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ABSTRACT 

The mathematical description of a non-linear dyna-

mical system may take various forms. A natural descrip-

tion is often in terms of difference or differential 

equations. A general theory is presented which permits 

us to determine the optimal control 'of such a system 

according to some suitable performance criterion. 

Necessary and sufficient conditions of optimality 

are derived for a large class of optimal control problems. 

Ideas of mathematical programming, suitably extended to 

function spaces as well as Classical Calculus of Varia-

tions are used for this purpose. An iterative technique 

in function space is presented to synthesize optimal 

open loop and closed loop control programmes. The method 

presented is formally equivalent to Newton's Method in 

Funs Lion Space . 
For many physical systems the state space is infinite 

dimensional. A theory is developed to solve minimization 

problems in Banach Spaces. The theory is illustrated by 

considering examples of finite and infinite dimensional 

.control problems. 

Two applications to power systems are presented. 
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CHAPTER 1 

INTRODUCTION  

DY NAMIC 

PROCESS 

This thesis is concerned with the optimal control 

of non-linear dynamic systems. We shall assume that the 

mathematical description of, the system to be controlled 

is known. The results of the'thesis are very general 

in nature and thus applicable to a wide variety of systems 

ranging from sampled data to distributed parameter systems. 

1.1 The Control Problem 

A control system consists of a dynamic process, a 

Controlling mechanist apd,paths between the controller 

and the process as shoWn 

Fig. 1.1 

The object of the controller is to apply inputs 

u(t) to the plant which will cause the plant to operate 

in -a prescribed manner usually evidenced by the proximity 



of the plant outputs x(t) to a desired set of outputs 

xd
(t). The nearness of the plant outputs to the desired 

outputs will usually be measured by some suitable per-

formance functional. 

In addition to the plant inputs u(t), there are 

generally external inputs which influence the dynamic 

behaviour of the system in an unpredictable fashion. 

The controller should thus effect suitable performance 

in the presence 'of disturbances'. In order to do this, 

it may be necessary to identify the disturbances and 

the nature of the parameter variations. Further, for 

the control. of  a complex system, the controller will 

in general be a digital' computer. Thus a more general. 

model of 4 'complexcontrol sySteM is shown in Fig. 2. 
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body of inathematios to be used. Further a firm basis 

In'this thesis we shall-assume that the nature of 

the disturbances and the parameter variations is com-

Tletely determined. 

1.2. The Need for Optimal Dynamic Control  

Classical control theory was really concerned with 

the linear control of single input-single output linear 

time-invariant systems. This theory may be called the-

theory of servomechanisms. The design of the control 

system proceeded by using various Transform techniques. 

The attempts made to extend this theory to multivariable 

systems were not very successful. In fact methods like 

non-interacting control were in effect methods to reduce 

- the multivariable system to n single variable systems. 

We are hoWeVer really interested in the control of. 

:complex processes. These processes are truly multi-

variable and in general non-linear. There'is also a 

desire on the designer's part to obtain the best per- 

formance out of a system. 

cOntrol. - As a matter of 

Hence the need for optimal 

fact this desire to obtain 

optimal control actually helps in the solution of the 

control problem in the sense that a certain 'structure', 

is introduced into the problem, This allows a certain, 
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for making approximations is provided, since in an actual 

design problem some kind of approximation will invariably 

have to be made. 

1.3. The Concept of State(I) (2)  

We shall generally be adopting the state description 

of dynamical systems, although our methods are not re-

stricted to such a description. Here we give an intuitive 

idea (following Arbib) of what we mean by .the 'state' of 

a system. 

A dynamical system for us is something in which we 

put in certain inputs (control) and which itself puts 

out something at certain times. We usually think of a 

system S having an associated time scale T. 

Fig. 1.3 

At each instant t'e T, the system :S receives an input 

u(t) and emits some output y(t). We now assume that: 

there is a fixed set U of possible inputs and at any 

time t E T we choose an element u(t) from it. There is 

also a set of outputs Y, which includes all possible 



values of y(t), V t 6 T: The time scale T may be con- 

tinuous or discrete (sampled) and the input and output 

sets will generally be linear spaces. 

We would now like to arrive at the notion of 

state. Now we .may not be able to predict the output 

y(t) by just knowing what the present input is. The 

past history of the system S. may ,have altered S in such 

a way as to modify the output. In other words the output 

of .S is a function of both the input and the past history 

of the system. We think,of 'state' as being some attri- 

bute of the system which together with the input at 

that instant determines the output. But to qualify as 

the state of a system it mutt have one more property 

viz. that the states and inputs together suffice to 

determine the subsequentrstates. 

For a large number of physical problems the state 

of the system is described by a set of first order non- 

linear differential equations, 



given in explicit or implicit form 

problem of optimal control is to find the pair (U,X 

and we shall mostly be Concerned with such systems. One 

of the reasons for adopting a differential.equation 

description is the relative ease with which differential 

equations may be solved on a digital computer. 

1.4. A General Formulation of the Problem 

We now formulate a general optimal control problem. 

We are given a dynamical system whose evolution of 

state is described by :.a non-linear operator equation 

Here x repreSents,the state .oftthe_system and is an 
. 	, 

element of' a function space 3E and u represents the 

control to be applied,ancl is an element of another function 

space U and the non-linear operator N maps elements of 

.the':direct±product 	x. U to 2E7Space 

also given another,operator eqUation 

(1.5) 

where y is an element of the output function space Y and 

G is a non-linear operator, which maps elements of the 

state space JE to eleMents of the ,output space Y. Ox  

. ,lepresents the zero element of the state space X 	The 



(1.6) 
subject to the constraints 

i(t) = f(x(t),u(t),t) 	x(t0)  

R(x(t),u(t),t) < 0 

(1.7) 

(1.8) 
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such that the functional F(u,y) is a minimum. Here F 

is a non-linear operator from the product space U x Y 

to the real number space R. Since y is explicitly known 

in terms of x, we may write F(u,y) = P(u,x) thereby 

eliminating y from the problem. The pair (U,X) will 

generally be restricted to lie either in the interior of 

a set 	u x 	or it may take values on the closure 

• of the set 	. The latter is the case when the pair 

has to satisfy inequality constraints. 

We formulate the optimal control problem in such 

generality since most problems of optimal control can 

be cast in this form ,by suitably defining the underlying 

function spaces. This formulation thus includes problems 

of distributed parameter system as well as certain prob- 

abilistic systeMs. 

The operators involved are assumed to have suitable 

continuity differentiability and boundedness properties. 

. An important sub-class of problems is 

Mnmse P( ( 	) 	F(x(tf),t )+ jr  L(x(t) (t)t)dt iii 



to the papers of Berkovitz(3),() 
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S(x(t),t) < 0 

G(x(tf),tf) 

where .x(.) and u(.) are vectors, F and L scalar-valued 

functions and R,S,G vector-valued functions. 

For inequality constraints < 0 means that each 

component of the vector satisfies the inequality constraint. 

In order to derive the necessary conditions of 

optimality various continuity and differentiability 

assumptions have to'be made.' The inequality constraints 

also have to satisfy certain constraint qualifications. 
• 

For these'aSsumptions and condition§ we -refer the reader 

1.5. Review of the Available Results 

At this point it seems appropriate to review some 

of the results that are available in the field of optimal 

control. We may subdivide this section into three sub-

sections: 

Existence and Uniqueness results 

.‘ii) Necessary. and Sufficient Conditions of Optimality 

Feedback Solutions 

v) Computational Methods. 

In part of this review we rely heavily on a paper 

by Derkovitz(5). 
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1.5.1. Existence and Uniqueness Results  

From a mathematical standpoint, the first problem 

of optimal control is the problem of existence. That 

is, given the control problem, does there exist a lower 

bound for the performance functional P(t) and if so is 

this lower bound attained by some admissible control u0. 

Closely related to this.is the question of uniqueness; 

that is, if the minimum is attained by a control LI°, is 

this the only control that gives P(u) its minimum value 

or are there others? 

The question of uniqueness is particularly impor-

tant. For if there exist several ways of. minimizing P•(u  

some of these may be easier to implement than others. 

The problem that has been most studied mathematically 

it the time optimal control problem for linear systems, 

that is problems for which the system dynamics is re-

presented by 

X(t) 	A(t)x(t) + B(t)u(t) 	(1.11) 

where A and B are n x n and n x m matrices; and it is 

required to bring the system from some initial state 

x(to) to the origin of the x-space in minimum time. The 

,control vector u must satisfy an amplitude constraint 

lu(t)I < 1 	t e [to,t*] where t 	is the minimum 

time. A slightly different version of the same problem 



is to hit a moving target in minimum time. 

The earliest results for this problem are due to 

Bushaw(6), who considered a very special problem and the 

first results of wider applicability are due to Bellman, 

Glicksberg and Gross(7).and Gamkrelidze(8)  . The most 

general results available for this problem is due to La 

Salle(9). La Salle showed that if there is an admissible 

control u that results in a trajectory x(t) hitting the 

moving target then there is an optimal control that is 

bang-bang i.e. u takes on only the values +1 or -l. For 

systems which La Salle called proper he showed that 

this control is unique. This appears to be the first 

paper in which the concept of controllability and reach-

able sets was introduced. La Salle used a Liapunov 

Theorem on the range of a vector meaEure tc prove some 

of his results. Extrisive use, of this theorem has been 

made in later work on Control theory. Neustadt(1o) has 

same. problem with the added constraint 

t, 

considered the 

t 
0 

.The most recent result'for this, problem is that of 

Halkin's(11)' who pr'ove's*La SalIp!s theorem for piecewise 

continuous function's. 



11(t) 	+ 13(x,*.(t) 

and the performance functional, is of the form.  
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For non-linear systems existence results have been 

obtained by. Lee and Markus(12)  Roxin
(13)  and Fillpov(14) 

Lee and Markus consider the problem of hitting a compact 

target set than is moving continuously uver a fixed time 

interval. The control u is constrained to lie in a 

compact convex set in m-dimensional euclidean space and 

it contains the origin. 

Their system dynamics is assumed to be of the form 

(1.12) 

(1.13) 

They show that if the set 1/ of admissible control that 

result in the target set being hit is non-void, and if 

all trajectories resulting from admissible controls 

satisfies a uniform boundedness condition 

Ilx(t)11 < 0 	is< co then an optimal control 

exists. 

Roxin considers the problem of minimising 

1 

L(x,u,t)dt 

to  

constrained to satisfy a non-linear 

differential equation 
	f(x(t), (t),t) 	x(to) 

He assumes that u lies in a fixed compact set 11 in 
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euclidean m-space. He assumes that for each (t,x)4114& 

f(t,x,u) maps n. onto a convex set. He' further assumes 
<x(t),f(x(t),u(t),t)> < K(gx(0( 2  + 1) where < > 

denotes inner product in euclidean n-space and lIx(t)if 

norm in euclidean n-space. 

Under these assumptions, Roxin shows that the set 

of all points thau Can be reached by the system is closed. 

From this result one gets the existence of optimal controls. 

WargaOA) suggests that a system thau' does not 

satisfy the convexity property should be relaxed by en- 

larging the set of allowed values of X(t) = f(x(t),f2,t) 

to the closure of the convex hull of f(x(t),(1,t). He 

then shows that - solutions of the relaxed problem can be 

uniformlyapproximated,by. 	solutions of, the original 

problem. 

:If however the system is linear in "x, that is 

k(t) 	1(u 

J 
(a(t)x(0' 

thenoptimal controls exist if the set, 

2 P 	(1,P(fa,t)-,.y001,0) is only compact (and not 

:necessarily convex). This result-44s been proved by 

Neustadt4.5) 

tl 

t 



+<x,f(x(t),u(t),t)> 

,the relation,,  

'H(t x(t),u(t),% ,X(t)) 

1.5.2. Necessary and Sufficient Conditions of Optimality 

The necessary conditions of optimality may be derived 

using various approaches. The four main approaches are 

i) Using Modifications of Classical Variational 

techniques 

ii) Pontryagin's Maximum Principle 

iii). Hamilton Jacobi or Bellman vs Partial Differential 

Equation approach 

iv) Reachable Set approach (Principle of Optimal 

Evolution). 

Under certain strong assumptions. all these results are 

equivalent. In the following we shall clearly indicate 

in what sense these results differ.. 

Method of Variational Calculus  

The most general results appear to be those of 

BerkoVitz(16 ) , (17) o. who'essentially applied the results of 

Bliss(18) McShane(19)  and Hestenes(20)  to obtain nece-

ssary conditions of optimality for the general control 

problem defined by relations (1.6) to (1.10). For sim-

plicity, we assume that the constraints (1.9) and (1.10) 

are absent. It is convenient to define a function H by 



DuH 	(31(t),T1(t),,l(*) +EDu  R01(t),U(t)I t 	0 
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where Xo is a scalar and X is an n-vector. The results 

of Berkovitz may be summarised in the following 

Theorem 1. Let -IL be an optimal control in the class of 

admissible controls, let K be the corresponding trajectory 

and let X(t) be the function defining fc on [to,tf]. Then 

there exists a scalar Xo > 0; n-dimensional vector x(t) 

defined and continuous on [to,tf] and an r-dimensional 

vector a(t) > 0 defined.,and continuous on [to,tf]. except 

perhaps at values of t corresponding to corners of K, 

where it possesses unique left and right hand limits 

such that the vector (X A(t)) never vanishes and such 

that the following conditions are fulfilled. 

I. Along K the following equations hold: 

= 
dt(t) 	(0,11(t), ) 	x(to) 	c 

427..(t) 	—Dx1Wc(t)A(t),t(t) t) 	(DxR(k(t),U(t),t))Til(t) 

(1.15) 

(1.16) 

i(t)Ri( (t),u(t),t) = 0 	= 1,2,....r 	(1.17) 

‘X(tf) = DxF ( (tf),tf) 	 (1.18) 

(See section on Notation later in this chapter) 

..Along'K,the function H is continuous.: The above 

equations are the Euler-LagrangeEquations of the problem. 

(1.14) 



II. For every element (t,x,u) of K and every u such that 

u = u(t) for .some admissible control u, 

H(t,k,uA0,70 > H(t,X,a,X0,30 

This is known as the Weierstrass Condition. 

III., Let I(t,x) denote the subset of indices i = 1,....r 

such that Ri(t,x,u) = 0. Then at each point of K 

<e,(D12.1H)e> > 0, for all. vectors'e 
	1 

em 

satisfying 

)R 
2:e '= 0,  
j-71 

)u. :j 7 

If the system is normal then X0  may be set equal to 1. 

The above results were,proved by BerkoVitz using the 

following slack variable technique to convert the in-

equality constraints .0 'equality constraints 

1,02, , 
dt 	= (to)  = 0, where 	is an 

r-vector, and applying the'theorems of Bliss and McShane. 

Pontryagin's Maximum Principle  

In the work of Pontryagin and his co-workers(21) 

the control vector u is assumed to belong to a certain 

class .D and constrained to lie in a. fixed closed subset 

ft of an arbitrary Hausdorffx Space. The class D should 

Pi linear topological space satisfying the Hausdorff 
separation axiom (distinct points have disjoint neigh-
bourhoods) is called a Hausdorff Linear Space. 



satisfy the following three conditions 

i) All the controls u(t), t e [to'  tf  ] which belong • 

to the class D are measurable and bounded 

ii) If u(t), t e [co,tf] is an admissible control, 

v is an arbitrary point of n. and t' and t" are numbers 
such that to  < t' < t" < tl, the control u 

to < t < t1, defined by the formula,  

ui(t) 
v for t' < t< t" 

[ U(t) for to  <.t < t' or t" <t < t f 

is also•admissible 

iii) If the interval to  < t < tf  is broken up by means 

of subdivision points into a finite number of subintervals, 

on each of which the control u(t) is admissible then 

this control is also admissible in the entire interval 

[to,tf]. An admissible control considered on a sub-

interval is also admissible. A control obtained from 

an admissible control u(t), t e [to,tr] by a translation 

in time [i.e. the control u (t) = u(t-a), t e [to+a,tl+a]  

is also admissible. 

The only other condition they require,is that the 
)fi  (x1,....x,

"
,u) 

functions  bx 	i,j = 1,2,.....n are contin- 

dous on the direct product )CuS/ 	where X is the n-• 

dimensional state space and Si is the closure of £2 



For this class of problems, Pontryagin's results 

are 

dt = 
(3.N. 	 (1.19) 

and H(t,x°,u,X0,X) < H(t,x°,u°,X0,X) 
	

(1.20) 

where Xo < 0. It is worth mentioning that these results 

are obtained by considering strong variations about a 

trajectory. Equations. (1.19) and (1.20) constitute 

Pontryagin's Maximum Principle. 

If the set n is a subset of Euclidean m-space with 

piecewise-smooth boundary then n may, be represented 

by means of a set of inequality constraints 

Ri(u(t)) < 0 	1,2,....r 

If the control u(t) is bounded and measurable then an 

almost everywhere version of Berkovitz's results may 

be obtained by using another theorem of McShane(22)  

In this sense Berkovitz's results and Pontryagin's results 

are equivalent. 

These arguments were modified by Gamkrelidze(23)  

to obtain results where the state variable was constrained 

to lie in a region with piecewise smooth boundary; this 

leads to conditions of the form 

S(x.(t),t) < 0 

Berkovitz also obtained results for this case using 

variational arguments. 
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The Method of Dynamic Programming (Hamilton-Jacobi Theory)  

Let v(t ,x(to)) be the value of the minimum of P(u) 

as a function of initial time and position (to,x(t0)). 

Invoking his Principle of Optimality, Bellman obtained 

the following partial differential equation for the 

value function v(t o  ,x(t o)), 

av 
- 	

= Min [L(x(t),u(t),0+ Dxv'f(x'u't)>] 

where the minimisation is carried over the set of admis- 

sible controls 	The validity of this equation has 

been rigorously established by Berkovitz (under certain 

a';..-taumptions). Under suitable assumptions on the properties 

o: the control u as a function of t and x, he has shown 

that v is piecewise 02  on an appropriate region of (t,x) 

space. It can further be shown under these assumptions 

that if ..A.(t,x) is defined to be the value at t of the 

vector X associated with the optimal trajectory through 

(t,x) then, 

D v(t,X) 	A(t,x) 

at- —f(t,)c,11) - <JA.(t,)t),f(X,141,t)> 

where u u(t) is the value of the optimal control corres-

Tonding to the point (t,). Hence, 

(t,X) A 
1-1(t3X,11,1%.) = 0 

	

(1.21) 
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which is a Hamilton-Jacobi Equation. 

Combining equation (1.21) with the Weierstrass 

Condition we may write down Bellmani s equation. 

An analogous viewpoint is the Hamilton-Jacobi theory 

as developed by Caratheodory(24)  . This was resurrected 

by Kalman(25)  and applied to the control problem. 

Reachable Set Theory 

A theory parallel to the theory of Pontryagin and 

his co-workers has been developed by Halkin(26) and 

Roxin(27). Halkin's results are more general. The 

viewpoint of Halkin is quite different from Pontryagin t s. 

In the following we shall indicate some of the salient 

points of Halkin 's work. 

Let us first formulate the problem following Halkin. 

Consider an optimal control system 

X(t) = f(x(t),u(t),t) where x(t) e En, u(t) E  Er  

and t e [0,1].x  

We are given a class F of bounded measurable functions 

[0,1] -->S/ , where Si is a closed subset of Er,  such 
that 

Vu(t) G F, f(x;u(t),t) is measurable on [0,1] 

and: C' in x and all solutions of the differential equation 

!are bounded.'.  

See the section on notation later in this chapter. 
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G F, 	e F, ft e f0,3.1 —> u(.) e F 

and u(.t) = u' (t) on [0,"e ] 

u" (t) on ("C ,1]. 

An initial manifold hi(x) = 0, i = 

and a terminal manifold gi(x)... 0, 	1,2,....m are 

given, 'It' is assumed that the gradients of each g:and h 

exist. and are linearly independent. 

The problem of optimal control is to choose the 

pair (X(.),U.)) such that g6(X(1)) is a minimum. 

For this problem the results of Halkin are the same 

as that of Pontryagin viz. 

Maximum Principle  

If (x(.) ,u(.)) is optimal, there exists an absolutely 

continuous function N(.) on [0,1], not zero, and differen- 
• A 

tiable almost everywhere such that 

i) <f(X(t),U(t),t),(t)> > <f(X(t),u(t),t 	kt)> 

almost everywhere on [0,1] and Vu(.) G F. 

ii) 'N(.) satisfies the adjoint equation 

N(t) = -(Dxf(X(t),i1(t) t))71 (t) 

iii) There exist constants 

(p0,.:..pth) such that 

a.) 	= (Dxh(Z(0))Ta where h is an t-vector 

b) "\.(1) = (D).,wc(1)))113 and g = (g,g) is an m+1-vector. 

c? Po > ° 
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Let us mention that the satisfaction of the terminal 

. constraints complicates the proof cl"ematZfAtY  

As in the work of Pontryagin and his co-workers 

the proof of the maximum principle ultimately relies 

on the separatian theorems on disjoint convex sets in 

Euclidean space. But the way the convex sets are con- 

structed is quite different in the work of Halkin. 

In the.,, work of Halkin two sets are constructed 

a) W = set of all points accessible at time t = 1 

b) S(x) = (y g(y) = 0, gb(y) > gobal . 

The following lemma is then obtained: 

Lemma 1: The set W and S(x(1)) are disjoint. 

It is also not too difficult to show that x(1) lies 

on the boundary of W, denoted by 

A particular lincarioation 13 now introducO, The 

functions h. g and f are linearised so that 1, 	i  

hi( ) -4 hi(X(0)) + Dxhi(X(0))(x-X(0)) 

gi( ) -4 gi(X(0)) + Dxgi(X(1))(x-A(1)) 

f(x(t),u,t) -4 f(x(t),u,t) + Dxf(X(t),u t)(x-X(t)) 

giving rise to a linear optimal control problem corres-

ponding to the original non-linear problem. 

The two following Lemmas can then be obtained using 

certain generalisations of Liapunov theorems and the 

Brouwer fixed point theorem. 



-35 

Lemma 2. W and S(x(1)) disjoint implies that a and 
.'(5c(1)) are separable by a hyperplane. 

A 
Here lAq and S are sets similar to W and S for the 

linear problem. 

Lemma 3. 	(i)e.`614 implies that i'c(i)e 1)W. 

Once these lemmas have been proved the maximum 

principle can be proved without too much difficulty. 

We refer the reader to Halkin s original work. 

Sufficiency Results  

A sufficiency theorem for optimal control was given 

by Berkovitz along the lines of the Classical Calculus 

of Variations. It does not however appear to be too 

useful. In Chapter 4 we shall give some sufficiency 

results, again along the lines of the Classical Calculus 

of Variations. Sufficiency theorems in terms of the 

Hamiltonian H was stated by Rozonoer(28)  for linear 

systems in which the terminal time tf was fixed and 

x(tf) free. Slightly more general results have been 

given by Lee(29)  

Operator Theoretic Approach 

We would also like to mention the results obtained 

by,Balakrishnan(30)  for the final value problem for 

:linear systems in which the control is required to satisfy 

an energy-type of inequality constraint. Balakrishnan 
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also indicates a steepest descent method for synthesizing 

the optimal control. A proof of convergence of the 

steepest descent method is also given. 

1.5.3. Feedback Solutions  

One of the most important concepts in automatic 

control is the concept of feedback. This means that 

the optimal control should be obtained in the form 

il(1(t),t). In other words the optimal control 

should be a function of the instantaneous state of the 

system. Using variational theory or the maximum principle 

the optimal control is obtained in the form u(t) = u(x(to),t) 

where to 
 is the initial time. In order to obtain a 

feedback form of solution it would be necessary to solve 

the. .1.11er-Lggrange equations of the problem repeatedly. 

In the next section we shall indicate that the. solution 

of the Euler-Lagrange equations leads to a complicated 

two-point boundary value problem. We might thus conclude 

that in general it is. not possible to obtain the optimal 

control in feedback form. 

If, the dynamics of the system is linear, that is, 

of the form 

dx 
dt 	

N 
= A(t) kt) 	B(t)u(t), where A(t) and B(t) are 

matrices of suitable order, then in certain special 
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cases the optimal control may be obtained in feedback 

form. Of these cases, the most important from the prac-

tical point of view is the case where 

tf 
p(x(t ) u) ( (t)Q(t)x(t) 	uT(t)R(t)u(t))dt, 

   

to 
Q and R being bounded positive definite symmetric matrices. 

In this case the optimal control law may be written in 

the form, 

u(t) = R-1(t)131(t)K(t)X(t), where K(t) satisfies 

the matrix Ricalti equation 

K(t)+K(t)B(t)K(t)+K(t)A(t)+AT(t)K(t) Q(t) = 0 ; K(tf) 

Kalman(31)  has shown that this control law is stable. 

He has also shown that the Ricatti equation when solved 

backwards in time is stable. 

For linear systems, feedback control laws have been 

obtained for certain time optimal control problems. 

Finally we would like to mention that the dynamic 

programming point of view enables one in principle to 

construct feedback control laws. However the discrete 

form of dynamic programming leads to the now familiar 

computer storage problems and in continuous form the 

resulting partial differential equation cannot be solved 

in general. 
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1.5.4. Computational Methods  

To simplify matters let us assume that the final 

time tf is fixed, there are no terminal constraints to 

[ 

necessary to solve, the following equations 

dx(t) = 
dt 	f(x(t),u(t),t) ; x(to) given 

dX() _ D H(x(t),X(t),u(t),t) dt 

X(tf) = DxF(x(tf),tf).  

We note that we are faced with a non-linear two point 

boundary value probleM. A discussion of various aspects 

of this two-point boundary value problem will be given 

in Chapter 5 and here we content ourselves by mentioning 

the problem. 

1.6. Nature Scope and Contribution of this Thesis  

As we have indicated before, this thesis is concerned 

with the optimal control of non-linear dynamical systems. 

.We shall now survey the contents of the various chapters 

and at the end indicate why the title 'Function Space 

Methods in Optimal Control' was chosen..  

