimension the average complexity is

polynomial [58].

4.3.4 Semi-Definite Programming methods

Recently, due to exponential complexity of sphere decoding algorithms, the attention is moved

to a variety of sub-optimum polynomial time algorithms based on Semi-Definite Programming

(SDP), [124, 125, 85, 86, 143, 121, 150, 95, 91].

In [124, 86], a quasi-ML method for lattice decoding is introduced. Each signal constella-

tion is expressed by its binary representation and the decoding is transformed into a quadratic

minimization problem [124]. Then, the resulting problem is solved using a relaxation for rank-

one matrices in SDP context. It is shown that this method has a near optimum performance and

a polynomial time worst case complexity. However, the method proposed in [124] is limited

to scenarios that the constellation points are expressed as a linear combination of bit labels.

A typical example is the case of natural labeling in conjunction with PSK constellation [125].
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Another quasi-maximum likelihood decoding method is introduced in [85] for larger PSK con-

stellations with near ML performance and low complexity.

Another quasi-ML decoding method is introduced in [143] for the MIMO systems em-

ploying 16-QAM, where the structure of constellation is captured by a polynomial constraint.

Then, by introducing some slack variables, the constraints are expressed in terms of quadratic

polynomials. This method can be generalized for larger constellations at the cost of defining

more slack variables, increasing the complexity, and significantly decreasing the performance.

The method proposed in [121] is a further relaxation of [143], only utilizing upper and lower

bounds on the symbol energy in the relaxation step. There is a very slight degradation in

performance compared to [143]; however, its computational complexity is independent of the

constellation size for any uniform QAM (order of complexity is cubic). The method in [150]

is a further tightening of [121] by appending some inequality conditions that are implicit in the

alphabet constraint. Its computational complexity is still less than that in [143].

This part presents several quasi-ML algorithms based on using SDP. The proposed SDP

relaxation models are based on vector lifting and matrix lifting SDP relaxations. The computa-

tional complexity of matrix lifting SDP models are low. However, a near-ML performance with

higher complexity with vector lifting SDP models can be achieved. In the next two chapters,

these relaxation models are presented in details.



CHAPTER 5

VECTOR LIFTING SEMI-DEFINITE PROGRAMMING

Abstract – In this chapter, a quasi-maximum likelihood algorithm based on Semi-Definite Pro-

gramming (SDP) is proposed. Several SDP relaxation models for Multiple-Input Multiple-

Output (MIMO) systems, with increasing complexity, are introduced. Interior-point methods

are used to solve the models and obtain a near-ML performance with polynomial computational

complexity. Lattice basis reduction is applied to further reduce the computational complexity

of solving these models.

5.1 Introduction

Semi-Definite Programming (SDP) is a powerful tool for bounding the optimal value of a

combinatorial optimization problem. Its first application in communications was to bound the

Shannon capacity of a graph [84]. The successful implementation of a sub-optimal solution for

MAX-CUT problem in [51] based on SDP opened a new approach on using SDP in different

applications. The application of SDP to the detection problem considered herein has been

studied previously in the communications literature [124, 125, 85, 86, 143, 121, 150, 95, 91].

This chapter develops an efficient approximate Maximum Likelihood (ML) decoder for

Multiple-Input Multiple-Output (MIMO) systems based on Vector Lifting Semi-Definite Pro-

gramming (VLSDP). In the proposed method, the transmitted vector is expanded as a linear

combination (with zero-one coefficients) of all the possible constellation points in each di-

mension. Using this formulation, the distance minimization in Euclidean space is expressed

in terms of a binary quadratic minimization problem. The minimization of this problem is

over the set of all binary rank-one matrices with row sums equal to one. In order to solve

this minimization problem, two relaxation models (Model III and IV) are presented, providing

55
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a trade-off between the computational complexity and the performance (both models can be

solved with polynomial-time complexity). Two additional relaxation models (Model I and II)

are presented as intermediate steps in the derivations of Model III and IV.

Model I: A preliminary SDP relaxation of the minimization problem is obtained by remov-

ing the rank-one constraint in the problem and using Lagrangian duality [146]. This relaxation

has many redundant constraints and no strict interior point in the feasible set (there are numer-

ical difficulties in computing the solution for a problem without an interior point).

Model II: To overcome this drawback, the feasible set is projected onto a face of the semi-

definite cone. Then, based on the identified redundant constraints, another form of the relax-

ation is obtained, which can be solved using interior-point methods.

Model III: The relaxation Model II results in a weak lower bound. To strengthen this

relaxation model, the structure of the feasible set is investigated. An interesting property of the

feasible set imposes a zero pattern for the solution. Adding this pattern as an extra constraint

to the previous relaxation model results in a stronger model.

Model IV: Finally, the strongest relaxation model in this chapter is introduced by adding

some additional non-negative constraints. The number of non-negative constraints can be ad-

justed to provide a trade-off between the performance and complexity of the resulting method.

Simulation results show that the performance of the last model is near optimal for M-ary

QAM or PSK constellation (with an arbitrary binary labeling, say Gray labeling1). There-

fore, the decoding algorithm built on this model has a near-ML performance with polynomial

computational complexity.

The proposed models result in a solution that is not necessarily a binary rank-one matrix.

This solution is changed to a binary rank-one matrix through a randomization algorithm. As

the first step, the conventional randomization algorithms are modified to adopt to the SDP

problem here. Moreover, a new randomization procedure is introduced which finds the optimal

binary rank-one solution in a smaller number of iterations than the conventional ones. Finally,

using a lattice basis reduction method to further reduce the computational complexity of the

proposed relaxation models is discussed. The extension of the decoding technique for soft

output decoding is also investigated.

5.2 Problem Formulation

Consider the MIMO system defined in (54). Noting xi ∈ {s1, · · · , sK}, for i = 1, · · · ,N,

xi = ui,1s1 + ui,2s2 + · · · + ui,K sK , (59)

1It is shown that Gray labeling, among all possible constellation labeling methods, offers the lowest possible
average probability of bit errors [2].



CHAPTER 5. Vector Lifting Semi-Definite Programming 57

where

ui, j ∈ {0, 1} and
K∑

j=1

ui, j = 1, ∀ i = 1, · · · ,N. (60)

Let

U =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

u1,1 · · · u1,K

u2,1 · · · u2,K
...
. . .

...

uN,1 · · · uN,K

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
and s =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
s1
...

sK

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦ .

Therefore, the transmitted vector is x = Us with the constraint UeK = eN . This constraint

represents a constraint on the binary matrix U with row sums equal to one.

Remark 1 Note that for the case of complex numbers, e.g. PSK constellations, the same

approach can be applied, resulting in x̃ = Us̃ for the MIMO system in (53), where s̃ is the

vector of PSK constellation points.

Considering the new notation for the input vector x, the ML decoding rule in (56) is equiv-

alent to

min
UeK=eN

‖y −HUs‖2 ≡
min

UeK=eN

sT UT HT HUs − 2yT HUs. (61)

Therefore, the decoding problem can be formulated as

min sT UT HT HUs − 2yT HUs

s.t. UeK = eN

ui, j ∈ {0, 1}. (62)

Let Q = HT H, S = ssT , C = −syT H, and let EN×K denote the set of all binary matrices in

MN×K with row sums equal to one, i.e.

EN×K=
{
U∈MN×K : UeK = eN , ui j ∈ {0, 1}

}
. (63)

Therefore, the minimization problem (62) is

min trace
(
SUT QU + 2CU

)
s.t. U ∈ EN×K (64)
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5.3 Vector-Lifting Semi-Definite Programming Solution

A quadratic vector optimization solution of (64) can be obtained by defining u = vec(UT ),U ∈
EN×K . By using this notation, the objective function is replaced by uT (Q⊗S)u+2vec(C)T u,i.e.

the minimization problem (64) is

min uT (Q ⊗ S)u + 2vec(C)T u.

s.t. u = vec(UT ),U ∈ EN×K (65)

This is a quadratic minimization problem with binary variables [146]. Some recent stud-

ies on solving binary quadratic minimization problems such as Graph Partitioning [147] and

Quadratic Assignment Problem [156,123] show that SDP is a very promising approach to pro-

vide tight relaxations for such problems. In the following, several SDP relaxation models for

the minimization problem in (65) are derived. Appendix C provides the mathematical frame-

work for these models using the Lagrangian duality [146].

Consider the minimization problem in (65). Since u is a binary vector, the objective func-

tion can be represented by

uT (Q ⊗ S)u + 2vec(C)T u = trace

⎛⎜⎜⎜⎜⎜⎝[ 1 uT
]
LQ

⎡⎢⎢⎢⎢⎢⎣ 1

u

⎤⎥⎥⎥⎥⎥⎦
⎞⎟⎟⎟⎟⎟⎠

= trace

⎛⎜⎜⎜⎜⎜⎝LQ

⎡⎢⎢⎢⎢⎢⎣ 1

u

⎤⎥⎥⎥⎥⎥⎦ [ 1 uT
]⎞⎟⎟⎟⎟⎟⎠

= trace

⎛⎜⎜⎜⎜⎜⎝LQ

⎡⎢⎢⎢⎢⎢⎣ 1 uT

u uuT

⎤⎥⎥⎥⎥⎥⎦
⎞⎟⎟⎟⎟⎟⎠ , (66)

where LQ :=

⎡⎢⎢⎢⎢⎢⎣ 0 vec(C)T

vec(C) Q ⊗ S

⎤⎥⎥⎥⎥⎥⎦ . Therefore, the minimization problem (65) using VLSDP

can be written as

min trace LQ

⎡⎢⎢⎢⎢⎢⎣ 1 uT

u uuT

⎤⎥⎥⎥⎥⎥⎦
s.t. u = vec(UT ), U ∈ EN×K .

(67)

Note that in the VLSDP optimization problem (65), u is an n = NK-D vector, and hence, the

optimization parameter is a matrix in SNK+1, which has (NK + 1)2 variables.

To derive the first semi-definite relaxation model, a direct approach based on the well

known lifting process [5] is selected. In accordance to (67), for any U ∈ EN×K , u = vec(UT ),

the feasible points of (67) are expressed by

Yu =

⎡⎢⎢⎢⎢⎢⎣ 1

u

⎤⎥⎥⎥⎥⎥⎦ [ 1 uT
]
=

⎡⎢⎢⎢⎢⎢⎣ 1 uT

u uuT

⎤⎥⎥⎥⎥⎥⎦ . (68)
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The matrix Yu is a rank-one and positive semi-definite matrix. Also,

diag(Yu) = YT
u0,:
= Yu:,0 ,

where Yu0,: (resp. Yu:,0) denotes the first row (resp. the first column)2 of Yu (Note that u is a

binary vector, and consequently, diag(uuT ) = u).

In order to obtain a tractable SDP relaxation of (67), the rank-one restriction is removed

from the feasible set. In fact, the feasible set is approximated by another larger set F , defined

as

F := conv
{
Yu : u = vec(UT ), U ∈ EN×K

}
. (69)

This results in the first relaxation model (Model I) for the original problem given in (65):

min traceLQY

s.t. Y ∈ F (70)

It is clear that the matrices

Yu for u = vec(UT ), U ∈ EN×K

are the feasible points of F . Moreover, since these points are rank-one matrices, they are

contained in the set of extreme points of F , see e.g. [111]. In other words, if the matrix Y is

restricted to be rank-one in (70), i.e. Y =

⎡⎢⎢⎢⎢⎢⎣ 1

u

⎤⎥⎥⎥⎥⎥⎦ [1 uT
]
, for some u ∈ Rn, then the optimal

solution of (70) provides the optimal solution of (65).

The SDP relaxation problem (70) is not solvable in polynomial time and F has no interior

points. Therefore, the goal is to approximate the set F by a larger set containing F . In the

following, it is shown thatF actually lies in a smaller dimensional subspace. Moreover, relative

to this subspace, F will have interior points.

5.3.1 Geometry of the Relaxation

In order to approximate the feasible set F for solving the problem, the geometrical structure

of this set is elaborated. In other words, the constraints defining UeK = eN is eliminated by

providing a tractable representation of the linear manifold spanned by this constraint. This

method is called gradient projection or reduced gradient method [56]. The following lemma

is on the representation of matrices having sum of the elements in each row equal to one.

Lemma 7 Let

G =
[

IK−1 −eK−1

]
∈ M(K−1)×K (71)

2Matrix Yu is indexed from zero.
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and

F =
1
K

(
EN×K − EN×(K−1)G

) ∈ MN×K . (72)

A matrix U ∈ MN×K with the property that the summation of its elements in each row is equal

to one, i.e. UeK = eN, can be written as

U = F + ÛG, (73)

where Û = U(1 : N, 1 : (K − 1)).

Proof: see Appendix A.

Corollary 2 ∀U ∈ EN×K, ∃Û ∈ MN×(K−1), ûi j ∈ {0, 1} s.t. U = F + ÛG, where Û = U(1 : N, 1 :

(K − 1)).

Using Lemma 7, the following theorem can be proved which provides the structure of the

elements in the set F .

Theorem 8 Define the vector bV as

bV =
1
K

(eNK − (IN ⊗GT )e(K−1)N)

and let

V̂ =

⎡⎢⎢⎢⎢⎢⎣ 1 0T
N(K−1)

bV IN ⊗GT

⎤⎥⎥⎥⎥⎥⎦ , (74)

where V̂ ∈ M(NK+1)×((K−1)N+1). For any Y ∈ F , there exists a symmetric matrix R of order

N(K − 1) + 1, indexed from 0 to N(K − 1), such that

Y = V̂RV̂T , R � 0, and r00 = 1, rii = r0i, ∀i. (75)

Also, if Y is an extreme point ofF , then ri j ∈ {0, 1}, otherwise ri j ∈ [0, 1] for i, j ∈ {0, . . . ,N(K−
1)}.

