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PREFACE 

The research for this dissertation was carried out at the 

South African Museum from 1970 to 1975. Most of the results 

of this research have either been published or are in press 

(see references). For various reasons several of these 

papers have been co-authored: Tankard & Schweitzer (1974, and 

in press), Tankard & Krinsley (1974), Kilburn & Tankarq (1975). 

The two papers with Mr F.R. Schweitzer of the South African 

Museum present analyses of cave sediments which were excavated 

by him as part of his archaeological programme. But these 

papers were entirely geological in approach and the analyses 

and interpretation were entirel; my own work. Mr Schweitzer 

provided the archaeological framework. The paper co-authored 

by Professor D.H. Krinsley of New York University was also 

entirely my own work, but I learnt a great deal from discussions 

with Professor Krinsley. The paper with Mr R.N. Kilburn, on 

the other hand, was the result of several years cooperation. I 

benefited greatly from his knowledge, both of molluscan taxonomy 

and of the relevant literature. The resulting publication was 

largely written by Mr Kilburn although several of the species 

descriptions were my work. This joint paper is not integrated 

into the text of the dissertation, but some notes have been extracted 

and included in Appendix 3, together with other original 

palaeontological notes. 
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ABSTRACT 

This thesis examines the Late Cenozoic history and palaeoenviron

ments of the coastal margin between Elands Bay on the west coast 

and Die Kelders on the south coast. This study is introduced with 

a detailed discussion of eustatic sea level oscillation. The 

history of the existing ice sheets, sea floor spreading, isotopic 

composition changes of the oceans, and isostatic responses of the 

crust to varying loads are reviewed with regard to their bearing on 

sea level changes. 

A detailed account of the Neogene stratigraphy of the south-western 

Cape Province is presented. The Middle to early Late Miocene 

Saldanha Formation is characterised by shallow marine phosphatic 

sandstone and phosphorite. It is thought to have been deposited 

in a warm transgressiv~ sea. 

The Pliocene Varswater Formation was deposited during a secondary 

transgression induced by.seaward tilting of the coastal margin during 

a time of worldwide regression. The Varswater Formation is 

characterised by pelletal phosphorites. It includes marine, estuarine, 

and fluvial facies. The estuarine sands and peats contain a rich 

fossil mammal fauna. Depositional environments of the Pelletal 

Phosphorite Member are examined by means of conventional grain size 

analysis to show that deposition took place on a shallow sublittoral 

platform dominated on the outer edge by a breaker-bar. Accretion 

of the breaker-bar to form a barrier-island allowed the development 

of an estuarine complex on the leeward side. Post-depositional 

diagenetic changes were examined by means of scanning electron microscopy. 

A detailed account of the petrology and geochemistry of the phosphorite 

and pelletal phosphorite is presented. The apatite mineral is a 

carbonate fluorapatite. It is concluded that the phosphorite is 

related to upwelling of phosphorus-rich waters. 

Instability of the west coast in the Pleistocene reduced the 

Namaqualand 45-50 m transgression complex to 10 m a.s.l.in the Saldanha 
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area. There were three sea level peaks in the last interglacial: 

6,3 m a.s.l., 2-3,5 m a.s.l, 0 m a.s.l. In the area from the Cape 

Peninsula to Die Kelders elevated shorelines up to 30 m a.s.l. were 

described, but it was found impossible to correlate these even over 

short distances. Thermophilic molluscs found in the last inter

glacial estuarine-lagoonal ~acies are suggestive of a warmer 

hydroclimate than today. 

Palaeoclimatic inferences were made for the period during the WOrm 

lowering of sea level by examining Die Kelders cave sediments. It 

was found that the period of glacial advance in high latitudes was 

accompanied by a cold, wet climate in the southwestern Cape when the 

coastal plain was unoccupied by man. 

An attempt is made to reconstruct the history of transgression, 

palaeoclimate, and tectonism for the South African coastal margin. 

It is shown that the tectonic history could best be explained by a 

combination of seaward tilting of the western and southeastern margins 

on a broader tilting of the entire subcontinent. The Neogene was 

characterised by a single eustatic transgression in the Miocene, with 

secondary transgressions in the Pliocene being the result of coastal 

warping. The Miocene strata are characterised by a cosmopolitan 

mollusc fauna suggesting deposition prior to development of the major 

Antarctic ice sheet. Ocean temperatures became colder through the 

Pliocene and Pleistocene. The last interglacial thermophilic 

molluscs are attributed to a southward shift of the South Atlantic 

anticyclone, and solar heating of the sheltered embayments. 
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CHAPTER 1 

CENOZOIC SEA LEVEL CHANGES AN INTRODUCTION 

1. INTRODUCTION 

Palaeogeographic studies show that all the major coastlines of the 

world have been subjected to alternating periods of submergence and 

emergence. Old high-level shorelines and submerged terraces show that 

sea level has oscUla ted considerably in the pas t. In 1842 M:iclaren 

introduced his concept of glacial control to explain an oscillating sea 

level during the Quaternary Period. According to "classical" theory a 

series of stepped marine terraces was produced by a sea level which 

fluctuates in response to waxing and waning of continental ice sheets, 

and each successive high sea level was lower than the previous 

~(Trowbridge 1954). To cite an example, transgression complexes on the 

Namaqualand coast have,been recognized at 75-90m, 45-50m, 29-34m, 

17-2lm, 7-8m, 5m and 2m, and these range in age from basal Pleistocene 

to Recent (carrington & Kensley 1969). 

The assumption that the order of decreasing altitude of the elevated 

shorelines corresponds with a decreasing age was confirmed by Flemming 

(1968). He showed that an oscillating sea level will not necessarily 

obliterate previous erosion features, but that there is a general absence 

of random positions of high-level shorelines. A descending chronological 

order implies that the shorelines are the result of either a series of 

sea level oscillations of decreasing magnitude, or the result of a series 

of oscillations of approximately equal magnitude superimposed on an 

overall regression (Flemming 1968). The fact that the Pleistocene 

glaciations were of nearly equal magnitude (Flint 1971) would support 

the second option. 

There have been several attempts in recent years to synthesize data on 

eustatic sea level changes (e.g. Fairbridge 1961; Guilcher 1969; Hey 

1971). As Hey points out, any qttempt to interpret the field-evidence 

becomes an exercise in correlation . South African literature on the 

. subject of high-level shorelines is generally of doubtful quality as there 

are no means of dating these shorelines and reliance is placed on 
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long-distance correlation with the "firmly established" Moroccan and 

other sequences. The horizontality of a shoreline over considerable 

distances does not disprove the possibility of tectonism (Cotton 1963; 

Bloom 1967), while the southern African coastlands, in particular, have 

a poor record of Cenozoic stability. Not only can we not separate the 

climatic from the tectonic influence on sea level, but it is also common 

practice to ascribe high-level shorelines to named Late Cenozoic stages 

on the mistaken assumption that the northern hemisphere climatic history 

is well known and the stages adequately defined. 

The recent publication of new evidence bearing on eustatic sea level 

studies makes a discussion opportune. The purpose of this chapter will 

be to discuss some of the more important factors and data dealing with 

eustatic sea level changes. Current research on the existing ice sheets, 

deep sea cores and oxygen isotope studies, sea floor spreading, and the 

bearing these have on eustatic sea level studies will be discussed. Par

ticular attention will be paid to glacio-eustatic Sea level oscillations 

of the last 125 ka (125 000 years) because only for that period are there 

adequate and reliable data, and the effect of the ocean floor spreading 

would be expected to be minimal. In this thesis the term "eustatic" 

will apply to changes of sea level relative to a fixed datum, say the 

centre of the earth, and which are synchronous over the whole globe. 

II. GLACIO-EUSTATIC CONTROL OF SEA LEVEL 

If high-level shorelines, higher than 30m above present mean sea level 

(a.s.l.) for instance, were of glacio-eustatic origin it would imply 

that the existing continental ice sheets had melted and again built up 

several times in the Quaternary. The history of these ice sheets shows 

that this has not happened. 

Although there is little evidence for the existence of large continental 

ice sheets prior to the Middle Miocene, some evidence suggests the 

presence of calving glaciers in the Eocene (Denton et al 1971). The 

first major cooling is closely associated with the Eocene-Oligocene 

boundary (Devereux 1967; Kennett et al 1974), and although Oligocene 
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temperatures on Antarctica were close to freezing there was no development 

of an extensive ice s8eet (Shackleton & Kennett 1974). But Margolis and 

Kennett (1970) document evidence of some glaciation during the Oligocene. 

Evidence of glaciation prior to 22 m.y. B.P. is provided by radiometri

cally dated basalts overlying a Tertiary tillite (Craddock et al 1964; 

Rutford et al 1968). It seems highly likely that the glaciers were only 

mountain or valley glaciers. A rich and varied fossil flora suggests not 

only that extensive ice sheets had no't developed in the Lower Tertiary, 

but also that until at least the Early Miocene the climate was generally 

temperate (Denton et al 1971). 

Analysis of cores from the floor of the Ross Sea (Deep Sea Drilling 

Project leg 28) suggests extensive glaciation on eastern Antarctica at 

least by the Early Miocene (Hayes et al 1973). Shackleton and Kennett 

(1974) (Deep Sea Drilling Project leg 29) have found that the Antarctic 

continental ice sheet developed to present thickness between the early 

Middle Miocene and early Late Miocene, and that by the Late Miocene 

Early Pliocene the Antarctic ice sheet was much more extensive than at 

present. This development was accompanied by a major regression. The 

maximum of ice accumulation 4-5 m.y. ago was followed by an abrupt melting 

and ice retreat to the present position (Hayes et al 1973). SUbsequent 

fluctuations in the Antarctic ice cover have been minor. Studies of 

deep-sea cores show that Antarctic glaciation has been continuous for the 

last 3 to 5 m.y. (Koster 1966; Goodell et al 1968). 

On radiolarian evidence FilIon (1973) has shown that for the last 3 m.y., 
o surface water temperatures south of 65 S were never warmer by more than 

about 30C than they are today. Mercer (1968a) has found that at some 

time during the Pleistocene Antarctic temperatures could have been 7 to 

100C higher than today, but he notes that the present _lOoC January 

isotherm lies close to the coast. A low amplitude temperature fluctuation 

could not lead to significant ice melting. 

Iri the northern hemisphere full glacial conditions have prevailed in 

Alaska since the Late Miocene (Miller 1953; Bandy et al 1969; Denton & 
Armstrong 1969). In a study of several cores from the Arctic Ocean 

Clark (1971, 1974) showed that since at least the Early Pliocene the 
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Arctic Ocean has been continuously ice covered and that the present 

thickness of the ice is a minimum. He found that the Arctic Ocean was 

ice-free until the Eocene, but that the ice sheet must have formed 

sometime between the Eocene and the Pliocene. Shackleton and Kennett 

(1974) suggest a Late Pliocene development of northern hemisphere 

glaciation. 

Melting of the existing ice sheets (east and west Antarctica, Greenland, 

and others) would cause sea level to rise 65m (Flint 1971). But there 

is overwhelming evidence that the land-based eastern Antarctic ice sheet 

was stable throughout the Pleistocene and could have contributed little 

to sea level movement. The Antarctic ice sheet possibly underwent 

periodic surges into the Southern Ocean, but there is little evidence to 

support this (Denton et al 1971). oata from deep-sea cores argue 

against surges, but do not eliminate the possibility of smaller surges. 

Mercer (196Bb, 1973) has found that the marine ice sheet in western 

Antarctica is more vulnerable to climatic change and its melting would 

have caused a eustatic rise in sea level of about 5m. Isotopic studies 

of the Greenland ice (oansgaard et al 1969) suggest that only 15 per cent 

of that ice is residual from the last glacial and preceding interglacial 

age. This led Emiliani (1969) to suggest that high Late Pleistocene sea 

levels resulted from melting of this Greenland ice sheet and that melting 

would cause a eustatic rise in sea level of about 10m. Taking a 

conservative view, that both the Greenland and western Antarctic ice 

sheets contributed to Pleistocene eustatic sea level movement while the 

large eastern Antarctic ice sheet remained stable, the maximum glacio

eustatic rise of sea level could not have exceeded 15m at any stage in 

the Pleistocene. 

These conclusions are broadly supported by oxygen isotope stUdies of 

deep-sea cores. Accumulation of the vast isotopically negative Pleisto

cene ice sheets resulted in a lowering of sea level. At the same time 

the oceans became isotopically positive and more saline. The original 

aim of oxygen isotope studies was to measure palaeo-temperature (e.g. 

Emiliani 1955, 1966). Shackleton and Opdyke (1973) have published a 

record of ocean isotopic composition changes for the last BOO ka. They 
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note that such a record is of greater stratigraphic value than a.record 

of temperature change. 

Based on a rough equivalent of O,l~oto 10m sea level change, Shackleton 

and Opdyke (oP. cit.) have drawn a glacio-eustatic sea level curve for 

the past 130 ka. The remarkable agreement between positions of sea 

level shown on this curve, and those measured on Barbados (Broecker et al 

1968) and New Guinea (Veeh & Chappell 1970) proves the correctness of 

the method. It thus becomes possible to use the record of oxygen 

isotopic composition in core V 28-238 (Shackleton & Opdyke 1973, figure 

9.) as a sea level curve for the past 800 ka. This record shows that 

sea level during isotopic substage 5e (+ 6m) was the highest in the last 

800 ka, and that only twice in this interval did sea level exceed present 

sea level, at about 400 ka and again at about 320 ka. 

In conclusion, it must be emphasised that a sea level curve derived from 

oxygen isotope measurements gives a reasonably clear record of glacio

eustatic sea level changes without the complicating effects of tectono

eustasism or isostatic adjustments of the globe to changing loads. The 

history of the existing ice sheets shows that the glacio-eustatic 

component could not have caused a sea level rise much above present sea 

level in the Pleistocene. The major Antarctic ice sheet appears to have 

existed in its present form since the Pliocene. It is unlikely that 

the history of these ice sheets could account for the major Late 

Cretaceous and Tertiary (Eocene and Miocene) transgressions. 

III. SEA FLOOR SPREADING AND TECTONO-EUSTATIC CHANGES 

The new theory of global tectonics has transformed numerous branches of 

geological research, and the field of eustatic sea level change has not 

emerged unscathed. By this concept crustal plates grow along the mid

ocean ridges and sink or override each other where they again come into 

contact. Changes in the rate of accretion at mid-ocean ridges will lead 

to changes in the depth of the oceans, since elevation or subsidence of 

sea-floor is a function of ridge activity. The idea that ridge activity 

may affect sea level has been postulated by Hallam (1963, 1971), Russell 
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(1968), Menard (1969), Frerichs and Shive (1971), Flemming and Roberts 

(1973) and Vine .(1973). Flemming and Roberts have attempted to 

correlate eustatic changes with contemporaneous global spreading dis

continuities, and can explain the major Late Cretaceous, Eocene and 

Miocene transgressions in this way. Hallam (1971) and Hays and Pitman 

(1973) believe that the Late Cretaceous transgression was due to oceanic

floor uplift consequent upon accelerated sea-floor spreading. The 

Miocene eustatic rise due to spreading rate changes could be of the order 

of hundreds of metres (Flemming & Roberts 1973). If there had been no 

ridge activity in the Cenozoic, and allowing for isostatic adjustment, 

sea level would today be 350m lower than in fact it is (Vine 1973). 

According to Jacoby (1972) the effect of plate movement is to create an 

environment of changing density in which continental blocks of constant 

density will float up or down. For instance, in an environment of greater 

density caused by cooling of the upper mantle the continental blocks 

would float upwards, causing a regression. Conversely, decreasing density 

would result in transgression. 

Rona (1973) has recorded average rates of sediment accumulation from wells 

on the continental shelves and slopes. He found maxima of sediment 

accumulation, corresponding to major transgressions, in the Middle Eocene 

and Miocene. Each maximum is separated by a minimum which corresponds 

to regressive phases. Rona equates the transgressions with a volume 

increase or the mid-ocean ridges resulting from fast spreading and 

orogenic quiescence of continents. Regression corresponds to decrease of 

mid-ocean ridge volume with slower spreading and orogenic activity of 

the continents. 

Increased ridge activity in the Eocene and Miocene would adequately account 

for marine transgressive complexes of those ages around the southern 

African coast. Tertiary marine sediments are preserved in depressions 

in the Precambrian basement south of Luderitz. Haughton (1963) suggested 

that most of the fossil fauna was Miocene, and that Eocene deposits were 

preserved at higher elevations. ~ ~ Middle Eocene marine sediments 

also occur in Mozambique (du Toit 1954). Along the South African coast 

the only evidence for an Eocene transgression consists of reworked deposits 
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at Uloa (Frankel 1968) and Birbury (Bourdon & Magnier 1969). otherwise 

the major transgressive complex deposits in South Africa are of Miocene 

age (King 1953; Frankel 1968; Ruddock 1968; Tankard in press a). 

These same authors also describe Pliocene transgressive complexes. The 

west coast Pliocene deposits can be attributed entirely to tilting and 

there is no need to invoke a eustatic sea level rise. Furthermore, 

Frankel (1968) disputes that there are Pliocene marine sediments along 

the Zululand coastal plain. 

Hallam (1963) suggests that due to continued subsidence of the ocean 

floors, sea level was generally regressive through the Pliocene and 

Pleistocene following the Miocene peak. A change of elevation of the 

ocean floors implies a subcrustal transfer of mantle material. Depression 

of the ocean floors would transfer mantle material towards the continental 

blocks and would cause them to float upwards. But there would be a 

transitional zgne of flexure where the rising continental block was 

coupled to the downwarping ocean floor. Mention has already been made of 

the maximum of ice accumulation 4 to 5 million years ago in the 

Antarctic which was followed by abrupt melting and ice retreat to the 

present position. The time lag between this melting and attainment of 

hydroisostatic equilibrium could have been marked by a Late Pliocene 

transgression, albeit minor compared with the Miocene transgression. 

IV. PLEISTOCENE HIGH-LEVEL SHORELINES 

Assuming a uniform regression from the Miocene eustatic high, +300m 

according to Flemming and Roberts (1973), the basal Pleistocene sea 

surface would have been 50-60m above present. This general regression, 

the result of downwarping of the ocean floors, would probably be 

accompanied by uplift of the continental blocks and continued flexuring 

of the margins. The increased Late Pliocene melt water suggests a 

basal Pleistocene sea level even higher than 50-60m before hydroisostatic 

equilibrium was achieved. But this is all speculation since little is 

known about the course of events following a Late Pliocene melting of 

Antarctic ice and since our knowledge of sea floor spreading is far from 
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complete. Bloom (1971) warns that it "would be foolhardy to infer 

anything about glacial-eustatic control of sea level during one of the 

early Pleistocene glaciations, for instance, in the face of evidence 

that the ocean basins are widening at rates of up to l6cm per year •.. " 

To obtain sets of discrete high-level shorelines such as have been 

described for the South African coast (Carrington & Kensley 1969; Davies 

1970-l973,and others) one could speculate that it would be possible to 

superimpose a glacio-eustatic curve derived from oxygen isotope 

composition changes in the Pleistocene on a sea level regressing due to 

subsidence of the ocean floors. It is doubtful, however, whether this 

would produce meaningful results. Shackleton and Opdyke (1973) record 

a sea level at stage 9 (approximately 560ka) near present sea level. To 

raise this shoreline to +30m either by uniform rate of uplift of the 

coastal area, or tectono-eustatic effects, would ensure that the l20ka 

shoreline (+ 6m) would today be recorded at +15m. Davies (1970) suggests 

that the Natal 60m shoreline is of Cromerian age. The "Cromerian Complex" 

probably extends from 350ka back into the Matuyama Epoch (S1ackleton f,. 

Opdyke 1973). Furthermore, Davies (1970, 1973) claims that the 30m and 

60m beaches contain Acheulian artefacts, but the lower limit of Acheulian 

time is about 700 ka (Klein 1974). The oxygen isotopic composition 

record shows a peak at about that time, stage 19, close to the present 

sea level. At a uniform rate of uplift to elevate such a shoreline to 

+60m, the l20ka shoreline would be found today at about +16m. What is 

believed to be the 120ka shoreline has been identified in zululand at +8m 

(Hobda y in press), and in th e 83.ldanha area at +6,3m (Tankard in press b). 

This type of reasoning suggests that the 30m, 60m and higher shorelines, 

could be no younger than the Early Pleistocene on a "stable" coast. 

V. LAST INTERGLACIAL SHORELINES. 

In the Late Quaternary a more realistic appraisal of sea level fluctuation 

is possible because: (1) the effect of Sea floor subsidence due to 

spreading changes would be minimal, (2) elevations of the shorelines can 

be explained by changes in the ice sheets, and (3) adequate data is 

available. In this discussion, the last interglacial will be taken as 
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equivalent to isotope stage 5, a time range 128 to 73ka (Suggate 1974). 