Chapter 2 is devoted to investigating in detail 

the relationship between mathematical programming (linear 

be satisfied and there are no inequality constraints 

present., To synthesize,the optimal control it is then 
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and non-linear programming) and discrete-time optimal 

control systems. Essentially we have used methods of 

mathematical programming to derive necessary and suffi- 

cient conditions of optimality for a class of discrete- 

time optimal control problems. We have also shown the 

relationship between the Discrete. Maximum Principle and 

our results. Various erroneous results on the Discrete 

Maximum Principle have been published in the literaturec32)(33)  

Our methods clearly show that to obtain the Discrete 

Maximum Principle some strong form of convexity assumption 

has to be made. An important aspect of the theory of 

mathematical programming is duality. In this chapter 

we prove certain duality results for optimal control 

problems.. Duality has important applications in the 

decomposition of large scale systems. Finally we indicate 

how optimal control problems could be solved computa- 

tionally as problems of mathematical programming. This 

may prove very useful in many cases since computer pro- 

grammes exist for the solution of linear and non-linelr 

'programming problems. To the best of our knowledge this 

is the first complete treatment showing clearly they  

relationship between control and programming. Previously 

Zadeh and Whalen(34)  indicated how certain linear time- 

optimal and fuel optimal control problems could be solved 



- 4o - 

as linear programming problems. It is also our under-

standing that Prof. Rosen(35)  has been working on some-

what similar lines (Prof. Rosen lectured on the solution 

of state-constrained probleths by mathematical programming 

methods in the Control and Programming conference held 

in Colorado Springs, April 1965). In a discussion of 

Ringlee t s(36) paper in the IFAC conference in Basel, 

1963, we indicated that discrete-time optimal control 

problems could be solved as mathematical programming 

problems. One of the classical works in the field of 

mathematical economics is due to Samuelson, Dorfman and 

Solow(37) Mathematical economics relies heavily on 

mathematical programming. We feel that there is much 

to be gained in applying ideas from control theory:to 

mathematical e0OnddlidS and Vice Vera. 

The original motivation for:investigating the rela-

tionship between optimal Control'and mathematical pro-

gramming was provided by certain problems in the control 

of power systems. Roughly speaking the problem is as 

follows: Given the load demand for a power system, it 

is required to schedule generation to meet the demand-

,such that the total cost of generation is minimised and 

the constraints of the syStem are not violated. An 

alternative way of looking at the problem is : find 

the optimum set points of the generators, subject to 



certain constraints such that the total cost of generation 

is minimised. In Chapter 3 we proceed to solve this 

problem using the results of Chapter 2. 

Chapter 4 might be thought of as a preliminary to 

Chapter 5 where we consider second order computational 

methods. Second order necessary conditions and suffi-

cient conditions of optimality have so far been neglected 

in the literature of control. These conditions however 

are important in second ordercomputational. methods 

and in the synthesis of neighbouring. optimal feedback 

controls. In this chapter we present a detailed treat-

ment of the Jacobi condition and conjugate points for 

a class of optimal control prOblems. The treatment was 

motivated by the recent book of Gelfand and Fomin(38). 

Chapter 5 is concerned with the synthesis of optimal 

controls using second order methods. These.methods may 

be thought of as extensions to the gradient methods 

proposed by Kelley(39)  and Bryson(4o). Our results 

overlap to some extent results obtained by Merriam(1),(42)  

'In a visit to the U.S.A. in April 1965, Prof. Bryson of 

Harvard University pointed out to me that Kelley(43)  

and more recently Bryson(44) have also expressed similar 

fideas. In hiS work Merriam doeS not consider terminal 

constraints. Kelley's actual computational technique 



is quite different from ours. Bryson's derivation of 

results is also different from ours. A preliminary account 

of our results was-given in a symposium on Optimal Control 

held at Imperial College in April 1964
(45). In this 

chapter we also present a'discussion of the advantages 

and disadvantages of various computational methods for 

solving optimal control problems. Computer results are 

also presented. 

There are many problems in optimal control where 

the system state vector is infinite dimensional. Examples 

of such systems are provided by distributed parameter 

systems, systems with pure time delay and stochastic 

systems.' In Chapter 7:  we present.a variational theory 

for minimization problems in function spaces. 

T4e§e P,Q§.1-1.1t.P are  exj.c@P§lon§ of the  re§P1t.§.  ofKuhl 

and Tucker in non-linear programming to infinite dimen-

sional spaces. The theory developed is then applied to 

certain representative control probleMs. We also indicate 

some successive approximation methods for the solution 

'of such problems. This chapter is mathematical in nature 

and uses extensively results of Functional Analysis. 

The relevant mathematical background is summarised in 

Appendix B. 

From a mathematical standpoint, it would have been 
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more logical to put the results of Chapter 7 right at 

the beginning and.then proceed to show how some of. the 

.results of the other chapters may be considered to be 

special cases. We have however preferred to adopt the 

reverse order. The problems. of Chapter 2 have been 

essentially solved by Ordinary Calculus type methods, 

whilst the problems of Chapter 7 have also been solved 

by Differential Calculus type methods, but Differential. 

(46), (47) CalcUlus in Banach spaces - 	In problems of 

Optimal control, these Banach Spaces are invariably 

suitable function spaces. 

'It is clear that we could have discussed approxima-

tion methodS in-the abstract framework of Functional 

Analysis. Most.of the well known methods for minimizing 

fl not gns Qf se regal. v4riab1@§ have counterparts i4 

8)'  (49) function spaces and well known'in Functional Analysis(  .  

However, we are not just interested in indicating a 

computational aagorithm and proving that the procedure 

converges, but in actually carrying out the computations 

.on a digital computer and providing suitable control-. 

' theoretic interpretations. In our opinion, the main 

contribution of the work of Kelley and Bryson in solving 

toptimal control problems was not the use of a gradient 

method itself, but to show how the gradients in function 
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space could be computed relatively easily on a digital 

computer. Similarly the second order methods we use 

in Chapter 5 are more or less well known in Functional 
Analysis. What we consider important is their use in 

the manner we have shown to solve optimal control problems. 

This is also our justification of giving a formal presen-

tation of the material in that chapter. We simply indicate 

the way we proceed to solve the problems on a digital 

computer. 

It should by now be clear why we have chosen the 

title 'Function Space Methods in Optimal Control'. 

Mathematically the principal difference between contin-

uous time optimal control problems and discrete time 

optimal control problems is that in the former we are 

dealing with problems in function space rather than in 

Euclidean Space. 

We present two applications to power systems: 

i) Economic Scheduling of.Power Generation ii) Solution 

of a boiler Problem (in Chapter 6). isaNtALMIFIWAMMEtim06121  

WAMWAVVOAMMNANWAAPimp Some of the ideas presented in 

this thesis could be used as a design philosophy for the 

optimal control of a power system. 

The thesis is written in a way that most of the 

chapters are essentially self contained. Chapters 2 and 

E
FF 
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7 are generally mathematically rigorous. However, whe-oevr 

possible, we have tried to motivate the discussion by 

means of examples. In these two chapters often many 

technical assumptions have been made. These have been 

included to render the subsequent mathematical results 

correct. The reader may omit them if he so wishes. 

Ideas of mathematical programming have only recently 

been used in the field of engineering. Hence some of 

the results have been summarised in Appendix A. Appendix 

B, to some extent, covers the mathematical background 

necessary to read Chapterl. The thesis could also be 

read in the following order: Chapter 4, Chapter 5, 

Chapter 6, Chapter 2, Chapter 3, Chapter 7. 

1.7. Notation  

We shall try to use a uniform notation throughout 

this thesis as far as possible. 

Set theoretic notation is often used. A set is a 

collection of objects. The set X is written as [xki 

where xk represents the element of the set. The notation 

xk E X means that xk 
is an element of the set X. When 

a set X represents a set of point x having a particular 

property P(x), we write this as 

X = tx : P(x)i 
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Thus the set of points • 

X = t(xl,x2) 	x12.+ x22 < 1.} 

represent all points which lie inside and on the circum-

ference of the circle with radius unity and centre at 

the origin. 

A space  X is a set X together with a given topology 

on X. For our purposes, a space X is a set X with which 

we can associate the notion of distance function d(x,y). 

Thus in three dimensional E3 we have the usual 'Euclidean 

distance 

d(x,y) 	/(x1-y1)2+ (x2-y2)2  + (x3-y3)2  

In most ofour work we shall be concerned with finite 

dimensional Euclidean spaces. When we write x(.) e En, 

we mean x(.) is an n-vector. 

A function or a mapping is to be thought of as a 

relation between two sets X and Y, say. We shall often 

write f : X 	Y. We mean given an element x E X, there 

exists a y e Y, such that y = f(x). The function or 

mapping is to be clearly distinguished from its value. 

We shall also use vector-matrix notation extensively. 

If we want to refer to a particular component of a vector 

this will be denoted by xj, say. Capital letters will 

be used for matrices. The adjoint (transposed) matrix 



will be written as AT, say. Dot indicates differentiation 

• with respect to time; thus x = dx dt 

n  represents inner product in n-dimensional Euclidean 

space. Thus <x,y> n  = L xiyi. Usually we shall drop 

	

E 	i=1 

the suffix En. 

Consider the scalar-valued function 

	

f(x,u) 	—um.) 

\ D
x
f(x,u) 	f 	2) n)x=7 i.e. a row vector. 

bx — u=u 

Similarly Duf(7,-d) 	fbf f 
) 

	

6u 	
' .6 
um

\ 
 x=x 
u=u 

For a vector-valued function f(x,u) where f is an .  

n-vector 

D f(3Z,T).. 

     

  

x
n 

)fn 

x.x 
u=u 

 

  

i.e. an n x n matrix. 

    

For the scalar valued function f(x,u), the total 

differential 

Df(x,u).(,T1) = Dxf(x,u). + Duf(x,u).T1 

<D x 	M f(x,u 	+ <Duf(xu),T1> 

and 71  are the increments of x and u. 



— 	— 

D2  f (7c,ri) xu 

t. 



CHAPTER 2 

OPTIMAL CONTROL AND MATHEMATICAL PROGRAMMING 

1. Introduction 

Sampled-data control systems have attracted a certain 

amount of attention in the literature of automatic con-

trol(5o). Recently it has been recognized that state-

space and optimal control ideas allow us to investigate 

such systems in a unified and often very much simplified 

fashion. In this chapter we consider a non-linear dis-

crete-time optimal control problem and proceed to solve 

it using methods of linear and non-linear programming. 

The basic theorem we use is the Kuhn-Tucker theorem which 0 

is an extension of the Lagrange Multiplier rule of 

Ordinary Calculus. We have summarized the necessary 

mathematical results in Appendix A. 

The chapter may be divided into 9 sections. In 

Section 2 we state the problem. In Section 3 we investi-

gate necessary and sufficient conditions of optimality. 

In Section 4 we indicate the relationship of our results 

with the discrete-maximum principle. Section 6 is devoted 

to duality results of optimal control problems. In 

Section 7 we make some comments on the discrete maximum 
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principle and sufficiency results. 

An important class of problems in control are linear 

control problems with a quadratic performance criterion. 

In Section 8 we solve such a problem using mathematical 

programming methods. In Section 9 we indicate how we 

might use mathematical programming methods for the compu-

tational solution of optimal control problems. 

Before proceeding to the general theory, it is worth 

considering a simple example to motivate the subsequent 

development. 

Consider a 1-stage one dimensional control problem: 

xi  = a xo  + b uo, where x is the state variable 

and u the control variable and xo is given. 

It is required to minimise 

1gX
1
,U

o
) = 

2
( x 1 

2 	u o2) 

subject to the inequality constraints 

a < u < p. 

Let us first assume that the inequality constraint 

is absent. Let the optimal uo and x1 
 be uo and1. 

Then 

we could obtain ao and 1 
by using the Lagrange multiplier 

rule of ordinary calculus. Thus, form 

L(x0,xi,u0,y = 2(x1 	o2) - '.7 1(x1  - axo  - bu
o) 

Differentiating with respect to 110  and xl' and 



equating the derivatives to zero, we get 

= x11 = 0 

uo  + b 1 = 0 

Thus X1 1' 
A 	 A % 

u° = b 1 and hence uo  = - b(axo + buo). There- 

fore, -ab  
o  

1+b2 x° 

We note that the control law is linear feedback law . 

When the saturation type inequality constraints, 

a < uo  < p are present, we can no longer apply the Lagrange 

multiplier rule directly. However the Kuhn-Tucker theorem 

of non-linear programming can now be used to obtain the 

requisite solution. 

In this case, we have to form 

L(x0,xl,u0A ,µ , 	= 2(x12+u02)41(xl-axo-buo) 

µ1(u°-P) 	'31(a-u°). 

Differentiating with respect to xi  and uo, 

=. 0 bx1 
xl 

au
0 
	uo 
	+  µl  - = 0 

o xl 

aL  
bu

o 



Hence uo 
+ b(ax°+buo) 

	
. 1  11. •-• D.''.71  = 0, and finally 

A n 

);
1

..-P,
1 A 

uo - 
-ab   x + 
1+b2 0 	l'+ b2  

From the Kuhn-Tucker theorem we also obtain, 

41 	o 	
)19
1

> 0 

a1  (ft o 
 -p) = 0 and ).71  (a - o) = 0 

Clearly if a < uo < D, uo — 	2 
x. This is the 

1+b

-ab   

same solution as we obtained by the Lagrange Multiplier 

rule. 

In the following pages we generalise these ideas to 

solve non-linear multivariable discrete-time optimal 

control problems. The various assumptions we have made are 

to ensure the existence and sometimes uniqueness of the 

various multipliers and to exclude certain pathological 

cases where the Kuhn-Tucker theorem does not hold. 

2. Problem Statement 

In this chapter the state vector, will be an element 

x of a Euclidean Space En, the control vector will be 

an element u of a Euclidean Space Em  and time will assume 

th.e discrete values 0, 1, 2,....,k. The evolution of 

the system will be described by the difference equations, 
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x.1+1 = i x + f.(x., 	x.(0) = c given i = 

(2.1) 
A certain subset 	S En+rn  is given and for each 1, 

i = 0,1,2 k-1, the pair (x.,u.) is constrained to belong 

to this set. The set SI is defined by the inequalities, 

Ri(xi,u,) < 0 	(2.2) 

R. is a mapping from En+m  to E. For each i = 0,1.2,...k-1 

we  shall assume that the vector functions fi and Ri 

satisfy the following conditions 

a)Thevector-valuedfunctionsf. 1  and R. are defined i 

on .0. and for every (x,u) e II , fi  and Ri  are twice 
continuously differentiable with respect to x and u 

b) The mapping 
I 

( 

-(I+D fl) 	I 

-(I+Dx  f2) 	I 	

. D f xi   	• u o o 

• 

• -(I+D 	f, ,)I. 

is on to. In effect this assumption is a local control-

lability assumption for the k-stage problem. 

c) The inverse of the mapping 

Duk_ifuk_1) 
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I 

(I+Dx1f1)  

-(I+D f2) I x2   

-(I+D f ) xk_ k-1 

exists. 

We further require that the terminal point xk  must 

lie on the manifold defined by 

g(xk) = 0 
	

(2.3) 

where g is a twice continuously differentiable mapping 

from En  -> Eq, q < n. We assume that g satisfies the 

following condition 

d) The matrix Dg 	is non-singular. 
xk  

The inequality constraints R(x,u) must satisfy the 

following constraint qualification. 

e) LettRi.(x,u)1 i = 0,1,2, 	r be the subset of 

the constraints R
i 
for which each (x,u) lies on the 	• 

boundary of the constraint set. We shall say that the 

function R
i 
: En+m -* Er  is regular at a point (.7,7) € En±rn  

if and only if for every (' , T1 ) E En+m  , 	) 	0 

such that the equality (x,u) 	(x .+1F, u +70 implies the 

inequality, 



- 55 - 

Ri(x,u) = Ri(Tc.,71)+ Dx  Ri 	(y ,0) + DuFh7,17.).(0,71 ) < 0 

there exists a function 111: [0,1] —> En+m  with the 

following properties, 

i) Dllf.(t),T 	exists for 0 < t < 1 

ii) (x,u) = Nr(0) 

iii) Rl[y(t)] < 0, 0 < t < 1 

iv) (f , 11) = DV(0)• 

Two sequences u = (11o'''k-1) and X ) are  

said to be optimal if they satisfy the conditions 

(A) xi+1  = xi+fi(xi,ui) 	; 	xi(0) 	= c 	i = 0,1,2,...k-1 

(2.4) 

(B) Ri(xi,ui) < 0 i 	= 0,1,2,....k-1 (2.5) 

(C) g(xk) = 0 

and minimises 
k-1 

(2.6) 

h(x ) + /(x.,u.) (2.7) 

i=o 

We assume 

f) The scalar-valued function .h is twice continuously 

differentiable with respect to xk  and the scalar-valued 

function 4 is twice continuously differentiable with 

:respect to x and u for every (x,u) 
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3. Necessary and Sufficient Conditions of Optimality 

Under the assumptions we have made we can deduce 

the necessary conditions of optimality by applying the 

Kuhn-Tucker Theorem (see Appendix A) to this problem. 

We form the Lagrangian, 

L(X;CIA,µ,) = < v, g(Xid> + hUck  

k-1  

[4(3c.d.)-<L 11 1+1 1+12111 

1=0 

+ <a 	,R 	>1 1+1 i 1 i (2.8) 

• 
where 1\.j.  is an element of E

n A  , 	is an element of EP  and 

)A., is an element of Eq. 

Differentiating L with respect to Xi; i = 1,2,....,k-1 

and ' a.1 	0,1,....k-1 and equating D, L(51i,lai) and 

D L(X,Ia ) to zero we obtain, ui 1 i 

X 4-X. 	+D /3(X. 0..)+(D f. (X. n.))11,,.. 	+(D R. I3L  ,t). \ )
TA. 	 0  Xi 	1+1 x 	1' 1 	x 1 1' i 	1+1 	x 1\  1' i" //1+1- 

,(2.3) 

for i = 1,2,....k-1 

u1.
6(X1,a,)+(D  u1.

f (X1,d  i)) Xi+1+(D. R.(11,a,))Ta i+1 = 0 

(2.10) 

for i = 0,1, 	k-i. 
A 

Differentiating with respect to x, we obtain, 
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1,c  = (Dg(Xic))111, + Dh( k) 	(2.11) 

We also obtain that the optimal ui  and x. satisfy 

a.1 	0 +1 — 
(2.12 ) 

< ai+1' Ri(.5\(1,11)>  = 0  

for i = 0,1,2,....k-1. 

Under the assumptions we have made the 	are 

unique. 

In order to prove sufficiency we have to impose 

further restrictions. We shall assume that 

g) fi(xi,ui) = Aixi  + Biui 	(2.13) 

whereki'andB.1  are n x n and n x m matrices for each i. 

ForthernatricesAi andB.a.  we further assume ii Ai  ii < co ..._. 
and <IiB. 	oo where 

pill 2  = trace [AiAiT] and Pill 
	

trace [E,iBi  ] for 

each i. 

h) g(xk) = Mxk 	 (2.14 ) 

where M is an n x q matrix, and II MU < oo 

i) is strictly convex with respect to ui 	each 

i and convex with respect to xi  for each i 

h is convex with respect to xk  

Ri  is convex with respect to xi  and ui  for each i. 

We shall now prove that under assumptions a) - i) if 
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the sequences X1,....Xk and 	satisfy equations 

(2.9) - (2.12) then 

k-1 	k-1 

h(Xk)+ 	figXvili).1h(xk)+: > f6(xi,u1), for all (x.,u. ) 

1=0 	 i=o 

satisfying equation (2.13).and belonging to the constraint 

set 

Let 

L = 	 )4, ) 	(2.15) 

L = L(x2±. 	 (2.16) 

From (2.8) and (2.16), using the fact that 	h and Ri  

are convex in x and u, we get 

k-1 

L = 	Ds(xi,,,,)-e,1+1,x1+1-xi-Aixi-Biui>“ai+1,Ri(xv ui)>] 
i=o 

+ h(xk) + 	Mxk> 

k-1 

2 >7  rigsq,ai  +<D x. 1 
1=0 

-,x. -x 	> + <a 	R (X. la )> i+1 1+1 • i 1 1 1 i 	i+1' i 1' i 

<a 	D R.(3Z.,a.)(x.-x.)+D R.(X.,1a.)(u.21.1.)>] i+l'x.2.2.111.11 1 	i ul  

+ h(Xk)+<Dh(xkK  ),x-Xk  >+<,M(xkk)>+<,MXk> 

k-1 
A 

= 	 r‹x Y X '5,  (2.17) 

1=1 



- 59 - 

In obtaining the inequality (2.17) we have used equations 

(2.9 ), (2. to) and (2.1( ). 

k-1 
A 	A 	. 	A 

But 	 = 0 

i=1 

Hence T, >.L. 
Using (2.12) we therefore get the desired result. 

4. Relationship with the Discrete Minimum Principle 

Recently there has been a lot of interest in the 

Discrete Maximum Principle and it has been shown that the 

Discrete Maximum (Minimum) Principle does not hold in 

general for non-linear systems. We shall now obtain the 

Discrete Minimum Principle for a restricted class of systems 

from the results we have obtained in Section 3. 
We assume that assumptions (a) to (i) hold. 

Let us define the function 
0 

H(xi,ui,2\.31.4.1,µi+1) = /(xi,ui)+<Xi+1,AiXi+Biui>+<µi+1,Ri(xi,ui)> 

i = 0,1,2,....k-1 	(2.18) 

We shall show that 

_0 	 4.  (Xi,Ui,Ii+1,11,1) 4 = 0,1,2,  

Let us first note that using (2.18), equations (2.9) and 

(2.10) may be re-written as 

=4-10 H(X 	) 1+1 x. 	1+1 1+2. (2.19) 
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D 

	

	µ. ) 0 ui 1 1 1+1' +1 (2. 	) 

In view of the assumptions we have made H is convex in 

ui. 

Hence 

A  
i
11( i'{-‘11'Ii-1-1'111+1))121.21‘11>  

(2.2.1) 

from which the result easily follows. 

5. Summary of Results of Sections 3 and 4  

It is perhaps worth summarizing the results of 

Sections 3 and 4. 

Proposition 2.1. (Necessary Conditions) Let X = (X 	. X ) l'" ' k 

0 	and a = (1A-1 o'""uk 1) be two sequences which are optimal  

for the problem formulated in Section 2 and let X and a  

satisfy assumptions a) - f). Then there exists a unique  

sequence of non-zero vectors X. l'" 	k ) and a sequence  

of non-negative vectors a = (µl'.... 	'k) 
such that 

and a vector 

 

   

TA 	TA +D 	X.a_,a.)+(D .(X. U. 	X.,U.) a.+1 x 	xf. 	1" a.)) xi+1. (  xiR. 	a_ )  a. 	1+1 0 a 

1,2,...-k-1 

.(Delk))Ti, + ph( k) 

/4(,L)+0) 	+(D R.01 a »Ta 	= p 
a. 	 u 	i 	i+1 • 

i = 0,1„....k-1 
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111+1 2- 0 
0,1,2,....k-1. 

R (X d )> + 0 i 	i 

Pronosition 2.2. (Sufficient Conditions) Let the system 

be linear and let all the hypotheses of Theorem 2.1 be  

fulfilled. Further let assumptions g) - i) of Section 2  

be satisfied. Then the conditions of Proposition 2.1 

are also sufficient. 

Proposition 2.3. (Discrete Minimum Principle) Let all  

the assumptions of propositions 2.1 and 2.2 be fulfilled. 

Define the Hamiltonian function as  

1) = /(x.,u.)+<X. ,A.x.+B.u.>+<11i+1,Ri(xi,ui)> 1+1 1 1 1 1 

i = 0,1,2,....k-1 

Then a set of necessary and sufficient conditions for a 

and X to be optimal are  

= '\'1.+14-Dx 	 = 1,2,....k-1 

(Dg( k))T 
 

+ Dh(X1c) 

) < H(Xi,ui, 

6. Some Comments 

In showing that under certain assumptions the neces-

sary conditions of optimality are also sufficient and in 

obtaining the Discrete Minimum Principle we have relied 

heavily on convexity. It is clear that a set of sufficient 
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conditions for non-linear systems could be obtained by 

further assuming 

j) fi(xi,ui) is convex in xi  and ui  for i = 0,1,2,...k-1 

g(xk) is convex in xk 

and k) 	0 (i.e. each component of 2\.i  > 0) for 

	

= 1, 	 

> 0 (i.e. each component of )> 0), 

since will then be convex in x and u. 

The Discrete Minimum principle will also clearly 

hold. Unfortunately it does not seem very easy to obtain 

conditions under which i will be greater than zero, 

where 'Xi  satisfies equation (2.9). We can however obtain 

sufficient conditions (possibly very restrictive) for 
0 

the solution of equation (2.9) to be positive. The 

• conditions are suggested by certain results in Bellman(51)  

We investigate this in the next chapter when we consider 

continuous time dynamic systems. 

In optimal control problems constraints of the form 

	

Si(xi) < 0, 	i = 1,2,....k 	(2.22) 

are often present. In the literature these constraints 

are known as state variable constraints. These constraints 

:may be converted into constraints of the form Ri(xi,ui) 

which we have considered, by writing 
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Si(xi) = 

Ti(xi,,,ui_i).1 = 1,2,....k. 

This corresponds to the intuitive idea that to 

satisfy a state constraint at time instant i, the control 

at .time instant i-1 (at least) must be suitably chosen. 

7. Duality 

One of the most important aspects of the theory of 

linear and non-linear programming is duality(52),(53) 

For continuous time optimal control problems the impor-

tance of duality was demonstrated by Pearson(54). Duality 

theory also has important application in decomposing large 

scalesystems(55). In this section we develop a duality 

theory for a.class of discrete-time optimal control 

problems using mathematical programming methods. The 

basic idea is to construct a maximisation problem corres-

ponding to the given minimisation problem such that the 

value of the optimal performance function of the two 

problems is the same. 

Let us first define the two problems. 

Primal Problem. Choose two sequences a = (ao 	ak-1) 
;and x = (X1,....,Xk) such that the following conditions 

are satisfied 

+ 

	

= x. 	+ xi±l 	
a. 	a. 	a. a. ;

xo  = c given (2.23) 
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for i = 0,1,2,....k-1 

Ri(xi,ui) < 0 

i = 0,1,2;....k-1 

Mxk = 0 

and the following performance function 
k-1 

h(xk) + z 

1=0 

is minimised. 