Proof: see Appendix A.

Using Theorem 8, it is easy to show that the set Fr contains F :

Fr =
{
Y ∈ SNK+1 : ∃R ∈ S(K−1)N+1, R � 0,

r00 = 1,Y = V̂RV̂T , diag(Y) = Y0,:

}
. (76)

Therefore, the feasible set in (70) is approximated by Fr. This results in the second relaxation

model (Model II) of the original problem given in (65):

min trace (V̂TLQV̂)R

s.t. diag(V̂RV̂
T
) = (1, (V̂RV̂

T
)0,1:n)T

R � 0. (77)
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Note that the matrices Yu are contained in the set of extreme points of F . Only those faces

of F which contain all of the extreme points are required to be considered. Therefore, only

the minimal face (the intersection of all these faces) is desirable. It will be shown that the SDP

relaxation (77) is the projection of the SDP relaxation (70) onto the minimal face of F .

Solving the relaxation model in (70) over F results in the optimal solution of the original

problem in (67), but this problem is NP-hard. Solving the relaxation model in (77) over Fr

results in a weaker bound for the optimal solution. In order to improve this bound, the relax-

ation is strengthen by adding an interesting property of the matrix Yu. This results in the next

relaxation model.

5.3.2 Tightening the Relaxation by Gangster Operator

The feasible set of the minimization problem (77) is convex. It contains the set of matrices of

the form Yu corresponding to different vectors u. However, the SDP relaxations may contain

many points that are not in the affine hull of these Yu. In the following, a condition which

is implicit in the matrix Yu is extracted and explicitly is added to the relaxation model (77).

Subsequently, some redundant constraint are removed and this results in an improved relaxation

(relaxation Model III).

Theorem 9 Let U denote the set of all binary vectors u = vec(UT ), U ∈ EN×K. Define

the barycenter point, Ŷ, as the arithmetic mean of all the feasible points in the minimization

problem (67); therefore,

Ŷ =
1

KN

∑
u∈U

Yu =
1

KN

∑
u∈U

⎡⎢⎢⎢⎢⎢⎣ 1 uT

u uuT

⎤⎥⎥⎥⎥⎥⎦ . (78)

Then:

i) Ŷ has (a) the value of 1 as its (0, 0) element, (b) N blocks of dimension K × K on its

diagonal which are diagonal matrices with elements 1/K, and (c) the first row and first

column equal to the vector of its diagonal elements. The rest of the matrix is composed
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of K × K blocks with all elements equal to 1/K2:

Ŷ =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 1
K eT

n

1
K en

1
K IK

1
K2 EK · · · 1

K2 EK
...

...
. . .

...
...

...
. . .

...
1

K2 EK · · · 1
K2 EK

1
K IK

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
=

⎡⎢⎢⎢⎢⎢⎣ 1
1
K en

⎤⎥⎥⎥⎥⎥⎦ [ 1 1
K eT

n

]

+

⎡⎢⎢⎢⎢⎢⎣ 0 0T
n

0n
1

K2 IN ⊗ (KIK − EK)

⎤⎥⎥⎥⎥⎥⎦ ; (79)

ii) rank(Ŷ) = N(K − 1) + 1;

iii) The NK + 1 eigenvalues of Ŷ are given in the vector

(
K + N

K
,

1
K

eT
N(K−1)
, 0T

N

)T

;

iv) The null space of Ŷ can be expressed by N(Ŷ) =
{
u : u ∈ R(TT )

}
, where the constraint

matrix T is the following N × (NK + 1) matrix

T =
[
−eN IN ⊗ eK

]
;

v) the range of Ŷ can be expressed by the columns of the (NK + 1) × (N(K − 1) + 1) matrix

V̂. Furthermore, TV̂ = 0.

Proof: see Appendix A.

Remark 3 The faces of the positive semi-definite cone are characterized by the null space of

the points in their relative interior. The minimal face of the SDP problem contains matrices Yu

and can be expressed as V̂SN(K−1)+1V̂T . Thus, the SDP relaxation (77) is a projected relaxation

onto the minimal face of the feasible set F .

Theorem 9 suggests a zero pattern for the elements of F . Therefore, Gangster Operator

[156] can be used to represent these constraints more efficiently. Let J be a set of indices, then

this operator is defined as
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(GJ(Y))i j =

⎧⎪⎪⎨⎪⎪⎩ yi j if (i, j) or ( j, i) ∈ J

0 otherwise.
(80)

Considering the barycenter point, GJ(Ŷ) = 0 for

J = {(i, j) : i = K(p − 1) + q, j = K(p − 1) + r,

q < r, q, r ∈ {1, · · · ,K}, p ∈ {1, · · · ,N}} . (81)

Since Ŷ is a convex combination of all matrices in U with entries either 0 or 1; hence, from

(81), it is clear that GJ(Yu) = 0. Also, all the points from the feasible set F are the convex

combination of Yu. Therefore,

GJ(Y) = 0, ∀Y ∈ F . (82)

The feasible set of the projected SDP in (77) is tightened by adding the constraints GJ(Y) = 0.

By combining these constraints and (77), there are some redundant constraints that can be

removed to enhance the relaxation model. This is expressed in the following lemma.

Lemma 10 Let R be an arbitrary (N(K − 1) + 1) × (N(K − 1) + 1) symmetric matrix with

R =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

r00 R01 · · · R0N

R10 R11 · · · R1N
...

. . .
. . .

...

RN0 RN1 · · · RNN

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
, (83)

where r00 is a scalar, Ri0, for i = 1, · · · ,N are (K − 1) × 1 vectors and Ri j, for i, j = 1, · · · ,N,

are (K − 1)× (K − 1) blocks of R. Theorem 8 states that Y = V̂RV̂T . The matrix Y can also be

partitioned as

Y =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

y00 Y01 · · · Y0N

Y10 Y11 · · · Y1N
...

. . .
. . .

...

YN0 YN1 · · · YNN

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
, (84)

where y00 is a scalar, Yi0, for i = 1, · · · ,N are K × 1 vectors and Yi j, for i, j = 1, · · · ,N, are

K × K blocks of Y. Then,

1. y00 = r00 and Y0ieK = r00, for i = 1, · · · ,N.

2. Y0 j = eT
KYi j for i, j = 1, · · · ,N.
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Proof: Noting TY = 0 (see Theorem 9), the proof follows.

If the Gangster operator is applied to (77), the following constraint would be redundant:

diag(V̂RV̂
T
) = (1, (V̂RV̂

T
)0,1:n)T . (85)

Note that using Lemma 10, Y0 j = eT
KY j j for j = 1, · · · ,N and the off-diagonal entries of each

Y j j are zero. Therefore, by defining a new set J̄ = J ∪ {0, 0} and eliminating the redundant

constraints, a new SDP relaxation model (Model III) is obtained:

min trace(V̂TLQV̂)R

s.t. GJ̄(V̂RV̂T) = E00

R � 0, (86)

where R is an (N(K − 1) + 1) × (N(K − 1) + 1) matrix and E00 is an (NK + 1) × (NK + 1)

all zero matrix except for a single element equal to 1 in its (0, 0)th entry. With this new index

set J̄, all the redundant constraints can be removed while maintaining the SDP relaxation. The

relaxation model in (86) corresponds to a tighter lower bound and has an interior point in its

feasible set as shown in the following theorem.

Theorem 11 The (N(K − 1) + 1) × (N(K − 1) + 1) matrix R̂ defined as⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣
1 1

K eT
N(K−1)

1
K eN(K−1)

1
K2 (EN(K−1) + IN ⊗ (KIK−1 − EK−1))

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦ (87)

is a strictly interior point of the feasible set for the relaxation problem (86).

Proof: The matrix R̂ is positive definite. The rest of the proof follows by showing

V̂R̂V̂T = Ŷ.

The relaxation in (86) is further tightened by considering the non-negativity constraints

[123]. All the elements of the matrix Y which are not covered by the Gangster operator are

greater than or equal to zero. These inequalities can be added to the set of constraints in (86),

resulting in a stronger relaxation model (Model IV):

min trace(V̂TLQV̂)R

s.t. GJ̄(V̂RV̂T) = E00

GĴ(V̂RV̂T) ≥ 0

R � 0, (88)

where the set Ĵ indicates those indices which are not covered by J̄.
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Note that this model is considerably stronger than model (86) because non-negative con-

straints are also imposed in the model. The advantage of this formulation is that the number of

inequalities can be adjusted to provide a trade-off between the strength of the bounds and the

complexity of the problem. The larger number of the constraints in the model is, the better it

approximates the optimization problem (67) (with an increase in the complexity).

The most common methods for solving SDP problems of moderate sizes (with dimensions

on the order of hundreds) are Interior Point Methods (IPMs), whose computational complex-

ities are polynomial, see e.g. [3]. There are a large number of IPM-based solvers to handle

SDP problems, e.g., DSDP [15], SeDuMi [127], SDPA [70], etc. In the numerical experi-

ments, DSDP and SDPA are used for solving (86), and SeDuMi is implemented for solving

(88). Note that adding the non-negativity constraints increases the computational complexity

of the model. Since the problem sizes of interest are moderate, the complexity of solving (88)

with IPM solvers is tractable.

5.4 Randomization Method

Solving the SDP relaxation models (86) and (88) results in a matrix R. This matrix is trans-

formed to Y using Y = V̂RV̂T , whose elements are between 0 and 1. This matrix has to be

converted to a binary rank-one solution of (67), i.e. Yu, or equivalently, a binary vector u as a

solution for (65).

For any feasible point of (67), i.e. Yu, the first row, the first column, and the vector of the

diagonal elements of this symmetric matrix are equal to a binary solution for (65). For any ma-

trix Y resulting from the relaxation problems (86) or (88), its first row, its first column, and the

vector of its diagonal elements are equal. Therefore, the vector u is approximated by rounding

off the elements of the first column of the matrix Y. However, this transformation results in a

loose upper bound on the performance. In order to improve the performance, Y is transformed

to a binary rank-one matrix through a randomization procedure. An intuitive explanation of the

randomization procedure is presented in [124]. In the following, two randomization algorithms

are presented to transform Y to a binary rank-one matrix.

5.4.1 Algorithm I

Goemans and Williamson [51] introduced an algorithm that randomly transforms an SDP re-

laxation solution to a rank-one solution. This approach is used in [124] for the quasi-ML

decoding of a PSK signalling. This technique is based on expressing the BPSK symbols by

{−1, 1} elements. After solving the relaxation problem in [124], the Cholesky factorization

is applied to the n × n matrix Y and the Cholesky factor V = [v1, . . . , vn] is computed, i.e.
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Y = VVT . In [124], it is observed that one can approximate the solution of the distance mini-

mization problem, u, using V, i.e. ui is approximated using vi. Thus, the assignment of −1 or

1 to the vectors {v1, . . . , vn} is equivalent to specifying the elements of u.

−1 1

Random Plane

Figure 13: Representation of the randomization algorithm in [51]

It is shown that norms of the vectors {v1, . . . , vn} are one, and they are inside an n-D unit

sphere [124], see Figure 13. These vectors should be classified in two different groups corre-

sponding to 1 and −1. In order to assign −1 or 1 to these vectors, the randomization procedure

generates a random vector uniformly distributed in the sphere. This vector defines a plane

crossing the origin. Among given vectors vi, i = 1, . . . n, all the vectors at one side of the plane

are assigned to 1 and the rest are assigned to −1, as shown in Figure 13. This procedure is

repeated several times and the vector u resulting in the lowest objective function is selected as

the answer.

In the proposed approach, the variables are binary numbers. In order to implement the

randomization procedure of [51], the computed solution of the {0, 1} SDP formulation is bijec-

tively mapped to the solution of the corresponding {−1, 1} SDP formulation. More precisely,

the following mapping is used:

M =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 0 · · · 0

−1 2 · · · 0
...
...
. . .
...

−1 0 · · · 2

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
,

Y{−1,1} =MY{0,1}MT , (89)

where Y{0,1} is the resulting matrix from the relaxation model (86) or (88) and Y{−1,1} is its

corresponding matrix with {−1, 1} elements. Using (89), the solution for (65) can be com-

puted using a similar randomization method as in [124]. The computational complexity of this

randomization algorithm is polynomial [124].

Considering zero-one elements in the proposed SDP models, a new randomization proce-

dure inspired by [51] is proposed. This algorithm can be applied to {0, 1} formulation directly.



CHAPTER 5. Vector Lifting Semi-Definite Programming 67

Therefore, the complexity of the whole randomization procedure is reduced, since the prepro-

cessing step, i.e. bijective mapping in (89), is omitted.

5.4.2 Algorithm II

After solving the relaxation model (86) or (88), the Cholesky factorization of Y results in

a matrix V = [v1, . . . , vn] such that Y = VVT . The matrix Y is neither binary nor rank-

one. Therefore, norms of the resulting vectors vi are between zero and one. These vectors are

depicted in Figure 14. Intuitively, a sphere with a random radius uniformly distributed between

zero and one has the same functionality as the random plane in Figure 13.

