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- ABSTRACT

The'mathematical description of a non-linear dyna-
mioal.system may'take‘various forms. A natural descrip-
tion_is often in terms'of-differenoe or differential
eduations. A general theory is presented which permits
us to determine the optimal control of such a system
according to some suitable performance criterion.
"Necessary and sufficient conditions of optimality
are derived for a large class of optlmal control problems.
Ideas of mathematlcal programmlng, suitably extended to
'functlon spaces as well as Classical Calculus of Varia-
tions arednsed for this purpose. An iterative technigque
'inefnnction space 1s presented to syntheslze optimal
open loop’and elosed loop control programmes. The method
presented is formally equivalent to Newton's Method in
FUnctlon Space. |

| For many phys1cal systems. the state space is infinite
dimenslonal A theory is developed to solve minimization
problems in Banach Spaces. The theory is illustrated by
considering examples of finite and lnfinite_dimensional
,control problems. o |

Two appllcatlons to power systems are presented
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- CHAPTER 1

INTRODUCTION -

This thesis is concerned with the optimal control

btrof non-linear'dynamic systems. ‘We shall assume that the

"ffmathematlcal description of. the system to be controlled

. .ois known. The results of the the51s are very general

flln nature and thus appllcable to a wide variety of systems

f;7irang1ng from sampled data to dlstrlbuted parameter systems.

R S The Control Problem

A control system ConSIStS of ‘a. dynamlc process, a f‘.

”i~{fcontrolling mechanism and paths between the controller f

'fand the process as shown in Fig. 1. 1 _f

P U E . o | r.DsNAnlc_,, o
BRI P R | L. PROCESS .. | .

Fig. 1.1 - ¢

v ""The‘object of the controllerﬁis'to'apply inputs

u(t) to the plant which will cause the plant to operate

4f'1n a prescrlbed manner usually evideneed by the prox1m1ty
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‘of the plant outputs x(t) to a desired set of outputs

(t) ' The nearness of the plant outputs ‘to the desired

‘vtoutputs will usually be measured by some sultable per—w*

A\

"‘-formance functlonal.‘

" In addition to the plant 1nputs u(t), there are
generally external 1nputs wh1ch influence the dynamic

behav1our of the system in an unpredlctable fashion.

tThe controller should thus effect sultable performance f

{1n the presence of d1sturbances. In order to do thls,‘f

“l»lt may be necessary %o 1dent1fy the d1sturbances and

bi'the control of a complex system, the controller will

- model of a complex control system 1s shown in Flg. 2.

z
. lDISTuRBANCE
| DESIRENTT _ - ‘
_P-EE?- IR . o) 1 : ACTUAL
CTEREL compurer | | U ) AcTuaToR | % | PRocess || PERF

_IDENTIFIER [ X

"f’_the nature of the parameter varlatlons. Further, for

’f'ln general be a dlgltal computer., Thus a more general:'
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::In‘this thesis wexshall assume that the nature of
“the dlsturbances and the parameter varlatlons is com-

.pletely determlned.'

1.2, ' The Need for Optimal Dynamic Control

.Classical contrOlftheory was really concerned withi'
the linear control of single‘lnput-single output linear
‘hﬁtime-invariant syStems;‘.This‘theory may be calledvthef

'theory of servomechanlsms.'-The‘design of the'controi

'iﬂ system proceeded by uslng varlous Transform technlques.

-f;The attempts madento extend th1s ‘theory te multlvarlablef“

ﬁsystems were not very successful."In-fact methods like

li_non-interactlng control Were in effect methods to reduce

'jthe multlvarlable system to n slngle varlable systems._ o

We are however really interested in the control of?"

“,fcomplex processes. These processes are truly mult1-'

:var1able and in general non- llnear. ‘There 1s'also a

' desire on the des1gner S part tO obtain the best per-

rﬂiformance out of a system.. Hence the need for op’Clmal ﬂt

;icontrol. As a matter of fact thls deslre to obta1n

‘pjgoptlmal control actually helps 1n the solutlon of ‘the

: control problem,'ln the sense that a certaln structure’f
QViSfintroduced'intootherproblem.k Thls allows a certaln

body'ofjmathematicsdto be3used;f Further a flrm basis :,



| __17 )

for making approximations is provided, since in an actual
. design problem some kind of approximation will invariably

have to bevmade.'

1.3. The Concept of State(l> (2)

We shall generally be adopting the state descrlptlon
of dynamlcal systems, although our methods are not re-'
strlcted to such a descrlptlon., Here we glve an 1ntu1t1ve
1dea (follow1ng Arblb) of what we mean by .the 'state' of
‘a system.‘ ; » ‘ REC -

A dynamlcal system for us 1s somethlng in which we-
‘f_put in certaln 1nputs (control) and Wthh itself puts
out. somethlng at certain t1mes.- We usually th1nk of a

'system‘S,havlng an asSoclated.tlme scale,T,7

 Fig. 1.3
At each instant t’e"T;_the systemfsdreceiVes an input
u(t) and emits some output y(t) We now assume that
vthere 1s a flxed set U of possible 1nputs and at any
t1me t € T we choose an element u(t) from it. There is .

also avset of,outputs Y, which includes all possible
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values of'y(t) V t € T:. The time scale T may’be con- - |
finuous or d1screte (sampled) and the. 1nput and output N
sets will generally be llnear spaces.
We would now like to arrive at the notion of a
state. Now we may not be able to predict the output
v(t) by Just know1ng what the present 1nput is. The

‘past h1story of the system S may have altered S in such

T .a way as to modlfy the output L In other words the output

vof S is a functlon of both the 1nput and the past h1story

~of the system. We: thlnk of state as belng some attri-

"bute of the system Wthh together W1th the- 1nput at‘
dthat 1nstant determlnes the output But to quallfy as ;Q»l
J:the state of a system 1t must have one more property
-~ oviz. that the states and inputs together sufflce to b}i;
";determlne the subsequent states I . | |
| For a large number of physlcal problems the state -

| of the system is described by a set of f1rst order non—

”:Vlllnear dlfferentlal equatlons, ‘;71

(t) = f, (xl(t) ‘...x (t) t) (t ) 5 c, k'v’:i‘:k=";l‘,"2,v._ n

ivfor'inttheﬁequivaientfintegraifeQuation;férmti; o
RO n) [ 8@ @ e 1L
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~and we shall mostly be concerned with such systems. One

of the reasons for adopting a dlfferentlal equation

descrlption is the relative ease with which dlfferential

equations may be solved on a digital computer. -

1.8, A Geﬁeral‘Formulation of the Problem -
We now formulate a general optlmal control problem,

We are glVen a dynamlcal system whose evolutlon of e

'state 1s descrlbed by a non-llnear operator equatlon .t-

z

'.glven in expllclt ‘or 1mp11c1t form o

S (1.8)

'Here X represents the state of the system and is an

~,”element of a functlon space 35 and u represents the -

control to be applied and is an element of another function

space U and the non—llnear operator N, maps elements of ;_l -

.the d1rect product 35* U tO $ space._;:

,,r We are also given another operator equatlon

G(X) 1 fl” w}frflr;-ffi’,- ey 5)

lwhere y ‘is an element of the output functlon space Y and

e is a non—llnear operator which maps elements of the _3

‘state space GE to elements of the output space Y ‘.O i

R

'grepresents the zero element of the state space I v The ,di'

problem of optlmal control 1s to flnd the palr (u x)

“
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such that the functional F(u,y) is a minimum. Here F

. is a non llnear operator from the product Space Ux Y

to the real number space R Slnce y is expllcltly knownf"

in terms of X, we may wrlte F(u,y) = P(u x) thereby

. ellmlnatlng y from the problem. The pair (u,X) will
generally be-restrlcted to lle either in. the interior ofc'
a set D.C UX3€ or 1t may take values on the’ closure .

- of the set!l The latter 1s the case when the palr‘ 1ff

#,X) has to satlsfy 1nequallty constralnts.
We formulate the optlmal control problem in Such
generallty since. most problems of opt1mal control can

be cast in this form by sultably deflnlng the underlylng

’?ffunctlon.spaces.ANThis”formulation thus,includes problems

“-.

~of distributed parameterisystem‘as well as certain prob-

ablllstlc systems.

The operators 1nvolved are’ assumed to have sultabler‘”“

contlnulty dlfferentlabillty and boundedness propertles.d

An 1mportant sub class of problems 1s. e
B Mini'mise_" P(_X(_’G,'O),su) =.;‘~F<x( ) tp)t f L(x(t)u(t)t)at

| pjsubJect to the constralnts

FRE CRECORICIDE x(,) =

‘hbe(x(t),u(t) £) <o ?rl}iafffti{fipihf7l’;iftf:u(l-8)

Bl )

S
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s(x(e),E) <0 - (1.9)
calx(eg),tg) =0 (1.10)
'where'x(;)and.u(;):areivectors, F‘and L scalar-valued =
funetiohs.and'R,S?G vector-walued functions.
For inequalityueonstraints S 0 means that each
‘rcomponent of the vector satlsfles the 1nequallty constralnt.,
‘In order to derlve the necessary condltlons of '
optlmallty varlous continulty and dlfferentiablllty
.assumptlons have to be made.f The inequality constralnts'
also have to satlsfy certain constralnt quallfloations
rFor these assumptlons and condltlons we refer the reader '

to the papers of Berkov1tz(3) (4 ).

' 1.5." Review of the Available Results

At thlS p01nt it seems appropriate to rev1ew some

v7h:of the results that are avallable in the field of optlmal

’ 7i'control , We may subdlvide this sectlon 1nto three sub- -

' sectlons

| 1) Ex1stenoe ‘and Unlduehess results RM‘ ‘
11) Necessary and Sufflclent Condltlons of Optlmality
jﬁrrflll) Feedback Solutlons ’ ‘" o

‘ | 1v) Computatlonal Methods.i |

‘ffh In part of thlS review we rely heavily on a paper

by Berkov1tz(5)
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1.5.1. Ex1stence and Unlqueness Results

' From a mathematical standpolnt the first problem
of optimal control is the problem of existence. That
is, given the control problem, does there ex1st a lower
bound- for the performance functional P(t) and if so is
- this lower bound atteined by some admissible control uo.

Closely related to thls 1s the questlon of uniqueness;

. that 1is, 1f the m1n1mum is attained by a control u° R 1s

tth1s the only control that glves P(u) 1ts minimum value
‘or are there others? - '

The questlon of‘unlqueness is partlcularly 1mpor-
tant For 1f there exist several Ways of minimizing P(u )hs

some of these may be ea51er to 1mplement than others.

The problem that has been most studled mathematlcally

s the time eptimal eentrol preblem for linear systems,
A7that is problems for whlch the system dynamlcs 1s re-

| presented by B | : o -

E(Y) = A(t)x(t) +B(t)u(t) At '-(1.:11)
’:where A and B are n X. n and. n x m“matrlces, and it lsh-

| {requlred to'brlng the'system from some 1n1tlel‘state
ncx(t ) to the orlgln of the X- space in’ minimum t1me. 'The
;control vector u must satlsfy an amplltude constralnt

‘u(t)l < 1 ,r. te [t -] Where t is. the ‘minimum

‘t1me._ A sllghtly dlfferent verslon of the _Same problem
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is to hit a moving_target in minimum time.

The earliest results for this problem are due to
Bushaw(6),,who considered a very special problem and the.
first resultstf.wider applicability are due to Bellman,_
Glicksberg and Gross(7);and Gamkrelidze(8). ‘The most
general results‘available:for this problem'is due to La
52116(9) " La salle showed that if there is an admissible
'control\u’that,results”in a trajectoryrx(t) hitting the -
mov1ng target then there is an optimal control that is
bang bang i. e. u takes on only the values +l or l. For:
systems which La Salle called proper he showed that |
| this control is unique.. This appears to be the first
paper in which the ‘concept of controllability and reach-
. able sets ‘was 1ntroduced La Salle used a Liapunov i
Theorem @n the range of a vect or m re to prove some
'1of his results. Extensive use of this ‘theorem has been~
made in later wozk on Control theory., Neustadt(lo) has i
-considered_the,same‘problem.with,the added-constraint_~‘

| pmascn
The most recent result for this problem is that of
Halkin s(l ) who proves La Salle s theorem for piecewise

-

‘ continuous functions.
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For non—llnear systems ex1stence results have been 7
‘obtalned by Lee and Markus<l2) Rox1n< 13) and F111pov<14).
Lee and Markus conslder the problem of nlttlng a compact
target set thau is mov1ng contlnuously over a fixed tlme'
interval. The'control u is constralned to lie in a
_compact convex set in m—dlmenslonal euclldean space and
it contalns Lthe orlgln.dﬁ_mgf; f;fi;: o

~ Their’ system dynamlcs 1s assumed to be of the form"

x(t) g(x t) + B(x t) (t)v._' ed . “ '; (1. 12)

_and the performance functional 1s of the form
’»Pmﬁx@bﬂﬂsfj [L@aﬂi+M@gthﬂtmt,”d,(1dj)
TR L T R
e . ueo“__; '
They show that Af the set !1 of admlsslble control that
result in- the target set belng hlt is non- v01d and 1f_d_r

all tragectorles resulclng from admisslble controls

"satlsfles a unlform boundedness condltlon

lx(t ” <,5,_ B < d), then an optimal control d
.ex1sts S R e ' o
B Rox1n considers the problem of m1n1m1s1ng
E ?Lfl”; : 'a, - ; e
"j.L(#;u,t)th _construined:fo satisfj‘a non-linear
”m_toﬁ?"VHv‘. , m_ : R le , |
differehtiél‘equatioufkv#; fx (t),u(t) t) "i(t ) ;

He assumes that u lies 1n a flxed compact set N 1n
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euclidean m-space. He assumes that for each (t,x)ew®,
£(t,x,u) maps {) onto a convex set. 'He_further assumes

{x(t) f(x(t)'u(t) £)> < K(Hx(tﬂ]a 1) where < >

denotes 1nner product in euclldean n-space and ”x(t i
norm in euclidean n-space. ,
Under'these.assumptions, Roxin shows that the set
of all p01nts that can be reached by the system is closed
From th1s result one gets the ex1stence of opt1ma1 controls
Warga(lr>vsuggests that a system that does not
.satlsfy the convex1ty property should be relaxed by en-
~larg1ng the set of allowed values of- x(t) = f(x(t) Q,%)
to the closure of the convex hull of f(x(t) fl t) -~ He
then shows that solutlons of the relaxed problem can be
-,‘unlformly approx1mated by solutlons “of the orlglnal
lproblem._» | | | | |

If however the system is llnear in x, thatﬂis

0 A ¢ g
© and P(u,x(b,)) = J ’ (“(t)x(tf‘)'*ﬁ%‘ (at))at

. then opt1ma1 cuntrols ex1st 1f the set
¢>K1 t) (q:@l t) ¢, £)) 1s only compact (and not
necessarlly convex) . Th1s result has been proved by

Neustadt< 5)
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1.5.2. ‘Necessary~and Sufficient Conditions of Optimality
The ﬁecessary condiﬁions of cptimality may be derived
using uarlous approaches.. The four main approaches are
l) Using Modifications,of Classical Variatioual
technlques - | | | o
ii) Pontryagln S Max1mum Prlnclple
111) Hamllton Jacob1 or Bellman s Partlal Differential
Equation approach l
': 1v) Reachable Set approach (Prlnclple of Optlmal
| Evolutlon) '
Under certaln strong assumptlons all these results are
fequlvalent - In the follow1ng we shall clearly 1nd1cate
. in what sense these results differ o

Me thod of Varlatlonal Calculus

" The most general results appear to be those of

(16),(17)

' Berkov1tz ‘who essentlally applled the results of:
Bllss<.8),ﬁMcShane< 9) and Hestenes( O) ‘to obtain nece-
ssary condltlons of optlmallty for the general oontrol

~problem deflned by relatlons (l 6) to (l lO) For sim-

o plicity, we assume that the constralnts (l 9) and (l lO)

'are abseht.» It is convenlent to deflne a functlon H by

the relatlon,ft'

,H(t x(t) u(t) X Mt)) A L(x(t),u(t) t"');r_<x,\f(x(t),u(t)‘,'t)>
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where Xo is a scalarland A is an n-vector. The results
of Berkovitz may be Summarised in the following

Theorem 1. Let u be an optlmal control in the class of
admlsslble controls, let K be the correspondlng trajectory
’and'let x(t) be the function deflnlng K on'[t te ]. Then |
‘there ex1sts a scalar h > 03 n—dlmen51onal vector h(t) ”
deflned and continuous on [t tf] ‘and an r—dlmen51onal
vector u(t) > o deflned and continuous on [t tfl'except
perhaps at Values of ¢ correspondlng fo corners of K

; where it possesses unique left and rlght hand llmltS
5,_such that the vector (A A(t)) never vanlshes and such
that the following conditions are fulfllled |

I. Along K the follOW1ng equatlons hold

g§<t> - 80,8 5 X ) - '-‘; BRI
ar(®) _ p H(x(t) X(t),u(t) t) (D R(X(t),u(t) ) T(e)
S e s
':DuH (&(t),,?z(t)v,“x(t),t).'+[DuR(>fc(t>;ﬁ(t)t,t)J}L_'yof> (1.16)
Kﬁl(t)Rl(ikt),ﬁ(ﬁ),t); of;d‘if; 1;é;...ﬁr- ';!v(l;17)‘
(tf) DF (x(t )2te) i ;‘.ehd'ifll fc?:tj (1.18)
(See sectlon on Notatlon laterblnvthlsvchanter) -
j;;' Along K the functlon H 1s contlnuous . The above

equatlons are the Euler—Lagrange Equatlons of the problem.




- 28 -

II. For_evehy element (t X u) of X and every u such that
u = u(t) for some adm1s51ble control u, '

H(t,% ,u,?\ JA) >H(t X,0 2\)

This is known as the Welerstrass Condltlon

- IIIll Let I(t,x) denote . the subset of 1ndlces i=1l,....r

such that R, (t X, u) = O Then at each p01nt of K

/e
e, (DZH)e> > 0, for all vectors ‘e .1) satlsfying
e
» m
Z Sﬁ‘l j=09 1 I

9=1 075 S

Ir theﬁsystem iS'hormalpthen A, may be set equal to 1.

bThe above fesults”wefe"proved by Berkovitz using the

‘Pontryagln S Max1mum Principle

following slack varlable technlque to convert the in-

| equallty constralnts to equallty constralnts

.vgﬁl(§ ).' R(X u, t) ; ,‘F(td) = O,ﬁ where ?’ is an

- vector, and applylng the theorems of BllSS and McShane

"In the work of Pontryagin andchis co—Workers(gl)

the control vector u.is assumed to belong to a certaln

class D and constralned to lle 1n a flxed closed subset

’51 of an arbitrary Hausdorff Space; " The class D should

1"

%A linear topological space satisfying the Hausdorff
separation axiom (distinct points have disjoint neigh-
bourhoods) is called a Hausdorff Llnear Space
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satisfy the‘follOWingfthree conditions
i) A1l the controls u(t), t € [t,,tp] Which belong
to the class D are measurablé.and.bounéedi .
-ii)rIf'u(t), t € [to’t%} is an_admissible control,
. v is an arbitrary point"ofwflvand £' and t'' are numbers
such that .t < t':< t'' < ty, the control’ ul(t) |

deflned by the formula

£ % t < tl,
- . (v for t' <t < BT
gl(t) =1 R |
s lu(e) for g < BB or BT < B < b

is also: admlsolble

| iii) If the 1nterval t £t g'tf'io:broken‘up by means
"'of_subd1v151on polnts into é ‘
on eaohlof which the control u(t);is.admissible then

‘ this'conffol is“aiSO'admissible in thehentire interval
[t tv] An adm1551b1e control con51dered on a sub-

o 1nterval is also adm1551b1e “A control obtalned from

an adm1551ble control u(t)‘ £ € [t t ] by a translatlon
Tln time, [i.o; the control ul(t)-_ru(t a) ft'€ [tO+q,t1+q]
ols also adm1551ble.' R C N .

" The only other condition they requlre is that the
¥y (Xl" ..xn,u) :
funotlons o T
DX

‘ J = 1 2 ....n are contin-
;uous on the direct product Xle o, where X is the n-

o

_4Vd1men51'ona1ustate space and o 1s_ the closure of L .

finite number of subintervals,‘

e g o

I
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For this class of problems, Pontryagin's results

are 1f fCrzlf) | | |

d?\ 4 T |
= at = oo R S
and H(t,x%u,h,A) < H(t,x%u%A,0) 0 (1.20)

where A"{’O It is worth mentioning that these results
;are obta1ned by conslderlng strong variatiens about a
traJectory Equatlons (l l9) and (1.20) constitute
Pontryagln s Max1mum Pr1n01ple S
If the set!) is a subset of Euclldean m-space w1th
plecew1se smooth boundary then fl may be represented
by means of a set of 1nequallty constralnts o

R (u(t)) o l 2,....r :

If-the‘control"u(t) is bounded‘and measurable then an
:almost everywhere verslon of" Berkov1tz S results may
(22)

‘ be obtalned by uslng another theorem of McShane

"In this’ sense Berkov1tz 5 results and Pontryagln S results

. are equivalent.

~

These arguments were modlfled by Gamkrelldze(gj)f
to obtaln results where ‘the state var1able was constralned
to lie in a reglon w1th plecew1se smooth boundary, _th1s
Vleads to condltions of the form\ﬁ -
| - s(x(8),8) £ 0
Berkov1tz'also obtained results for thls case uslng

varlatlonal_arguments._




The Method. of Dynamic Programming (Hamilton-Jacobi Theory)

ALet~v(t ,x(t')) be the value of the minimum of P(u)
as a function of initial time and position (t ,x(t ).
Invoklng his Pr1nc1ple of Optimality, Bellman obtained
the follow1ng partlal differential equation for the

value functlon v(t ,x(t )),

% _ ulv% [L(x(t),u(t) t)+ <DV, f(x u,)>]

where. the minimisationeiS'carried_oVer the set of admis-
sible controls . The»Validity:of this equation has
been rlgorously establlshed by Berkov1tz (under certain

ages tmptlons) ' Under sultable aSSumptlons on the propertles

1,

of the control u. as a funetlon of t and x, ‘he - has shown
that.v is piecewlse'c2 on‘an appropriate-region of (t,x)
‘FSpaoe': It can further be shown under these assumptlons
" that if Aﬂ\(t x) is deflned to be the value at t of the
.vector A assoc1ated W1th the optlmal traJectory through

(t,x) then,
D v(t x) ’ JA\(t x)'
2w ;'ef(t;x,u) - <1&(t ﬁ) f(x ,8)>
where 4 5 ﬁ(b) is’ the value of ‘the optlmel control corres-

/ponding: to the point (t x) Hence, .

S__,(t &) + H(t,%,4, J\)‘ _O"f";'vf‘f o (1.21)




uhich is a Hamilton—Jacobi Eouation.
Combihihg‘equation (1.215 with the Weierstrass
Condition me:may write down Bellman's equationr
VAn'analogous viewpoimt is the Hamilton—Jacobi theory
. as developed by Caratheodory( 4). This was resurrected
| - by Kalman(25) and applled to the control problem

Reachable Set Theory

A theory parallel to the theory of Pontryagln and

( 26)

.h1s co- workers has been developed by Halkln and
Rox1n( 7) Halkln s results are more general The
'v1ewp01nt of Halkln 1s qu1te dlfferent from Pontryagln S.
’In the follow1ng we shall 1nd1cate some of the sallent
polnts of Halkln s work.:- | o
Let us flrst formulate the problem follow1ng Halkln.
Cons1der an optlmal control system ‘
:vx(t) =. (X(t),u(t) ),‘where x(t) e E s u(t)(: BT
and t € [0,1].% | e
‘We are glven a class F of bounded measurable functions
[O 1] —>£1 - where fl is a closed subset of E such
'that R o | R
:.i) V\A( t) e F, f(x u(t),t) ié measurable on [0,1]
and*C’ in x and all solutions of the differehtial equation

fare bounded .

XSee,the section on notation later in this chapter.
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1) u'(.)e F, u''() e F, T¢ U)ZL => u(. )
and u(t) = u (t) on [0, T ] '
| =u''(t) on (7 ,1].
An initial manlfold hy (x) =0, 1= l,2,..,.;

" and a termlnal manlfold g, (x) =0, 1i=1,2, .m are
given. It is assumed that the gradlents of each g :and h
ex1st and are llnearly 1ndependent _

The problem of optlmal‘control is to choose the
pair (x(. ),ﬁ( )) such thét‘g»(k(i)) 1s a minimum.
For thls problem the results of Halkln are the same-
'.as that of Pontryagln v1z‘ o . |

Maximum Principle  :(":

 If:(§(.),ﬁ(;))lis dﬁtimai,(there exists an absolutely
| continuous fﬁhctibn)%(,) on [O,l];.not}zérogband differen-
tiabie'almost'everyﬁhere such that | |

1) <e(R(6),8()e), A(E)> > <£(R(5),ult),t), A(e)>
almoSt‘éQeryWhére bn'[O;lj and V}l(.) € Eﬂ

' ii) %(.) Satisfies thé adjoinﬁ equatidn

) = 0,0, 8(5),8)) ()

' iii)'There ex1st constants o = (al,;...ai),'

5';'(50 By ) such that e
a) A(O) = (th(x(o)) | where h:is aﬁk'ﬂ-vector |
"*b).A(l) ;_(Dxé(ﬁ(l))) B and g (g ,g) is an m+l vector.

020

c) 8
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. Let us mention that the satisfaction of the terminal
constrainte”complicates the proof’ 33525&33@5!
As'in fhe,work of Pontryagin'anduhis co-workers
the proof of the_maximum orinoiple ultimately relies
on the separation'theorems on disjoint convex. sets in
Euclidean‘space “But the way the convex sets are oon—
structed is qulte different in the work of Halkln |
In the,work of Halkin ftwo sets are_constructed
Ca) W= seﬁ of all ooints accessible at time t = 1
b). S(X) Ay rely) =0, gyy) > e (X)_} -
_ ’The follow1ng lemma is then obtalned
Lemma 1: The set W and S(x(l)) are d15301nt.
_ It is also not too difficult to show that x(l) lies
on the boundary of W, denoted by E)W
A partioular 11neafleat;on is new ;ntroduced, The
functlons h 85 and f'are~11nearlsed so that .

g " hy (x) ~> by (X(O)) + D h; (x(o))(x-—x(o))
(X) - g, (%(0)) + D g, (%(l))(x—X(l))

,f(x(t),u t) - f(x(t),u ©) +4Dxf(x(t>,u,t)(xfx(t)5;

: giving”rise'to a linear optimal oonﬁroi'problem‘oorresf

‘epondlng to the orlglnal non-linear problem

/ The two follow1ng Lemmas can then be obtalned u31ng'
oertam generallsatlons of L:Lapunov . theorems and the

Brouwer flxed point theorem.
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Lemma 2. W and S(%(1)) disjoint implies that W and
é(%(l)) are ‘separable by a hyperplane.