(2.24) 

(2.25) 

(2.26) 

II 	 A 	A 

o • Dual Problem. Choose sequences u = (u , ...ftk-1  ) ' 
X . (XI,.... k), 	= (Al,. 	./k) and µ = (0,1,.µk) 

and the vector 	such that the following conditions 

are satisfied: 

X 	+D 
1x
/(x.,u.)+A.TXi+1 

 +(D xi  R.(x.,u.))
Tµi+1 X 	 i+l 	. 	2. 	 1 	11  

i.= 	1,2,....k-1 	(2.27) 

Xk = MTV, 	+ Dh(xk) 	 (2.28) 

, 0  ) .211i+1 D 
1 
 /(x.,u.)+B.T X.+1  + D 1 	

(2.29) uRi1 (x. u. 	1" 	1 	1 	1. 	' 	i 

i= 0 1 2 	....k-1 

ili+1 > 0, 	= 0,1, 	k-1 	(2.30) 

and the following performance function, 
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h(xk)-1-ock,7 — T - Ph( )> 

k-1 

+ 	Leg • ui)-<X1....0.  

i =0 

k-1 
+ -21 [oc1,x- -1 	• 

i=1 
is 1,1046.mised. 

1 .TX.1+1 -(D xiR.(x ui ))Tµ1+1 >I 
. 1  

(2.31) 

We shall assume that assumptions a).- i) are satisfied 

by the. Primal problem. We then have the following Duality 

result: 
A If u. and Xminimize (2.25) subject to the constraints. 

(2.22) - (2.24) then there exist sequences 1, a-and a 

vector.  )A, such that U., X, 1„ a 	and P..5 maximise (2.31) 

subject to (2.24) - (2.30) and L 	t, 

The proof of this'result is quite simple. 'We know 

'from the results in Section 3 that for the primal problem 
A , 

there exist sequences X, 4 and a vector: 1i,  such.that 

equations (2.'27) - (2.30) are satisfied. We also have 

X-1 

27.1 C+1,  

It. is easy to see that 	L. We shall now show that 

7t4✓  A, T, 1'1 and la; indeed maximise L. The . proof is by 

contradiction. Let us assume that there exists sequences 

• 



1=0 

k -1 
,X.- 	-D )(X A. 	D R x,u 	111 

A A 
• i 	i+1 xi 1' 	i i+1- Xi  1 1 1 	+1>  
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u, x, X, p and a vector 15 such that 

t(usx,X,P., D) > 	 ). 
We first note using (2.23) - (2.30) 

a,3%(A,a, 
k-1 

h(lid+ 	Digki$110+411.+1, 	1 X.,11.)>] 

i=o 

k-1 

($011.,t'i 

1=0 

k-1 
sinceZpi+1, 	X 	3..,d.)> = 0 and p.+1  > 0, R.(X. 	< 0. 

1=0 

Hence t(u,x,X,p,,I,) > t(1.11XA,µ„) > t(11,)1,1,p,1 ). 

In view of our assumptions L is a convex function of u 

and x. 

Hence, 

1,0,)cA,P,J)S h(Xk  + <Xk' 	k -MT -Dh(X )> 

k-1 

1" 1 	1+1'1 X.+1 -X 	1x A 	11 1 	
A 

.-B.u.>+<µ. 	Ri1  (X.'  LW +1' 	1 

i=1 

Using the convexity of L, that is writing 

SOAC. 	&0( ,u. +<D /(xi, i).1011-ui>+<D, is i 	ui 
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etc. and simplifying, we. obtain 

t(u,A,1,11,) > L(ulx,X,µ,),) 

k-1 

+ 	kpu )15(xi„ui)+BiT  Ni+1+(D,.Ri(x„ui)
T 

1 
i=o 

; `, A  But t(u,x,N,µ1  ....,) 	Ja TA  (u.,x,.,%1µ129). 

k-1 
% Hence 7-  [<D

ui
)6(x.,u.)+BT1 X.+1  +() ui 	1 1 R.(x. u.))T  µi+'1.1.-u.>]<0 .i 	1 '  

i=o 

which contradicts (2.29). 

We have thus proved our duality result. 	• 

Unfortunately these Duality results are in general not 

true for non-linear systems. The reason for this is that 

for non-linear systems L will in general not be a convex 

function of u. 

It is worth noting that in the Dual problem the 

inequality constraints take a particularly simple form, 

namely they are just non-negativity constraints. 

There is a certain resemblance between Duality results 

of mathematical programming and Kalman's theorem on the 

Duality between optimal filtering and optimal regulation. 	: 

We have not found any deep connection as yet. 

- 	. 
• 

• 
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8. Linear Optimal Control Problem with a Quadratic  

Performance Function and an Amplitude Constraint  

We now apply the theory we have developed to the 

following problem: 
A 

 o 

 
Find sequences X = (X1,....k) and = 

(u _ 	„uk-1 
which satisfy the system equation 

x1.+1 =  x. + Axi 	1 + Bu.'  x = c (given) i = 0,1,2,...k-1 

(2.32) 

where A and B are constant n x n and n x m matrices, and 

the inequality constraints 

1.,, 	i = 0,1 2,....k-1 	(2.33) 

and which minimize the performance function 
k-1 

	

Pxj+1>+<uilRui>) 	(2.34) 

1=0 

where P is an nx n constant positive semidefinite sym- 

metric matrix and R is a constant nix m positive definite 

symmetric matrix. 

To solve the problem we form the Lagrangian 

k-1 
rl L 	= :E: 

i=o 

1+1'1 Px. 1  >+—<U.,Ru.> 2.1 	1 

- <Xi l'i+1-xi-A xi-Bu 	1 >+<µ.+i  „ 	1+1'11 u.-1>+<),. 	-u.-  

(2.35) 
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Then an application of the results in Section 3 yields 

the following necessary and sufficient conditions of 

optimality 

22  Ii+l-Px 	i+1  ; i = 1,21....k-1 	(2.36) 

lk = Pxk 	 (2.37) 

Rft. + i+1 	+1 = 0 ; i = 0,1,...k-1(2.38) 

P14.1 	°, ;4.1 > o i = 0,1,21....k-1 	(2.39) 

<µi+1, 	= 0 ; <:0'14.1,411-1> = 0 	(2.40) 

Let us now assume that the inequality constraints 

(2.33) were not operative. The solution of this linear 

problem with a quadratic performance function is well 

known. In particular it is known that the optimal 

control law is a linear feedback law. 

In view of this, it is worth considering whether 

.we can obtain the solution of the constrained problem 

from the known solution of the unconstrained one. 

Let us first make the observation that since µi4_, > 0 

and <11(1-1>=0,ifil.-1 < 0 we must have a 	= 0. i+1, 	 1+1 
The same observation is true for 

Let x = 	u = (uo,••••11k1), 	= CK1,•••:Tk  

be the solution of.the unconstrained problem, and let 

j < k-1 be:the first instant of time when some components 

of u satisfy U.-1 < 0 or -U -1 < 0 Then we set 
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A 

i 	1 
= U. 	i < j.  

A 

1 
X. = xi < j 

= 	< j+1 

A 

= I,  = 0 
1 

< j 

i.e. for time i < j the solution of the constrained and 

unconstrained parts is the same. 

Letubethekth componentofu..We shall 

define three index sets, 

1— lc' = tk : 	iu. 	< 11 

. tic 	,. 01 

tic 	: -u.k  -1 = 01 

A k If k E I set u = u k / A.k 	"J 
A. 
+1 

A k If k E I2  set u = 1 „ j+1 
n 

 

A k 	A k If k E I set u = -1, µj+1 =:0 

A 

J Set XJ.+1 x + AXJ  + BUJ 

We however have to guarantee that we can determine 

A k 	 A  k 
0 	k G 12  and 	k E 13. 

from equation (2.38). If we can do this we can proceed 

to the next step. 
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9. Computational Considerations  

Many problems of optimal control can be reduced 

. to problems of linear and non-linear programming and 

then solVed using standard techniques. We give some 

examples below. 

Example 1. Consider the following discrete-time dynamic 

system 

1 
xi+l 

       

       

      

  

1 
2 

   

 

2 xi+1  

  

1 

  

ui+di ] 

    

al 

 

         

i = 0,1,2,....k-1 	(2.41) 

Let the initial conditions be x1(0) = x2(0) = 0. 

di  is to be thought of as a known bounded disturbance. 

We consider the problem of finding a sequence 

< 1 	1 = 0,1,....k-1 such 

that 

 

,S(u) = max 	max 
i<j<2 i<i<k 

j xj u,d)J 

is minimised. 

This is atypical minimax problem. From the control 

point of view, this is the problem of minimising the 

maximum deviation of the system state from the equilibrium 

state due to the presence of a disturbance. 

Let us first note that the solution of equation 



x20  

0 

1 

-72 r.  

(2.41) may be written as 

1 

0 .1  t.-1+d L-1) 

(2.42) 

12 	' f+i-") 

1 

To fix ideas let k = and d0  . 2 d1 =-2. 

Then from (2.42) 

1 
1 	

1 x 	= 2 - u o + 1 

x21 = uo  + 2 

x1 2 - - 2  u o + u +.2 

x22  u0  + u . 

Introduce a saalar c > 0 such that 

lx(1 (u,d)I 

Hence our original problem reduces to 

Minimise c 

Subject to - c > 0 

1 + 1 < c 

u + 2 <c 

u + u 2 o 	1 

u0  + ul  < c 

1 uo+1 > -c 

uo + 2 > -c 
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+2 u + 2 > -c 

U0  + 111  2 —c 

u < 1 

uo > -1 

1 1  

1 ›- -1  

This is now a problem in Linear Programming and can be 

solved by standard techniques. Some typical results are 

shown in Fig. 2.1. 

Example 2  

Consider. the discrete time system 

xi+1 = A.a.x.a. + B.3.u.a. ; 	i = 0,1,2,....k-1 	(2.43) 

xo 	c given 

Consider the problem of minimizing 

k-1 

:El [ i 	xii.1>+<u.,Rua..>] 

1=0 

subject to the constraints 

l uil < 1 	i = 0,1,2,....k-1 

l
xit < 1 	i = 1,2,....k 

(2.44) 

(2.45) 

(2.46) 

The solution of equation (2.43) may be represented as 

xi  = clixo 	Zst,( ) 	 .= 1,2,...,k(2.47) 
j=1 
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where 15i.  = Ai_l  Ai_2 	Ao  

If we substitute (2.47) into (2.44) and (2.46) 

we have a non-linear programming problem in u-space. 

Let us mention however that if the number of control 

variables and the number of stages are large then the 

resulting non-linear programming problem will also be 

large. If the constrains are linear then library programs 

exist (Rosen's Gradient Projection Method)(56) to solve 

such problems. 

Another powerful method of solving non-linear pro- 

gramming problems is the method of feasible directions  

due to Zautendijk(57) 

We shall not consider in detail the various existing 

computational methods for the solution of programming 

problems, but shall content ourselves with introducing 

a new primal-dual algorithm for solving a class of quad-

ratic programming problems. 

We are interested in solving the following problem: 

Find sequences u = (uo,....uk_i) , x = (xl,....xk) such 

that 

k-1 

i+ +— .<u Ru 2 	i 	is minimised subject 

i=o 

to 	xi1 = Ax. + Bu. , 	i = 0,1,2,....k-1 
	2.48) 

= c given 
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Cxi  + Dui  1 0 , 	i = 0,1,2,....k-1 	(2.49) 

We assume that P is an n X n constant positive semi-

definite matrix and R is an nix m constant positive 

definite matrix. We shall also assume that the usual 

assumptions on the system equations and the inequality 

constraints are satisfied. 

From Section 6, the corresponding Dual problem is: 

find sequences u = 	x = (x1,....xk), 

X = (X1,....X.k) and µ = (µ1,....,µk) such that 

k-1 
Px. > 	,x. -Ax.-Bu.>+<µ. cx.+Du.>) 2 1+1' 1+1 	i+1 1+1 1 1 1+1' 1 1 

1=0 

k-1 

+ 	(<x.,X.1-ATX.1+1  - i1  -cTµ.+1  >)+<xk  ,Xk  > 1  
i=1 

subject to i+1 +c µi+11  +Px. 	i = 1,2,....k-1 

(2.50) 

Ru.1  +
TX. +DTµ1+1 = 0 i 	0,1,....k-1 +1  

(2.51) 

µi+1 > 0 	i = 0,1,....k-1 	(2.52) 

The dual integrand can be simplified and written as: 

<xk,Pxk> + <xo,A
TXl+cTµi> 
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k-1 

- 7 	X. 	pt,.. 	\A-<R 1(10T1 . 	+DTI! . 	\,(Brill . 	+Dig! 	)\1 
2 1+1' 'A'1+1'-r-2 	‘"" '1+1 	'1+11 	"1+1 	'1+1' 

.1=0 

Intheabovewe.haveeliminatedui by using equation 

(2.51). In the dual problem let us now regard x and p 

as the control variables and X as the state variable. 

The Algorithm  

i) Let xo  = c the given initial condition of the 

primal problem 

Guess xl,....xk  and pi,....pk  , each p > 0 

ii) Solve the recurrence equation (2.50) backwards. 

iii) Let us adjoin the system equations (2.50) to the 

dual integrand by means of multiplier y1'"'"Yk-1 

obtaining 

<xk,Pxk>+<xo,AT  Xl+c
T  pi> 

k-1 

[-2<x. 1+1' 	1>+  Xi+1-"""Tt  	(' 

k-1 

:El [ 	1+Pxi>]  

i=1 

<Yk'Ak>  

Solve the recurrence equations 

yo =x 

=A - BR-1  D3T(X1) + DT(11) -] old 	"-old 
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y..= A .-BR- iBT(Ni+1 ) 
old 

 1-DT(P-1
1-1)old 	

i = 1,2,....k-1 1+1  

simultaneously calculating 

(µ,
-L+1

) =([11„,_ 1 ) +Max(0,gyi-DR- ( ",i+1) 
_DR 1BT(x.  ) 

"" 	+li  new 	old 	old 	old  

i = 0,1,2,....k-1 

Choose 

(xk) 	= (xk) 	E P(xk)  

	

new 	old 	old  

(x.) 	= (x.) 	+ E[PTy.1  - P(xi) 	] 	= 1,2,....k-1 , 

	

1  new 	1  old 	old 

where € is a small positive number. 

It can be shown without too much difficulty that 

the process converges. 

The reason for solving the dual problem rather than 

the primal is the simplicity of the inequality constraints 

in the dual problem. 
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CHAPTER 3 

ECONOMIC SCHEDULING OF POWER GENERATION 

3.1 Introduction  

A typical computer control system for controlling 

two power system areas is shown in Fig. 3.1. The symbols 

used are indicated in Table 3.2. Note that the design of 

the control system is conventional except for the use 

of a digital computer. One of the computations that 

the digital computer has to perform is to find the 

optimum set points Psi,....Psn. This problem is known 

as the economic scheduling problem in the Power Systems 

literature. This is because the criterion for optimality 

is an economic one. 

A typical load demand curve for a power system is 

shown in Fig. 3.3. In general, each generator has to 

satisfy maximum and minimum power limit constraints 

and maximum and minimum rate of rise of generation 

constraints. It is thus, in general not possible 

to do the scheduling calculation at a particular time 

instant independently, without considering the load 

demand at a later instant. If, this is done it might 

result in the load demand at a later instant not being 

met (due to the rate of rise constraints). We thus 
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have a dynamic allocation problem to solve. In fact 

it is an optimal control problem. 

3.2 Problem Statement  

Let us consider an N-node network. At node i let 

pi(t) be the active power at time t 

i c (t) be the local active power demand at time t. 

This is assumed to be known. 

The cost of production L is a function of the active 

powers: 

L = L(pl(t),....pn(t)). 

The total losses in the network g is a function of the 

power injected into the network, i.e. 

g  = g(p1.(t) - cl(t), - cn(t)) 

Since the load demand has to be met we must satisfy, 

h(Pl(t),...,Pn(t), c
1(t),...cn(t)) = 	(pi(t)-ci(t)) = 0 

(3.1) 

Using Vector notation, the dynamic allocation 

problem to be solved is, 
tf 

Minimise 	f L(p(t))dt 

0 

subject to h(p(t),c(t)).= 0 

(3.2) 

(3.3) 
a < p(t) < p 	 (3.4) 
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y < P(t) '< 6 	(3.5) 

It is assumed that p(0) is known. 

Let us introduce the variables x(t) = p(t) and 

u(t) = P(t). We can then rewrite the above problem 

as an optimal control problem, 
tf  

Minimise 	L(x(t))dt 

u(.) 

subject to .k(t) = u(t) ; x(0) known 

h(x(t),c(t)) = 0 

a < x(t) < 

y < u(t) < 6 

(3.6) 

(3.7) 
(3.8) 

(3.9) 
(3.10) 

u is now regarded as the control variable and x the 

state variable. 

It is also convenient to write the discrete version 

of the problem, 
K 

Minimise 	 (3.11) 
tu.1 i.1 

xi+1 =xi+ui ; i = 0,1,2, 	k-1, xo  known 	(3.12) 

h(x.,ci  ) = 0 	i = 1,2, 	k 	(3.13) 

a < x. < p 	, i=1,2, 	k 	(3.l1.) 

y < ui  < S 	, i = 0,1,2, 	k-1 	(3.15) 
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Subscript represents time as usual. 

For some considerations later, we might view the 

discrete problem as a network 

xk  
K 

Fig. 3.4 

3.3 Two Methods of Solution 

Now that we have formulated the problem as a discrete 

optimal control problem, we could use the theory we have 

developed in the previous chapter to solve the problem. 

We can also use the computational methods we have indica-

ted in the previous chapter. We shall now consider 

various methods of solving this particular problem in 

a little more detail. 

3.3.1. Non-linear Programming Solution  

One method of solution would be reduction to a 

vast non-linear programming:  problem in u-space. For 

example, the equations (3.12) could be written as 
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xl = xo + uo 

x2  = xo + uo + ul 

x3  xo + uo + u1 + u 2 

xk 
= x + u + 	+ uk-1 

The constraints (3.14) could similarly be written in 

terms of u. If we now define the vector 

U = (uo" uk-1) 
IT , it is clear that the problem 

has been reduced to 

Minimise F(U) 
U 

G(U) = 0 

AU 	< D, 

where F and G are suitable functions, A a suitable 

matrix and D a suitable vector. Rosen's Gradient Projec- 

tion method can then be applied. 

When the number of generators is large and the 

number of sages is large, the resulting non-linear 

programming problem will also be very large. 

3.3.2. 'Decomposition Technique  

The main difficulty in solving the economic schedu- 

ling problem is the dimensionality of the state and 

control vectors. Hence some method 'of decomposing the 
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problem into sub-problems, solving the sub-problems 

separately and co-ordinating the solutions to obtain 

the solution of the integrated problem seems to be 

attractive. Such a technique was proposed by Lasdon(83) 

to -solve non-linear programming problems. 

We shall illustrate this technique with a two- 

stage scheduling problem. To be mathematically correct, 

we have to assume that the constraints, 

h(xi,ci) = 0 

are linear. These constraints will be linear if the 

power losses are neglected or suitably linearised. 

From (3.11) to (3.14) the two-stage problem to be 

solved is, 

Minimise (L(x1 
uo  ul  

subject to x = xo + uo 

1 + U1  

a < xo  + uo  < p 

< xi  + ul  < p 

y < uo  < 5 

y < ul  < 

h(xl  

h(x2,c2) = 0 
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o Note that this problem is linear in u and we would have 

to apply the Discrete Minimum Principle to obtain the 

optimal control. It is also to be expected that the 

solution will be 'bang-bang s  i.e. either the state 

variables will be at their limits and/or the control 

variables will be at their limits. 

A 'bang-bang' type of solution for the control 

variables may be undesirable'in practice and the con-

straints on uo and ul ma
y be approximated by soft con-

straints. Thus it may be more reasonable to meet the 

demand in the least square sense. With these two assump-

tions, let the modified cost function and problem be 

Minimise iguo,ui,xi,x2) = ;61(uo,x1) + fo2(ui,x2) 

[uo,uil 

subject to xi  = xo  + uo 

x2  xi  + u1 

- p X
0  U

0 	< o  

a - xo - uo  <0 

xl + ul - p < 0 

a - xi  - ui  <0 

From the duality theory developed in. Chapter 2, the 

Dual problem is easily formed. 
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Consider the sub-problems: 

a) Minimise ili(uo,x1) -. <X1,xl> 

subject to xo  + uo  - p < o 

a - x - u < 0 0 	o — 

b) Minimise "52(111,x2) - <12,x2>  + <N1,2c1> 

subject to x + ul  - p < 0 

a - xl  - ul  5_ 0 

(Essentially we have broken the connection between the 

two. stages). Sub-problems a) and b) are solved for 

guessed values of X1  and X2' 
thereby obtaining uo'ux1 

and x2 as functions of Al 
 and X2. We also obtain multi-

pliers corresponding to the inequality constraints in 

the sub-problems. These serve as the p's in the dual. 

It can be proved that the correct values of X's and p's 

are obtained when the dual problem is maximised. There-

fore a steepest descent algorithm could be used to up-

date the X's and µ is. 

This is a heuristic and highly simplified description 

of the decomposition method. A complete description is 

beyond the scope of the present thesis. 
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3.4 Example  

A special case of the problem arises when the cost 

function is linear and the power losses are neglected. 

This problem is 
k 

Minimise 	<a,xi> 

i=o 

	

subject to xi+1  = xi  + ui 	i = 0,1,2,....k-1, 

xo known 

x. = c. , 	i = 1,2,....k 

j=1 

a 5 x < 	i = 1,2,....k 

y < ui  < 5 	i= 0,1,....k-1 

This problem is completely linear and can be solved as 

a linear programming problem. Since there are a large 

number of inequality constraints it is more convenient 

to solve the Dual Linear Program. 

A typical problem was solved using the L.P.90 

programme.. The data for -the problem (provided by the 

Central Electricity Research Laboratories) is shown in 

Table 3.4. The solution of the problem is shown in 

Fig. 3.5. The solution was checked using the Primal- 

. DUal Algorithm presented in Chapter 2 (by hand calculation) 

The solution exhibits the 'bang-bang' property indicated 
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earlier. It maybe observed that one or two cheap 

sets depart from their upper limits. This is to satisfy 

a constraint (a new set is being synchronised). Thus 

the fault may be said to lie in the plant ordering. 

From the experience. gained in solving this problem 

it would appear that a simple programme to solve the 

scheduling problem could be written. This programme 

would contain some minor modifications to the so-called 

merit-order' scheduling. 
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Symbols for Fig. 3.1 

Li  = incremental load in Area 1. 

L2  = incremental load in Area 2. 

Al System lag in Area 1 - Al'd1 are constants GSL1 l+d1s 

A 
GSL2 l+d 	 System lag in Area 2 

2s 

GGll , GG12' 
 etc., = Dynamic response of governor actuators. 

GTG21 

• Transfer function of - Generator 
Turbine Unit 1 in Area 1. 

• Transfer function of - Generator 
Turbine Unit 2 in Area 1 

• Transfer function of Generator -
Turbine Unit in Area 1. 

• Transfer function of Generator 
Turbine Unit 1 in Area 2. 

• Transfer function of Generator 
Turbine Unit 2 in Area 2. 

= Transfer function of Generator 
Turbine Unit n in Area 2.  

GTG11 

GTG12 

GTGln 

GTG22 

GTGn2 

Gfrl 	
Transfer function of the frequency 
regulator in Area 1 

• Transfer function of the frequency 
Gfr2 	regulator in Area 2 

T12 	
Synchronizing torque coefficient of 
tie line 

K11, K12, etc. 	
Gains of the frequency error feedback 
to be applied to turbine in Area 1. 

K21' K22' etc. 
Gains of the frequency error feedback 
to be applied to the turbine in Area 2. 
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GCll' GC12 ' 

GC21' GC22 

fl 

f2 

Compensation networks to be designed 
to suit individual generator charac-
teristics. 

= frequency error in Area 1 

= frequency error in Area 2 

TAB1F 3,2  



1 
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Data for Problem 

List of Gens in 
Order of Merit P p M m W d c Initial 

State 
Initial 
output 
g(o) 

RICH 1 120 50 4 4 20 5 1.50 AV 120 

BELV 5 120 75 12 12 80 7 1.74 AV 120 

LITT 9 60 25 3 3 0 0 1.97 AV 60 

LITT 6 6o 25 3 3 0 0 2.00 AV 6o 

LITT 60 25 3 3 0 0 2.00 DS 

NFLT 2 120 45 6 5 12 5 2.23 AV 120 

NFLT 3 120 45 6 5 12 5 2.23 DS 

BR.B 1 56 28 3 3 15 10 2.40 DS 

BR.B 2 56 28 3 3 15 lo 2.43 DS 

BR.B 5 6o 25 3 3 15 10 2.45 AV 25 

BR.A 1 50 20 .7 7 0 0 3.20 AV 20 

Total Max Capacity 
842 Total 525 

P Maximum permissible output in MW 

p Minimum permissible output in MW 

M Maximum permissible rate of increase in MW/min 

m Minimum permissible rate of decrease in MW/min 

W Steady output when warming up in MW 

d Time required to warm up in mins. 

c Cost in Z/MWhr 
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Loads 

MW Time 

5.45 525 
6.00 56o 
6.15 600 
6.30  665 
6.45 73o 
7.00 805 

Synchronising times  

BR.B1 5.50 

LITT 8 6.10 

NFLT 6.25 

BR.B 2 6.25 

Initial States: 

AV - 'Available' i.e. warmed up and limited only by 

P,p,M and m. 

DS - due to be synchronised i.e. to be synchronised 

at the time given in the list of sync.. times. On syn. 

chronisings we assume the generator does 

L syhcri. 

i.e. it holds a steady output W MW for d mins. 