Emiliani (1961), Shackleton (1969), Shacklet~n and Opdyke (1973), and 

Emiliani and Shackleton (1974), have analysed deep-sea cores spanning 

the last 500 to 800 ka. In all of these studies substage 5e of the last 

interglacial registers a higher palaeotemperature than the maximum post

glacial ~tage 1) or any earlier stage. Substage 5e corresponds to a 

sea level maximum at 120 ka. Shackleton and Opdyke have derived, from 

oxygen isotope measurements, a glacio-eustatic sea level curve for the 

past 130ka. The curve shows four maxima which have been compared with 

estimated sea levels on Barbados (Broecker et al 1968), and New Guinea 

(Veeh and Chappell 1970). Only the substage 5e sea level (Barbados III) 

at 120ka is higher than the present sea level, There are also two 

other maxima in the last interglacial, both 10 to 20m lower than present 

sea level: BII at 100 ka and BI and 80 ka. 

Uranium series dating of corals from shorelines between 1,5 and 9m above 

present datum from various parts of the Indian and Pacific Oceans yield 

dates of the order of 120ka (Veeh, 1966). Undoubtedly the most detailed 

and most reliable results in recent years have come from Barbados and 

New Guinea. Both of these islands have been uplifted at a uniform rate. 

On Barbados Broecker et al (1968) have recognized three last interglacial 

sea levels at elevations +6m (BIll), -13m (BII), and -13m (BI), and which 

have been dated at 122ka, 103ka and 82ka, respectively. A similar sea 

level curve based on a series of transgressive-regressive cycles identified 

from a series of coral reefs on New Guinea independently confirms each 

sea level stand on Barbados (Veeh & Chappell 1970). The evidence from 

Barbados and New Guinea for two -13m peaks at 80ka and 100ka explains 

why these levels are seldom recognised from continental coastlands. 

On Mallorca Butzer and Cuerda (1962) recorded Tyrrhenian II shorelines 

at 12,5m and 7,2m with a 120ka age, and a Tyrrhenian III shoreline at 2,2m 

with an age of 80ka. Molluscs from the western Mediterranean and 

Moroccan coasts are suggestive of sea level stillstands in those areas at 

120ka and 80ka. 

The shoreline between 2 and 7m above present sea level which is widely 
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recognised in places remote from plate boundaries, and which formed at 

120-130ka, is becoming commonly used as a Late Pleistocene sea level 

datum (Chappell 1974). If this shoreline is situated higher than +7m 

it would infer tectonic uplift (op. cit.). Hobday (in press) has 

recognised three last interglacial shorelines from the st Lucia area of 

Zululand; Sm, 3,4-5,3m and 4,5m. Three last interglacial shorelines 

have also been recognised in the Saldanha area of the southwestern Cape: 

6,3m, 2-3,5m and Om (Tankard in press b). In both of these cases the 

highest beaches would agree with the so called Late Pleistocene da~m and 

should therefore be unaffected by displacements such as hydro isostatic 

adjustments. It therefore becomes difficult to reconcile the two low 

levels with the BII and BI levels, although they agree well with the 

Mallorca series described by Butzer and Cuerda (1962). Perhaps all three 

of these last interglacial shorelines from South Africa should be equated 

with BIll. 

VI. SEA LEVELS OF THE LAST GLACIAL AGE 

A. Interstadial Sea Level 

In North America Milliman and Emery (196S) cited 15 radiocarbon dates on 

carbonate samples, to predict an interstadial sea level as high as the 

present at 35ka. Numerous other authors have followed them (see Thom 

1973, for a full discussion). However, a considerable amount of evidence 

has been published which shows that such a high interstadial sea level 

is unlikely. This subject has been treated in great detail by Thom 

(1973) and only a few comments will be given here. 

A glacio-eustatic sea level curve derived from oxygen isotope measurements 

on deep sea core V28-23S shows sea level to have been considerably lower 

than the present level during the interstadial (Shackleton & Opdyke 1973, 

figure 7. ). This curve agrees with the New Guinea data (Veeh & Chappell 

1970) although it was derived from independent lines of reasoning, and 

must therefore be basically correct. The NG III data shows a corrected 

shoreline at -20m at 35ka. According to Broecker and van Donk (1970) 

sea level could not have been less than ISm from present sea level between 

35 and 45 ka. 
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Glacio-climatic evidence proves the impossibility of sea level being 

close to present sea level during the interstadial (M~rner 1971). The 

last glaciation did not possess a warm interval of comparable intensity 

or duration to that which exists at present or prior to 60ka, and oxygen 

isotope measurements on Greenland ice cores failed to show values 

equivalent to an interglacial or to present conditions (Thom 1973). 

Continental ice fronts during the interstadial lay in southwestern Sweden 

and at the line of the Great Lakes in North America (Fairbridge 1971). 

Fairbridge has recorded discussions at the eighth INQUA congress. It was 

stated that a high interstadial sea level to +3 to 5m relies on dated 

carbonate material. Studies carried out by the Columbia University 

radiocarbon laboratory show that all shell dates older than 20ka are subject 

to miniscule contamination which gives meaningless "dates" and which 

should be reported as "greater than .•.•. ". Fairbridge concludes that any 

"postulated glacio-eustatic level for this epoch anywhere near present 

sea level is absolutely out of the question". 

Figure 1.1 is a South African time-depth plot of sea level over the last 

47ka based on 20 radiocarbon dates derived from wood, peat or carbonate 

samples from below sea level. The chance of contamination by atmospheric 

CO2 is thus minimised. These samples are all identified with shallow 

nearshore environments, but are unfortunately representative of widely 

scattered localities from west of the Cape Peninsula to Zululand. A line 

is drawn through the points to draw the eye, and should be regarded only 

as a crude approximation to sea level history over the past 47ka. 

The curve suggests that between 47ka and 25ka there was a sea level 

maximum at approximately -20m. A lengthy stillstand at this level would 

be expected to leave topographic evidence. Rocky Bank, south of the Cape 

Peninsula, was most likely formed by a sea level at this elevation 

(Flemming in press), as was a prominent submerged cliff at -20m along 

parts of the west coast of the Cape Province and South West Africa (Wright 

1964; Murray ~ 1970). 
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B. Glacial Maximum Sea Level 

Evidence for low sea levels between 15 and 20ka, during the glacial 

maximum, have recently been discussed by Chappell (1974). Dated shallow 

marine deposits vary in depth from -65m to -150m. The most consistent 

results are from the Texas continental shelf. There a sea level lowering 

of 130m at 15ka compares with a lowering of 90m at 17ka for the eastern 

continental shelf and 130-170m for Australia (op. cit). Using Walcott's 

(1972) corrections for elastic warping, Chappell calculates a minimum sea 

level of -135m. As he points out this agrees very favourably with 

Flint's (1971) estimate of -130m calculated from ice volumes. Oxygen 

isotope results suggest a lowering to -120m (Shackleton & Opdyke 1973). 

The South African time-depth curve (Figure 1.1) suggests a rapid fall of 

sea level with advance of the final W"urm glaciation and that a minimum 

sea level of -130m was reached at 17-18ka. 

VII. POST GLACIAL SEA LEVEL 

In this section I propose to discuss the changes in sea level during the 

Holocene, and mainly the past 6000 years. Widely divergent opinions 

about the course of sea level rise persist because little account is 

taken of the isostatic responses of the earth crust to changing ice and 

water loads. The hydroisostatic effects will vary with location 

according to continental shelf geometry and structure of the underlying 

mantle. A prerequisite in any Holocene shoreline study is the accurate 

identification of the l25ka datum (+5 ~ 3m) in that area (Thom & Chappell 

1975). 

Following the maximum glacial advance, the rate of retreat of the ice 

was nearly constant, and the present extent was reached at about 6,5ka 

(Bloom 1971, figure 4). Bloom's curve is reproduced in Figure 1.2 

along with several estimates of sea level rise. Generally there appears 

to have be2n a rapid rise of sea level, but with the rate decreasing 

with diminishing time, 
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Ignoring the isostatic responses of the crust to changing loads, there 

is a threefold division of opinion on the course of sea level rise 

(discussed in detail by Jelgersma 1971). These are (Figure 1.2): 

(i) The oscillating sea level concept (Fairbridge 1961). Fairbridge 

finds evidence, mainly from Australia, for postglacial sea levels 

at 3-Sm a.s.l. (Ska), 1,S-2m a.s.l. (3,7ka) and O,B-l,Om a.s.l. 

(2,3ka). 

(ii) The steady sea level concept (Godwin et al 19S8) suggests sea level 

rose rapidly until reaching the present position at S,Ska. Sea 

level has, supposedly, remained constant since. 

(iii) Finally, there is the continuously rising sea level .ooncept 

(Shepard 1961, 1963). According to this concept the postglacial 

rise of sea level has been asymptotic and for the last Ska sea 

level has be3n rising continuously. Shepard's data indicates 

a rapid rise from 17 to 6ka when sea level stood at -6m. This 

was followed by a slow rise to -1,8m between 3,S and 2ka. 

A very detailed work is that of Scholl and Stuiver (1967) on the stable 

Everglades coast of southern Florida. They see a rapid rise of sea level 

to -1m at 3ka, since when sea level has risen slowly. 

Scholl and Stuiver could find no evidence in the Florida region in 

support of high Holocene sea levels as postulated by Fairbridge (1961). 

They pointed out that a slight rise in sea level in the Everglades region 

would have left a very substantial record. Furthermore, they question 

the significance of radiocarbon dates from the Everglades that were used 

by Fairbridge. Shepard (1960, 1963, 1964), Russell (1963), Shepard and 

Curray (196S), Hailes (196S) and Thom et al (1969) are rather sceptical 

of the significance of Australian radiocarbon dates used by Fairbridge 

(1961), Gill (1961) and Ward (196S), Thom et al (1969) have found no 

morphological or stratigraphical evidence for sea levels higher than the 

present in eastern Australia, which supposedly has a stable coastline, 

between 2985 and 9000 B.P. 
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Recent studies (e.g. Bloom 1967, 1971; walcott 1972; Chappell 1974) 

demonstrate that the continental margins are not necessarily stationary, 

but that changing ice and water loads induce displacement of the earth's 

surface which may take the form of rapid elastic adjustments and slow 

viscous mantle flow (Chappell 1974). The course of sea level rise 

relative to the continental margins varies with location, and is affected 

by shelf geometry and physical structure of the underlying mantle (Thom 

& Chappell 1975). Bloom (1971) argues that, because the shelf off the 

Florida Everglades is very shallow, downwarping due to hydroisostatic 

compensation would be minimal, and that the curve drawn by Scholl and 

Stuiver (1967) would be a realistic glacio-eustatic curve. walcott's 

(1972, figure 1) map of elastic warping strengthens this argument since 

the Florida Everglades lie on his 100 per cent contour, i.e. no vertical 

displacement due to elastic deformation of the earth. Florida is also 

remote from plate boundaries. According to Walcott (1972) no substantial 

change of sea level is necessary to explain sea level of the last 6000 

years. 

Deglaciation and the consequent sea level rise following the -130m low at 

about 17ka involved an average depression of the ocean floors of about 8m, 

and an average upward movement of the continents of about 16m (area of 

the continents about half that of the oceans) in the last 7ka (Chappell 

1974). Furthermore, there would be a zone of flexuring where ocean basins 

and continents meet. These effects differ with locality. If there 

is a vertical movement of the continent and flexuring of their margins 

relative to the ocean floors, then the most desirable place to measure 

glacio-eustatic change would be on mid-oceanic islands which follow the 

movement of the ocean floors (the "dip-stick" effect). 

Data from eastern Australia and Christchurch, New Zealand, both stable 

areas, allowed Chappell (1974) to draw a continental coast sea level 

curve. This curve shows present sea level to have been attained by 

6000 B.P. and to have remained static relative to the continent since then. 

Recalcula tion of the sea level da ta from the continental curve to give 

movement of sea level relative to ocean basins shows that sea level has 

been rising continuously throughout that period and that the course of 

sea level rise relative to the ocean basins agrees with the results from 

midoceanic islands and the Florida Everglades. 

I 

I 
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The South African sea level curve (Figure 1.1) agrees with the Queensland

New South Wales results (Thom & Chappell 1975), although many more radio

carbon dates are requi;ed to substantiate its correctness. After the 

eustatic low at 17ka sea level initially rose very rapidly with deglaciation 

(167cm per 100 years). At 9000 B. P. sea level, relative to the continental 

coast, stood at -25m,and was within a metre of present sea level between 

5000 and 6000 B.P. Detailed work in Zululand (Hobday in press) and the 

Saldanha area (Tankard in press b) has not revealed any Holocene shorelines 

higher than present sea level. Furthermore, identification of the Late 

Quaternary datum in these areas at 8m and 6m respectively shows comparative 

stability during this period. 

VIII. CONCLUSIONS 

Pleistocene sea level research is probably on the verge of a major revol

ution and studies such as that of Shackleton and Opdyke (1973) on isotopic 

compQsitionalchanges in the oceans should soon give us a clear account 

of glacio-eustasism through the Neogene and Pleistocene. Already this 

record, and the history of the existing ice sheets, show that glacio

eustatic sea level could not have been much higher than present datum at 

any time in the Pleistocene. It will require a basic change in philosophy 

if the record of ocean isotopic compositions is to be accepted, and a 

reaction against these ideas similar to that which greeted the radio-

carbon dating technique can be expected. In addition it is clear that more 

information on the effect of sea floor spreading and tectono-eustasism in 

general is required. 

Recent quantitative studies (e.g. walcott 1972; Chappell 1974) show that 

the earth's crust responds isostatically to changing ice and water loads, 

and that the best place to observe the movement of sea level relative to 

the ocean basins is on the midoceanic islands which are remote from plate 

boundaries,and move with the ocean floor in its response to changing water 

loads. 

Studies on Holocene shorelines along the continental margins take on a 

new dimension because of these recent trends. No longer is there need for 

absolute change in sea level to explain shorelines of the last 6000 years. 
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By measuring differences in the Holocene record with locality .on the 

continental margins, and comparing these with data from the midoceanic 

islands, for instance, we should have a means of examining the structure 

of the underlying mantle. Holocene shoreline studies will, in future, 

demand a more sophisticated understanding of sedimentary, marine and 

crustal processes, than has been the case in the past in South Africa 

and elsewhere. 

IX. CENOZOIC CHRONOLOGY 

The Cenozoic boundaries suggested by Berggren (1971) and Berggren & van 

Couvering (1974) are accepted as a framework for this thesis. The 

Oligocene-Miocene boundary is taken at 22,5 m.y. B.P., the Miocene

Pliocene boundary at 6 m.y. B.P., and the Pliocene-Pleistocene boundary 

at 1,8 m.y. B.P. The Miocene may be subdivided into Lower (Aquitanian 

and Burdigalian), Middle (Langhian), and Upper (Tortonian). 

Ideally, geological time is subdivided into zones which are based on 

phylogenetic successions in rapidly evolving forms which have, in turn, 

been related to the radiometric time scale (Berggren 1971). However, in 

the last few million years of the Neogene, time was too short for a 

satisfactory palaeontologic zonation, and a considerable amount of dis

cussion is still taking place on the Pliocene-Pleistocene boundary and 

the subdivision of the Pleistocene. At the 18th International Geological 

Congress in 1948 it was recommended that the "Pliocene/Pleistocene 

boundary should be based upon changes in marine faunas, since this is the 

classic method of grouping fossiliferous strata" and that the "Lower 

Pleistocene should include as its lower member in the type-area the 

Calabrian formation (marine) together with its terrestrial (continental) 

equivalent the Villafranchian" (Berggren 1971). 

Zagwijn (1974) discusses the uncertainties about ·the Calabrian stratotype 

and mammal faunas in relation to absolute datings. He believes that 

the base of the Pleistocene is probably at about 2,5 m.y., and not at 

1,8 m.y. as previously thought. This would still be in agreement with 

the recommendation of the 18th International Geological Congress that 
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the base of the Calabrian equates with the base of the Pleistocene. 

For convenience, in this thesis the Pliocene-Pleistocene boundary at 1,8 

m.y. is adopted. 

The guide fossils of the Calabrian marine stratotype are Hyalinea baltica 

and Arctica islandica, neither of which are known from southern Africa. 

Whereas the 18th International Geological Congress has recommended the 

base of the Calabrian (1,8m.y.) and its terrestrial equivalent, the 

Villafranchian, as the base of the Pleistocene, it is' found in fact that 

the base of the Villafranchian is older by at least 1,5 m.y. Deposits 

in Eurasia and Africa assigned to the Villafranchian on the occurrence 

in them of Equus, Elephas, and Bas (Leptobos) are probably younger than 

the type Villafranchian where these species are absent (Berggren 1971). 

Bas is not known in southern Africa and Elephas and Equus appear in Africa 

in the Pliocene. 

In marine cores the Plio-Pleistocene boundary can be fairly accurately 

recognised by the planktonic foraminifera and coccolith content. The 

boundary is marked by the extinction of discoasters and the first 

evolutionary appearance of Globoratalia truncatulinoides. Onshore these 

fossils are not generally preserved because most of the coastal marine 

rocks reflect high energy shallow marine and beach environments, environ

ments which are not favourable life habitats and which are characterised 

by poor fossil preservation. 

The boundary between the Pliocene and Pleistocene is not as marked as 

other Tertiary or older boundaries. The boundary between the Pleistocene 

and Holocene (post-glacial) is no different from the boundaries between 

the preceding glacials and interglacials and it is therefore more logical 

to consider the Holocene as the most recent stage of the Pleistocene 

(West 1968). But the boundary between the Holocene interglacial and 

WDrm glacial is accepted as 10 000 years B.P. measured in radiocarbon 

years by the INQUA "Subcommission on the Study of the Holocene" (1969). 

The subdivision of the Pleistocene (Table 1.1) is based on West (1968), 

Van der Hammen et al (1971), and Shackleton and Opdyke (1973). Shackleton 

and Opdyke equate isotope stage 22 with the base of the glacial Pleistocene. 
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Cromerian I is. characterised by a relict Tertiary vegetation in Europe 

(e.g. Eucommia). They restrict the Elsterian glacial to isotope stage 

10, but concede the possibility that both the "Cromerian complex" and 

the "Elsterian complex" may extend back from 350ka into the Matuyama 

Epoch. The first magnetic reversal ( Brunhes/~J1atuyama) is found in the 

lower part of the "Cromerian complex" (van der Hammen et al 1971). 

The oxygen isotope record from deep-sea cores (Table 1.1; from Shackleton 

& Opdyke 1973) illustrates numerous global climatic changes over the 

last 800 ka. But the stratigraphic record in formerly glaciated 

continental regions is suggestive of more than four glaciations, each of 

which is separated by interglacials, in the last 700 ka. Kukla (1973) 

writes that the oscillations inferred from deep-sea cores did occur, 

and the apparent discrepancy between this and the continental record 

reflects the incomplete record in the latter, and the tendency of strati-

graphers to accept the simplest model. Kukla has examined sedimentary 

deposits in Brno, Moravia, Bohemia, northern Austria and Slovakia, and 

has found evidence for eight sedimentary cycles, each of which starts in 

an interglacial. 

data. 

This would be in broad agreement with deep-sea core 

In this study terms such as "last glacial", "last interglacial", "Eem" , 

"WOrm" ("Weichselian"), will be used as time-climate units based on 

European glacial events. 

X. THE AIMS OF THIS THESIS 

The theme of this thesis is a study of the Late Cenozoic (Neogene and 

Quaternary) history and palaeoenvironments of the coastal margin of the 

Cape Province between Elands Bay on the west coast and Die Kelders on 

the south coast. Because of its palaeoenvironmental bias the study 

will of necessity concentrate on those parameters which best describe a 

particular point in time. Sediments, their chemistry, and their fossil 

assemblages are intimately related and are the end products of processes 

which operated in particular environments, so that the nature of the rock 

and the fossil assemblage may be used together as indicators of processes 
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and environments (Allan 1948). Allan concludes that any particular 

point in the geological record should be viewed as part of a landscape 

with physical and chemical attributes. 

The Middle Miocene was a time of worldwide transgression, characterised 

in regions adjacent to areas of modern upwelling of cold subsurface water, 

by precipitation of authigenic apatite. Although the Pliocene was 

generally regressive, downwarping induced a secondary transgression on 

the west coast. In the Langebaanweg-Saldanha area the depositional 

record is suggestive of rapidly changing facies in a transitional zone. 