Here W and § are sets similar to W and S for the
linear problem. -

A A A

" Lemma 3. -x(l)e'Bw implies that %(1)e O W.

Once-theseflemmas have been"proved the maximum
principle can be proved without ftoo much dlfflculty

We refer the reader to Halkln s original work

Sufficiency Results

A'sufflciency'theorem for:optlmal control was given
by Berkovitz alorlg the lines of the Classical Calculus
of Veriations.' It doestnot‘however_appearbto‘be too
useful."In‘Chapter‘4fwe-shall give-some sufficiency
results,.again alohgithe lines of:the Classical Calculus
of Variatiohsrj Sufflciency theorems in terms of the
Hamiltorliarl H was statedv' by Rozonoer(28) for linear
systems in whlch ‘the terminal time tf was fixed and
x(t ) free. Sllghtly more general results have been
glven by Lee(29) 3

‘Operator Theoretic Approach o

‘We would also like to mentlon the results obtalned
by Balakr1shnan<30) for the flnal value problem for
’llnear systems in which the control is requlred to satisfy

an energy-type of 1nequallty constralnt. - Balakrishnan
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alse indicates a'steepest descent method for synthesizing
the optimalieontrol; A proof of convergence of the

steepest descent method is also given.

1.5.%. Feedback Solutions

,bne'of the most importabt concepts in automatic
control is the concept of feedback. This means that
the optimal control’dl should be obtained in the form
a(t) = ﬁ(ﬁ(b),t). In bbher words the optimal control

should be a function of the instantaneous state of the

system. 'USing Variétional theofy"or the maximum principle

the,optimaldeohtrel is obtained in the form u(t) = u(x(to),t)

where t_ is the initial time. In order'to obtain a |
feedback form of solutlon it would be necessary to solve
the.Euler-Lagrange equations of'the problem repeatedly.
In the next section welshell indicate that the solution
. of the Euler—Lagrahgeiequations'leéds to-a_ebmplieated
two- p01nt boundary value problem Welmighb‘thus conclude
tthat in general 1t is. not p0551b1e to obtain the eptimal
control in feedback form. | (’ o | |
If the dynamlcs of ‘the system is linear,lthatbis,

of the form

{

N gﬁ K(£x() + B(8)u(s), where A(‘c) and B(t) are

matrlces of - sultable order, ‘then in certaln spe01a1

S USR——
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cases The optimal control may be obtained in feedback
form. Of these cases, the most important from the prac-
tical point of view 1s the case where

2

BGx(t)) -3 [ GREam(s) + wTER(E(E)at,

T
o)

Q and R béing boundedvpositive definite symmetric matrices,
In this caée the optimal control law may be written in
the form, | .
CA(8) = -R7H(6)BT(£)K(£)R(t), where K(t) satisfies
the maﬁrix-Rica1ti'equaﬁion | |
R(8)+K(5)BE)R(E)+K(£)A(E)+aT(£)K()+Q(t) = 0 ; K(t,) =0
AKalmén(Bl)'has §hoWh thét thisvcontrol 1aw;is‘Stabie.
He has also shown that the Ricatti equation when solved
backﬁardsyin time is stable. | |
For linéar sy$tems, feedbéck_control laws have been
obtained,for»oértain time optimal oontrol problems.
 Pinally we would like to mention that the dynamic
programming'poinﬁ.of view enables one in(princip1e to
'oonétfuct'féedback control laws. However thé discrete
form of dynamic programming 1eadé to the now famiiiar
computer storage probléms andfin'continuous form the
,‘fesultihg partia1_differentiélﬂequatioﬂ‘cannot be solved

in general.
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1.5.4. Computational Methods

To simplify matters let us assume that the final
time tg is fixed, there are no terminal constraints to
be satisfiled and there are no inequality constraints
- present..'To synthesize the optimal control it is then

necessary to solve the follow1ng equations

dx(t) = :<x<t>;u<t);t> ; x(5,) given

dat
,ggg)e-DH&&)Mwmﬁ)ﬂ
:Jx( £a) e D F(x(t ), f);'

. We note that we are‘faced-with-a non—linear two point
boundary value problem. A discussion of various aSpects
of this two pOint boundary value problem will be given

bin Chapter 5 and here we content ourselves by mentioning

- the problem

.1;6ﬁf Nature Scope and Contribution of this Thesis

As‘we}have indicated before, thlS‘fheSiS is concerned
With the optimal control of non—linear dynamical systems.
i'We shall now survey the contents of the various chapters
and at the end indicate why the title ’Function Space
Methods in Optimal Control’ was chosen.l | |

L

:’”',_Chapter o is devoted to investlgating in detail

AN

thelrelationshipﬂbetween mathematical'programming'(linear
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- Maximum Pr1n01ple have been publlshed in the llterature
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and non-linear programming)kand discrete-time optimal
control systems. Essentially we have used methods of
methematical programming fo derive necessary and suffi-
cient cohditions of optimelity'for a class of discrete-

time optimal control problems. ‘We have also shown the

relationship between the Discrete,MaXimum Principle and

our results. Varlous erroneous results on the Discrete .

(32) (33)

Our methods clearly show that to obtaln the Discrete

Max1mum Principle some strong form of convex1ty assumptlon

has to be made. An 1mportant aspect of the theory of

mathematical programmlng is duallty.v In this chapter

“we prove certain duality results for optimal control

‘problems.. Duality hastimportant applications in the

decomposition of large scale syetems.- Fihally we indicate

¢

'how'optimai control problems oould be solved computa-

' tionaily as orobiems of mathematical programming.' This
'may prove verf useful in many~oases eince computer pro-

"grammes exist for the solution of linear and non—lineﬁr

:programmingkproblems; To the best‘of our knowledge‘this

is the first complete treatment.Showing olearly the-

,relatlonshlp between control and pProgramming. Prev1ously

fZadeh and - Whalen(3 ) 1ndloated how certaln llnear time-

optlmal and fuel optimal control problems_could be solved

I
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as linear programming problems."lt is also our under-
standing that Prof. Rosen(35) has been working on some-
‘whatksimilar lines (Prof.'Rosen’lectured on the solution
of state-constrained problems by:mathematical programming .
. methods in .the Control and Programming conference held
in Colorado Springs, April 1965). 1In a discussion of
Ringlee's(36) paper in the IFAC_conference in Basel,
l963;’we‘indicated that discrete-time optimal control
problems could be solved as mathematlcal programming
problems.: One of the classlcal works in the field of
mathematlcal economlcs is due to Samuelson, Dorfman and
Solow(37); Mathematical‘economlcs relies heavlly on
mathematioal programmingQ ‘We feel that there is.much

to be éained'in'applying ideas from controljtheory;to
mathematiéal eéoﬁomics and vicé versa.

The orlglnal mot1vat10n for 1nvest1gating the rela-
tlonshlp between optlmal control and mathematlcal pro-
grammlng was prov1ded by certain problems in the control
of power systems. Roughly speaklng the problem is as
"follows _ leen the load demand for 8 power system, it
is requlred to schedule generatlon to meet the demand
;such that the total cost of generation 1s m1n1mlsed and
;the‘constralnts of the systempare not‘ylolated. An
alternative way of looklng at the problem‘is : find

the optimum set points of the generators, subject to
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certain constraints such that the total cost of generation
is minimised. In Chapter 3 we proceed to solve this
problem using the results of Chapter 2.

Chapter 4 mlght be thought of as a prellmlnary to
- Chapter 5 where We consider second order computational
methods. Second order necessary conditions and suffi-
cient conditions of optimality have so far been neglected
' in the literature of control. These conditions however
. are 1mportant in second order computatlonal methods
and in the Synthe81s of nelghbourlng opt1mal feedback
controls In this chapter we present a detalled treat-
ment of the Jacobi condltlon and conJugate p01nts for
a class of opt1mal control problems The treatment was
motlvated by the recent book of Gelfand and Fomin(38)

. Chapter 5 is concerned w1th the synthe51s of optimal
vcontrols u31ng second order methods. These methods may
be thought of as extens1on5’to the gradient methods
proposed by’ Kelley(jg) and Bryson(qo).‘_Cur results
‘overlap to some extent results obtalned by'Merriam
In a v151t to the. U S.A. ‘ln Aprll 1965, Prof Bryson of
Harvard Unlver81ty pointed out to me that Kelley *2)
and more recently Bszon(Aq) have also expressed similar

‘ideas. In hlS work: Merrlam does not con51der termlnal

constralnts. Kelley s actual computatlonal technlque

(41), (h2)

Ve o~ e comss




- ho -

is quite different fromdeurs. Bryson's derivation of
results is also differeﬁt'from ours. A preliminary account
of our results wasngiven in a symposium on Optimal Control
held at Imperia; College tn April'l964(45). In this
. chapter we also present a'discussion of the advantages
and disadvantages of various_computational methods‘for.
solving optimal cqntrol problems. Computer results are
also presented. | |

‘Therefare many pfobiems,in optimal control where
thevsystem state vector is infinite dimeﬁSionai. Examples
of such systems are provided by distributed parameter
systems systems w1th pure tlme delay and stochastic
vsystems.: In Chapter T we present. a varlatlonal theory
forzminimlzatlon problems»ln function spaces.
v’ ‘These results are extensions Qf‘th@’pesults of Kuhn
and Tucker in non- llnear programmlng to inflnlte dlmen-,
sional Spaces The theory developed is - then applled to
| certain representatlve-control‘preblems.' We also 1ndlcate
some Successive approximation methods-fer‘the solution
of sueh problems. Thiskqhapter'is mathematieal in nature
and uses extensively:resﬁlts'of Fdnctienal’Analysis.
The relevant mathematical backgreund,is summarised in
AppendixrB. | o ‘

From a mathematical standpoint, it would have been
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more logical to put thevresults of Chapter 7 right at
the beginning and.then.proceed to show how some of the

. results of the other chapters may be considered to be
special cases. We have however_preferred to adopt the
reverse order. ‘The problemsAof‘Chapter 2 have been
essentially solved by Ordinary Calculus type methods,
whilst the problems -of Chapter 7 have also been solved
1by Differential Calculus type methods, but Differential .
Calculus in Banach spaces(46)'(47) In problems of
optimal control these Banach Spaces are invariably
'_suitable‘function spaces.

‘It is clear that we could have discussed approxima-
ttion methods in~the.abStract framework of Functional

; AnalySis. Most.of the well known methods for minimizing

]

f’;ncti@ S f ral 1ables have counterparts in
function spaces and well known in Functional AnalySis(48) (49)
However, we are not just interested in indicating a
computational algorithm and proVing that the procedure
converges, but in actually carrying out the computations

T on a digital-computer and prov1ding sultable control- -

theoretic interpretations. In our opinion, the main

»-vcontribution of the work of Kelley and Bryson in solving

ﬁoptimal control problems ‘was not the use of a gradlent

method itself, but to show how the gradients in function



'uous time optimal control problems and discrete time

of a boiler Problem (in Chapter 6). FSRAASMMAMAIBARr

this thesis‘couldrbe used as a design philosophy for the

- hh -

space could be computéd‘reiatively easily on a'digital
computer. Similarly the second order methods we use

in Chapter 5 are more or less well known in Functional
Analysis. What we considef important is their‘use in

the manner we have shown to solve optimal control problems.

-This is also our Justification of giving a formal presen-

tation of the material in that chapter. We simply indicate
the way we procéed To sblve the problems on a digi’cal1
computer. | _

I¢ should by now be clear why we have chésen the
title ‘Fundtion Space Methods in Optimal Conftrol'.

Mathematically the principal difference between contin-

optimal contfol’problems is‘thét‘in the former we ére
dealihg with problems in function space rather than in
Euclidean Sbace.'

We pfeéentvtwo applicatiohs to power systems:

i) Economic Scheduling of Power Generation 1i) Solution

VNP APAWATA N ANV D Sbme of the ideasrpresented in

optimal control of a poWer system.

,The thesis is wriften in a way that most of the

chapters are eésentially self contained. Chapters 2 and
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7 are generally mathematically rigorous. However, wherever
possible, we have tried'fo motivate. the discussion' by
means of examples. In thgse two‘dhapters of ten many
technical assumptions havevbeen made. These'have been
included to réndervthe subsequent mathematical results
correct. The feader‘may omit them if he so wishes.

Ideas of mathemafical programming have only recently
béen used in the field of engineering. Henée some of

the fesults have been summarised in Appendix A. Appendix
- B, to Somejextent, covers,the_mathematical background
necesséry to read“Chaptef’$. Thé thesistOuld also be
read in the following ordef: Chapter 4, Chapter 5,

Chapter 6, Chapter 2, Chapter 3, Chapter 7.

1.7. Notation

We shall.try to use a uniform ndtation throughout
this‘theéis as far as possible. |

Set théoretic notation 1is then'uséd, A set is a
collection of objects. The set X is written as {xk}
where X represents the element of the set. The notation
X € X means that Xy is an element'of'the set X. When
a sét X represents a set'of point x‘having a particular
 property P(x), we write this as

X = {x : P(x)}

e g e P T S TRy e 4

e T § AR T | e 2
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Thus the set of points -

— . 2 2

X = {(Xl’XQ),7 x, %+ x,% < l}

represent all points which lie inside and on the circum-
ference of the circle with radius unity and centre at

Tthe origin.

on X. For our pufposeé, a_space X is a set X with which

we can associlate the notion of distance function a(x,y).

Thus in three dimensional EBkwe_have the usual 'Euclidean

~ distance'

alx,y) = /(xl-yl)?f (xy-75)% + (35-¥5)%

In moét offour}work we shall be concerned with finite
bdimensional Euclidean spaces. When we write x(.) e En,\
we mean x(.) is an n-vector. | |

A function or a mapping 1s to be thought of as a
relation between two sets X ande, say. We shall often
write £ : X = Y. We mean given an element x € X, there
exists a y € Y, such thét y = £(x). The function or

mapbing is to be clearly distingulshed from its value.

We shall also use vector—matrix notation extensively.

If we want to refer to a particular component of a vector

S x, this will be denoted by xJ, say. Capital letters will

be used for matrices. The adjoint (transposed) matrix
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will be written as AT, say. Dot indicates differentiation

with respect to time; thus x = %%

<oyo? n represents inner product in n-~dimensional Euclidean

E n

space. Thus <x,y> o= :Z; xTy'. Usually we shall drop
E .
i=1

the suffix E".

Consider the scalar—valued function

f(x,u) ='f(k',....xn,u',..;.um)
D f(i u) = Céi -lli) _ i.e. & row vector
x E ’bX',’.-.’bXn X=§ . . . .
o ‘ — =y _ df " ¥y
Slmlla?ly Duf(%,u) = (bu’,ﬁ.”ﬂ’bum)ﬁz—.

For a vector-valued function f(x,u) where f is an .

n-vector
et .

) — . l X] ccccc n ) . ) .

DXf(X,u) = v x| . i.e. an n X n matrix.
P ¥ b Y | a
ox" 0B x=x

|  For»the scalar valued function f(x,u), the total
differential |

Df (x,u). (£,M)

DXf(X,u).€ + Dﬁf(x;u),ﬂ
= D, f(x,u),€ + <D f(x,u),T

£ and T are the increments of x and u.

e eyt o am. Tt . A 2353 e
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. CHAPTER 2

OPTTMAL CONTROL AND MATHEMATICAL PROGRAMMING

1. 'Intfoduction

Sampled-data control systems have attracted a certain
amount of attention in the literature of automatic con-
trol(BO). Recently it has been recognized that state-
space and optimal control ideas allow us to investigate
suéh systems in a unified and often very much simplified
fashion. In this chapter we consider a non-linear dis-
crete-time optimal control problem and proceed fTo solve
it using methods of linear and non-linear programming.

The basic theorem we use 1is the Kuhn-Tuckef theorem which
is an extension of the Lagrange Multiplier rule of
Ordinary Calculus. We have summérized the necessary
mathematical results in Appendix A.

The chapter may be divided infto 9 sections. 1In
Section 2 we state the problem. In Section 3 we investi-
gate necessary and sufficient conditiohs of optimality.

In Section 4 we indicate the relationShip of our results
with the discrete-maximum principle. Section 6 is devoted
.to duality results of thimal control problems. In

- Section 7 we make some comments on the discrete maximum
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principle and sufficiency results.

An important class of problems in control are linear
- control problems with a quadratilc performancé_criterion.r
In Section 8 we solve such a problem using mathematical
programming methods. In Section 9 we‘indicate‘how we
might use mathematical programming methods for the compu-
tational solution of optimal control problems.

Before proceeding to the'general theory, it is worth
considering a simple example To motivate the subsequent
bdevelopment.

Consider a l-stage one dimensional control problem:

Xy = a x, + b uo, where X 1is the_state variable
and u_the control variable and X is given:

It is required to minimise

Blxpouy) = 2022 + 6 ?)

subject to the inequality constraints

B.

a < u

[

O

Let us first assume that the inequality constraint
is absent. Let the optimal u_ and x; be Go and ﬁl. Then
we could obtain Go and ﬁl by using the Lagrange multiplier
rule of ordinary calculus. -Thus, form |
Ay = L zin 2y 3
‘«L(Xo’xl’uo’Kl) = 2(xl +u ) }\l(xl ax buo)

Differentiating with respect to U, and X9 and
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equating the derivatives to zero, we get

oL = X. = X =0

bxl 1 1
ML L nh -
b—u——_uo+b7\l—0
h R =%
Thus Xl = Aq.
% =-DbA, and h 3 = - ol B ). Th
U.O = - 1 an ence U.O = - vaxo+ U.O . cre-
forei n -ab
U, = X
1+b2

We note that the control law is linear feedback law

When the saturation type inequality constraints,

a < U, < B are pfeseﬁt, we can no longer apply the Lagrange
multiplier rule directly. ‘However the Kuhh—Tucker theorem
_of non-linear programming can now be used to obtain the

requisite solution.

In this case, we have to form

Aoy, P

_ L 2. 2y % —ax -
L(xo,x l) —kg(xl +u ) hl(xl ax, buo)

l’uo’
+ ﬁl(uo—ﬁ) + lﬁ(a—uo).

Differentiating with respect to x, and uo,

AL _ . _x
S Xp = A =0

2L

buo-

!
e
O
+
o
>
i_.l
-+
>
i_.l
)
Fﬁ
BTl
o
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T r N " " _— s
Hence u + b(axo+buo) g -y = 0, and finally
o _ -ab Rt
© " 14p® ° 1+ b2

From the Kuhn-Tucker theorem we also obtain,

A
u,l_>_O J?l_>_0

A o A
ul(u -B) = 0 and Xa(a uo) =0
_ -ab

o 2
1+b
same solution as we obtained by the Lagrange Multiplier

X . This is the

Clearly if a < u, < B, u

rule.

In the following pages we generalise thesé ideas to
sleeAnonflinear multivariable discrete-time optimal
control problems. The various assumptions we have made are
to ensure the existence and sometimes unigueness of fthe
various multipliers and to exclude certain pathological

cases where the Kuhn-Tucker theorem does not hoid.

2. Problem Statement

In this chapter the state Vector will be an element
x of a Euclidean Space En, the contrél vector will be
an element u of a Euclidean Space E™ and time will assume
‘the discrete values 0, 1, 2,....,k. The evolution of

e system will be described by the difference equatlons,
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Xypq = X5 F Ii<xi’ui)f_ Xi(O) = ¢ given i = O,l,zlf...,k—l....

(2.1)

EPH g given and for each i;

A certain subset {1 C
i=20,1,2 k-1, the pair (xi,ui) is constrained to belong

to this set. The set {1 is defined by the inequalities,

Ri(xi,ui) < Oievnnn (2.2)

Ri is a mapping from ETTH

to EP. For each i = 0,1.2,...k-1
we shall assume that the vector functions fi and Ri
satisfy the following conditions:

a) The vector-valued functions £, and R, are defined
on (1 and for every (x,u) e £ , £, and R, are tiwice

continuously differentiable with respect to x and u

b) The mapping
I

-(I+D, fl) I : . D, T,

1 . o]
—(I+DX2f2) .

(14D, £, _,)I. Dt
Xy _q K-107 U1 Byl

is on to. 1In effect this assumption is a local control-
lability assumption for the k-stage problem. -

¢c) The inverse of the mapping
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exists.
We further require that the terminal point Xy must
lie on the manifold defined by .
g(x) =0 | (2.3)

where g 1is a twice continuously differentiable‘mapping\
from ORI Eq,'q S ﬂ; We assume that g satisfies the
following condition

d) The matrix Dg, 1is non-singular.

Kk _
The inequality constraints R(x,u) must satisfy the

following constraint gualification.
e) Let{R}(x,u)} i =.O,l,2, ...... r be the subset of

1 : '
the constraints R~ for which each (x,u) lies on the

- boundary of the constraint set. We shall say‘that the

function RT : BN 5 ®Y 1s regular at a point (%,u)e€ ESM,
if and only if for every (¥ ,M ) € ghtm (€ ,7) #0
‘such that the equality (x,u) =’(§fﬁ*§, u +7 ) implies the

inequality,
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Ri(x,u) R (x u)+ D R g 0) + DuRi (x,u).(0,71) <O

there exists a function W : [O,l] En+m with %the

following properties,
1) Dy (T )T exis%s for 0 < £t <1
i1) (x,u) = y(0)
111) R w(t)] <0, 0< t< 1

(¢ .,7m) =Dy (0).

Two sequences u = (uo""'uk—l) and.x = (Xl""'xk) are

'said to be optimal if they satisfy the conditions

(A) x,,q = xi+fi(xi;ui) ; x,(0) =c¢  1=0,1,2,.. k1
(2.4)
(B) Ry (x,,u;) <0 1=0,1,2,....k-1 (2.5)
(c) &(x,) =0 : (2.6)
and minimises ky
k-1 - | :

i=0
We assume |
) The scalar-valued function h is twice continuously
differentiablé with respect to X and the scalar—yalued
function @4 is twice continuously differentiable with

-respect to x and u for every (x,u) - .
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%, Necessary and Sufficient Conditions of Optimality

Under the assumptions we have made we can deduce

the necessary conditions of optimality by applying the

Kuhn-Tucker Theorem (see Appendix A) to this problem.
We form the Lagrangian,

~

L(%:ﬁ:x‘vu:ﬁ') = < )31 g(}'?:k)> + h(}ACk)

k-1
A A & A A A A
+ [ﬁ(xi,ul) NATFRR RS —fl(xl’ul)>
i=0
A A A \
+ <ul+l,Ri(Xi,ui)}] : ,' (2.8)

A

where Ai is an element of En, ﬁi is an element of EP and
$ is an element of EZ.
Differentiating L with respect to ii; i = 1,20 e00,k-1
and ﬁi; i=0,1,....k-1 and equating D L(%i,ﬁi) and
‘ i
Du.L<Xi’ui) to zero we obtain,

1

. ol A A N T’\ A A TA'
Ai-+-Ai+l+DX¢(xi,ui)+(DXfi(xi,ui)) Ao -+(D R.(x.,ui)) Biiq=

for i = 0,1,.....k=1.

Differentiating with respect to %k; we obtain,
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Xk = (Dg(ﬁk))?ﬁ + Dh(ﬁk) (2.11)

We also obbain that the optimal u, and x, satisfy

(2.12)

for 1 = 0,1,2,....k-1.

Under the assumptions we have made the A's are

unique.

In order to prove sufficienqy we have to impose

further restrictions. We shall assume that

g) fi(xi,ui) = A,xy + Biu, (2.13)

where Ai‘and Bi are n X n and n X m matrices for each 1.

For the matriées Ai and Bi we further assume HAiM { ®

and HBiH < o0 where

B

: HAi“.2 = trace [AiAi and MBiu 2 _ trace [BiBiT] for
each 1.
h) g(x) = Mx, | | (2.14)

where M is an n X g matrix, and M| < o

i) £ is strictly convex with respect to u; for each
i and convex with respect to x; for each 1

h is convex with respect to Xy

Ri is convex with respect to X5 and U for each 1.

We shall now prove that under.aSsumptions a) - i) if
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., ~ A A A ) o .
the sequences Xy,....xX, and UgseeeeslUp g satisfy equations

(2.9) - (2<12) then

k-1 | k-1

N A ~ A . ) -

n(xk)+ Z ;zﬁ(xi,ui)gh(xk)wL z \;zﬁ(xi,ui), for all (xi,ui)
i=0 i=0

satisfying equation (2.13). and belonging to the constraint

set

Let _

L = GO % SN T S VSN NS I B S K-
— ' A A A A ) v
L = L(xl,.,.xk,uo,...uk_l,hl,.m.hk,ul...,@k,l?) (2.16)

From (2.8) and (2.16), using the fact that 4, h and R,

are convex in x and u, we get

. k-1
I = | [ﬂf(xi,ui)—<7\i+l,xi+l—xi—Ai.xi—Biui>+<ui+l,Ri(x-i,ui)>]

i A ~ ; A vA _4 A A 4
> [4(x;,0, )1-<Dxi;25(xi,ui) )%y xi>+§Dui;5(xi,ui) sug=ay>

= ShgggeXy XA -BaUG> 4 GG R (R85 )0
Ty e Py By i’ui)(Xi‘xi)+DuiRi<Xi’ui)(ui"u1)>]

+ h(xk)+<Dh(xk),xExk>f<)D,M(xk—xk)>+<>?,Mxk>

k-1
A ~ A A A ~ A
‘= L+ E [<Ai:Xi‘xi>—<hi+l,Xi+l—Xi+l1+<Ak,Xk—Xk> (2.17)

i=1
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in obtaining the inequality‘(2.17) we- have used equations

(2.9), (2.10) and (2.1 ).

X > =0

>]+<7\k,xk K

-~ A A . _/\
But [<hgomy=ts>=Chy 10Xy 17%5
Hence L Z.i.

Using (2.12) we therefore get the desired result.

4, Relatibnéhib with the Discrete Minimum Pfincible

Recently there has beén a lot of interest in the
Disérete Maximum Principle and:. it has been shown that the
Discrete Maximum (Minimum) Prihciple does not hold in
general for non-linear systems. We shall now obtain the
Discrete Miﬁimum Principle for a reétricted class of systems
from the results we have obtained in Section 3.

We assume that assumptions (a) to (i) hold.

Let us define the function | o

H(Xi,ui,xi+l,ui+l) = ﬁ(xi,ui)+<xi+l,A X +B,uy >+<ul+l,Ri(xi,ui)>

i=0,1,2,....k-1 (2.18)

We shall show tThat

H(Xi’ui’7‘i+l’““i+l) <H(Z s} A1+1’“1+1)

ILet us first note that using (2.18), equations (2.9) and

(2.10) may be re-written as

~ N A o~
Ay = s 4D H(Xl, N (2.19)

L, )
i 1+17Mie1



DuiHbci’{:l K1¢l’u1+l) =0 ‘ (2. )

In view of fthe assumptions we have made H 1s. convex in

u; .
i

Hence

H(%, ’ul’ i+l)>ﬂ(xl’ul’ 1+l’“1 l)+<D lH(X 8y ’K1+l’“1¢l)

(2.21)

from which the result easily follows.