(This W/u pattern is very much simplified and it 

would not be too unreasonable to ignore it in preliminary 

calculations and assume that W = d = 0). 



r. 

to 
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CHAPTER 4  

SECOND ORDER NECESSARY CONDITIONS AND SUFFICIENT 

CONDITIONS FOR A CLASS OF OPTIMAL CONTROL  

PROBLEMS  

4.1 Introduction. 

In the last two chapters we have been considering 

discrete time optimal control problems and solving them 

using mathematical programming methods. In this chapter 

and in Chapter 5 we want to consider a class of continuous 

time optimal control problems. For this class of problem, 

the first order necessary conditions of optimality are 

well known. However, not much attention has been paid 

to second order necessary conditions and sufficient 

conditions. It is our purpose to do this in this chapter. 

In order to do this we have to investigate the second 

variation of the performance functional and the so-called 

Accessory minimization problem. In the literature of the 

Classical Calculus of Variations, the second order necessary 

conditions are the Legendre condition and the Jacobi con-

dition. 

Both these conditions are of great importance in 

second order successive approximation schemes such as the 

Second Variation Method and Newton's Method, and in the 

design of neighbouring optimal feedback control. In 
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fact if the nominal trajectory is not sufficiently near 

the optimal trajectory these conditions will not be 

satisfied and the approximation procedure will not con-

verge. Examination of these conditions suggests some 

modifications to the second variation method so that the 

procedure may be made to converge for any nominal trajectory. 

These details are presented in the next chapter. 

It should be mentioned that the importance of the 

Jacobi condition has been recognised by Merriamf58)  He, 

however, does not present any detailed analysis. Our 

treatment is motivated by the recent book of Gelfand and 

Fomin.(59)  

4.2 Problem Statement. 

We consider the following Bolza Problem. 

Minimize P(x(t0),u) = F(x(tf),tf) + 	tf  1,(x(t),u(t),t)dt 
Jt 

(4.1) 

subject to the constraints, 

(t} = f(x(t),u(t),t); x(to) = c , liven 	(4.2) 

G(x(tf),tf) = 0; tf  specified 	(4.3) 

where x(.)6 En, u(t)e Em  and f:En+1114.1 	En  and 

G:En+1 	p < n. 

We shall assume 

All functions are twice continuously differentiable 

with respect to their arguments in the interval 
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totf]. 

ii) u(.) and x(.) belong to bounded open regions 11 and 

B of Em and En. If u(i)61/ for all tE[to,tf] 

then u is an admissible control. 

iii) The matrix DxG(x(tf),tf) is non-singular. 

iv) The system is locally completely controllable in the 

interval (to ptf) along any trajectory E corresponding 

to an admissible control 	that is, for the 

linearized system 

(x(t)-x(t)) = Dxfol(t),E(t),t)(x(t)..i(t)) 

Duf(E(t),U(t),t)(u((t)-i(t)) x(t o)- I(%) = 0 

we have 

T 4,T(t,,od, 4>(t,T)Duf.(5E(T),Ii(T),T)(Dug (T),ii(t),T)) 
to 

> 0 

for all t C Cto ptf], where .1)(t t ) is the 

solution of 

~(tlt
°) = Dxf(E(t),11(t),t)(t,t0); 

43(t Ito) = I 

In the following, to simplify the notation, 

often write x when we really want to write x(t). 

4.3 First Order Necessary Conditions. 

For the Bolza problem we have formulated the 

(4.4) 

(4.5) 

we shall 

first 

• 
• 
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order necessary conditions may .be derived in the usual 

way. The constraints are adjoined to the performance 

functionals by means of Lagrange multipliers (%ol (t)) 

(0,0) where %0  > 0 is a constant and 7$.(t) an n-vector, 

and 1Y is a p-vector. 
tf  

J! = P(x(tf),tf) + < IP ,G(x(ti) tO> + oL(x,u, 	- 
to  

< A,$ - f(xput t) >jdt 

Define the Hamiltonian Function, 

H(xtu.1.,t) = 7s.coL(xfult) + < %,f(xfult) > 	(4.6) 

Then equating the first variation to zero and performing 

integration by parts, we obtain that the optimal trajectory 

and control satisfy 

= f(x,u,t) = Dx11(x4u4%,t);.  x(to) = 	,(4.7) 

% = -Dx,H(xtu.,%,t); X(tf ) = DxF(x(tf),tf) + 

DxG(x(tf),tf)Tay 	(4.8) 

G(x(tf),t2) = 0 	 (4.9) 

DuH(x,u,%,t) = 0 	 (4.10) 

4.4 Controllability and Normality. 

In Classical Calculus of Variations; if the problem 

if normal, we may set %.3  = 1 and this defines a unique 
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set of multipliers 1..K  We shall show that in view of 

our controllability assumption, the Accessory Minimization 

Problem is normal and hence our original problem is 

normal.(60)  

The Accessory Minimization Problem is. defined 

Minimise .52P = *Ox(tf),D1r(x(tf),tf).x(tf )> 
tf 

+ * f <D2
u
H.ou,ou> + <4.H.ox,ox> + 

to  

2<D2 cHOx, Ou> 3dt 1 	(4.11) 

subject to Si = Dxf.ox + Duf.Ou; Ox t = 0 (4.12) 

DxG(x(tf),tf)6x(tf) 0 	(4.13) 

where 	= F + 

Proposition 1. 

If the system is locally completely controllable in  

[to'tf3 then the accessory minimization problem is normal 

and hence the original problem is normal. 

NDef.: A problem is said to be abnormal if we can find a 

set of 7's with 7%.o=0 which satisfy equations (4.7)-(4.10). 

#We have dropped the arguments of D2H etc. They are cal-

culated along the optimal control and trajectory. Also 

Ox = x-1 etc. where 314.) is the optimal trajectory. 

as(61) 
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Proof: We shall prove the above proposition by contra-

diction. Let (6x, 67‘, 6u) be the optimal trajectory and 

the optimal control for the accessory minimization 

problem. Hence they satisfy the Euler-Lagrange equations 

of the problem. 	These are 

6± = Dxf.6x + Duf.6u; 	6x(to) = 0 (4.14) 

= -7$.04.6x + 40.6u) - (Dxf)T.6h (4.15) 

%0(411.6u + DIH.6x) + (Duf)T.6% = 0 (4.16) 

DxG(x(t ),tf).6x(tf) = 0 (4.17) 

61$.(t1.) = *f(x(tf).tf).6x(tf) + (DxG(x(tf),tf))T.Oxr  (4.18) 

Let us assume that the system is abnormal. Hence ho = 0. 

Hence from (4.15) and (4.16) we get, 

= -(Dxf)T.61. 	(4.19) 

(Duf)T.6W = 0 	(4.20) 

Solving (4.19), we have 

6%(t) = 412(tf,t)6%(tf), where Ctltf) is the 

solution of 44-(t2tf)  = Dxf.(t,tf); 4P(tf,tf) = 

and therefore from (4.20), 

(Duf)T e(tf,t)OW.(tf) = 0 
	

(4.21) 

But condition (4.21) expresses the fact that the rows 

of the matrix Ctf,t)Duf are linearly dependent. But 
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a necessary and sufficient condition for the rows of 

.(tf,t)Dufqto be linearly dependent is(62).  that the.  
• 
Grammian matrix f 

tf 
 40(tf,t)Duf(Duf) r(tf,t)dt = 0. t T   

This, however, contradicts our controllability assumption. 

Hence the accessory minimisation problem is normal and 

therefore by a theorem of Bliss the original problem is 

normal. 

4.5 Second Order Necessary Conditions and Sufficient  

Conditions of Optimality. 

For the Bolza problem we have formulated, the second 

variation is given by, 

62g,  = <6x(tf),---  11/(x(tfY,tf).Sx(tf) 

+ ffk4H.6x,6x> + <D121.11.4512,6u> + 2<D1cH.Sx,6u>jdt (4.22) 
to 

It is well known in the Calculus of Variations that a 

necessary condition for a weak minimum of the Bolza 

problem is 4522, > 0 and a set of sufficient conditions 

for a. weak minimum is 	= 0, 624 > 0 for all Sx / 0, 

612 / 0, sufficiently small, where 6x and Su are related 

by 

0± = Dxf.Sx + Du  f.6u. 
	

(to) = 0 	(4.23) 

It is also well known-that a necessary condition for 

At> 0, is D2H > 0. This is known as the weak form u- 
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of Legendrets condition. In the following we shall 

assume that the strong form of Legendrets condition is 

satisfied, namely, DuH > 0. We then obtain the following: 

Proposition 2: Let D,,2  H > 0 and let K(.) be an arbitrary 

Positive definite symmetric matrix which satisfies the  

matrix Riccati equation. 
. 
K(t) + K(t)B(t)K(t) + K(t)A(t) + AT(t)K(t) + C(t) = 0 (4.24) 

with the boundary condition K(tf) = Dx21((x(tf),tf), where 

= Dx  - fDu 	u 	D f.(D2H)-1 -2  H ux 

= 	 Dilf.(D2uH)-1 ' (Du  f)
T (4.25) 

DuH - D2  H. (D.1.2111)-1.D12.2 1 

Let the solution of this equation be defined everywhere in 

the interval [to,tf]. 	Then o2 > 0, for all Ox / 0, 

ou / 0, sufficiently small where o2  is given by (4.22)  

and Ox and Ou are related by (4.23). 

Proof: 
tf tf  
j+ ( **x<KOX,OX>)dt = <K6x,ox> It  = <D!ly(x(tf) Ox(tf), 
"o 	 o 

Ox(t )> 
	

(4.26) 

Hence, rearranging the expression for 624 we may write 

it as 
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tf 	 2 02st. = I 0(all [Ou +(Du 

-1 	H.Ox], Ou + (D2H)-1.D2 H.6x> 
t u 	ux 	ux 

+ <[*• - D2  H.(*)-1.D2  11].45x,ax> + 

<K6x1ox>)dt 	 (4.27) 

But 

4t. <Kox,ox> = <[K + K.Dxf +(Dxf)T.K]Ox,Ox> + 

2<(Duf)T.K.Ox,6x> (4.28) 

Prom (4.27) and (4.28), 

 

624E = (f  J (<D'H.[Ou +(D2H)-1(D2  H + (Duf)TK)Ox], t u o  

. 	. ou + (101,211)- knu
2
xH  + Lpf)

T
K)
o x>)dt 

t4. + 
 r

<(K + KBK + KA + ATK + 0)ox,6x>dt 
t 

Since DuH > 0 and K satisfies (4.24), we have 

At > 0 . 
624 01, can be zero if and only if 

Ou + (D2 lEDI1xH + (Duf)TKI5x .= 0 1H)-  

0 

(4.29) 

(4.30) 

But this is impossible, since from (4.23) and (4.30), 

(DLEE 	(11 .4")T7215X ea(t ) = el =DV - D f(D2H)-1  0 u u 	 %,114, " 

implies Ox = 0 everywhere in [to t1] which contradicts 
our assumption. Hence the propoaWion. 
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The matrix Riccati equation (4.24) is precisely the same 

equation as that obtained by Merriam and Kalman when 

solving the linear-quadratic cost problem. We note 

that the accessory minimization problem is also a linear 

quadratic cost problem, but it is being used here for a 

different purpose. The control-theoretic significance 

of the Riccati equation will be brought into evidence 

later in this section. 

If we combine the results of sections (4.3), (4.4) 

and (4.5), it is easily seen that we have obtained a 

set of sufficient conditions for the Bolza problem, namely, 

A set of sufficient conditions for X, u and 7. to  

furnish a weak relative minimum for the Bolza problem  

formulated in Section 4.2 is that they satisfy  

i) The Euler-Lagrange Equations, 

ii) Du
2  H > 0, 

iii) The solution of the matrix Riccati equation  

(4.24) be defined everywhere in the interval  

[tottf]. 

The last condition is equivalent to the Jacobi Condition 

of the Calculus of Variations. 

We may also define a conjugate point in the following 

way: The time instant. t = to  at which the solution of 



- 106 - 

the Riccati equation becomes unbounded is called a'point 
conjugate  to the point t = tf. 

Let us now illustrate some of these ideas with an 

example from mechanics.(63) 

Consider a simple harnionic oscillator, i.e. a particle 

of mass m oscillating about an equilibrium position under 
the action of an elastic restoring force. 	The particle 

has kinetic energy, 

T = -12- 2nax 
and potential energy 

U =i-mx2  

so that the action is 

1"(m.±2 - am2)dt which is to be minimised. 
,

o 

We assume x(to)= 0. Let us introduce the variable u by 
means of the differential equation 

= u; x(to ) = 0. 

Our problem then is to minimise, 
t, 

2 V(mu2 - mx2)dt 
to 

subject to x = u; x(to ) = O. 

The Hamiltonian is 

H = 2(mu2  - mx2) Au, whence 
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HU = mu + = 0, giving n = - 

Hx  = -ax, giving 7%. = ax; 7‘.(tf).  = 0 

Also, Huu  = m > 0 and Hxx  = -m. 

The Riccati equation is, 

K2 K 	- m = 0; K(tf) =0. 

Introduce the transformation, 

K = 	m R. 

The Riccati equation becomes, 
.. 
mR. + aR = 0 . 

The solution of this equation is given by 

R = C sin(cat + G), where W  =tli-a-:-ct  and C and G are 

.constants. Differentiating, 

R = C 0 cos (a)t+G) and hence, 

K = -om cot(ot+G). 

Since K(tf ) = 0 we get, 

(-att. + G = 2 and therefore G = - Otf . 

Hence, K = -am cot( + 6)(t-tf)) 

= 	tan (0(tf-t)). 
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If co(tf-t) = Z , i.e., t = t„ 4E. 

e^ 

214  
then K 	co." 

Therefore if t > t f 	o , the Jacobi condition is 

violated. 

So far we have not said anything about the necessity 

of the Jacobi condition for the second variation to be 

non-negative. It turns out that the Jacobi condition 

is also necessary. 

4.6 Relationship with Dynamic Programming. 

For the simple variational problem of minimising 
t, -L 

t 1,(xt)dt subject to x(to ) = a, x(t1) = b, Dreyfus(64)  
0 

has obtained a matrix Ricatti equation for Dlv, where v 

is the optimal return function. In order to derive this 

equation it is necessary to assume that Dx
2  v is continuous. 

Dxv being a matrix, the continuity assumption implies 

that D2v is bounded everywhere in [t
0 J.  pt.A. Dreyfus also 

shows that the boundedness of the solution of the Ricatti 

equation is equivalent to the Jacobi condition of the 

Calculus of Variations. 

Essentially the same arguments are valid for the 

Bolza problem. 	If v(x(to),t0) is the optimal return 

function, then invoking the Principle of Optimality, we 

obtain Bellman:s partial differential eouation, 
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Ian r L(x,u,t) + ‹Dxv,f(x,u,t)>] u61.1  (4.31) 

If Dxv = X(x,t), then by taking characteristics of the 

"oartial differential equation, we obtain the usual 

canonical equations, 

ft = f(x,u,t) = DH 

= -Di 

If we assume D2v is continuous, then by straightforward 

differentiation the matrix Ricatti equation (4.24) can 

be obtained for Day. 

We can now see an interesting relationship between 

Dynamic Programming and Calculus of Variations In 

Classical Calculus of Variations, the satisfaction of 

the Euler-Lagrange equations, the Legendre condition and 

the Jacobi condition are sufficient to embed the optimal 

trajectory in an extremal field. On the other hand, in 

the Dynamic Programming formulation we start by embedding 

the trajectory in a field(65) which by what we have shown 

is the extremal field of the Calculus of Variations. 

Then, as has been shown by Dreyfus(66) we can obtain the 

usual relations of the Calculus of Variations. 

4.7 Neighbouring Optimal Feedback Controls. 

For the simple variational problem, Dreyfus has also 
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indicated how the Jacobi condition can be used to 

generate neighbouring solutions. We now consider 

neighbouring optimal feedback control for our Boiza 

problem. Assume there are no terminal constraints. 

Supposing that the optimal control and optimal 

trajectory has been obtained by some method, it is desired 

to compute the optimal control and optimal trajectory 

for a slightly perturbed initial condition x(to) + ex(to). 

The neighbouring optimal feedback control problem(67)  is 

Minimise <%(to)lox(to)> + 2<ox(ts),*(x(tf),tf).5x(tf)> 
tf  
S [<ZH.eru,Ou> + <* .ox,ex> + 2<D1.2.1xH.*Ox03u)]dt 
t 	" 

subject to el = Dxf.Ox + Duf.ou; Ox(to) given. 

Let us assume that the Ricatti equation (4.24) has 

a bounded solution everywhere in [toltf]. Then exactly 

as we did in Proposition 2, we may write the performance 

functional for the neighbouring optimal problem as 
<%(t0), ex(to> 
tif , 

( Du2H ) ( -2x  J <D-uH. Su + 	Du 	(daf)2K)Ox t  

Su .1-(417117IH (Duf)
T106x>dt 

The minimum value of this performance functional is 

obtained when the integral is zero (we are assrming DuH>0) 



We must then have 

Ou = (D12111)-  [D2 H + (Duf) TK]6x 

This is, of course, the linear feedback law which we 

expected to obtain. If, however, the Riccati equation 

does not have a bounded solution everywhere in the 

interval of interest, then the feedback gain tends to 

infinity and we cannot synthesize linear feedback control. 

4.8 The Accessory Minimization Problem. 

The accessory minimization problem has been defined 

in Section 4.4 and its Euler-Lagrange equations are given 

by. equations (4.14)-(4.16). 	Since the problem is normal 

these equations may be re-written as 

Si = A(t)ox + B(t)M; 6x(to) = 0 (4.32) 

a = C(t)ox - A.2(t)6%;  (4.33) 

Wtf) = 4y(x(tf),tf, ).ox(tf) + (DxG(x(tf)Itf))2V-

where the definition of A, B and C are given by (4.25). 

	

(

4'11(t,t0) 	3.2(t,to) 

	

'1>21(ttto) 	sil22(t/to)/ 

transition matrix of the linear system (4.32)-(4.33). 

It can now be directly verified that 

22(t"22(Y)-1  Wt) = 	D 1)(tf)6X(tf) 

+ E> (t)(§. 
- 22 	2 ))-1(DxG(tf))Tor 	(4.34) 

Let 

) be the 



- 112 - 

where 

4'22(t ,t0) = 	43.2(t,t0) - A.2(t)d z2(t,t0) 

122(tItO)  = A(t)12(ttto) 	B(t)  22(tPt0)  

suitable 
with t boundary conditions 

(4.35) 

(4.36) 

(T) AVANWO ;4  41WAAWAMO 
114A00 Oft 

I,.(i).(t.((fYDxY(VitCi) -:(+) 
and that K(t) 	satisfies the matrix 

Riccati equation (4.25). 	Clearly if 	12(t'to)  becomes 

singular at a point t = to  the solution of the Riccati 

equation will be undefined at that point. Thus a point 

t = tc  at which 2.2(tf to) becomes singular is a point 

conjuate to the point t = tf. 

Let us now indicate the rationale behind investigating 

the Accessory Minimization Problem. We know that if 

(11  11) is optimal, the second variation must be non-

negative for all non-trivial variations Ox,45u sufficiently 

small. This naturally leads to investigating the minimum 

value of the second variation and the accessory minimiz-

ation problem. We note that for the second variation 

to be non-negative over the interval [toptf], it must be 

non-negative over every compact sub-interval [t1,t2] of 
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[t09tf ]. 

We shall.now prove some simple results concerning 

the Accessory Minimization Problem. 

Prom (4.16), 

	

ou = -(D121H)-1[DIH.6x + (Duf)T .61.] 
	

(4.37) 

Substituting in (4.11)2  we get 

2i52P = 2<6x(tf)41)(i(tf)9 f2a2) •6x(tf)> 
Uf 

+ 2 	 [<06X,6x>--<6X 2336%>]at 
	

(4.38) 
to 

Proposition 3. 

Por an711aS112112191ETLP112Z2EU111.211 11.21Llaa 

(4.33), 62P given by equation 

to zero. 

Proof. 

(4.38) has a value equal 

 

   

tf  
dt 
d 

<6/,.2  6x> • 

 

= <6Mtf ) 26x(tf)> 	<6%(to ),6x(to )> 
0 

 

= <41V(x( f),tf, )6x(t 6x(tf)> 	(4.39) 

Hence from (4.38) and (4.39) 

622 = 

jr -f 
 

tf  
-[<C6x26x> 

to 
t 

[<06x9 6x> 
to 

<67,,,Ba.> 

- <6X,1367,› 

d. <67.26x>]dt + 

-:- <-06x - A26%9 6x> 

+ <6%2A6x + B67,> ]at 

= 0. 
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Hence the proposition. 
Let T be the interval [tetf ] and Tt = [tvt2 ] be 

a compact sub-interval of T. Since the accessory.  
system is completely controllable in T, it is also com- 
pletely controllable in T'. We now have, 
Proposition 4. 

Whenever (ox, a) = (0010 is a solution of the  

Accessory system (4.32)-(4.33) on some sub-interval, 
then also M = 0 on this sub-interval. 
Proof. We shall prove the proposition by contradiction. 

Let tlE. Tt and assume 6)&0) / 0. 	Prom (4.32), 
t! 

ox(tt) = j 4(tt,T)B(T)CA(Z)drt 
t1 

= [ft 	(tt;r0B(TAPT(tipT)dt]a(tt). 
1 

Since the system has been assumed to be completely con-
trollable and since DOH > 0, the matrix within the-bracket 
is positive definite. Hence a(t1 ) = Op which proves 

the proposition. 
Let us now define a conjugate point. Two distinct 

points t1  and t2  belonging to T are said to be mutually, 

conjugate  with respect to the system (4.32) and (4.33) 

if there exists a solution (data) of the system with 
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Ox / 0 on the sub-interval with end-points t1  and t2  

while Ox(t1) = Ox(t2) = 0. 

The system (4.32) and (4.33) is said to be non 

oscillatory on the sub-interval T1  if no two distinct 

points of this sub-interval are mutually conjugate. 

With these definitions and propositions in hand, 

we can apply certain, theorems of Reid(75)  to obtain the 

following proposition: 

Proposition 5: For a system which is locally completely  

controllable, olt 	is optimal if and only if they  

satisfy 

i) Euler-Lagrange Equations (4.7)-(4.10) 

ii) D2H(u, x, A,. t) > 0 (Strengthened Legendre 

condition,.  

iii) Accessory system (4.32)-(4.33) is non-

oscillatory on every sub-interval [t1II2] 

of [toptf]. 

4.9 Sufficiency Results using Convexity Arguments. 

So far, we have considered problems id which there 

were no inequality constraints present. We shall now 

give sufficiency theorems for a general class of non-

linear optimal control problems in which there are 
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Inequality constraints present. The methods we use 

are very similar to those used in Chapter 2. 

We shall consider the same problem as that defined 

in section 4.2, but there will be the added inequality 

constraint 

h(x(t),u(t)) < 0, 	h: e+m 	Eq, q < m 

present. Let h be continuously differentiable with 

respect to x and u. 

Let I 	(i: hi(x(t),u(t)) = 0/ 

and let h(x(t),u(t)) = thi(x(t),u(t)) : i 

We shall say that the function h : En+m 	Eq is regular  

at a point (I(.),141(.))E 214121, if and only if for every 

.) ) 6 	 / 0, such that 
equality x = 	u = A +', implies the inequality 

E(x(t),u(t)) = E(1+y)(t) (11-1)(t)) 

= E(1(t)Itz(t)) + DxE1(1(t),t1(t)).1(t) 

+ DuE(1(t),u(t)) 	(t) # o 

there exists a function 4): [0,1] -4. En+m  with the 

following properties, 

Nga).T exists for 0 < S < 1 

ii) (1(.),11(.)) = 0(0) 
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iii) E[ua(s)] < 0, o,< E < 1 

iv) ( ( ) 11, ( ) = Do(o) 

We now assume, 

a) The functions F, L, f, G and h are twice continuously 

differentiable with respect to x and u, 

b) the functions L, f and h are strictly, convex with 
respect to u, that is, 

L(x(t),u(t),t) > L(x(t),A(t),t) + DuL(x(t),A(t),t). 

(u(t) - 11(t)) 

and similar conditions for f and hp 

c) the functions F, lip f, G and h are convex with respect 

to x, that is, 

L(x(t),u(t),t) > L(/(t),u(t),t) + pxL(1(t)lu(t),t 

(x(t) - 1(t)) 

etc., 

d) the matrix DxG(x(tf),tf) is non-singular. 

A pair (a(0,1(o) satisfying (4.2), 4.3) and 
h(x,u) < 0 is said to be optimal if P(x(to),A) < P(x(t.),u) 

for all (u(.),x(.)) satisfying (4.2), 4.3) and h(x,u) < 0. 

Proposition 6. Let u(.) and x(.) be an admissible  

control and trajectory satisfying equations (4.2), (4.3)  

and the inequality constraint h(x(t),u(t)) < 0. Let 

there exist multipliers l(.), a(.) and 	such that  
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X =-D (I, u,  It  Pt t);  I(tf) = Dx11(a(tf)f tf) 

(D.G(i(tr ),tf )T 
	

(4.40 ) 

DuH(X, 	At t) = 0 
	

(4.41) 

< µ, h(i, 11.)> = 0 	. 	(4.42) 

> 0, 11.(.) > 0, S7> 0 
	

(4.43) 

where H(x4u,%,µ,t) = 11(xtupt) + 0.,f(x,upt)> 

+ <µ, h(x,u)> 	(4.44) 

Then {1(.), X(.) is optimal. 

Proof: Due to our convexity assumptions, 

P(x(to),u) 	P(x(to),a) = F(x(tf),tf) - P(2( ),tf) 

It" 	11111,(x u t) - 11(1,,t)]dt 
o  

> <DxF(1(tf ),tf ), x(tf) - I(tf)> 
tp 

+ <DL(1,Upt),x-61>]dt 
to " 

= <DxP(1( ),tf),x(tf) 	1(t ) 

tf  
J [(Daf(ilt,t))T A + (Duh(1,A))T.µ,u41> 

+ <67Z + Dxf(1,11,t)T A + (Dh(1,(1))T.µ,x.X>]dt (4.45) 
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Integrating by parts, 
f  

= -ei(tf),x(tf)-1(tf)>+<%(to),x
o  

t )-1(td> 

 

t 
4 

0.,f(X,11.t) 	f(1,1419t)›dt 

t
o 

 

  

  

> -E<DxF((tf),tf) + (DxG(i(tf),t ))T2), x(tf)-(tf): 

jf  6, 	A A 
‹W Dxf(X,Upt).(X4) 	Duf(51,(1,t).(u41)>dt, (4.46) 

0 

since A(.)> 0 and f is convex in x and u. 