Random
Sphere

Figure 14: Graphic representation for the proposed randomization algorithm

In order to assign 0 or 1 to these vectors, the randomization procedure generates a random

number, uniformly distributed between 0 and 1, as the radius of the sphere. Among given vec-

tors vi, i = 1, . . . , n, all the vectors whose norms are larger than this number are assigned to 1

and the rest are assigned to 0. In another variation of this algorithm, the radius of the sphere

can be fixed, and norms of these vectors are multiplied by a random number. This procedure

is repeated several times and the vector u resulting in the smallest objective function value in

(65) is selected as the solution. Simulation results confirm that the proposed method results

in a slightly better performance for the lattice decoding problem compared to the first algo-

rithm. Also, the computational complexity of the randomization algorithm is decreased, due

to the removal of the preprocessing step in (89). It is worth mentioning that the randomization

procedure can also be implemented for the matrix R, which results in further reduction in the

computational complexity.

5.5 Complexity Reduction Using Lattice Basis Reduction

Assume that an initial solution for the lattice decoding problem is computed using one of the

simple sub-optimal algorithms such as ZFD or channel inversion, e.g. s′ =
[
H−1y

]
. If the
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channel is not ill-conditioned, i.e. the columns of the channel matrix are nearly orthogonal

and short, it is most likely that the ML solution of the lattice decoding problem is around s′.

Therefore, using a reduced basis for the lattice, each xi in (59) can be expressed by a few

points around s′i , not all the points in the set {s1, · · · , sK}. In general, this results in a sub-

optimal algorithm. However, for the special case of a MIMO system with two antennas (with

real coefficients), it has been shown that by using the LLL approximation and considering two

points per dimension the ML decoding performance is achieved [151].

Let L = HQ be the LLL reduced basis for the channel matrix H, where Q is a unimodular

matrix. The MIMO system model in (54) can be written as

y = LQ−1x + n. (90)

Consider the QAM signaling. Without loss of generality, it can be assumed that coordinates

of x are in the integer grid. Since Q is a unimodular matrix, the coordinates of a new variable

defined as x′ = Q−1x are also in the integer grid. Therefore, the system in (90) is modelled

by y = Lx′ + n. Note that by multiplying x by Q−1 the constellation boundary will change.

However, it is shown that in the lattice decoding problem with finite constellations the best

approach is to ignore the boundary and compute the solution [34]. If the solution is outside the

region, it is considered as an error. This change of boundary will result in some performance

degradation. The performance degradation for some scenarios are depicted in Figure 19 and

Figure 20.

In order to implement the proposed method using LLL basis reduction, each component of

x′ is expressed by a linear combination (with zero-one coefficients) of L (usually much smaller

than K) integers around s′i , where s′ =
[
L−1y

]
. Then, the proposed algorithm can be applied

to this new model. Due to the change of constellation boundary, there is a degradation in the

performance. However, the complexity reduction is large. The trade-off between performance

degradation and complexity reduction can be controlled by the choice of L (see simulation

results). The reduction in the complexity is more pronounced for larger constellations. Note

that the dimension of the semi-definite matrix Y is N ∗ (K − 1) + 1. Therefore, the LLL

reduction decreases the dimension of the matrix Y to N ∗ (L − 1) + 1 (where usually L � K),

and consequently, decreases the computational complexity of the proposed algorithm. The

performance of this method is shown in the simulation results.

5.6 Extension for Soft Decoding

In this section, the proposed SDP relaxation decoding method is extended for soft decoding

in MIMO systems. The SDP soft decoder is derived as an efficient solution of the Max-Log
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approximated soft ML decoder. The complexity of this method is much less than that in the

soft ML decoder. Moreover, the performance of the proposed method is comparable with that

in the ML decoder. Also, the proposed method can be applied to any arbitrary constellation

and labeling method, say Gray labeling.

In the MIMO system defined in (54), any transmit data x is represented by Nb = log2 K bits

(x = map(b), where b is the corresponding binary input). Given a received vector y, the soft

decoder returns the soft information about the likelihood of bj = 0 or 1, j = 1, · · · ,NNb. The

likelihoods are calculated by Log-Likelihood Ratios (LLR) in a Maximum A Posteriori (MAP)

decoder by

L(bj|y) = log

(
P(bj = 1|y)

P(bj = 0|y)

)
. (91)

Define

LA(bj|y) = log
P(bj = 1)

P(bj = 0)
. (92)

It is shown that the LLR values are formulated by [63]

L(bj|y) = log

∑
b∈Bk,1

p(y|b). exp
(

1
2bT

[k].LA,[k]

)
∑

b∈Bk,0
p(y|b). exp

(
1
2bT

[k].LA,[k]

)
︸����������������������������������������︷︷����������������������������������������︸

LE(bk |y)

+ LA(bj|y), (93)

where b[k] denotes the sub-vector of b obtained by omitting its kth element bk, LA,[k] denotes the

vector of allLA values, also omitting bk, and Bk,1 (resp. Bk,0) denotes the set of all input vectors,

b, such that bk = 1 (resp. bk = 0). Note that there is an isomorphism between Bk,1 (resp. Bk,0)

and Xk,1 (resp. Xk,0), where Xk,1 (resp. Xk,0) denotes the set of all corresponding constellation

symbols, Xk,1 =
{
x : x = map(b),b ∈ Bk,1

}
(resp. Xk,0 =

{
x : x = map(b),b ∈ Bk,0

}
).

As shown in [63], the computation of the LLR values in (93) requires computing the like-

lihood function p(y|b), i.e.

p(y|x = map(b)) =
exp

[
− 1

2σ2 . ‖ y −Hx ‖2
]

(
2πσ2

)N
, (94)

where σ2 = 1
S NR .

By having the likelihood functions, these LLR values are approximated efficiently using

the Max-Log approximation [63]

LE(bk|y) ≈+ 1
2

max
b∈Bk,1

{
− 1
σ2
‖ y−Hx ‖2 +bT

[k].LA,[k]

}

− 1
2

max
b∈Bk,0

{
+

1
σ2
‖ y−Hx ‖2 +bT

[k].LA,[k]

}
. (95)
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Without loss of generality, it can be assumed that all components, xi, of an input vector

are equiprobable3; therefore, the second term in each maximization in (95) will be removed.

Hence, computing the LLR values requires to solve problems of the form

min
x∈Xk,ζ

‖ y −Hx ‖2, (96)

where k = 1, · · · ,NNb and ζ = 0 or 1. Note that, as mentioned in [142], only NNb+1 problems

among 2NNb problems of the form (96) are considered.

The quasi-ML decoding method proposed in this paper can be applied to the problem (96).

However, Xk,ζ must be defined in implementing the algorithm. This set includes all the input

vectors, x ∈ SN , such that bk = ζ. Assigning 0 or 1 to one of the bits in b removes half of the

points in SN . In other words, when bk = ζ, one of the components of the input vector x, say xp,

can only select half of the points in the set {s1, · · · , sK}, say
{
sp1 , · · · , sp K

2

}
. Therefore, the pth

component of x is represented by

xp = up(1)sp1 + · · · + up(
K
2

)sp K
2
. (97)

As a result, the same matrix expression as (59) is obtained, except that the length of the

vector u is (N − 1) ∗ K + K
2 . Now, the proposed method can be applied to the new equation

based on the new vector u.

5.7 Simulation Results
5.7.1 Performance Analysis

The two proposed Models III and IV are simulated for decoding in MIMO systems with QAM

and PSK constellations. Figure 15 demonstrates that the proposed quasi-ML method using

Model III and the randomization procedure achieves near ML performance in an un-coded

2 × 2 MIMO system with QPSK constellation. Figure 16 shows the performance in a 4 × 4

MIMO system with 16-QAM. The performance analysis of a MIMO system with different

number of antennas employing 8-PSK is shown in Figure 17. In Figures 15, 16, and 17, the

curved lines with the stars represent the performance of the system using relaxation Model

III, while a simple rounding algorithm, as described in Section 5.4, transforms matrix Y to the

binary vector u. The ML decoding performance is also denoted by a curved line with circles.

By increasing the dimension, the resulting gap between the relaxation Model III and the ML

decoding increases. However, using the randomization Algorithm I with Mrand = 30 to 50

3In order to consider the effects of non-equiprobable symbols, both approaches presented in [125] and [142]
can be applied.
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significantly decreases this gap (curved line with diamonds). The curved lines with squares

show the performance of the relaxation Model IV with a simple rounding, in which all the non-

negative constraints are included. This curve is close to ML performance. It is clear that the

relaxation Model IV is much stronger than the relaxation Model III. Note that adopting different

number of non-negative constraints will change the performance of the system between the

two curves with diamonds and squares. In other words, the trade-off between complexity and

performance relies on the number of extra non-negative constraints.
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Figure 15: Performance of the proposed Models III and IV in a N ×N MIMO system employ-
ing QPSK

Figure 18 compares the two proposed Randomization procedure for the relaxation Models

III and IV. The effect of the randomization methods, Algorithm I and II, for the relaxation

Model III is shown. As expected, Algorithm II performs slightly better, while its computational

complexity is lower. The solution of the relaxation model in (88), in most cases, corresponds

to the optimal solution of the original problem (65). In the other words, because the model in

(88) is strong enough, there is no need for the randomization algorithm. Several compromises

for improving the performance can be done, e.g. including only some of the non-negative

constraints in (88) and/or using a randomization procedure with a fewer number of iterations.

In order to reduce the computational complexity of the proposed method, the LLL lattice

basis reduction is implemented as a pre-processing step for the relaxation Model IV. Figure 19

and Figure 20 show the effect of using the LLL lattice basis reduction in 2×2 and 4×4 multiple

antenna systems with 64-QAM and 256-QAM. In a system with 64-QAM and 256-QAM,
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Figure 16: Performance of the proposed Models III and IV in a N ×N MIMO system employ-
ing 16-QAM
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Figure 17: Performance of the proposed Models III and IV in a N ×N MIMO system employ-
ing 8-PSK
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Figure 18: Different randomization algorithms in a 4 × 4 MIMO system employing 16-QAM
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Figure 19: Performance of using LLL lattice basis reduction for relaxation Model IV in a 2×2
MIMO system with L = log 2(K)
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Figure 20: Performance of using LLL lattice basis reduction for relaxation Model IV in a 4×4
MIMO system with L = log 2(K)

the performance of the relaxation Model IV is close to the ML performance with K = 8 and

K = 16, respectively. By using LLL reduction and considering L = log2(K) symbols around the

initial point, the performance degradation is acceptable, see Figure 19 and Figure 20. Note that

the resulting gap in the performance is small, while the reduction in computational complexity

is substantial.

5.7.2 Complexity Analysis

Semi-definite programs of reasonable size can be solved in polynomial time within any spec-

ified accuracy by IPMs. IPMs are iterative algorithms which use a Newton-like method to

generate search directions to find an approximate solution to the nonlinear system. The IPMs

converge vary fast and an approximately optimal solution is obtained within a polynomial num-

ber of iterations. For a survey on IPMs see [37, 152]. In the sequel, an analysis for the worst

case complexity of solving Models III and IV by IPMs is provided.

It is known (see e.g. [137]) that a SDP with rational data can be solved, within a tolerance

ε, in O(
√

m log(1/ε)) iterations, where m is the dimension of the matrix variable. Note that for

the SDP problems in (86) and (88), m = N(K − 1) + 1.

The computational complexity for one interior-point iteration depends on several factors.

The main computational task in each iteration is solving a linear system of order determined
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by the number of constraints, p. This task requires O(p3) operations. The remaining com-

putational tasks involved in one interior-point iteration include forming system matrix whose

total construction requires O(pm3 + p2m2) arithmetic operations. Thus, the complexity per

iteration of the IPM for solving SDP problem whose matrix variable is of dimension m and

number of equality constraints p, is O(pm3 + p2m2 + p3). This means for a given accuracy ε,

an interior-point method in total requires at most O(p(m3 + pm2 + p2)
√

m log(1/ε)) arithmetic

operations.

Since the SDP relaxation Model III contains O(K2N) equality constraints, it follows that

a solution to (86) can be found in at most O(N4.5K6.5 log(1/ε)) arithmetic operations. SDP

relaxation Model IV contains O(K2N) equations and O(K2N2) sign constraints. In order to

solve relaxation (88), the SDP model is formulated as a standard linear cone program (see

e.g. [128]) by adding some slack variables. The additional inequality constraints make the

model in (88) considerably stronger than the model in (86) (see numerical results), but also

more difficult to solve. An IPM for solving SDP Model IV within a tolerance ε requires at most

O(N6.5K6.5 log(1/ε)) arithmetic operations. Since the problem sizes of interest are moderate,

the problem in (88) is tractable. However, there exist a trade-off between the strength of the

bounds and the computational complexity for solving these two models (see Section 5.3).

The complexity of the randomization procedure applied to the model (86) is negligible

compared to that of solving the problem itself. Namely, if the number of randomization iter-

ations is denoted by Nrand, then the worst case complexity of the randomization procedure is

O(NKNrand).

The optimization problems (86) and (88) are polynomially solvable. These problems have

many variables; however, they contain sparse low-rank (rank-one) constraint matrices. Exploit-

ing the structure and sparsity characteristic of semi-definite programs is crucial to reduce the

complexity. In [14], it is shown that rank-one constraint matrices (similar to the proposed mod-

els) reduce the complexity of the interior-point algorithm for positive semi-definite program-

ming by a factor of NK. In other words, the complexities of the SDP relaxation problems (86)

and (88) are decreased to O(N3.5K5.5 log(1/ε)) and O(N5.5K5.5 log(1/ε)), respectively. Also,

implementing the rank-one constraint matrices results in a faster convergence and a saving in

the computation time and memory requirements.