5. Summary of Results of Sections 3 and 4

It is perhaps worth summarizing the results of

Sections 3 and 4.

Proposition 2.1. (Necessary Conditions) " ILet X = (%l,..ijﬁk)

and 4 = (ﬁo,....ﬁk_l) be two sequences which are optimal

A

for the problem formulated in Section 2 and let X and U

satisfy assumptions a) - £). Then there exists a unique

~

o~ -~ .
seqguence of non-zero vectors A = (Al,....Kk) and a seguence

of non-negative vectors I = (Ql,....ﬁk) and a vector 3

such that
_{\ A A A T A Tl\ _
A K1+1+DX§(Ki’ui)+(Dxfi(Xi’ui)) 1+1+(D R (X i)) Hip1™ o

he = (e(E))TS + a(y)

. A A Ta A A
Duiif(xl »0,)+(D 1f (%, 1)).Ki+l+(DuiRi(Xi’ui))'ui+l =0

}_}.
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A
Hypqs HyixgeHy

Proposition 2.2. (Sufficient Conditions) Iet the system

be linear and let a2ll the hypotheses of Theorem 2.1 be

fulfilled. Further let assumptions g) - i) of Section 2

be satisfied. Then the conditions of Proposition 2.1

Proposition 2.%. (Discrete Minimum Princivle) ILet all

the assumptibns of propositions 2.1 and 2.2 be fulfilled.

Define the'HaMiltbhian fuhotion as

Ax u )+<h,

H(x., U, A A %y 4B uy >4<u Ri(xi,ui)>

i’ 1+1’“1+1) i+1°

i+1°

1 =0,1,2,....k-1

Then a set of necessary and sufficient conditions for fi

and % to be optimal are

i~ i1+1

e = <Dg<£k>>T + Dh(%,)

~ A L ~
H(RL0R 00, ) < By K1+1’“1+1)

6. Some Comments

. In showing that under oertaih assumptions the neces-
sary conditions of optimality are also sufficilent and in
obtaining the Discrete Minimum Principle we have relied

heavily on convexity. It is clear that a set of sufficient
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conditions for non-linear systems could be obfained by
further assuming |
3) fi(xi,ui) is convex in x; and u; for i = 0,1,2,...k-1
g(xk) is convex iﬁ Xy

and k) &i > 0 (i.e. each component of Ay 2 0) for
¥ > 0 (i.e. each component of 552 0),
since ® will then be convex in x and u.

The Discrete Minimum principle will also clearly
hold. Unfortunately it does not seem very easy To obtain
conditions under which Ri will be greater than zero,
where %i satisfies equation (2.9). We can however obtain
sufficient conditions (possibly very restrictive) for
the solution of equatioh (2.9) to be positive. The
conditions are suggested by certain results ih Bellmén(Bl).
We investigate this 1in the next chapter when we consider
continuous time dynamic Systems[

In optimal control problems constraints of the form
5,(%;) €0, 1=1,2,....k | (2.22)
are offen present. In the literature Chese constraints

are known as state variable constraints. These constreints

-may be converted into constraints of the form Ri(xi,ui)

'which we have considered, by writing



.S.(x.) = Si(xi_l+fi_l(xi_l,ui_l))

= T

i(xi_.l,ui_l). i=1,2,....k.

This corresponds to the intuitive idea that to
satisfy a state constraint at time instant i, the control

at time instant i-1 (at least) must be suitably chosen.

7. Duality

_ ‘One of the most important aspects of the theory of
linear and non-linear programming is dualitx(52>’(55).
For continuous time optimal control problems the impor-
tance of duality was demonstrated by Pearson(Bq). Duality
theory also has imporﬁant application in decomposing large
scalé.systems(BB). In this section we develop a duality
theory for a. class of discrete-time optimal control |
probléms using mathematical programming methods. The
basic 1dea 1s to consftruct a maximisation problem corres-
ponding to the‘given minimisation problem such that the
value of the §ptimal performance function of the two
prdbléms is the same.

Let us first define the two problems.

Primal Problem. Choose two sequences 0 = (ﬁo,....ﬁk_l)

cand x = (il,....,%k) such that the following conditions
are satisfied

- =1 i 2.2
x Xy + Ayx; + Byju, ; X, = ¢ glven ( 3)

i+l T 1 i i
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R Gepug) <O (22

-0 ' | ' | (2.25)

M Xk =

andvthe following performance function
k-1
v ' : . .
L = h(xk) + > é(xi,ui)_ . (2.26)
i=o0 ’ ' '
is minimised.

IT Dual Problem. Choose sequences U = (ﬁo,....ﬁk_l),

A A ~ ~ Q Ay : ' A
X : (Xl’ .. vcxk)‘, 7\' = (7\.1’ u‘.. o}\.k) and IJ; = (Qll’ " e .IJ;k)
and the vector P such that the following conditions

are satisfied:

A

' V T iy
Ay = 31+1+Dxi¢(xi’ui)+Ai Ai+l+(DxiRi(xi’ui)) Mig1
i=1,2,....k=1 (2.27)
T
e = My +‘Dh(xk)‘ (2.28)
D #(x,u,)+B, A, +(D. R, (x. 0 )) T - = 0 (2.29)
u PP TEL PTG T R e B . :
i=o,l,‘2,.o.nk-.l ’
Higy 2 05 0 1=0,1,. 0000k (2.30)

and the following performance function.
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L = n( .)+<x AI—MT» - Dh(x, )>
= AN IS My SR
k-1 : V o '
+ Zf, [ﬁ(xi,ui)—<Ai+i,Xi+l-gi—Aixi—Biui>+<ui+l;Ri(Xi;ui)>]
i=0 - ' |
k-1 - | |
o T
+ 5 [<x oAy A1+l x4 ﬂ(x sUy ) -A, A1+l (DxiRi(xi’ui)) ui+l>]
 1 =1 . |
Ls maxnmsec(

| | (2.31)
We shall assume that assumptions a);—,i) are satisfied
by the. Primal proble@. We then have the following Duality
result: | | | f '_ o |
If { and %'minimiZe-(2{25)‘subject to the constraints
(2v22) - (2 24) then there exist Sequences %, L and a
~ vector $ such that u, %, \, fi and » maximise (2 31)
subject to (2.24) - (2. 30) and L = T.
| ' The proof of this result is quite simple. ‘We know
| 'from.thevresults in Section 3 that for the primal problem
-there‘exiét'seduéndes.i,'ﬁvand;a vector 2 such that |

equations (2;27).- (2.30)‘are satisfied. We also have

Z m1+l’ R (Xl’u )>] = 0.

o i=o0
o It is easy o see that i .. We shall now show that
ﬁu, X, A, T and Pt 1ndeed maximise L. The proof is’by‘

contradiction. vLet us assume that therevexists.sequences
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u, x,. A, W and a vector » such that
L(u X, ?\,u,, ) > L(u ,u,,v)
We first note using (2 23) - (2 30)
. k-1
: ‘h(ﬁk)+z [;é(fci,ﬁi)+<ﬁi+l‘,Ri(§‘ci,ﬁi)>]

i=0

>
=

Bl id

R
o
e
L
p
1l

k-1
hR)+ Z (AR )<y Ry (R50,)0]

i=0

Iv-

k-l ' :
_51nceZ <“‘i+l’R (x ,ﬁi)> O.-and Byq 2 05 Ri(ﬁi,ﬁi) < 0.
Ci=o | |
Hence L(u,i;?\,@, V) > i(ﬁ,‘fc,?\,ﬁ,'ﬁ) > i(ﬁ,}"cﬁ\,g,fﬁ ).
‘In view qf _'ouf 'assumptions L is a éonvex function of u
. and x. | | . |
Hence,
_-ﬁm,ﬁ,&,u,s) = n(%,) "+ <£k,'7‘\k5MTi‘9_ -Dh(%,)> |
k=1 - | , | .. ‘ e
: .‘ +_Z [ﬁ(xl,u ) =< }‘1+l’x1+1 Ai Aix -B, u 3 2H<uy L 1oRy (%, ,ul)>]

K ‘ L

SN A A ' A A T .

+ o [xg,hy ‘7‘1+1 %, £(2;50,)-A4 7‘1+1‘(DxiRi(xi’u_i)) My 41> ]
i B . A . .

Using the convexlty of L, that is writing

i . . . i - ) A .
| }é(xi’ﬁi )Z;d(xi,ui)+<Dui,é(Xiiui) :ﬁi’ui>+<Dxi'é(xi’ui) sXq=Xy2
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etc.'and simplifying, we obtain

i‘(ﬁ:ﬁ:l}\\:u:‘ﬁ) _>. L(U,X,Mu: D) :

k-1
+-:Z: [<D ﬁ(x ,u )+B Al+1+(D lR (xi,u ) “1+1’u -u. >]
izo . _
But £(u,x,k,u,)9)‘> ﬁ(ﬁ,ﬁ,ﬁ;u,i§).
k-1 . . |
Hence :E: [<D ﬁ(x u, )+B Tk +(D R. (x u. )) by u iy >]<O :
’ i+l Vuy ’ +1’ :
i=o0 '

which contradicts (2. 29)
‘We have thus proved our duallty result.
'Unfortunately these Dual;ty results are in general not

true for non-linear systems. The reason for this is that

for non-linear"systems L will in general not be a convex
function of u. | ;

it is worth noting that in the Dual problem the
inequallty constralnts take a partlcularly simple form,
namely they are Just non-negataylty constralnts

There is a certain resemblance between Duality results
- of mathematical pfogramming and Kalman's theorem on the
Duality betWeen optimal filtéring»and pptimalzregulation.

We havé'not'found any deep connection as yet.“
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8. Linear Optimal Control Problem with a Quadratic

Performance Function"and an Amplitude Constraint

We now apply the theory we have developed to the
following problem: | '
. A .
Find sequences X = (il,..,.xk) and 1 = (u ,....,uk l)'
which satisf'y the system equation .
Xy =Xy + Ax; + Buy, X =¢ (giyen) i=0,1,2,...k-1
' (2.32)
where A and B are constant n x n and n X m matrices, and

the inequallty constraints

Cugl €1, i=0,1, 2, k-1 T (2.33)
and which minimize the'performance function '
k-1 i S
23 [kxy,qs Py, >+ Ru>] (2.34)
i=0 ’ o |

where P is an'n X n constant positive semldefinite sym-
metric matrix and R is a céhstant_nlx m positive definite
symmetric matrix. |

To solve the problem we form the Lagrangian

; k-1
L(x,u, ,u,)a) = :Z: [2<xi+l,le+l>+%<u sRu,>
' i=o . ' : |
-‘<X Ax —Bui>+<ul+l,u =1>4K Y 410 "Ug k{

i+1° %4417 Xi

(2.35)
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Then an_appiication of the results in Section 3 yilelds

the following necessary and sufficient conditions of

optiméiity . o
R A A . Ta. s - . A
. %i = }\i+l—PX1 + A Xi"“l oy l .— l’ 2’ Y ok—l (2036)
A A oo C ’ : .
M = PRy o - (2.37)

A Ta A . A A e s ,
Rl, +B X1+1+”i+1 - P =035 1=0,1,...k-1(2.38)

0, Y.

101 20 1=0,1,2,.00.k-1 (2.39)

ui+l 2

Bypqs 04710 =05 < )“Ji+l,-ﬁi—1$ - o | (2.%0)

Let‘us_nowvassume'that the-inequalit& constraints
(2.33) weré not operative. The solution of this linear
'problem with a quadratic ﬁerfbrmance function is‘well
kﬁown; In particular 1t is known that the opfimal
bbntrol law iS'a linear feedback‘law. |

In view of this, it is worth considering whether
  _we can_obtain.fhe solution of the coﬁstrained problem
from the known solution of the unconstrained one. |

| Let us first make the observation that since p; ., 20

‘-and:<ﬁi+i, ﬁifl> =0, if ﬁi-l < 0 we must have ni+l = 0.

_ The same observation is true for ~§>i+l'

. Let ; = "(}5{‘1,.;. .-.)Ek)’ .ﬁ =‘((EO,'...EK-1)’ X = (-}-\’-l,.....}\k)
~be the solution of  the unconstrained problem, and let

j & k-1 be the first instant of time when some components

:of.a:.L satisfy U;-1 Sfb or:-ﬁi;l £ 0. Then we set



A —
Ug = Uy i
A —

Xg =% 1

A .

A AL
= Y, =0
Hy i
ol

_i.e. for time i,i J

unconstréined parts
_k
Let uy be the

define three index

L
|

“{k :-u

set ﬁ.k
If k erle.set:uj =
set ﬁ k =

J

A A A
. e +
Set’xJ+l :vxj ij
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<3

i < Jtl

the soiution of fThe constrained and

is the same.

th

sets,

+'BﬁJ

I = {e s 15,1 <1j

We however have to guarantee

Ak
Hig1 2

>0, ke I,and

"from‘equation (2.38). If we

to the next step. -

>

Kk _component of Gi' We shall

that we can determine

Ak. .
41 2 0 » K € I3

can do this we can proceed
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9. Computational Considerations

| Many problems of optimal control can be reduced
%o problems of linear and nonfliﬁéar programming and
then solved using standard teéhniques. We givé some
examples below. o ' ‘ _ }‘

Exampie 1. Consider the following discrete-time dynamic

system
17 PR 1 L
TS| 1 1 X5 5 : ]
= o + U, +d. ’
o . 2 . i 7i
X341 ) | 0 1 X550 1 o
i = 0,1,2,....]&-1 (2.41)

Let the initial conditions be x+(0) = x2(0) = O.
d, is to be thought of as a known bounded disturbance.
We consider the problem of finding a sequence
I\.’A ‘ A ‘
4 = (uo’f"fuk-l) s Juy £1 7 1i=0,1,....k-1 such
that

g(u) = max max '}xg(md”
CigiLe idikk L

is miﬁimiéed. |
This is aFtybical minimax problem;. From the contrbl

point of view, this is the problem of minimising the

maximum deviatioh‘of the system state from the equilibrium

' state due to'the‘presence of a disturbance.

- Let‘us'first note that the solution of equation



(2.41) may be written as

1
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xt, 1 01| |x 1 [(Rei-l)
1 : 6] < 2
1 | ol £=1 | . | __.
o (2.42) - ¢
To fix ideas let k = 2 and d_ = 2, d; = -2.] ’
Then from (2.42) -
1 1.,
X 1% u, + 1.
2 — .
X 1 =Ygy + 2
1.3 a4
X5 =5 Uy + 5 ul +. 2
X5 ='uy + uqg. o
Introduceba sealar é'z O such that -
| \Xi (u,d)l Le D s o
Hehce ou? 6riginal problem reducéS~to

Minimise ¢

Subject to:c > 0

Fu 1o
u +2 <o |
Bugrzurace
\ ﬁ6.+ ul‘ < e
% u0+l , 2--é

u 2 2 -C
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This is now a problem in Llnear Programmlng and can be
solved by standard technlques. Some typlcal results are

shown in Fig. 2.1.

' Example'é
Consider. the discrete time system
Xg = C given

Consider the problem of minimizing

Z [<xl+l, 1ep U RU ST S o (2.44)
i=0
subject to the constraints |
Jug| €1 1=0,1,2,...k-1  (2.85)
gl €1 =12,k (2.46)

The solution of equatlon (2.43) may be represented as

%, zqm @ OBy gy 1= L2, K2 AT
3=1 |
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wherelﬁi = Ay 1 Ay 5 eeee A
If we substitute (2.47) into (2.4%4) and (2.46)

we have a non-linear programming problem in u-space.

Lét us mention howevef thaf if the number of cdﬁtrol

_ variables ahd the number of stages are large then the

resulfing non-linear programming problem will also be

1arge. If the constrains aré‘linear then library programs

exist (Rosen's Gradient Projection Method)(56) to solve

such problems. |

Another powerful method of solving non-linear pro-

grammlng problems is the method of feasible directions

| due to Zoubendljk(57) |

We shall not consider in detall the various ex1st1ng
computatlonal methods for the solution of programming
problems, but shall content ourselves with introducing
a new primal—dual algorithm for solving a'class of quad-
ratlc programmlng problems. | ‘v

We are interested in solving the following problem:
Fihd'sequences u = (uo,....uk_l)‘, X = (x15....%,) such

that .~

k-1 » |
Zg f—<x1+l,le+l>+%<u s Rui>J is minimised subject
1=0

to

Ky = Axg 4By, 1=01,2...k1 - (2.48)

Xy = C given
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Cx; +Du; €0, i=0,1,2,....k-1 (2.49)

We assume that P is an}n X n constant positive semi-

definite matrix and R is an m X m'constant positive

definite matrix. We shali also assume that the usual
-.agsumptions on‘the system equafions and the inequality -

constraints are satisfied.

| From Section 6, the corresponding Dual problem is:

find sequences u = (uog....uk_l), x ;.(xl,....xk),

A= (A oA

k-1 S
. 1 ' 1 :
zz‘[2<xi+l,fxi+l>+§<ui,Rui>-<Ai+l,xi+l-Axi-Bui>+<ui+l,cxi+Dui>]»

ol

10 and B = (ul,....,uk) such ‘that

i=o
k-1 4
, AT o T :
+ :E:,(<X1’Ai ATh, 17Px, °,“i+1>)+<xk’Ak>
i=1 '
subject to A, = ATA. .+cTu. .4Px. i =1,2 k-1
PJeet Lo Ay = A A 14175 e AR
| | (2.50)
Ak = ka
T T .
o (2.51)
ui+l Z O ir = O,l,’c.- OK-l | : (2'52)

The dual integrand can be simplified and written as:

. ' T T
= <X ,ka> f <xO,A Al+c “l>_
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k-~ 1 _ '
1,.-1,.T T T T
:E: [_<x1+l’PX1+l>+_<R (B Ai 1+D u1+l) (B Ai +D u1+1)>]

In the above we .have eliminated uy by using equation
(2.51). In the dual problem let us now regard x and {

~as the contr01 variablés and A as the state variable.

The Algorithm
i) Let X, = ¢ the given initial condition of the
primal problem =
Guess‘xl,.;..xk“and ul,....uk , each p 20
ii) Solve_the'requrrénce equation (2.50) backwards.

iii) Let us adjoin the system equations (2.50) to the
dual integrand by means of multiplierlyl,....,yk;l
obtaining |
<X, , Px, >+<X .ATA'+cTh >

"kTTkT T T’ UL 1

k-1 : '

tdes o, 1,-1,.T T T
- ZZV_I2< 1412 PX 1>+ 5<R (B 31 +D “1+1) (8T Aj1tD “1+1)>]
i=o : - '
kel
+_:Z: [<yi,-Ai+A AjLpte
i=1 '

T
ul+l+Px >]

. +;<yk,Ak>;-
Solve ‘the recurrence equations

= X
Yo = %o

i

Al

Ay, - BR7MBT(A,) + DT(ny) ]
e 1o1a Loa
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] ’. i = 1,2_'0..-}{—1
old

e mo=lroT | T
Vi = AV3-BR 7B (Ai+l)dld+D (y41)

simultaneously calculating

(ui+l')newé(ui+l)'old+Max(o,Cyi-pR'lDT(um)old-DRflsT(xiH)Old)
i=0,1,2,....k-1
Choose_’ _ '
(Xk)new'= (Xk)old i ‘ P(Xk)old
‘(xi) = (x,) + e[PTyi - P(xi)f' 1 g = 1,2,....k=1,
new old _ _ old

where € 1is a'small’positive number,

It can be shown without too much difficulty that -

the‘process converges.
The reason for solving the dual problem rather'than.
the primal is the simplicity of the inequality constraints

- in the dual problem."
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CHAPTER 3

"ECONOMIC SCHEDULING OF POWER GENERATION

3.1 Introduction

A typical:computer cohtrol system for controlling
two power syStem areas is shown in Fig. 3.1. The symbols
used.are indicated in Table 3.2. Note that the design of
the dontrol éystem is conventional except for the use
of a digital computer. One of the‘domputations that
' the digital compﬁterkhas to perform is to £ind the

. This problem is known

optimum set points Psl""‘Psn

as the economic scheduling problem ih'the Power Systems
literature. This is beqause:ﬁhe criterion for optimality
-is an economic one.’

“A typical load demand curve for a power system 1is
shown in Eié. 3.3. In general, eagh generator has to
satisfy maximum and minimum power limit constraints |

~and makimum ahd minimum rate of rise of generation
constrainﬁs."lt is thus, in general, not péssible

to do the.scheduling calculation at a particular time
instant indgpendently, withoutAconSidering the load
demand at:a later instant. If,this is done it might
result in the load demand at avlater instant not being

met (due to the rate of rise constraints). We thus

.
b
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+ have a dynamic allocation problem to solve. In fact

it is an optimal control problem.

3.2 Problem Statement

Let us consider an N-node network. At node 1 let

pi(‘c) be the active power. at time t |

oi(t) be the 1ooa1 active péwer demand at time ¢.
This is assumed to be knéwn.
The cost of production L is a function of the active
powers:

L= L(pl(t),.;..pn(t)),‘ A _ |

The totalvloéses'in the network g is a function of the
power injeoteinnfo‘the network, i;e. 

& = g(pt(t) - cM(E)senen o, PR(8) - P(1))

Since the load demand has to be met we must satisfy,

1 1 ’ i i
h(p~(t),...,07(t),e7(8),...c"(t)) = g-F (p'(£)-c™(t)) =0
* (3.1)
Using Vector notation, the dynamic allocation

problem to be solved is,

Cr |
Minimise J_L(p(t))dt R S (3.2)
p(.) o
subject to h(p(t),c(t)). =0 | 1 ‘ (3.3)

(3.4)

FaS
™

a < p(t) <
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vyep(t)gs (3.5)
It is assumed that p(0) is known.
Let us introduce the.variables x(t) = p(t) and

u(t) = p(t). We can then rewrite the above problem ‘

as an optimal control prokiem,

tf ‘
Minimise j_ L(x(t))dt ’ (3.6)
u(.) o
- subject to k(%) ='u(t) ; x(0) known (3.7)
h(x(t),c(t)) -0 (3.8)
a<x(t) g - (3.9)
y < ult) <6 ~ (3.10)

u is now regarded as the control variable and x the:

state variable.

"It is also convenient to write the discrete version

of the problem,

K |
Minimise > L(x;) o (3.11)
twb 4 ‘ |
X511 - xgtu; 5 1=0,1,2,....k-1, x_ knowmn  (3.12)
h(x,e,) =0  i=1,2......k (3.13)
L <x B, 1=12.000k (3.14)
Y<u €6, 1=0,1,2...k-1 (3.15)
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Subscript represents time as usual.

For some considerations later, we might view the

discrete problem as a network

uo | .u—} _. ’ Lj[(-l
1 = ' x, €. ' x
mo ; 1 ' - 2 — ,2- ...... K ?‘ K — :(
Fig. 3.4

3.3 Two Methods of Solution

Now that we have formulated the problem as a discrete
optimal. control prpblem, we could use the theory we have
developed in the prévious chapter to solve the problem.

We can also use the computational methods we have indica-
ted in the previous chapter. We shall now coﬁsider
various methods of solving this particuiar.problem in

a little more detéil.

%.%.1. Non-linear Programming Solution

One method of solution would be reduction to a
vast non-linear programming problem in u-space. For

example, the equations (3.12) could be written as
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o}
X, = -+
3 Xyt uy +ouy Us
X = X 4+ u e ... 4+ U
k o) o] k-1

The constraints (3.14) could similarly be written in
terms of u. If we now define the vector
U = (uo,...;,uk_l)T s itvié clear that the problem
has been reduced to
| Minimise F(U)
| GUu) =0
AU <D,
whére»F and G are suitabie functions, A a suitable
matrix and D a suitable vector. Rosen's Gradient Projec-
tion method can then be applied.
>When the number of generators is large.aﬁd the
number of"stgges is large, the resulting non-linear

programming problem will also be very large.

%.%.2. 'Decomposition Technigque

The main difficulty in solving the economic schedu-
ling problem is the dimensionality of the state and

control vectors. Hence some method\of'decomposing the
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problem iﬁfp sub-problems, solving the sub-problems
separatel& and éé-ordinating the solutions to obtain
the solution of the integrated problem seems to be
attractive. .Such a technique was proposed by Lasdon(83)
to 'solve non-linear programming problems.

We sha11 illustrate this technique with a two-
stage'schéduling problem. To be mathematically correct,

We'have to assume that the conétraints,

h(xi,ci) = O.

are linear. - These constraints will be linear 1if the
power losses are,negiected or suitably linearised.

| From (B.ll)wto (3.14) the tﬁo-stage problem to be
solved is, | | |

Minimise (L(xl) + thg))

ué,ul
subject to xl‘= X, + u,
Xy ='xl + Uq
a £ X, + uO,S B
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v Note that this problem is linear in u and we would have
to apply the Discrete Minimum Principle to obtain the
optimal control. ‘It is also to be expected that the
solution will be 'bang-bang' i.e. either the state
variables will be at their limits and/or the control
variables will be at their limits.

A 'bang-bang' type of solution for the control
variables may be undesiréble’in practice and the con-
straints on uo-and u, may be approximated by soft con-
straints. Thus it may be more .reasonable to meet the
demand in the least square sense. With these twé assump-
tions,‘let~the modified cost funétion and problem be
Minimise_ﬁ(uo,ul,xl,x2) = él(uo,xl)‘+ ¢2(ul,x2)

{uo’ul} - ’

subject to x; = X  + U

o o
X, = X+
X, + U, - g <0
a - X, —'uo <0

X+ Uy - g s 0
| .a - X] - Uy <0
From the duality theory developed in Chapter 2, the

Dual problem is easily formed.



Consider the sub-problens:

a) Minimise Al(uo,xl)'-,<xl,xl>

subject to > + ?o - B <O

(o A xO — uO é O

b) Minimise fy(u ,X,) = <ApuXpy + <Apsxp>
‘subject tq Xy +Uq - B <O
@ - X, - uy <0
(Essentiallj we have broken the connectionvbetween the
tWo.stages).l Sub-problems a) and b) are solved for
\guéssed.vaiues of Ai andlxg, thereby ob@aining UgsUqsXy
and xg‘as functions of_xi_and Ag. We also obtain multi-
pliers copresponding tb,the inequality constraints in
- the sub—préblems. These serve as the pw's in the'dual.
It can be proved that the éorrect values of A's and u's
are obtainedehen the dual problem is maximised. There-
fore a Steepest descent algorithm could be used to up-
date the A's and n's. |
This is a heuristic and highly simplified description
of thé deéomppsition method. A compléte description is

beyond the scope of the present thesis.
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3,4 Example

A special case of the problem arises when the cost

function is linear and the power 1osses‘are neglected.

This problem is

k
Minimise Z: a,x;>

1=0
subject to Xy 4 = X; + Uy ;' i=0,1,2,....k-1,
X, known
‘ZZ. xg =c; , 1=1,2,....k
J=1
a_<_xi'_<_s i=1,2,....k
Y Lu; £ 0 i=0,1,....k-1

Thislproblem is completely lihear and can be solved as
-.a linear programming préblem. Since there are a large
number of ineQuality constraints it is more convenient
to solve_thefDual Linear Program. |
A.typical problem was solved using the L.P.90
programme. The data for -the problem (provided by the
Central Electricity Research Laboratories) is Shown in
Table 3.k, The solution of the problem is shown in
Fig. 3.5. The solution was checked using the Primal-
Dgai Algorithm présentéd in Chapter 2 (by hand calculation).