From (4.45) and (4.46), 

P(x(t ),u) P(x(to)4) > 	67,DxG(1(tf),tf).(x(tf)-1(tp 

t 

tf 
1: 0 

A Dxh(t,11).(x_xDuh(l,A).(u_a)>dt (4.47) 

But G(x(tf),tf) > G(I(tf),tf) + DxG(1(tf),tf).(x(tf)-X(tf)). 

But G(x(tf),tf) = G(g(tf),tf) = 0 

Hence, DxG(1(tf),tf).(x(tf) 	1(t f)) < 0 

Also, h(x,u) > h(1,11) + Dxh(1,11).(x-1) + Duh(X,i1).(u-a 

But h(x,u) < 0, h(1,i1) < 0.  

> 0 < 	h(M)> = 0. 
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Therefore (4.47) can be written as, 

P(x(to),u) 	P(x(to),u) > 0, which proves the 

proposition. 

It can be shown 

Proposition 7: Let h be regular at (u(.),x(.)).  

Conditions (4.40)-(4.42)  and µ(.) > 0 are also 

necessary for (u(.),x(.)) to be optimal. 

A general result of this type is proved in Chapter. V. 

As a corollary of propositions 6 and 7, we can isolate a' 

class of problems for which the necessary conditions are 

also sufficient (provided our convexity assumptions hold). 

This is the class of systems for which 

f(x,u,t) = A(t)x(t) + B(t)u(t) 

G(x(tf) tf) = Mx(tf), where M is a pxn non- 

singular matrix, p..< n 

It is precisely the properties of this class of systems 

that we make use of in the modified second variation 

successive approximation method. 

In problems in which the inequality constraint is of 

the form h(x(t)) < 0 (the state constrained problem), we 

can reduce it to the type of constraint we have considered 

by wry. t ing 
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h(x(t)) = h(x(t 	
t 

)) + 	h(t)dt 
to 

= h(x(to -- )) + f x  t D__h(x(Z)).f 	diC 

= h(x(to)) + C(x,u,t) 

Certainly the most stringent requirement in the sufficiency 

arguments is the requirement that 1(.) be positive every- 

where in Lto,tf3. A sufficient condition  for 1(.) to 

be positive everywhere is given by the following pro - 

position.(51)  

Proposition 8. 

Sufficient conditions for 1(.) to be non-negative 

everywhere in [toltf.] are 

i) t(tf) > 0 

ii) DxL(.) + (Dxh)T(.)A > 0 

iii) age > 0, 	i 	j 

Proof: Let g(.) = DxL(.) + (Dxh)T(.)µ. 

Rewriting equation (4.40), componentwise, 

A afi A  

d  

X. = - 	--r X 4  gi(t); 	= 	Z aG  j j =1 ax 	 au 	j ax 

Introduce the transformation, 
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t 
exp[ f J-4 ä.t]yi  

t arL  

This converts the set of equations (4.48) to 

t 	i 
y. = 

	

T  af i 	 s] . 
to ae" 

	

cr 	gi(t)eXPC.-f Z.".  

Hence the sufficiency of the conditions is obvious. 
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CHAPTER 5 

SECOND ORDER COMPUTATIONAL METHODS FOR THE SOLUTION 

OF OPTIMAL CONTROL PROBLEMS  

5.1. Introduction 

In the previous chapter we have considered second 

order necessary conditions and sufficient conditions 

for a class of optimal control problems. We have also 

indicated that second order conditions are important for 

some computational methods. In this chapter we present 

some second order computational methods fbr a general 

class of optimal control problems. The class of problems 

considered is known as the Bolza Problem in the Calculus 

of Variations. The algorithms considered are extensions 

of the gradient methods due to Kelley(68) and Bryson(69) 

and similar to the methods proposed by Merriam(7°). 

Merriam however does not consider problems with terminal 

constraints. The algorithm presented is formally equiva-

lent to Newton's Method in Function Space(71),(72) and 

indeed in some problems it would be better *to use Newton's 

Method. 

The development in this paper is formal and indicates 

how we solve these problems on a digital computer. 
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However, under the asumptions we have made a rigorous 

treatment of these successive approximation methods can 

be given. 
(la LET 

The 	 may be divided into 6 sections. In 

Section 5.2 we formulate the problem and state the 

assumptions we have made. In Section 5.3 we state the 

first-order necessary conditions of optimality. These 

are the Euler-Lagrange equations and the transversality 

condition. 

Section 5.4 is devoted to Second Variation Successive 

Approximation Methods and certain modifications to it. 

In Section 5.5 we show how the second variation 

method is formally equivalent to Newton's Method and 

also indicate how the linear two point boundary value 

problem arising in Newton's Method can be solved in 

essentially the same way as in the Second Variation 

Method. 

In Section 5.6 we point out certain advantages and 

disadvantages of the Second Variation Method. 

5.2 Problem Statement 

We consider the following Boiza problem. Find the 

,optimal control function 11 and the corresponding optimal 

trajectory X so that the performance functional 
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P(x(to) u) = F(x(tf),tf) 

is minimised subject to the 

dx _ f( 	(t),u(t),t) 

+ 

3 	x(t 

constraints 

L(x(t),u(t),t)dt 

t 0 

o) = c given 5  

(5.1) 

.(5.2) 

(5.3) 

dt 

G( 	(tf),tf) 

Here x(t) E En, u(t) e Em, f is a function mapping 

En+m+1 to E and G is a function mapping En+1 to EP 

p < n. The time tf  may be explicitly or implicitly 

specified. 

Assumptions. The computational method we present is.an 

iterative method. At each iteration stage, we have to 

solve a minimization problem similar to the Accessory 

Minimization problem we were investigating in the previous 

chapter. We have to make suitable assumptions so that 

the auxiliary minimization problem occurring at each 

iteration stage is well defined and has a proper minimum. 

Hence the following assumptions: 

i) The original problem has a unique minimum and 

this minimum is attained by some admissible control 

function u and corresponding trajectory x. Let fl be a 

bounded open set of Em. If u G.U. , u is called admissible. 

ii) The system is locally completely controllable in 
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(tof] along any trajectory 21 corresponding to an 

admissible control u. 

iii) All functions are assumed to have continuous 

second derivatives with respect to x, u and t. 

At every iteration stage 

iv) D x  G(x(tf  ),tf  ) is non-singular. 

v) The matrix of partial derivatives D2  H is positive 

definite and the matrix of partial derivatives D2y and 

D2
x 
 H 

Dxu2 (DuH)-1Dux  are positive semidefinite where 

y(x(tf),tf,1,) = F(x(tf),tf) + <)1,,G(x(tf),td> (5.4) 

and H(x(t),u(t),X(t),t) = L(x(t),u(t),t) 	<X(t)„f(x(t),u(t),tk 

(5.5) 

5.3 First Order Necessary Conditions  

Let il(.) and X(.) be the optimal control and the 

optimal trajectory and let 'k.) G En  and 	E EP  be the 

multiplier functions and the terminal constraint multi-

pliers. Let N( and H be defined by (5.4) and (5.5) 

respectively. Then 	X(.), '5‘.(.)., 	satisfy 

i(t) = f(x(t),u(t),t) ; x(to) = c 	(5.6) 

5(t) = -DxH( (t),u(t),X(t),t) ; X(t ) = Dx1r(x(tf),tf.,19-) 

(5.7) 

DuH(x(t),u(t),X(t),t) = 0 	(5.8) 

G(x(tf ),tf ) = 0 
	

(5.9) 
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W(x(t ),tf 	= H(x(tf),u(tf),X(tf),tf) 

+ Dty (x(tf),tf 1,) = 0 

The last equation is the transversality condition. 

(5.10) 

5.1+A Second Order Successive Approximation Method  

LetP=P(x(td,u). The successive approximation 

method consists of constructing a sequence of functions 

u0(.), 111(.),.i..un(.) and x0(.), x1(.), 	xn(.), such 

that P(x(to)lun+i) 	P(x(t0),un), and Lt P(x(t0),un) 	P 

Lt 	un = 	Lt 	x = x, where u and x satisfy (5.6) A 

n—>oo  —> oo 
and (5.9). We shall (formally) construct sequences such 

that at each iteration stage equation (5.6) and (5.7) 

are satisfied and P(x(to), uni.1) < P(x(to)lun). Also 

after a finite number of iterations 

II DuHIf = max 	max 1 )11—ii < e 
1.<1<m t E j to, t 

11G(x(t ),tfH = M4 I Gi(x(tf),y1 <~2 and 

W(x( tf ) tf , v)1 < C3. 

E1, E and E
3 

are suitably small positive numbers 2 
selected from numerical considerations. This means that 

we shall satisfy equations (5.8), (5.9) and (5.10) 

arbitrarily closely. It is a second order method since 

the nature of the convergence is quadratic (the number 
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of correct digits at each iteration is doubled). In 

principle, for a linear system and a quadratratic perfor-

mance criterion, we obtain one-step convergence. 

We shall consider two different cases of the problem. 

Case i) Final time tf  is.given explicitly 

Let us assume that we have chosen a nominal control 

u(.) in the time interval [to,tf] and the terminal 

Lagrange multiplier r. The nominal trajectory is then 

obtained by integrating the system equations 

	

x = f(x,u,t) ; 	x(to) = c 

in the forward directionx. The equation, 

X = -D x
H(x u,X,t) 

is then integrated backwards with the boundary condition 

	

X(tf) = DO/(x(tf), 	All derivatives are evaluated 

at the nominal control nd-trajectory. The performance 

functional may now be written as 
tf  

P( (t ),u)- y(x(tf), ) + jr [H( (t),u(t),X(t),t) - 

to 

- <X(t),X(t)>]dt 	(5.11) 

Let us expand P in a generalized Taylor's series 

HTo simplify the notation we shall often drop arguments 

of a function. 



obtained by minimising 
tf 

I
[E1u 	2 <D H,5u> + -1. 0 	2x<D2H.5u 6u>+ <D2H.5x16x> 

+ <D2  H.6x 6u>] dt ux 

1- i <D;. 1.1,(x(tf) tf,15 ).6x(t),6x(td> 

(5.12) 
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t
f 

P(x(to),u+)LP(x(to),u)+ 	<DuH,e> dt 

to 

E<JE2H.> + 6T2uH.71,11>+2<162ux  .M5.] •  
to 

+ 2 <Dxty(x(tf),tf,v).11(tf),fl(tf)> 

Where the bar notation indicates that the derivatives 

are calculated on the line segments joining u and u+, x 

and x+11. 

Let us now assume that e and' 11 are sufficiently 

small so that it is sufficient to retain terms up to 

second order. Call = 6u and 11 = 6x. Let the new control 

be u 	= uold + 5u. The improvement in control 5u is new 

dt 

Subject to the constraints, 

5i = Dx  f.5x + Du  f.5u ; 6x(to) = 0 	(5.13) 

£2G(x(tf),tf) + DxG(x.(tr),tr).5x(tf) = 0 	(5.14) 
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where E
1 

and 2  are suitably chosen small positive 

numbers 0 < El, 62  < 1. We notice that to obtain the 

improvement in control we have to solve a new variational 

problem. It is however a linear problem with a quadratic 

performance criterion and.linear terminal constraints, 

and can be solved. The complete solution of this varia-

tional problem is given in Appendix C. A discussion of 

why the parameters E1  and e2 are introduced in the 

particular manner is also given in Appendix C. 

The solution of this new variational problem is given 

by 

oi = Dx1.5x + Duf.bu 	Elx(to) = 0 	(5.15) 

E1 	x 46,5‘. 	-D2H.6x-D2  H.6u- e1  (Dx  f)T.LNX 	(5.16) xu  

f l   Ax(ti,) = D2 y(x(tf ),tf , 19 ).ox(td+ E2(DxG) T.AD(5.3.7) 

Su = -(D2H)-1[ E
1  Du  H+D2  H.ox+ E1(Duf)1t'ZIN ] ux (5.18) 

where 6
1
AX and E2L are the multipliers for the 

auxiliary minimization problem. 

Let us introduce the matrices and vectors, 

% 	2 A =Dxf-Duuf(D2H)-1 DuxH 

B = -D uu  f.(D2H)-1(Duf)T 

C = D2H - D2  H(D2H)-1D2  H xxu u ux 

v = -Duf (D2H)-1DuH 

W = -D2  H(D2uH)-1Du  H xu   

(5.19) 
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Using (5.19) and substituting (5.18) into (5.15) and 

(5.16), we obtain the following linear two-point boundary 

value problem, 

5X = A(t)5x + EIB(t)AX+ Ely ; 	to) = 0 	(5.20) 

E1 k = -C(t)6x- 1AT(t)2SA- E1w 	(5.21) 

ElAX(tf) = D;(x(tf),tf).6x(td+ e2(Dx 	. AI" (5.22) 

E2G(x(tf),tr) + DxG.5x(tf) = 0 	(5.23) 

Before proceeding further it is necessary to show 

that the particular choice of 5u given by (5.18) indeed 

reduces the value of the performance functional. In 

Appendix C we show that for this choice of Elu the sum 

of the first and second variations is indeed negative. 

The linear two-point boundary value problem is 

perhaps best solved by introducing the linear trans-

formations, 

@I LIA 	+ x(t)ax + 621(t)40.9 (5:24) 

	

_ 	. 5G 	m 1 	+ NT  kt)x + 2P(t)46.19 

where 5G = - 62G(x(td,ti). 

(That such linear transformations exist may be easily 

shown by writing the solutions of the differential 

equations (5.20) - (5.21) explicitly.) 

Differentiating (5.24) and (5.25), using equations 

(5.20) - (5.23) and equating coefficients of various 

(5.25) 
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terms to zero (see Appendix C), we obtain the following 

equations for L, m, K, N and P : 

L + (KB+AT)1, + Kv+w 	0 ;. 	t(tf) = 0 	(5.26) 

k+KA+ATK+KBK+C = 0 ; K(tf) = D;:ky(x(tf),tf,1,) 	(5.27) 

+ (KB+AT)N = 0 ; N(tf) = (DxG( (tf),y)T 	(5.28) 

+ NT(B1 +v) = 0. ; m(tf) = 0 	(5.29) 

P + N BN = 0 ; P(tf) = 0 	(5.30) 

In order to be able to compute 5u, we have to determine 

46)Y. Equations (5.26) - (5.30) can be integrated back-

wards. Having done the integration backwards, we may 

calculate 6 4YD at time to from the relation, 

E2ZVI, = P
-1  (to  )[5G- el  m(to  )-N

T  (to  )5x(t o)] 
	

(5.31) 

Due to the assumptions we have made P-1(to) exists. 

From (5.31) and (5.24), 

el AX(t) = e1[t(t)-N(t)P-1(to)m(to)] - N(t)P-1(to)5G 

- N(t)P-1(to)NT(t0)5x(to) + K(05x(t) 	(5.32) 

Hence from (5.32) and (5.18), we get 
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6u = - E1u  (D2H)-1[Du  H + (Du  f)71.(t)] 

+ (D1711-)-1(Duf)TN(t)p71(.t0) 6G 

+ (D121H)-1(Duf)7N(t) P-1(to)N7(to)6x(t 

(D2H)-1[D2
ux H 
	(3 uf):T.1  = E. 5x (5.33) 

T  Let E1u  (D2H)-1[DuH + (Duf 	(t)]  = rl 

- el(DH)-1(Duf)7N(t)P-1(to)m(to) = r 

- (D2H)-1(Duf)7N(t)P-1(to) = K1 
	(5.34) 

(D121H)-1[D2  H + (Duf)7K] = K2  

Since 6x(to) = 0, using (5.34) equation (5.33) may be 

written as 

5u(t) 	-r1(t)-r2(t) - K1(t)6G - K2(t)5x 	(5.35) 

Equation (5.35)is a linear feedback equation. It is 

therefore clear that the process of improvement in control 

function is a linear feedback process. This is perhaps 

brought out more clearly in Fig. 5.1. 

We have also solved the neighbouring optimal feedback 

control problem. In this case the nominal trajectory 

is optimal and hence. DuH = 0. This implies that 

t(t) = m(t) = 0 everywhere in [toltf] and hence the 

feedforward terms r1(t) = r2(t) = 0 everywhere in [t 

But 6x(to), which is the deviation from the nominal 
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trajectory due to a disturbance is not zero. Supposing 

that the state of the system is continuously measured, 

from (5.33) and (5.34) the neighbouring optimal time-

varying feedback control is given by 

	

6u(t) = -K3(t)6x(t) 7 K2(t)6G 	 (5.36) 

N 	N 	/ 
where K3(t) 	K1(t) - (D-H)

-1  (Dui')T  Nkt)P-1(t)NT(t) 

What is interesting in expression (5.35) and (5.36) is 

that we can control independently the contributions 

to 611 due to desired change in terminal conditions, 

initial condition change or desired change in DuH (or 

desired change in cost function). This is important in 

numerical computation, since it is very difficult to 

satisfy terminal conditions. 

Fig. 5.1 could thus be considered as the design of 

a linear feedback control scheme for a non-linear system. 

The state variables may not be directly observable and 

may have to be estimated. If there is additive noise 

present, the problem can also be handled. In this case 

we have to minimise the expected value of the second 
0 

variation. But the important point is, that for a linear 

system and a quadratic performance functional, the control 

and filtering (estimation) problems separate(73)'(74)  

Before considering the case when the time tf  is given 
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only implicitly, let us consider an example which we 

solved on the computer 

system and a quadratic 

cedure yields one-step 

Example: Consider the  

to verify that for a linear 

performance functional, the pro-

convergence. 

lihear system, 

u ; x(0) = 0 

T 5 

The minimum value of P 

control law is u := 0. 

For this.  prOblem 

H = 2(x2+u2) 	%u 

au
= u+% ; ax 

	

f  =1 • .16-1- 	0 -611 	bx 
From (5.19), 

A = 0 

B =-1 
C = 1 

v=-1 

w = 0 

From (5.26) and (5.27), 

- Kt - K 0 

k - K2 + 1 =0  

j
.(x2+u2)dt 
• o 

is obviously 0 and the optimal 

; 	(5) = 0 

; K(5) = 0 

The performance criterion is P u,0 
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-(u+7‘.+-e) - K5x 

The initial guess was taken to be u(t) = 1 everywhere in 

[to' ] and the corresponding value of the cost function 

was 22. After one iteration the cost reduced to 0.14 X 10-3. 

A crude finite difference' method was used for the inte- 

gration. 

Case ii) Final time tf not given explicitly 

The basic procedure for this case is basically the 

same as for Case (i). The expressions for first and 

second variations in the Taylor Series expansion are now 

more complicated 'since we now haVe to consider the varia-

tion in the final time tf. 

The control function u and the terminal time tf 

is guessed and the system equations, 

f(x,u,t) ; x(to) = c (given) 

is integrated in the forward direction. A value for 

is guessed and the Euler-Lagrange equation 

k 	-DxH(x,u,X,t)' 

is then integrated backwards with the boundary condition 

X(tf) = Dx1,/(x(tf),tf,19). All derivatives are calculated 

at the nominal trajectory. 

P(X(to),u) is th= expanded in a generalized Taylor 

series as in case (i).. Let 5P and 62P be the first and 
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second variations. Then (see Appendix C), 
tf 

(H+Dty )t=trdtf  + r <DuH,bu> dt 

to 

(5.37) 

2 lr 2 /
x 

 -ff5 P 	.ffl<DO/kktf),tf,D.)41x(tf),4x(tf)> 

+ <Dx'y (x(tf), tf, ), A2x(ti, )> 

+ Dty(x(tf),tf,),-,)dtf2  + 20x2ty(x(tf),tf,D)16.x(tf)dtf  

+ <DuH(x(tf),u(tf),X(tf),tf),5u(tf)dtf> 

1 a.  aT[H(x(td,u(tf),x(tc), 	- <X(tf),x(t)>]dtf2  

tf 
[<D2H.511,5u>+<D2H.5x,5x>+2<D2ux  H.5x 5u>]dt 

t. 
0 
	

(5.38) 
where Ax(tf) = Ea(tf) + i(tf)dtf  

diex(tf) = X(tf)dt; + 25x(tddtf  

Neglecting third order terms (see Apperidix C) 5u is 

determined by minimising, 
tf 

F2  (H+Dt )t=tfdtf  + E1 	<D H,511>dt 
to 

+ 2[<D;y(6x+icdtf),5x+Xdtf> + <D0',.Rdtf2+251cdtr> 

+ DtNidtf. + 2 <D;t1/„5x+Xdtf>dtf] 

1 d 
FIT[L(x(t),u(t),t1t,t  dt; 

• 
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tf 
+ 	f [<D2H.E1u,bu>+<D2H.bx,5x>+2<D2  H.5x,E1u>]dt (5.39) ux to 
subject to the constraints, 

65c = Dxf.ox + Duf.bu ; Ox(to ) = 0 	 (5.40) 

E3G(x(tf ),tf)+DxG(x(tf ),tf ).ox(tf)+DxG(x(tf ),tf ).5c(tf )dtf  

+ D tG(x(tf ),tf )dtf  = 0 	 (5.41) 

The solution of this auxiliary minimization problem is 

given by, (see Appendix C), 

= A(t)ox+ EIB(t).AX+ E1v ; Ox(to ) = 0 	(5.42) 

= -C(t)ox- E1AT(t).6. X- Elw 	 (5.43) 

Ei ,AX(tf ) = DX (x(tf ,  ), tf , 	.6x(y+ E2 (DxG(x(t 	tf ) )12 . AD 

+[Dx2  1y(x(t ),tf ,19).i(tf )+Dx2ty (x(td,tf ,r)+(Dxf)T .DxV(x(tf ),ti)] 

dtf 	(5.44) 

5G = DxG(x(t ),t 	t )+[DxG(x(tf ),tf ).k(tf )+DtG(x(tf ),tf )] 

dtf 	 (5.45) 

51A1=0;: y(x(tf ), f D).X(tf)+D tlii(x(tf ),tf ,15)+(Dxf)T . 

Dxy(x(tf ),tf ,11),dx(y> 

+ E2<DxG(x(t ),tf ).k(t)+DtG( (t ),tf ),Av>+s(tf )dtf  
(5.46) 

where 
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5G = - E2G(x(tr),tr) 

514 = 	E3W = - E3 (li+D t' )t=t 

s(tr)=I<D;If.X,X>+<Dxy,Dxf.k+Duf.a+D >+0xL,k> 

- <DuLjla + DtL + Dty+ 2 <D .Nv t sk>i t=t 

The linear two-point boundary value problem (5.42) - (5.46) 

is solved in exactly the same way as in case (i) by 

introducing 

E1  dX(t) =- 
	

t(t)+K(t)Sx(t)+ E2N(t)AD+ p(t)dtf 	(5.47) 

SG = 1m(t)+NT(t)8x(t)+ E2P(t)LiD+ q(t)dtf  (5.48) 

SW = ein(t)+<p(t) tlx(t)> +6,',<q(t),A1,>+s(t)dtr  

(5.49) 

In a manner similar to that of case (i) we obtain equa- 

tions (5.26) 	(5.30) and the following set of differential 

equations for p,q,n and s: 

(AT+KB)p = 0 	(5.50) 

q + NTBp = 0 	 (5.51) 

A + <p, Bt + v> = 0 	(5.52) 

g + <p,Bp> = 0 	 (5.53) 

pv-and dtf are now determined by solving equations 

(5.26) - (5.30) and (5.50) 	(5.53) backwards and solving 

the equations 

f 
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. 	. dG = elm(t0)+NT  (to)5x(t0)+ E2P(to)Z1a9 + q(to)dtf 	(5.54) 

dW = eln(to)+<p(to) 5x(to)>+ 6.2<q(to),AD>+s(to)dtt,(5.55) 

Computing Procedure  

We now indicate the computing procedure for the 

case when tf is given explicitly. 

i) Guess the control function u and integrate the 

system equation 5c. = f(x,u,t) forwards with x(to) = c. 

Store u and the corresponding trajectory x. 

ii) Guess a value for the multiplier v and integrate 

the equation .-DxH(x,u,X,t) backwards with the boundary 

condition X(tf) = Dxy(x(tf),tf,a9- ). Along the trajectory 

calculate the partial derivatives necessary to evaluate 

A,B,C, v and w (eqns. 5.19). Simultaneously integrate 

the differential equations for L,K,N, m and P backwards. 

Compute r1,r2,K1  and K2  and store them. 

iii) Repeat step i) using, 

anew = Uold  - r1 - r2 - K1NR - K25g 

iv) Repeat:. step ii) 

v) Stop computation when 

max 	max 	1 bu1111I < E. and max IGi(x(tf),tf)i 
1<i<m te[to,tf] 	1<i<p 

where £3 and E4 are small positive numbers. 

Note: It is necessary to include an adjustment procedure 

for E1 	2* and e 	In a suitable neighbourhood of the 

optimum they can be set equal to 1. 
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In obtaining the second Order algorithm, we had 

to assume 

i) D2H positive definite 

ii) D2H - D2  H(D2H) 1D2  H positive semi-definite x xu u AIX 

iii) D2Ir( (tf) t&)) positive definite 

at every iteration. For many problems if the nominal 

control function is not sufficiently near to the optimum, 

and if the terminal conditions are missed by a large 

amount, these assumptions may not be satisfied. In that 

case better estimates for u and 11 are necessary. These 

improved estimates may be obtained by a gradient method. 

Alternatively the following successive approximation 

scheme may be used till the above assumptions are satis-

fied. For the subsequent development, we shall assume 

D32cF(x(tf),tf) is positive semi-definite 

D2L is positive definite 

D2X1 - D2  L(D2UL)-1D2  L is 
XU 	UX 

positive semi-definite. 

Note that these assumptions are assumptions on the per-

formance criterion (which to some extent is at our choice) 

and hence much weaker aszumptions than the previous ones. 