Remark 4 When the LLL lattice basis reduction is used in conjunction with Model III and IV,

the value of K is replaced with L in the aforementioned analysis. As mentioned before, this

value is much smaller than K, e.g. in the simulation results L = log2(K), which results in

reducing the computational complexity.
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5.7.3 Comparison

The worst-case complexity of the SD method [58, 1] is known to be an exponential function

of dimension M over all ranges of rate and SNR [58]. The complexity analysis shows that

the proposed SDP algorithms possess a polynomial-time worst case complexity. It should

be emphasized that in real time problems, the time spent for decoding the received vector is

important and it can be considered as a measure of the complexity.

In the following, the worst case complexities of the algorithm based on Model III, the

method proposed in [143], the method in [124], and the SD algorithm [1] are compared with

different random values of input vector, channel matrix, and noise for

Eb/N0 = {−5, 0, 5, 10, 15}dB.

For each value of Eb/N0, the algorithms are performed for 105 times and the maximum time

spent for the decoding procedure is saved in MaxTime. The average time spent for decod-

ing each case is stored in AveTime (all provided numbers for AveTime and MaxTime are in

seconds).

It should be emphasized that the MaxTime for each case depends on how the algorithm

is implemented. There are numerous variants for SD algorithm. In the following, the SD

algorithm is implemented based on the Schnorr-Euchner strategy proposed in [1]. Moreover,

the simulations of the proposed algorithms are implemented by one of the simplest available

packages, the SDPA package [70]. However, by utilizing the sparsity of the constraint matrices

as suggested in [14] and using the DSDP package, the computed AveTime and MaxTime can

be reduced dramatically (a factor of NK in the analysis), without any performance degradation.

Table 2: Comparison of MaxTime for different methods in a 4 × 4 MIMO system employing
16-QAM

Eb/N0 -5 0 5 10 15

Model III 0.1037 0.1095 0.1108 0.1178 0.1196

Method [143] 0.0685 0.0640 0.0697 0.0735 0.0624

Method [124] 0.0580 0.0633 0.0536 0.0646 0.0596

SD Method 61.8835 47.0480 28.0347 4.3848 2.2477

Table 2 shows the simulation results for a MIMO system with M̃ = Ñ = 4 employing

16-QAM. The maximum time for decoding a symbol using SD algorithm is much longer than

the corresponding time in the proposed SDP relaxation method. The other three methods have

comparable MaxTime. As it is also shown in the analysis, the proposed Model III is more
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Figure 21: Comparison of the relaxation model proposed in LLK [85] and that in the proposed
method in a 4 × 4 MIMO system employing 8-PSK modulation
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Figure 22: Comparison of the relaxation model proposed in SLW [124], WES [143] and that
in our proposed method in a 4 × 4 MIMO system employing 16-QAM modulation
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complex compared to the two other SDP methods. However, this method outperforms the

other SDP methods in [124] and [143].

The relaxation Model III outperforms the SDP methods proposed in papers [124] and [85].

Figure 21 compares the performance of [85] and the relaxation Model III and the performance

of the method proposed in [124] is shown in Figure 22 in a 4×4 MIMO system. The order of the

complexity of [124] is comparable to the proposed Model III and the order of the complexity

of [85] is less than that of the Model III (O(N2) vs. O(N3.5)). The method in [124] can handle

QAM constellations; however, it achieves near ML performance only in the case of BPSK and

QPSK constellations. Also, the method in [85] is limited to PSK constellations. Note that the

proposed models can be used for any arbitrary constellation and labeling.

The comparison of the performance of the relaxation model in [143] and that in the pro-

posed method is shown in Figure 22 (4×4 antenna system employing 16-QAM). It is observed

that the SDP relaxation Models III and IV perform better than [143]. The order of the com-

plexity of [143] is the same as that of the model (77), while the Model IV is more complex

(O(N5.5) vs. O(N3.5)).

Although the worst case complexities of the SD algorithm [1,58] and the other variants are

exponential, in several papers, the average complexity of these algorithms are investigated. In

[66], it is shown that generally, there is an exponential lower bound on the average complexity

of the SD algorithm. However, it is shown that for large values of Eb/N0 and small values

of dimension M, the average complexity can be approximated by a polynomial function of

dimension M.

Table 3: Comparison of AveTime for different methods in a 4 × 4 MIMO system employing
16QAM

Eb/N0 -5 0 5 10 15

Model III 0.0372 0.0377 0.0394 0.0428 0.0417

Method [143] 0.0130 0.0134 0.0142 0.0156 0.0156

Method [124] 0.0116 0.0118 0.0126 0.0141 0.0141

SD Method 0.0449 0.0139 0.0060 0.0026 0.0016

In Table 3, the average time AveTime spent for decoding the received vectors in the pre-

vious scenario is shown. As it can be seen, the average complexities of all SDP methods are

gradually increasing with Eb/N0 while the average complexity of SD method is decreasing

exponentially. This suggests that for different dimensions M and values of Eb/N0, there is a

threshold that the proposed SDP methods perform better than SD algorithm even in terms of the

average complexity. However, Table 2 shows that how inefficient the SD algorithm performs
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in terms of the worst-case complexity.

Table 4: Decoding Time in a 4 × 4 MIMO system employing QPSK

Eb/N0 -5 0 5 10 15

AveTime
Model III 0.0154 0.0156 0.0238 0.0278 0.0236

SD Method 0.0199 0.0074 0.0046 0.0028 0.0020

MaxTime
Model III 0.4271 0.4251 0.4765 0.7572 0.8417

SD Method 28.326 26.3109 25.4260 2.2232 0.9663

The performance of the proposed algorithm based on Model III and SD algorithm are

shown in terms of AveTime and MaxTime in Tables 4 and 5, for different number of antennas

and constellations. It can be seen that, in terms of the worst-case complexity the proposed

algorithm based on Model III always outperforms SD algorithm. Generally, it can be con-

cluded that by increasing the dimension and rate, the range of Eb/N0 that the proposed model

outperforms the SD algorithm increases. In order to show that the MaxTime values are not

sporadic, the values of AveMaxTime is also provided in Table 5. This number is the average

of the largest 100 decoding times in each case.

Table 5: Decoding Time in a 8 × 8 MIMO system

Eb/N0 -5 0 5 10 15

QPSK

AveTime
Model III 0.0152 0.0152 0.0174 0.0224 0.0306

SD Method 0.6005 0.1061 0.0319 0.0149 0.0052

MaxTime
Model III 0.0965 0.0655 0.1666 0.6586 0.6959

SD Method 433.3972 179.0310 19.7889 16.7787 7.7819

AveMaxTime
Model III 0.0658 0.0587 0.0642 0.1492 0.2109

SD Method 73.4830 16.3274 6.1652 5.9249 1.8074

16-QAM

AveTime
Model III 0.0936 0.0948 0.0984 0.1050 0.1059

SD Method 42.2894 1.6575 0.4762 0.2955 0.1080

MaxTime
Model III 0.2867 0.2974 0.2772 0.2916 0.3273

SD Method 8633.8 383.40 290.89 121.92 91.032

AveMaxTime
Model III 0.1574 0.1580 0.1633 0.1682 0.1712

SD Method 411.6743 15.3724 4.5987 2.9336 1.0162

The performance of the proposed SDP relaxation model (88), Model IV, is close to the

ML performance. Similar to the SDP relaxation model (86), the algorithm based on Model IV
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outperforms the SD algorithm in terms of the worst case complexity (polynomial vs. exponen-

tial). Furthermore, by using the LLL lattice basis reduction before the proposed SDP model,

the complexity is reduced, with an acceptable degradation in the performance (as shown in

simulation results).

As a final note, it must be emphasized that in the complexity analysis for Model IV, all

the non-negative constraints are considered. This suggests that the complexity of this model

is not tractable. However, it is not required to consider all the non-negative constraints. In

order to implement this model more efficiently, the SDP relaxation (88) can be solved with

only the most violated constraints. These constraints correspond to those positions in matrix Y

where their values are the minimum negative numbers. Implementing Model IV based on the

most violated constraints reduces the complexity to almost a number of times more complex

compared to the Model III.

5.8 Conclusion

A method for quasi-ML decoding based on two semi-definite relaxation models is introduced.

The proposed semi-definite relaxation models provide a wealth of trade-off between the com-

plexity and the performance. The strongest model provides a near-ML performance with

polynomial-time worst-case complexity (unlike the SD that has exponential-time complexity).

Moreover, the soft decoding method based on the proposed models is investigated. By using

lattice basis reduction the complexity of the proposed SDP decoding methods is reduced.



CHAPTER 6

MATRIX LIFTING SEMI-DEFINITE PROGRAMMING

Abstract – This chapter presents a computationally efficient decoder for multiple antenna sys-

tems. The decoder is based on Matrix Lifting Semi-Definite Programming (MLSDP). The

strength of the proposed method lies in a new relaxation algorithm applied to the methods pro-

posed in Chapter 5. This results in a reduction of the number of variables from (NK + 1)2 to

(2N + K)2, where N is the number of antennas and K is the number of constellation points in

each real dimension. Moreover, the proposed method offers a better performance as compared

to the best quasi maximum likelihood decoding methods reported in the literature.

6.1 Introduction

In this chapter, a new algorithm based on Matrix Lifting Semi-Definite Programming (MLSDP)

[40, 11] is introduced for any constellation (QAM or PSK) and any labeling method. This

algorithm is inspired by the method proposed in Chapter 5 with an efficient implementation

resulting in a better performance and lower computational complexity. In SDP optimization

problems, the computational complexity is a polynomial function of the number of variables.

Using the proposed method, the number of variables in Chapter 5 is decreased from (NK + 1)2

to (2N +K)2, where N is the number of antennas and K is the number of constellation points in

each real dimension. Since the computational complexity of solving MLSDP is a polynomial

function of the number of variables, a significant complexity reduction is achieved. In addition

to this large reduction in the complexity, simulation results show that the proposed algorithm

also outperforms all other known convex quasi-ML decoding methods, e.g. [143, 121, 150].

81
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6.2 Matrix-Lifting Semi-Definite Programming

The SDP relaxation models proposed in Chapter 5 offer a large computational complexity. In

order to solve the optimization problem in (65) based on VLSDP, the optimization parameter

U is lifted to the vector u, which results in the matrix Y with large dimensions. However, if

the relaxation models are defined based on the matrix U, a large reduction in the dimension

of the variable parameters and computational complexity of the optimization problem can be

achieved.

To keep the matrix U in its original form in (64), the idea is to use the constraint X =

UT U. As a result, the relaxation is X � UT U, or equivalently, by the Schur complement,⎡⎢⎢⎢⎢⎢⎣ IN U

UT X

⎤⎥⎥⎥⎥⎥⎦ � 0. This is known as matrix-lifting semi-definite programming. Define the new

variable V = US. Since the matrix S is symmetric, the objective function in (64) can be

represented as the Quadratic Matrix Program [11]

trace

⎛⎜⎜⎜⎜⎜⎝[ UT VT
] ⎡⎢⎢⎢⎢⎢⎣ 0 1

2Q
1
2Q 0

⎤⎥⎥⎥⎥⎥⎦
⎡⎢⎢⎢⎢⎢⎣ U

V

⎤⎥⎥⎥⎥⎥⎦ + 2CU

⎞⎟⎟⎟⎟⎟⎠
= trace

⎛⎜⎜⎜⎜⎜⎝
⎡⎢⎢⎢⎢⎢⎣ 0 1

2Q
1
2Q 0

⎤⎥⎥⎥⎥⎥⎦
⎡⎢⎢⎢⎢⎢⎣ U

V

⎤⎥⎥⎥⎥⎥⎦ [ UT VT
]
+ 2CU

⎞⎟⎟⎟⎟⎟⎠
= trace

(LQCWU
)
, (98)

where

LQC =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
0 C 0

CT 0 1
2Q

0 1
2Q 0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦ (99)

and

WU =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
I UT VT

U UUT UVT

V VUT VVT

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦ . (100)

To linearize WU, consider the matrix⎡⎢⎢⎢⎢⎢⎣ U

V

⎤⎥⎥⎥⎥⎥⎦ [ UT VT
]
=

⎡⎢⎢⎢⎢⎢⎣ X Y

Y Z

⎤⎥⎥⎥⎥⎥⎦ , (101)

where X,Y,Z ∈ SN . This equality can be relaxed to⎡⎢⎢⎢⎢⎢⎣ UUT UVT

VUT VVT

⎤⎥⎥⎥⎥⎥⎦ −
⎡⎢⎢⎢⎢⎢⎣ X Y

Y Z

⎤⎥⎥⎥⎥⎥⎦ � 0. (102)
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It can be shown that this relaxation is convex in the Löwner partial order and it is equivalent to

the linear constraint [40]

W �

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
I UT VT

U X Y

V Y Z

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦ � 0. (103)

On the other hand, the feasible set in (64) is the set of binary matrices inMN×K with row sum

equal to one, the set EN×K in (63). By relaxing the rank-one constraint for the matrix variable

in (98), a tractable SDP problem is obtained. The feasible set for the objective function in (98)

is approximated by

FM = conv {WU | U ∈ MN×K : UeK = eN ,

ui j ∈ {0, 1},∀i, j; V = US
}

(104)

Therefore, the decoding problem can be represented by

min trace
(LQCW

)
s.t. W ∈ FM. (105)

Note that the size of matrix W is (2N + K) × (2N + K), compared to (NK + 1) × (NK + 1)

in Chapter 5. In SDP optimization problems, the computational complexity is a polynomial

function of the number of variables (elements of W). By the new implementation of (105), the

number of variables in Chapter 5 is decreased from (NK + 1)2 to (2N +K)2, resulting in a large

reduction in the complexity.