Pleistocene history, on the other hand, was marked by a more rapidly 

oscillating sea level which left elevated shorelines close to the modern 

coast. Mollusc fossils from these old shorelines provide the best means 

for studying the environments. In the last _interglacial, in particular, 

extant temperature sensitive molluscs and their known present-day 

geographic ranges provide a basis for interpreting Late Pleistocene palaeo-

temp3rature changes. But with the onset of northern hemisphere glaciation 

during the WOrm sea level fell below present datum. Examination of 

cave sediments provides a wealth of data to supplement and confirm the 

climatic model derived from the last interglacial molluscs. 

Finally, an attempt is made to reconstruct, in broad terms, the marine 

history of the whole of South Africa by comparing geological sequences 

from the south-western Cape Province with other documented sequences. 

But the marine history is incomplete without a discussion of the tectonic 

implications. Such a discussion is presented, and the picture which 

emerges is very much more complex than was presented in the past. 

The subject matter for this thesis will be presented in order of 

diminishing age, starting with the Miocene. 

,-~~ 

f· 
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CHAP1ER 2 

PHYSICAL FEATURES AND PRE-TERTIARY GEOLOGY 

The southwestern Cape has a Mediterranean-type climate with hot, dry 

summers and mild winters. The temperature range at Cape Columbine 

is 190 - 110C. Average annual rainfall is 262mm with a winter 

maximum. The coastal waters have a temperature range of 130 _ 150C 

on the west coast and 150 - 210C on the south coast (Shannon 1966). 

The west coast is characterised by active upwelling of cold subsurface 

water in the summer months. An evergreen Cape Macchia vegetation 

predominates and grasses are rare so that the surface is never adequately 

protected against wind erosion. The vegetation is denser east of the 

Cape Peninsula. Soils are generally skeletal. 

A low-lying area, drained by the Berg River and its tributaries lies 

between the Hottentots Holland mountains and the Atlantic Ocean, reaches 

a width of 110 km at latitude 33
0

8. The higher eastern part of this 

lowland is known as the Swartland, and the lower western part as the 

Sandveld. It has been suggested (Talbot 1947; Mabbutt 1956) that the 

Swartland was planed by a shallow sea during the Pleistocene. Other 

than its plain-like surface, there is no evidence to suggest a marine 

origin. The 8wartland and Sandveld are characterised by thick 

accumulations of Late Pleistocene and Recent dune sands. Typical of 

an aeolian landscape, the Sout River has many ponds and marshes. 

A feature of interest is the salt content of the soils and rivers. 

Farmers east of the Sout River till a Malmesbury soil. Deep ploughing 

brings salt to the surface which results in a poor crop yield. A study 

of the Berg River (Harrison & Elsworth 1953) showed that chloride 

concentration increases in two steps. The first sharp increase occurs 

where the Berg River receives tributaries draining the 90m level. The 

second sharp increase takes place in the lower reaches. ou Toit (1928) 

wrote that NaC} is not an authigenic mineral in the Malmesbury rocks and 

that the chloride had a marine origin. 

The pre-Tertiary geology of the west coast (Figure 2.1) comprises rocks 
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of latest Precambrian and Early Palaeozoic age. The oldest rock 

assemblage, the geosynclinal Malmesbury Group, consists of fine-grained 

greywackes and slates with associated phyllites, quartzites, and fels

pathic grits (Truswell 1970). On the farm Drommelvlei north 'of 

Hopefield (320 46'S; 180 25'E) a local consortium drilling for oil 

penetrated 3300 m of subhorizontally bedded shales and siltstones without 

reaching the base. In the earliest Cambrian granites were emplaced 

into the core of the Malmesbury anticline in two phases of similar age. 

The earlier phase of intrusion is marked by a medium-to coarse-grained 

biotite granite, and is followed by a finer grained quartz-porphyry. 

There are diorites with gabbro xenoliths at Ysterfontein. 

The Cape Supergroup generally follows unconformably upon the Malmesbury 

Group and the Cape Granites. In the Elands Bay area the Cape Supergroup 

mainly comprises mature conglomeratic sandstones overlying red thinly 

bedded siltstones, shales and sandstones which are exposed along the 

southern shore of Verlorevlei. 

Figure 2.1 shows the influence of rock type on the regional geomorphology, 

where the geology is compared with an ERT8-1 satellite photograph. The 

western part of the area is marked by the north-west trending Darling 

and Vredenburg plutons which form a hilly terrain. In the north and 

east the resistant cape Supergroup sandstones form mountain ranges. From 

Elands Bay the conglomeratic sandstones form a south-east trending range , 

which forms a natural groyne at Cape Deseada. The northern boundary 

of this sandstone block is a fault-scarp. Less resistant Malmesbury 

rocks form a negative relief. The Berg River follows the strike of the 

Malmesbury geosyncline. Whereas the granite and sandstone feature 

rocky shores, the st Helena Bay coastline on the Malmesbury Group is 

entirely sandy. That Malmesbury rock underlies this entire low coastal 

plain is shown by the frequent inclusions of that rock in the Pleistocene 

marine deposits between SlippersBayand Cape Deseada. 

From a point only 28 km west of Cape Columbine and trending south~south

west is the Cape submarine canyon (Simpson & Forder 1968). This canyon 

has probably affected sedimentation along the st Helena Bay coastline 

by acting as a sediment drain. 

I' 
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The Cape Peninsula massif consists of Cape Supergroup lying upon a 

granite platform. T~e lowest part of the Cape SUpergroup, the Graaf

water Formation, consists of about 70m of fine grained sandstones 

and subordinate mudstone layers (ratio 4:1). The Graafwater Formation 

is succeeded by the Peninsula Formation, nearly lOOOm of ortho

quartzites. Separating the Cape Peninsula from the Hottentots Holland 

Mountains are the cape Flats, which are underlain by Pleistocene sediments 

resting on a granite-Malmesbury platform. 

From Gordons Bay, on the north-eastern corner of False Bay , folded Cape 

Supergroup rocks form the coastline. Coastal morphology is a function 

of lithology and structure. Seaward dipping or sheared sandstones are 

conducive to the formation of a coastal platform rising gently from sea 

level. Where the sandstone dips steeply inland, undercutting and 

collapsing by high-energy waves forms a low cliff. 

Surface runoff is more extensive on the south coast than on the west 

coast, and river systems are controlled by the structure. The largest 

river is the Bot River which enters Botriviervlei east of Kleinmond. The 

river has followed a syncline to form its course on Bokkeveld Group 

rocks. 

walker Bay stretches from Hermanus to Die Kelders. It has formed by the 

sea eroding back an inlier of Cape Granite. 
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CHAPTER 3 

THE PRINCIPAL FEATURES AND THE 

DISTRIBUTION OF THE COMPONENTS 

OF THE WEST COAST NEOGENE DEPOSITS 

I. INTRODUCTION 

For the last decade the South African Museum has been involved in 

research directed at Late Cenozoic mammalian fossil sites of the south-

western caps. The most important of these sites, situated within the 

Chemfos Limited, New Varswater Quarry at Langebaanweg, is one of the 

richest occurrences of its type in Africa. It is the only Pliocene site 

being investigated in southern Africa. Since the site was first 

discovered in 1958 (Singer G Hooijer 1958) several accounts of the fossil 

fauna have been published (Singer 1961j Bon~ Gsinger1965j Hendey 1969; 

1970aj 1974). But despite the importance of this site both palaeonto

logically and geologically, very little has been published on the geology 

of the various phosphate deposits of the area. Ou Toit (1917) described 

in detail the aluminium phosphate deposits in the environs of Saldanha 

Bay, while Haughton (1932) and Frankel (1943) have briefly mentioned the 

bedded calcium phosphate deposits of Langebaanweg. Tankard (1974 a and 

b) discusses the stratigraphy and the petrology of the phosphorite in 

detail. A recent report of the Cenozoic sediments is that of Visser 

and Schoch (1973). Other accounts deal only superficially with the 

geology of the area (Talbot 1947; Mabbutt 1957, 1959; Bon~ G Singer 

1965; Singer G Wymer 1968; Hendey 1970a, 1970b,1974). 

The Neogene geology comprises strata of Middle Miocene and Pliocene age. 

Rocks of Miocene age include the phosphatic sandstones and microsphorite 

of the Saldanha Formation (Tankard in press a), and marine and aeolian 

limestones of the Bredasdorp Formation. The Pliocene Varswater 

Formation is characterised by a cyclothem dominated by pelletal 

phosphoritic sands, with beach gravels, kaolinitic clays, peat and 

carbonaceous sand, and fine quartzose sand. These bedded Neogene 

sediments occur principally around the perimeter of an erosional basin 

between the Berg River and Saldanha, while a small inlier occurs at 

Ysterplaat, cape Town. 
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The aim of this chapter is to describe the geographic distribution of 

the Saldanha and Varswater Formations. 

II. SALDANHA FORMATION 

The Saldanha Formation is a Miocene marine transgressive complex taking 

its name from the town Saldanha. The stratotype is situated about 

the "Bomgat" on the Hoedjiespunt peninsula at Saldanha Bay (330 01, 7'S; 

l70 57,4'E) (Figure 3.1, Site 1). The phosphatic sandstone exposed in 

the floor of the New Varswater Quarry at Langebaanweg (Figure 3.1, Site 

2) would perhaps have been preferable, but being a mine it is unlikely 

to remain exposed indefinitely. However, it will be used as a reference 

stratotype so as to describe the formation more completely. 

Another occurrence of phosphatic sandstone of Miocene age occurs at 

Ysterplaat, Cape Town (Figure 3.1, Site 3). North of Hondeklipbaai 

(30
0
19'S; 17

0
16'E) phosphatic sandstone is preserved as bedrock-hollow 

infills and extends up to 36m above sea level where it is truncated by 

a wave-cut erosion surface (Tankard 19746). 

The Hoedjiespunt microsphorite and the Langebaanweg phosphatic sandstone 

have been referred to informally as the "basal bed" (Tankard 19746, 

1974b, 1974c). Hendey (1974) included the Langeberg (Langebaanweg) 

phosphatic sandstone in his "bed 1", the remainder of "bed 1" consisting 

of Varswater Formation sediments. Du Toit (1954) equated the Hoedjiespunt 

micro'sphori te with the eastern Cape Alexandria Formation. 

All occurrences of the Saldanha Formation appear to belong to a Middle 

Miocene transgressive complex. The most important single feature of 

these rocks is the occurrence of autochthonous phosphorite. They are 

lithologically distinct and sufficiently well developed to merit 

designation as a formal stratigraphic unit. This recommendation was 

accepted by the South African Committee for Stratigraphy: Tertiary

Quaternary Working Group in February 1975 after a field inspection. 

The only other onshore deposits of suspected Miocene age consist of 

limestones exposed in a quarry 4km northwest of saldanha. They consist 
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of a massive marine limestone, more than 3m thick, overlain by high-angle 

cross-bedded aeolianite. The interface is at 56,4m a.s.l. At Die 

Kelders Bredasdorp limestone overlies steeply dipping Peninsula 

sandstone. 

III. VARSWATER FORMATION 

Although Hendey (1970a) used the name Varswater bed for the sedimentary 

succession at Langebaanweg, he later accepted (1974) that these sediments 

should be termed the Varswater Formation. That it merits designation 

as a formation is obvious in view of its observable lithologic separation 

from adjacent sediments both above and below, as well as the fact that 

it is recorded over a wide area, viz. Paternoster, Saldanha Bay area, 

and Langebaanweg area, and it consists of a distinctive succession of 

lithologic types. The Varswater Formation takes its name from the New 

Varswater Quarry (liE" Quarry of Hendey 1970a, b), the Chemfos Limited 

mine at Langebaanweg, wherein much of the sedimentary succession is 

visible. A complete description of the stratigraphy, sedimentology, 

and petrography of the succession will be given. The field work for 

this study began in 1970. Much use has been made of borehole logs, over 

120 logs on Langeberg and a further 95 borehole logs on Witteklip

Sandheuwel-Langlaagte, besides numerous borehole logs from other uneconomic 

prospects. Borehole samples from 54 boreholes on Langeberg and 

Witteklip have provided ample material for analysis. 

The name Varswater Formation was accepted by the Tertiary-Quaternary 

Working Group of S.A.C.S. in February 1975. 

Hendey (1974) applied the name Varswater Formation to the phosphatic 

sandstone, silty sands, and pelletal phosphoritic-quartzose sands exposed 

in the New Varswater mine on the farm Langeberg at Langebaanweg. His 

"bed 1" consists ih part of a phosphatic sandstone which is now included 

in the Saldanha Formation. The Saldanha Formation phosphatic sandstone 

at Langebaanweg was truncated at 30m a.s.l. by the transgression which 

gave rise to the Varswater Formation. 

The stratigraphy of the Varswater Formation is summarised in Table 3.1, 



TABLE 3.1 - STRATIGRAPHY OF THE VARSWATER FORMATION AND ASSOCIATED SEDIMENTS 

Age 
" 

Stratigraphic Unit 
Maximum Lithology thickness 

C Pleistocene aeolian sands 41 m Calcareous - quartzose sands, medium to fine grained, moderately sorted. 
ttl 
c 
~ 
m 

..J..l Greenish-white clayey sands with channels of clayey sand and phosphatic 
ttl River channel sediments 2 m 
::J sandstone OJ 

Pelletal Phosphorite 25-28 m Upper and lower boundaries defined as ~/a P205 cutoff. Moderately sorted, 

Member medium to fine phosphatic - quartzose sands. Phosphate present as sub-
spherical pelletal phosphorite. Lenses and concretions of phosphatic 
sandstone. 

c 
poorly sorted. 30-4QJ/a 0 

Quartzose i. Estuarine facies: yellowish brown sandy silt, .r! 83.nd 7 m 
..J..l mud . Little phosphate. Mammal fossils abundant. Grades laterally 
ttl Member 
E into peat. 

m 0 ii. Fluvial facies: coarse sand intercalated with fine sand. Moderately c LL 
m sorted quartzose sands. 
(J ~ 
0 OJ 

frequently phosphate mineralised. Well-.r! ..j..l Consolidated quartzose sands, 
.--l ttl 
D.. 3: Gravel Member 0,5-2 m rounded beach cobbles and gravelly-sands. Shell casts of molluscs of 

U) 
~ warm water affinity. 
~ 

Kaolinitic clay 6 m Grey-black carbonaceous clay, pyrite, grass and Podocarpus pollens. 
(freshwater) 

Quartzose sand 
? Fine quartzose sand 

(unknown origin) 

UNCONFORMITY TILTING 

Saldanha Formation 0,5-1,5 Generally poorly sorted, fine grained phosphatic - quartzose sandstone. 
m m m Hoedjiespunt: massive lens of bedded microsphorite, less than 110 quartz. 

.--l c 
-a OJ -a (J 
'''; 0 
::2' .r! 

Pre-Saldanha Formation ::2' 
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TABLE 3.2 - Correlation of terms used in this dissertation with 
those of Hendey (1974) 

Age 
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while Table 3.2 shows the correlation with Hendey's terminology. 

The type area of the Varswater Formation is the New Varswater Quarry on 

Langeberg (Figure 3.2). At its type locality the Varswater Formation 

is only about 10m thick, but elsewhere the total thickness is 39-43m. 

It consists largely of unconsolidated fine grained quartzose sands with 

the Pelletal Phosphorite Member rich in exploitable pelletal phosphorite. 

The upper boundary of the Varswater Formation has been taken (Tankard 

19746) as the 2 per ce~t P205 cutoff. The base of the formation is 

defined by the quartzose sands, kaolinitic clay, gravels and cobbles, or 

peats and carbonaceous sands. In the absence of all these lower units 

the base of the formation is taken as the base of the Pelletal 

Phosphorite Member which is the 2 per cent P205 cutoff, or the contact 

between higher concentrations of pelletal phosphorite and the Saldanha 

Formation. 

The gross lithology of the various units of the Varswater Formation are 

summarised below, starting with the youngest. 

A. Pelletal Phosphorite Member 

Maximum thickness: Langeberg 25m; Sandheuwel 28m. 

Moderately sorted, fine phosphatic-quartzose sands. Quartz rounded to 

well-rounded, polished. Phosphate present as pelletal phosphorite 

which is largely subspherical in shape, medium to fine sand size. 

Occasional iron oxide staining of quartz and pelletal phosphorite. Lenses 

and concretions of phosphatic sandstone common throughout demonstrating 

post-depositional phosphate mineralisation. Heavy minerals always less 

than 1 per cent. Ilmenite constitutes about 97 per cent of the heavy 

minerals, garnet 3 per cent, zircon 1 per cent. Shark teeth, mollusc 

shells and shell casts occur throughout; limited terrestrial fossils at 

base. Microfauna: phosphatised foraminifera fragments, mainly Elphidium; 

echinoid spines; minute fish teeth, coprolites. Maximum elevation 

54m on Langeberg, Witteklip-Sandheuwel and Paternoster; 50m on Groot 

Springfontein; 47-50m on Duyker Eiland. 
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B. Quartzose Sand Member 

, 
1. Estuarine facies 

Present only on Langeberg. Thickness about 2m. Moderate yellowish 

brown (lOYR 5/4) to pale orange (lOYR 8/2) sandy silt. Poorly sorted. 

Mud fraction 30-40 per cent. Negligible phosphate. Upper limit marked 

by phosphatic sandstone layer. Large numbers of terrestrial vertebrate 

and occasional marine animal remains. Maximum elevation 30m a.s.l. 

Grades laterally into carbonaceous sands and peat with Podocarpus and 

grass pollens. 

2. Fluvial facies 

Maximum thickness about 7m. Layers of coarSe sand intercalated with 

fine sand. Moderately sorted quartzose sands. Very occasional 

phosphorite fragments. No faunal element. 

C. Gravel Member 

Thickness about O,5m on Langeberg, 1,5-2m on Sandheuwel. Consolidated 

quartzose sands, frequently phosphate mineralised. Associated with 

these are well-rounded, discoidal beach cobbles and gravelly-sand layers. 

casts of marine molluscs of warm water affinity. On Sandheuwel a coarse 

gravelly-sand and coquina of mollusc and barnacle shell fragments; 

ostracods and foraminifera common (9:14); echinoid spines. Maximum 

elevation on Langeberg 30m, Sandheuwel 24m. 

O. Kaolinitic Clay 

Maximum thickness 6m. Grey-black carbonaceous clay, pyrite inclusions, 

intercalated pyritic sands. A few pollens; Podocarpus and grass pollens 

recorded. It overlies fine quartzose sand of unknown origin. 
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E. Distribution of the Varswater Formation 

The Varswater Formation is a "classic" marine transgressive complex that 

is preserved mainly in an embayment or erosional basin lying between 

Saldanha and Langebaanweg, although exploratory drilling has revealed 

isolated pockets at Paternoster and Duyker Eiland (Figure 3.2) which face 

the Atlantic Ocean. 

The oldest sediments of the Varswater Formation are black-grey carbon

aceous kaolinitic clays, overlying a quartzose sand. (This quartzose 

sand is known only from borehole logs, and, in fact, could be of Miocene

Early Pliocene age). The kaolinitic clay horizon is probably diachronous. 

A brown-black carbonaceous clay is encountered in the basin in the granite 

floor on Langlaagte close to sea level. The clay is first encountered 

on Langeberg at 10m a.s.l. where it is horizontally disposed (slope 1:360), 

and extends to the foot of the first rise (Figure 5.3)(to be discussed). 

A further sub-horizontal clay horizon migrated across the terrace area 

with a further rise of sea-level to about 30m a.s.l. On Langlaagte 

(Figure 3.2) the clay horizon was encountered in a deep depression in the 

granite floor close to sea level. South of a WSW-ENE granitic ridge 

which divides the farm Waschklip, boreholes have intersected the clay 

horizon preserved in bedrock depressions. 

Within the New Varswater Quarry the Gravel Member, consisting of gravelly

sand, discoidal phosphatic sandstone beach cobbles, and lenses of fine 

quartzose sand with mollusc moulds, lies directly on the Miocene phosphatic 

sandstone. Boreholes show the gravel horizon with shark teeth to be 

widespread along the outer edge of the terrace. On Sandheuwel a coarse 

coquina with complete oyster valves is encountered at 24m a.s.l. (borehole 

S' 58). At Duyker Eiland this horizon crops out at 30m a.s.l. 

The Quartzose Sand Member, with its fluvial and estuarine facies, is 

restricted to Langeberg. Fluvial sediments were encountered to the north

east (boreholes M6-15-N6-15 and N4-76-04), while estuarine-type sediments 

were encountered within the floor the New Varswater Quarry. Recent 

excavations have demonstrated that the estuarine facies consists of fine

grained quartzose sands with an extensive fossil mammal assemblage, and 
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that these sands grade laterally, in a southerly direction, into 

carbonaceous sands and peat. 