We consider the case when tf  is fixed. We again 

choose a nominal control function u and integrate the 



thus obtaining 

6P. .E1<DxF(x(tf),t ),6x(tf)>+ 
I

[ <DxL, 6x>+<DuL, ou> ] d t 

tf 

to 
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system equations in the forward direction. The function 

F and the integrand L is now expanded in a Taylor's 

series round the nominal control u and the nominal 

trajectory x and terms up to the second order retained, 

2
62P  = --.<DF(x(tf),tf).6 (tf),6x(td> 

tf 

2 
1 [<D2L.6u,6u>+<D2L.6x,6x>+2<D2  L.6x,5u>]dt ux 

to 

The control improvement &u is obtained by minimising 

1 6P + 2-6
2  P subject to, 

6i = D f.6x + D f.6u ; 6x(to) = 0 	(5.56) 

e2G(x(tf),tf) + DxG(x(tc),tf).6x(tf) = 0 	(5.57) 

where 0 < 1, 2  < 1. In view of our assumptions on F 

and L, this problem has a proper minimum, and the 

necessary conditions of optimality are also sufficient. 

The Euler-Lagrange equations of this problem are, 

6x = Dxf.5x + Duf.6u ; 6x(to) = 0 	(5.58) 

eflOA 	e1DxL-DL.6x-DLL.6u- 2.(Dxf) .2SA 	(5.59) 

6u . -(D121L)-1( e1DuL+DLL.6x+ El(Duf)TAX] 	(5.60) 
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El  L1X(tf) = elDxF(x(tf),tf,)+(DxG(x(tc),tf))T.or 

+ qF(x(tf),tf).6x(tr) (5.61) 

Substituting (5.60) into' (5.58) and (5.59), we get 

521 = W5x + BMX + En v 

7 = 	- AT  X - Tv 

where A = Dxf - Duf(DL)-1D12.1xL 

-D uu  f(D2L)-1(Du 

c = D2L - D2  L(D2L)-1D2  L x xu u ux 

v-D uf(D2L)-1DuL 

w = DxL - D2  L(D2uL)-1Du  L xu  

(5.62) 

(5.63) 

The way this linear two-point boundary value problem is 

solved is precisely the same as our previous method and 

we shall omit the details here. The differential equations 

for t, k etc. we obtain are also of the same type. It 

can also be shown that this choice of 5u reduces the 

value of the performance functional. The proof is exactly 

similar to the proof we present in Appendix C for the 

original second order method. 
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5.5 Relationships with Newton's Method  

For simplicity we consider the case when there are 

no terminal constraints present. The method and con-

clusions are valid for the general Bolza problem. 

Solving the variational problem by Newton's Method 

means solving the Euler-Lagrange Equations by an iterative 

method. The method consists in guessing a nominal 

control function, a nominal trajectory and a nominal 

multiplier function and then linearizing- the Euler-

Lagrange equations round the guessed functions. A linear 

two-point boundary value problem is then solved which 

yields corrections to the guessed functions. The linear 

two-point boundary value problem to be solved is 

X + 5X = f + Dx  f.eix +D uf.611 ; ox(to) = 0 

X + 5k . -Dxx  H-D2H.elx-D2xux  H.5u-D2X  H.5X ; • 5X(tf) = 0 

DuH + D2uH.5u + D2  H.Sx + D2  H.5X = 0 ux uN, 

But for the fact that the system equations and the 

Euler-Lagrange equations are not satisfied by the initi-

ally guessed functions, these equations are precisely 

the same as equations (5.15) - (5.18). Thus the methods 

we have used in solving equations (5.15). - (5.18) may be 

used in solving the linear two-point boundary value 

problem in Newton's Method. As we have indicated pre-

viously from the viewpoint of numerical stability it is 
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advantageous to solve the two-point boundary value problem 

in the way we have indicated. In problems where there 

is a constraint of the form x(tf) = a it may be better 

to use Newton's Method since we can guess the nominal 

trajectory to satisfy the.boundary condition. 

5.6 A Discussion of Various Methods of Solving Optimal 

Control Problems  

A number of methods have been proposed for the 

solution of two-point boundary value problems arising 

in optimal control problems. These may be subdivided 

into three main classes: 

i) Boundary Condition Iteration Method 

ii) Control function Iteration Method 

iii) Newton type Iteration Methods 

The choice of the method to be adopted depends on the 

problem and on the nature of the application. Each 

problem will have a certain structure and exhibit certain 

stability properties, although in a non-linear problem 

it might be very difficult to isolate either. Further 

the nature of the control application may impose various 

constraints. ,For example, if on-line control is en-

visaged, rapidity of convergence may over-ride other 

factors. For some problems it may be necessary to 
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obtain extremely accurate trajectories, while in others 

convergence of the performance functional to within a 

pre-assigned tolerance may be sufficient. In spite of 

this, certain advantages and disadvantages.of each of 

these methods may be pointed out and certain recommenda-

tions made. 

ii) Boundary Condition Iteration: 

In this method, typically the control function u 

is eliminated from the first two Euler-Lagrange equations 

by solving Hu  = 0 and the resulting first two Euler-

Lagrange equations are solved by iteration on one of the 

unknown boundary values say, X(t0). A suitable scalar 

terminal error function V[x(tf,N(t0)),X(tf,X(t0))1 is 

then constructed. The boundary value X(to) is then 

adjusted till the error function goes to zero. The 

adjustment requires the computation of- the gradient V 

Systematic methods for doing this are available(76) 

These methods have certain computer programming advan-

tages. Computer logic is simple and fast storage re-

quirements are small. .In problems where the method is 

successful accurate trajectories are obtained. The main 

disadvantage is the inherent instability of one of the 

Euler-Lagrange equations. To determine whether the 

method is applicable a preliminary analysis of the 

problem may possibly be carried out in the following 

way: let the unforced system equation be linearized 
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round the given initial condition. An eigen-value 

analysis of the linearized system matrix could now be 

made. If the matrix turns out to be essentially self-

adjoint boundary iteration methods are quite suitable. 

If not and if tf - to is substantially greater than the 

dominant system time-constant, severe instabilities may 

be encountered. 

ii) Control Function Iteration  

Control function iteration methods using both 

gradient techniques and steepest descent technique have 

been proposed in the literature. In these methods the 

control function is successively improved till IlDuHll < e 

where 11 II is some suitable norm of the D H function u. 

and E is a small positive number. The primary advantage 

of this method is that computations are always performed 

in the stable direction. However convergence tends to 

be intolerably slow in a certain neighbourhood of the 

optimum. To improve convergence the size-step cannot 

be increased since this leads to instability. The 

iteration methods we have presented in this paper may 

be considered to be direct extensions of gradient or 

steepest descent techniques. We have stated previously 

that the second variation. method is formally equivalent 

to Newton's method in function space. In a suitable 

aleighbourhood of the optimum convergence is therefore 
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quadratic. Computations here' are also always performed 

in the stable direction. In fact in a suitable neigh-

bourhood of the optimum, the inherent stability proper-

ties of linear feedback control systems inhibits the 

propagation of numerical errors. As a by-product we 

obtain linear, time-varying feedback gains for neighbour-

ing optimum feedback control. 

On the other hand the conditions that various 

matrices be positive definite or semi-definite may be 

too strong. In such cases it may be necessary to get 

better estimates of the control function by using gradient 

methods or use the alternative successive approximation 

method we have indicated in conjunction with the second 

variation method. Numerical difficulties may also be 

encountered in integrating the matrix Ricatti equations, 

specially if the dynamic system is unstable. It is also 

to be noted that the matrix D2H is to be inverted. 

Computer storage requirements are also greater since the 

feedback gain matrices have to be stored. 

Some computational effort may be saved. For example, 

it is not necessary to compute (D121H)-1  at every itera-

tion. In fact in practice this may be held constant 

after two or three iterations. Convergence will neces- 

sarily be slower. 



- 150 - 

For ordinary minimization problems some very effi-

cient computational algorithms have recently been pro- 
• 

posed(77). These algorithms may be considered to lie 

somewhere between gradient and Newton's method. A 

distinctive feature of these methods is that use is 

made of information generated in previous iterations. 

Generalisations of these methods to function spaces 

should be possible. 

In this paper we have not considered inequality 

constraints. The assumption was made that these could 

be approximated by means of penalty functions. Exten-

sions of the techniques presented here to problems 

with inequality constaints on control and state variables 

appear to be possible. The auxiliary minimization 

problem then has additional linear inequality constraints. 

In this case the corresponding dual maximization problem 

could be solved to obtain the improvement in control 

function. 

iii) Newton's Method  

Newton's method was first proposed by Hestenes(78)  

to solve fixed and point problems of the Calculus of 

Variations. A complete analysis of the method for this 

class of problems was given by Stein(79). In the context 

of function space, the method dates back to Kantorovich(8o) 
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Kalaba(81) has also used this method for a special 

class of problems and called it 'quasi-linearisation'. 

Recently the method has been applied to some optimal 

control problems by Kopp and McGi11(82).  They eliminated 

the control function u from the first two Euler-Lagrange 

equations by using the equation DuH = 0. The linearised 

Euler-Lagrange equations are then integrated for n-

linearly independent boundary conditions. The unknown 

boundary value 6X(to) is found by using linear interpo-

lation and a matrix inversion. Improvements ox(t) and 

5X(t) are then, obtained by one more integration. 

If the linear two-point boundary value problem is 

solved in this way, the method suffers from the instability 

disadvantages of boundary interation methods. 

In our view, the methods advocated in this paper 

could be used to solve the linear two-point• boundary 

value problem arising within Newton's Method. 
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CHAPTER 6  

Computer Solutions of Optimal Control Problems  

6.1 Introduction  

In this chapter we present results of computer 

solutions of two optimal control problems using the 

second order computational method we developed in the 

previous chapter. Rather than solve many problems, we 

have preferred to solve only two problems but with great 

care. 

The first problem is one arising in the control of 

boilers. The solutions given might have potential 

applications in boiler control. The second problem is 

an idealized rocket problem. These two problems were 

chosen since some numerical results(87'88)  are available, 

thereby providing a basis for comparison. 

The programming was very ably done by David Stone 

of Imperial College, who has made an independent contri-

bution in the numerical integration procedures used. 

6.2 Overall Organization of the Computer Programme. 

The overall flow chart of the computer programme is 

shown in Fig.6.1. The programme was organized as a 

hybrid gradient and second variation method. The least 
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necessary condition for the second variation procedure 

to work is D2H > 0 at each point of the trajectory. 

If this assumption is not satisfied the programme auto-

matically switched to a gradient method. It is very 

difficult to write a programme for the solution of optimal 

control problems which will be general enough to handle 

any non-linear system. Nevertheless the two programmes 

.were written entirely in sub-routine form and made as 

general as possible. Thus if sufficient experience could 

be gained by solving a variety of problems of this kind, 

one could attempt to write a general programme for the 

solution of non-linear optimal control problems. 

The rocket problem was solved first. The integration 

routine used here was a Runge-Kutta routine. One of the 

disadvantages of using a Runge-Kutta routine is that it 

is necessary to use a Lagrangian Interpolation routine to 

obtain the values of x, L and K at intermediate points 

within the basic integration interval. This is so because 

we need the values of these variables at the intermediate 

points in order to carry out the forward integration of 

the dynamic equations again. This fact enormously com-

plicates the computer programme. A more satisfactory method 

is to use a Predictor Corrector method, together with a 

suitable starter. A Hamming Predictor Corrector method, 
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together with an Euler-Newton starter was coded by 

David Stone of Imperial College. This integration 

procedure was used in the Boiler problem. 

The programmes were written in Fortran IV and the 

computations were performed on the IBM 7090 computer of 

Imperial College. 

6.3 The Boiler Problem. 

The basic model is a 14virtual steam flaw" model of 

a boiler due to Profos.(88) 	This is shown in Fig.6.2. 

Fig.6.2. 	Virtual Steam Flow Model of. Boiler. 
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The system equations written in state variable form are: 

dx1 1
dt  (aul-x1). (6.1) 

dx21 r_ 
ur• = 	LaL1  2(x2-0)] (6.2) 

	

where x1 	virtual steam flow (including heat storage)- 

lbs./sec. 

pressure deviation from steady state 

r - lbs./in2  

	

T2 	steam storage integration constant 

a,T1  = constants derived from a larger model 

fuel input rate control 

throttle control. 

The interest(89) of the problem is in developing a 

control system which will allow larger swings of the load 

of a power boiler than is at present possible. 	Existing 

process-type controllers on a boiler are designed for 

their regulatory function and their piecemeal implemen-

tation gives rise to severe restrictions on load changing. 

A suitable performance criterion for this problem is 

Minimise 	j'` 
4, 
(steam flow-demanded flow)2dt (6.3) 

t0  

However, during the load change it is necessary to con-

strain temperatures within certain limits. This can be 

u1 
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linked to a pressure state constraint. Also there is 

a desire to end the period of load change in the steady 

state. 	There is taus a constraint on the end-point 

pressure. These two factors are met by a time-weighted 

penalty term in the performance criterion. The final 

performance criterion is, 

Minimise f
t 

( 
0 

(x2+r) 2  + C.eatxDdt (6.4) 

The simplification is made here of considering a step 

change in fuel input, ull  at the beginning of the control 

interval and hence only one control u2  is free..  

The numerical values of the various constants are, 

a = 1.6 x 10-3  

T1 = 200 

T2 = 4.7 

tf-to = 400 secs. 

0 	= 0.1 

= 0.001 

Initial Conditions are 

xl(to )  = 241 
m2(to) = 0 



-157- 

Steady State Values are  

225. 

x2 = 0 

u2 = 0.14423077 

u1 held constant at 140,625.00 

The equations to be integrated backwards are, 

_1 X2 
- - 	7,1(tf) = 0 
1 '2 

(6 .5) 

X2u2 -2[112(x2-0)-F]u2  - 2cecttx2  T2   

	

(ts) = 0 	(6.6) 

Cl 	L 
r 
 2 

 a2 	
K11 
+it 

 1 - L-7- 
ri K  _ _11.  

-om1f,2", 
	

T," 

	

2T2 	
12 	T2' 2 

1 	 a2 	1 r 	X  
- 	

2 w 3-12 n  =- + 	L2u2(z2+15)-2F-T,- 7 T1
2(x2  4r)2 	"2 2 

6.7) 

a2 
K 2 2T1(x2+r) 12 

ru2 X2 7- L. 	2, 	m. 2 2T2kx2+ T2(x2+F) 

1 
K223C2 2T2 
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1 211-  (x2+F) - 2F - 	(x0+F) - 2F - 
-L2 

2 a2 	1 2 2K11 2K12  K 	- 
2(x2+P) 	

11 	e 12 	T1 	T2 
= 0 

2T1 	2T2 

K
12 2T1k 2. _. x2+P)

2 K11K12 
u 	

- - 	K1 K22 + LT
2 	2

- 2 2 2T2(x2+P) 

K22 F. 	= 0 	(6.10) 
T2(x2 + 	

T2  

a2 	2 	1 v2 _L  of 2 	
'X 2 

122 	2T kx +r 77 K1 
- —7 "22 F 	

T(X2 i2 ) 	2T2 

F. 	3K 	2u2  + 2c.e mt 
T2(x2 y)  22 

 

1 	0 [4u (x2+F) - mt. - 2F]2  = 0 (6.11) 
2(x2  + 

The boundary conditions for the L and K equations are 

Ll(tf)  = L2(tf)  = K11(tf)  = K12(tf)  = K22(tf)  = 0 

The improvement in control is given by 

.12) 
6112 = 	r 1121[(xl)new-(xl)oldi 	11122E(x2)new- 	old) (6 



M21 -+ 6  
T2(x2+e) K12  
a 

1 r 
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2(x2+f) - 2F - 
X2 	L2 
T2 T2 

 

2(x2+F 

2u2 	F 	7%.2 M22 + TD 	(x2-0)2 	2T2(x2+15)2 

T (x2+7) K22  

It is noted that in this problem 

D2H > 0 

and hence there is no need to include the gradient sub-

routine in the programme. 

M21(t) and M22  (t) are optimal linear time-varying 

feedback gains. These are obtained directly in the 

last iteration. 

6.3.1 Discussion of Results. 

The results of this problem are shown in Figs.6.1-6.7. 

From Fig.6.1, it is seen that -as far as reduction in cost 

is concerned we get almost one-step convergence. The 

control essentially converges to the optimal control in 

2-steps. The difference in the control function between 

the second and third iterations is in the sixth decimal 

1  
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place. The difference in the state variables between 

the second and third iterations is also very small. 

However, as seen from Fig.6.2 max =- has a value 
v"2 

3 x 104 at the second iteration and 7 x 10-2  at the 

iteration, even though the.control is virtually the 

at these two iterations. 

The optimal linear time-varying feedback gains are 

shown in Figs.6.6 and 6.7. 	These can be used for optimal 

linear feedback control against small disturbances. 

For this particular problem, the second variation 

method appears to be vastly superior to gradient methods, 

since approximately 60 iterations were needed for conver- 

gence to the optimum using a gradient method. 

In this problem E was set equal to one and no 

halving operations were necessary. 

400 steps were used for the various integrations. 

6.4 The Rocket Problem.(87) 

It is desired to launch a rocket in fixed time to a 

given attitude with a given final vertical velocity 

component with maximum horizontal velocity component. 

The problem is simplified by making'the following assumptions 

and approximations: 

i) thrust varies with mass so as to produce 

constant acceleration 

ii) the earth is flat 

of 

fourth 

same 
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iii) gravitational acceleration is constant. 

The following relevant quantities are defined: 

1 	attitude 

x2 = velocity component in the horizontal 

direction 

velocity component in the vertical 

direction 

a 	= constant acceleration due to thrust 

constant gravitational acceleration 

inclination of the thrust vector to the 

horizontal. 

The motion of the rocket is governed by the differ- 

ential equations 

1 = x3  

x2 = a cos u 

3 = a sin u - g 

Given xl(to) x2(to ) 

to' = 0, 	tf  = 100 . 

a = 64 ft./sec.2  

g = 32 ft./sec.2  

find u(.) such that, 

x2(tf  is a maximum 
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and 	xl(tf) = 100,000 

x3(ts) = 0 

It was decided to approximate the terminal constraints 

by means of penalty functions and thus the following 

modified cost function was formed. 

Minimise -x2(tf) +a1(x1(tf) - 100,000)2  + 	(tf))2  

The equations to be solved backwards are, 

1 

%3 

= 

= 

=X 

0 

0 

- 	1 . ; 

Xl(tf)  = 2a1(x1(tf)  

2(tf)  = -1  

%3(ts) = 2m2x3(ts) 

- 100,000) 

aK33cos u L
3

[sin u 	(a3 	)cos u] = 0; t.3(tf) = 0 1.3sin u-cos u 

-K13 

• -K33 

a cos2u 	K2 	• 	K 	(t f ) 

' • 

; 

= 2m 1 

K13(tf) 

K33  (tf  ) 

= 0 

= 2a2  

X3sin 

= K11 + 

= 2K13 

13 ' 	1 u-cosu 

a cos2n 	
K33 
2 

sin u-cos u 

a cos  + K33 'X3sin u-cos u 

The improvement in control is given by.  

.  ou - 	1 	[(X cos u + sin u + Lcos u) + 
(1.3sin u-cos u) 	3 	3  

cos u(K.ex1 + K33Ox3)] 
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6.4.1 Discussion c" `:::sult  

Extensive numerical experimentation has been done 

on this problem. The general conclusion is that the 

second variation method is not very suitable for this 

problem, unless a sufficiently good nominal trajectory 

is found. This is mainly because terminal constraints 

have to be satisfied and we have had considerable diffi-

culty with approximating terminal constraints by means 

of penalty functions. The two terminal constraints 

in this problem are point constraints and depending on 

whether we 'overshoot' or 'undershoot' the constraints 

the function --7  changes radically. 2)11 

Computing was done with two different nominal 

trajectories. The first nominal trajectory used was a 

linear approximation tp the control. The same nominal 

control was used by Dreyfus. The control functions are 

shown in Fig. 6.10. The general shape of the trajectory 

is the same as Dreyfus's, excepting the 'transient' which 

occurs towards the end of the time interval. It is 

thought that this happens because the penalty function 

coefficients are too tight. On the other hand, when 

the value of these coefficients is made smaller, the 

terminal constraints are not satisfied within the specified 
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tolerances. One possibility is to start with a low 

value for these coefficients and converge to a solution. 

These coefficients can then be updated and we can re-

converge to the solution. We have had some difficulties 

in reconvergence too. Nevertheless engineering solutions 

for this problem have been obtained, although they are 

not as accurate as that obtained by Dreyfus. The be-

haviour of the cost as a function of the no. of iterations 

has been plotted in Fig. 3.11. 

Results obtained with a different choice of penalty 

function coefficients is shown in Fig. 3.12. 

Let us also mention that for this case the hybrid 

programme generally worked on the first variation. 

The total computing time including input output 

was 5 mins. 

A different set of results with a parabolic approx-

imation to the optimal control as the nominal is shown 

in Fig. 3.12 and Fig. 3.13. 

In this case the programme generally worked on the 

second variation. 

It should also be mentioned that we have sometimes 

had some difficulty in integrating the Riccati equations 

in the Second Variation:Algorithm. Generally speaking, 

these were cured by taking a smaller step size. 
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On the basis of the experience we have obtained, 

it is probably fair to say that satisfying terminal 

constraints is considerably more difficult than free 

end-point problems. More computing by the direct 

methods of satisfying terminal constraints we have 

presented in Chapter 5 needs to be done. Perhaps the 

most appropriate way of solving this problem is by the 

Newton-Rophson method. 
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CHAPTER 7 

PROGRAMMING IN FUNCTION SPACE 

7.1. Introduction  

So far we have been concerned with systems having 

a finite dimensional state space. There are many 

systems for which the state space is infinite dimensional. 

Examples of such systems are provided by distributed 

parameter systems, systems with pure time delay and 

certain stochastic systems. For the theory of state 

space representation of such systems, we may refer to 

the recent work of Balakrishnan(90)  

Our main objective in this chapter is to develop 

.a suitable theory to handle optimal control problems 

having an infinite dimensional state space. Of course, 

the theory is equally applicable to systems having a 

finite-dimensional state space. We thus generalise 

and unify the results of previous chapters. 

The theory that we develop is an extension of ideas 

from mathematical programming to solve programming 

problems in function spaces. Essentially we obtain 

generalisations of the Lagrange Multiplier Rule and the 

Kuhn-Tucker theorem of non-linear programming. 
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Before developing the theory, let us consider some 

examples of optimal control problems which may be solved 

by using the theory we develop. Let the distributed 

parameter system be described by the partial differential 

equation, 

bf(x,t) = Af(x,t) 	u(x,t) bt 

where the system state at any instant of time is the 

function, f(x,t), of time and a space variable x belonging 

to a suitable function space and the control u(x,t) is 

distributed in the sense that it is a function of time 

and a space variable x. A is a linear operator usually 

unbounded. It is assumed that boundary conditions are 

taken care of by suitably restricting the domain of A. 

Consider, for example, the problem of minimum energy 

control. This problem is' to transfer an arbitrary initial 

state to the null state such that the control energy 

(7.1) 

u2(x,t)dt 
	

(7.2) 
t 

is minimised. 

Sometimes it may be more convenient to describe 

the system in terms of input-output behaviour. This 

might be the case if a model has been built from experi- 

mental data. For non-linear systems this could take 
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the form of a Volterra Series 

tf 	tf  tf 

t(t) = 	K (t,T )u(T)dt + 
	

K2(t,re1,'t2)u('C1) 

u(T2)dq1ft2  (7.3)  

where u(.) is the input variable and y(.) the output 

variable. The above equation may be conveniently repres-

ented as, 

y.N( ) 
	

(7.1) 

where u and y are elements of suitable function spaces 

U and Y, and N is a non-linear mapping from U to Y. 

Assuming these function spaces to be normed linear spaces, 

we may require that the optimal input u(.) be chosen 

so that 

11N(u) - yd  II ; 
	

(7.5) 

be minimised, where yd  is the desired output and 

is the norm in Y-space, subject to the constraints 

ltu II 	a 	 (7.6) 

This chapter may be divided into two basic sections. 

In Section 7.2 we develop a theory of mathematical pro-

gramming in Banach Spaces. In Section 7.3 we apply this 

theory to certain problems of optimal control, mainly to 

illustrate the theory. 
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7.2. Minimization Problems in Banach Spaces  

7.2.1. Problem Statement 

Let X and V be real Banach Spaces and let R be the 

space of reals. Let B be an open subset of X, and aet 

n be a given closed set in X. Let the mappings f of 

X into R, g of X into V and h of X into R be given and 

we assume that f, g and h are twice continuously differen- 

tiable in the sense of Frechet. 

An element x G (BUD.) is said to be admissible. 

The problem to be solved is to find an admissible element 

X which satisfies the equation, 

g(x) = Ov 	 (7.7) 

such that f(X) < f(x), for all x E (BU1/) satisfying 

equation (7.7). 

The closed set fl is defined by, 

[x : 	L(x) < 0] 	 (7.8) 

We shall solve the problem by considering two cases: 

i) X e.int(r1), where int(f/ ) is the interior of 

ii) X e 	, where V/ is the boundary of 	. 

7.2.2. Case (i) x E IntS/  

Let N = [x : g(x) = Ov, x admissible] 

Def:l.The function g is said to be regular at the admis- 

sible point x if Dg(x) is surjective.x  

xThroughout this chapter we shall generally follow the 

notation and terminology of Dieudonne(47) 



Let g be regular at x and let 

T = [h : Dg(x).h = Ow]. T is a subspace of X 

Def:2. Let Tx = [x+h : h G T]. Tx is called the linear 

tangent manifold Tx of N at x 

Proposition 3. (Liusternik and Sobolev)(85)  

(Dg(x))-1  exists and is linear. 

Assumption: Range of Dg(x) is a closed subspace of V.x  

Proposition 4.  If g is not regular at x, there exists 

a X E it(V;R), such that 

SIDg(X).h] = 0 	 (7.9) 

for all h e X. 