The solution exhibits the 'bang-bang' property indicated
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eérlier. It may be observed that one or two cheap

sets depart from theif}upper'limits. This is to satisfy
a constraint (a new set is being synchronised). Thus
the faﬁlt may be said to lie in the plant ordefing.

From the experience gained in solving this problem
it woﬁld appear that a simple programme to solve the
schedulihg problem could be written. This programme
would contain some minor modifications to the so-called

'merit-order' scheduling.
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Symbols for Fig. 3.1

incremental load in Area 1.

incremental load in Area 2.

'K

A

-1+d- s

A

1+d

G

G12’

1
2
28

etc.,

“etc.

ie’

X

22’

etec.

1 System lag in Area 1 - A

System lag in Area 2

1’dl are constants

Dynamic response of governor actuators.

Transfer function
Turbine Unit 1 in

Transfer function
Turbine Unit 2 in

Transfer function

of - Generator -
Area 1.

of - Generator -
Area 1

of Generator -

Turbine Unit in Area 1.

Transfer function
Turbine Unit 1 in

Transfer function
Turbine Unit 2 in

Transfer function
Turbine Unit n in

Transfer function
regulator in Area

Transfer function
regulator in Area

of Generator -
Area 2.

of Generator -
Area 2.

of Generator -
Area 2.

of the frequency
1l

of the frequency
2

Synchronizing torque coefficient of

tie line

Gains of the frequency error feedback
to be applied to fturbine in Area 1.

Gains of the frequency error feedback

to be applied to the turbine in Area



‘GCll’ GCl2 s Compensation networks to be designed
to suit individual generafor charac-
teristics. '

Gop1s CGcon

i =‘frequency error in Area 1
£2 = frequency error in Area 2

TABLE 3.2



Load i

MW

Y .

A I

,__Fig.s.:’) |oad Dema_noﬂ* Morninj ﬁiﬁe

/ 4;00
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Data for Problem

e i hepir P M omowWoa e CEEATTHA
' g(o)

RICH 1 120 50 4 4 20 5 1.50 AV 120
BELV 5 120 75 12 12 80 7 1.7h AV 120
LITT 9 60 25 3 3 0 0 1.97 AV 60
LITT 6 60 25 3 3 0 0 2.00 AV 60
LITT 60 25 3 3 0 0 2.00 Ds
NFLT 2 120 45 6 5 12 5 2,23 AV . 120
NFLT‘3 120 45 6 5' 12 5 2.23 DS
BR.B 1 56 28 3 3 15 10 2.40 DS
BR.B 2 5% 28 3 3 15 10 2.43 DS
BR.B 5 60 25 3 3 15 10 2.45 AV 25
BR.A 1 50 20 7 7 O 0 %.20 AV 20
Total Max Capacity' » |

: 842 . Total 525

P Maximum pérmissible output in MW .

p 'Minimﬁmvpermissible output in MW

M Maximum permissible rate of increase in MW/min
m 'Minimum-permissible rate of decrease in MW/min
W Stéady output when warming up in MW ’

d Time fequired to warm up in mins.

¢ Cost in £/MWhr



Loads

Time MW
5.45 525
6.00 560
6.15 600
6.30 665
6.45 7%0
7.00 805

Synchreonising times

BR.B1 5.50
LITT 8 6.10
NFLT 6.25
BR.B 2 ©6.25

Initial States:

AV - 'Available' i.e. warmed up and limited only by
P,p,M and m.

DS - due to be synchronised i.e. to be synchronised
at the time given in the list of sync. timés.' On. syn.
chronisings we assume the génerafdr does |
W
—“—iu—-dm—ﬁk>u.auhi
§Yynch.

i.e. it holds a steady output W MW for d mins.
(This W/u pattern is very much simplified and it
would not be too unreasonable to ignore it in preliminary

calculations and assume that W =d = 0).
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CHAPTER 4
SECONDAORDER NECESSARY CONDITIONS AND SUFFICIENT

. CONDITIONS FOR A CLASS OF OPTIMAL CONTROL
PROBLEMS

4.1 Introduction.

| In the last tw0 chaptefs we héve been considering
"dlscrete tlme optﬁmﬁL control problems and solving them
using mathematical prograuming methods. In this chapter
and in Chapter 5 we want to consider a class of continuous
time-optimél control prbblems. For this class of problen,
ﬁhe'first,brder'necessary conditions of optimality‘are'
"weiltknOWn}  Howeve;; not much attention has been paid
”-to‘seéond.qrder_peceséary conditions and sufficient
conditions. It}is our purpose to do this in this‘chapter.
‘ In order to do this we have %o 1nvest1gate the second
varlatlon of the performance functional and the so-called
;Accessory minimization‘problem. In the llteratu:e of the
l--clgssiéél Calbulus of Variations, the second order necessary

conditions are thelregendre condition and the Jacobi con-

'-dltlon.

Both these conditions are of great importance in
‘seCOnd,order successiveAapprox1mation schemes such as the

Second Variation Method end Newton's Method, and in the

design'ofyﬁéighbouring optimal feedback control. In
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faet if the nominal trajectory is not sufficiently near

the optimal trajectory.these conditions will not be |
satisfied and the approximation procedure will not con-
verge. Examination of tnese conditions suggests some
-\modifications'to the second variation method so that the
procedure may be made to converge for any nominal trajectory.
These details are presented in the next chapter.

It should be mentioned that the importance of the
Jacobi condltion has been reoognlsed by Merrlam(58> He,
" however, does not present any detailed analysis. Our
treatment is motivated by the recent book of Gelfand and
Fomin.(59) | o

4.2 Problem Statement.

We consider the’ following Bolza Problem.

Minimize P(x(% ),u) = F(x(tp),tp) + J' L(x(t),u(t) t)at

| o - (4.1)

subject to the constraints,
L) = 2(x(t),u(),8); x(b,) = ¢, gven  (4.2)
G(x(tf),tf) = 0; - t, specified , 5(4.3)

where x(.)e B, u(t)e E® and f: En+m+1 —> B ana
G:ERL > ®P, p < n.

We shall assume
i) 41l functions are twice continuously differentiable

with respect to their arguments in the interval
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ii) u(.) a.nd x(.) 'belong to bounded open regions L} and
B of E® and E®. If u(t)eN for all te [t ,t;]

'l:h‘en u is an admissible control.

- iii) The matrix D G(x(ts),te) is non-singuler.

iv) The system is locally completely controllable in 'l:he
interval (to,tf] along esny trajectory X corresponding
to an admissible control ©; that is, for the

 linearized system '
L=()-R(8) = p_2((%),8(5) %) (x($)-K(%)) +
DL E(R(1), (%)) (u((8)-8(1)) x(t )~ E(t)) =
we haire

. fb é(t;"muf(i('r):ﬁ('t)ﬂ)(Duf(E(T),ﬁ('t),'r))T 3T (t,T)ax
0 | | |
>0 - (4.4)

for a1l t € [‘j'bo,'bf], where é'("b,jto) is ‘the
- solution of ‘ |

ad (s,
‘ ..a%( 1%) DL (X(%)»0(t),) P (t1%,)s

Pt ,t,) = I (4.5)
In the following, to simplify the notation, we shall

often write x when we really want to write x(t).

4.3 Pirsgt Order Necessary Conditions.

For the Bolza problem we have formulated the ,‘.i‘irst




_99'..

order necessary conditions may be derived in the usual
.way-. ..T.he constraints are adjoined to the performance
functionals by means of Lagrange multipliers (?\07\(1;)) #
(0,0) where A, 2 0 is a constant and A(t) an n-vector, '

"and Y is a p-vector.
t

| _ | 0
£ 7\’* -.f(x’u’:‘;) >]dt
Define ‘the Hamiltonian Punction,
H(X,u 7\. 't) = 7\ L(x,u,t) + < A f(x,u,t) (4 6)

Then equa'b:.ng the first varlatlon to zero and performing
:Lntegration by par_ts, we obtain,that the optimal trajectory

and control satisfy

t = £(x,u,t) = DXH(x,ﬁ,x,t);-' x(t,) = & : (4.7)
A= ;DxH("x,u,x,t); M(tp) = D#F(x(té),‘tf) +
R D G(x(tp)ste) 0 “ o (4.8)
Glalt)ity) = 0 SR (4.9)
DuH(i,u,x,t) = 0 TR (4.10)

4.4 Controllability and Normality.
. In Classicel Calculus of Variations, if the problem

if normal, we may set A, = 1 and this defines a unique
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set of multipliers 7\.*. " We shall show that in view of
our controllability assumption, the Accessory Minimization
Problem is normal and hence our original problem is
normal.(60) |

V‘The Accegsory Minimization Problém'is.defined_as
%<6x(tf) V(X(tf),tf).x(tf»

(61)

Minimise %GZP

“‘*d I

<D H.du,6u>. + <DxH 6x,6x> +

2<DuxH6x,6u>]dt # o ‘ - (4.11) -
subject to ok = D f.ox + Duf.bﬁ; ox(t,) =0  (4.12)
DxG(x('bf),tf)éx(tf): 0 o (4.13)

where Y =T + <27,G>. :

'Proposition 1.

If the system is 1ocallx_completely}cdntrollable in

Eto,tf] then the accessory minimization problem is normal

and hence the original problem is normal.

¥Def.: A problem is said to be gbnormal if we can find a
'set of A's with l°=0 which satisfy equatioﬁs (4.7);(4.10).
#ie nave dropped the arguments of D2H etc. They are cal-
culated along the opfimal contfol and trajectory. Also -
- 6x = x-% etc. where x(.) is the optimal trajectory.
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Proof: We shall prove the above proposition by contra-
diction. Let (6x, O\, du) be the optimal trajectory‘and
the optimal control for the accessory minimization |
preblem. Hence they satisfy the Euler-Lagrange equations

of the problem. These are

= D f.ox + D f.ou; ox(t,) =0 | (4.14)
oh = -\, (DZH.0x + D2 H.ou) - (Dyf)T.on - (4.5)
A v(DQH'Gu + D2 H.ox) + (D)t on = 0 . -~ (4.16)
. DO(x(tg)ate) 0x(t) =0 o (4.27)

Gh(tf) x\lf(x(’cf) tf) 5x<tf) "‘ (D G‘(x(tf) tf))m 5>  (4.18)
Let us assume that the system is abnormal. Hence hc = 0.
Hence from (4.15) and (4.16) we get,_,'v' o
o = (o )T (4.19)
(e)fev=0 (4.20)
Solving (4.19), we have N A |
on(t) = PT(tprt)oN(tp), where F(t,t,) is the
' solu‘t:t.on of d‘z’(t' te) o D f. <I>(t te)s @(tf,tf) =T
and therefore from (4. 20), s
(0, 8)F $T(grt)OM(t5) = O L (42)
'But‘eondition'(4;21) expresSes}the'fact that the rows
of the matrix <§(tf,t)nuf'are linearly dependent. But
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a necessary and sufficient condition for the rows of
@(tf,t)D £7%0 be llnearly dependent 13(62) that the

t
Grammian matrix J $ (%5 %)D,£(D, 1) @(tf,t)dt = 0.
| %
This, however, contradicts our controllabiliﬁy assumption.

Hence the acceséory minimisation problem is normal and
. therefore by a theorem of Bliss the original problem is

normal.

4.5 Second Order Neceséazy Conditions and Sufficient

Conditions of Optimality.

For the Bolza problem we have formulated, the second
variation is given by,

6% = <ox(t5),D2Y (x(t4),t) 0x(tp)>
t | | -
I o 5 s _ |
ft [<DZH.6x, x> + <D H.bu,ou> + 2<DuxH.,6x,6u>]dt (4.22)

o
It is well known in the Calculus of Variations that a

necessary condition for a weak minimum of the Bolza

problem is 6% > 0 and a set of sufficient conditions

for a weak minimm is oL = 0, 6% > Oifer all 6x # 0O,
su £ 0, sufficiently small, where 0x and du are related
o% = D f.6x + D _f.6u; o6x(t,) =0 (4.23)
If is also well knownthat a necessary condition for

6%L > 0, is D2 » 0. This is kmown as the weak form
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of Legendre's condition. " In the following we shall
»assume‘that_the strong form ofiLegendre's condition is

satisfied, namely, DoH.> 0. We then obtain the following:

| Proposition 2: Let DEH > 0 and 1let K(.) be an arbitrary

%

vositive definite symmetric matrix which satisfies the

matrix Riccabi equation.

K(t) + K(5)B(t)K(t) + R(H)A(t) + AT(H)K(%) + 0(t) =0 (4.24)

 with the boundary condition K(%,) = D2V (x(t,),%,), where

4 = D - D . (D) .02 ®

. o -1 P - "
B =Dy (DE) ™. (D, 5)7 (4.25)
¢ = D2E - D2 H.(pZE)" .07 =®

Tet the solution of this egquation be defined everywhere in

the interval [t ,%,]. Then 8°€ > 0, for all ox £ 0,

6u £ 0, sufficiently small where 6°& is given by (4.22)

and Ox and 6u are related by (4.23).

Proof: .
% %
ff(d KKox, 6%> )at = <KOZ,0%> T o2 (x(%,) ox(t.)
1, g KOs 0% = CKoxyom> |y = Dy Wixlty) Oxltp)

ox(tp)>  (4.26)

Henée,vrearranging the expression for 6%£, we may write

it as
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B
o s
2% = [ «2.[eu +(D2E) .02 H.ox], ou + (02H)"L.02 H.om>
. : |
+ <[3§H-_

9% <Kox, x> )dt

DiuH.(DiH)—l.DSxH].6x,6x> +
= (4.27)

But

4. S n
S <Kox, 62> = <[X + K. + (D 1) .xJox, 00> +

2¢(D, f)T.K 6%, 6X> (4.28)

From (4.27) and (4. 28),

oL j' (<D ".[6u +(D H)“l(D E + (D,£) K)éx],

su + (DﬁH)—l(DEXH + (Duf)TK)6x>)dt.'

So . o |
+ j’f<(K + EKBK + KA + ATK + C)ox,0x>dt (4.29)

o
Since DﬁH > 0 and K satisfies (4.24), we have
%L >0 .

6% can be zero if and only if

ou + (2E)"1[DZ 2 H + (D f) Txlox =

But this is impossible, since from (4.23) and (4.3%0),
-1
ox =[D._f - D f(D B)™HD5E + (,0) K oxs ox(t,) = 0

implies 6x = O everywhere in [tO,lJ which contradicts

(4.30)

our assumption. Hence the proposition.
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The métrix Riccati equation (4.24) is precisely the same
equation as that obtained by Merriam and XKalman when

| solving the linear—quadratic cost problem{ We note
that the accessory minimization probleﬁ is also a linear
gquadratic cost problem, but it is being used Eere fqr a
~different purpose. The control-theoretic significance
of the Riccati equation will be brought}into evidence
later in this section.

_ If we combine the results of sections (4.3), (4.4)
‘ and (4.5), it is easily seen that we have obtained a

set of sufficient conditions for the Bolza problem, namely,

A set of sufficient conditions for %, 4 and X to -

furnish a weak relative minimum for the Bolza problem

formulated in Section 4.2 is that thev satisfy

i) The Buler-Lagrange Bouations,

28 > 0,

ii)

iii) The solution of the matrix Riccati egquation

(4.24) be defined everywhere in the. interval

[t5stpl.

The last condition is equivalent to the Jacobi Gondition

of the Calculus of Variations.

We may also define a conjugate point in the following

way: The time instant t = t, at which the solution of
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the Riccati equation becomes unbounded.is called a point
conjugate to the point t = tf.

Let us now illustfate some of these ideas with an
example from mechanics.(63)

Consider a simple harmonic oscillator, i.e. a particle
.of mass m osclllating about an equilibrium position under
the action of an elastic restoring force. The particle

has kinetic energy,
2

T = $mx
and potential energy
| U = %ax
so that the action is
% ]:f(miz - ax®)at which is to be minimised.
© ‘ .
We assume x(to)= 0. Let us introduce the varisble u by
means of the differential equation -
X = U3 x(to) = 0.

“our problem then is to minimise,

subject o x = u; x(to) =0.

The Hamiltonian is

2 2)

H = $(mu® - ax®) + Au, whence
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Hﬁ =mau + A =0, giving uw = - oY
Ex = -ax, giving i = X3 l(tf)'= 0

Also, Hlm =m > 0 and He, = —G.
The Riccati equation is,

. 2

K-%-_a'=o; K(t.) = 0.

]
L

Introduce‘the transformation,

The Riccéti equation becomes,

oR + oR = O.

The solution of this equation is given by

R=2¢C sin(@t + 8), where @ = J%L and C and @ are .

.constants.  Differentiating,
R = Cwcos(0t+0), and hence,

K

-om cot(wt+s).
Since K(tf) = 0, we get,
wt, + 6 = % and therefore 6 = % - otg.

' Hence, K = —-om cot(% % co(t-tf))

= ~on tan (O(te~1)).



If W(tp=t) =% 5 leey, T = T, = 53 then K = co .
Therefore if tp > T, + %— , the Jacobi condition is
violated. |

So far we have nob said anything sboub the necessity
of the Jacobi condition for the second variztion to be
‘non-negative. It turns out that the Jacobi éondition

is also necessaxy.

4.6 Relationship with Dynamic Programming.

For the simple variational problem of minimising

-b .

1

J; L(x,%,t)dt subject to x(to) = a4 x(tl) = b, Dreyfus(64)
0

has obtained a matrix Ricatti equation Ifor D;v, vhere v
is the optimal return function. In order to derive this
equation it is necegsary to assune that'Div is continuous.
Dév being a matrix, the continuity assumption implies
that Div is bounded everywhere in [togtf]f Dreyfus also
shows that the boundedness of the solution of the Ricatti
equation.is equivalent to the Jacobi conditioﬁ of the
Calculus of Variations.

Essentially the éame argﬁments are valid for the
Bolza problem. If v(x(to),to) is the optimal return
function, then invoking the Principle of Optimality, we

obtain Bellman®s partial diflerential equation,
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DV = %é?i [T(xou,%) + <D_v,2(zou,t)>] (4.31)

If D,v = M(x,%), then by taking characteristics of the
partial differential equation, we obtain the usual
canonicgl equations,

T(x,u,t) = DKH

"DXH
If we'aésume Div is continuous, then by straighiforward
differentiation the matrix Ricatti equation (4.24) can

be obtained for Dv.

X

)

" We can now see an inﬁeresting'relationship between
Dynamic Programming and Calculus of Veriationms In
Cléssical’Calculus of Varigtions, the satisfaction of
‘thé Euler-Lagrange equatibns, the Legendre condition and

the Jacobi condition are sufficient to embed the optimal

- trajectory in an extremal field. On the other hand, in

the Dynamic Programming formulatibh we start by embedding
the trajectory in a field(65) which by what we have shown

is the extremal field of +the Calculus of Variations.
(66)

Then, as has been shown by Dreyfus we can obtain the

usual relétions of the Calculus of Variations.

4.7 Neighbouring Optimal Feedback Controls.

For the simple variational problem, Dreyfus has also
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indicated how the Jacobi condition can be used to
geﬁerate neighbouring solutions. We now consider

neighbouring thimal feedback control for our Bolza

problem.  Assume there are no terminal constraiﬁ%s.
| Supposing that the optimal control and optimal

trajectory has been obtained by some method, it is desired

o computé the optimal control and optimal trajectory
- for a slightly perturbed initial condition x(t,) + ox(t,).

The neighbouring optimal feedback control problem(67) is

o | 2
Mlnmmmse.(h(to),éx(to)> + %<6x(tf),DxF(x(tf),tf)éx(tf)>
+ % ‘jtf[@QH by ou> + <D2H. 003> + 2¢07 edzpu} lat
= ' uco H - 0% '_uxH'
| S | _
subject to 6% = D f.6x + D f.6u; 6x(t,) given.
. Let us assume that the Ricatti equation (4.24) has
a bounded solution everywhere in [t stp,]. Then exactly

as we did in Proposition 2, we may write the performence

.functional for the neighbouring optimal problem as

<k(to), 6x(to>

% - T
by
. _ 2 e . T
+ jt_@ua-. ou + (D2) (2. + (a,0))ex

o . -l
su +(DZE(DS E + (D,£) K)ex>at

The minimum value of this performance functional is

obtained when the integral is zero (we are assuming DﬁH>O)
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Ve mist then have
| 2y =lrm2 T

= (DJH) [Duxh + (D,f) K]érx
This is, of course, the linear feedback law which we
_ expected'to obtain. If, however, the Riccati equation
"does not'héve a bounded solution evexryvhere in the
~interval of interest, then the feedback gain tends o

infihity and we camnot synthesize linear feedback control.

4.8 The Accessory Minimization Problem.

The accessory ninimization problem has been defined
in Sectlon 4.4 and its EuleruLagrange equatlons are given
7 by.equatlons (4.24)-(4.16). Since the problem is normal
thése equafions may be re~written as

A(t)6x + B(t)or; éx('bo) =0 : (4.32)

0%

on = ~C(t)ox - AT(t)on; | | (4.33)
oM (ty) = D2V (x(tp) b ).0x(tg) + (DE(x(ty),5)) 0¥
. where the definition of A, B and C are given by (4.25).

Tet
§11(‘°"%>_ c§12<t t,)

§(t§to)'= be the
| ‘:‘?21(‘6,‘60) @22(1;,1;0)

A transifion matrix of the linear system. (4.32)—(4.35).
A can now be directly verified that |

rm(t) B0 () (& (1)) 7202 y () 0x(t,)

22(t)(fﬁzé(tf))'l(DxG(tf))»Tw. (4.34)



- 112 -

where

Boltaty) = =0(8) Fip(taty) = 4%(8) pp(taty)  (4.35)

$op(tst,) = A(5) &y o(6,8,) + B(E) Bppltyt,) [ (4.36)

suttable ‘
with 2= boundary conditions

St « s

g ()3 (EIDYES d0F (B
and that K(t) = \ : satisfies the matrix

Riccati equation (4.25). Clearly if @12(1:,1:0) becomes
singular at a point t = t,, the solution of the Riccati
equation will.be undefined at that point. Thus a point
t = t, at which élz(t,to) becomes singular is a point
conjugate to the point 4 = %,.

Let us now indicate the rationale behind investigating
the Accessory Minimization Problem. We lkmow that if
(£, 4) is optimals, the second variation must be non-
negative for all non-trivial variations O&x,0u sufficiently
small. This naturally leads to investigating the minimum
value of the second variation and the éccessory minimiz-
ation problem. We note that for the second variation
to be‘hon-negative over the interval [to,tf]; it must be

non-negative over every compact sub-interval [tl,t2] of
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- e
[UOQ Uf]o
We shall.now prove some simple results concerning
-the Accessory Minimization Problen.

From ‘(4 16')7 ,
= (D H)_l[Du_XH ox + (D :E)T.GKJ (4.37)

Substituting in (4.11), we get

15%p = %<6x(tf)93§qj(x(tf),tf,ﬁ) ox(t,)>
Or
+ & f [<aoX, 53> — <on,BOA> 1t (4.38)
t __ -
Proposition 3.
For any (0x,6)) which satisfies equation (4.32) and

(4.33), 5°D given by equation (4.38) has a value equal

to zero.

Proof,

o )
jI S <Bh, %> = <en(typ ) ox(%0)> - <6h(t )8x(%,)>
b, o

= DLV (x(tp)sbpr )0m(bpp0x(t,)> o (£.39)
Hence from (4.38) and (4.39)

2 £ a.
5P = f [<cox,om> - <on,Bon> + T3 <on, 6x>]d'b
0]

Téh,éx>

T
‘J'f[<06x96x> - <&\,BOW> - <=Cox -~ A
4 .

hd 0
+ <O6N,Adx + Bow>1dt

O.
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Hence the proposition.

Let T be the interval [t ,tp,] and T* = [4,%,] ve
s compact sub-interval of T. Since the accessory
system is completely con’brt?lla'ble. in Ty it is also com=-
pletely controllable in T*', We now have,

| ‘Proposition 4.

Whenever (6x,60) = (0,6)\) is a solution of the

Accessory system (4.32)-(4.33) on some sub-interval,

then also 6A = 0 on this sub-interval.

Proof. We shall prove the proposition by contradicfion.
Let t'€ T' and assume oA (t') £ 0. From (4.32),

l

T -
ox(s) = [ $r,mnmame
' 1 .

. ' | | o |
: - [ & (BB mardon(s).
1 . R .

Since the systeﬁ has been assumed to be completely con-
trollsble and since D2H > 0, the matrix within the-bracket
is positive definite  Hence OA(+t') = O, which proves
the proposition. _ | |

| Let us now define a conjugatbe Eoint.k Two distinct
“points t, end t, belonging toT‘aré said %o be mutually
conjugate with respect to the system (4.32) and (4.33)
if there exists a solutidn (6x,8N) of the system with
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ox # o‘on the éub-interyal with end-points %, emd t,

while 6x(tl) = bx(tz) =0, ‘
The system (4.52) and (4.33) is said to be non=

oscillatory on the sub-~interval T! if no +two distincf

- points of this sub-interval are mutually conjugate.

| With these definitions and propositions in hand,
we can apply certain theorems of Reid(75) to obtaih the
following proposition: |

Proposition 5: For a system which is locally completely

controllable, (U, %) is optimel if and only if they

satisfy _
i) EBuler-Lagrange Equations (4.7)-(4.10)
ii) DﬁH(u, X, h,.t) > 0 (Strengthened Legendre

condition,.

iii) Accessory system 32)=(4. is non-

oscillatory on every sub-interval [+ ,%,] "

’of [to,tf]. ”

4.9 Sufficiency Results uging Convexity Arguments. |
So far, we have congidered problems ir which there

were no inequality constraints present. We shall now

give sufficiency theorems for a gemeral class of non-

linear optimal control problems in which there are
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inequality constraints present. The methods we use
are very similar ‘o thoSe'used in Chapter 2.

We shall consider the same problem as that defined
in section 4.2, but thers will be the added inequality

constraint
n(x(t),u(t)) < 0, h: EM 5%, g<m
present. TLet h be continuously di.fferentiable‘ with
respect to x and u. -
"Det I = {i: b (x(t),u(t)) = o}
and let B(x(t),u(t)) = {ny(x(t),u(t)) : ie 1}

Ve shall say that the function h : E°™® > 5% is regular
at a point (ﬁ(.),ﬁ’(.)) ¢ o, if and'only.if,for every
(£¢.)n(.)) € B2*, (§(.)»7(.)) #0, such that
éqp.ali’by X =X +¢, u =1 +’ij implies +the inequality
B(x(t),u(t)) = B(R+§ ) (1), (fen ) (1))

L= EE)A(E) + DEE),E(5). F5)
+ D E(R(+),8(%)) .7 () £ 0

there exists a function ® : [0,1] = E2'™ with the .
following properties, R |

1) Dw(e).T exists for 0 < € <1

41)  (2(.),0(.)) =" @(o)
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ii1) Rlw(€)] £ 0, 0. E K1
iv) (?(J,ﬁ(.D3=Dm®)JU

- We now assunme,

a)

. b)

- d)

The functions Fy Ly f, G and h are twice continuously
differentiable with respect fto x and u,
the functions L, £ and.h are strict;ygconvex with

respect to u, that is,

L(x(t),u(t), %) > L(x(4),8(),%) + D T(x(4),8(+),1).