Within the New Varswater Quarry the Pelletal Phosphorite Member overlies 

the estuarine sediments, displaying a typical onlap aspect. The thickest 

part of the Pelletal Phosphorite Member occurs on Langeberg where it 

reaches a thickness of 25m. 

to 53-54m a.s.l. 

On Langeberg this member is encountered up 

On Waschklip the Pelletal Phosphorite Member is encountered at 7-10m 

a.s.l. The configuration of this member in the Witteklip-Sandheuwel 

area (Figure 3.2) is controlled by the granite bedrock contours (Figure 

5.2). On Tiekosklip the succession commences with a gravelly sand at 

15m below sealevel, and is followed by an upward-fining sequence. Although 

pelletal phosphoritic sands were encountered during exploration in the 

Paternoster and Duyker Eiland areas, concentrations were generally too 

low to be of economic importance. 

The Varswater Formation is overlain by calcareous Shelly-quartzose sands 

of aeolian origin. They are thought to be of Pleistocene age and will 

be discussed fully along with other Pleistocene sediments. An interesting 

feature of these aeolian sands are the "phoscrete" horizons. These are 

pedogenic horizons that are phosphate cemented by phosphate that has 

been derived from the Tertiary phosphorites. Also to be discussed in 

more detail later are the 8aards Quarry Pleistocene channel sediments 

which have also been mineralised by solutions derived from the Tertiary 

phosphorites. Hendey (pers. comm.) recognises two fossil faunas from 

the channel sediments. The older of these, which has been reworked, he 

believes is closely related to Pliocene fossils on Langeberg. 
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CHAPTER 4 

THE SALDANHA FORMATION AND PRE-SALDANHA 

NEOGENE SEDIMENTS 

I. INTRODUCTION 

Occurrences of phosphorite were first reported from the Agulhas Bank by 

the Challenger Expedition of 1873-1876 (Murray & Renard 1891), while 

Collet (1905) described phosphorite dredged between the Agulhas Bank 

and 250 E longitude. More recent studies of the offshore phosphorites 

include those of Parker (1971), Parker and Siesser (1972), and Summerhayes 

(1973). Tankard (1974b and in press a) has described the petrology 

of offshore phosphorites and phosphatic sandstones from the Saldanha

Langebaanweg area, which were informally referred to as the "basal bed". 

Brief mention has also been made of similar deposits north of 

Hondeklipbaai (Tankard 19748). All of these occurrences appear to be 

of shallow marine origin, and of Miocene age. Lithologically they are 

phosphatic sandstones, phosphorites, or microsphorites. It was 

proposed that the occurrences at Hoedjiespunt (Saldanha), Langebaanweg, 

Ysterplaat (Cape Town), and Hondeklipbaai should be grouped together as 

the" Saldanha Formation", a new lithostratigraphic name. Furthermore, 

this name should also encompass the phosphatic sandstones and phosphorites 

of the South African continental shelf. 

II. PRE-SALDANHA OEPOSITS ON LANGEBERG 

In the first half of 1975 Chemfos Limited sank two boreholes through the 

phosphatic sandstone which forms the floor of the New Varswater Quarry 

at Langebaanweg in order to ascertain the depth of bedrock. Strongly 

flowing water stopped boring operations after only 20m had been cored. 

Although the depth to bedrock is still unknown, a very interesting 

sedimentary sequence was encountered (Figure 4.1). This sedimentary 

succession must be the most complete and most complex Neogene sequence 

so far recorded in southern Africa. The preservation of unconsolidated 

Miocene deposits below the Saldanha Formation may be attributed to the 

"-.---'. '. ---'~'-"'---"--'-- --, ._---------------., --~ 
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fact that phosphatisation may be a rapid process, and once the overlying 

phosphatic sandstone had formed the underlying strata would be largely 

protected from possible erosion. 

The outstanding feature of these pre-Saldanha sediments are the two 

sedimentary cycles, each of which is dominated by peat and overlying 

clay. The cycles are separated by a marine unit. Generally, the 

sequence is suggestive of slow transgression. 

The oldest sediments encountered in these two boreholes consist of 

brown, poorly sorted, loamy, quartzose sand, typical of a regolith deposit. 

The first peat horizon overlies this soil. The peat is 3m thick and 

contains macro-plant remains (i.e. a peat sensu stricto). The upper 

boundary of the peat is gradational through a grey-black clay with 

carbonaceous material into a pure grey "kaolinitic" clay. 

Two metres of medium grained beach sand overlie the clay. The sand is 

well sorted and the quartz grains well rounded and highly polished (a 

wet lustre); typical of a beach sediment. 

The sedimentary cycle is again repeated: poorly sorted sand through 

carbonaceous sand, peat, clay, and finally another poorly sorted gravelly, 

clayey sand which immediately underlies the phosphatic sandstone. 

It is likely that these deposits formed close to sea level. The peat 

probably accumulated at sea level, but was protected from the sea by a 

barrier. The upward gradation through the clay is indicative of a 

deepening freshwater environment. Either breaching of the barrier or 

tectonic lowering could account for the marine incursion. But the limited 

extent of the marine unit which overlies other unconsolidated sediments 

suggests a minor event of very short duration which is more readily 

explained by breaching of a barrier. Further development of the barrier 

permitted repetition of the cycle until another marine incursion took 

place. This second flooding was accompanied by phosphate mineralisation to 

form a phosphatic sandstone. 

Professor E.M. van Zinderen Bakker is at present undertaking a detailed 

study of the pea ts for pollens. 

-,-----
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III. GEOLOGICAL DESCRIPTION OF THE SALDANHA FORMATION 

A. Stratotype 

The stratotype is 1,2m thick on Hoedjiespunt. It is preserved in a 

basin on a granitic platform; the floor of the basin is 5,25m above 

mean sea level. The lower O,7m of the stratotype consists of 

horizontally-bedded microsphorite. The upper O,5m is a layer of granite 

boulders and cobbles supported in microsphorite which has been reworked. 

Bedding is not readily apparent in the upper layer. The unit consists in 

part of phosphatised microcoquina. The upper part of the stratotype 

represents more turbulent conditions in a shallow environment, probably 

due to regression, while the lower part is a quieter water deposit. 

Figure 4.2 is a detailed section, and Figure 4.3 is a photograph of the 

type-sec tion. Thin-sections show that there is less than 1 per cent 

quartz in the microsphorite. High P205 concentrations in whole rock 

analyses, 34 and 35 per cent, show that the microsphorite is nearly pure 

apatite. Although there is considerable coquina and many foraminiferal 

tests, none of the forminifera are identifiable. Gastropod moulds, 

Fissurella and Patella, occasional bivalve moulds and bryozoan remains 

testify further to the marine origin of the microsphorite. 

The lower boundary at Hoedjiespunt is taken as the contact between the 

microsphorite and Cape Granite. The upper boundary is the sharp 

interface between the microsphorite and the overlying Pleistocene shelly 

limestone. In some places there is a suggestion of secondary phosphate 

mineralisation of the shelly limestone at the contact. 

B. Reference Stratotype Langeberg 

Phosphatic sandstone is exposed in two sumps in the New Varswater Quarry. 

It is overlain unconformably by the Pliocene Varswater Formation (Tankard 

1974a). Tilting of the phosphatic sandstone to the southwest took 

place in Late Miocene-Early Pliocene times, that is, before deposition 

of the Varswater Formation. Transgression of the Pliocene sea truncated 

the phosphatic sandstone at 30m above sea level. Underlying the 

sandstone is an unconsolidated siltY-clay· of unknown origin. The 
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Figure 4.3 

Figure 4.4 

Photograph of type-sec t ion a t the Bomgat, Hoedjiespunt. 

Scour and fill structure of the phosphatic sandstone on 
Langeber g. Scour channel occupied by intraformational 
conglomerate. 
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phosphatic sandstone is 1 to 1,5m thick. The rock is brown, while 

the undulating surface is polished and pitted by differential erosion, 

and burrowed by marine animals. In places it is conglomeratic, 

containing clasts which are less phosphatic, or occasionally more 

phosphatic,than the host rock. This intraformational conglomerate 

material frequently fills in hollows in the phosphatic sandstone (Figure 

4.4). Some occurrences show several erosion levels within the 

phosphatic sandstone, thus demonstrating repeated periods of phosphate 

mineralisation and erosion. 

Thin-section analysis shows the phosphatic sandstone to be a fine-grained 

packstone with a matrix of microsphorite and finelY-divided argillaceous 

and organic material. Heavy minerals, mainly ilmenite, are present in 

only trace amounts, while rare microsphorite pellets are found. In 

some places the phosphatic sandstone is coarse-grained and contains an 

abundance of shark teeth and bone fragments. 

C. Other Qccurrences of the Saldanha Formation 

1. Ysterplaat 

In 1973 foundation excavations by Paramount Construction Company revealed 

75cm of low-grade Tertiary phosphatic sandstone. The exposure has 

since been back-filled. Underlying the sandstone are deeply weathered, 

steeply dipping Malmesbury shales. The surface of the Malmesbury Group 

is 8 , 6m above sea level. One hundred metres west of the excavation 

there is a large shallow quarry. The east wall of the quarry consists 

of rounded pebble-grade fluvial sediments, presumably of Pleistocene age 

but certainly younger than the phosphatic sandstone. 

The phosphatic sandstone consists of a series of interdigitated lenses 

of fine, medium and coarse sands, which may be broadly subdivided into 

three units: 

(i) The lowest 10 to 20cm consists of lithified medium to coarse 

sands with an abundance of marine mollusc shell moulds. The 

upper surface of this unit appears to be eroded. 
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(ii) The second unit consists of 28 to 30cm of iron-stained gravelly

sands which contain vertebrate bone remains; notably whale and 

penguin (Simpso'n 1973). 

(iii) The topmost 20cm consists of medium to fine iron-stained sands 

with whale and penguin bone fragments and shark teeth. 

The middle and upper units show an increasing influx of coarse detrital 

material. These sediments of the Saldanha Formation are overlain by 

16cm of grey surface sand. 

The media n diameters of the sands range from 0, 92 ~ to 3, 03 ~ (10 

samples); the populations are bimodally distributed. Eight of the ten 

samples analysed were positively skewed (range: 0,19 to 0,17), and the 

other two negatively skewed (-0,18; -0,41). SCanning electron micro

scope examination reveals surface textures typical of deposition in a 

high-energy beach environment. Figure 4.5 shows randomly oriented impact 

V-shaped patterns, and Figure 4.6 shows mechanical breakage patterns on 

a quartz grain. According to Krinsley and Takahashi (1962) and Krinsley 

and Margolis (1969) littoral textures are characterised by V-shaped 

indentations and conchoidal breakage patterns. 

The fossil fauna is summarised in Table 4.1. Simpson (1973) named the 

penguin Palaeospheniscus huxleyorum. The shark teeth all belong to the 

Miocene-Pliocene species OxyrhYna hastalis. The mollusc fauna includes 

Glycymeris borgesi which is known only from the Neogene. Dosinia lupinus, 

Lutraria lutraria, Scissodesma spengleri and Cardium cf. edgari are 

known from the Alexandria Formation. 

are still living. 

Dosinia, Lutraria and 8eissodesma 

That Miocene marine sediments are more widespread in this area is shown 

by the derived fossils occasionally found. In the South African Museum 

collection there is a single unrolled shark tooth of the species 

Megaselachus megalodon which was found in the original Ysterplaat quarry 

excavations. During storms the higher amplitude waves tear fossils 

from submerged deposits just offsho.re from Milnerton which are below 

normal wave erosion base (about 10m). These include Megaselachus 

megalodon, Oxyrhyna hastalis, and a Late Tertiary Gomphotherium (Q.8. 

Hendey, pers. comm.). 



Figure 4.5. Scanning electron photograph of quartz grain surface from 
Ysterplaat showing randomly oriented V-shaped notches which 
characterise high-energy littoral environments (X 5000) 

Figure 4.6 Scanning electron photomicrograph of quartz grain surface 
from Ysterplaat showing conchoidal breakage patterns (X 1000) 
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TABLE 4.1 

List of Fossils in the Saldanha Formation 

Hoedjiespunt Langeberg Ysterplaat 

FORAMINIFERA X 

GASTROPODA 

patella sp. X i 

Fissurella sp. X 

Bullia sp. X 

Thais sp. X 

BIVALVIA 

Glycymeris borgesi X 

cardium cf edgari X 

I 
Scissodesma spengleri X 

I Lutraria lutraria X 

Tellina sp. X I 

Oonax serra X 

"Tivela" sp. X 

Pitar sp. X 

Dosinia lupinus X 

BRYOZOA X 

ECHII\JOIOEA X 

CHONDRICHTHYES X 

Megaselachus megalodon X X 

I 
Oxyrhyna hastalis X 

AVES 

?Palaeospheniscus huxleyorum X* 

Palaeospheniscus sP. x* 

Footnote: * Simpson 1973 

~ 
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2. Hondeklipbaai 

"Lower E stage" strata in this area consist of calcarenite, coquina, and 

phosphatic siltstone (A.J. Carrington, pers. comm.) Thin-section 

examination shows that the phosphatic siltstone originated by 

phosphatisation of a limestone. The quartz grains are well-rounded, while 

in the matrix there is evidence of finely bladed overgrowths developed 

syntaxially about intraclasts. There are occasional phosphate haloes 

about the intraclasts. Shell debris with crystalline overgrowths is 

common. other occurrences of phosphatic siltstones are similar to the 

phosphatic sandstones seen at Langebaanweg, and are also conglomeratic 

in part. 

In the Hondeklipbaai area the saldanha Formation is preserved as bedrock

hollow infills, with a maximum thickness of 1m. 

3. Off-shore 

"Well-consolidated rocks are typically composed of intact and fragmented 

sand-sized microfossils (forming 40-6Sic of the rocks) and macrofossil 

fragments (1-1070) set in a collophane/micrite matrix. The ferruginous 

varieties are distinguished by their intimately mixed goethite, 

collophane, and micrite cements and the general absence of macrofossils. 

Silt-sized angular quartz and feldspar may be present in accessory 

(l-Sic) amounts. Collophane is the apatite mineral identified in thin

section; XRD studies indicate that this mineral is francolite, a carbonate 

fluorapatite ...•• The cementing material in the iron-poor varieties 

is an intimate mixture of collophane and micrite ••••. n (Parker & Siesser 

1972). 

ru. n-IE BREDAffiORP FORMATION 

In the quarry 4 km northwest of saldanha a massive marine limestone, 

more than 3m thick, is overlain by high-angle cross-bedded aeolianites 

(Figure 4.7). The interface is at S6,4m above sea level. The marine 



Figure 4.7 

Figure 4.8 

Bredasdorp Formation limestone exposed in quarry at 
Saldanha shows marine limestone overlain by high-angle 
cross-bedded aeolianite. 

Thin-section of marine limestone shown in previous figure. 
It is a coquinite lime packstone. The components are 
quartz (Q), mollusc fragments (M), echinoderm fragments (E), . 
and foraminifera (F) . . Crossed nicols. (X 24). 
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calcarenite is generally a carbonate packstone (i.e. the grains are 

arranged in a self-supporting framework). The elongate shell grains 

are frequently subparallel aligned, and in other places ran~omly aligned 

(Figure 4.8). The detrital quartz, shell grains, and intraclasts which 

are common are set in a sparry calcite matrix. The shell grains, which 

are re-crystallized to sparry calcite, often have a micrite or microspar 

border. Loose packing (grain contact about 1) is evident in some parts 

of the limestone. Common to the entire exposure are recrystallized 

foraminiferal tests, echinoid spines, and bryozoan remains, which are 

not uncommonly corroded and which form the nuclei of syntaxial overgrowths. 

Pellets are rare. The quartz grains, usually less than 20 per cent, 

are round to well-rounded, and sometimes corroded. 

of collophane are observed. 

Occasional patches 

The interface between the aeolian and marine components at 56,4m a.s.l. 

may represent the present elevation of the shoreline associated with 

the Saldanha Formation phosphorites. Ou Toit (1954) equated this 

calcarenite with the Alexandria Formation of the south coast. 

There are two other occurrences of marine limestone in the environs of 

Saldanha Bay which are lithologically similar to the Saldanha Quarry 

limestone. In a cutting along the shore of Smitswinkel Bay there is 

a massive marine limestone. But in addition to detrital quartz there 

is also some oligoclase, derived from the granite substrate.· In a 

shallow quarry at 9,5m above sea level just north of Langebaan this 

limestone underlies an Early Pleistocene beach deposit. 

The petrography of this limestone at Saldanha has been described in 

great detail by Siesser (1970, 1972). He notes that intraclasts are 

common, and that they are bimodally sized. The larger intraclasts 

contain recognisable fragments of molluscs, echinoderms, foraminifera, 

ooliths, smaller intraclasts, glauconite, and terrigenous material. 

Ooliths are generally taken to represent precipitation of carbonate in 

a shallow, agitated environment (Siesser 1970). Tankard (in press a) 

has suggested that the marine limestone at Saldanha is a near shore 

deposit and that the interface between the marine and the aeolian components 

(Figure 4.7) represents the highest extent of the Miocene sea. 
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Figure 4.9 Bredasdorp limestone overlying Table Mountain sandstone 
at- Die Kelders. 

Figure 4.10 Conglomeratic zone at base of Bredasdorp Formation, 
Die Kelders. 



Fi,gure 4.11 Thin-section of Neogene limestone at 
showing cavity filling drusy calcite 
in crystal size away from the walls. 
(X 24). 

Die Kelders, 
which increases 

Crossed nicols. 
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Another outcrop of Bredasdorp limestone forms a low coastal cliff on a 

platform on Peninsula sandstone (Figure 4.9) at Die Kelders. The lower 

part of the limestone is a subangular, quartz cemented, breccioid 

horizon (Figure 4.10). The breccioid material is predominantly Gape 

Supergroup rock. But its subangular nature is not typically marine, 

and it would seem that the material could have originated by rapid 

transgression. Its origin is far from clear. Lenses of coquina 

occupy depressions. Above these units the limestone shows heavy mineral 

banding in the lower part, but is otherwise structureless. The total 

absence of high-angle cross---bedding would argue against a dune 

accumulation. 

In thin-section the Bredasdorp limestone at Die Kelders may be described 

as a quartzose lime-wackestone, using the classification of Dunham (1962). 

The detrital quartz component is bimodal. The dominant mode is fine

grained (average about 2,3 ~), and the subordinate mode very coarse

grained (average about -1 ~J. Generally the grains are subangular and 

corrosion is common. Skeletal material constitutes less than 5 per cent 

of the rock, and foraminifera are present but scarce. The matrix is 

microspar (recrystallised micrite: Folk 1965), while cavity-filling 

drusy calcite mosaic (see Bathurst 1958) is common (Figure 4.11). 

Generally, the drusy mosaic increases in crystal size away from the walls 

(Figure 4.11). 

V. AGE OF THE SALDANHA FORMATION 

The occurrence of microsphorite and phosphatic sandstone at Hoedjiespunt, 

Langebaanweg (Langeberg) and Ysterplaat respectively, are largely barren 

of identifiable fossil remains. At Ysterplaat the Saldanha Formation 

contains an abundant conservative endemic mollusc fauna which cannot 

be used for dating. The incorporated penguin bones are of greater value. 

There are several lines of evidence to suggest a Miocene age. 

From one borehole, X14, on Langeberg, a very rolled shark tooth, the 

Miocene Megaselachus megalodon, came from the gravels at the base of the 

Varswater Formation. Its rolled nature suggests that it was derived 

from older deposits. Hendey has found (pers. comm.) a Hipparion 
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primigenium tooth in the gravels at the base of the Varswater Formation 

which is rolled and obyiously derived. It indicates a Miocene age. 

Two distinct species of penguin have been identified from the ysterplaat 

occurrence (Simpson 1973). Simpson named one of these species 

Palaeospheniscus huxleyorum and notes that the nearest comparison is 

with Palaeospheniscus material from the Patagonia Formation of southern 

Argentina. The age of this formation is not precisely fixed, but it is 

of approximately Early Miocene age. Simpson suggests that the Ysterplaat 

beds must be pre-Pliocene. Shark teeth of a single species, Oxyrhyna 

hastalis, were also found in these sediments. This species is recorded 

from Miocene and Pliocene deposits in various parts of the world. The 

mollusc fauna is typically conservative endemic and the assemblage is 

very similar to that from the Miocene "Lower E stage" of the Namaqualand 

coast (A.J. Carrington, pers. comm.) and the fauna of the Alexandria 

Formation described by Newton (1913). Particularly interesting is 

Glycymeris borgesi (described by King 1953, as G. austroafricana) which is 

known only from Neogene ~8posits, and Cardium cf. edgari known from the 

Al~xandria Formation. Other diagnostic fossils have been recorded from 

the Ysterplaat and Milnerton areas, but not in situ. In the South African 

Museum collection there is a single Megaselachus megalodon tooth which 

came from a quarry at the Ysterplaat airfield. The only quarry at the 

airfield is situated a mere 100m from the fossiliferous deposits already 

described. The fresh appearance of the tooth would suggest that it was 

in fact derived from these deposits. Furthermore, fresh specimens of 

this species are frequently thrown up onto the beaches at Milnerton during 

heavy seas, implying the presence of Miocene marine sediments just below 

normal wave base. Oxyrhyna hastalis and a Late Tertiary Gomphotherium 

are also thrown up onto the Milnerton beach during storms. 