Although the rank constraint in (101) is relaxed, some more additional linear constraints

can be considered to further improve the quality of the solution. These constraints are valid

for the non-convex rank-constrained decoding problem. However, the SDP problem is forced

to satisfy these constraints. Consider the auxiliary matrix V and the symmetric matrices X,Y

and Z in matrix W. Since U ∈ EN×K and
∑N

j=1 u2
i j = 1, it is clear that diag(X) = eN . Also, Y

represents USUT and Z represents US2UT
. It is easy to show that

diag(Y) = Udiag(S) and diag(Z) = Udiag(S2). (106)

Moreover, S = ssT (rank-one matrix) and S2 = (
∑K

1=i s2
i )S. Therefore, instead of diag(Z) =
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Udiag(S2), a stronger result for Z is Z = (
∑K

1=i s2
i )Y. Therefore,

min trace

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝LQC

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
I UT VT

U X Y

V Y Z

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

s.t. UeK = eN ; U ≥ 0

V = US

diag(X) = eN

diag(Y) = Udiag(S)

Z = (
K∑

1=i

s2
i )Y

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
I UT VT

U X Y

V Y Z

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦ � 0

U,V ∈ MN×K ,X,Y,Z ∈ SN (107)

The equation in (106) determines the diagonal elements of Y. This property is hidden in the

special structure of U, i.e. U ∈ EN×K . By using this property, more constraints can be added.

The equation Y = USUT implies that yi j = skl for some k and l. Therefore, the value of yi j is

between the minimum and the maximum elements of S. In addition, it can be easily shown that

in communication applications, S, Y, and Z are diagonal dominant matrices (since sT eK = 0).

This property can be also used to add more constraints to improve the quality of the solution.

Our studies show that the improvements due to including the above constraints are marginal.

Therefore, in the sequel, the focus is on the form given in (107).

The objective function in (64) is trace
(
SUT QU + 2CU

)
which can be written as

trace
(
SUT QU + 2CU

)
= trace

(
QUSUT + 2UC

)
. (108)

Exchanging the role of Q and S in the proposed method results in two different formulations.

Here, the auxiliary variable V is defined as QU. Similarly, the auxiliary variables X,Y, and

Z represents UT U,UT QU, and UT Q2U, respectively. Therefore, it is easy to show that the

equivalent minimization problem is
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min trace

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 C 0

CT 0 1
2S

0 1
2S 0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

I U V

UT X Y

VT Y Z

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

s.t. UeK = eN ; U ≥ 0

V = QU

diag(X) = UT eN ; Xi j = 0 i � j

YeK = UT QeN ; trace(YEK) = trace(QEN)

ZeK = UT Q2eN ; trace(ZEK) = trace(Q2EN)⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
I U V

UT X Y

VT Y Z

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦ � 0

U,V ∈ MN×K ,X,Y,Z ∈ SK , (109)

where the size of the variable matrix is (2K+N). Note that both (107) and (109) are equivalent,

however, depending on the structure of the system (values of N and K), the one which offers

a smaller number of variables can be used. In the following, the focus is on (107), which is a

better choice for N ≤ K.

6.3 Geometry of the Relaxation

In this section, similar to Chapter 5, the constraints defining UeK = eN are eliminated by

providing a tractable representation of the linear manifold spanned by this constraint. Consider

the minimization problem (64). By substituting (73), the objective function is

trace
(
SUT QU + 2CU

)
= trace

(
S(F + ÛG)

T
Q(F + ÛG) + 2C(F + ÛG)

)
= trace

(
GSGT ÛTQÛ +GSFTQÛ +QFSGTÛT

+GCÛ + CTGTÛT + 2CF + SFTQF
)

= trace
(
L̂WÛ + 2CF + SFTQF

)
, (110)
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where

L̂ =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
0 GSFT Q +GC 0

QFSGT + CT GT 0 1
2Q

0 1
2Q 0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦ ,

WÛ =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
I ÛT V̂T

Û ÛÛT ÛV̂T

V̂ V̂ÛT V̂V̂T

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦ ,
V̂ = ÛGSGT. (111)

Therefore, the optimization problem (64) can be written as

min trace
(
L̂WÛ

)
s.t. Û = U(1 : N, 1 : (K − 1)); U ∈ EN×K

V̂ = Û
(
GSGT

)
(112)

Using a similar procedure, it can be shown that the optimization problem (112) is equivalent to

the following reduced MLSDP problem:

min trace

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝L̂
⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

I ÛT V̂T

Û X̂ Ŷ

V̂ Ŷ Ẑ

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

s.t. ÛeK−1 ≤ eN ; Û ≥ 0

V̂ = Û
(
GSGT

)
diag(X̂) = ÛeK−1

diag(Ŷ) = Ûdiag
(
GSGT

)
Ẑ =

⎛⎜⎜⎜⎜⎜⎝K−1∑
1=i

(si − sK)2

⎞⎟⎟⎟⎟⎟⎠ Ŷ

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
I ÛT V̂T

Û X̂ Ŷ

V̂ Ŷ Ẑ

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦ � 0

Û, V̂ ∈ MN×(K−1), X̂, Ŷ, Ẑ ∈ SN (113)

Note that this method can also be applied to the equivalent formulation in (109).



CHAPTER 6. Matrix Lifting Semi-Definite Programming 87

6.4 Solving the SDP Problem

The relaxed decoding problems can be solved using common Interior-Point Methods (IPMs),

such as DSDP [15], SeDuMi [127], SDPA [70], etc.

In the MLSDP optimization problem (107), the rank-constrained matrix Wu is relaxed to

the positive semi-definite matrix W. Utilizing the rank-constrained property of the variable

parameter, the relaxed problem (107) can be solved using a non-linear method, known as the

augmented Lagrangian algorithm. This approach offers a significant complexity reduction for

“large" problem sizes as compared to common IPM-based methods, while the performance

degradation is negligible. For a comparison on the computational complexity and performance

of IPMs and augmented Lagrangian algorithm, the reader is referred to [18]. In continue, a brief

review of this method is presented. By using this method, an algorithm to solve the MLSDP

relaxed problems is proposed. However, in the numerical experiments, the SDPA package is

used for solving the MLSDP models.

6.4.1 The Augmented Lagrangian Algorithm

Recently, Burer and Monteiro [18] proposed a new method for solving a full-rank SDP problem

min trace(LQCW)

s.t. trace(AiW) = bi for i = 1, · · · ,m
W � 0. (114)

The distinguishing feature of the algorithm is a change of variables that replaces the symmet-

ric, positive semi-definite variable W ∈ Mn of (114) with a rectangular variable R according

to the factorization W = RRT . In [8, 112], it is shown that, for an SDP problem (114) with m

constraints, there exists an optimal solution with rank r such that r(r+2) ≤ m. In [18], R is cho-

sen inMn×r. By using this formulation, the positive semi-definite constraint is removed since

W = RRT automatically enforces the constraint. Now the problem (114) can be reformulated

as

min
R∈Mn×r

trace(RTLQCR)

s.t. trace(RT AiR) = bi for 0 ≤ i ≤ m. (115)

In order to solve this non-linear problem, an augmented Lagrangian method is introduced
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in [18]. The augmented Lagrangian is defined as

L(R, λ, σ) = trace(RTLQCR)

−
m∑

i=1

λi

(
trace(RT AiR) − bi

)

+
σ

2

m∑
i=1

(
trace(RT AiR) − bi

)2
, (116)

where R ∈ Mn×r, λ ∈ Rm, and σ ∈ R+. The last term is the penalty term indicating the

Euclidean norm of the infeasibility of R with respect to r.

To minimize the augmented Lagrangian (116), this function is alternatively minimized with

respect to R and with respect to λ and σ. The optimization of (116) with respect to R can be

achieved by a limited-memory BFGS algorithm, which uses the gradient of L:

∇RL(R, λ, σ)=−2
m∑

i=1

(
λi − σ

(
trace(RT AiR) − bi

))
AiR

+2LQCR. (117)

This algorithm has the advantage of maintaining O(nr) memory overhead, but also has the

speed of a quasi-Newton method.

In order to optimize (116) with respect to λ and σ, the authors in [18] updates λi by

λi − σ
(
trace(RT AiR) − bi

)
and σ by a multiplicative factor. They have shown that this tech-

nique always empirically converges to the globally optimal solution, although the quadratic

programming problem is non-convex. Moreover, they have shown that this method is signifi-

cantly faster than existing SDP solvers.

6.4.2 Decoding Problem as a Quadratic Non-Linear Problem

Define R = [ I UT VT ]T . Therefore, the MLSDP optimization problem (107) can be refor-

mulated as the problem in (115). Instead of applying IPM solvers, an augmented Lagrangian

method can be applied directly to the mentioned decoding problem. However, despite the work

in [18], the MLSDP problem have an “explicit rank constraint". In other words, the size of the

matrix R is precisely determined by the rank constraint.

The other difference is that there are some inequality constraints in the optimization prob-

lem (107). The augmented Lagrangian method in [18] should be generalized to handle linear

inequality constraints. The same technique as in [74] can be approached by solving directly

for updates of the Lagrange multipliers for both equality and inequality constraints.

The updates of λi can be solved by treating a constraint trace(RT AiR) ≥ bi as the constraint

trace(RT AiR) = bi + si and si ≥ 0. For inequality constraint, this results in

λi = max(λi − σ(trace(RT AiR) − bi), 0). (118)
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This update satisfies λi ≥ 0 for Lagrange multipliers for inequality constraints. Comput-

ing the Lagrangian and the gradient of the Lagrangian are also straightforward for inequal-

ity constraints [74]. The second and third terms of the Lagrangian change: for each con-

straint i, the Lagrangian term −λi(trace(RT AiR) − bi) + σ2 (trace(RT AiR) − bi)2 is unchanged if

σ(trace(RT AiR) − bi) ≤ λi. Otherwise, this term becomes −λ2
i /2σ. Similarly, in the computa-

tion of the gradient of Lagrangian, only the term 2(λi−σ(trace(RT AiR)−bi))AiR is contributed

if σ(trace(RT AiR) − bi) ≤ λi. Otherwise, nothing is added to the gradient.

6.5 Integer Solution - Matrix Nearness Problem

Solving the relaxed decoding problems results in the solution Ũ. In general, this matrix is not

in EN×K . The condition UeK = eN is satisfied. However, the elements are between 0 and 1.

This matrix has to be converted to a 0-1 matrix by finding a matrix in EN×K which is satisfies

a condition of nearness to this matrix. Matrix approximation problems typically measure the

distance between matrices with a norm. The Frobenius and spectral norms are common choices

as they are analytically tractable.

Therefore, in order to find the nearest solution in EN×K to the solution of the relaxed problem

Ũ, it is proposed to solve

min
U∈ EN×K

‖U − Ũ‖2F, (119)

where ‖A‖2
F

is the Frobenius norm of the matrix A which is defined as ‖A‖2
F
= trace(AAT ), and

‖U − Ũ‖2F = trace
(
(U − Ũ)(U − Ũ)T

)
= N − 2trace(ŨUT) + trace(ŨŨT). (120)

The last equality is due to the fact that for any U ∈ EN×K , diag(UUT ) = eN , see (107). Therefore,

after removing the constants, finding the integer solution is the solution of

max
U∈ EN×K

trace(ŨUT) (121)

Consider the maximization problem

max trace(ŨUT)

s.t. UeK = eN

0 ≤ U ≤ 1, (122)

where ≤ in the last constraint is element-wise. This problem is a linear programming problem

with linear constraints. Therefore, the optimum solution is a corner point meaning that the
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constraints are satisfied with equality at the optimum point. In other words, at the optimum

point, U ∈ EN×K . Therefore, to find the solution for (121), simply, the linear problem (122)

can be solved, which is strongly polynomial time. To improve this result, the randomization

algorithms, introduced in Chapter 5, can be further applied.

6.6 Simulation Results

The proposed MLSDP relaxation model (113) in a 4 × 4 MIMO system employing 16-QAM

is simulated. Figure 23 shows the performance of the proposed method vs. the performance of

the VLSDP Model III in Chapter 5 and the previous known methods in WES [143], SiLu [121],

and YZZX [150]. As it can be seen, the proposed method outperforms all other convex sub-

optimal methods.
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Figure 23: Performance of the proposed MLSDP method in a 4× 4 MIMO system employing
16-QAM compared to the previous known methods in WES [143], SiLu [121], and YZZX
[150]

The worst case complexity of the proposed method solved by IPMs is a polynomial function

of the number of antennas (similar to the analysis in Chapter 5). In the optimization problem

of (107), where N ≤ K, the dimension of the matrix variable W is m = O(K) and the number

of constraints is p = O(K2). Similar to Chapter 5, it can be easily seen that a solution to (113)

can be found in at most O(K5.5) arithmetic operations (utilizing the sparsity of the rank-one

constraint matrices), where the computational complexity of the VLSDP model in Chapter 5,

[143], [150], [121] are O(N5.5K5.5), O(N6.5K6.5), O(K2N4.5 + K3N3.5), and O(N3.5) respectively.
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Note that for the equivalent optimization problem (109), where K ≤ N, the computational

complexity is at most O(N5.5). It must be emphasized that depending on values of N and K,

the optimization problem (107) or (109) which results in less computational complexity can be

implemented.

Note that many of the constraints have very simple structures. This property can be used

to develop an interior-point optimization algorithm fully exploiting the constraint structures of

the problem, thereby getting complexity order better than that of using a general purpose solver

such as SeDuMi or SDPA. Moreover, the complexity of the proposed method can be further

reduced by implementing the augmented Lagrangian method for large problem sizes.