Proof: Since range of Dg(x) has been assumed to be a 

closed subspace of V, from the Han-Banach theorem the 

above proposition follows. 

Proposition 5.  Let be admissible and let g be regular 

at X. Then Df(X).h = 0 for all h E T, if and only if 

there exists a ,‘,E ti(V;R) such that 

Df(X).h = "\.[Dg(X).h] 

Proof: The if part is trivial. 

Let X/T be the factor space of cosets with respect 

to T. We note Dg(x) is a mapping from X/T onto V and 

Ne need to make this assumption, since from the fact 

that g is not regular at x we can only conclude that 

range of Dg(x) is not of IInd category. 
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from proposition 3 [Dg(X)]-1  exists. Hence [(Dg(X))4j-1  

also exists and is linear. That is, the equation 

(Dg(X))'q = k has a unique solution for all k e[X/T] 

But Df(X) E [X/T]*. Hence the proposition. 

We now look for conditions which guarantee the 

existence of a unique E. JL(V;R). 

Assumption 1 (Constraint Qualification)  

We shall say that the function g(x) satisfies the 

constraint qualification at an admissible point X satis-

fying g(x) = 0 if and only if for every h e X, h / Ox, 

such that the equality x = X + h implies the equality 

g(x) = g(X) + Dg(X).h = 0, there exists a function 

Nf:[0,1] -› X with the following properties 

i) D y(e).T exists for 0 < E < 1 

ii) X ... y(0) 

iii) g[y(e,)] = 0, 0 < E < 1 

iv) h = Dy(0).T 	T> 0 

Assumption 2. X = X10 X2 and D g has an inverse. DX 

Proposition 6.  Assumption 2 implies Assumption 1. 

Proof: Let X = (k1 ,X2 ' ) 	By the Implicit Function Theorem, 

there is an open neighbourhood U1  of Xi  in Xi  such that 
A 

for every open connected neighbourhood U of xl, contained 

in U1, there is a unique continuous mapping u of U into 

X2  such that u(X1) 	 X2 and g(xl,u(x1)) = 0 for any 
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x1  U. We also have, u(xl) is continuously differentiable 

in U and Du(xl) 	-[Dx2g(xl,u(x1))]-1. [Dxig(xl,u(x1))] 

The result now clearly follows by considering 

xi  = Xi  + e h, where E is so small that xi  € U. 

Combining propositions 5 and 6, we get, 

Theorem 1 (Necessary Conditions)  

Let X be a regular admissible point satisfying 

g(x) = Ov. Then if assumption 2 holds and if f(x) has  
A a minimum at x Sc, then the point x must satisfy 

oDf(X).h - S1Dg(X).h] = 0 
	

(7.10) 

for all h E X, where 5‘. E i(V;R) is unique and X0  = 1 

Remark: From (7.10) we see that the problem of minimi-

sing f(x) subject to minimising g(x) = Ov  is equivalent 

to minimising the unconstrainted problem 

F(x,?) = f(x) - ?[g(x)] 	(7.11) 

Case (ii) X e  

In view of our previous remark we may consider the 

problem of minimising, 

f(x) - X[g(x)] 	(7.12) 

subject to 	t(x) < 0 	 (7.13) 

The inequality constraint t is required to satisfy the 

following constraint qualification: 

The function t satisfies the constraint qualification 
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at an admissible point x = X, satisfying g(x) = Ov, if 

and only if for every h E X, h / Ox, such, that the equality 
A 

x 	x + h implies the inequality 

{(x) 	' (X) + D (x) .h < 0, there exists a function 

V: [0,1] > X with the following properties 

i) DV (E) .`t exists for 0 < E < 1 
ii) X = Nt(0) 

iii) [y(E)] < 0, 0 < E < 1 

iv) h = Dy(0).T , 	> 0. 

Proposition 7.  Let X minimise f(x) - "i‘,[g(x)] subject to 
(x) < 0 and suppose t satisfies the constraint quali- 

fication at x. It then follows 

,f(X) + D (X) .h < 0 implies -[Df(X).h - 12.[Dg(X).h] < 0 

Proof: Since t satisfies the constraint qualification 

at X, there exists a function Ni(E) with the properties 

shown above. Consider the function 

f(E) = f[AK(E)] - kg(y(E))] 

Since fige) has a minimum at E = 0, 
Di6(0).2.  = Df(y(0)).Dy(0).T - "‘[Dg( y(0)) .Dy(0) .1" I 

Df(X).h - '[Dg(X).h] > 0. 

Proposition 7 is a generalisation of a result in Kuhn 

and Tucker's paper which is stated without any proof. 



for all h G X.  

L (1) .0,a> 0 (7.15) 
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Proposition 8.  (Farkas Lemma) (Ky Fan) 

In order that g(x) > 0 be a consequence of t(x) > 0, 

it is necessary and sufficient that 

g(x) = if(x) where µ is a number > 0. 

Theorem 2. Let t satisfy the constraint qualification  

at X and let f(x) - X[g(x)] have a minimum at x subject 

to t(x) < 0. Then the point X must satisfy 

Df(X).h - #2i.[Dg(X).h] + µDt(X).h = 0 
	

(7.14) 

Proof: From propOsitions7 and 8, we get (7.14). 

Since x lies on the boundary of 1-2- 

a 	= 0. 

Summarising, 

Theorem 3.  Let X = Xi  g X2 and let X = (Xi,X2) be a 

regular admissible point, such that ED
x g(X1,X2)rl  exists. 2  

Let the inequality constraint 	satisfy the constraint  

qualification at X. If f has a minimum at X subject to  

g(x) = Ov, i(x) < 0, it is necessary that x satisfy 

Df(X).h - 'i‘.[Dg(X).h] + 1.1D t (X)411 = 0 for all h e X (7.16) 

	

a > 0, µ t(Se) = 0 	 (7.17) 

We shall now put further restrictions on the functions 
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f, g and t . In particular we shall assume 

i) g(x) = A1x1  + A2x2  - c = 0 	(7.18) 

where Al  and A2  are linear operators mapping X1  to V 

and X2 to V respectively such that A2
-1 exists, and c 

is a given element of V. 

ii) f(x) and - (x) are convex functions of x. That 

is, 
f(x) > f(X) + Df(X).(x-X) 

and 	L( x) > t(X) + Dt(X).(x-X). 

Theorem 11.  (Necessary and Sufficient Conditions) 

• If the above assumptions hold and if the assumptions 

of theorem 3 hold, then X minimises f(x) subject to  

Aix' + A2x2 - c = 0, t(x) < 0, if and only if  

AN 

Df(3 ) .11 	 A2h2] + A  Dt (x).h = 0 for all h G X 

t 	0 , a > 0. 

Proof:  The only if part follows from Theorem 3. 

To prove the if part, 

f(x) - f(X) > Df(X).(x-X), from convexity of f 

1.[A1(x1-X1) + A2(x2-X2)] - ape (X).(x-X) 

> -a ( ,e(x)- 
	)) , from convexity of 

. 	/(x) 
> 0. 
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We now want to extend the duality theory of non-line.,,  

programming to Banach Spaces. We shall assume that 

various assumptions (including convexity) we have made 

hold for the discussion on duality. We first define the 

two dual problems: 

I Primal Problem 

Find X = (Xl'  X2 
 ) such that x satisfies 

Alxl + A2x2 - c = 0 

Z (x) < 0 

and f(x) is minimised 

II Dual Problem  

Find X, A, a satisfying 

Df(x).h - X[Alhi  + A2h2] + µ D f(x).h = 0 

for all h = (hi  h2) e X, 

(7.19) 

(7.20; 

µ > 0 	 (7.22) 

such that 	
pp 

L(x,X,µ) = f(x) - N[Aixa.  + A2x2-c] + µ L (x) 

is maximised. 

Theorem 5 (Duality Theorem)  

If X = (X1,X2) minimises f(x) subject to (7.19) and 

(7.20), then (pcA,a) maximises L(x,X,µ) subject to (7.21)  

and (7.22) and further f(X) = L(X,I,a). 
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Proof: From Theorem 4, we know that there exists 

such that (7.21) and (7.22) are satisfied. Let us assume 

the existence of (x,X,µ) such that 

L(x,X,µ) > L(IA,a) 

L 	f(x) - ",[A1k‘.1_,A2x2_c] 	a L60 

f(x) - x[y1+A2,Ac2 c] 	µ t(X) 

= 

Hence L(x,X,µ) > L(x„1„µ) > L(XA,µ) 

L(XA,µ) > L(x,X,µ) + Df(x).(X-x) - X[A1(X1-x1) + A 2(2-x2)] 

+ µ D t (x).(x-x) 	(7.24) 

But since L(x,X,µ) > L(XA µ), we must have from (7.24) 

Df(x).(X-x)-X[Al(Xl-x) + A2(X2-x2)] + µ Dt(x).(1-x) < 0 

which is a contradiction. 

Hence 	maximises L. From the construction of 

the dual problems, it is clear 

f(x). 

Hence the theorem. 

7.3. Applications to Optimal Control Problems  

7.3.1. Linear System with Quadratic Performance Functional 

Let H1  and H2 
be Hilbert Spaces. 

Consider the linear dynamical system, whose state space 
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H1 is infinite dimensional, and whose evolution of state 

is governed by the linear differential equation 

i(t) = A(t)x(t) + B(t)u(t) 	(7.25) 

and the initial state x(to) is given. For each 

t E [to,tf], x(t) E H1  and u(t) C H2  and A(t) and B(t) 

are linear continuous mappings mapping H1  -› H1  and 

H2 -4 H1 
respectively. It is assumed that the differential 

equation has a unique solution given u(.) and x(to). For 

suitable conditions, see Dieudonne(47) 

We consider the problem of minimising 

tf 

P(x(t0).u) = 2 jikx(t),P(t)x(t)>, + <u(t) R(t)u(t)>2]dt 
to 	 (7.26) 

where R(t) is a symmetrix, positive definite operator, 

bounded away from zero mapping H1  --> H1  and P(t) is a 

symmetrix positive definite operator mapping H2 —> H1 

and <.,.>1 and ‹..>2 represent inner products in H1 and 

H2  respectively. 

The solution of equation (7.25) is given by 
t 

x(t) = C(t,t0 ).x(t0 )+ 	C(t, t  )B('Llu('r)d'r 	(7.27) 

to 

where C(t,t0) is the solution of the homogeneous equation, 
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o(t,t0) = A(t).C(t,to) ; C(to,t0) = I. 

We shall assume that the system is completely controllable 

in [to,tf] where 

Def:(91) 	A phase (x(to),to) is said to be controllable 

if there exists some finite t1 > to and some admissible 

control u(t) which transfers (x(to),t0) to (0,t1). If 

every phase is controllable, then the system is said to 

be completely controllable. 

Let us define the linear operator, 

L(to,tf ) 
	

If 
 
C(tf,T)B(T)u(T)dre 	(7.28) 

to 

and let t(to,tf) be the operator adjoint to L. 

Let S(to,tf) = L(to,tf) L*(to,tf). 

By, analogy from the finite dimensional case(91)  it is 

clear that a necessary and sufficient condition for the 

system to be completely controllable is that the self-

adjoint operator S(to,tf) have a bounded inverse. 

Introduce the transformation 

x(t) = x(to) + 	 (7.29) X(T)dt 

to 

Then the problem reduces to minimising, 



- 193 - 

P(x(to),u 	2 

t 

 

f 
(<x(to)+ 

o 

t 

k(T)d'r , 	P(t)[x(t0)+ 

to 

ic(T)dT j>1 + <u(t),R(t)u(t)>)dt (7.30) 

to  

subject to Sc(t) = A(t)[x(t0)+ Sc(T)dT ]+B(t)u(t) (7.31)• 

0 

Applying Theorem 1 and simplifying, if U.) and A(.) are 

optimal they satisfy, 

XoR(t)u(t) + B*(t)S(t) = 0 	(7.32) 

where X > 0 and B*(t) is the ad joint operator to B(t)K, 

tf  
'kt) = 1 [X0P(T)x(T) + A*(t)(t)]dr 

If o = 0, the controllability-assumption is violated. 

Hence No > 0 and can be set equal to 1 which determines 
A 
N(.) uniquely. 

We now have to investigate, whether the equations 

The assumption of regularity corresponds to X > 0. 

and 
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x(t) = x(t ) + S [A(T)x(T) - B(T) -1(T) *(T)5\.(T)]dT 
t 
o 	 (7.33) 

t f 

T.(t) - 	[P(t)x(T) 

4404 
(A-47/"` 

Let K1 t et ) 	A(T) 

A (er)X(t)]dir 

< 	< 	t < tf  

(7.34) 

. 	0 < t < 	tf  

K12(t' (*C 	-B(1)11.-1("dB (1-) , 0 < 	< t < tf  

=0 	,0<t<rrti, 

K21(t,''c)= 0 	, 0 < t < t < tf  

P(`r) 	0 < t < rr< t f 

K22(t'i5) 7 0. 	, 0 < 	< t < tf  

= P:**(T) , 0 < t < er < tf  

The pair of equations (7.33) and (7.34) can be written 

as 

z(.) = z(to) + K(to,tf) z(.) 	(7.35) 

where z(.) 	
(.) 	

, z(to) 

and K(t,tf) is the integral operator 
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rf 

	
/K11 (t,(r) 	K12(t'T')1 

to VC21(t;° 	K22(t)/ 

	(.) dt 

If H1 and H2 are finite-dimensional and if the kernel of 

the integral operator is square summable, then it is 

easily shown that the Fredholm Alternative holds and 

hence the solution exists and is unique. In this case the 

solution is given by, 

z(.) = z(to) + C(t,tf) z(.) 	(7.36) 

where C(to'  tf  ) is the resolvent transformation, and the 

optimal control is given by, 

.0 = -R-1(t)B (t)C21(t,tf) [I + Ci  (t,tf)]-1x, 

provided [I + C11(t,tf)]
-I exists. 

The control thus is in linear feedback form. 

For the general case application of a fixed point 

principle will yield a sufficient condition for the 

existence and uniqueness of a solution. 

Consider now the same finite dimensional problem, 

but with the performance functional, 

f 'k 

t f  

id(t) 	X(t)I1 2ndt 

E 
to 

• 
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and an energy type constraint 
tf 

iluedt < M 

to 
Assuming that H1  = L12.1[to,tf] and H2  = LrTi[to,t] with 

inner products 
tf 

x,y11 	<x(t),y(t)> ndt 

to 

tf 
and [x,y]2 = I <x(t),y(t)> dt 

Em  to 

and introducing the linear transformation, 

Lu = 

to 

(t,rC) B(T) u('t)dT , we have 

  

the following convex-programming problem in H2: 

Minimise [xd  - Lu, xd  - Lu]i  

subject to [u,u],< M 

We can now apply theorem 4. 

We form the Lagrangian, 

4(u,p) 	[xd-Lu, xd-Lu] + µ([u,u] - M) 

Duy3,h] = 2[-Lh, xd-Lu] + 2µ([h,u]) = 0 

from which the optimal- u = 11 satisfies 
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-L
*
(xd-Lu) + µu = 0. 

and also the conditions a > 0 and µ([il:1,U] - M) = 0. 

If a > 0, 

(171_, 	aI)-1 d 

Essentially the same result has been obtained by Bala- 

krishnan from a slightly different point of view. 

It is interesting to formulate the Dual problem. 

The dual problem is, 

Maximise[xd-Lu, xd-Lu]l + µ([u,u]2 - M) 

subject to (LPL + µI)u = L;*Xd  

µ > 0 

The dualproblem appears to be closely connected 

with the theory of filtering and prediction. 

7.3.2. A Quadratic Programming Problem 

Consider the linear system 

	

k(t) = A(t)x(t) + B(t)u(t) 	x(to 
	(7.37) 

where for each t, x(t)e En  and u(t)e Em  and A and B are 

n x n and n x m matrices. A(t) and B(t) are assumed to 

be bounded for each t. 

It is required to find u(.) and x(.) such that, 

sf 
[<x(t),x(t)> + <u(t),u(t)>]dt 

t 
0 
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'is minimised and the constraint 

	

a < x(tf) < b 
	

(7.38) 

is satisfied. 

In exactly the same way as in the previous case the 

problem can be reduced to.  

Minimise [Lu,Lu]l + [11,4 

tf 
subject to a < f Kccf ,r,u(r)dee < b, where 

t 
 

K(tr 	(tr,T)B('r). 

Denote the rows of the matrix K(tf,T)by ki,k2,...kn. 

Hence the constraints can be written as 

[ki,u] < b 

- [ki,u] < a 	i = 1,2, 	 

If the system is now assumed to be completely con-

trollable in [to't] then I.:*L is positive definite. 

We can now introduce the new inner product and norm 

as, 

(u,v) 	[u,v] + [u,eLv] 

and the norm nu42  = [11,1, Lu] + [u,u] 

[u,ki] = [u,(I+1jL)-1(I+IJI)ki] 

= [(I+t*L)-11:,(I+IL)ki] 

= ((I+L*L)-1u, k1) 



I (f 2 (x,t) + u2(x,t))dt 

tf  

2 
-a to 
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Hence we finally have the problem, 

Minimise 11142  

subject to ((I+fi'L)-1u, ki) < b 	
i = 1,2,....n 

- (I +eL)-1u, ki) < a 

This problem can now be solved using certain results of 

Ky Fan(52). 

7.3.3. Distributed Parameter Systems  

We shall only briefly indicate how we could solve 

distributed parameter systems using this theory. It 

is possible to use the theory to derive formally Euler-

Lagrange equations for a distributed parameter problem. 

As an example consider the linear system, 

,f(x,t) = A f(x,t) + Bu(x,t), , where 

A is the infinitesimal generator of a strongly continuous 

semi-group, f and u are elements of suitable function 

spaces (which we shall take to be a Hilbert Space) and B 

is a linear operator mapping u into the domain of A. 

Consider the problem of minimising 

Then a formal application of our results yield the 
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Euler-equations, 

= Af(x,t) - BX(x,t) bt 

Wx,t) = -A X(x,t) - f(x,t).  at 

A more rigorous approach is'possible by using the theory 

of semi-groups. 

7.4. Iterative Procedures  

In principle, gradient procedures or Newton's method 

could be applied to solve problems of distributed para-

meter systems. In practice, the problems would have to 

be approximated by lumped parameter models and then 

solved by some iterative procedure. 

Methods for solving non-linear programming problems 

like the gradient projection method and the method of 

feasible directions can be generalised to Hilbert Spaces. 

These however are not too constructive; for example, to 

use the gradient projection method, explicit knowledge 

of the projection operator is needed. 

We would also like to mention that sufficient con-

ditions for convergence of the iterative procedures 

presented in Chapter 5 have been obtained using a function 

space approach. These have been omitted from this thesis 

since it is of only mathematical interest. 
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7.5. Multi-level Control and Programming 

We would briefly like to mention that the results 

we have obtained enable us, in principle, to develop a 

theory of multi-level programming and control for dynam-

ical systems. The details of this are beyond the scope 

of the present thesis. 
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CHAPTER 8  

CONCLUSIONS AND FURTHER RESEARCH 

In this thesis we have demonstrated how a wide 

variety of optimal control problems could be solved 

using ideas of variational calculus and mathematical 

programming. We have also extended results of mathe-

matical programming to deal with problems in function 

space. Indirectly, we have tried to show that dynamic 

problems of mathematical economics and operations research 

are essentially the same as problems of optimal control. 

In Chapter 2 we have solved a general class of non-

linear discrete time optimal control problems using 

methods of mathematical programming. Many erroneous 

results on discrete time control problems have been 

published in the litera‘re. Mathematical programming 

methods allow us to derive very simply but vigorously 

various results for control problems. 

In Chapter 3 we have shown how a dynamic allocation 

problem could be reformulated as an optimal control 

problem with control and state variable inequality con-

straints and solved using mathematical programming methods. 



- 203 - 

Chapter 4 was devoted to second order necessary 

conditions and sufficient conditions for a class of 

continuous time optimal control problems. Second 

order conditions have so far been neglected in the 

literature of optimal control. 

In Chapter 5 we consider second order iterative 

algorithms for solving optimal control problems. The 

second variation method we have presented can be used 

to obtain feedback solutions in a suitably small region 

of the state space. 

In Chapter 6 we present computer results for the 

solution of two optimal control problems. In particular, 

for the boiler problem the open loop programme and the 

feedback gains could probably be implemented in practice. 

Finally, in Chapter 7 we extend existing results 

of mathematical progranming to function spaces and show 

how they can be applied for the solution of infinite 

dimensional control problems. 

Various areas of further research suggest themselves. 

We would like to highlight three areas where results 

could be obtained. 

I. For discrete-time optimal control problems two 

areas of research using mathematical programming methods 

are 
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i) Use of stochastic programming to solve 

stochastic control problems 

ii) application of the theory of games to control 

problems. Much of the groundwork for this 

is contained in the book of Blackwell and 

Girschik.(93)  

II. Much more computational experience is needed for 

the second variation methods we have presented. In 

particular it would be interesting to obtain some idea 

of the region of state space where the methods work 

without any modification. 

Two main extensions are 

a) The method should be extended to handle inequality 

constraints. It is felt that ideas of duality 

could be used to advantage here. 

b) Assume a model for the second variation and up—

date the parameters on the basis of information 

obtained from previous iterations. This would 

then be analogous to methods of Pletcher and Powell 

for ordinary minimization problems. 

III. Pearson's results on Duality could be considered 

as a special case of our Duality result in Chapter 7. 

It would be interesting to develop a duality theory for 

a class of stochastic control problems. The relationship 
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of the duality between optimal control and optimal 

filtering and our duality results should be investigated. 

Application of the theory presented in Chapter 7 to 

obtain more detailed results for stochastic and 

distributed parameter systems should be attempted. 
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Appendix A  

Some Results of Non-Linear Programming  

In this Appendix se shall briefly summarise some 

results of non-linear programming. 

Let xeEn. The problem we are trying to solve 

is: 
Minimise the real-valued function f(x) subject to 

the constraints 

gi(x) = 0 = 1,2„...pm (A.1)  

hi(x) < 0 	, i = 1,2,...,p (A.2)  

Let A = [x : h.(x) 1;01 . Let x be the minimising 

x. Let us first assume that S? is in the interior of A, 

that is, the constraints hi(x) < 0 are not operative. 

We can then solve the problem by the Lagrange Multiplier 

rule. In order to ensure the existence and uniqueness 

of the Lagrange multiplier A E Em, we have to make some 
assumptions. 
	• 

Let G = (g1...gmf)2  
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If Rank (DG(X)) = Ra_nk.  (Dg(1)) = m, there exists a unique 

multiplier vector 1€ Era, such that 

Df(x)-- Dg(x)  )TA = 0 

Thus, if we define the function 

/(x,%) = f(x) 	<x,g(x)>, where g(x) = (gi—gm)T  

the problem of minimising f(x) subject to g(x) = 0 is 

equivalent to the problem of minimising the unconstrained 

function igx,%). 

Let us now assume that x lies on the boundary of the 

constraint set A. 

Let I = i : hi(x) = 01 and let ht(x) = [hi(x) : ieI 

That is, we are dividing the inequality constraint set 
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hi(x) = 0, i = 1,2,...,p, into two halves, those for 

which hi(x) = 0 and those for which hi(x) < 0. 

The following results are due to Kuhn and TuckerS86)  

Let the following constraint qualification be satisfied: 

For any Ox satisfying Dht(x).$5x < 0, there corresponds 

a differentiable arc x = a(0), 0 < 0 < 1 contained in the 

constraint set with x = a(o) and same positive scalar a 

such that 

da I 
74' la = a(o) = aOx  • 

This assumption is designed to rule out singularities 

on the boundary of the constrained set such as an outward 

pointing cusp. 

Kuhn Tucker Theorem. 

Let. X solve the minimum problem. Under the above 

assumptions there exists a unique XEEm  and some geEP 

such that 

Df(X) +(pg(I))T1 + (WI)) 	= 0 
	

(A.3) 

a > 0 	 (A.4) 

< 	h(1)> = 0 	(A.5) 

A more general theorem of this type is proved in 

Chapter 7. 
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Appendix B  

Mathematical Background 

The purpose of this chapter is to set forth various 

definitions and concepts from functional analysis which 

are used in the thesis. Part of this material is taken 

from the thesis of A. E. Pearson.(84)  Otherwise the 

principal sources are the books of Diaudonn4(47)  and 

LiUsternik and Sobolev.(85)  

Mathematically, the thesis deals mainly with operators 

on normed linear spaces. Therefore, the definition of 

normed linear spaces, the convergence of sequences in 

these spaces, and certain aspects of the calculus of 

operators are among those topics of major concern here. 

B.1 Normed Linear Spaces. 

Before introducing the particular space of functions 

with which. the thesis is mainly concerned, the general 

definition of a normed linear space will be stated for 

the sake of completeness. 

A set X of elements or points x,y,z... is a real 

linear space if the following conditions are satisfied: • 
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A. For any two elements x,yeX (read fix and 

y belong to the set X") there is a uniquely 

defined third element z = x + y, called 

their sum, such that 

1. x+y=y+ x 

2. x + (y+z) = (x+y) + z 

3. there exists an element 0 having the 

property that x+ 0= x for all x X 

4. for every x X there exists an element 

-x such that x + (-x) = 0. 

B. For arbitrary real numbers m, j3 and any 

element x X, there is defined an element 

m x such that 

1. m(Px) =(0)x 

2. 1.x = x 

C. The operations of addition and multiplication 

are related in the manner that 

1. (m+(3)x =mx+px 

2. m(x+y).=mx+my 

A linear space X is said to be normed if to each 

element x E X there is associated a non-negative real 

number gx0 , called the norm of x, satisfying the 

conditions 
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1. 11 xH = 0 if and only if x = 0 

2. Haxii = 	(ml . 	 (B.l) 

3. II x+yll 	< 	II xll 	+ 	II 	II 

When applied to the difference between two elements 

x,y e X, the norm ilx-yll p has the geometric interpretation 

of being the distance between x and y in the space X 

(p x-y1 defines a metric for the space X). 

Since as an analysis tool, functional analysis is a 

generalization of well known concepts from the fields of 

algebra, geometry, and calculus, similar interpretations 

to many of the concepts used in the thesis will present 

themselves during the course of the development. 