Other inferences concerning the age of the saldanha Formation assume that 

phosphorite formation is dependent upon a unique set of environmental 

factors (Tankard 19748). Phosphorite formation is dependent upon 

increasing temperature as cold phosphate-rich water upwells to the surface. 

Summerhayes (1970) has remarked on the limited evidence for contemporaneous 

formation of apatite on the sea floor, although Baturin (1971) does find 

some evidence. The widespread occurrence of bedded phosphorites in 

the Upper Cretaceous, Eocene and Miocene, suggest that those were the 

times of optimum conditions. The widespread deposition of phosphorite 
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during the Late Tertiary is attributed to the warmer climate at that 

time. In fact all documented autochthonous Neogene phosphorites are 

of Miocene age: 

Monterey Formation California Middle Miocene 

Arcadia Formation Florida Middle Miocene 

Pungo River Formation North Carolina Lower to Middle 

Miocene 

Riecito Formation Venezuela Middle Miocene 

Sechura desert deposits Peru Miocene 

(Sheldon 1964; Trueman 1971; World Survey of Phosphate Deposits published 

by the British Sulphur Corporation Limited, London). 

Phosphatic rocks on the continental shelf of the Cape Province have 

been assigned to the Upper Tertiary by Parker and Simpson (1972), while 

Dingle (1974) more recently has suggested two phases of formation of 

phosphorite - Late Eocene and Late Miocene/Early Pliocene. Haughton 

(1956) examined a phosphatised fauna dredged in the vicinity of the Cape 

Peninsula. On the basis of the nautiloid, Aturia lotzi (B~hm) which 

occurs also in Miocene outliers in the Bogelfels area, Haughton concluded 

that much of the phosphorite is of Lower Miocene age. On foraminiferal 

evidence (Sherbonina sp., Late Eocene to Miocene; Globigerinoides spp., 

Early Miocene to Recent; Nummulites heterostegina, Early Miocene) 

Rogers (1974) suggests an Early to Middle Miocene age for the overlying 

marine limestones, which would imply a minimum age for the phosphorite. 

Thus,all available evidence suggests that the saldanha Formation is 

of Middle Miocene (Langhian) age. 

VI. CORRELATION 

Widespread Late Cretaceous, Eocene and Miocene marine transgressions are 

believed to have resulted from changes in elevation of mid-oceanic 

ridges due to changes in spreading rates (Russell 1968; Hallam 1971; 

Frerichs & Shive 1971; Flemming & Roberts 1973; Rona 1973). These 

transgressions have left a record in South Africa. More particularly 

Miocene sediments have been recorded around the coast from Mocambique 

to Namaqualand. 



44 

Du Toit (1954) mentions Miocene marine sediments in Mocambique. Sbares 

and da Silva (1970) equate the marine Santaca Formation with the Uloa 

sequence of Zululand, having a similar fauna. King (1953) suggested 

that the Pecten bed at Uloa was of Lower Miocene age and that it was 

overlain by a Pliocene calcarenite. Frankel (1968) disputes that these 

two horizons are separated by an unconformity and suggests a Middle 

Miocene age for the entire sequence, an age now confirmed by Stapleton 

(pers. comm.). Ruddock (1968) and Bourdon and Magnier (1969) have also 

recorded Miocene sediments in the Algoa Bay area which are partly 

included in the Alexandria Formation. The Alexandria and Bredasdorp 

Formations appear to be partly of Miocene age. A.J. Carrington (pers. 

comm.) believes that authigenic phosphorites occurring along the 

Namaqualand coast, on foraminiferal evidence, are possibly of Late 

Miocene age. The mollusc fauna from Ysterplaat (Table 4.1) is very 

similar to that of the calcarenite which includes Glycymeris borgesi, 

Lutraria lutraria, Scissodesma spengleri, the same form of Donax serra, 

etc. Like the Hoedjiespunt microsphorite, the Namaqualand "Lower E 

stage" sediments are preserved in depressions in the bedrock floor. 

Lower to Middle Miocene phosphatic sandstones occur extensively on the 

continental shelf (Rogers 1974). (Although Cox (1939) described 

Glycymeris borgesi (Cox) as G.africana, he later renamed it borgesi (Cox 

1946) since G. africana Cox was a secondary homonym for the South African 

Cretnceous G. africana (Griesbach). King (1953) independently recognised 

that G. africana Cox was a homonym for G. africana (Griesbach) and 

renamed the species G. austroafricana). 

VII. ORIGIN OF THE SALDANHA FORMATION SEDIMENTS 

The phosphorite deposits of the Saldanha Formation bear comparison with 

the Israel phosphorite deposits. The latter form part of an Upper 

Cretaceous to Eocene phosphogenic province stretching from Morocco through 

north Africa to the Middle East and Turkey (Trueman 1971). In Israel 

a deeper water facies is characterised by oolitic microsphorite while 

a shallower water facies is characterised by bone beds containing some 

pellets and cemented by a collophane-mud matrix. The deeper water 

facies resembles the Hoedjiespunt microsphorite, and the shallow water 

facies is comparable to the Langeberg and Ysterplaat occurrences. 
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Deposition of the Saldanha Formation resulted from a marine transgression 

in the Middle Miocene. This transgression complex is recorded at many 

places along the South African coast. The sediments are characterised 

by: 

(i) a shallow water phosphatic rock facies at Langeberg, 

and 

(ii) a quieter water microsphorite facies at Hoedjiespunt. 

Tankard (1974a) has discussed the origin of the phosphorites, and has 

pointed out that bedded marine phosphorite of Late Tertiary age is found 

today in the warm climates between the 40th parallels in areas adjacent 

to divergent upwelling of nutrient-rich waters. The precipitation of 

the phosphate is dependent upon an increase in temperature as the upwelling 

water reaches the surface, and low rates of supply of terriginous detritus. 

I' 
I 
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CHAPTER 5 

THE VARSWATER FORMATION DEPOSITIONAL ENVIRONMENTS 

I. INTRODUCTION 

The Varswater Formation has attracted interest over the last two decades 

because of economic quantities of phosphate, present as pelletal 

phosphorite, which is used as a fertiliser. Mining operations commenced 

in 1953. Secondly, since mammal fossils were first found in these 

deposits in 1958 (Singer & Hooijer 1958) subsequent research has shown 

the mammal fauna to be one of the richest occurrences of its type in 

Africa. Extensive mining and exploration programmes have provided the 

material and data upon which this study is based. At Langebaanweg 

only open-cast mining is carried out, while exploration has been 

performed using a Selby coring technique. 

The aim of this chapter is to assemble the various types of data to 

present a general palaeoenvironmental study. In the next chapter detailed 

textural analyses will be presented. Distribution of the various 

lithologic units was presented in Chapter 3. 

All altitudes are recorded as height above mean sea level. The tidal 

range on the open coast (st Helena Bay) is 1,8m. For the New Varswater 

Mine (Langeberg) collar elevations of the boreholes were usually 

available. In the few cases where this was not so, collar elevations 

have been interpolated from a Chemfos Limited surface contour map with a 

1,5m contour interval. Borehole collar elevations for the other 

prospected areas were interpolated from 15m contour interval maps. The 

terrain is gently undulating. 

II. PALAE08ATHYMETRY 

Structure contour maps (Figure 5.1 and 5.2) have been drawn from bore

hole log data from over 120 boreholes on Langeberg and a further 95 

boreholes on Wi tteklip-8:mdheuwel-Langlaagte. For the construction of 

the structure contour maps either the lower 2 per cent P205 cutoff or 
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Figure 5.1 structure contour map of the base of the Pelletal Phosphorite 
Member, Langeberg. (A-S, Fig. 2; C-D, Fig 5a; E-F, Fig. 5b). 

\ 

C' 
Sandheuwel 

? 1,0 
Met~s 

Contour Interval 10m 

o 

\ 
~oi ~~~. V>' 

'0;. 

----

Figure 5.2 structure contour map of the base of the Varswater Formation 
on Witteklip-Sandheuwel-Langlaagte. 
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bedrock intersections (either Saldanha Formation or granite) were used. 

On Langeberg this structure contour map represents the base of the 
", 

Pelletal Phosphorite Member and is of importance in the discussion of 

the textural analyses of the sand. But in view of the fact that the under-

lying units of the Varswater Formation are generally thin, the structure 

contour map can be used as an approximation of the basal configuration 

of the formation. This is borne out in Figure 5.3 which illustrates 

the lithology and structure of the Varswater Formation on the farm 

Langeberg, drawn from borehole logs. (All boreholes referred to in 

this study may be located as grid-intersects in Figure 5.1, unless other

wise stated). 

The dominant features on Langeberg (Figure 5.1) are two parallel north

west-southeast trending steps, with a slope of 3-5
0

, separated by a broad 

platform of 1
0 

slope which dips to the southwest. The central platform, 

which shall henceforth be referred to simply as "the platform", rises 

gently from IBm a.s.l. in the southwest to 30m a.s.l. in the northeast. 

The step behind the platform, rising frcm 30m a.s.1., may represent a 

marine cut cliff or notch. Recent mining operations (August 1975) in 

the vicinity cf T2 have revealed a 1m thick phosphatic sandstone which in 

general appearance and in thin-section relates most closely to the Miocene 

phosphatic sandstone. The area between the T2 exposure and the 

truncated quarry floor exposure would then represent incision by the 

Pliocene stillstand at 30m a.s.l. (It is hoped that eventually mining 

operations will produce a deep enough section oeneath the T2 sandstone 

to verify this interpretation). Along the outer edge of the platform is 

a breaker-bar which has had a marked effect on pelletal phosphorite 

concentration. Maximum pelletal phosphorite concentrations (18-20 per 

cent P205) are found on the platform on the leeward side of the breaker

bar (Figure 5.4). An interesting feature of the second step is an 

inflection of the contours which suggests a valley profile (Figure 5.1). 

If this is a valley it is in keeping with Hendey's (1970a) view that a 

river had once flowed in that direction supplying the freshwater necess~ry 

to explain the concentration of vertebrate remains. The highest 

concentration of fossils lies at the entrance of this valley. Coarse 

fluviatile sands have been encountered 300-400m to the east. 

The basal structure on the Witteklip-Sandgeuwel-Langlaagte prospect 
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(Figure 5.2) is marked by a platform rising northwards to the foot of a 

granite escarpment. A major feature of this platform is a basin on 

Langlaagte which sinks "to 40m below sea level. This basin has had no 

effect on phosphorite concentration. Iron staining and deep weathering 

of the granite floor are indicative of subaerial weathering. 

Although,no structure contour maps were drawn for the other prospects, 

an insight has been gained from borehole log interpretation. The bed

rock on waschklip is predominantly weathered granite and sericite schist. 

On the northern part of the farm bedrock lies generally at 20m a.s.l. 

The homestead lies on the western extremity of a WSw-ENE trending granite 

ridge. South of this ridge the granite floor forms a shelf at lO-2Om 

a.s.l. 

On Tiekosklip the bedrock is again predominantly granitic and the bedrock 

surface is in places 15m below sea level. 

Forty-two boreholes sunk at Paternoster suggest a featureless granitic 

platform planed at 35-40m a.s.l. 

III. DEPOSITIONAL ENVIRONMENTS 

Figure 4.1 demonstrates the relationship of the Varswater Formation to 

the underlying Saldanha Formation. The relationships of the various 

units of the Varswater Formation to each other are illustrated in Figure 

5.5. The Varswater and Saldanha Formations are separated by an angular 

unconformity. Within the New Varswater Quarry the phosphatic 

sandstone of the Saldanha Formation is truncated at 30m a.s.l., and the 

surface of the formation now slopes to the southwest. Erosion of the 

phosphatic sandstone has produced a fluted and polished surface. A 

patina could also imply subaerial weathering before deposition of the 

Varswater Formation. Tankard (in press a) has suggested that the 

Miocene Saldanha Formation can be correlated with a world~wide eustatic 

transgression at that stage. But since that Miocene sea level peak 

the sea has been generally regressive. It was suggested that deposition 

of the Varswater Formation took place during a secondary transgression, 

within a eustatically falling sea, induced by tilting. 



30m 
a.s.I. ' 

Figure 5.5 Idealised cross-section through the Neogene sequence on 
Langeberg. I = phosphatic sandstone (Saldanha Format ion); 
2 = quartzose sands; 3 = kaolinitic clay and peat ; 
4 = beach gravels and sands; 5 = estuarine sediments with 
peats; 6 fluvial sediments; 7 = pelletal phosphoritic 
sands: 8 = Pleistocene dune sands. 

Figure 5.6 Transmission electron photomicrograph of the clay, 
suggesting that the mineral is poorly crystallised kaolinite. 
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The Varswater cyclothem is a transgressive complex. Oischarge of a 

river into this transgressive sea in the vicinity of Langebaanweg 

created a series of transitional environments. Environments identified 

include: high energy marine, estuarine, fluvial and (7) terrestrial, 

together with the inevitable myriad microenvironments. 

A. Kaolinitic Clay 

Underlying the black kaolinitic clay on Langeberg is a little known 

quartzose sand which could, presumably, be of Late Miocene or Early 

Pliocene age. Pollen analyses have shown that the clay contains a poor 

pollen assemblage, but Podocarpus and grass pollens were recorded (Prof. 

E.M. van Zinderen Bakker, in litt.). It is suggested that the kaolinitic 

clay formed in a deltaic marsh environment, because it is up to 6m thick, 

it overlies fine quartzose sands, is associated with fluvial sediments, and 

it has a slope of 1:360 (equivalent to that of the lower reaches of many 

South African rivers). The kaolinitic nature of the clay, determined by 

transmission electron microscopy as poorly crystallised kaolinite 

(Figure 5.6), and the grass pollens are suggestive of freshwater conditions, 

while pyritic inclusions suggest an anaerobic environment. The kaolinitic 

clay is frequently overlain by consolidated to semi-consolidated quartzose 

sands with moulds of marine molluscs, demonstrating the transgression of 

the sea across the "delta". As the sea transgressed, so the marsh 

environment moved ahead of it until it abutted on the first step (Figure 

5.3). Boreholes intersected the clay at -15m on Tiekosklip, while a 

brown-black carbonaceous clay is encountered in the basin in the granite 

platform close to sea level on Langlaagte 

B. Gravel Member 

Following submergence of the clay horizon, the marine sands and gravel 

of the Gravel Member were deposited. The sands are rich in shell casts 

of marine molluscs of warm water affinity. within the New Varswater 

Quarry the Gravel Member rests directly on the Miocene phosphatic sand

stone at 30m a.s.l. Here truncation and re-working of the phosphatic 

sandstone near 30m a.s.l. has produced a gravelly-sand of rounded quartz 
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grains and phosphatic sandstone fragments with rolled and unrolled shark 

teeth of fifteen species (Hendey pers. comm.) and shell fragments. We 11-

rounded wave generated discoidal cobbles of phosphatic sandstone lie 

directly upon the Saldanha Formation floor (Figure 5.7). Boreholes show 

the gravel horizon with shark teeth to be widespread along the outer edge 

of the platform. Associated with the gravel and beachcobble horizon, 

or lying directly on the phosphatic sandstone floor within the quarry is 

a thin (0,5-2m) semi-consolidated silty-sand with shell moulds. In 

places it is phosphate mineralised. In borehole W14 at 13m a.s.l. a 

sandstone with many shell moulds, especially Pitar sp., and including 

mytilids and barnacles, overlies the clay deposits. In borehole U14 at 

15m a.s.l. this horizon contains Patella sp. and a mytilid. Within the 

New Varswater Quarry the shelly sands occur at 30m a.s.l., i.e. the same 

elevation as the truncation of the Saldanha Formation. Most of the 

molluscs from the quarry area have been described by Kensley (1972). 

They are mostly rock-dwelling forms, except Oonax serra and Bullia sp., 

which are sand-dwellers. Furthermore, the intertidal to infra tidal 

nature of the fauna indicates a littoral environment, i.e. temporary 

stillstand of the sea at that altitude. 

On Sandheuwel a coarse shelly sand with complete oyster valves and an 

ostracod and foraminifera fauna is encountered at 24m a.s.l. (borehole 

S'58), while at Ouyker Eiland this horison crops out at 30m a.s.l. The 

writer has identified the oysters Ostrea atherstonei and Striostrea 

margaritacea from Sandheuwel and Striostreacf. margaritacea from Ouyker 

Eiland. 

A stillstand of the sea at 30m a.s.l. appears to have been a prominent 

event in the history of the Varswater Formation, and the Mollusca summarised 

in Table 5.1, suggest water temperatures about 50 C warmer than today at 

the time of deposition. Cellana capensis is found today north of East 

London, .while Turbo sarmaticus occurs eastward from False Bay, as do 

Barbatia obliquata, Ostrea atherstonei and Striostrea margaritacea. 

C. Quartzose Sand Member 

Sediments of the Quartzose Sand Member are indicative of two facies: an 



Figure 5.7 Wave-generated discoidal cobbles in the Gravel Member 
exposed in the floor of the New Varswater Quarry at 30m 
a.s.l. Tne cobbles are lying on Miocene phosphatic sandstone. 

Figure 5.8 Isopach map of the Pelletal Phosphorite Member, Langeberg. 
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TABLE 5.1 

List of Invertebrate Fossils in the Varswater Formation. 

FORAMINIFERA 

Lagena hexagona 
Lagena sp. 
Ammonia beccarii 
Elphidium aivenum 

PORIFERA 

GASTROPODA 

Cellana capensis 
Cellana sp. 
Patella granularis 
Patella sp. 
Haliotis saldanhae 
Haliotis sp. 
DiodGra parviforata 
Oxystele trigina 
Turbo sarmaticus 
Tricolia neritina 
Bullia sp. 
Littorina cf. saxitilis 
Dcenebra scrobiculata 
Thais dubia 
"Clavatula" sp. 
" Crass i spira "sp. 
"Turris" sp 
?Pyramidella sp. 
Turbonilla kraussi 
Siphonaria sp. 

BIVALVIA 

Barbatia obliquata 
? Perna sp. 
Ostrea atherstonei 
Striostrea cf. margar-
itacea 

Pitar sp, 
Donax serra 
Donax sp. 

OSTRACODA 

Caudites sp. 
Bradleya sp. 

CIRRIPEDIA 

Barnacle fragments 

ECHINOIDEA 

Parechinus angulosus 
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estuarine facies and a fluviatile facies. Hendey (1970a, 1973) to 

explain the rich mammal deposits in the floor of the New Varswater 

Quarry, postulated that a river flowing into the sea at that point created 

freshwater estuarine conditions. Most of the mammal remains have come 

from a horizon 2,3m thick lying directly upon the Gravel Member. The 

top of these estuarine sediments is capped by a thin phosphatic sandstone 

band. Whereas bones in the gravelly-sands of the Gravel Member are 

usually rolled, the bones from the estuarine deposits are not. The 

skeletons are never articulated, although jaws with teeth still intact 

are numerous. That no preferred orientation is shown by any of these 

elements rules out dispersion by any strong unidirectional currents. 

Boreholes have proved bone to be widespread on Langeberg, but it would 

appear that the really fossil-rich sediments are concentrated within the 

quarry area. 

The faunal associations suggest that Hendey's Bed 2 is an estuarine 

facies. The occurrence of seal and penguin remains show the close 

proximity to a shoreline, while catfish and otter remains are probably 

indicative of estuarine conditions. The mammal fauna contains animals 

from various environments brought together by the common need for water. 

Hendey (1973) visualises an environment of riverine woodland flanked by 

grasslands. 

Hendey (1974, tables 5,88) has summarised the mammal fauna from these 

sediments, which includes marine, freshwater and terrestrial species, 

the latter of which predominates. Over 70 mammalian species are recorded. 

"Small mammals are common and include insectivores, rodents, a lagomorph 

and small viverrids. Medium-sized herbivores are Hipparion, Nyanzachoerus 

and a variety of bovids. Large herbivores are Mammuthus subplanifrons 

(~aglio & Hendey 1970), a gomphothere, Ceratotherium praecox (Hooijer 1972), 

a sivathere and Giraffa. The larger carnivores include a machairodont, 

a viverrid and hyaenids, which are described elsewhere in this report. 