(u(t) - (%))

and similar conditions for f and h,

the functions F, L, £, G and h are convex With respect

to x, that is,

L(x(4),u(4),%) 2 LR(5),u(8),%) + DIE(t),u(t),1).

(=(%) - %(%))
etc.,
the matrix pr(x(tf),tf) is non-singular. .
A pair (4(.),%(.)) satisfying (4.2), 4.3) and

h(x,u) £ 0 is said to be optimal if P(x(to),ﬁ) < P(x(t),u)

for all (u(.)sx(.)) satisfying (4.2), 4.3) and h(x,u) £ O.

Proposition 6. TLet u(.) and x(.) be an admissible

control and trajectory satisfying equations (4.2), (4.3)

and the inequality constraint h(x(t),u(t)) < 0. ILet

there exis%t mﬁltipliers "il(.) 9 ﬁ(.) and -’3, such that

k)
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A' A
A =-DXH(£, 4, %, vy )3 Mtp) = DR(R(%5),t,) +

(08Bt S (4.40)

nuH(Q,Aﬁ, holy t) =0 | S (4.41)

: <-a, h(i, )y =0 " | - (4.42)
A 20,820, PO - (4.43)

where H(X,u,k,k,t) = L(x,u,t) + <A,f(x,u,%)>
' + <uy B(xou)> (4.44)

Then u(.), %(.) is optimal.

Proof: Die to our convexity assumpiions,
P(x(t,),u) = B(x(t,),0) = P(x(te),tp) = P((%5),1,)
o e .
+ ,j; [T(x,u,t) - L(%,b,t)]at

> <D#F(£(tf),tf), x(t,) - 2(t.)>

" j;f[<nu1(£,ﬁ,t), u-> + <D L(%,1,t),x-%> Jat
(o] . : ,

 <DxF(£(tf),tf),x(tf)'-.i(t:)>

T
- J' (024,818 + (D (2,874,
+ <A+ (058,078 + (0n,8) Lz lat (4.45)
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Integrating by parts,
tf . . . ) .
A AL A : A A .
- J hyx=-x>dt = -<h("bf),x(‘bf)-x(tf)>+<7s.(‘bo),x(to)-—x('bo)> »
g : . v :
B o . ) .

+ -[-t <‘?\-,f(X’u.t) - f(ﬁ,ﬁ,t))dt ’
o | |

> - [<0B(R(52) %) + (BE(E(t)rt0)) ™D 5 x(82)-2(8)3]

. I ” | -

+ ft <K,D£(R,8,1) . (x—&) + D E(%,8,1).(u-)>at, (4.46)

0 ‘ S

 since i(.) > 0 and £ is convex in x and u.
~ From (4.45) end (4.46), |

CP(x(t,)m) - P(x(t),R) > = <3,D,6(X(%,)st,) « (x(tp)=R(%5)>

: + ,
: f
- _& Ly th(i,ﬁ).(x—ﬁ) + Dﬁh(i,ﬁ).(u-ﬁ)>dt (4.47)

o)

But 'G(x(tf) »tp) | 2 @(&(t)rtp) + DLE(R(t,)stp) « (x(t,)-X(t5)).
- But @(x(tp)rte) = @(X(tp)rtp) = 0 |
 Hence, Dxe(i(tf),tf).(x(tf) - %(tp)) £ O

Also, B(xyw) > b(EHE) + Da(ED).(x-2) + Da(%E) . (ud)

But h(x,u) < 0, h(x,d) <0
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Therefore (4.47) can be written as,
P(X(tof,u) - P(x(to),u) > 6, which‘proves;the |
‘proposition. - |
T4 oen be shown .

Proposition 7: ZIet h be regular at (ul(.),x(.))..
Conditions (4.40)-(4.42) and p(.) 2 0 are also

necessary for (u(.),x(.)) to be optimal.
| A general result of this type is proved in Chapter ¥%.
As é-corollany of propositions 6 and 7, we can isolate a
 ¢lass of problems for which the necessézy conditions are
‘also sufficient (provided our convexity assumptions hold).
This is the class of systems for which
£(x,u,t) = A(H)x(E) + B(t)u(t)
G(x(tf),tf) = Mx(tf), vhere M is a pxn non-
singular matrix, p.{ n
It is precisely the propeities of this class of systems
that we make use of in the modified second variation
successive approximation method. |
 In problems in which the inequality comstraint is of
the form h(x(t)) g'o,(the state constrained problem), we
cdn'reduce it‘to.the fype of constraint we have considered

by writing,
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S t .
h(x(to)) + jt h(z)dz

h(x(t))
o o

h(X(to)) 4.41: th(x(t)).f(x,u;t)&t
' o .

h(x(t )) + C(x’uvt)

Certaxnly the most stringent requirement in the sufflclency
arguments is the requirement that k(.) be positive every-

where in [to,tf]. A sufficient condition for‘%(.) to

be positive everywhere is given by the following pro-

positidn.(sl)

Propdsition 8.

Sufficient bonditions for‘i(.) to be non-negative
everywhere in [to,tf] are ’
gy %(tf)'g_o'
11) DI(.) + (oI 0
iii)—g—i?_o, EX I
Proof: Iet g(.) = D.L(.) + (D)T(.)R.

Rewriting equatibn‘(4.40), componentwise,

A
.

Ja - i o
ofy & oF
1 E ""‘""i 7‘3 - gl(t)’ Ki(tf) = ax Z (4.48)

Introduce the transformation,
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N |
?‘i = exP[f "a'il" at ]yi
‘ to ox

This cohverts the set of equations (4.48) to
. agd Fogpd o
Vs == 2 Sy, - gi(t)expl-f <= asl.
T A et 1 fto oxt

‘Hence the sufficiency of ‘the conditions is obvious. v
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CHAPTER 5

SECOND ORDER COMPUTATIONAL METHODS FOR THE SOLUTION

OF OPTIMAL CONTROL PROBLEMS

5,1. Introduction

In.the prévious chapter we have considered second
order necessary conditions and sufficient conditions
for a class of optimal control problems. We have also
indicated that second order conditions are important for
- some computational methods. In this chapter we present
some second order computational methods for a general
ciass of optimal control problems. The class.of problems
considered is knqwn as the Bolza Problem in the Calculus
of Variations. The'algorithmé considered are extensions

(68) (69)

and Bryson

(70)

of the gradient methods due to‘Kelley
and similar to the methods proposed by Merriam
Merriam howe&er does not consider: problems with fterminal
constraints. The algorithm presented is formally equiva-
lent to Newton's Method in Functidn Space(7l)’(72) and.
indeed in some problemsvit wo@ld be better %o use Newton's
Method. |

The development in this paper is formal and indicates

how we solve these problems on a digital computer.
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HQWeVer, under the asumptions we have'made a rigorous
Ttreatment of‘these successiye aﬁproximation methods can
be given. _ |  k

The §§§£§rmay be divided into 6 sections. In
Section 5.2 we formulate the problem and state ‘the
assumptiéns we‘have made. In Section 5.3 we state the
‘ first-ordef'necéssary_conditions‘ofvoptimality. These
ére the Euler-Lagrange eqﬁations and the ftransversality
condition. "

Section 5.4 is devoted to Second Variétion Successive
Approximatibn Methods and certain modifications to 1it.

In Section 5.5 we show how the second variation
method is formally equivalent to Newton's Method and
also indicate how the linear two point boundary value
probiem.arisiﬁg in Newton's Method can be solved in
eésentially the same way as in the Seéond Variation
Me thod . | | o

In Section 5.6 we point out certain advantages and

disadvantages of the Second Variation Method.

5.2 Problem Statement
We consider the following Bolza problem. Find the
‘,optimal bontrol function {i and the”correSponding optimal

trajectory ﬁ'sogthat the performance functional



S
tf ‘
Px(ty)w) = Flx(eg)so) + [ Blx(o)ou(s),t)ae - (5.

t
o

is minimised subject to the constraints

%% = £(x(t),u(t),t) ; x(to)‘= ¢ given;  (5.2)
G(X(tf),tf) =0 . " » (5-3) '

Here x(t) € E, u(t) € E™, £ is a function mapping

gL Lo BB and ¢ is a function mapping ESYY to EP,
p £ n. The time tf'may be explicitly or implicitly

specified.

iterative method. At each iteration stage,lwe have to
Solve a hinimization problem similar to the.Accessory
Minimization problem we were.inveStigating'in the previous
chapter. We have to'make suitable assumbtions so that

" the auxiliary minimizatidn problem occurring at each
iteratioﬁ stage is well defined and has é proper minimum.

- Hence the following assumptions:

i) The original problem has a unique minimum and

- this minimum is attained by some admissible control
function u and corresponding trajectory x. Let ) pe a
bounded open set of E™, IIf uel) s U is called admissible.

i1) The system is locally completely controllable in



=126 -

(t,>te] along any trajectory X corresponding to an
admissible control u.
1ii) A1l functions are assumed to have continuous

"second derivatives with respect to X, u and t.
At every itefation stage

iv) DXG(x(tf),tf) is non-singular.

v) The matrix of partial derivatives Dﬁ H is positive
definite and the matrix of partial derivatives Di\y and

2 11 _ N2 (N2m)-1n2 e . ‘s

Dy H Dxu(DuH) ;Dux are p051tlye semldeflnlte where

W (x(p), b, 0 ) = F(x(tg),8,) + <2,6(x(tp),t.)> (5.4) -

Cana H(x(5),u(8),A(8),8) = L(x(8),u(t),5) + <A(6),2(x(5),u(5), 8
- (5.5)

Let ﬁ(,) and §(.) be the optimal control and the
optimal trajectory and 1et'£(.) € E® and D€ EP be the
multiplier funotions and the ﬁerminal constraint multi-
pliers. Let Wy and H be defined by ‘(5.4) and (5.5)

respectively. Then GC.), %(.), A(.), D> satisfy

(6) = £(x(e),ut), ) 5 =(e) = (5.6)
A(t) = D H(x(t),u(6),A(8),8) 5 A(bp) = DAY (x(t,), b5, )
B IR P - (5)
D H(x(5),u(t),A(t),8) =0 (5.8)

Gx(te),t0) =0 | (5.9)

s
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+ D W (x(tp),t5,2) =0 | (5.10)
The last equation 1is the'transversality condition.

5 4 A Second Order. Successive Approximation Method

Let P = P(x(to),u). The successive approximation
method consists of constructing a sequence of functions
uo(.),vul(,),.;g.u (.) and x (.), x (.),.....x (.), such

'that_P(x(ﬁo),ﬁ 2) < P(x(t ),u ), and Lt P(x(t ),u ) = P

_ nfl n—>oo
Lt u =4, 1t xh'= %, where u and x satisfy (5.6)
‘n—>o00 - n=>oo : :

and: (5.9). We shall (formally) construct sequences such
that at each iteration stage equation (5.6) and (5.7)
are satlsfled and P(x(t ), u +l) < P(x(t ),u ). Also

after a finite number of iteratlons_

nDHu max. l 1_
: 1$i_<_m _te t t]
' and B
5]]G(X(t )'tf" l<l<p 1G (X(t ), tf)! < &, mnd vis(
B | w(x(tf) tf,v)l < 63
e € and €_ are suitably small positive numbers

1’ o B¢ T3

selected from numerical considerations. This means that
‘we shall satisfy equations (5.8), (5.9) and (5.10)
arbitrarily closel'y. It is a seéond order method since

'thevnature of the convergence is quadratic (the number

et T . R e NNy S A A A ..
——t. —— Y o 3. vt toane Wy L Lae R o et e i ] g T
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of correct digits at each iteration is doubled). In
prineciple, for a linear system and a quadratratic perfor-
mance'criterioh, we obtain one-step convergence.

. We shall consider two different cases of the problem.

'Case7i)‘;Final time t, 1s-glven explicitly

Let us assume that we have chosen a nominal control
u(.).in the time interval [to,tf] and the terminal

Lagrange'multiplier ». The nominal trajectory is then

;g‘ thained by,integrating the‘system equations

Cx = f(x;u,t)v;":x(to)z='c
in thé forﬁafd direcﬁionx. The equaﬁion,
A= DHEMAE)
istheniintegrated backwardé with'ﬁhe ﬁoundary condition
A(tf) %'Dfo(x(tf), tf,29). All derivafives are evalugted
‘at the nominal‘contrqlrandftrajeCtory. ‘The perfor@ance
functional;méy-now be Written as - o i

tf

Pla(t,)u) = W(x(tp),5) + f [H(x(),u(6) A (), 6) -
- A(t),%(t)dat ' (5.11)

Letfus expand P in a generalized Taylor's series,.

~xTo'simp1ify‘the notation we shall often drop‘argument5~

of‘a'fﬁnction.
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t
o . : f
7P(x(to),u+€)=P(x(to),u)+ .( <DuH,e> dt
t
(o}
. tf :
| +‘%. .f [<53H.e,e>,+‘<5§H.ﬂ,ﬂ>+2<5§x.n,gil dt
t - .
(o} . . . .

+
ol

B2 (x(t,) s b00 ) N(E,),M(Eg)>

Where the bar notation indicates that the derivatives
are calculated on the line segments joining u and u+f, x
and x+T7. |
| Let us now éssume that € and 1) are sufficiently
small so that it is sufficient to retain terms up to
second order. Call £ = Bu and M = 8x. Let the new control
Pe U = Uopg * bu. The improvement in control 6u is
obtained'by minimising
& ,

-

£ PR | |
: , L2 Lenzi s
Jf [ €,<D H,6u> + 5<D2H.6u,6ud+ 5<D2H.6x,6x>
£ | R
© 5
- +.<DuxH.§x,§u>] dt

2 N
(5.12)
SubJect to the constraints,
5x =lif.6x + D f.6u ; 6x(to) = Q‘ (5.13)

eQG(x(tf),tf) + DXG(xﬁtf),té).Sx(tf) =0 | (5.14)
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" where €, and  , are suitably chosen small positive
numbers 0 < €., €, < 1. We notice that to obtain the
improvement in control.ﬁe have to solve a new variational
problem. it is however é linear problem with a guadratic
performance criterion and .linear bterminal constraiﬁts,
and can be solved. The complete solution of this varia-
tional pfoblem.is given in Appendix C.A A discussion of
why the parameters' 51 and ,62 are introduced in the
particular mannér is also given in Appendix C.

' The solution of this new variational problem is given

by _
6% = D _f.6x + D f.bu ;  6x(t ) =0 ’ (5.15)
s n2 N2 » _ oy T ‘
El A\ = DXH.§X DZ H.bu El(Dxf) .A?\, (5.16)

61 A?\(’cf) = Di_\y(x(tf),‘tf,v).éx(tf)+ EE(DXG)T.AD(5.17)‘

Bu = -(DZH)-l[ €D H+D2 H.6x+ '6 (D f)T. An] - (5.18)
where 6 A}\ and . € AY are the mul’clpllers for ’che
‘aux111ary minimization problem.
Let us 1ntroduce ‘the matrices and vectors,
_ _ 2 y-1nz 1
A =D/ -Df (DuH) DI H.
. _ 2iy-1 T
o BV_ Duf.. (DuH) (Duf) o | )
—_ N2y - D2 2112 ‘
C = D2H Dqu(DuH) Dz H | | (5.19)
- - 2ry-1
v = Duf (DuH) D H

b H

— D=2 21\ "
W = Dqu(DuH) .
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Usingv(5.l9) and substituting (5.18) into (5.15) and
(5.16); we obtain the fqllowing.linear two-point boundary

value problem, ' |
6% = A(t)ox + €B(t) ANt €v ; bx(t ) = O (5.20)
€ Ak = -c(t)sx-_elAT(t)zsx- &w - (5.21)
€ AN(t,) = D2y (x(t,),60) . 0x(t,)+ e,(0,6)T. Av  (5.22)
€2G(x(tf),tf) + DXG.Sx(tf) =0 (5.23)
| Beférevproceeding further it is necessary to show

- that the particularfchoice of du given by (5.18) indeed

reduces the value of the performance functional. In

Appendix C wé show that for this choice of Bu the sum

of the'first and'sécond variations is indeed negativé.'

The linéar two~-point boundarylvalue problem 1s

perhaps béSt solved by introducing the linear trans-

formations, .

g AN = £l 4 K(b)Bx + EN(8)AY (5.24)
8G =E Elm,+ NT(£)6X + €2P(t)z>ﬁ- o | (5.25)
where 6G = - €,G(x(ts),%p).

(That such 1inear transformations exlst may be easily
shown by writing the solutions of the differential
equations (5.20) - (5.21) explicitly.)

‘Different_iating (5.24) and (5.25), using equations

(5.20) - (5.23) and equating coefficients of various
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terms to zero (see Appendix C), we obtain the following
egquations for L, m, K, N and P :
L + (KB+A~)£ + Kv+w = 0 ; {(tf) =0 ' (5.26)

 RekaeaTRAKBKAC =0 ; K(t ) = D2\V(x(t ),tf,l?) - (5.27)

N+ (KB+AT)N =0 ; N(tf) = (DXG(x(tf),tf)) | (5.28)
m + NT(Bf +v)'=' 0 ; ’m(tf) =io ' (5.29)
P4 NBN =0 ; P(t) =0 | (5.30)

in order to be able to compute Bu, we have to determine
AY . Equations (5.26) - (5.30) can be 1ntegrated back-

wards. Hav1ng done the 1ntegratlon backwards,. we may

-~ calculate E,4Y at time t_ from the relation,

: -1 T
E,0Y = P (to)[aG- é'lm(to)f-N (to‘)ﬁx(to)] (5.31)
Due to the assumptions we have made P'l(to) exists.

From (5. 31) and (5.24), .
€ AN(E) = € [U(t)-N(t)PT (s, )m(t ) - Nl(t)P_l(tO)ﬁG

- N(E)PTH(e N (5, )Bx(6,) + K(B)Ex(8)  (5.32)

. Hence from (5.32) and (5.18), we’get‘



- 133 -

fu = - €I(DSH)-1[DuH + (Duf)T-{(t)]

+

(DiH)fl(Duf)TN(t)ng(t ) 6G
& (D2H)'1(D f)TN(t) P (s )N (t, )6x(t ).

(p21)"1[p2 1 + (D £)TK] 6x - | - (5.33)

Let € (DGH) M[DH + (Duf)T~&(t)jl= r

- &(02m) Mo ) W(E) P (b m(s,) = 7y

(5.34)
K

-1 T -1 :
- (DZH) ~(D, ) "N(t)P ;to) 1
-1 ‘ T
(DSH) .[DﬁXH + (Duf) K] = Ky
Since 6x(to) #'O,‘using (5.34) equation (5.33) may be

written as

bu(t) = v, (6)-ry(t) - K (£)6G - Ky(8)ox  (5.35)

Equation (5.35)is a linear feedback equation. It is
. therefore clear that the process of 1mprovement 1n control
function is a linear feedback process. This 1is perhaps
brought‘out more cleariy in Fig. 5.1.
| We have also solved the neighbouring optimal feedback

control‘problem. In this case the nominal trajectory
is optimal and hence DuH = O. This implies thet ‘

{(t = m(t) = 0 everywhere in [to,tfj and hence the
feedforward terms rl(t)'= r2(t) = 0 everywhere in [to,tf].

But Sx(to), which is the deviation from the nominal
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trajectory due to a disturbance is not zero. Supposing
that the state of the system is continuously measured,
from (5.33) and (5.34),rthe neighbouring optimal time-

varying feedback control is given by

6u(®) = -K,5(6)6x(6) Kz(t)SG‘ .'. (5.36)
where K,(t) = K, (t) - (DEH)'1(Duf)?N(t)P'l(t)NT(t)

What is interesting in expression (5.35) and (5.36) is
that we can control independently the contributions

to Bu due to desired change in terminal conditions,

‘initial condition change_or.desired’chahge in D H (or

desired change in cost function). This is important in
numerical computation, since 1t is very difficult to
satlsfy terminal condltlons.

Fig. 5. l could thus be con51dered as the design of

a linear feedback control scheme for a non-linear system.

The state variables may not be directly observable and
may have to be estimated. If there is additive noise
present the problem can also be handled In this case

we . have to mlnlmlse the expected value of the second
variation. But the important point is, that for a linear
system and a quadratic performance functional, the control
and fllterlng (estlmatlon) problems separate(73) (74) |

Before considering the case when the time tf is given
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only implicitly, let us consider an example which we

solved on the computer to verify that for a linear

sys tem and a quadratic.performance functional, the pro-

cedure yields one-step convergence.

Exéméié:' Consider the linear system,

*
X =

‘T = 5

u; x(0) =0

B
: The'perfqrmance criterion is P(u,O)’=‘%' J'(x2+u2)dt
0

The minimum value of P is obviously O and the optimal

“control law is u = 0.

For this problem

H = %(x2+u2) + Au

dH dH 2%H
ouT W e TR o
From (5.19),
e o
B = -1
C=1
v = -;
w =20
From (5.26) and (5.27),
' {-xl -xk=0;
K-K2+1 =

=
-

(5)

0';_ K(5)

. X°H

ﬁ;l _'BZH
dx2 T oudx — dxou
=0
=0

=0
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su = -(utr+L ) - Kbx
The initial guess was taken to be u(t) =1 everywhere in
-[to,tf] and the cerresponding value of the cost function
was 22. After one iteration the cost reduced to 0.14 x 10;3.

A crude finite difference'method was used for the intee

gration.

Case ii) ‘Final time t, not given'explicitly

- The basic procedure for this case.is basically the
‘same as for Case (i). The expressions for first and
second variations in the Taylor Series expansion are now
more complicatedJSince we now have to consider the varia-
‘tion in the final time tp. |

The control functlon u and the terminal tlme tp
is. guessed and the system equatlons,

x = f(x,u,t) ; x(to) = c (given)‘

is integrated in the forward direction. A value for v
is guessed and the EﬁlerrLagrange equation

A = -D_H(x,u,A, t)

is then integrated backwards with the boundary condition

AME.) =D \y(x(t ),tf,29). All derivatives are calculated

)
at the nominal trajectory.
P(x(t ),u) is then expanded in a generalized Taylor .

‘series as in case (i).. Let 6P and &P be the first and
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second variations. Then (see Appendix C),

t
f.
6P = (HD V¥ )t=tfdtf + f <D H,6u> 4t | (5.37)
.to
l ’ -
506%P = %[gpiw(x(tf),tf,v,)Ax(tf),z_\x(tfb +

.+ <.DXV (X(tf),tf,» )’ Azx(tf)> ‘
+ D%'\{/(X(tf),tf:p‘)dtfz + 2<DJ2(t\V (X(tf)’tf:v);AX(tf)dtf>]:

+ (x(t ), u(t ), A(t )sta)s 6u(t )dt >

lQ-Ci

+-—-'2L- [H(x(t ), u(t )oA(Es),t) - <A(tf),>';(tf)>]dtf2

f .
2 2 2 '

[<DuH. Su, 6u>+<DXH. 5x, 6x>+2<DuXH. 8, 6u>jdt

o | o  (5.28)

where Ax(tf) = 6x(tf) + J'c(tf)dtf

+

I~
: ‘ Q
S

2 %o 2
Ax(’cf) x(tf)dtf + 26x(tf)dtf

Neglecting third ordef terms (see‘Appeﬁaix C); Su is

determined by minimising,
‘ t
_ T .
(DY ) g B + € f <D_H,bu>dt
to

> + <DV, XKdt,2+26xdt,>

lrep2 . :
+ .2[ <D2Y (6x+xd’cf),6x+xdtf | "

_ 2 2 2 .
+ Dt\ydtf + 2 <Dxtql,6x+xdtf>dtf]

14 : _
o+ 3 FRlLx(e)u(e), 6l atd
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e

l ' ' Y
+ 5 _f. [<D§H.6u,6u>+<D§H.6x,6x>+2<D§XH.6x,6g>]dt (5.39)

tO o
subject to the constraints,

x = D, f.bx + D,f.0u ; 6X(to) -0 | - (5.40)
eBG(x(tf);tf)+DXG(x(tf),tf).5x(tf)+DXG(x(tf),tf).k(tf)dtf.
+ D G(x(t,),t.)dt. =0 | (5.%41)

' The solution of this auxiliary minimization problem is
given by, (see Appendix C),
5% = A(t)6x+_€lB(t)z5A+ €v ;'”6x(to) =0 . (5.42)

€, Ak = -C(t)6x- slAT(t)A A- Ew | (5.43)

1
€ AN(bg) = DRV (x(tg), b0, 2 ) .6x(t_f)+ €,(D,G(x(ts),t,)) . A

+[ﬁ§\V(X(tf),tf,m).i(tf)+D§£y/(x(tf);tf,v)+(DXf)T,D£w(X(tf)j¥y

atf (5.44)

o6 = DXG(x(tf),tf).sx(ti;)+[nxg(x(tf),tf).k;tf)+nte(x(tf),tf)j
| oag  (5.45)
BW=<D2 (% (), b0, ¥) X(£,)4D2 W (x(,), 5,,9)+(D_£)F,

D, ¥ (x(tp) s tp,%),dx(t,)>

o ED,G(x(5g) ,5) R (50)D G (x(5g), 80, A2>+8(5g)dt,
R (5.46)

where
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5G = - EEG(x(tf)b,tf)

oW = - 83w = - 83 (H+Dt\p )t=tf

s(tf)=[<D;yr.x,i>+<qu1,Dxf.ifDuf.u+Dt>f<DxL,k>
X . . . . .
<D,L,4> + DL + DYy + 2 <D2.y ’x>]t=tf

The linear two-point boundary value problem (5.42) - (5.46)
is solved in exactly the same way as in case (i) by
introducing

;glvA?\('cv)' = '€l£(t)_4-K(t)6x('6)+ EEN(tjA»+ p('c)d'cf (5.47)

56 = Elm(t)+NT(\‘c)5x(t)+ €,P(t)av+ a(t)dt, (5.48)

€ln(t)+<p(t),6§c(t)> +§<q(t),:Av>+s.(t)dtf‘
(5.49)

In a manner similar to that of case'(i) we obtain equa-

oW

tions (5.26) - (5.30) and the following set of differential

-equations for p,q,n and si

b+ (AT4KB)p = 0 o (5.50)
e T ‘ .
qQ+ NBp=0 . (5.51)
n+<p, Bl+v> =0 : (5.52)
é + <p,Bp> =0 ‘ (5.53)
Ay and dt. are now determined by solving equations

| £ v
(5.26) - (5.30) and (5.50) - (5.53) backwards and solving

the equations
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dq - Slm(to)+NT(to)6x(to)+ 82?(130)@» + q-(f_:o)dtf (5.54)

€,n(t )+<p(t,),0x(t )>+ €x<alt,), AV >+s(t,)dt,(5.55)

dw 1

Computihg Procedure

We now indicate the pompﬁting procedure for the
éase when tf is givén explicitly.

i) Guess the control function u and integfate the
| sjstem équation % = f(x,u,t) forwards with x(to) = c.
Sﬁore~u and the corresponding trajectory x.

ii) Guess a value for the multiplier ¥ and integrate
the equation_i =;DXH(x,u,A,t) backwards with the boundary
condition A(tf) é»DX\y(x(tf),tf,ﬁf). Along the trajectory
‘Calculate‘the partial derivatives necessary to evaluate
A,B,C,-v‘and w (eqns. 5.19). Simultaneously integrate
the differential equations for L,K,N, m anle'backwards.
Compute r,,r,,K, and K, and store them.

iii) Repeat step i) using,
1u = Uy " Ty T - K66 - KESX
iv) Repeats step 11)

’.vy Stop computation when

g oH i ‘
max - max s—1 < €5 and max |G (x(t.),te)| £ €
1¢i<m teft,,t,] oY [ﬁ"‘ > 1<i<p &6 et | 4

. where 53 and 84 are small positive numbers.
‘Note: It is necessary to include an adJustment procedure
fbr,‘elﬂand' 822. In a suitable neighbourhood of the

~optimum they can be set equal to 1. .
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In obtaining:the second oOrder algorithm, we had
to assume
1) D2H positive definite
11) D2H - D2 H(D2H)™'D2 H positive semi-definite
1ii)'D;xy(x(tf),tf,>3) positive defiqite
at'evéry iteration. . For many pfoblems if the nominal
control function 1s not suffiéiently near to the optimum,
and if the terminal conditions are missed by a large
amount, these assumptions may not be satisfied. 1In that
case betteflestimates for u and Y are necéssary. These
improved.estimates may be obtained by a gradient method.
.Alternatively the following succéssive approximation
scheme may be used till the above»assumptiohs are satis-

fied. For the subsequent development, we shall assume

D;F(x(tf),tf) is positive semi-definite

'DiL is positive definite

2r _ n2 2 y=1l.2 ' ‘s . L

D2L - D2 L(D2L) ?DuXL is positive semi-definite.
Note that these assumptions are assumptions on the per-
formance criterion (which to some extent is at our choice)
and hence much weaker assumptions than the prévious ones.