6.7 Conclusion

A sub-optimum method for decoding in MIMO systems based on MLSDP is introduced. The

advantage of this structure lies in its efficient implementations, whereas there is fewer redun-

dant constraints to add under this relaxation. Simulation results show that the proposed algo-

rithm outperforms all known convex quasi-ML decoding methods in the literature.



CHAPTER 7

EPILOGUE

7.1 Conclusion

It is known that lattice codes can achieve the capacity in an AWGN channel [82, 83]. Some

general lattice code were designed based on fixed dimensional classical lattices [28] or based

on algebraic error correcting codes [46]. However, the lattice labeling and lattice decoding

problems associated with these lattice codes make them almost impractical to be implemented

for common communication applications. In this thesis, some lattice codes for specific appli-

cations are designed such that some desirable geometrical properties are provided.

In OFDM systems, a lattice code with low PAPR is designed. The shaping region for the

lattice code is a cube whose boundary is along the basis defined by a Hadamard matrix. The

lattice labeling and decoding algorithms are based on SNF decomposition of an integer matrix.

Due to the recursive structure of the Hadamard matrix these algorithms can be implemented

very efficiently. In multiple antenna broadcast systems, a lattice code with low average transmit

energy is introduced. This design is more complex compared to that in the OFDM system,

since the labeling algorithm should be such that the users can decode their data independent

of each other. By defining some redundancy, an SLM technique is introduced which results in

a lattice code with low average transmit energy. The decoding algorithm is a simple rounding

algorithm.

In MIMO systems usually simple lattice codes are used. However, due to the channel and

noise effects, the decoding problem in these systems is an NP-hard problem. In the second part

of this thesis, several sub-optimal decoding algorithms are introduced. They introduce a wealth

of tradeoff between complexity and performance. They offer a better performance compared

to other sub-optimal method reported in the literature with the same order of computational
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complexity.

In summary, in this thesis, lattice codes are designed in different communication applica-

tions such that they provide different geometrical properties and they also increase the data

rate of wireless communication networks. The focus of these designs is in fast and simple

implementations for the corresponding lattice labeling and decoding algorithms.

7.2 Future Work

Over the last two decades, there have been significant advances in producing powerful opti-

mization models and efficient algorithmic tools as well as software. Recently these advances

have begun to significantly impact various applied science and engineering fields, where effi-

cient optimization is essential. The goal of this proposal is to apply SDP tools to solve several

core problems in signal processing and communications. The previous work-horse optimiza-

tion algorithms in communication systems suffer from slow convergence, difficulty in finding

global optima, and sensitivity to the algorithm initialization and stepsize selection, especially

when applied to many naturally ill-conditioned or non-convex communication problems. Ex-

amples of such problems include decoding in multiple antenna systems, decoding of binary

block codes, and designing codes in delay-constrained networks. One powerful way to avoid

these problems is to derive an SDP relaxation of the original non-convex formulation. Then,

we can be guaranteed of finding the globally optimal design "efficiently" without the usual

headaches of stepsize selection, algorithm initialization and local minima. Therefore, the chal-

lenge is to find SDP relaxations which efficiently model different problems, and then, to find

additional constraints that improve the system performance.

7.2.1 Multiple Antenna Decoding

In this thesis, several sub-optimum SDP relaxation models are introduced. However, the

bounds achieved by the relaxation models for high dimension problems are always loose. To

achieve tight bounds for high dimensional problems, the branch and bound methods and SDP

relaxation method can be combined to develop better SDP relaxations. Compared to the global

optimization SDP methods, the proposed method achieves a better bounds. Moreover, the

SDP branch and bound decoding algorithm can be implemented more efficiently compared to

previous decoding methods based on conventional branch and bound methods.

7.2.2 Decoding Binary Block Codes by SDP

Binary Block codes have been widely used in different communication applications. These

codes are sequences of zero and one which follow a certain algebraic pattern. Sub-optimum
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decoding of these codes can be implemented by linear programming. However, the corre-

sponding decoding problem can be reformulated as a quadratic binary optimization problem.

Then, SDP algorithms can be applied to find a better solution for the decoding problem. The

advantage of the proposed formulation is that potentially the symmetry properties of the SDP

problem can be exploited. Therefore, matrix algebra can be used to reduce the size of this

SDP problem. Using this approach simplifies the SDP decoding while it achieves a better

performance.

7.2.3 Finding Optimal Precoding Scheme for Broadcast Systems

In order to provide a simple and independent decoding for users in a MIMO broadcast sys-

tem, a precoding has been applied at the transmitter side. Recently, some researchers have

focused on finding the optimal precoder for different setups. Since, the general optimization

problem is hard, several simplifications have been considered in defining the problem. These

simplifications will significantly limit a broadcast system. In continue, the design of an opti-

mal "non-linear" precoder can be considered. By redefining the constraints to limit the signal

to interference ratio, an SDP relaxation problem will result, which can be solved efficiently.

7.2.4 Code Design for Delay Limited Networks based on SDP

In transmitting data packets in a communication network, some packets may be lost. In order

to deal with these dropped packets, the receiver send an acknowledgement when it receives

a packet. If the transmitter does not receive any thing back, it will send the packet again.

Consider a network that has a hard upper bound on acceptable delays for transmitting packets.

The problem of encoding transmitting packets can be considered such that increasingly more

accurate approximation of the original packet is obtained. Having a set of labels, the problem

of deciding which codeword to assign to each label can be relaxed to an SDP optimization

problem. By efficient solution of this problem, different codes with desired properties can be

obtained.



APPENDIX A

PROOFS

This appendix is devoted to the detailed proofs for the lemmas and theorems in the thesis.

A.1 Part I - PAPR Reduction Proofs
A.1.1 Theorem 2

Based on (15), det (H2n) = det (D2n), because the matrices U2n and V2n are unimodular and their

determinants are one. To prove this theorem, the induction can be used. For a 2 × 2 Hadamard

matrix,

det (D2) = det

⎛⎜⎜⎜⎜⎜⎝
⎡⎢⎢⎢⎢⎢⎣ 1 0

0 2

⎤⎥⎥⎥⎥⎥⎦
⎞⎟⎟⎟⎟⎟⎠ = 2 = 21×21−1

. (123)

It is assumed that the claim is valid for a 2k × 2k Hadamard matrix. Based on (15), for a

2k+1 × 2k+1 Hadamard matrix,

D2k+1 =

⎡⎢⎢⎢⎢⎢⎣ D2k 0

0 2D2k

⎤⎥⎥⎥⎥⎥⎦
⇒ det (D2k+1) = det (D2k) × 22k × det (D2k)

= 22k × (det (D2k))2

= 22k ×
(
2k2k−1

)2
= 2(k+1)2(k+1)−1

.

(124)

A.2 Part II - Precoding Proofs
A.2.1 Theorem 3

The matrix Q is positive semi-definite, i.e., μT Qμ ≥ 0 for any vector μ. Therefore, in order to

minimize E{γ} in (35), E{u} = μ = 0.

In designing input constellations for communication systems, the objective is to reduce

the average transmit energy, while keeping a fixed entropy for the input constellation. On the

other hand, this is equivalent to keeping a fixed average energy while the entropy is maximized.

Therefore, instead of minimizing E{γ} = tr(QΣ) givenH(u) = fixed, the equivalent problem of

maximization of H(u) is considered, given a fixed average transmit energy, E{γ} = tr (QΣ) =

K, where K is a known constant.
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In [39], it has been shown that for a random vector u with zero mean and covariance matrix

Σ,

H(u) ≤ 1
2

log(2πe)M |Σ|
with equality iff u is a multivariate Gaussian vector. Therefore, a Gaussian random vector with

zero mean and covariance Σ is desired such that

max log |Σ|
s.t. tr (QΣ) = K

Σ � 0 (125)

By considering Q = UΛUT and Σ′ = UTΣU, it is easy to show that the optimization problem

(125) is equivalent to

max log |Σ′|
s.t. tr(ΛΣ′) = K

Σ′ � 0. (126)

The Hadamard inequality states that, for a Hermitian positive definite matrix Σ′ = [σ′i j],

|Σ′| ≤ Πiσ
′
ii, with equality iff Σ′ is a diagonal matrix. Therefore, in order to maximize the

objective in (126), it is assumed that the covariance matrix Σ′ is a diagonal matrix with diagonal

elements σ2
i . Hence, the optimization problem (126) can be written as

max
M∑

i=1

logσ2
i

s.t.
M∑

i=1

(λiσ
2
i ) = K (127)

The optimum solution for (127) is σ2
i =

K
Mλi

. Therefore, for independent Gaussian random

variables with variance σ2
i in (127),

H(u) =
1
2

log(2πe)M |Σ|

=
1
2

M∑
i=1

log

(
2πe

K
Mλi

)
= log(V) = MH , (128)

or equivalently,

log 2πe
K

M M
√
Πλi

= 2H . (129)
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Considering (177) and (129),

K = M M
√
Πλiσ

2,

which results in

σ2
i =

M
√
Πλi

λi
σ2 i = 1, · · · ,M. (130)

Therefore, the optimum solution of (125) would be

Σ =
M
√
Πλiσ

2U

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1
λ1

0 · · · 0

0 1
λ2

... 0
...
. . .

. . .
...

0 0 · · · 1
λM

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
UT

=
M
√
Πλiσ

2UΛ−1UT =
M
√
Πλiσ

2HHT (131)

A.2.2 Theorem 4

The following lemmas will help in proving the main results.

Lemma 12

E
{
N

r
DγF

r,N

}
=

∫
R+

⎛⎜⎜⎜⎜⎝1 − F

⎛⎜⎜⎜⎜⎝BD(0,
v

1
r

N
1
D

)

⎞⎟⎟⎟⎟⎠⎞⎟⎟⎟⎟⎠N

dv (132)

Proof:

E
{
N

r
DγF

r,N

}
= E

{
N

r
D min

1≤i≤N
‖s(i)‖r

}
(133)

But, if V is a nonnegative random variable, then

E{V} =
∫
R+

P{V ≥ v}dv, (134)

since ∫
R+

P{V ≥ v}dv =
∫
R+

E
{
1{V≥v}

}
dv

= E

{∫
R+

1{V≥v}dv

}
= E{V}

Combining (134) and (133) yields

E
{
N

r
DγF

r,N

}
=

∫
R+

P

{
N

r
D min

1≤i≤N
‖s(i)‖r ≥ v

}
dv

=

∫
R+

P

⎧⎪⎪⎨⎪⎪⎩
N⋂

i=1

{N r
D ‖s(i)‖r ≥ v}

⎫⎪⎪⎬⎪⎪⎭ dv (135)
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Since s(i)’s are i.i.d.,

E
{
N

r
DγF

r,N

}
=

∫
R+

(
P
{
N

r
D ‖s(1)‖r ≥ v

})N
dv

=

∫
R+

⎛⎜⎜⎜⎜⎝1 − F

⎛⎜⎜⎜⎜⎝BD(0,
v

1
r

N
1
D

)

⎞⎟⎟⎟⎟⎠⎞⎟⎟⎟⎟⎠N

dv, (136)

which completes the proof.

Lemma 13 For any ρ > 0, defineAρ = {v ∈ R+; v1/r/N1/D ≤ ρ} and set

gρ := inf
δ∈(0,ρ]

F (BD(0, δ))
Vol (BD(0, δ))

.

Then,

∫
Aρ

⎛⎜⎜⎜⎜⎝1 − F

⎛⎜⎜⎜⎜⎝BD(0,
v

1
r

N
1
D

)

⎞⎟⎟⎟⎟⎠⎞⎟⎟⎟⎟⎠N

dv ≤∫
Aρ exp

(
−BDgρv

D/r
)
dv. (137)

Proof: One has

⎛⎜⎜⎜⎜⎝1 − F

⎛⎜⎜⎜⎜⎝BD(0,
v

1
r

N
1
D

)

⎞⎟⎟⎟⎟⎠⎞⎟⎟⎟⎟⎠N

= exp

⎛⎜⎜⎜⎜⎝N ln

⎛⎜⎜⎜⎜⎝1 − F

⎛⎜⎜⎜⎜⎝BD(0,
v

1
r

N
1
D

)

⎞⎟⎟⎟⎟⎠⎞⎟⎟⎟⎟⎠⎞⎟⎟⎟⎟⎠
≤ exp

⎛⎜⎜⎜⎜⎝−NF

⎛⎜⎜⎜⎜⎝BD(0,
v

1
r

N
1
D

)

⎞⎟⎟⎟⎟⎠⎞⎟⎟⎟⎟⎠

≤ exp

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝−BD

F

⎛⎜⎜⎜⎜⎝BD(0,
v

1
r

N
1
D

)

⎞⎟⎟⎟⎟⎠
Vol

⎛⎜⎜⎜⎜⎝BD(0,
v

1
r

N
1
D

)

⎞⎟⎟⎟⎟⎠
vD/r

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠ , (138)

where B1 = 2 and BD = Vol (BD(0, 1)) = πD/2/Γ(1 + D/2) for D = 2, · · · . By the definition of

the setA,

∫
Aρ

⎛⎜⎜⎜⎜⎝1 − F

⎛⎜⎜⎜⎜⎝BD(0,
v

1
r

N
1
D

)

⎞⎟⎟⎟⎟⎠⎞⎟⎟⎟⎟⎠N

dv

≤
∫
Aρ

exp

(
−BD inf

δ∈(0,ρ]
F (BD(0, δ))

Vol (BD(0, δ))
vD/r

)
dv

=

∫
Aρ

exp
(
−BDgρv

D/r
)
dv. (139)
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Proof for Theorem 4: According to Lemma 12,