Also represented is a seal " Non-mammalian vertebrates include a 

land tortoise Chersina (the most common species in these deposits), sharks, 

bony fish, snakes, lizards, frogs and birds. 

The presence of a breaker-bar along the outer edge of the platform has 

already been mentioned. Cross-sections through the breaker-bar (Figure 5,4) 
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were drawn for the Pelletal Phosphorite Member. But the configuration 

of the platform and the presence of estuarine sediments with a close 

association of terrestrial and marine animal remains, suggest that a 

breaker-bar and barrier-beach complex had already developed at the time 

of deposition of the Quartzose S3.nd Member. River-flow in the north 

and northeast produced estuarine conditions in the lee of the bar. 

But periodic breaching of the bar by the sea mixed the terrestrial and 

marine animal remains. 

Recent mining operations (1974-75) have extended the quarry face in a 

southerly direction and have shown that the clean estuarine quartzose 

sands grade laterally into a carbonaceous sand and peat deposit. This 

carbonaceous deposit is O,5-1,Om thick and includes lenses of sand 

accretion. Vertebrate fossils from the carbonaceous sands are typical 

of the clean quartzose sands already discussed, and the land tortoise is 

still the most common; the bones are usually fragmentary. But of 

particular significance are the still articulated distal extremities of 

a sivathere (giraffe) standing vertically (Hendey, pers. comm). It 

seems likely that the giraffe was trapped in the marsh while drinking. 

It has also been found that the fossils include waterbirds, and these 

are absent from the neighbouring quartzose sands. Bird egg-shell has 

also been found. Molluscs from the silty sand are well preserved and 

include marine and freshwater species. 

The carbonaceous sands and peat also contain a rich pollen spectrum 

(Prof. E.M. van Zinderen Bakker, pers. comm) which includes the 

following: 

Dominant unidentified type approx. 92 per cent 

Gramineae (grass) approx. 3 per cent 

Restionaceae (reed) approx. 1,5 per cent 

Cliffortia (bush) approx. 1,5 per cent 

Podocarpus (tree) < 1 per cent 

Myrica (dry area shrub) < 1 per cent 

Chenopodiaceae-type (salt flat bush) < 1 per cent 

Compositae (flower) < 1 per cent 

Other unidentified types approx. 2 per cent 

I 
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Professor Bakker notes that the morphology of the dominant unidentified 

pollen type is comparable to that of Cuscuta (a parasite) and 

Elephantorrhiza (a dry'area plant) and also certain of the Aizoaceae 

(dry area plant). 

Hendey (1973, 1974) has postulated that the mammal remains found in 

the estuarine sediments suggest that a river once flowed there. In 

boreholes M6-15-N6-15 and N4-76-04 there are layers of coarse to medium 

sands intercalated with fine sands. These sands, unfortunately, 

contain no faunal element. That they are of fluviatile origin is 

suggested by their coarse nature, and by scanning electron microscopic 

examination which shows a texture similar to that of river sands 

illustrated by Krinsley and Donahue (1968; figure 1). The grains show 

some chemical etching, but also relatively small subaqueous V-patterns 

suggesting vigorous conditions. 

D. Pelletal Phosphorite Member 

A major stillstand of the sea which has been recorded on Langeberg, 

sandheuwel and Duyker Eiland, resulted in accumulation of littoral marine 

and estuarine sediments. This period of deposition was followed by a 

final transgression which carried the shoreline to 50-55m a.s.l. and 

resulted in accumulation of the Pelletal Phosphorite Member. The 

transgression displays a typical onlap aspect. The Pelletal Phosphorite 

Member is composed essentially of fine-grained quartzose sands with 

varying amounts of pelletal phosphorite. Chemfos Limited is currently 

mining the pelletal phosphorite from this member. 

The isopach map (Figure 5.8) of this Pelletal Phosphorite Member shows 

that the thickest parts are either banked against the lower step where 

it reaches a thickness of 24m, or over a depression in the platform 

where a thickness of 25m is attained. To the northeast the horizon 

pinches out at 53-54m a.s.l. The general trend of the body parallels 

that of the basal structure (Figure 5.1). In Figure 5.9 the highest 

P205 values for each borehole have been mapped. It is immediately 

apparent (compare with Figure 5.1) that the highest concentrations of 

phosphorite are found on the platform, particularly in the depressions. 
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Figure 5.10 Isopach map of the Pelletal Phosphorite Member, Witteklip
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Figure 5.11 ~istribution of shorelines in the Langebaanweg basin. A,B,C 
are Pliocene shorelines and represent the peak of the trans
gression (50-SSm a.s.l.). 0 is a Miocene shoreline. 
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Two cross-sections (Figure 5.4) illustrate this relationship clearly. 

A very important featu~e of these cross-sections is that at 20-25m 

a.s.l. a breaker-bar runs along the outer edge of the platform 

following the general strike of the basal structure. The pelletal 

phosphorite is a shallow water detrital deposit with the maximum 

phosphorite concentrations on the shallow platform between the breaker

bar and the beach zone. 

Shark teeth, mollusc shells and shell casts occur throughout the 

phosphorite horizon, and have been concentrated by brief erosional 

episodes. Also included in this sediment are phosphatised foraminiferal 

fragments (mainly Elphidium sP.), echinoid spines, minute fish teeth 

and coprolites. Occasional tortoise carapace fragments testify to the 

nearness of the shoreline. In the New Varswater Quarry the sediments 

are largely structureless, although several observed cross-bed sets have 

north and northeasterly azimuths in the direction of the shoreline. This 

is typical of a shallow marine transgressive model. Burrow structures 

have been observed at the top of this member, and mark a sediment water 

interface. 

On waschklip the Pelletal Phosphorite Member is encountered at 7 to 10m 

a.s.l., where large quantities of shell fragments, shark teeth, phosphatic 

pebbles, and rounded beach gravel have been cored. The configuration 

of this member in the Witteklip-Sandheuwel area is controlled by the 

granite bedrock contours (Figure 5.10). On Tiekosklip the succession 

commences with a gravelly sand at 15m below sea level, and is followed by 

an upward-fining sequence. Pelletal phosphorite concentrations are 

low at Paternoster and Duyker Eiland. Sediments from Duyker Eiland 

include some very well sorted, well rounded fine sands typical of the 

beach zone with an abundance of tetraxon sponge spicules. 

Following the temporary stillstand at 30m, final transgression carried 

the sea to its furthest inland extent at 50-55m. Profiling of P205 
values on boreholes shows a pinching-out of the Pelletal Phosphorite 

Member on Langeberg at 53-54m a.s.l., on Witteklip and Paternoster 54m 

a.s.l., and at Duyker Eiland 47-50m a.s.l. On the farm Groot 

Springfontein, east of Waschklip, a water borehole struck a marine 

I· 
I 



56 

horizon at 50m a.s.l. Nodular phosphate, phosphatised bone, shark 

teech and mollusc shells were recovered from this borehole. According 

to the owner of the farm the shells included the "common white fishing 

mussel", which in the southwestern Cape is Oonax serra and is also 

known to occur in the Varswater Formation (Table 5.1). Oonax serra today 

lives in the intertidal zone, and confirms that a hypothetical Varswater 

Formation shoreline at 50m a.s.l. is a good approximation. The 

distribution of this shoreline around the Saldanha-Langebaanweg 

erosional basin is shown in Figure 5.11). It is unlikely that this 

shoreline represents the true height of sea level in the Pliocene since 

the west coast has been epeirogenically unstable since the Miocene and 

through the Early and Middle Pleistocene (to be discussed in detail 

later). 

IV. AGE OF THE VARSWATER FORMATION 

The rich fossil vertebrate fauna from the Varswater Formation inclUdes 

no extant species of larger mammals (Hendey 1974). Hendey has defined 

a Langebaanian mammal age based on the most characteristic fossils. 

These include: Prionodelphis, Agriotherium, Percrocuta, Machairodus, 

Enhydriodon, Mammathus subplanifrons, Nyanzachoerus, and Ceratotherium 

praecox. Comparison of the larger mammals with the radiometrically 

dated east African faunas indicates a Pliocene age (Hendey 1970b, 1974; 

Hooijer 1972). An apparent age of 4 million years is inferred. 

Dr S.P. Applegate of Los Angeles has examined a large assemblage of 

shark teeth from the area for the writer. Odontaspis acutissima, apparently 

the first record of this species from South Africa, was found in the 

Waschklip and Langeberg deposits. Also recorded from Langeberg are 

Megaselachus sulcidens and Carcharhinus cf. melanopterus, and a myliobatid 

spine. O. acutissima ranges in age from Oligocene to Pliocene. f.cf. 

melanopterus is a Recent species which appears to have no published fossil 

record. Applegate concludes that the assemblage is probably of Late 

Tertiary age. Visser and Schoch (1973) suggest on foraminiferal 

evidence (Elphidium advenum and Ammonia beccarii) that these deposits are 

of Pleistocene to sub-Recent age, but the evidence compiled by Hendey, 
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Hooijer and Applegate is more substantial. Wolff et al (1973) also, 

and independently, suggest a Pliocene age for the Varswater cyclothem. 

At the base of the calcareous dune sands, and immediately overlying the 

Varswater Formation on Langeberg, are teeth of Hipparion namaquense 

(Hendey, pers. comm.) which demonstrates the Pleistocene age of the dune 

sands, and suggests that the upper part of the Varswater Formation could 

be of Late Pliocene age. A derived Miocene Hipparion primigenium is 

found at the base of the Varswater Formation, while the Varswater 

Formation itself has a heterogeneous hipparion distinct from these other 

two forms. 
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CHAPTER 6 

SIZE ANALYSIS AND HYDRAULIC EQUIVALENTS 

VARSWATER FORMATION 

I. INTRODUCTION 

The lack of exposure precludes the use of primary sedimentary structures 

in the stratigraphic analysis. Apart from a very limited exposure in 

the quarry, stratigraphic reconstruction is based largely on textural 

analyses of borehole samples. This chapter reports the results of 

textural analyses of the sand fraction (> 63f) of 153 samples from 54 

boreholes, 52 of these on Langeberg and the other two (W'l and W'5) nn 

Witteklip. In addition analyses were also performed on 18 pelletal 

phosphorite concentrates and the quartz fractions of these sediments. 

The use of grain-size analysis in geology has been common practice for 

some time, but only in recent years has there been any concerted attempt 

to relate size distribution characteristics to the depositional processes 

and environment (Folk & Ward 1957; Mason & Folk 1958; Friedman 1961; 

Duane 1964; Visher 1969). These authors have found the sorting 

(standard deviation), skewness and kurtosis parameters to be the most 

diagnostic of environment. On the basis of skewness it was found on 

Mustang Island, Texas, that beach sands were negatively skewed and dune 

sands positively skewed (Mason & Folk 1958). One of the problems of 

size distribution interpretation is that the same processes occurring 

within a number of environments result in similar textural responses 

(Visher 1969). It is the aim of this chapter to describe the textural 

characteristics of the sediments and to show how the characteristics of 

the Pelletal Phosphorite Member sands on Langeberg are related to the 

environment of deposition. It will also be shown that deviations from 

hydraulic equivalence between the pelletal phosphorite and the quartz 

fractions are explained by the depositional environment. 

II. MEll-lOOS 

All sediment samples were obtained from the Chemfos Limited exploration 

I , 
I 
I 
I 



59 

programme. A Selby coring technique was used, driving a 1,07m long 

cylinder into the sediment. Sediment samples were thus collected 

vertically every 1,07m, and sample depths reported are class-marks of 

1,07m class-intervals. 

Grain-size measurements were made on the sand fraction ( > 63 f ) by 

conventional dry-sieving methods using half-phi intervals. The 

formulae of Folk and ward (1957) were used because the samples include 

the extremes of distribution, a region not covered by the more conser

vative measures (e.g. Inman 1952). A pipette method was used to 

measure the clay-silt sizes where the sand fraction was less than 95 

per cent of the whole sample. The statistics were determined from 

graphs on arithmetic probability graph paper. 

discussion is presented in the appendix). 

(A more comprehensive 

Pelletal Phosphorite concentrates were obtained by heavy liquid 

(bromoform) separation from the detrital quartz. 

Rock colour codes refer to the Rock Colour Chart (Rock Color Chart 

Committee, 1951). 

III. KAOLINITIC CLAY 

Determination of the clay group was done from X-ray diffraction data. 

But this Same method is not sufficient for identification of the 

specific kaolinitic mineral. The basal reflections at 7,10 (001) and 

3,57 (002) are diagnostic of the kaolinite group. Comparison of a 

transmission electron microphotograph of this clay (Figure 5.6) with 

an illustration in Grim (1968, figure 6-4) suggests that the clay 

mineral is poorly crystallised kaolinite. In oneT.E.M. photograph 

there is also a trace of a prolate clay form, possibly halloysite. The 

clay horizons contain layers of pyrite sand and gravel, suggesting a 

fluctuating environment. 

.-----~ .. 
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ru . GRAVEL MEMBER 

After tilting the Miocene phosphatic sandstone (the basal bed) was 

truncated during a Pliocene transgression. Reworking of the 

phosphatic sandstone has resulted in accumulation of well-rounded 

pebbles and cobbles (Figure 5.7), which are frequently associated with 

a gravelly-sand, or in other places with semi-consolidated to 

consolidated fine to very fine quartzose sand with mollusc moulds. 

Texturally the sand is moderately sorted, negatively skewed with a mean 

size 3,10 ~. The sands are of littoral origin, nearness to the shore-

line being demonstrated by the close association of land and marine 

animals, by the shallow water nature of the molluscs (Kensley 1972) 

and by the fact that this horizon is directly overlain by estuarine 

sediments. 

On Sandheuwel the mean grain-size is 2,54 ~. The sediment is polymodal, 

the coarser fraction being composed of two populations, subangular and 

rounded grains. Subrounded ilmenite grains are present in the silt 

fraction. The coquina is typically poorly sorted. 

V. QUARTZOSE SAND MEMBER 

A. Estuarine Facies 

Within the New Varswater Quarry estuarine sediments are present as a 

thin layer with abundant terrestrial vertebrate remains. The sediment 

is almost free of phosphate and has a mottled yellowish brown (10 YR 

5/4) to very pale orange (IOYR 8/2) appearance. It consists of sandy 

silt and silty sand, mean grain size 4,0 - 4,4 ~, with 35-43 per cent 

mud. 

B. Fluvial Facies 

In borehole M6-15-N6-15 (i.e. 15m from M6 towards N6, thenl5m south) 

in particular there are layers of coarse to medium sands (M = 0,94, 1,60 ~) z 
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intercalated with fine sands, all of these being moderately sorted 

quartzose sands. These sands are bimodally or polymodally distributed. 

Generally the sediments of N4-76-04 are a moderately sorted fine sand 

with the mean size of the coarsest horizons being 1,63~. The sand 

is essentially quartzose and iron stained. 

Scanning electron microscopic examination of the surfaces revealed 

textures identical to those of river sands illustrated by Krinsley and 

Oonahue (1968, figure 1). Small subaqueous V-patterns suggest 

vigorous conditions. Furthermore, the sands are coarse compared to the 

average marine littoral sands of the rest of the formation. 

VI. PELLETAL PHOSPHORITE MEMBER 

The largest number of size analyses was performed on the sediments of 

the Pelletal Phosphorite Member since this is the most extsnsive member 

of the Varswater Formation. Being of economic importance samples from 

this member are the most readily available. Each of several boreholes 

was sampled at regular intervals and grain-size distribution computed 

(Figure 6.10). Those samples chosen to give an areal distribution of 

the parameters were selected from the level of the highest P205 
concentrations. 

The choice of the datum used in the sample selection may appear to be 

somewhat arbitrary, but there was no other datum available. It may be 

argued that the highest P205 values arise from concentration of the 

pelletal phosphorite due either to low accretion rates of detrital 

quartz, or erosion and winnowing of the lighter quartz fraction (phos

phorite is denser than quartz). If winnowing of the quartz fraction 

had taken place then the highest P205 values should always be associated 

with the coarsest parts of the succession. Figure 6.10 shows that this 

is in fact not the case. Furthermore, the datum could be diachronous 

and discontinuous and may represent a set of horizons unrelated in time 

and space. Figure 5.4 shows that by choosing the sediment sample with 

the highest P205 value for any single borehole a nearly continuous datum 

has b3en selected, particularly on the platform between the breaker-bar 
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and the beach (i.e. from T12 to 0 2 in Figure 5.4A). The writer 

realises that of the 52 boreholes sampled on Langeberg it is highly 

likely that in places the datum may be diachronous. But in selection 

of samples the sediment above and below each sample had been qualita

tively examined to assure that the sample is representative of the 

pelletal phosphorite horizon. A further lack of precise control is 

reflected in the coring technique, where sediment mixing is known to 

take place as the 1m long cylinder is driven into the sediment. These 

limitations should be borne in mind when reading the following 

discussion. The distribution maps of the various statistics show 

definite trends which are supported by the palaeobathymetry and the 

discussion of hydraulic equivalents. 

The Pelletal Phosphorite Member is transgressive across the other units 

already described. That it is transgressive is demonstrated by the 

fact that it overlies freshwater estuarine and fluviatile sediments, 

while at its base it has also incorporated some of the smaller vertebrate 

elements from the estuarine facies, together with lumps of clay torn from 

that same horizon. In boreholes 612 and Q12 there is a gradual 

coarsening-upward sequence (Figure 6.10). The highest grades of 

pelletal phosphorite are concentrated on the platform (Figure 5.4). 

These high grades reflect the close proximity and exposure of the basal 

bed which was the source of the pelletal material. 

The sediments are generally moderately sorted phosphatic-quartzose sands. 

Almost all the samples are polymodal, consisting usually of sand and 

silt with very occasional gravel or clay. The main constituent of the 

sediment is fine sand, the medium and coarse sand fractions forming only 

a very small part. Particles larger than 2 ~ are scarce. Heavy 

minerals are concentrated in the fractions smaller than 3,5 ~ and more 

particularly smaller than 4 ¢. Ilmenite constitutes about 95-98 per 

cent of the heavy mineral population, garnet making up the balance. 

Zircon is rare. The ilmenite and garnet are subangular to subrounded, 

while the zircons occur as pale pink or grey to colourless euhedral 

crystals or occasionally as rounded grains. On Langeberg the highest 

concentration of heavy minerals (Q12) was 0,7 per cent, while on 

Witteklip the highest concentration (W'5) was 1,0 per cent. 
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The areal distribution of the phi mean, inclusive standard deviation 

(dispersion), skewness and kurtosis using-the graphic formulae of Folk 

and Ward (1957) has been plotted (Figures 6.1 - 4). Similar 

distribution maps have been drawn for the pelletal phosphorite fractions 

of eighteen samples (Figures 6.5 - 7). 

Comparing the phi mean distribution (Figure 6.1) with the structure 

contour map (Figure 5.1) reveals several striking features. It is 

immediately apparent that the coarsest sediments overlie the platform 

between the breaker-bar at the platform edge and the beach zone to the 

northeast, with the coarsest sizes nearest the breaker-bar. South of 

the platform edge the sediments become progressively finer grained. 

Figure 5.1 shows that this must have been an area of deepening water 

offshore. The phi mean distribution map for the pelletal phosphorite 

(Figure 6.5) is considerably less complex. There is a progressive 

coarsening of the pelletal phosphorite in a southerly direction towards 

the edge of the platform. There is a localised area from S12 to T14 

where the phosphorite grain-size becomes finer, and this corresponds to 

an identical trend in the whole sediment (Figure 6.1). On Langeberg 

the mean grain-size for the pelletal phosphorite is 2,02 ¢ (18 samples) 

with a range 1,8 to 2,3 ¢. On Witteklip the pelletal phosphorite tends 

to be finer grained, mean 2,27 ¢ (4 samples) but with a wider range, 

1,5 to 2,7 ¢. The fact that the pelletal phosphorite has a narrow size 

range, and if it is accepted that it has reacted to the environment of 

deposition in the same way as the quartz, would explain the low 

concentration south of the platform where the quartz is finest grained. 

The phosphatic-quartzose sands are generally moderately sorted (Figure 

6.2) . There is a general improvement in sorting south of the platform 

edge where the mean grain size decreases. The pelletal phosphorite 

is mOderately sorted (Figure 6.6) but better sorted than the associated 

sands. They become progressively more poorly sorted in a south

easterly direction which is opposite to the trend for the whole sediment. 

From U6 to SID there is an area of well-sorted pelletal phosphorite 

which coincides with the better sorted part of the whole sediment. 