Wé consider the case when tf is fixed. We agaih

choose a nominal control function u and integrate the
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system equations in the forward'direétion. The function
F and the integrand L is now expanded in a Taylor's
series round the nominal control u and the nominal-

trajectory x and terms up to the second order retained,

thus obtaining : .
t

£
P= El<DXF(x(tf),tf),ﬁx(tf)>+ Ei _[ [<DXL,6x?+<DuL,6u>]dt

t
(o]
1.2 _; 2 < ' :
56 3 = 2<DXF(x(tf),tf),5x(tf),5x(tf)>
f R
e L2l [<D2L.5u, 5ud+<D2L. 6x, 5x>+2<D2_L. 5%, 6ud> ]dt
2 u_ -’ x0T ux -
(0]

The control improvement &u is obtaihed_by minimising

P + %62P subject to,
Bx = D, f.6x + D f.8u ; ,5x(to) =0 (5.56)

0 (5.57)

~

where 0 < 10 2 S 1. In view of our assumptions on F

, €2G(x(tf),tf) + DXG(x(tf),tf).Bx(tf)

and L, this problem has a proper minimum, and the

| necessary conditions of optimality are also sufficient.

The Euler-Légrange equations ofbthis problem are,

5x =.Dxf.6x_+ Du?‘ﬁu 3 Bx(to) =0 (5.58)
: , : \T
E AN = - ElDXL-DiL.Bx-DiuL.ﬁu- El(Dxf) AN (5.59)

su ,-(DiL)-l[ €,D I+D2, L.ox+ Ei(Duf)Tzﬁk] (5.60)

1
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te) = €D F(x(ts),p)+(D,G(x(%:),%,) )T 63

+ DEF(x(t,),t,) . 8x(t,) (5.61)

Subsfituting (5.60) 1hto'(5.58)'and (5.59), we get

bx

>

where

LCE B v <] - |

<l

w

- The way

= Abx + BAM + €V . (5.62)

- -Gox - BT A - W o - (5.63)

2y 42 7

= D_f - D f(D2L) pz 1,
o arn2py-l T
- -p_r(p2L) "} (D 1)
21 2ry=laz2 ¢ -
- D2L - D2 L(D2L) b2 1
- -p_£(p2L) b 1L,

u -u u
)~

DuL

_ N2 1.(D2
DXL Dqu(puL

this linear two~-point boundary value problém is

solved is precisely the same as our previous method and

for {,

"we shall omit the detalls here. The differential equations

k etc. we obtain are also of the same type. It

can also be shown that this cholce of bdu. reduces the4

value of the performance functional, The proof is exactly

similar

to the proof we present in Appendix C for the

original second order method.

T R e e T TR TR TR IR LT AN



AT AT A o Doy L D PV P VIR N

- 145 -

5.5 Relationships with Newton's Method

~ For simplicity we'cpnsider_the'case when there are
no terminal constraints present. The method and con-
clusions are valid for the general Bolza prbblem.

Solving the variational problem by Newton's Method

means solving the Euler-Lagrange Equations by an iterative

method. The method consists in guessing a nominal
control function, a nominal trajectory and a nominal

multiplier function and then linearizing-the Euler-

| Lagrange equations round the guessed functions. A linear

two-point boundary valﬁe problem is then solved which

yields corrections to the guessed functions. The linear

- two-point boundary value problem To be solved 1is

X + 6% = : + D f.8x +D f.6u ; 6x(to) =0

-

A o _ne _n2 N2 . —
A+ 6; = -D _H-D2H.5x-DZ H.85u-DZ,H.O\ ; 6A(tf) =0

XA
D + D2H.6u + DZ_H.®x + D3, H.6M = 0
But for the fact that the systém equations and the
Euier-Lagrange equations are not satisfied by the initi-
ally guessed fuhctions, these eqﬁations are precisely
the same as equations (5.15) - (5.18). Thus the methods
we have used in solving equations (5.15) - (5.18) may be
used in solving the linear two-point boundary value

problem in Newton's Method. As we haﬁe indicated pre-

viously from the viewpoint of numerical stability it is
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advantageous to solve the two-point boundary value problem

in the way we have indicated. In problems where there

is a constraint of the form x(tf) = a it may be better

to use Newton's Method since we can guess the nominal

trajectory'to satisfy the -boundary condition.

Cbhtfoivaobiéms

. A‘numberbof.methods have 5een pfoposed for the
solution of two-point bouﬁdary value problems arising
in optimalvcontrol problems. These may be subdivided
into three main clésses: |

i) Boundary Conditidn.Iteration Me thod

ii) Control function Iteration Method

i1i) Newton type Iteration Methods
The choice of the method to be adopted depends on the

problem and on the nature of the application. Each

~ problem will have a certain structure and exhibit certain

stability properties, although in a non-linear problem
it might be very difficult to isolate either. Further
the nature of the control application may impose various
constraints. ~Fof example, if on-line control is en-
visaged, rapidity of conVergence may over-ride other

factors. For some problems it may be necessary to
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obtain extremely accurate trajectories, while in others
convergence of the performance functional to within a
pre-assigned tolerance may be sufficient. In spite of
this, certain advantages and disadvantages.of each of
these methods may be poin@ed out and certain recommenda-

tions made.

In this method, typically the control funetion u
is eliminated from the first two Euler-Lagrange equations
by solving Hu.= 0 and the resulting first two Euler-
Lagrange equations are solved by iteration on one of the
unknown boundary.values say, A(td). A suitable scalar
terminal error function V[x(tf,k(to)),k(tf,k(to))] is
then constructed. The boundary value h(to) is then
adjusted till the error  function goes to zero. The
‘ad justment requireszthe eomputation of the gradient V
Systematic.methods for doing this are availabie(76).
These methods have cerftain computer programming advan-
tages. CompUter logic is simple and fast storage,re-"
quirements are‘small. + In problems where the method is
successful accurate trajectories are'obtained.v The main
disadvantage.is the inherent instability of one of the
Euler-Lagrange equations. To determine whether the
method is_applicable a prelimioary analysis of the
‘problem may possibly be carried out in the following

way: let the unforced s&stem equation'be linearized
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round the given initial cendition. An eigen-value
analysis of the 1inearized system matrix could now be
made, If the matrix turnsAout to be essentially self-.
ad joint boundary itefatien‘methods are quite suitable.
It not and if tf - tO is snbstantially greater than the
dominant system>time-constant,'severe instabilities may
" be encountered. |

1i) Control Function Iteratien:

Control function iteration methods using both
gradient'techniqnes and steepest descentbtechnique have
been proposed in the iiterature. In these_methpds the
eontrol_function:is successively improvedvtill HDuH” < €
where I | ‘is some suitable norm:of ‘the D H function
and € is a.small positiVe number. ‘The‘primary adventage
of this method is that computatiens are always performed
in the stable direction.,tHQweVer convergence tends to
be‘intolerably slow in a certain neighbourhood of the
optimum. To imprbVe convergence the size-step eannot
be increased since this leads tQ instability. ' The
,iteration'methods we have'presented in this paper may
be considered to be direct extenSions of gradient or
k'steepest descent techniques.~ We‘have stated previously
that the secend variation. method is formally equivalent
to Newton's method in function space. In a suitable

neighbourhood of the optimum convefgence,is therefore
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quadrétic. Computations here are also always performed
in the stable direction. 1In fact in a suitable neigh-
bourhood of the optimum;’the iﬁherent stability proper-
ties of linear‘feedback control systems inhibits the
propagation of numerical érrors. As a by-prodﬁct‘we
obtainllinearfime-&afying feedback gains for néighbour-
ing optimum feedback oontrol.

On the other hand the coﬁdiﬁions that.various
matrices be positive definite or semifdefinite may Be
too strong. In such cases it may’be nécessary to get
better estimates of the control function by using gradieht
'methods or use the élterhative successive approximation
hethod we have indicated in conjﬁnction with the second
variation.méthod} Numerical difficulties‘may also be
encountered in integrating the matrix Ricatti equations,
specially if the dynamic system is unstable,‘ It is also
to be noted. that the matrix DZH is to be inverted.
Computer storage requirements are also greater since the
feedback gain matrices have to be stored.

Some computational effort may be’saved.- For example,
it is not heoessary to computé (Dl"’le)“l at every itera-
tion. In fact in practice this may be held constant

after two or three iterations. Convergence will neces-

sarily be slower.
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For ordinary mipimization broblems some very effi;
cient computafiunal algqrithms have recentl& been pro-
poséd(TT). These algofithms may be donsidered to lie
somewhere bétween gradient énd Neuton's method. A
distinctive feature of theése methods is that use is
made of information generated in previous iterations.
Generalisations of these méthods to function Spaées
should’be possible.

‘ In‘this paper we have nut considered inequality
constraints. The assumption was made that these could
be épproximated_by means of.penalty functions. Exten-
sions of the techniquesipresented here to problems
with inequality donstaints'on coutrol'and state variables
appear to be possible. The auxiliary minimization
problem then haswadditionai linear inequality constraints.
In this case the corrésponding dual maximization problem |
could be solved %o obtain5the improvement in control
function.

iii) Newton's Method

Newton‘s method was first proposed by Hestenes(78)
to solve fixed and point problems of the Calculus of
Variations. 'Abcompletelanalysis of the method for this
class of probiems was given by Stein(79). In the context
(80)

of function space,-the'method,datesAback to Kantorovich
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Kalaba(Bl) has also used this method for a special
class of problems and called it 'quasi-linearisation'.
Recently the method has been applied to some optimal

" control problems by Kopp and Megi11(82)

. They eliminated
the control function u fréﬁ the first two Eﬁler;Lagrange
equations by usingﬁthe equation D H = O. The linearised
Euler-Lagrange equations are then integfated for n-
lineariy independent boundary conditions. The unknown
boundary value 6A(to) is found by using linear interpo-
lation and a matrix invérsion, Improvements 8x(t) and
5A(t) are then obtained by one more integration.

If the linear two-point boundary value problém is |
solved in this way, the method suffers from the instability
disadvantages of boundary interation methods.

In our view, the methods advocated in this paper
could be used‘to solve the linéar'two-point.boundary

value problem arising within Newton's Method.
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CHAPTER 6

Computer Solutions of Optimal Control Problems

6.1 Introduction

In this chapter we present results of computer

solutions of two optimal control problems using the
second order computational method we developed in the
previous chapter. Rather than solve meny problems, we
have preferred to solve only two problems but with great
care. .

The first problem is one arising in.thé control of
boilers. The solutions given might have potential |
applicatibns in boiler control. The second problem is

‘an idealized rocket problem.  These two problems were

chosen since some numerical results(87’88) are available,

thereby providing a basis for comparison.

The programming was very ably done by David Stone
of Imperial College, who has made an independent contri-
bution in the numerical integrétion procedures used.

6.2 Overall Organizastion of the Computer Programme.

The overall flow chart of the computer programme is

shown in Pig.6.l. The programme was organized as a

hybrid gradient and second variation method. The least



- 153 -

necessary.condition for the second variation procedure

to work is D2H > 0 at each point of the trajectory.

If this assumption is not satisfied the programme auto-
matically switched to a grgdient method. It is very

difficult to write a programme for the solution of optimal
- control problems which will be gemeral enough to handle
any non-linear systen. Nevertheleés the two programmes
swere written entirely in sub-routine form aﬁd made as’
generzal as possible. Thus if sufficient experience could
- be gained by solving a variety of problems of this kina,
one could attempt to write a general programme for the
solution of non—linear_optimai control problems.

The rocket problem was solved firsgt.  The integration
routine used here was a Runge-Kutta routine. One of the
disadvantages of using a Runge-Kutta routine is that it
is necessary to use a Lagrangian Interpolation routine to
obtain the values of A, L and K at intermediate points
within the basic integration interval. This is so because
we need the values of these variables at the intermediate
points in order to carry out the forward integration of
the dynaﬁic equations again. This fact enormously com-
pliéates the computer programme. :A more satisfactory method
is to use a Predictor Corrector methqd, together with a

suitable starter. A Hamming Predictor Corrector method,
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togefher with an Euler-Newton starter was coded by
David Stone of Imperial College. This integration
procedure was used in the Boiler problen. _

The programmes were written in Fortran IV aﬁd the
computations were performed on the IBM 7090 computer of
TImperial College.

6.3 The Boiler Problem.

The basic model is a “virtual steam flow™ model of

a boiler due to Profos. ®®)  Tnig ig shown in Pig.6.2.
VIRTUAL ,
) ‘HEAT STORAGE] <TEAM INTEGRATOR AP
HEAT 1 _a ,_.;ff}__;v, J s THROTTLE <o
n::wr 1+T P F“%S\' g T;_P ) . ' FLowW
' PR

Pig.6.2. Virtuel Steam Flow Model of Boiler.
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The system equations written in state variable form are:

dxy 1

= = TI;(éu"x’)‘ ‘ ; (6.1)
g;ﬁ = %E [z, - u2(x2£§)] | . (6.2)
where x; = viftual steam flow (including heat storage)-
'lbs./sec.
xzv = pressure deviation from steady state
P - 1bs./in®
T, = stean storage intégration.canstant
a,Tli ‘= constants derived from a larger model
u, = fuel input raté control
U, = throttle control.

The interest(89) of the problem is in developing a
control system which will allow larger swings of {the load
'iof a power boiler than is at present possible. Existing

process-type controllers on a boiler are designed for
their regulatory function and their piecemeal implemen-
tation gives rise to severe restrictions on load changing.

A suitable performance criterion for this problem is

; . K ;
Minimise J'f(steam flow-demanded flow)zdt (6.3)
. t
¢)

However, dufing the load change it is_necessary to con-

strain temperatures within'certain limits. This can be -
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linked to a pressure state constraint. Also there is

a desire to end the period of load change in the steady
state. \There is thus a constraint on the end-point
ﬁressure. These two factors are met by a time-weighted
penalty term-in the performance criterion. The final
performanoe}criterion is,

Minimise _ff[(uz(x2¥?)-F)2 + ¢.e%%x5]at (6.4)

%o

The simplification is made here of considering a step
change in fuel input, Uy, at the beginning of the control
-interval and hence only one control u, is free.

The numerical values of the various constants are,

a =1.6 x 1077
Il = 200

T, = 4.7

tf-to = 400 secs.
c = 0.1

a = 0.001

Initial Conditions are
xl(to) = 241
,‘x2(to) =0
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Steady State Values are

P = 225
X, = 0 _
w, = 0.14423077

uy held constant at 140,625.00

The equations to be integrated backwards are,

Moo r(tg) = 0 (6.5)
. _ Moo | at
Ap = -T—Z—- —2[U (x +’P')-F]u2 - 2ce X5 3
A (tp) =0 (6.6)
SRR T 1L
1 2m§(x2+'§)2 11 7 "1 ""é" K12 - T, "2
A - 2 - Kyp + mi= L2uy(x +?)’-2F-7£-2-]K =0 (6.7)
X 12 (x,#F)° L o " 72772 27 12
. 2 A
(. - a X L [ 2 2 - P
2 2T32_(x2+F)2 12717 T2- 2TS(X2+?) Tz(x2+P')
. ‘
K, ]l
;Eg 22-72
1 a2

. Y ,
1 = 2
+ [2u,(x,+F) = 2F - ==K
'2'T32_(X2+F)2 2 7 2T, p(Xp+E) '1""2 22
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: A
- [2u (%,+F) = 2F - —21[4u.(x,+F) - 2F - ==
2(:8:24-?') 2 2 TE][4 2( 2 ) ]
=0 (6.8)
. 2 2 2K 2K
P17 op2(x 472 1 opl 12 Ty T, J
V42 2
. U, Mo

. 1
K-, - 2 K KyoKoy + [== -
12 2m§(x2£?)2. 11512 - 2mg 12722 7 °T, 2T§(x2+§)

K ‘ .
22 =0 (6.10)

P, ]
~ =K
1,(x, + F) [ T
. 2 u A
2 1,2 2 2
K 2 Ky, = =% K5, + 2[g= ~ —
227 onZ(x, 432 12 anf 220 T2 ond(x, + F)
F, ]K 2u2 at
Tz(xg + F) ‘
- L [4u,(x,4F) - 2 _ 2F]12 = 0 (6.11)

The boundary conmditions for the | and K equations are
L () = Ly(tp) = Kyq(tp) = By p(te) = Kpplte) =0
The improvement in conirol is given by

0'(12 = I+ MQl[(xl)new_(xl)old] + M22[ (x2)nev;r"(x2)old] (6,'12) v
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| e A ]
1 1. = 2 2
T = - U (X 4P) ~ 2F ~ == = =5
2(xp17) { o\ %o T, = T, }
M,y =+ € 2 'K
7 ' =
1 21,(x+F) 12
o 2u M
_ 2 F 2
Moo = + +

- = = —=2 T —)
(x, + P) (x2+P) 2T2(x2+P)

» 1
zmz(xzﬁﬁ);

Koo

It is noted that in this problen

2
DuH >0

ahd hence theré is no need to include_the gradient sub-
routine in the programme. | »

le(t) and Mzé(t) are optimal linear time-~varying
feedback gains. These are obtained directly in the
last iteration. |

6.3.1 Discussion of Results.

The results of this problem are shown in Figs.6.1-6.7.
- From Fig.6.1, it‘is seen that as far as reduction in cost
is concerned we get almost one-step convergence. The
oontroi essentially converges to the optimal control in
2-steps. The difference in the control function between

the second and third iterations is in the sixzth decimal
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place. The difference in the state variables between
‘thé second and third iterations is also very small.
‘However, as seen from Fig.6.2 max %%L has a value of
_ 3»x 104 at the second itefation and 72x 10_2 at the fourth
iteration, even though'the.oontrol is virtually the same
at these two iterations.

The optimal 1inéar time-Varying féedback gains are |
shovn in PFigs.6.6 and 6.7. These can be used for optimal
1inear feedback control against small disturbances.

For this particular problem, the second variation
. method appearé to be vastly superior to gradient methods, -
since approximately 60 iterations were needed for convef—
gence to the optimum using a gradient method.

| In this problem € was set equal to one and no
nalving operations were necessary.

400 steps were used for the various integrations.

6.4 The Rocket Problem.(87)

It is desired to launch g rocket in fixed time %o a
given-attitudé with a given final vertical velocilty
component with maximum horizontal Velocity component.
The problem is simplified by meking' the following assumptions
and approximations: '
| i) thrust varies with mass so as %o produce
constant acceleration -

31) the earth is flat
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iii) gravitational acceleration is constant.

The following relevent guantities are defined:

x, = attitude
xé = velocity component in the horizontal
direction | ‘
’xs = wvelocity component in the vertical
‘direction
a = coustant acceleration due to thrust
g = constant gravitational acceleration
u = inclination of the thrust vector to the

horizontal. ‘
The motion of the rocket is governed by the differ-

-ential equations

B
i2 = acosu
Xz = a sinu - g
Given xl(to) = xz(to) = x3(tp) = Q
ty =0, tgy =100
a = 64 f£t./sec.®
g = 32 ft./sec.?

find u(.) such - that,

xz(tf is a maximum
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and %, (%) = 100,000
It was decided to approximate the terminal constraints

by means of penalty functions and thus the folloWing

modified cost function was formed.
Minimise ~x,(%p) +aq(x;(tg) - 100,000)2 + aé(xB(tf))Q
The equafions'to be solved backwards are,

M o=0 3 Aq(te) = 2al(xl('bf) - 100,000)

>
I

. aKz~-cos u
Ly - 33 ~ [sin u - (L -ha)cos u] = 03 L;(tf) =0
Azsin u-cos u '
_ﬁ = .a coszu K2 ; K (+.) = 2a
T1l kasin u-cos u 13 117 1
R =Ky, 2098 R2 . g (4. =0
15 1L Azsin u-cos u R 130
. , a coszu 2 (t.)
Koz = 2K, + Kzz 3 K = 2a
33 15 hasin u-cos u 35 EEA . 2
The improvemenf in control is given by
du = - [(A_cos u + sin u + L cos u) +

(kssin u-cos u) 3
cos u(;upx + K 6x3)]



- 163 -

-

6.4.1 Discussion o :Sulia

Extensive numericeal experimentation has been dons
on this problem. The zerneral conclusion is that the
second variation methed is not very suitable for this
problem, uniess a sufficiently good nominal trajectory
is found. This is mainly because terminal constraints
have to be satisfied énd we nave had considerable diffi-
cultylwith'approximating terminal constraints by means
of penaity functions. The two terminal constraints
in this problem are point constraints and depending on
whether we 'overshoot‘ or 'undershoot' the constraints
the function §§§ changes radically.

Computing was done with two different nominal
trajectories.. The first nominal f{rajectory used was &
linear approximation tp the control. The same nominal
control was used by Dreyfus. The control functions are
shown in Fig. 6.10. The'generél shape of the trajectory
is the same as Dreyfus's; excepting the 'transient' which
occurs towards the end of the time interval. It is
thought that this happens because the penalty function
cbefficients are;too tight. On the ofther hand, when
the.value of these coefficients is made smaller, the

terminal constraints are not satisfied within the specified
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tolerances. One possibility 1s fo start with a low
value for these coefficlents and converge to a solgtion.
These coefficients can then be updated and we can re-
converge to the solution.- We have had some difficulties
in reconvergence too. Nevertheless engineering solutions
for this problem have been obtained, although they are
not as accurate as that obtained by Dreyfus. The be-
haviour of the cost as a function of the no. of iterations
has been ploffted in Fig. 3.11l.

Resﬁlts obtained with a different choice of penalty
function coefficients is shown 1in Fig. 3.12.

Let us also mention that for this case the hybrid
programme generally worked on the first variation.

The tofal computing time including input output
was 5 mins; ‘
| A different set of results with a parabolic approx-
imation to the optimal control as the nominal is shown
in Pig. 3.12 and Fig. 3.13.

In this case the programme generally_Worked on the
second variation.

It should also be mentioned that we have sometimes
‘had some difficulty in integrating the Riccati equations
in the Second VariatioﬁaAlgorithm. Generally speéking,

FAS

these were cured by taking a smaller step size.
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.‘Qn the basis of thé experience we have obtained,
it is probably fair to say that satisfying terminal
constrainté is considerabily ﬁore difficult than free
end—point“problems. More computing by the airect
methods of satisfying terminal constraints we have

presented in Chapter 5 needs to be done. Perhaps the

most’apprdpriate way of solving this problem is by the

Newton-Raphson method.
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CHAPTER 7

PROGRAMMING iN FUNCTION SPACE

7.1l. Introduction

So far we have been concerned with syetems having
a finite dimensional state spaee. There are many
systems for which the state space is infinite dimensional.
Examples of such systems are provided by distributed
parameter systems, systems with pure time delay and
certain stochastic systems. For the theory of etate
space representation of such systems, we may refer to

(90)

the‘recent work of Balakrishnan

Qur main objective in this chapter is to develop
a suitable theory to handle optimal control problems
having an infinite dimensional state space. Of course,
the theory is equally applicable to systems having a
finite-dimensional state space. We thus generalise
and unify the results of previous chapters.

The theory that we develop is an extension of ideas
from mathematical programming to solve programming
problems in function spaces. Essentially we obtain
generalisations of} the Lagrange Multiplier Rule and the

Kuhn-Tucker theorem of non-linear programming.
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Before developing the theory, let us consider some
examples of optimal control problems which may be solved
by using the theory we develop. Let the distributed

parameter system be described by the partial differential

equation,

%%(X:t) - Af(_}.{,.t) + u(x,t) ,... | (7.1)

where the'system state at any instant of time is the
functioﬁ, f(x,t), of time and a space variable x belonging
to a suitablé function space and the control u(x,t) is
distributed in the sense that 1t is a function of time
and a‘space variable x. A is a linear/operatof usually
unbouhded. It is assumed that boundéry conditions ére
taken care of by suitably réstricting the domain of A.
Considér, for example, the’problem of minimum energy
- control. This problem is to transfer an arbitfary initial

state to the ﬁull state such that the control energy
£
f J Cu2(x,t)dt D (7.2)

is minimised.