E
{
N

r
DγF

r,N

}
=

∫
R+

⎛⎜⎜⎜⎜⎝1 − F

⎛⎜⎜⎜⎜⎝BD(0,
v

1
r

N
1
D

)

⎞⎟⎟⎟⎟⎠⎞⎟⎟⎟⎟⎠N

dv (140)

For any ρ > 0 define Āρ as the complement region ofA. Therefore,

E
{
N

r
DγF

r,N

}
=

∫
Aρ

⎛⎜⎜⎜⎜⎝1 − F

⎛⎜⎜⎜⎜⎝BD(0,
v

1
r

N
1
D

)

⎞⎟⎟⎟⎟⎠⎞⎟⎟⎟⎟⎠N

dv

+

∫
Āρ

⎛⎜⎜⎜⎜⎝1 − F

⎛⎜⎜⎜⎜⎝BD(0,
v

1
r

N
1
D

)

⎞⎟⎟⎟⎟⎠⎞⎟⎟⎟⎟⎠N

dv (141)

Based on Lemma 13,

∫
Aρ

⎛⎜⎜⎜⎜⎝1 − F

⎛⎜⎜⎜⎜⎝BD(0,
v

1
r

N
1
D

)

⎞⎟⎟⎟⎟⎠⎞⎟⎟⎟⎟⎠N

dv

≤
∫
Aρ

exp
(
−BDgρv

D/r
)
dv. (142)

Note that the integral in (142) is limited (The proof is easy and it is similar to the approach

in [25]). As N −→ ∞,Aρ −→ R+. Therefore,

∫
Aρ

⎛⎜⎜⎜⎜⎝1 − F

⎛⎜⎜⎜⎜⎝BD(0,
v

1
r

N
1
D

)

⎞⎟⎟⎟⎟⎠⎞⎟⎟⎟⎟⎠N

dv −→∫
R+

exp
(
−BDgρv

D/r
)
dv,

and ∫
Āρ

⎛⎜⎜⎜⎜⎝1 − F

⎛⎜⎜⎜⎜⎝BD(0,
v

1
r

N
1
D

)

⎞⎟⎟⎟⎟⎠⎞⎟⎟⎟⎟⎠N

dv −→
0. (143)

In [64], it is shown that ∫
R+

exp
(
−BDgρv

D/r
)
dv = B

− r
D

D Γ(1 +
r
D

)g
− r

D
ρ (144)

Therefore,

lim
N→∞ E

{
N

r
DγF

r,N

}
= B

− r
D

D Γ(1 +
r
D

)g
− r

D
ρ (145)
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A.2.3 Theorem 6

According to (49), when N −→ ∞,

EBroadcast =
1
L

E
{
γU(R̄′)

2,N

}
=

1
L

B
− 2

D
D Γ(1 +

2
D

)N−
2
D Vol(R̄′) 2

D , (146)

where Vol(R̄′) = (
√
Πλ j)LVol(R̄), R̄ = R̄1×R̄2×· · ·×R̄K , and Vol(R̄i) = NiVol(BDi(0,

√
Diσi)).

Therefore,

Vol(R̄) = N1BD1 D
D1
2

1 σ
D1
1 · · ·NKBDK D

DK
2

K σ
DK
K , (147)

where BDi = π
Di/2/Γ(1 + Di/2) is the volume of a Di-dimensional sphere of radius one (D =

LM =
∑

Di and N =
∏

Ni).

Vol(R̄) = NBD1 · · · BDK

K∏
i=1

D
Di
2

i

K∏
i=1

σDi
i

= NBD

(
BD1 · · · BDK

BD

) K∏
i=1

(2Lni)
Di
2

K∏
i=1

σDi
i

= N2
D
2 L

D
2 BD

⎛⎜⎜⎜⎜⎜⎝BD1 · · · BDK

BD

K∏
i=1

n
Di
2

i

⎞⎟⎟⎟⎟⎟⎠ K∏
i=1

σDi
i (148)

The term in parenthesis can be simplified

BD1 · · · BDK

BD

K∏
i=1

n
Di
2

i =
Γ(1 + D/2)∏
Γ(1 + Di/2)

K∏
i=1

n
Di
2

i

=
(LM/2)!∏

(Lni)!

K∏
i=1

n
Di
2

i

=

√
πLM

(LM/2)LM/2

eLM/2∏K
i=1

√
2πLni

(Lni)Lni

eLni

K∏
i=1

nLni
i

=

√
πLM(M/2)LM/2∏K

i=1

√
2πLni

, (149)
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where the last equality is based on applying stirling’s formula (since L −→ ∞). On the other

hand1,

lim
L−→∞

⎛⎜⎜⎜⎜⎜⎝BD1 · · · BDK

BD

K∏
i=1

n
Di
2

i

⎞⎟⎟⎟⎟⎟⎠
2

LM

= lim
L−→∞

⎛⎜⎜⎜⎜⎝
√
πLM∏K

i=1

√
2πLni

⎞⎟⎟⎟⎟⎠
2

LM M
2

=
M
2
. (150)

Therefore, for large enough L, the volume of region R̄ can be written as

Vol(R̄) = NBDD
D
2

K∏
i=1

σDi
i

= NVol

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝BD(0,
√

D
D

√√
K∏

i=1

σDi
i )

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠ (151)

It is easy to show that, in order to provide entropyH = 1
M log(V) per each dimension,

σM = σ2ni
1 · · ·σ2nK

K ,

where σ2 is the variance of a Gaussian random variable with entropyH and

Vol(R̄) = NVol
(
BD(0,

√
Dσ)

)
.

Therefore, the average transmit energy in (146) can be written as

EBroadcast =
1
L

B
− 2

D
D Γ(1 +

2
D

)N−
2
D Vol(R̄′) 2

D

= M M
√
Πλ jσ

2, (152)

where σM = σ2ni
1 · · ·σ2nK

K .

A.3 Part III - Lattice Code Decoding Proofs
A.3.1 Lemma 7

Let U ∈ MN×K and UeK = eN . Since G is a (K − 1) × K matrix containing a basis of the

orthogonal complement of the vector of all ones, i.e., GeK = 0K−1, and

FeK = eN , (153)

1limL−→∞ 1
LM

[
ln πLM −∑K

i=1 ln 2πLni

]
= 0
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therefore,

U = F + ÛG, (154)

where Û ∈ MN×(K−1). From

F =
1
K

(EN×K − EN×(K−1)G)

=
[

0N×(K−1) eN

]
, (155)

and

ÛG =
[

Û −ÛeK−1

]
(156)

it follows that Û = U(1 : N, 1 : (K − 1)).

A.3.2 Theorem 8

Let Y ∈ F be an extreme point of F , i.e.

Y = Yu =

⎡⎢⎢⎢⎢⎢⎣ 1 xT

x xxT

⎤⎥⎥⎥⎥⎥⎦ , (157)

for some x = vec(XT ), X ∈ EN×K . From Lemma 7, it follows that every matrix X ∈ EN×K is of

the form X = F + X̃G where X̃ = X(1 : K − 1, 1 : N). From the properties of the Kronecker

product (see [55]), it is known that

vec(ACB) = (BT ⊗ A)vec(C).

Therefore, it follows that

x = vec(XT ) =
1
K

(eKN − (IN ⊗GT )e(K−1)N)

+ (IN ⊗GT )x̃, (158)

where x̃ = vec(X̃T ). Let pT :=
[

1 x̃T
]
,

bV =
1
K

(eKN − (IN ⊗GT )e(K−1)N),

and

W :=
[

bV IN ⊗GT
]
. (159)

Therefore, x =Wp, and

Y =

⎡⎢⎢⎢⎢⎢⎢⎢⎣ 1 pT WT

Wp WppT WT

⎤⎥⎥⎥⎥⎥⎥⎥⎦ = V̂RV̂T , (160)
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where R := ppT , i.e.

R =

⎡⎢⎢⎢⎢⎢⎣ 1 x̃T

x̃ x̃x̃T

⎤⎥⎥⎥⎥⎥⎦ � 0. (161)

Since x̃ is a binary vector, it follows that ri j ∈ {0, 1}, ∀i, j ∈ {0, . . . ,N(K − 1)}, and diag(x̃x̃T ) =

x̃. The proof follows analogously for any convex combination of the extreme points from F .

A.3.3 Theorem 9

Fix u ∈ U and let

Y = Yu =

⎡⎢⎢⎢⎢⎢⎣ 1

u

⎤⎥⎥⎥⎥⎥⎦ [1 uT
]
.

Considering the constraint on this vector in (67), the vector u is divided into N sub-vectors

of length K. In each sub-vector all the elements are zero except one of the elements which is

one. Therefore, there are KN different binary vectors in the set U. Consider the entries of the

0-th row of Y. Note that y0, j = 1 means that the j-th element of u is 1. In addition, there is

only one element equal to 1 in each sub-vector. Therefore, there are KN−1 such vectors, and the

components of the 0-th row of Ŷ are given by

ŷ0, j =
1

KN
KN−1 =

1
K
.

Now consider the entries of Y in the other rows, yi, j.

1. If i = j, then, yi, j = 1 means that the i-th element of the vector u is 1 and there are KN−1

such vectors; therefore, the diagonal elements are

ŷi,i =
1

KN
KN−1 =

1
K
.

2. If i = K(p − 1) + q, j = K(p − 1) + r, q � r, q, r ∈ {1, · · · ,K}, p ∈ {1, · · · ,N}, i.e. the

element is an off-diagonal element in a diagonal block, then, yi, j = 1 means that the i-th

and the j-th elements of u in a sub-vector should be 1 and this is not possible. Therefore,

this element is always zero.

3. Otherwise, the elements of the off-diagonal blocks of Y are considered. Then, yi, j = 1

means that the i-th and the j-th elements of u in two different sub-vectors are 1 and there

are KN−2 such vectors; therefore, the elements of the off-diagonal blocks are

ŷi,i =
1

KN
KN−2 =

1
K2
.
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This proves the representation of Ŷ in (i) in Theorem 9.

It can be easily shown that⎡⎢⎢⎢⎢⎢⎣ 1 0T
n

− 1
K en In

⎤⎥⎥⎥⎥⎥⎦ Ŷ

⎡⎢⎢⎢⎢⎢⎣ 1 − 1
K eT

n

0n In

⎤⎥⎥⎥⎥⎥⎦ =
⎡⎢⎢⎢⎢⎢⎣ 1 0T

n

0n Ŵ

⎤⎥⎥⎥⎥⎥⎦ , (162)

where Ŵ =
1

K2
IN ⊗ (KIK − EK). Note that rank(Ŷ) = 1 + rank(Ŵ).

The eigenvalues of IN are 1, with multiplicity N and the eigenvalues of KIK − EK are K, with

multiplicity K − 1, and 0. Note that the eigenvalues of a Kronecker product are given by

the Kronecker product of the eigenvalues [55]. Therefore, the eigenvalues of Ŵ are 1
K , with

multiplicity N(K − 1), and 0, with multiplicity N. Therefore,

rank(Ŷ) = 1 + rank(Ŵ) = N(K − 1) + 1. (163)

This proves (ii) in Theorem 9.

By (162) and (163), it can be easily seen that the eigenvalues of Ŷ are
1
K

, with multiplicity

N(K − 1),
K + N

K
, and 0, with multiplicity N. This proves (iii) in Theorem 9.

The only constraint that defines the minimal face is UeK = eN , or equivalently (IN ⊗ eK)u =

eN . By multiplying of both sides by uT and using the fact that u is a binary vector,

(IN ⊗ eK)uuT = eN

(
diag(uuT )

)T
. (164)

This condition is equivalent to

TŶ = 0. (165)

Note that rank(T) = N. Therefore,

N(Ŷ) = {u : u ∈ R(TT )}.

This proves (iv) in Theorem 9.

Since rank(V̂) = N(K −1)+1 and using Theorem 8, the columns of V̂ span the range space

of Ŷ. This proves (v) in Theorem 9.



APPENDIX B

REVIEW ON SOME PRECODING METHODS

In this appendix, the average transmit energy for different methods based on the probabilistic

view point of (35) is calculated. Each case corresponds to different regions R (or R′) and

marginal probability distributions. In all these cases, it is assumed that the vector u is selected

uniformly over a hypercube centered at the origin with side length of 2A, R = CM(0, 2A). The

energy of the vector v =
√
ΛUT u is equal to the transmit energy of vector s, γ = sT s = uT Qu =

uT UΛUT u = vT v. In the following, in some cases, the region R′ is defined based on the vector

v.

B.1 Case (I) - Independent Uniform Marginal Probability Dis-
tribution

Assume that u is a random vector in RM such that its elements are i.i.d. random variables with

a uniform distribution between −A and A. In order to provide the entropy of H , there should

be

H = log 2A or equivalently A = 2H−1. (166)

According to (35), the average anergy of the transmit signal corresponding to u is

E{γ} = tr(QΣ) = tr(UΛUTΣ) = tr(ΛΣ′) (167)

where Σ′ = UTΣU. Note that Σ = A2

3 I and since U is a unitary matrix Σ′ = A2

3 I. Therefore, the

average energy of transmit vector corresponding to u is

Ecube = E{γ} = A2

3

M∑
i=1

λi =
22H

12

M∑
i=1

λi. (168)

This case corresponds to a conventional block constellation, i.e., there is a uniform dis-

tribution over region R which is an M-dimensional cube centered at the origin with side

length of 2A, R = CM(0, 2A). Therefore, the region R′ for the auxiliary vector v is an or-

thotope centered at the origin and along the eigenvectors of Q (see Figure 24). This orthotope

is the rotated version of the hypercube R where each side is multiplied by
√
λi. It is clear

that Vol(R′) = V√Πλi = (2A)M
√
Πλi. When the channel condition is poor, this ortotope is

stretched, resulting in a large average transmit energy.
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A

A

−A

(a) (b)

−A

Figure 24: Schematic region R for the uniform distribution and its corresponding auxiliary
region R′.