Zones of skewness for the sediment are related to the topography (compare 
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Figures 6.3 and 5.1). An area of positive skewness, i.e. the tail 

towards the fine fraction, stretches from northwest to southeast along 

the platform. South of the platform skewness becomes markedly 

negative, i.e. the coarser fraction relative to the fine fraction is 

dominant. There is a prominent zone of negative skewness centred 

around Q2 and extending southeast to MID. This zone is seen to lie 

along the inner step, as the other negatively skewed zone lies along the 

outer step. At Langeberg negative skewness is associated with the 

finest sediments. This is probably the result of winnowing of fine 

sediments that had previously crossed the platform area. Only the 

finer grained sediments were crossing the platform to the slightly 

deeper offshore area where conditions prevented deposition of the finest 

particles.. A beach sand, on the other hand, would owe its negative 

skewness to winnowing of the fines from a lag deposit (Friedman 1961). 

The skewness distribution map for the pelletal phosphorite fraction 

(Figure 6.7) contrasts with that of the entire sediment. In the south

west the pelletal material tends to be positively skewed. Likewise, 

it is positively skewed in the north and east. Whereas the platform 

sediments are positively skewed, the phosphorite component there is 

negatively skewed. In Figure 6.8 skewness of the whole sediment has 

been plotted against mean grain-size. Positive skewness is associated 

with an average grain-size greater than 2,3~. As the proportion of 

very fine sand and silt relative to the fine sand increases, so the 

skewness values decrease. Zero skewness is associated with sub equal 

amounts of fine sand and very fine sand and silt. South of the platform 

edge and breaker-bar where the sediments are markedly negatively skewed, 

they are also finer grained. Fine sand overlying the platform is 

associated with positive skewness. Duane (1964) considers that 

negative skewness is produced by winnowing of the fine particles (high 

energy) while positive skewness is the result of deposition of fine 

material in a sheltered environment (low energy). Interpreting the 

skewness distribution in this way would suggest that the shoal area along 

the outer edge of the platform was a site of erosion (winnowing) under 

relatively low energy conditions while the platform itself was a 

sheltered depositional area. 

It will be seen from Figure 6.4 that the sediments are generally 
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platykurtic, with kurtosis values ranging from about 0,6 to 1. Very 

seldom are there sediments with kurtosis greater than unity. The low 

kurtosis values indicate that the sediments are on the whole better 

sorted in the tails than in the -central part (25 ~ - 75 ~). Folk and 

Ward (1957) have found a relationship between skewness and kurtosis, 

but in this study no definite relationship is apparent because the 

sediments are spread over a very small size range, although Figure 6.10 

shows that skewness and kurtosis have responded similarly to grain size 

variation. Worst sorting is associated with equal amounts of the two 

modes (Folk & Ward 1957). Figure 6.9 shows that with the improvement 

in sorting, i.e. the progressive dominance of one mode, kurtosis values 

increase. 

Grading analyses were performed on regularly spaced samples within 

individual boreholes (V14, 812, Q12, N4-76-04, M6-15-N6-15, W'l, W'5). 

The results of these analyses are shown in Figure 6.10. Perhaps the 

most interesting feature is the skewness. In boreholes V14, 812 and 

W'l, the skewness is predominantly positive, suggesting low energy 

conditions. In Q12, M6-l6-N6-15 and W'5 there is an alternation 

between negative and positive skewness. Such an alternation can be 

attributed to fluctuating energy levels; negative skewness resulting 

from erosion, positive skewness from deposition. It will be seen from 

Figure 6.10 that the standard deviation, skewness and kurtosis have 

responded similarly to changes of grain size. 

Visher (1969) has based his analyses of sediments on a recognition of 

SUb-populations within individual grain-size distributions. He relates 

each lognormal sub-population to different modes of sediment transport 

and deposition. In this way he recognises three modes: suspension, 

saltation and surface creep. Of all the grading-analyses performed in 

this study, two basic types of grain-size distribution predominate 

with a gradation between them. These two basic types are shown in 

Figues 6.11 and 6.12. In Figure 6.11 the curves contain three 

populations separated by inflexion points at 3,00 ¢ and 1,25~. Following 

Visher, the curve between 3,00 and 1,25 ~ represents the saltation 

population. The curve suggests that the saltation population may 

itself be composed of two SUb-populations. The curve coarser than 1,25 ~ 
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would be due to the surface creep population and that finer than 

3,00 ~ is attributec;l to suspension. The saltation population is 

poorly sorted and covers a wide range of grain-size (1,75 ~), while 

the surface creep and suspension populations are better sorted. Also 

included in Figure 6.11 is a curve that Visher found to be typical of 

a shoal area. If one locates the position of samples producing such 

curves on the structure contour map (Figure 5.1) it is found that they 

lie to the south of the platform edge, or are concentrated west of 

the "S"-drill line. This is extremely significant for it has already 

been demonstrated (Figure 6.3) that the same area is predominantly 

negatively skewed. The structure contour map shows that these points 

are concentrated either on a shoal area at the platform edge or on the 

more exposed western part. Visher (1969) notes that the fine 

saltation population suggests winnowing by wave action, while the poorly 

sorted intermediate population suggests "dumping from.a highly 

turbulent graded suspension-traction carpet, and the coarse population 

suggests bedload transport by a strong current". All samples with 

such grain-size distributions are concentrated in an area where such 

conditions could quite conceivably have operated. 

At the opposite extreme are the curves of Figure 6.12, again compared 

with a diagnostic curve of Visher's. Again it is found that there is 

an inflexion point at 3,3 ~ between the suspension population and the 

well-sorted saltation population. The characteristics of such a size 

distribution are thought by Visher to be typical of deposition by 

oscillation waves. 

sampled boreholes. 

This would be consistent with the location of .the 

It was stated earlier that the sediments of the Pelletal Phosphorite 

Member are essentially bimodal, or even polymodal. In Figure 6.13 the 

grain-size distribution of the whole sediment and the pelletal phosphorite 

and quartz fractions in a particular sample are compared by means of 

histograms. It will be seen that the pelletal phosphorite is 

essentially coarser grained than the quartz fraction. The pelletal 

phosphorite grain-size distribution is unimodal and nearly lognormal. 

O'Anglejan (1967) argues that these are original properties of the 
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phosphorite rather than a result of sorting, as there are no silt-size 

grains of apatite. The quartz fraction on the other hand is bimodally 

distributed, with the principal mode at 3 to 3,5 0 and having a 

subsidiary mode at 2 to 2,5~. The subsidiary mode for the quartz 

coincides with the pelletal phosphorite mode. The presence of the 

pelletal phosphorite in this sediment sample (45,5 per cent apatite) 

has resulted in the principal mode being situated between 2 and 2,5 ~. 

This relationship holds good for nearly all the samples. To understand 

fully the cause of this bimodality within the quartz fraction the 

surface textures of the grains were examined in detail. If it is 

assumed that the bimodality of the quartz population has resulted from 

different sources of supply of material, then it might be expected that 

the roundness of the grains would differ. But the unimodality of 

the phosphorite suggests just one generation for that mineral. 

Examination of the roundness of the individual quartz grains (following 

Powers 1953) has shown that grains coarser than 2,0 0 are mixtures of· 

rounded to well-rounded and angular to subangular populations. The 

rounded grains are usually polished or only lightly frosted, although 

extensive frosting has been noted. Finer than 2,0 ~ the grains are 

predominantly angular to subangular. Rounded grains are easily 

inherited and it is not the most rounded grains, but the most angular 

grains that are the true index of the amount of rounding that has taken 

place at that particular site (Folk & Ward 1957). In mixtures of 

rounded and angular grains Folk and Ward believe that the rounded grains 

are almost always reworked from an older deposit. The fracturing of 

many of the well-rounded grains in this deposit supports this idea. 

Whereas the quartz grains are best rounded in the coarse fractions, the 

pelletal phosphorite shows a reversal of this behaviour. Coarser 

than about 1,5 ~ the pellets are present as subangular plates, but 

roundness and sphericity improve· with diminishing size. At 2,5 y1 the 

pellets are nearly all well-rounded and polished. This reversal of 

behaviour is explained by its soft (hardness of apatite is 4,5 to 5) but 

brittle nature, the larger particles tending to fracture and remain 

subangular. Finer than 2,0 ~ the phosphorite abrades more rapidly 

than the quartz. The spheroidal and discoidal shape of the pellets 

results in their behaving differently under turbulent conditions than 
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the coarSer plates. The sub-spherical pellets are probably in 

hydraulic equilibrium with the coarser platey pellets. The high degree 

of rounding and sorting of the pellets is characteristic of deposition 

in a littoral environment. Bushinsky (1964) argues that the majority 

of pelletal phosphorites were found in water shallower than 100m. 

VII. HYDRAULIC EQUIVALENTS. 

The two major constituents of the Pelletal Phosphorite Member sediments 

are detrital quartz and pelletal phosphorite, while the major heavy

mineral component, ilmenite, is usually less than 1 per cent. Garnet 

and rarer zircon make up only about 3 per cent of the heavy-mineral 

fraction. Grading analyses showed that the ilmenite was concentrated 

in the very fine sand or silt grades. An attempt was consequently 

made to test for hydraulic equivalence between the quartz, pelletal 

phosphorite and ilmenite grains. 

The association of different detrital minerals within a deposit 

immediately suggests a similar response to the same hydraulic conditions. 

Rittenhouse (1943) defined the concept of hydraulic equivalence: 

"Whatever the hydraulic conditions may be that permit the deposition 

of a grain of particular physical properties, these conditions will also 

permit deposition of the other grains of equivalent hydraulic value". 

Thus the difference in grain-Size between ilmenite, pelletal phosphorite 

and quartz occurring together may be expected to be compensated for by 

their difference in density. The grains deposited from suspension 

under uniform conditions should have the same settling velocities. 

Shape may be expected to be an important factor affecting settling 

velocities, but for these three minerals shapes are very similar. 

According to Stokes' law particle size is inversely proportional to 

particle density. The settling velocity of a particle is dependent 

upon the resistance of the settling medium. For particles smaller than 

O,l4mm (2,85 ~) the resistance is dependent upon fluid viscosity (Rubey 

1933). Particles larger than this are controlled by the impact law 

(Newton's law of resistance). Rubey shows that the settling velocity 

---- -----.- -.--------
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of small grains is described by Stokes' law, while grains larger than 

O,l4mm follow an impact law. 

McIntyre (1959) has presented a formula that relates the theoretical 

differences in size to differences in mineral density: 

1 
~A - ~B = X (10g20A - 10g20B) 

where ~A and ~B = phi mean (or median) for minerals A and B, 

0A and DB = density of these two minerals in water. 

When X = 1, the equation is the impact law hydraulic equivalence formula, 

X = 2, the equation is the Stokes' law hydraulic equivalence formula. 

Theoretical grain-size differences were calculated from the above 

equation using mineral densities of 2,655 for quartz (A), 2,91 for 

phosphorite (B), 4,70 for ilmenite (C). 

X = 1 X = 2 

~ - ~ 1,16 0,58 
C A 

~ C - ~B 0,96 0,48 

~B - ~ A 
0,20 0,10 

Comparison between the mineral sizes has been recorded as median-

diameters solely for the ease of measuring. The median grain-size 

and grain-size differences are presented in Table 6.1. 

i 

I 
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TJlBLE 6.1 

Comparison of median grain-size differences between Quartz, Pelletal Phosphorite and Ilmenite (phi units) 

Pelletal Ilmenite Quartz 

S::tmp1e - Depth Quartz . Phosphorite C S::t1tation 
B - A 8 - 0 C - A C - 8 A B popn. a 

0 

Wittek1ip W'5 30,0 2,75 <4 >1,25 

W'5 32,1 2,80 2,63 <4 2,25 -0,17 0,08 > 1,20 >1,37 

W'5 36,9 2,96 >4 >1,04 

W'5 41,2 2,25 2,32 3,65 2,20 0,07 0,12 1,40 1,33 

W'l 43,8 1,72 1,43 3,50 1,60 -0,19 -0,17 1,88 2,07 
Langeberg M14 18,6 2,18 1,88 2,10 -0,30 -0,22 

012 32,9 2,20 2,08 1,90 -0,12 0,18 

020 44,7 3,13 1,92 2,75 -1,21 -0,83 

P 8 21,9 2,82 1,92 2,20 -0,86 -0,24 
Q12 30,0 1,99 3,92 1,93 
Q12 35,3 2,22 2,03 <4 2,00 -0,19 0,03 >1,78 >1,97 
R16 33,2 1,85 1,88 1,80 0,03 0,08 

810 36,9 3,32 1,98 2,70 -1,34 -0,72 
812 33,2 2,62 <4 >1,38 
812 36,4 3,02 2,27 2,05 -0,75 0,22 

812 39,6 3,13 2,10 2,10 -1,03 0,00 

Tl4 36,0 3,07 2,13 2,90 -0,94 -0,77 

U 4 15,5 2,43 2,08 2,22 -0,35 -0,14 

V14 19,3 1,63 1,80 <4 2,60 0,17 0,20 >2,37 > 2,20 

a Precise values for the ilmenite have not been measured in all cases since it is obvious that this mineral is not 

hydraulically equivalent to the quartz or pelletal phosphorite. 
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These results show that never is the ilmenite hydraulically equivalent 

to either the quartz or the phosphorite. Comparison of the grain-size 

distributions of the pelletal phosphorite with that of the associated 

quartz shows that although the phosphorite is the denser mineral it is, 

in most cases, also the coarser grained. There may be several reasons 

for the large deviation of the quartz and ilmenite from hydraulic 

equivalence. 

(i) Theoretical hydraulic equivalences are only valid when the 

reference mineral (quartz) and the mineral being tested 

(ilmenite) have the same shape (McIntyre 1959). Here shape 

differences are thought to be minimal. 

(ii) There may also be a lack of coarser size fractions of the 

heavy-mineral. In this respect the ilmenite from Witteklip 

where the Varswater Formation lies upon granite is coarser 

than the ilmenite from Langeberg where it has probably been 

(iii) 

derived from the Saldanha Formation. It is quite feasible 

that the size distributions of the heavy and light minerals 

are inherited from older sediments. 

Testing for hydraulic equivalence has been performed by 

sieve-analysis which possibly does not accurately predict the 

original settling velocities which are the only true measure 

of hydraulic equivalence. 

(iv) A very real source of error is undoubtedly the sampling. 

McIntyre has demonstrated that hydraulic equivalents should 

only be computed for mineral species from the same lamina, 

and he argues against bulk sampling. Unfortunately, the use 

of the l,07m tube ased here for coring has made it impossible 

to sample individual laminae. In many borehole samples mixing 

of the coarse and fine laminae has taken place. Such samples 

have been avoided where possible. 

(v) However, the most likely explanation for the large discrepancy 

lies in the application of the laws governing the settling 
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velocities of the minerals. The settling velocity of the 

ilmenite, being smaller than 2,85 ~ is described by Stokes' 

law while the larger quartz is governed by the impact law. 

It was shown earlier that the different sub-populations recognised in 

the grain-size distribution curves could be attributed to different 

modes of sediment transport. It was also shown that there is a 

consistent inflexion point at 3,0 to 3,8 ~ separating the suspension 

from the saltation populations. This inflexion point represents the 

junction of the Stokes' law and the impact law formulae, the theoretical 

junction point being calculated at 2,85 ~ (Rubey 1933). The size 

distribution of the ilmenite should thus be compared with the size 

distribution of the suspension population of the quartz. But the 

measurements show that there is still a divergence from hydraulic 

equivalence between these two populations, although the divergence has 

decreased. As most of· the samples from Langeberg come from an area 

that was once sheltered by a breaker-bar, it is likely that the low energy 

environment prevented efficient selective sorting. Decrease in the 

energy results in a decreasing capacity to suspend all the sizes so that 

a perfect selection of grains by settling velocity is not even 

theoretically possible. Furthermore, once deposited from suspension the 

grains would be moved on the bottom by traction and would hence be 

sorted into groups determined by ease of sliding or rolling, and sorting 

would thus not be related to settling velocity. 

McIntyre (1959) believes that movement in the foreshore zone is mainly 

in suspension, but as velocity drops transportation by traction pre

dominates. The drop in velocity is accompanied by deposition of 

finer and finer grains of the heavy mineral. Once deposited the smaller 

ilmenite would be more difficult to entrain than the larger hydraulically 

equivalent quartz. 

The effect of environment can be tested by examining the departure 

from hydraulic equivalence between the quartz and the pelletal phosphorite. 

The settling velocities of both these minerals are governed by the 

impact law. It will be seen in Figure 6.14 that as the individual 

quartz samples become finer grained, there is a tendency for the pelletal 
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phosphorite to become increasingly larger than the associated quartz. 

Of the twelve samples analysed on Langeberg only two (V14 and R16) 

showed the phosphorite to be finer grained than the quartz and to 

approach hydraulic equivalence. Both boreholes V14 and R16 lie on 

the edge of the platform where sediment analyses have shown more 

turbulent conditions to have operated. The hydraulic equivalents for 

these two samples approach the theoretical impact hydraulic equivalence 

value (0,20). Overlying the platfonn, and sheltered by the breaker-

bar, low energy conditions have permitted the settling of the suspension 

load which has decreased the median diameter of the quartz grains. 

Prevention of deposition of the suspension load at the platform edge 

has resulted in a closer approach to hydraulic equivalence. If the 

median diameter of the quartz saltation population is measured and 

compared with the pelletal phosphorite median grain-size (~B-~O) there 

is a tendency to approach hydraulic equivalence (Table 6.1), although 

only 6 of the 15 samples are hydraulically equivalent. The departure 

of the phosphorite and quartz from hydraulic equivalence reflects the 

nearness of the source of the pelletal phosphorite. Another limiting 

factor is the composition of the pelletal phosphorite fraction. It 

has already been shown that the pelletal phosphorite has a unimodal 

distribution, but that the coarser subfraction is platey and the dominant 

subfraction pelletal. It seems that these two parts could be 

hydraulically equivalent,and that combining them would possibly bring the 

entire pelletal population closer to hydraulic equivalence with the quartz. 

It is interesting to compare the phosphorite occurrence with that of 

the uraninite from the Witwatersrand banket. Nel (1958) considered 

that the uraninite had ~een precipitated within the pore-spaces of the 

sediment. This has resulted in minute rounded particles of uraninite 

being the same size as the sand grains. Koen (1961) agrees that this 

hypothesis explains the oval shape of the uraninite grains and their 

concentration in the banket. But he deems it unlikely that uraninite 

grains so formed would consistently show exactly the required size

distribution to indicate hydraulic equivalence with the banket fractions. 

Koen concludes that the "uraninite nodules, which formed in the muddy 

floors of vast marshes or shallow lakes, were churned up by wave action 

initiating a new cycle of sedimentation and during the process, became 
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redistributed, mixed with other sedimentary material, sorted and 

eventually deposited together with sand and gravel". This short 

description agrees very favourably with the suspected origin of the 

pelletal phosphorites, exceptthat the phosphorite was almost certainly 

precipitated within the pore-spaces of a marine sand with organic 

matter behaving as a catalyst, and as an inhibitor to carbonate 

precipitation. At a later stage reworking produced the pelletal 

phosphorite. 

It may be helpful at this stage to summarise the preceding discussion. 

The coarsest sediments of the Pelletal Phosphorite Member on Langeberg 

are found overlying the platform between the breaker-bar at the platform 

edge and the beach zone to the northeast. Only the finer grained 

population was crossing the platform to the deeper, offshore area at 

the platform edge. The sheltered environment on the platform has 

permitted the settling of the mud fraction and produced positive skewness. 

The platform edge, on the other hand, was a shoal area where erosion 

(winnowing) under relatively high energy conditions resulted in 

negative skewness. Deviations from hydraulic equivalence between the 

pelletal phosphorite and quartz are explained partly by location of the 

samples. Hydraulic equivalence is approached at the platform edge 

where turbulent conditions operated. Maximum departures are found on 

the sheltered platform area where a lower flow regime could not suspend 

all the grains so that selection by settling velocity alone would take 

place. 

(Size statistics are tabulated in the appendix). 
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CHAPTER 7 

DIAGENETIC SURFACE TEXTURES ON QUARTZ 

GRAINS FROM THE VARSWATER FORMATION 

I. INTRODUCTION 

During transportation, accretion, and compaction detrital grains may be 

mechanically abraded and chemically altered (Krinsley & Takahashi 1962). 

A voluminous literature discusses the consequent surface textures (e.g. 