Sometimesvit may be more convenient to describé
the syétem in terms of'input—output behaviour. This
might be the case if a model has been built from experi-

mental data. For non-linear systems this could take
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the form of a Volterra Series
£ ' : t t

b hig f
£(t) = J K, (t, T )u(r)dr + f ng(t,le,ﬂcg)u(rcl)

o o o
- u(Te)dTﬁdtg (7.3)
where ﬁ(.) is the input-variable and y(.) the output
variable. The above equation may be conveniently repres-
ented as,
y = N(u) | | (7.4)
where u and y are elements of suitable function spaces
U and ¥, and N is a non-1inear mapping from U to Y.
Assuming these function spaces to be normed linear spéoes,
we may require that the optimal input u(.) be chosen
so that _ |
| Ivu) - 54 2 | (7.5)
be minimised, where Y3 is the desired output and v
is the norm in ¥Y-space, subject'éo the constraints
ful 2 <o | (7.6)
This Chapter may be‘divided into two basic sectilons.
In Section 7.2 we develop a theory of mathematical pro-
~gramming in Banach Spaces. In Section 7.3 we apply this
theory tovcertain problems of optimal control, mainly to

illustrate the theory.
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7.2. Minimization Problems in Banach Spaces

T7T.2.1. Problem Statement

Let X and V be real Banach Spaces and let R be the
space of reals. Let B be an open subset of X, and let
O be a given closed set in X. Let the mappiﬁgs f of
X into R, g of X into V and h of X into R be given and
we assume that f, g and h are twice continuously differen-
tiable in the sense of Fréchet.

An element x € (BUL)l) is said to be admissible.

The problem to be solved is to find an admissible element

% which satisfies the equation,

g(x) =0 . (7.7)

v
'such that £(%) < f(x), for all x € (BU{)) satisfying
equation (7.7).
. The closed set () is defined by,
=[x U(x) < 0] (7.8)
We shall solve the problem by considering.two cases:
A

i) % €.Int (£l ), where Int({l ) is the interior of

11) & € 6L , where {1 is the boundary of ()

7.2.2. Case (i) x € Int Q)

Let N = [x : g(x) = 0,, X admissible]
Def:1.The function g is said to be regular at the admis-

sible point x if Dg(x) is surjective.™

XThr'oughout this chapter we shall geherally follow the
' | (47)

notation and terminology of Dieudonne
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Let g be regular at x and let 4
T = [h : Dg(x).h = Ov]' T is a subspace of X

Def:2, Let T, = [xth : h e T]. T,  1is called the linear

tangent manifold*TX'of N-at x

Proposition 3. (Liusternik and'Sobolev)(85)

(Dg(x))_l exists and is linear.

Assumption: Range of Dg(x) is a closed subspace of v.E

Proposition 4. If g is not regular at x, there exists

a x e L(v;R), suéh that

AlDg(%).n] =0 (7.9)
for all h € X,
Proof: Since range of Dg(x) has been assumed to be a
closed subspace of V, from the Han-Banach theorem the
above proposition follows. |

Proposition 5. Tet X be admissible and let g be regular

at %. Then Df(%).h = O for all h€ T, if and only if
there exists a A€ cf/(V;R) such that
Df(%).h = A[Dg(R).h]
Proof: The if part is trivial.
Let X/T be the factor space of cosets with respect

to T. We note Dg(x) 1s a mapping from X/T onto V and

*Wle need to make this assumption, since from:the fact
that g 1s not regular at x we can only conclude that

range'of Dg(x) 1s not of IInd category.
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from proposition 3 [Dg(i)]‘l exists. Hence [(Dg(&)f*]_l
also exists and is linear. That is, the equation
(Dg(2))*A = k has a unique solution for all k e[X/T]*
But Df (%) € [x/T1F. Hence the proposition.
We now look for conditions which guaranteé the
A
existence of a unique A e £(v;R).

Assumption 1 (Constraint Qualification)

We shall say that the function g(x) satisfies the
constraint qualification at an admissible point % satis?
fying g(x) = 0 if and only if for every h € X, h £ o, ;
such that the equality x = X + h implies the equality

g(x) = g(i) + Dg(%).h = 0, there exists a function

w:[0,1] = X with the following properties
i) D“Q/(E).T exists for 0 < &€ <1
ii) % = y(0)
1ii) glw(e)]l =0, 0<e <1
iv) h =Dy (0).T , T>0
5 and ngg'has an inverse.
Proposition 6. Assumption 2 implies Assumption 1.

Assumption 2. X = X ® X

Proof: Let X = (il,ﬁe). By the Implicit Function Theorem,
there is an open neighbourhood U, of %, in X, such that
for every open connected neighbourhood U of ﬁl, contained

in Ul’ there is a unique continuous mapping u of U into

X, suchvthat u(xl) = X, and g(xl,u(xl)) = 0 for any
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x, € U. We also have, u(xl) is continuously differentiable

in U and Du(xl) = -[ngg(xl,u(xl))]’l. [Dxlg(xl,u(xl))]

The result now clearly follows by considering
X, = il + € h, where € is so small that x; € U.
Combining propositions 5 and 6, we get,

"Theorem 1 (Necessary Conditions)

Let X be a regular admissible point satisfying

g(x) = 0. Then if assumption 2 holds and if f(x) has

~a_minimum at x = %, then the point X must satisfy

ADE(R).b - ADg(%).h] = 0 | (7.10)

for all h e X, where \e JL(V;R) is unique and Ay =1
Remark: From (7.10) we see that the problem of minimi-
sing f£(x) subjectbto minimising g(x) = 0, is équivalent
to minimising the unéonstraintéd‘prbblem

F(x,A) = £(x) - Alg(x)] ~ (7.11)

Case (ii) x € 238

In view of our previous remark we may consider the
problem of minimising,
£(x) - Ale(x)] " (7.12)
subject to A(x) < 0 , (7-13)
The inequalitypconstraint { is required to satisfy the

following constraint qualification:

The function_{ satisfies the constra int qualification
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at an admissible point x = X, satisfying g(x) = 0, if
and only if for‘every heX, hi# O, such, that the equality
X = X + h implies the inequality |
{(x) = -3(&)-+Ir{(£).h.5 0, there exists a function
v: [0,1] = X with the following properties |
1) DY (€).T exists for 0 < € < 1

1) £ = yv(0)

i11) L[y (€)l <0, 0<E <1

iv) h = D\;/(o)."c',‘ T> 0.

Proposition 7. Let X minimise f£(x) - X[g(x)] subject to

'ﬁ(x) £ 0 and suppose [ satisfies the constraint quali-
fication at x. It then follows

£(%) + DL (&).h < O implies -[Df(X).h - A[Dg(%).h] < O
Proof': Since { satisfies the constraint qualification
at X, there exists a function V¥ (€) with the properties

shown above. Consider the function

ge) = £l V(E)] - AMa(w(e))]

Since Z(€) has a minimum at & = 0,

DA(0). T =Df(y(0)).DV(0).T - ADg(y(0)).DY¥(0).T ]

Df(%).h - A[Dg(%).n] > o.
Proposition 7 is a generalisation of a result in Kuhn

and Tucker's paper which is stated without any proof.
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Proposition 8. (Farkas Lemma) (Ky Fan)

In order that g(x) > O be a consequence of {(x) > 0,
it 1is neoesSary-and sufficient that

g(x) = Af(x) where p is a number > 0.

Theorem 2; Let '[ satisfy the constraint qualification

A ’ A : o .
“at x and let £(x) - Alg(x)] have a minimum at x subject

to £ (x) < 0. Then the point % must satisfy

DE(%).h - AlDe(%).n] + L (&).h = 0 (7.14)
for allh € X
Al -0, f20 - (7.15)

Proof': Ffom prdpdsitionS? énd 8, we get (7.14).
Since x lies on the boundary of.fl,
i (%) = o.
Summarising,

Theorem 3. Let X = X, ® X, and let % = (ﬁl,ie) be a

regular admissible point, such that [DX g(il,ﬁe)]'l exists.
2

Let the inequality constraint ‘[ satisfy the constraint

gualification at ﬁ. If £ has a minimum at X subject %o

g(x) = 0, i(x) < 0, i1t is necessary that x satisfy
Df(%).h - A[Dg(%).n] + D€ (%):h = 0 for all he X (7.16)
. ApoA o ;

L>o, i =o o ' (7.17)

We shall now put further restrictions on the functions
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f, g and { . In particular we shall assume

i) g(x)‘= Ajx) + Agxy = ¢ =0 . : (7.18)

are linear operators mapping Xl to V
-1

-where Al and A2

and X, to V respectively such that A2 exists, and c

is a given element of V.

ii) £(x) and 4 (x) are convex functions of x. That
is,
£(x) > £(kX) + DF(&).(x-X)
and  A(x) > {(X) + pl(%k).(x-%).
Theorem 4. v(Necessary and Sufficient Conditions)

If the above assumptions hold and if the assumptions

of_theorem 3 hold, then % minimises £(x) subject to

Ajx, + Ayx, - ¢ =0, {(x) <0, if and only if

Df(k).h - R[Ajh, + Aghy] + LDl (8).h =0 for allhe X

b l@ =0, 0>o0.

Proof: The only if part follows from Theorem 3.
To prove the if part,
f(x) - £(X) > DF(R).(x-%X), from convexity of f
= AlA (x,-%)) + Ay(xy-k,)] - ip & (). (x-%)

Zv'ﬁ ( {(x)-{ (%)) , from convexity of
= -0 {(x)
> 0.
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We now want to extend the duélity theory of non-linesr
programming to Banach Spaces. We shall assume that tTh:
various assumptions (including convexity)‘we have maie
hold for the discussion on duality. We first define the
two dual problems:

I Primal Problem

Find X = (X ,ﬁz) such that x satisfies

1
- r7 1G]
Alxl + A2x2 -c=0 | \7.19)
{ (x) (7.20)

and f(x) is minimised

II Dual Problém

Find ﬁ, ﬁ, ﬁ satisfying

Df(x).h - A[Ah; + Ajhy] + 0 D £ (x).n =0 ‘7 .21)
for all h = (hl’h ) € X,
>0 (7.22)
such that
L(x,A,u) = £(x) - MAx; + Ayxg-c] + uf (7.2%)

1s maximised.

Theorem 5 (Duality Theorem)

If x = (ﬁl,ﬁz) minimises f(x) subject to (7.1¢: znd

(7.20), then (£,A,0) maximises L(x,A,u) subject to (7.21)

and (7.22) and further £(X) = L(XAL).
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Proof: From Theorem 4, we know that there exists (X,A,{)
such that (7.21) and (7.22) are satisfied. Let us assume
the,existénce of (x,A,u) such that

L(x,A1) > L(&AL0)

L(,AL0) = £(%) - A[A R +a k-] + i L (%)
> (k) - A[Alﬁl+A2i2-c] + W {(%)
= L(f-:?\,u‘) v

Henée"vL(x,’?\,p,) > L(%,A,A0) > L(X,A,u)

L(}'&I,%,.LL‘) > L{x,A,p) + Df(x).(fc-xj - }\[Al(il-xl) + A2(;€2-x2)j
+p DL (x).(%-x) (7.24)

But since L(x,A,u) > L(k,A,n), we must have from (7.24)

Df (x). (R-x)-A[A) (&) -%) + Ay(Ry=x5)] + u DL (x).(%-x) < 0

which is a contradigtion.
Hence i,ﬁ,ﬁ maximises L. ﬁrom'the construction of
the dual problems; it is clear |
L(X,A,0) = £(%).

Hence the'theorem.

7.5, Applications to Optimal Control Problems

7.3.1. Linear System with Quadratic Performance Functional

Let H, and H2 be Hilbert Spaces.

1
Consider the linear dynamical system, whose state space
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H, is infinite dimensional, and whose evolution of state

1
is governed by the linear differential equation

x(t) = A(t)x(t) + B(t)u(t) | (7.25)

and the initial state x(to) is given. For each
t € [tO,tf], x(t) € H, and u(t) € H, and A(t) and B(%)
are linear continuous mappings mapping'Hl - H, and

H, —> H, respectively. It is assumed that the differential

2 1
Vequatiqn has a unique solution given u(.) and x(tO). For
sultable conditions, see Dieudonne(47).
We consider the problem of minimising
tf .
P(x(to).u) =‘% _f [<X(t),P(t)x(t)>l + <u(t),R(t)u(t)>2]dt
%o (7.26)
where R(t) is a symmetrix, positive definite operator,
bounded away from zero mapping H; —>H; and P(t) is a
symmetrix positive definite operator mapping H2 -> Hl

and <.,.>, and <.,.>2 represent inner products in Hl and

1

H, respectively.

" The solution of equation (7.25) is given by
)+ JC(t,.r )B(T)u(T)ar (7.27)

o

x(t) = C(t,tO).x(tO

where C(t,to) is the solution of the homogeneous equation,
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| Q(t,to) = A(t);c(t,to) ; c(to,to)‘= I.
- We .shall assume that the system is completely controllable

in [to,tf] where

222:(91) A phase (x(tOLQO) is said to be controllable
if there exists some finite t, > t, and some admissible
control u(t) which transfers (X(to),to)‘to (O,tl). If

every phase is controllable, then the system 1s sald to
be completely controllable. | |

Let us define the linear operator,
tf' ,
L(tg, bp) = J C(te, T )BT )ulr)at - (7.28)

td |
and let ;?(to,tf) be the operator adjoint to L.
Let s(to,tf) = L(to,tf) t*(to,tf).
By analogy from the finite dimensional Case(gl), it is
clear that a necessary and sufficient cbndition for the
system to be completely controllable is that_the self-

~adjoint operator S(to,tf) have a bounded inverse.

Introduce the transformation
v

x(t) = x(t,) + Ji:("c)d'li o (7.29)

[
o]

Then the problem reduces to minimising,
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t

. .
o £
P(X(to),u)”= %' ‘J.(<X(tb)+ .g x(T)dt , P(t)[x(to)+
£ A
Jo

O

't , 4
+ ‘J x(v)dar ]>l + <u(t),R(t)u(e)>)at  (7.30)
_ %

| t

subject to x(t) = A(t)[x(to)+ .{ x(t)dT ]+B(t)u(t) (7.31)

2N

Applying Theorem 1 and simplifying, if 4(.) and %(.) are

optimal they satisfy,
| -AOR(t)u(t)‘+ B*(t)ﬁ(t) =0 (7.32)

where A_ 2> O and B*(t) is the adjoint operator to B(t)%,

and

ot
RS . A .
R(t) = 'J[AOP(T)X(T) + £ ()N (t)]aT
1%

If A, = 0, the controllability assumption is violated.
Hence AO > 0 and can be set equal to 1 which determines
A : ‘
A(.) uniquely.

‘We now héve to investigate, whether the equations

xThe assumptioh.bf regularity corresponds fto AO > 0.
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y
2

i

v
= x(t,) + -[ [A(T)x(T) - B(T)R™L(¥)B (T)A(T)]aT
o . (7.53)
'tf '
ae) = f [B(¥)x(v) + a¥(V)R(v)lar S (7.34)
fM @ uw-?kt 50’4\[;;\,-
Tet K5 (6 T) =A(T) ,0<TL Xt
=0 , 06K T £ 6,

Klg(t,‘t)'f— -B(T)R™H(1)B (T) , 0 < T < ¢t

=0 ;0L 8T &y
Ky (6,T) =0 ;0L TLE L by

= P(T) , 086K TL &,
Kon(t, T) =0 » 0L TL L tp

A*(’L’) , 088K TL &y

1l

The pair of equations (7.33) and (7.34) can be written

as

z(.) = z(t,) + K(t,,tp) 2(.) (7.35)

| x(.) x(t_)
where z() = (,5\()) s z(to) - ( Oo)

and K(t,tf) is the integral operator
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Ctr -

J (B (T Kp(eT)
A (.) at

ty \Kpy (£,T) Kop (£,T) S

Ir Hl and H2 are finite-dimensional and if the kernel of

the iﬁtegral operator is square summable, then it is

‘eaSily shown thatAthe Fredholm Alternative holds and

hence the solution exists and_is unigue. In this case the

solution is given by,o |

2(.) = 2(ty) + ©(t,5;) =(.) (7.36)

where C(to,tf) 1s the resolvent transformation, and the

Optimal.control is given by,

u = -R7HE)B ()0, (£,t,) [T + cll(t,tf)]‘lx,

provided (T +'Cll(t,tf)]'l exists.
The control thus is in linear feedback form.

For the general case application of a fixed point
principle will yield a sufficient condition for the
exlstence and uniqueness of a éolution,v‘

Consider now the same finite dimensional problem,

but with the performance functional,

te ,
J_ de(t) - x(t)ﬂ ;ndt
t

o
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and an energy type constraint
2 .
J lufat < M
T
i . _ T2 _ T2 s
Assuming that H, = Ln[to,tf] and H, = Lm[to,tf] with

inner products

2
[X’y]l = J <X(t);y(t)> ndt
SR g E
Q
| to
S ,
and [x,y], = J <X(t),y(t)>Emd.t
, a i
Q

and Introducing the linear transformation,

: "
o= | §(5) BEr) w(r)ar , we nave
‘ I ,
o)
the fbllowing convex-programming problem in Hy:

”MinimiSe [xd - Lu, x4 - Lu]1
subject to [u,u]zva
We can now épply theorem 4.
We form the Lagrangian,
plu,u) = [id-Lu, xq-Lul + ﬁ([u,u]'- M)

Dg.0] = 2[-Lh, xg-Inu] + 23([h,u]) = O

from which the optimal-u = {i satisfies
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-IJ*(xd-Lu) + ju = O.
and also the conditions i > 0 and {([&,4] - M) = 0.
If i > 0,
-1 %
)

4= (TFL + A1) LTxy

Essentially the same result has been obtained by Bala-
(39)
krishnan from a slightly different point of view.
It is interesting to formulate the Dual problem.
The dual problem is,
Maximisa[xd-Lu, xd-Lu]1+ w(fu,ul, - M)

subject to’(ﬂ¥L + pIl)u = E*kd

L0
The dualproblem appears to be closely connected

with the theory of filtering and prediction.

7.%.2. A Quadratic Programming Problem

Consider the linear system

x(t) = A(t)x(t) + B(t)u(e) ; =x(t ) =0 (7.37).

where for each t, x(t)e E™ and u(t)e E” and A and B are
n xn and nx m matrices. A(t) and B(t) are assumed %o

be bounded for each t.

It is required to find u(.) and x(.) such that,
tf : ‘
J [<x(t),x(t)> + <u(t),u(t)>]dt

t
0
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"is minimised and the constraint

a < x(tf) <b | - (7.38)

is satisfied.
In exactly the same way as in the previOus casq:the
problem can be reduced to - |
Minimise [Lu,Lu] + [u,u],
‘ .tf
subject to a < \f K(tf,T)u(T)dt' < b, where

€
e}

: .K(‘tf:f.) = @(tf:‘t)B(T)'
Denote the rows of the matrix K(tp,T) by ky,ky, ...k
_ Hence the constraints can be written as

[ky,ul <D

oul < a 1=1,2,..... n.

- [k
_ If the system is now assumed to be completely con-

trollable in [t_,t,] then I¥L is positive definite.

We can now introduce the new inner product and norm
as, . o . |

: ' *

(u,v) = [u,v] + [u,I"Lv]
and the norm lul® = [u,L ILul + [u,u]

[u, (T+T¥L) H(1+7¥ L)k, ]

1]

Clukg ]

[(I+L*L)3},(I+ﬁ?L)ki]

((T+2%0) "y, k)
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Hence we finally have the problem,:

Minimise juy?®

I

subject to ((I+I¥L)™lu, k) < b

- (1 +TFL) N, k) < a

This_problem can now be solved using certain results of

Ky Fan(52).

T.5.3. Distributed Parameter Systems

- We shall only briefly indicate how we could solve
distributed parameter systems using this theory. It
is possible to use the theory to derive formally Euler-
Lagrange equations for a distributed parameter problem.

As an example consider the linear system,

%{.(X:t) - A £(x,t) + Bu(x,t) , where

A is the infihitesimal generator of a strongly continuous
semi-group, f and u are elements of suitable function
spaces (which we shall take to be a Hilbert Space) and B
is a linear operator mapping u into the domain of A.

Consider the problem of minimising
" :

r v
% jJ (£2(x,t) + ua(x,t,))dt
el . ,

o

Then a formal application of our results yield the
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Euler-equatidns,
_g_i(x:t) = AP(x,t) - BA(x,t)

2A(x, t)
2t

—A*k(x,t) - f(x,t).
A more rigorous approach is’ possible by using the theory
" of semi-groups.

S T7.h. Tterative Procedures

In‘principle, gradient procédures'or Newton's method
.could be applied to solve  problems of distributéd para-
meter systems. In practice, the problems‘would have to
be approximated by,lumped parameter models and then
solved by some'itérative procedure."

Methods for solving non-linearvprogramming problems
like the gradient projection method and the method of
féasible directions. can be generalised to Hilbert Spaces:
These however are not too constructive;‘"for example;to
use the gradient projection method, explicit knowledge
of the proJjection operator is needed.

| We would also like to mention that sufficient con-
ditions for convergence of the iterative procedures
presented in Chapter 5 have been obtained using a function
space approach. These have been omitted from this thesis

since it is of only mathematical interest.
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7.5. Multi-level Control and Programming

We would briefly like to mention that the results
we havé obtaihed enable ué, in principle, to devélop a
theory of multi-level programming and coﬁtrol for dynam-
ical systems.’ The details of this are beyond the scope

of the present thesis.
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CHAPTER 8
CONCIUSIONS AND FURTHER RESEARCH

‘_In this thesis we have dembnstratéd how a wide
variety of optimal control problems could be solved
using ideas of variational calculus and mathematical
- programming. We have also extended results of mathe-
matical programming to deal with rroblems in function
space. Indirectly, we have tried to show that dynamic
© problems of mathematiéal economics and operations research
are essentiélly the same as problems of optimal control.

In Chapter‘z we have solved a general class of non-
linear discrete time optimal control problems using
methods of mathematical programming. Many erroneous
results on discrete time contr&l problems have been
~ published in the literature. Mathematical programming
methods allow us to derive very simply but vigorously
various results for control problems.

In Chaplter % we have shown hbw a dynamic allocation
problem could be reformulafed as an optimal control
problem with control and state variable inequality con-

straints and solved using mathematical programming methods.
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‘Chapter 4 was devoted to.seeond order necessary
, conditions‘and sufficient conditions for a class of
continuousetime optimal control problems. - Second
order conditions have so far been negiected in the
literefure'of optimal control.

In Chapter 5 we consider second order iterative
algorithms for solving optimal control problems. The
second varlatlon method we have presented can be used
to obtaxn feedback solutions in a suitably small region
~of the»state space.

f In'Chapter 6 we present computer results for the
_splutien of two optimal control problems. In particular,
for the boiler problem the open loop programme and the
 feedback gains could probably be implemented in practice.

~ Finally, in Chapter 7 we extend existing results
of methematicel programming fo function spaces and Shoﬁ
how they cah be applied for the solution of infiniﬁe
' dimensional control problems.

}Various areas of further research suggest themselves.
We would like to highlight three areas where results
could be obtained. ‘

I. TFor discrete-time optimal control preblems two

areas of research using mathematical programming methods

are
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i) Use-bf stochastic programming t0 solve
- stochastic control problems
'ii) application of the theory of games to control
problems. Mach of the groundwork for this
1s contained in +the book of Blackwell and
girschik, (93) '
II. Much moré computational experience is needed for
the second variation methods we have presented. In
particular it would be interesting to obtain some idea
of the region of state space where the methods work
withbuf‘any,modification.
Two main extensibns are
a) The method should be extended %o handle inequality
constraints. It is felt that ideas of duality
could‘be used to advantage here. | .
b) Assume a model for the second variation and up-
" date the paremeters on the basis of information
obtained from previbus iterations. This would
then be analogous to methods of Fletcher and Powell
for ordinary minimization problems.
III;. Pearsont's results on Duality could be considered
' as.é special case of our Duality result in Chapter 7.
It would be interesting to develop a duality theory for

a class of stochastic control problems. The relationship
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~of the duality between optimal control and optimal
filtering and our duality results should be investigated.
Application of the theory presented in Chapter 7 to
obtain more'defailed results for stochastic and

E distributed_parameter'systems should be attempted.

%
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Appendix A

Some Results of Non-Linear Programing

In this Appendix se shall briefly summarise some
resﬁlts of non—-iinear programming;
Let ern.' The problem we #re trjing to solve
is: |
‘ Mi.nimise.' 'f:he real-valued function f(x)' subject to
‘the constraints |

gi(X) =0 » 1= 1,2,-0.,m ' ' (A.l)
hi(X) _<- O ’ i = 1’2’.oo’p ‘ (Anz)

Let A = {x : h.(x) £ 0} . Let ¥ be the minimising
X, Let us first assume that X i‘s in the interior of A,
that ig, the constraints hi(x) £ 0 are not operative.
We can then solve the problem by the Lagrange Multiplier
rule.,  In order to ensure the existence and uniqueness
of the Lagrange multiplier A€ E®, we have to make some

sssumptions.

Let G = (gl...gmji‘)"D
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r .
o8y %
axl axn

-
L]

agm L3 3K X 3N agm

e \
3f  eev.. OF
axl aan
[ og; og; |

‘ axlﬂ'.'... aH

Dg(x) = .

‘ agm L X ) ‘.. agm
3%, %y

If Rank (DG(%)) = Rank (Dg(X)) = m, there exists a unique

multiplier vector re Em, such that
Df(x) — Dg(x))ml = 0

Thus, 1f we define ‘the function

#lx,0) = £(x) = ,g(x)>, where g(x) = (g...8,)"

the problem of minimising f£(x) subject to g(x) =0 is

equivalent to the problem of minimising the unconstrained

function d(x,}).

Let us now assume that x lies on the boundary of the

constraint set A.
Tet I = {i: hy(x) =0] and let h'(x) = {h;(x)

That is, we are dividing the inequality constraint set

iex}.
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hi(x) =0, 1 = 1,2,...,p, into two halvés, those for

. which hi(x) = 0 and those for which hi(x) < 0.

The following results aré due to Kuhn and Tucker£86)
Let thevfollowing constraipt qualification be satisfied:
For any 6x satisfying Dh'(x).ox £ 0, there corresponds

a differentiable arc x = a(8), 0 £ 6 <1 contained in the
constraint set with x = a(b) and some positive scalar a

such that -

da _
Wla=a() = ¢ ox .

This assumption is designed to rule out singularities
on the boundary of the constrained set such as an outward
pointing cusp. ' |

Kuhn Tucker Theorem.

Let ¥ solve the minimum problem. Under the above

agsumptions there exists a unique A€ E® and some p,eEP

such that _ .
pr(%) +(De()™ + (m@)NTW =0 (4.3)
- t>0 (A.4)

< By B(R)> =0 | (4.5)

A more general theorem of this type is proved in

Chapter 7.

h ]
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- Appendix B

 Mathematical Background

The purpose of this cﬁapter‘is'to get forfh various
definitions and concépts from functional analyéis which
are used in the thesis. Part of this material is taken
from the thesis of A. E. Pearson.<84) Otherwise the
principal_sources are the books of Dieudonné(47) and
- Linusternik and Sobolev.(85).-.

| Mathématically, the thesgis deals mainly with operators
on normed linear spaces. Therefore, the definition of
normed linear sﬁaces, the convergence of sequences in
these spaces, and certain aspects of the calculus of
operators are among those topies of major concern here.,

B.1l DNormed Linear Spaces.

Before introducing the particular space of functions
with which the thesis is mainly concerned, the general
definition of & normed linear space will be stated forv
the sake of completeness.