B.2 Case (II) - Regularization

In [114], a method is introduced to reduce the average transmit energy. In this technique, a

multiple of the identity matrix is added to the channel matrix before inverting in (33), i.e.,

s = HT(HHT + αIM)−1u, (169)

where it is shown that αopt = M/ρ. Since HHT = UΛ−1UT , the auxiliary vector v can be written

as1

v =

√
Λ

αΛ + IM
Uu.

Here, the region R′ is an orthotope whose sides compared to the one in Case (I) are smaller

(the sides are divided by 1 + αλ > 1). This orthotope is called a reduced-orthotope compared

to the one in Case (I). By assuming the same uniform distribution for u, the average transmit

energy of this signal is

Ereg = E{γ} = A2

3

M∑
i=1

λi

(αλi + 1)2
, (170)

where for the same reason is less than Ecube.

In the channel inversion technique, a linear transformation T is desired such that it maps the

region R to some other region. This region should be such that when its points are multiplied

by H−1 the average transmit energy is minimized, while the minimum mean square error in

the receivers are minimized. In other words, a matrix T is desired such that s = H−1Tu with

minimum error in decoding regarding the interference caused by T and with minimum average

transmit energy for the new region TR.

1The operations on the diagonal matrices are based on the operations on the diagonal elements.
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In [65], it is shown that in order to satisfy these conditions, the matrix H−1T should be a

Wiener filter, i.e.,

H−1T = HT (HHT + αIM)−1.

By using matrix inversion lemma [53],

HT (HHT + αIM)−1 = H−1
(
IM − α(HHT + αIM)−1

)
.

Therefore,

T =
(
IM − α(HHT + αIM)−1

)
.

This simple argument emphasis that the method in [114] proposes a lattice code defined

by the region TR. This lattice code is the best lattice code that can be achieved by linear

transformation which has the minimum transmit energy while minimizes the mean square error

at the decoding process in the receiver side.

B.3 Case (III) - Perturbation Technique

In [115], a perturbation method is introduced in order to reduce the average energy of the

transmit signal. The data is transmitted by judiciously adding an integer vector offset. Instead

of sending the transmit signal in (33), the perturbed version of this signal is transmitted as

s = H−1(u + τl), (171)

where τ is a positive real number and it is chosen large enough so that the receivers may apply

the modulo function. The vector l is chosen such that the average energy γ is minimized.

Let u be a point selected uniformly over CM(0, 2A) and τ = 2A. Therefore, vector s, based

on (33), is selected uniformly over a polytop whose sides are along the columns of the matrix

H−1. This polytope is actually a fundamental region of the lattice τH−1 centered at zero (for

definition of fundamental region refer to [27]).

By using (171), the hypercubic region of R is expanded and the vectors l are found in the

expanded region such that the vectors s with the minimum energy are selected. In other words,

by using perturbation in (171), vector s is uniformly selected over a region which is known as

the Voronoi region of the lattice τH−1. The Voronoi region of a lattice is the set of points in RM

which are closer to the origin than any other points in the lattice [27]. Denote byV(τH−1) the

Voronoi region of τH−1. Therefore, the average transmit energy of perturbation technique [115]

would be

Eperturb = E(γ) =
∫
V(τH−1)

‖x‖2dF(x), (172)

where F(x) is the uniform distribution overV(τH−1).
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Since the probability distribution over the Voronoi region is uniform, the average energy

in (172) can be formulated by the second moment of τH−1 [27]. The dimensionless second

moment of the Voronoi regionV(τH−1) is defined as

G(V(τH−1)) =
1
M

∫
V(τH−1)

‖x‖2dx

Vol(V(τH−1))1+ 2
M

=
1
M

∫
V(τH−1)

‖x‖2dF(x)

Vol(V(τH−1))
2
M

(173)

Therefore,

Eperturb = MG(V(τH−1))
(
Vol(V(τH−1))

) 2
M
, (174)

where

Vol(V(τH−1)) =
√

det(Q)(2A)M. (175)

In [27], it is shown that G(V(τH−1)) ≥ GM where

1
(M + 2)π

Γ
(

M
2 + 1

) 2
M ≤ GM ≤

1
Mπ
Γ
(

M
2 + 1

) 2
M
Γ
(
1 + 2

M

)
(176)

Generally, the method in [115] changes the region of the transmit signal s form a funda-

mental region to the Voronoi region of τH−1. The closer the Voronoi region is to a ball, the

smaller the value of the average transmit energy would be. However, the Voronoi region of

τH−1 is fixed and it can be far away from a ball. The methods in [129] and [144] change the

region of the transmit signal s form a fundamental region to another fundamental region which

is more similar to a ball.

B.4 Case (IV) - Independent Gaussian Marginal Probability
Distribution

Now, consider the theoretical case that u is a random vector in RM such that its elements

are i.i.d. random variables with a Gaussian distribution with zero mean and variance σ2, i.e.

N(0, σ2IM). Satisfying the entropyH per dimension requires that

H = 1
2

log 2πeσ2. (177)

The average transmit energy of u is E(γ) = tr(ΛΣ′). The covariance matrix is a diagonal

matrix since the elements are i.i.d., Σ = σ2I. By multiplication of a unitary matrix, there are

i.i.d. Gaussian elements with Σ′ = σ2I. Therefore, the average energy is

Esphere = E(γ) = σ2
M∑

i=1

λi =
22H

2πe

M∑
i=1

λi. (178)
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According to (168) and (178), Gsphere =
Ecube

Esphere
=
πe
6

, which is known as the shaping

gain (the advantage of using Gaussian distribution instead of uniform distribution). The idea

of shaping has been frequently used in different applications to generate signals with desired

properties.



APPENDIX C

LAGRANGIAN DUALITY

In this appendix, it is shown that Lagrangian duality can be used to derive the SDP relaxation

problem (77). First, the dual for the constraints of (65) is found, and then, an SDP relaxation

from the dual of the homogenized Lagrangian dual is derived. Finally, the obtained relaxation

is projected onto the minimal face. The resulting relaxation is equivalent to the relaxation (77).

It is easy to show that the minimization problem in (65) is equivalent to

min uT (Q ⊗ S)u + 2vec(C)T u

s.t. (IN ⊗ eT
K)u = eN

u2
i = ui ∀i = 1, · · · , n. (179)

According to [146], for an accurate semi-definite solution, zero-one constraints should be for-

mulated as quadratic constraints. Therefore,

min uT (Q ⊗ S)u + 2vec(C)T u

s.t. ‖(IN ⊗ eT
K)u − eN‖2 = 0

u2
i = ui ∀i = 1, · · · , n. (180)

First, the constraints are added to the objective function using lagrange multipliers λ and w̃ =

[w̃1, · · · , w̃n]T :

μO = min
u

max
λ,w̃

{
uT (Q ⊗ S)u + 2vec(C)T u

+ λ
(
uT (IN ⊗ EK)u − 2eT

NKu + N
)

+

n∑
i=1

w̃i

(
u2

i − ui

)
} . (181)

Interchanging min and max yields

μO ≥ μL = max
λ,w̃

min
u

{
uT (Q ⊗ S)u + 2vec(C)T u

+ λ
(
uT (IN ⊗ EK)u − 2eT

NKu + N
)

+

n∑
i=1

w̃i

(
u2

i − ui

)
} . (182)
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Next, the objective function is homogenized by multiplying it with a constrained scalar u0 and

then increasing the dimension of the problem by 1. Homogenization simplifies the transition

to a semi-definite programming problem. Therefore,

μO ≥ μL = max
λ,w̃

min
u,u2

0=1

{
uT [

Q ⊗ S + λIN ⊗ EK + Diag(w̃)
]
u

−
(
2λeT

NK − 2vec(C)T + w̃T
)
u0u

+ λN } , (183)

where Diag(w̃) is a diagonal matrix with w̃ as its diagonal elements. By introducing a Lagrange

multiplier w0 for the constraint on u0, the lower bound μR is obtained

μO ≥ μL ≥ μR=max
λ,w̃,w0

min
u0,u

{
uT [

Q ⊗ S + λIN ⊗ EK + Diag(w̃)
]

u

−
(
2λeT

NK − 2vec(C)T + w̃T
)
u0u

+ λNu2
0 + w0

(
u2

0 − 1
)
} . (184)

Note that both inequalities can be strict, i.e. there can be duality gaps in each of the La-

grangian relaxations. Also, the multiplication of λEN by u2
0 is a multiplication by 1. Now, by

grouping the quadratic, linear, and constant terms together and defining ũT =
[
u0,uT

]T
and

wT =
[
w0, w̃T

]T
, the following relaxation is obtained:

μR= max
λ,w

min
ũ

{
ũT [LQ + Arrow(w) + λLλ]ũ − w0

}
, (185)

where

Lλ =
⎡⎢⎢⎢⎢⎢⎣ N −eT

NK

−eNK IN ⊗ (EK)

⎤⎥⎥⎥⎥⎥⎦ ,
Arrow(w) =

⎡⎢⎢⎢⎢⎢⎣ w0 − 1
2wT

1:n

− 1
2w1:n Diag(w1:n)

⎤⎥⎥⎥⎥⎥⎦ ,
and LQ =

⎡⎢⎢⎢⎢⎢⎣ 0 vec(C)T

vec(C) Q ⊗ S

⎤⎥⎥⎥⎥⎥⎦ . (186)

Note that the additional row and column generated by the homogenization of the problem

is referred as the 0-th row and column. There is a hidden semi-definite constraint in (185), i.e.

the inner minimization problem is bounded below only if the Hessian of the quadratic form is

positive semi-definite. In this case, the quadratic form has minimum value 0. This yields the

following SDP problem:

max − w0

s.t. LQ + Arrow(w) + λLλ � 0. (187)
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The desired SDP relaxation of (180) is the Lagrangian dual of (187). By introducing the

(n + 1) × (n + 1) dual matrix variable Y � 0, the dual program to the SDP (187) would be

min trace LQY

s.t. diag(Y) = (1,Y0,1:n)T

traceLλY = 0

Y � 0, (188)

where the first constraint represents the zero-one constraints in (180) by guaranteeing that the

diagonal and 0-th column (row) are identical (matrix Y is indexed from 0); and the constraint

(IN ⊗ eT
K)u = eN is represented by the constraint traceLλY = 0. Note that if the matrix Y is

restricted to be rank-one in (188), i.e.

Y =

⎡⎢⎢⎢⎢⎢⎣ 1

u

⎤⎥⎥⎥⎥⎥⎦ [1 uT
]
,

for some u ∈ Rn, then the optimal solution of (188) provides the optimal solution, u, for (180).

Since the matrixLλ � 0 is a positive semi-definite matrix; therefore, to satisfy the constraint

in (188), Y has to be singular. This means the feasible set of the primal problem in (188) has

no interior [156] and an IPM may never converge. However, a simple structured matrix can be

found in the relative interior of the feasible set in order to project (and regularize) the problem

into a smaller dimension.

As mentioned before, the rank-one matrices are the extreme points of the feasible set of the

problem in (188) and the minimal face of the feasible set that contains all these points shall be

found [156].

From Theorems 8 and 9, it can be concluded that Y � 0 is in the minimal face if and only

if Y = V̂RV̂
T
, for some R � 0. By substituting V̂RV̂

T
for Y in the SDP relaxation (188),

the following projected SDP relaxation is obtained which is the same as the SDP relaxation in

(77):

μR1 = min trace (V̂TLQV̂)R

s.t. diag(V̂RV̂
T
) = (1, (V̂RV̂

T
)0,1:n)T

R � 0. (189)

Note that the constraint trace(V̂TLλV̂)R = 0 is dropped since it is always satisfied, i.e. LλV̂ =
0.
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[63] Hochwald, B. M. and ten Brink, S., “Achieving near-capacity on a multiple-antenna
channel,” IEEE Transactions on Communications, vol. 51, pp. 389 –399, March 2003.

[64] Hoffmann-Jørgensen, J., Probability witha view toward statistics, vol. 1. Chapman and
Hall, 1994.

[65] Honig, M., Madhow, U., and Verdu, S., “Blind adaptive multiuser detection,” IEEE
Trans. Inform. Theory, vol. 41, pp. 994–960, July 1995.

[66] Jaldén, J. and Ottersten, B., “On the complexity of sphere decoding in digital commu-
nications,” IEEE Trans. on Signal Proc., vol. 53, no. 4, pp. 1474–1484, 2005.

[67] Kannan, R., “Improved algorithms on integer programming and related lattice prob-
lems,” in Proc. 15th Annu. ACM Symp. on Theory of Computing, pp. 193–206, 1983.

[68] Kannan, R., “Minkowski s convex body theorem and integer programming,” Math. of
Operations Res., vol. 12, p. 415 440, Aug. 1987.

[69] Kohno, R., Imai, H., and Hatori, M., “Cancellation techniques of co-channel inter-
ference in asynchronous spread spectrum multiple access systems,” Trans. Elect. and
Comm. in Japan, vol. 66, pp. 416–423, May 1983.



REFERENCES 118

[70] Kojima, M., Fujisawa, K., Nakata, K., and Yamashita, M., “SDPA(SemiDefinite
Programming Algorithm) UserŠs Mannual Ů Version 6.00,” tech. rep., Dept. of
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