Concerning a further interpretation to the norm 

ll x-xofi where xo  is a particular point C X, the set of 

all points x E X for which 

11 x - xo <_ r ,  
defines a closed sphere,  of radius r centered about xo in 

the space X. The sphere will be denoted by S(xotr), 

that is 

 

the set of all points x G X.  

 

 

(B.2) 

  

such that 11 x - xo  11 < r 

  

  

   



• 

  

   

- 212 - 

Two definitions pertaining to sets and used in the 

thesis concern a subset of a set and boundedness of a 

set. A set X1 is said to be 

all the elements belonging to 

X2 (including the possibility 

A set X is said to be bounded  

a subset of a set X2  if 

X1 are also contained in 

that X1 and X2 are equal). 

if there exists a unique 

constant K such that 1( 	< K for all x E X, i.e. if 

the set lies in a sphere. 

B1.1 L (0,T) Sipace. 

A convenient way to define a particular set or space 

X is to specify a particular norm on that set. Of the 

many types of normed linear spaces, the type with which 

the thesis is principally concerned is the class of 
r function spaces LP  L0,1) with norm defined by 

1 

= 	[ 	lx(t)I Pdt] P 	p > 1. 	(B.3) 
o 	• 

For a chosen number p, the norm (0-3) defines a set 

X composed of all functions x(t), t€[O,T) for which the 

norm exists, i.e. A 	< a). 	The space L1(0,T) defines 

the set of all functions with bounded threat' , the space 

L2(0,T) the set of all square integrable functions, etc. 

The space LatO,T) defines the set of all functions bounded 

on the interval (0,T) for which the corresponding norm 

becomes 
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11 xilp,.. = Max lx(t)I 
t € CO, TJ 

The space LatO,Tj is of particular interest in the time 

optimal control problem, discussed briefly in Section 

1.5.1, as a result of the equivalence between a closed 

sphere in La)  [0,T) space and the amplitude constraint 

imposed upon the input signals. 

Concerning the relationship between LP(O,Tj spaces 

corresponding to different values of p, any function x(t), 
r tG(0,Tj which belongs to LPl  LO,T3 also belongs to LP2(0,0 

for p2 < p1. 	That is to say, the space LP2  EO,T) is a 
subset of the space L

131 
 COM for p2  < pl. 

B.1.2 Convergence of Sequences  

The concept of convergence of sequences in normed 

linear spaces is especially important in the thesis because 
it necessa.yy 

in gel-Ler-at, to synthesize an' optimal control schemeAis\to 

achieve optimization in a step by step manner through 

the construction of a sequence of inputs ima(t)1 

.n = 1;2,.., t [0,T], which converges to a solution of 

the criteria for optimal performance. 

A definition of convergence (called "strong" conver—

gence, or convergence in the norm) is the following: A 

sequence of elements tx,n 1 	n = 1,2,..., of a normed 



linear space X converges to an element x E X if 

0 as n 	co, that is, if 

lim 	xn  - x1( = 0 . 
n-oo 

!I xn 

(B.4) 

It should be remarked that, in general, a sequence 

1xn1 n = 1,2,..., may have a limiting element x which 

does not belong to the same space as the elements of the 

sequence. When this is the case, the sequence is not 

convergent according to Definition (B.4) because the norm 

11 xn  - xli is only defined for those elements xn  and x 

which are containedin the same space. However, for the 

type of spaces of principal interest in the thesis, i.e. 

liP(0 T) space, the limit element of a sequence, if it has 

one, will always belong to the same space as the elements 

of the sequence. The reason for this is a direct result 

of the fact that 1113(0,Tj space is a "complete,' space. 

Specifically, a normal linear space X is called 

complete (also a Banach space.) if every fundamental 

sequence of the space has a limit in X. A fundamental 

sequence is defined as follows: A sequence of elements 

xn  of a metric space X is called a fundamental sequence  

or Cauchy sequence if for every number E > 0 there exists 

an index number N such that Oxm.  xlan <6 for all 

m, n > N. 
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The definition of strong convergence in the form 

. of Equation (B.4) is not very practical for testing the 

convergence of a particular sequence for it requires 

knowledge of the limiting element. A more convenient 

form is the following: If the distance between successive 

pairs of elements of a sequence tx11 1 in a complete 

normed linear space X becomes progressively smaller with 

n, i.e. if 

11$n+3. - xn11 	< 	)1xn - xn-111 
	

(3•5) 

holds for all n > 1, then the sequence is strongly con-

vergent. 

If, less restrictively, inequality (B.5) holds for 

a sequence ixn1 in a normed linear space, that is, 

without the canpleteness condition, then the sequence is 

fundamental. 

To prove the equivalence of the above statements to 

the original definitions of 'strong convergence and a 

fundamental sequence respectively, it is first noted 

that if condition (B.5) holds, then it is certainly true 

that the inequality 

11711+1 - 	S. 13 xn 	x12-111 
	

p < 1 	(3.6) 

holds for n > 1 and some number 3, 0 < p < 1, irrespective 

of whether the space X.is complete or not. Iterating 
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on (B.6), 

11 x3 -x211 <_a 1 1x2 — x3.1 1 

II 
	

x3 11 	Hx3 	x2  I1 	P2 II x24 
	 (B.7) 

_ 150.11 nil 111c2  - x111 p n> 1 

Now consider the identity 

Il xn+m-zn11 = 11 (xn+m-xn+m-1) 	(xn+m-i-xn+m-2) 

• (xn+m -2 - Zn+m -3)  

• (x.+1 - x.)0 
Applying Property 3 of Equation (B.1), the triangle 

inequality, successively to Equation (B.8), 

xn+m-zn11 < 1tzn+ra-Zn.+m-111 + xn+m-1-xii+m_2 + 

11 zn 1 - zn11  

which on the basis of (B.7) becomes 

< (pn+m-24. 	pn- 
1)  Hz2-z111  

(3:8) 

• • • 

B.9) 
-22-1(pm-1 + pm-2 + ... = p 1) 11x2-x111 p n > 1. 

m-1 i  Co° 
Since :73* = r.  i=0 

4  M-1 4  

p-  > 	p-  for 0 < p < 1, 
1=0 

inequality (B.9) can be written as 
,171 -1 

11.zn+m-zn 11 S. 	11x2-z111  t n > 1 	(B.10) 
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Then given any E > 0, it is evident from (B.10) that 

the norm Oxn+m-xnfl can be made less than E by choosing 

n sufficiently large; thus the sequence satisfying 

inequality (B.5) is a fundamental sequence. 

If the space X is complete, then the limiting element 

x of the fundamental sequence xn  must belong to the 

space X, by definition. 	Letting m --v\- co in (B.10), it 

follows that 

x„ - xi! ..c 

 

n > 1 (B.11) 

 

where x is the limit point of the sequence. Thus a 

sequence [xn1 satisfying condition (B.5) in a complete 

normed linear space is strongly convergent according to 

Definition (B.4). 

It is clear from inequalities (B.10) and (B.11) that 

strong convergence implies that the sequence is funda-

mental. However, the converse is not always true unless 
a 

the space is complete. 

There is yet another type of convergence for sequences 

in normed linear spaces called 'tweak! convergence which 

relates to the behaviour of a sequence under linear 

functional transformations in the space. However, the 

strong convergence of sequences (which implies convergence 

in the weak sense) is the type of convergence referred to 
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in the thesis, and therefore weak convergence will not 

be considered here. 

B.2 Operators on Normed Linear Spaces. 

If there exists a correspondence between the elements 

of one space X and the elements of another space Y; then 

the mechanism by which the relationship is established 

is called an operator or mapping. The relationship 

between an element x G. X and its image element y e Y may 

be denoted by 

= P(x) 

or 

	

	
(B.12) 

y = Fx 

The space X is called the domain of the operator F and 

Y the range. It is assumed here that the spaces X and 

Y are normed linear spaces. 

If in particular the image space Y is a subset of 

the real line, i.e. the image elements y are simply real 

numbers, then the operator is called a functional. 

An operator F is said to be bounded if there exists 

a constant C such that 

11 p(x)fi 	c ocu 	 (B.13) 

for all xe X. 

An operator P is said to be continuous if for every 

number £ > 0 there exists a number CI > 0 such that 
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11 3(x1) - P(x2)fi < e 
when 	 (B.14) 

11x1 x211 <a 

for all x1, x2  e X. 
Note that the norms in Definitions (B.13) and (B.14) 

must be interpreted according to whether the domain X is 

involved or the image space Y. That is, OF(x)H refers 

to the norm in the image space Y while lix4 refers to 

the norm in the domain X. 

All the operators with which the thesis is concerned 

are assumed to be bounded and continuous. 

B.2.1 Linear Operators. 

An operator F is said to be linear if it satisfies 

the condition 

Fecal 	Px2) = mF(xl) + pF(x2) 	(B.15) 

for any two elements xl, x2  C X, and arbitrary real numbers 

mo. 	If a linear operator is continuous, then it is also 

bounded. The reverse is true as well for linear operators. 

The norm of a linear operator F, denoted by 	, 

is defined as the greatest lower bound of the numbers C 

which satisfy the boundedness condition (B.13).,  The 

norm of a linear operator is given equivalently by the 

expressions 
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Su IIP(x)4  
= Itd76 IIRII 

= Sup H (x)II 
II 	<1 	• 

= 	sup II F(x) II 
i1 x11=1 

(B.16) 

If in particular the operator is a linear functional, 

then its norm becomes 

II PH 	= 	Sup I  P(x)I 	 (B.17) 
flxg<1 

Definition (B.17) follows from (B.16) only if the norm in 

the image space Y (the real line for a functional) is 

taken as the normalized norm. That is to say, if 

Y = 1,1)(0,T3 space for example, then the norm F(x) 	in 

(B.16) should be taken as 

II P(x)H 	= 	jT 1P(x)I Pd111  

rather than the unnormalized form (B.3), in order that 

Definition (B.16) reduce to (B.17) when F is a linear 

functional. 

If F1  and F2 are two linear operators on a linear 

nonmed space X,_ then the inequality 

HP 11 < II F11I 	+ II F2  II 	 (B.18) 

holds for their sum F =F1 + F2' 
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If F is a linear operator from the space X to the 

space Y, and G a linear operator mapping elements from 

Y into a third space Z, then the composite operator 

H = Gk' defined by 

	

z= H(x) = G(F(x)), 	x C X, z C Z 	(B.19) 

is called the product of the operators F and G. The norm 

AH4 satisfies the inequality 

	

II HO < IIG 	. 	(B.20) 

B.2.2 Adjoint Operators. 

Before defining an adjoint operator, it is worthwhile 

to introduce the concepts of a conjugate space and an 

inner product on conjugate spaces. 

It is known that the set of all linear functianals 

defined on a normed linear space X forms itself a normed 

linear space called the conjugate space of X and denoted 

by X. 	Considering in particular 1,1310,21 space, the 

conjugate space is Lq[0,T] space where p and q are related 

by 

P +
q 
 = 1 . 	 (B.21) 

That is to say, 11(1CO,T) = (111:10,Tpm  in the above notation. 

The fact that IiPtO,Tj and Isc110,T) are conjugate to 

one another is a result of the proof that the general form 

of a linear functional on IJP(0,0 space is 
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F(x) = 	f(t)x(t)dt t  x e ro , 	(B.22) 
0 

The norm of functional (B.22), as determined by Definition 

(B.17) in conjunction with Halder's inequality, is given 

by 

= {fo lf(t)1 gat 	 (B.23) 

Thus whatever function f(t), te[O,T] is used in specifying 

a linear functianal on LP[O,T) space, that function must 

belong to the conjugate space L(110,T). 

Notwithstanding the fact that Equation (B.22) is the 

general form for a linear functional on LPEO,T) space, 

the expression is seen to be linear with respect to either 

x or f. Such.a bilinear expression is called an inner 

product between the two elements. 

In general, the inner product between two elements 

x and y belonging to spaces which are conjugate to one 

another, i.e. xex, y e X3 1  is the bilinear functional 

associated with those spaces and denoted by <x,y>. The 

inner product possesses the following properties: 
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1. <x,y> = <y,x> 

2. <xl  + x2,y> = <xl,y> + <x2,y> for all 

xl'±2 X; Y X  

‹x'Yl Y2>  = <xal> 
 + <x,y2> for all 	(B.24) 

xX; YltY2 
<ax,y> = <x,ay> = m<xly> fora any 

real number. 

In particular, the inner product on the conjugate 
1 1 spaces IP[O,T) and 1,110 T), 
P 
 + — = 1, is  q 

<xty> = I x(t)y(t)dt 
	

(B.25) 

where x IY(0,T) and y 1,q(0, T) or vice versa. 

When the conjugate spaces are the same, i.e. X = 

then the spaces are said to be self conjugate. A self 

conjugate space is a Hilbert space for which the norm is 

derived from the inner product according to 

1124 	= kr<x,x> 	(B.26) 

and the additional property for the inner product 

<x,x> > 0 with equality if and 

only if x = 0, 

may be included with those of (B.24). It is seen that 

I2I0,T] space is a (real) Hilbert space. 

Consider now a linear operator L which maps elements 

from the space X into the image space Y, i.e. 
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y = L(x) = Lx 

where xGX, y€Y, X and Y normed linear spaces. The 

adjoint operator of the linear operator L, denoted by Lm, 

can be defined by the inner product relation, 

<z,Lx> = <xlIamz> 	(B.27) 

where z is an arbitrary element G Y (the space conjugate 

to Y), and x is an arbitrary element E X. Thus the 

adjoint operator I'm  maps elements from the space Ym  (the 

conjugate to the range Y of the linear operator L) into 

the space Xm  (the conjugate to the domain X of the linear 

operator L). 

The adjoint operator Lm  of a linear operator L is 

also a linear operator, and 

= 	 (B.28) 

Three basic properties of adjoint operators are the 

following: If 111  and L2  are two linear operators with 

domain X and range in Y, then 

1. the adjoint of their sum is equal to the sum 

of their adjoints, 

(Li  + L2)m  = Llm  + L2m 	(B.29) 

2. the adjoint of their product is equal to the 

product of their adjoints in reverse order 

(L1L2)m  = L2mL1m 	B.30 
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3. the adjoint of the identity operator is 
equal to the identity operator 

I7E  = I . 
As an example, consider the linear operator Li  

defined by 
t 

y(t) = L1  x = 	k(t-Z)x(t)dt 
o 

(B.31)  

(B.32)  

where xeLPCO,T3, yeLrEO,Tj, and the kernel k(t-T) vanishes 
for t > t. The domain of the linear operator (B.32) is 
X = L1EO,T1 and. its range Y = LTED,Tj. 	The corresponding 
conjugate spaces are X31  = 1,41[0,T) and Y = L8E0,T1 where 

1 	1 1 , + = ; + = . 

Substituting Equation (B.32) into the inner product 
relation (B.27) 

= iTz(t) k(t-T)x('C)dtdt. 

(B.33)  

(B.34)  

Keeping in mind the fact that k(t-'C) = 0 for Z > t, the 
upper limit of integration for the inner integral in (B.34) 
may be changed from t to T such that 

T 	T 
<z,L1x> = f z(t) f k(t-t)x(t)d.rdt. 	(B.35) 

Reversing the orders of integration in (B.35) 

<z t Lix> = 	x(T) 	k(t-Z)z(t)dtdt 
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Interchanging the notes ion for the variables of integration 

T 
<z,Lix> = 	T x(t) Sk(-t)z(T)derdt. (B .36 ) 

But since k(t-t) = 0 for t >T , Equation (B.36) may be 

written as 

<z,Lix> = 	x(t) 	k(Z-t)z(Z)dVdt = (x,4z). 

That is, the adjoint operator Li of the linear operator 

(B.32) is given by 

Llz 	fic(T-t)z((r)dT 	(B.37) 

which maps elements zelis[0,1 (the conjugate to the image 

space of operator L1) into the space Lq[0,T] (the conjugate 

to the domain of operator L1). Note the transposition 

of arguments for the kernel function appearing in the 

adjoint operator (B.37) as compared to the kernel in (B.32). 

In a similar manner, the adjoint operator of the 

linear operator L2 	given by 

L2x = Jk(T + t -rr)x(T)dT 	(B.38) 

may be determined with the result that 

LAS = fk(T 	- t)z(T)d'e 	(B.39) 
0 



-227 

B.2.3 Differential Calculus in Banach Spaces. 

Let X and Y be Banach spaces and let A be an open 

subset of X. Let f, g be two mappings of A into Y. 

We say that f and g are tangent at a point x0G A if 

ilf(x) -  g(x)II  
x-xo 	4 x - x0  4 	 0̀  (B.40) 
x,'xo  

This implies, of course, f(x0) = ex0)- 
Among all functions tangent at xo  to a function f, 

there is at most one mapping of the form x 	f(x0) + u(x-x0) 

where u is linear. 

Vie say that a continuous mapping f of A into P is 

Fr.‘chet differentiable at the point xo e A if there is a 

linear mapping u of X into Y such that x 	f(x0) + u(x-x0) 

is tangent to f at xo. We have just seen that this 

mapping is unique. It is called the FreChet derivative 

of f at x0 and written Df(x0). 

Let x - xo = h. The Frechet Differential, 

Df(x0).(x-x0) = Df(x0).h may be calculated from the formula 

f(x+fh)-f(x0) 
Df(x0).h = 	° 	(B.41) 

1-4.0 	U 
where f  is a real number, or from the formula 
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Df(x0).h = af(x0+,13.)1 c"
-=° 
	(B.42) 

However, the operations on the right hand side of 

equations (B.41) and (B.42) do not in themselves suffice 

to define the Frechet differential, because there exist 

mappings f for which the operations on the right hand 

side are meantrgful, but which themselves fail to satisfy 

the definition of a Frechet differential. When this is 

the case the functions defined by the right hand side of 

equation (B.41) and (B.42) is called the Gateaux Differ-

ential of the mapping and denoted by Df(x0;h). 

For example the mapping f defined by 

f(x) = jt1 x(z)I 
0 

x€L [0,T) , 

possessesthe Gateaux differential 

Df(xo  ) = 	h(T)Sgn(xerndet 

+ 1 for x > 0 
where Sgn(x) = 

- 1 for x < 0 

but is not. Frechet differentiable. 

It is evident that if the Frechet differential 

Df(x0).h exists, then theSatemadifferential Df(x0;h) 

exists and the two are equal. However, the converse 

is not necessarily true as shown by the above example. 
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Conditions under which the existence of the weak differ-

ential implies the existence of the Frechet differential 

relate to the condition that Df(xo;h) be uniformly 

continuous in xo and continuous in h in a certain neigh-

bourhood of the point xo.' 

The Frechet differential Df(x0).h is linear with 

respect to the variation h, i.e. 

Df(x0).(hi+h2) = Df(x0).111  + Df(x0).h2 	(B.43) 

whereas the Gateaux differential need not necessarily satisfy 

linearity with respect to its variation. 

Let us remark that the definition of a Gateaux 

Differential is the same as that of first variation in 

the Calculus of Variations. 

The Frechet Derivative (when it exists) of a continuous 

mapping f of A into Y at a point xo  A is thus an element 

of the Banach space t(X;Y) (the space of Linear mappings 

from X to Y). 

We shall not continue with any further details of 

Differential Calculus in Banach Spaces. This Differential 

Calculus is in fact very similar to ordinary Calculus and 

counterparts of mean value theorem, Taylor's theorem, etc., 

exist here too. The interested reader is referred to 

Dieudonne(47), Chapter VIII. 
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APPENDIX C  

DERIVATION OF SOME.RESULTS FOR THE SECOND ORDER 

COMPUTATIONAL METHOD 

C.1. Solution of the Variational Problem Given by 

Eguations (5.12) - (5.14)  

In a suitably small neighbourhood of the optimum, 

DuH will be small. In fact it will be a differential 

quantity and thus of the same order of magnitude as 

D2H.6u etc. arising in (5.12). However if the nominal 

control function chosen is not sufficiently near to the 

optimum DuH will be large. Thus the choice of 6u by 

minimising 6P + 1  52P subject to the constraint (5.12) 

may render the linearization (5.13) invalid. Hence 

el, o <.E 1  1 1 is introduced, in the integrand (5.12). 

In a suitably small neighbourhood of the optimum Ei  can 

be set equal to 1. 

Similarly for the nominal control function chosen, 

we may miss the terminal constraints by a large amount. 

Thus G(x(tf),tf) will be large. Hence the desired 

improvement in terminal condition might have to be 

corrected in small steps. Hence the parameter E2  is 

introduced : 

The variational problem (5.12) 	(5.14) is solved 
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by writing the Hamiltonian for the problem in the form 

. El  <DuH2 Ou>+ 2 <D12:111.5u,5u> + 	<1)11.5x,5x> 

+ <D2ux  H.5x,Ou> + 1<41,X,Dxf.ox + Duf.5u> 	(C.1) 

where E1 LiX is the Lagrange Multiplier function for 

this problem. Because of the presence of the linear 

term in the integrand of (5.12), the multiplier is 

written as e1AN.. Differentiation of X with respect 

to ou and 5x yields equations (5.16) and (5.18) in the 

usual way. 

Also the boundary condition for eidA. is found 

by forming, 

2<Dx2  11/(x(tf),tf,),1).5x(tf),5x(tf)> 

E2< A17, E2G(x(tf),tf)  + D.G(x(td,td.sx(td> 

and differentiating the above term with respect to 

5x(tf). This yields equation (5.17). 

C.2. Proof that Sum of First and Second Variations  

is Negative for the Choice of 5u Given by (5.18)  

We first assume that there are no terminal constraints 

present. Let us evaluate the terms in the integrand 

of (5.12) separately. 'We have, 
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=<DuH,5u> 	- ET<DuH,(D12.1 H)-buH>- E1<DuH,(DH)-1D2  H.tix> ux 

e
1 
<DuH,(D121H)-1(Dur)T.A 

(0.2) 

2.02 	 2xH.8u,6u> + <D2  H.5x.,ou> + —<D2H.bx,bx> 2 u 	ux  

= 	ET.<DuH,(D 12111)71DuH> + 2<(D2cH -.D2  H(D121H)-1D171xH)6x,6x> 

4.  1 ^2 
< 4A.,D f(D2H)-1(D f)Tiax, €2<D H,(D2H)-1(D f)TA X> 2 1 	u u 	21u u 	u 

(C.3) 
Combining (C.2) and (C.3), we obtain, 

Integrand of (5.12) 

1 2 	 1 2 
= 	— 6 <D H (D2H) D H> - — E <B5X,OX>+<Cox+ E 2 1- ' u 	2 1 	1 

1 - -ff<Cbx,ox>. 

Writing C6x+ 	- ElLNA - elATLVX, performing integra- 

tion by parts, and using 

eiLlX(tr) = DF.5x(tf) , we obtain,. 

Sum of first and second variations 

t 
r 

1 2 % 
= - -f 61 j E<DuH+(Duf)TAX,(1)12,1H 	Du  H+(Du  f)

T  AX)>]dt 
to 

tf 

<C6x1 ox>dt 1<l)F.5x(tr),ox(tr)> 

to 



t' 	.7}•-••• 

-233- 

which is negative in view of our assumptions. 

For the case where terminal constraints are present, 

the development is the same. In this case, 

Sum of first and second variations 
t
f 

J 	
[ <D H+(Duf )T4 X, (Du2H DuH+(D f 	X) ]dt 

to 
t
f 

_f <C5x,5x>dt - 2 <D;\1/.5x(tf),5x(t )> 

<P-1(to)

t  0 

E2G + elm(t0)), €2G>. 

P
-1(t0)  

is positive definite. We now have to make the 

assumption that the last term within < > is positive 

definite, to be strictly correct. In computation, this 

means making elm(to) sufficiently small. 

C.3 Derivation of Equations (5.26) - (5.30)  

Differentiating equation (5.24), we obtain, 

e1  z% = 	+ Kbx + K(A5x+ E1  BAX+ E1v) + E2NA15 

Eli + 1  KBE e1  Kv+ (k+KA+KBK ) 5x+ ( it+ E2KBN)A),  

= -05x - AT( e le +K5x+ E2NLD) - E1  w from (5.21) 

Hence 

E1(. +(KB+AT)t +Kv+w)+(k+KA+ATK+KBK+C)5x 

+ 	e2  i+KBN+ ATN)AD = 0 
	(c.4) 

Since the above equation has to vanish for arbitrary.  
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bx and z%), , we obtain 

t+ (KB+AT)t + Kv+w 0 	 (C.5) 

k + KA + ATK + KBK + C = 0 	(c.6) 

+ (KB+AT)N = 0 	 (C.7) 

Equating coefficients at the end point, 

K(tf) = Dx2y(x(tf)Itf,19 ) 	(c.8) 

N(tf)= (DXG(x(tf),tf))T 	(c.9) 

Differentiating (5.25), 

0=E1rli+RT6x+NT(A6x+ 61B4A+  E v) + E 1 	2 

EillIAT6x+NTA5x+NTB( E t +Kox+ E2NA:a)+ E1  NTv+ E2  PAV 

= 81  (Iii+NTBL+NTv)+ (kT+N +NTBK)Ea+ e2  (P+NTBN)AD 

Again, since the above equation has to vanish for arbitrary 

ox and AD, we obtain 

m + N (B +v)0 

P + NTBN = 0  

The boundary conditions for m and P are clearly m(tf) = 0, 

P(tf) = 0. 

C.4. Case When tf is given Implicitly 

The expressions for the first and second variations 

are now obtained according to the development in Bliss(*8), 

pp 226-227. The main difference from the previous case 
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is that at the end point we have to consider dependent 

and independent variations, 4,x(tr) = 6x(tr)+X(tf)dtlr. 

feirmima 
swrface 

ti  "E.; t aff 

Sketch C.1  

In forming the auxiliary minimization problem, the 

term <DuH(x(tf),u(tf),2 (tf),tf),5u(tf)dtf> is multiplied 

by El  and then neglected as being of third order. 

The solution of the auxiliary minimization problem 

is tedious but straightforward. Essentially we obtain 

equations corresponding to equations (5.6) - (5.10). 

Equation (5.46) is the transversality condition of the 

auxiliary minimization problem. 
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