A set X of elements or points X,yy2... is a real

* linear space if the following conditions are satigfied:
L]



- 210 -

A. For any two elements x,y€X (read ™ and

y belong to thé_set X") there is a uniquely
defined third element z = x + y, called

. their sum, such that

~ﬁl. X +y =Yy 4+X

‘2.v_ x +‘(y+z)'= (x+y) + Z
3; there exists an element O having the
| .'propérty.that X+ 0=Xxforallx X
4; for évery x X thefe-exists an element

~x such that x}+v(-x) =0.

B, For arbitrary ieal numbefs dy B and any'.
element x X, there is defined an element
_ o x such that 5
1. a(px) =(ap)x

' 2.1 l.x =x

C. The operations of addition and multiplication
are related in the manner that
1. (atB)x =a X + B X
2, a(xtyl.=ex +ay
A linear space X is said to be mormed if to each
element x € X there is associated a non-negative real
" number ||x|| , called the norm of x, satisfying the

conditions
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1. }an =0 if and only if x =0

2. flaxl = {a|. {{=xl - (B.1)

5. =yl £ Uxl + Ayl | |
When applied to the differgnce between fwo elements

xyy € X, the norm | x~yll » has the geometric interpretation
of being the distance between.x'and v in the space X
( | x=yl| defines a metric for the spacelX).

Since as an analysis tool, functional analysis is a
generalization of well lmown concepts from the fields of
algebra, geometry, and calculus, similar interpretations
to many of the concepts used in the thesis will present
 themselves during the course of the development.
Concerning a further interpretation to the norm
is a particular point € X, the set of

o]
all points x € X for which

il x-xou where x

ux-xo” _<_r, |
defines a closed gphere of radiug r centered about x, in
the space X. The sphere will be denoted by S(xo,r),

that is

the set of all points x € X
- ) (3-2)
8(x,r) = R
o such that [x - x || <r-
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Two definitions pertaining to sets and used in the
thesis concern a subset of a set and boundedness of a
set. A set Xy is said %o Be a subset of a set Xz if
all the elements belonging to Xl are also contained in
X, (including the possibility thet X; and X, ave equal).
A set X is said to be bounded if there exists 2 unique
constant K such that'l(xl{ < K for al1l x € X, i.e, if
the set lies in a sphere.

1.1 1X[0,7] Space.

A convenient way to define a particular set or space

X is to specify a particular norm on that set. Of the
vmany typesvof_normed linear spaces, the type with which
ﬁhe thesis is principally concerned.is the class of
funection spacevaP[O,T] with norm defined by

. R D 1

x| = [J ix(t)(pdt] Pop> 1. - (B.3)

0

-

| For a chosén nunber p, the norm (BR-3) defines a set
X composed of all functions x(t); te[b,m] for which the
norm exists, i.e. ||x)] < . The space Ll(O,T) defines
the set of all functions with bounded 'area® , the space
L2[O,T) the set of all square integrable functions, ete.
The space 1%(0,T) defines the set of all functions bounded
on the interval {0,T) for which the corresponding norm

becomes
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%l g = pele® : lxmi

The space LY0,T] is of partlcular interest in the time
optimal control problem, discussed briefly in Section
1.5.1, as a result of the equivalence between a closed
sphere in 1% [0,T] space and the amplitude constraint
imposed upbn the input signals. -

Concerning the relationship between LP{0,T] spaces
correspondlng to different values of p, any function x(%t),
+€{0,T] which belongs to T P10, 1] also belongs to T 2[0, 1]
for p, < p;.  That is to say, the space L [O,T] is a
subset of the space L [O T} forx Py £ Pq-

B.1l.2 Convergence of Seguences

The goncept of convergence of sequences in normed
linear spaces is especially impdrtanﬁ in the thesis because
~in general to synthesize an’' optimal control scheme.,tism"l?t‘:;ww:j
" achieve optimization in a step by step manmer through
the construction of a sequence of inputs {qh(t)}
n=1,2,.0.5 % [0,T], which converges to a solution of
the criteria for optimal performance.

| A definition of convergence (called "strong" conver-

gence, or convergence in the norm) is the following: A

sequence of elements {xn} s N = 192944.9 0f a normed
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linear space X converges %o an element x € X if [x - x|l
>0 asn > w, that is, if

n x,-xl o=0. (B4

It should be remarked that, in general, a sequence
(Z,} »n= 1,25..., may have a limiting element x which
does not beiong to the same Space as ‘the elemeﬁts of the
~ sequence. When this is the case, the‘sequénce is not
- convergent accordihg to Definition (B.4) because the norm
| &, - x| is only defined for those elements x, and x
which are containedin the same space. However, for the
 type of spaces of principal interest in the thesis, i.e.
LP(O,T) space, the limit element of a sequence, if it has
.one, will always belong fo the same space as the elements
of the sequence. The reason for this is a direct result
of the fact that IP{0,T] space is a ®complete™ space.

Speéifically, a normal linear space X is called

complete (also a Banach space) if every fundamental

sequence of the space has a limit in X. A fundamental
4sequence is defined as follows: A sequence of elements

X, of a metric space X is called a fundamental sequence

or Cauchy sequence if for every number € > O there exiSts
an index number N such that me‘— xh" <€ for all

I, nZ_N.
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Thé definition of strong convergence in the form
. of Bquation (B.4) is not very practical fof testing the
convergence of a particular sequence'for it requires
nowledge of.the liﬁiting element. A moie convenient
form is the following: If the distance between successive
- pairs of elements of a sequence‘ ixn} in a cémplete
.normed linear space X becomes progressively smaller with
n, i.e. if | '
R R e L (3.5)

holds for all n > 1, then the sequence is strongly con-

- vergent. |
If, less restrictively, inequality (B.5) holds for

~a sequence {xn} in a normed linear space, that is,
without the completeness condition, then the sequence is

fundamental.

To prove the equivalence of the above statements to

the original definitions of Etrong convefgence and a
fundamental sequence respectively, it is first noted
that if condition (B.5) holds, then it is'certainiy true
that the inequality | '

B R B N (.6)
holds for n > 1 and some number B8, 0 £ B < 1, irrespective

of whether the space X is complete or not. Iterating

hd
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on (B.6), |
I x5 = %l <8 llxp - x|
Iz, = x5 S Blxg = 2l < 8% Uz =yl (B.T)

Ny =l <™ fmp - mll > 1

Now consider the identity
ENEY n - | <xn+m %m1) * (Rem xn+m-2)
| | + (Rgmoo = Fpamoz) +oeees
* (g = ) - G

 Applying Property 3 of Equation (B.l), the triangle
inequality, successively to Equation (B.B),

.' | ZpemFall £ "xn+m".in~'i-n‘1-l}" + 1 Fnmaall + oo
* I=p4g = &l
which on the basis ’of (B.7) becomes

uxn+m - x‘n” < (Bn+m-2+ Bn+m—3+”.+ BIl—l).‘ “xz_ 1” (lB.9)

Bn—l ( Bm-l + m-2

- B + see + 1) “Xz—xl" ] n > lo
l‘ n-1 m-1
s.mcel—--=215+zr5>zsforo<s<1,
P i=0 =n " 1=0 .

:Lneqv.al:x.ty (B 9) can be written as

n-1
R P %:5- llxg—xlll .  (B.10)
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Then given any € > 0, it is evident from (B.10) thet
the norm l\xn+ﬁ-xn” can be made less than € by choosing
n sufficiently large; thus the sequence satisfying
inequality (B.5) is a fundamental sequence.

If the space X is complete, then the limiting element
x of the fundamental sequence x, must belong to the
space X, by definition. Ietting m —> o in (B.10), it
follows that | '

lx, ==l £ 9?25 [xp=xqll » n>1 (B.11)
where X is the limit point of the sequence. Thus a
sequence {xh} satisfying condition (B.5) in a complete
normed linear sbace‘is strongly convergent according to
Definifion (B.4).

It is clear from inequalities (B.10) and (B.1l) that
strong convergence implies that the sequence is funda-
mental. However, the converse is not always true unless
the space is complete. )

There is yet another type of convergence for sequences -
in normed linear spaces called ﬂweak? convergence which
relates to the behaviour of a sequence under linear
functional.transfonmétions in the épace. '~ However, the
strong convergence of sequences (which implies convergence

in the weak sense) is the type of convergence referred to
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in the thesis, and therefore weak convergence will not

be considered here.

- B.2 ‘Qperators on Normed Linear Spaces.

| If there exists a correspondence between the elements
of one space X énd the elepents of anofher space Y;'then
the mechanism by which the reiationship is established

: is called an operator or mapping. The relationship
between an element X € X and its image element y € Y may
be denoted byi |

E y = F(x)
or | | , | (B.12)

vy =Fx
The space X is.called the domain of the operator F and

Y the range. It is assumed here that the spaces X and

Y are normed 1inear spaces.
If in particular the image'space Y is a subset of

- the real line, i.e. the image elements y are simply real

numbers, then the operator is called a functional.
An operator F is-said to be bounded if there exists
a constant C such that

. | IIIF(X)H < cofxll | (B.13)

for all x€ X.
An operator T is said to be continuous if for every

number € > 0 there exists a number & > 0 such that



DA 4% DA 12 0 PR W e st - iy vy oo ca —dar oy g

- 219 -

IP(xy) - B(x,) <€
when I ' v (B.14)
| o lxy - xll <6
for all xqy X, € X ’

Note that the norms in Definitions (B.13) and (B.1l4)
must be interpreted according to whether the démain X is
involved  or the image space Y. That is, [P(x)l refers
to the norm in the image space Y while Ixl refers to
the nom in the domain X. |

~ All the operators with which the thesis is concerned
are assumed to be bounded and continuous. |

B.2.1 Lineaf Operators.

An operator F is said to be linear if it satisfies

the condition
F(axl + sz) = aF(xl) + ﬁF(xz), ‘ . (B.15)

for any twd_elements X1, X, € X, and arbitrary real numbers
a,B. If a 1inear,operator is continuous; then it is also
bounded. The reverse is true as well for linear operators.

The gggg of & linear operator F, denoted by PN ,
is defined as. the greatest lower bound of the numbers ¢
‘which satisfy the boundedness condition (B.13). The
norn of a linear operator is given equivalently by the

expressions
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R

Fl = s
" l , "x"% =il
= Sup .IIF(x)H (B.16)
Nxlf£1l . _ :

= sup Il #(x)]
xil=1

If in particular the operator is & linear functional,

then its norm becomes

[#l = sup |F(x)l - (B.17)
nxi<1 '

Definition (B.17) follows from (B.16) only if the norm in
the image space Y (the real line for a functional) is
taken as the normalized nérm. That ié to say, if

Y = 1P{0,T] space for example, then the norm PF(x) in
(B.16) should be taken asv

| 1
| 2(x) |l = [—%— J: |P(x)| Pdt]P

rather than the unnormalized form (B.3), in order that
Definition (B.16) reduce to (B.l7) when F is a linear

functional.

If B, and F, are two linear operators on a linear

normed space X, then the inequality
CUEN g ME o+ BN (B.18)

holds for their sum F = F; + F,.
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If F is a linear operator from the space X to the
space Y, and G a linéar operator mapping elements from
Y into a third space Z, then the composite operator

H = GF defined by
z = H(x) = ¢(F(x))y, =xeX, ze€ Z 4 (B.19)
is called the product of the operators F and G. The nomm

fH]| satisfies the inequality |
o lel < wew. 4wl . (B.20)

B.2.2 Adjoint Operators. |
Before definihg an adjoint operator, if is worthwhile
to introduce théchnqepts of a conjugate space and an
inner product on conjugate spaces.
It is known that the set of all linear functionals
defined on a normed liﬁear space X forms itself a normed

linear space called the conjugate space of X and denoted

by X*. Considering in particular IP{0,T} space, the
conjugate space is L2{0,T] space where p and q are related.
by

1.1 S B
'if q-l. (B.21)l

That is to say, L3[0,T] = (TP[0,T])® in the above notation.
The fact that IP{0,T] and LY[0,T] are conjugate to
one another is a result of the proof that the general form

of a linear functional on LP{0,T] space is
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| .
Px) = jof(t)x(t)dt, x € ZP[0, T) (B.22)

The norm of functional (B.22), as determined by Definition
(B.17) in conjunction with H¥lder's inequaiity, is given
vy . . ,

L
q

T
[Fl- = ”o|f(t)|‘ldt] (B.23)

Thus‘whatever function £(t), tel0,T] is used in specifying
a linear functional on LP[O,T] space, that function must
belong to the}conjugéte space.Lq(O,T].

| Notwithstanding the fact that Equation (B.22) is the
general form for -a linear functional on LP[O T} space,
the expression is seen to be linear with respect to either
x or f. Such a bllinear expression is called an inner
product between the two elements. |

In general, the inner product between two elements

x and y belonging to spaces which are conjugate to one
another, i.e. x€X, y€X*, is the bilinear functional
associated with those spaces and denoted by <x,y>. The

inner product possesses the following properties:

’
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T1l. x> = <y,5c>
2. <i1v+ x2,y> = <xl,y> + <x2,y> for all
}. 'xl,:'c2 X; vy Xxl ‘ ‘ ’ |
3. <XKy¥y + ¥p> = <X,¥p> + <x,y,> for all (B.24)
xeX; ¥p,¥peX |
4. ax,y”> = <xyay> = a<x,y> for a any
real number.

In parficular, the inner product on thé conjuéate

spaces IP[0,7] and 14[0,T], % +2=1, 15
Gy = [ x(t)y(t)at (B.25)

o .
where x LP(0,T) and y LQ(O,T) or vice versa.
When the conjugate spaces are the same, i.e. X = Xx,

then the spaces are said to be self conjugate. A self

conjugate space is a Hilbert space for which the norm is

derived from the inner product according to

Nzl =NED  (B.26)
and the additional property for the inner product

<x,x> 2 0 , with equality if.and
‘ only if x = 0,
may be included with those of (B.24). It is seen that
LQIO,T] spade is a (real) Hilbert space. o
Consider now a linear operator L whicﬁ maps elements

from the space X into the image space Y, i.e.

Ra
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y = I(x) = Ix
where xeX, yeY¥, X and Y hormed linear spaces. The

adjoint operator of the linear operator L, denoted by LE,

can be ldefined bj the inner product relation,
<z,Ix> = <x,L¥z> : ‘ (B.27)

where z is an arbitrary element_e Y® (the space conjugate
to Y), and x is an arbitrary element € X. Thus the
adjoint operétor e maps elements from the space Y© (the
conjugate fo'the range Y of the linear operator L) into
the space X* (the conjugate to the domain X of the linear
operator L). '

The adjoinf ope&ator 1*¥ of a linear operator L is

also a linear operatdr, and
1= = fzl . (B.28)

Three basic properties of adjoint operators are the
following: If L, and L, are two linear operators with

domain X and range in Y, then

1. the adjoint of their sum is equal to the sum
of their adjoints,
(I, + Ly)* = L,® + L,® (B.29)
2. the adjoint of their product is equal to the
product of their adjoints in reverse order

(Lle)K = 1,"T,® R (B.30
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3. . the adjoint of the identity operator is
equal to the identity operator
¥ =1I. | (B.31)
As an example, consider the linear operatpr Iq
defined by . v
y(t) = Iyx = J:k(t-T)x(T)dt (B.32)
where xeIP{0,T], yeLr[O,T],‘and‘the kernel k(t—t)‘vanishes
for T > t. The domain of the linéar operatof (B.32) is
X = 1P[0,T] and its range Y = 1°{0,T]. The corresponding

conjugate spaces are X* = 12[0,1] and Y* = 1°[0,T] where
1,1, 1,1,
Substituting Equation (B.32) into the'inner product

relation (B.27)
o %
$Z,LX> = ﬁz(t) Jk(t—'c)x(fc)dtdt. " (B.34)
(o] 0 oy

Keeping in mind the faet that k(t-1) = 0 for T > t, the
upper limit of 1ntegratlon for the inner 1ntegral in (B.34)

may be changed from * to T such that

iy
<z,I,®> = | z(%) jk(t--t)x(fc)drcdt. (B.35)
o o ; .

Reversing the orders of integration in (B.35)

T T / -
<z,I9x> = [ x(7) [ k(s-1)z(%)atar
o o
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Interchanging the notat ion for the variables of integration

T . T
<z,Lqx> = [=(%) [x(r-t)az(r)azat. (B.36)
But since k(t-t) = 0 for t >T , Equation (B.36) may be

vwritten as
S T P =
<z,L4x> = jx(t) jk('c-t)z(fc)drdt = (x,172) .
: 0 t

That is, the adjoint opérator.Lﬁ of the linear operator

(B.32) is given by

hrg - Jik('t—t)z('t)d‘rv 1 | | (B.37)

which maps élements zeL°[0,T] (the conjugate to the image
space of operator Ll) into the space LY[0,T] (the conjugate
to the domain of operator‘Ll). Note the transposition

of arguments for the kernel function appearing in the
adjoint Operatdr (B.37) as compared to the kernel in (B.32).

In a similar manner, the adjoint operator of the

linear operator L, given by
Lox = J?k(T + t =T )x(T)dr (B.38)
)

may be determined with the result that

Lgx = f:k(m +T -’.t)z(t)d'r , (3;39)
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B.2.3 Differential Calculus in Banach Spaces.

Tet X and Y be Banach spaces and let A be an open
subset of X. Let fy g be two mappings of A into Y.
We say that f apd g are tangent at a point xoefA if

gy NE(x) - e(x)l

DX ﬂx - X, |

x#xo

This implies, of course, f(xo)l= g(xo).

(B.40)

~Among all functions tangent at X, o a function f,
there is at most one mapping of the form x —> f(xo) + u(x-xo) }
- where u is linear. B
We say that a continuous mapping f of A into F is

Fréchet differentiable at the point xoe.A if there is a

linear mapping u of X into Y such that x —>- f(xo) +‘u(x-xo)
is tangent to f at Xgo We have just seen that this
mapping is unique. It is called the Fréchet derivative

of £ at x, and written Df(xo).

Let x - Xy = h. The Frechet Differential,

Df(x,) . (x=x,) = Df(x,).h may be calculated from the formula

Ai.‘(xo+?h)-dv.’(xo)
?,

where 4{ is a real number, or from the formula

D£(x,) b =‘f5§;co , ~ (3.41)
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Df(x,).h = § £(x +€ h)[ | (B.42)

However, the operatiqns on the right hand side of
equations (B.41)nénd (B.42) do not in themselves suffice
to define the Frechet differential, because there exist
mappings £ for which the operations on the right hand
side are meaningful, but which themselves fall to éatisfy
the definifion of a Frechet differential. When this is
the case the functions defined by the right hand side of
equation (B.41) and (B.42) is called the Gateaux Differ-
ential of the mapping and denoted by Df(x sh).

For example the mapping f defined by |

t : _ v :
£(x) = |[|x(r)] av, =eLtfo,1],
. o | ‘
possesses the Gategux,differential'

% -
De(x ;3 h) = fh(v:)Sgn(x(r))d«z ,

+ 1 for x> 0O

where Sgn(x) = {
-1forx<o

but is not Frechet differentiable.

It is evident that if the Frechet differential
Df(xo).h exists; then the Sateaux differential Df(xo;h)
exists and the two are equal. However, fthe converse

is not necessarily true as shown by the above example.
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. Conditions under which the existence of the weak differ—
ential implies the existence of the Frechet differential
relate to the condition that Df(xo;h) be uniformly

o and continuous in h in a certain neigh-

bourhood of the point Xoe

continuous in x

The Préchet differential Df(x ).h is linear with

\ respect to the variation h, i.e.
:Df(xo).(h1+h2) = Df(xo).hl + :Df(xo).h2 (B.43)

whereas the Goteaux differential need not necessarily satisfy
linearity with respect to its variation.
Let us remark that the definition of a Gateaux

Differential is the same as that of first variation in

the Caiculﬁs of Variations.

The PFrechet Derivative (when it exists) of a continuous
- mapping f of A into Y atva point x ‘A is thus an element
of the Bané,ch‘ space S(’,(X;Y) (the space of Linear mappings
from X to Y). |

We shall not continue with any further details of
'Differential Calculus in Benach Spaces. This Differentisal
Calculus is in fact very similar to ordinary Calculus and
counterparts of'mean value theorem, Tayloxr's theorem, etc.,
exist hére too. The interested reader is referred to

A

Dieudomne’47), Chapter VITI.
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APPENDIX C

DERIVATION OF SOME.RESULTS FOR THE SECOND ORDER

COMPUTATIONAL METHOD

C.1l. Solution of the Variational Problem Given by

Equations (5.12) - (5.14).

In a suitably small neighbourhood of thé optimum,
DuH will be small. In fact‘it will be a differential
guantity and thus of the same order of magnitude as
DiH.Gu ete. arisingfin (5.12). HoweVer if the nominal
control function'chOSen is not sufficiently near to the
optimum, DuH will be large. Thus the choice of Bu by
minimising 5P + % 52P subject to the constraint (5.12)
may render the linearization (5.13) invalid. Hence

0 < €&

€ < 1 is introduced in the integrand (5.12).

1’ 1
In a suitably-small neighbourhood of the optimum Eil can
be set equal to 1.

Similarly fér the nominal control function chosen,
we may miss the terminal constraints by a large amount,
Thus G(x(tf),tf) will be large. Hence the desired
improvement in fterminal condition might have to be
corrected in small steps. Hence the parameter €, is
introduced.’ | |

The variational problem (5.12) - (5.14) is solved
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by writing the Hamiltonian for the problem in the form

o 1l 2 1 .2
I — & ;DuH,5u>+ 5 <DZH.5u,0u> + 3 {DXH.sx,5x>

o <D5XH.6x,6u> + El<¢5A,DXf.5x + D, f.5u> (c.1)
where elzsx is‘theyLagrange Mﬁltiplier function for
this problem. Because of the presence of the linear
term in thé'integrand of (5.12), the multiplier is
written as 'Eith. Differentiation of ¥ with respect
to du and,ﬁxvyieids equations (5.16) and (5.18) in the
usual way.. |

'Also\the bogndary condition for EIA.h is found |
by forming,
<D2\y(x(tf) tps» ).0x(t, ) 5x(tf)>
+ E2<‘AP, €2G(x(tf),tf) + DXG(x(tf),tf).ﬁx(tf)>
and_difféfentiating the‘abovevﬁerm with respect to

ax(tf), This yields equation (5.17).

0.2.' Proof -that Sum of First and Second Variations

is Negative for the Choice of &u Given by (5.18)

We first ‘assume that there are no terminal constraints
present.‘ Let us evaluate the terms in the 1ntegrand

of (5 12) separately 'We have,
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_ - 2 2 - - 2 _l 2
=D H,bu> = - E2<D_H, (DZH) :.LDuH> €, <D_H, (D2H) 'D2_H.5x>

e-<0.H, () 1 r)T. A
- €< s iy u .
(c.2)

1,2 2 17 B Lepz
§<DuH.6u,6u> + <DuXH.6x,6u> + 2§DXH.6x,6x>

12,0 (52g)-L _]:'2-2 2ry-lo2
€3¢D H, (DZH) 7D B> + <(D3 D2 H(D2H) 'D2 H)ox,5%>

i

e2<an,p £(p2H) (o _£)Tans + 4 e2<p B, (028) 2D, ) A A>
o (C.3)
Combining (C.2) and (C.3), we obtain,"
Tntegrand of (5.12) '
- -2 e§_<DuH',‘ (D2H) ™D H> - £ €2<BOA,BA>+<COX+ €W, x>
- Lcobx, 52>

5 p
Writing Cox+ Slw = - SlAXX - GlATz&A, performing integra-
tion by parts; and using | ‘

61A7\(tf) = D;F.Sx(tf) , we obtain,.

Sum of first and second variations

&
Cp
_ oLz J [<D H+(D. £)T AN, (02H) 1D H+(D £)TAN)>]dt
2 1 u u AT u u
to
. .

f .
iep2 '
- J {C6x,8x>dt - 2§DXF.6x(tf),ax(tf)>

2
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which is negative in view of our assumptions.
For the case where terminal constraints are present,
the development is the same. In this case,

Sum of first and second variations

t
f
- - L2 f [<D. H+(D £)TAN, (D2H) 2D B+(D £)TA ) Idt
T 2Y1. U u ? u Mu u’
A |
: O
tf

. : 1 o
- j .<Cﬁx,6x’>dt -5 <DX\§/4.6x(tf),6x(tf)>

t
0

(e ) €0 + Eym(s )], €,05.

P_l(to) is positive definite. We now have to make the
assumption that the last term within < > is positive
definite, to be strictly correct. In computation, this

means making _Slm(to) sufficiently small.

C.3% Derivation of Eguations (5.26) - (5.30)

Differentiating equation (5.24); we obtain,

€ AR = &t + kox + K(Aox+ €,BAM Ev) + ENAY
= &4+ €xBl + € Kve (RKA+KBK) b+ € i+ € KBN)AY

= -CBx - AT( elf +Kox+ ENAD) - €w from (5.21)

Hence

TK+KBK+C)6x

El(é +(kB+aT)¢ +Kv+w)+(K+KA+A
+ 52(1'\'I+KBN+ATN)AI3‘ -0 (C.4)

- Since the above equation has to vanish forarbitrary
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0x and AY , we obtain
(:+‘ (KB+AT)£ + Kvtw =0 o " (C.5)
K+ KA +AK+XKBK +C=0 - (C.6)
N+ (KB+A")N = 0 f (c.7)
Equating coefficients at the end point,
K(tp) = DRY (x(t),02) | (c.8)
N(tf)= (DXG(X(tf):tf)) ’ <C-9)

Differentiating (5.25),

. e T
0 €lm+N

6x+NT(A6x+ €,BAN é‘lv) + 6213A>3'A

. o T | . T .
g il o+ N ABx+NB( €, KXt ENAY )+ €Nv+ € PAY

ThnTBK) xt €, (P+NTEN) A

& (N B L N Tv )+ (NT+_N
Again, since ‘the above equation has to vanish for arbitrary

6x and Ay, we obtain

meN(B +v) =0 | - (c.10)
Pouley =0 . (C.11)

The boundary conditions for m and P are clearly m(tf) = 0,

P(t‘f) = 0.

C.4. Case When t. is given Implicitly

The expressions for the first and second variations

are now obtained according to the development in Bliss(.lS),

pp 226-227. The main differenée from the previous case
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is that at the end point we have to consider dependent

and independent variations, ‘Ax(tf) = 6x§tf)+k(tf)d§(.

terminal
:E\C&-; / : .;“ugrf'ace
1 : aAx

-1y

tp ot dty

Sketeh C.1

In»forming the auxiliary minimization'problem,"the
term <DuH(x(tf),u(tf),A(tf);tf),au(tf)dtf> is multiplied
by €i and then neglected as being of third order.

The solution of the auxiliary minimization probiem
is tedious but straightforward. Essentially we obtain
equations corresponding to equations (5.6) - (5.10).
Equationb(5;46) is the transversality'cohdition of the

auxiliary minimization problem.
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