Krinsley & Donahue 1968a; Coch & Krinsley 1971; Krinsley & Margolis 

1971; Doornkamp & Krinsley 1971; Margolis & Krinsley 1971; Blackwelder 

& Pilkey 1972; Tankard 1974d). Many electron microscope studies have 

been performed on the relationship of surface textures to· sedimentary 

environments, but relatively few have concentrated on diagenetic features. 

waugh (1970), Pittman (1972) and Tankard and Krinsley (1974) have 

described solution textures and multiple overgrowths on quartz. 

In the previous chapter conventional grain-size analysis was used as a 

means of interpreting the depositional environment. The purpose of this 

chapter is to present the post-depositional history of the major mineral 

component (quartz) in a highly energetic chemical environment. In all 

samples examined, approximately the same conditions of solution and 

precipitation prevailed. The main characteristics to be described are: 

(i) crystallographically controlled solution surfaces, 

(ii) solution surfaces independent of internal symmetry, 

(iii) reprecipitation textures. 

All samples used in this study were collected, examined and interpreted 

by the writer who benefited from discussions with Professor D.H. Krinsley 

of New York University. The results were published in a joint paper 

(Tankard & Krinsley 1974). 

Methods used in this study are described in APpendix 2. 

size range was used. 

Only the 0,7-l,Omm 
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II. SEDIMENT CHEMISTRY 

The considerable extent of post-depositional diagenetic textures preserved 

on the quartz grains can be related to the chemical energy of the 

environment. The chemical characteristics of the sediments are 

summarised in Table 7.1. The pH range is 6,9 to 8,9 while the average 

pH of the pelletal phosphoritic sands and the overlying Pleistocene 

aeolian sands are similar, 8,2 and 8,1 respect~vely. 

i 
I Bore-I hole 
i ! 
I I I N6 

i Q12 
! 
I S12 

I S12 
I S12 
i 
I S18 

Tl6 
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V14 

W'l 

W'5 

Y16 

TABLE 7.1 

Chemical Characteristics of the Sediments 

Depth P20
5 pH m ojo 

I 
22 6,9 -
18 8,0 Trace 

15 8,7 0,7 

26 8,7 0,9 

35 8,0 17,9 

38 8,4 6,1 

29 7,8 5,4 

29 8,3 12,2 

13 8,9 1,8 

45 8,3 12,0 

27 8,0 6,2 

10 7,7 4,9 

Na K Ca Mg Conductivity 
ppm micro-ohms 

800 30 360 180 2500 

80 40 1540 40 330 

10 20 llOO 20 85 

50 20 1540 40 150 

400 40 860 110 650 

10 20 280 30 150 

140 20 330 50 410 

50 20 240 20 160 

40 40 840 30 135 

20 20 260 20 170 

360 20 440 40 650 

30 40 290 40 180 

- -----~ ---~-.-- .. --.-- - ---- ----_._-- ------- -----_ .. -

Analysts: Fedmis (pty) Limited 

P205 - Chemfos Limited 

Krauskopf (195~believes that quartz becomes appreciably soluble above 

a pH of 9. The pH values shown in Table 7.1 reflect only the magnitude 

----------.- --

I 

I 
I 

I 

---~-----
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of the present pH range and do not imply pH values at the time of 

diagenesis. The potassium and magnesium values are moderate. 

Conductivity is a measure of the total soluble salts present and, as 

Table 7.1 suggests, appears to be closely related to sodium content. 

Permeability is a measure of the relative ease of liquid flow through 

a sediment; measurements ranged from 0,01-0,39 darcies. The very low 

permeability is attributed to the high mud fraction of the samples 

(2,6 to 10,4 per cent). Permeability is also affected by particle 

size and degree of sorting. In this respect the fine nature of the 

sand and the moderate to poor sorting accounts for the low permeability 

rates. Low permeability suggests that the quartz grains are continuously 

subjected to corrosive alkaline solutions which move slowly through the 

pore spaces. 

III. RESULTS 

A. Crystallographic Control of Chemical Etching 

Chemical solution of quartz grains will tend to follow planes of least 

resistance, and the internal structure of the quartz may manifest 

itself in strongly parallel alignment of the textures. Slow solution 

at high pH results in aligned V-shaped etch patterns (Krinsley & Donahue 

1968a; Ooornkamp & Krinsley 1971). This texture is demonstrated in 

Figure 7.1, where etch triangles have developed on the trigonal face 

of the quartz. 

Chemical etching along the rhombohedral cleavage (Figure 7.2) produces 

an almost rectangular "grid" texture (rrl = 85
0

). It is clear that 

both these triangular and rhombohedral forms are composite in structure, 

consisting of a series of progressively smaller triangles or smaller 

rhombohedrons within one another. 

Solution along parallel cleavage planes may produce a series of steps 

parallel to a cleavage direction (Figure 7.3) or, if the etching 

actually penetrates the cleavage plates, a deep cavernous texture 



F.igure 7.1 Quartz grain surface 
with depressed triangles 
the result of chemical 
etching. Note the tri
angles within triangles. 

Figure 7.2 Quartz grain surface 
showing rectangular 
"grid" pattern with 
mechanical V-shaped 
patterns on protruding 
portions of surface. 

Figure 7.3 Quartz grain surface Figure 7.4 Quartz grain surface 
with cavernous structure, 
probably due to etching. 
A series of cleavage 
plates are exposed here. 

showing a series of 
possible cleavage plates, 
probably modified by 
solution. The irregular 
bits of debris resting on 
the plates are probably due 
to intense chemical activity. 
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results, which is still controlled by the internal symmetry of the 

quartz (Figure 7.4). 

Biederman (1962), Margolis (1968, figure 11), and Krinsley and Donahue 

(1968a, plate 2), recognised similar features to that of Figure 7.1. 

These ~uthors attributed the oriented V-shaped markings to chemical 

solution in low-energy beaches. The Figure 7.1 sample is from a marine 

horizon in the Varswater Formation. Deposition in an embayment 

suggests that low-energy conditions prevailed. However, also observed 

were crystallographically controlled etch triangles on quartz grains 

from the Middle stone Age sediments of Die Kelders I identical to an 

illustration in Krinsley and Margolis (1969, figure 4). It is 

estimated that the shoreline was 16km away when deposition of the Middle 

stone Age sediments occurred (Tankard 1974d). Unless this grain was 

inherited from an older deposit it would appear that this type of 

texture could arise also from post-depositional etching, and is not 

necessarily diagnostic of a marine environment. 

B. Solution Surfaces Independent of Internal Symmetry 

Chemical solution of a quartz grain will obviously take advantage of 

any natural weakness, apart from the cleavage directions. In Figure 

7.5 low density areas within a single quartz grain (dark patches) are 

revealed by low energy secondary electrons. Chemical etching has 

taken advantage of these low density areas and it will be observed 

that this is where the solution pits lie. This particular grain shows 

extensive diageneSis, pernaps even a previous history of diagenesis. 

Krinsley and Donahue (1968b) believe that solution surfaces develop 

through three stages. In.the first stage solution results in rounded 

forms, such as the background on the Figure 7.5 specimen, but with 

continued solution a series of irregular pits develops. The final 

stage, extreme solution, results in what they describe as resembling 

"lapies developed in limestone terrain". In Figure 7.6 the last of 

these stages is observed: an initial flat solution surface has been 

extensively pitted. It can also be Seen at the top of the photograph, 



Figure 7.5 Portion of quartz grain 
surface showing intense 
rounding due to solution 
and localised depressions 
where advanced solution 
has occurred. The fine 
lines and pits ~re also 
due to solution. 

Figure 7.7 Quartz grain surface 
with network of etch 
lines; all mechanical 
features have been 
eliminated. 

Figure 7.6 Quartz grain surface 
with intense localised 
solution, creating 
"solution holes" re
sembling lapies in 
limestone terrain. 

Figure 7.8 Quartz grain surface 
with post-depositional 
chemical action. The 
regular depressions may 
be the result of 
resurrection after burial 
followed by mechanical 
action. 
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that fracturing has taken place, probably because of expansion of 

cleavage plates by means of chemical action. Figure 7.7 shows a 

different type of diagenesis: furrows forming a branching network. 

With continued action the larger furrows expand to consume many smaller 

furrows. 

Figure 7.8 shows post-depositional chemical action with considerable 

energy available in the environment. The irregular+y pitted surface 

formed before the breakage blocks; note that block edges have been 

relatively unaffected by diagenesis. Pitting of the surface shown in 

Figure 7.9 again demonstrates the effect of a high energy chemical 

environment. Cleavage plates are also shown. Doornkamp and Krinsley 

(1971, figure 10) illustrate a very similar texture from a tropical 

environment (Uganda). Figure 7.10 shows pitting of a quartz grain; 

cleavage plates have developed within the pit. The surface of the 

grain is smooth, as is the surface of the Figure 7.5 grain. Rounding 

of the cleavage plates within the pit suggests that the smoothing 

is the result of solution and not abrasion. 

C. Reprecipitation Textures 

Besides solution features, reprecipitation of silica is frequently 

encountered. In Figure 7.11 intense reprecipitation has followed a 

period of solution. This has produced a series of stacks, arches and 

caves. Krinsley and Doornkamp (1973, plate 22) illustrate a very 

similar texture. 

The reprecipitation of silica shown in Figure 7.11 is in optical 

continuity with the original grain structure. Sorby (1880) recognised 

that overgrowths on a host mineral of the same species are in optical 

continuity with the host, i.e. the overgrowth forms a syntaxial rim. 

IV. DISCUSSION 

It haS been demonstrated that marked diagenesis can occur in geologically 



Figure 7.9 Quartz grain surface 
showing chemical action; 
cleavage plates are 
visible in the depression. 

Figure 7.10 Etch pit with 
cleavage plates; 
rounded surfaces 
show a second cycle 
of solution. 

Figure 7.11 Quartz grain surface 
showing stacks, arches 
and caves caused by intense 
chemical solution and 
precipitation. 
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young sediments, and may obliterate mechanical textures which are 

diagnostic of environment. Surface textures of sand grains from 

the Varswater Formation and pH measurements suggest a post

depositional environment of high chemical energy. 

Margolis (1968) has produced triangular and rhombohedral etch patterns 

(similar to those of Figures 7.1 and 7.2) by etching with low 

concentrations of hydrofluoric acid and sodium hydroxide, implying 

a chemical origin for these textures. Solution of quartz grain 

surfaces in the Varswater Formation has taken place in an alkaline 

ehvirooment. Krinsley and Margolis (1969, figure 4) illustrate 

chemical etch triangles which they thought to be diagnostic of low-

energy littoral conditions. An identical texture was found in a Late 

Pleistocene cave deposit which was formed when the sea had receded 

due to advance of the WOrm ice sheets. This example can be used to 

sound a warning about over-hasty application of this technique to 

interpret environment of deposition. It is possible to produce 

identical textures by diagenesis and by mechanical abrasion, and only 

combinations of surface textures should be used to detail environment 

of sedimentation (Tankard 1974c). 
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CHAPTER 8 

PETROLOGY OF THE PHOSPHORITE AND ALUMINIUM 

PHOSPHATE ROCK 

I. INTRODUCTION 

Although submarine phosphorites were first recorded on the Agulhas 

Bank by the Challenger Expedition of 1873-1876 (Murray & Renard 1891), 

relatively few studies have been made of South African phosphorites. 

Collet (1905) described phosphorite dredged between the Agulhas Bank 

and 250 E longitude. He recorded large slabs of phosphorite, and also 

conglomeratic varieties. Cayeux (1934) attributed the morphology of 

the phosphorite nodules to erosion. This line of research was 

continued by Parker (1971; 1975), Parker and Siesser (1972), Parker 

and Simpson (1972), and Summerhayes et al (1972). Summerhayes (1973) 

points out that phosphorite is one of the major rock types of the 

Agulhas Bank. Research on emerged phosphorite deposits has not been 

extensive. Haughton (1932) presented chemical data for the Langebaanweg 

phosphorite, while Frankel (1943) examined the phosphorite by means 

of X-ray diffraction. The only complete chemical, petrological, and 

X-ray diffraction studies are those of Tankard (1974b, c; in press a), 

upon which this study is based. A voluminous literature discusses 

phosphorite deposits from other parts of the world (e.g. Sheldon 1964; 

D'Anglejan 1967; MCKelvey 1967; Rooney & Kerr 1967; Tooms et al 1969; 

Trueman 1971). 

Bedded phosphorites originate by shallow marine precipitation of 

collophane in the voids of the sediment, and close to the sediment-water 

interface. Pelletal phosphorite is the result of erosion of bedded 

phosphorite and microsphorite, so that the pellets become detrital 

components of the new deposit. The present day occurrences of phosphorite 

on land may be attributed to tectonic and eustatic causes. 

On the granite hills north and south of Saldanha Bay there are a further 

two varieties of phosphate rock. Both probably originated by leaching 
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of guano deposits by ground water and the subsequent alteration of 

the granite bedrock to' form aluminium and aluminium iron phosphates. 

The first variety, the primary phosphate rock, is an insular deposit 

produced by interaction of the original guano and bedrock. Weathering 

of this insular deposit has produced the second variety, lateritic 

phosphate. The phosphate minerals encountered in insular phosphate 

rocks are mainly crandallite, millisite, wavellite, and members and 

polymorphs of the variscite-strengite (barrandite) group (Trueman 1971). 

In contrast the mineral most commonly found in marine phosphorites 

is a carbonate fluorapatite. Exploitation of lateritic phosphates 

is restricted to Senegal (Trueman 1971) and Konstabelkop (Tankard 1974b) 

(Figure 3.2). The aluminium phosphates of the Saldanha area have been 

discussed by du Toit (1917), Hutchinson (1950), Visser and Schoch 

(1973) and Tankard (1974b). 

II. DISCUSSION OF TERMS USED 

Phosph ori te 

"Phosphorite" is the term generally used to describe marine sedimentary 

deposits which contain more than 18 per cent P205, approximating to 

50 per cent apatite (8ushinsky 1966). The apatite mineral is generally 

a carbonate-fluorapatite (Altschuler et al 1958). 

It should be noted that other workers prefer a broader definition of 

the term "phosphorite". For instance, Parker and Siesser (1972) 

describe as phosphorites those phosphatic sandstones having an average 

P205 content of only 15 per cent. 

Collophane 

The term "collophane" is generally used in petrologic descriptions to 

describe the isotropic apatite. The use of this term does not imply 

specific chemical composition. "Collophane" is a useful term that 

encompasses all the cryptocrystalline carbonate apatites. 

;" 
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Microsphorite 

Riggs and Freas (196S) proposed the term "microsphorite" to describe 

non-pelletal phosphorite in Florida. The term is the phosphorite 

equivalent of micrite in carbonate sediment nomenclature. Tankard 

(1974b) and Dingle (1974) have explained some phosphorites as 

phosphatised micrite. Trueman (1971) outlines microsphorite as follows: 

(i) It is an orthochem, i.e. collophane precipitated in situ. 

(ii) 

(iii) 

(iv) 

It is a microcrystalline collophane mud. 

It shows no evidence of transportation. 

It occurs either as cement binding clastic material, or as 

discrete laminae or beds, or as inorganic controlled structures 

(moulds, faecal pellets, etc.). 

(v) Microsphorite beds exist as discrete conformable stratigraphic 

units and are continuous. 

(vi) The contact with underlying sediment is often gradational,while 

the upper contact is sharp and marked by an indurated upper 

bored surface. 

Pellets 

The term "pellets" is used in a descriptive sense with no genetic 

connotations. Neither is "pellet" restricted to particles smaller than 

O,lSmm as defined by Folk (1962). Phosphorite pellets are generally 

sand-size or smaller, ovoidal, ellipsoidal or occasionally discoidal, 

structureless particles. 

Basal Bed 

For convenience the term "basal bed" will be used synonymously with 

Miocene phosphatic sandstone (Tankard 1974b, 1974c). 
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III. PETROLOGY OF THE PHOSPHORITES 

A detailed optical study of the phosphorite pellets and phosphatic 

sandstone is largely precluded because of the submicroscopic size 

(0,25-4~) of the apatite mineral and the admixture of argillaceous, 

carbonaceous and ferruginous impurities. The pellets may all be 

classified as true phosphorite, having a-P
2

05 content in excess of 18 

per cent. But this does not necessarily hold true for all the 

phosphatic sandstone specimens which will be described along with the 

true phosphorite. 

A. Pelletal Phosphorite 

The mean grain size of the pellets is coarser than that of the 

associated quartz grains in the sediment. The mean pellet size on 

Langeberg is 2,02 ~ (range 1,8-2,3 ~), on Witteklip they are finer 

grained, 2,27 ~ (range 1,5-2,7 ~). North of Hondeklipbaai the pellets 

are typically coarser (0,5-1,5 ~). The amount of pelletal phosphorite 

in silt-size grades is negligible. The pelletal particles are present 

in three distinct forms. Those of biogenous origin are present only 

in trace amounts in the coarser fractions. There is a relationship 

between pellet size and their gross morphology. In the coarser 

fractions (2,0 to -0,5 ~) the pellets are of platey or irregular 

appearance, while below 2,0 ~ ellipsoidal structureless pellets 

predominate, with some discoidal pellets. 

The increase in degree of roundness with diminishing size displayed by 

the pelletal phosphorite is opposite to the trend of the quartz groins 

in the same sediment where roundness improves with increasing grain-size. 

This reversal of behaviour of the pellets is readily explained by their 

soft (hardness of apatite is 4,5 to 5) but brittle nature. The larger 

particles tend to fracture and remain subangular. When finer than 

2 ~, the phosphorite abrades more rapidly than the quartz. The 

spheroidal shape of the pellets results in their behaving differently 

from the coarser plates under turbulent conditions. The subspherical 

pellets are probably in hydraulic equilibrium with the coarSer platey 

I 
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pellets. The high degree of rounding and sorting of the pellets is 

characteristic of deposition in a littoral environment. The high 

degree of sorting of the pellets contrasts markedly with that of the 

associated clastic constituents. 

Generally the edges of the coarser platey pellets show some signs of 

wear while many of the grains have a conchoidal fracture, and often 

a striated surface. Undoubtedly many of these grains are actually 

phosphatised mollusc shell fragments but such an origin does not 

account for all of them as d'Anglejan (1967) suggested for his 

phosphorite. 

to deep red. 

The pellets range in colour from pale yellow to orange 

They are usually of fresh appearance and often trans-

lucent. Frequently they have white blemishes due to finely divided 

clay material, or are mottled black by organic carbon. Generally 

these grains are of lighter and more yellow colouration than the smaller 

ovoidal pellets. Frankel (1943) analysed the white portion of nodules 

from Langebaanweg as montmorillonite. 

The ovoidal pellets constitute more than 90 per cent of all pellets 

in the 1,5-2,5 ~ fraction. They are regular, often ellipsoidal and 

even discoidal in shape (Figure 8.1). Rod-shaped, but nevertheless 

well-rounded pellets are also found. Rooney and Kerr (1967) have 

described similar particles with a groove running down the length of 

the rod which they thought were probably minute bones, although they 

concede the possibility of faecal pellets in their sediments. Arakawa 

(1971) illustrates some faecal pellets of invertebrates which are 

very similar to those found in the Varswater Formation. Very rare 

are some well-rounded pellets composed of aggregates of smaller pellets 

which are phosphate cemented. The ellipsoidal pellets are usually 

brown, orange or red coloured, but black and green pellets have also 

been noted. Towards the base of borehole W'5 (Witteklip) the 

pellets are mostly black due to large amounts of organic carbon (Figure 

8.5). Black mottling and white blemishes are common in most of the 

ellipsoidal pellets. 

Included with the biogenous particles are translucent and opaque 

phosphatised echinoid spines, foraminifera, minute fish teeth, bryozoa 



Figure 8.1 Morphology of typical phosphorite pellets. 

Figure 8.2 structure of pellet that has resulted from the migration 

of impurities away from the rim. 
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and faecal pellets. The echinoid spines generally have rounded 

extremities and the foraminifera (predominantly Elphidium sp.) also 

show considerable wear. Some of these pellets resemble pellets 

illustrated by Manheim et al (1975, figures 4, 5, 6) which have been 

shown to originate by advanced phosphatisation of foraminiferal tests, 

particularly Bolivina, Uvigerina and Cassidulina. The faecal pellets are 

cylindrical and usually have a groove down their length. 

Because of the cryptocrystalline state of the apatite, the pellets are 

difficult to study in thin-section. And the poorly crystalline state 

results in low intensity peaks by X-ray diffractometry. In thin-

section the pellets are yellowish brown and isotropic to very slightly 

anisotropic. Some pellets have an outer rim of anisotropic apatite. 

The pellets are usually structureless, although a structure may occur 

after apatite has grown about an older pellet, or the growth of the 

apatite crystals has pushed aside the carbon and argillaceous inclusions 

(Figure 8.2). Frequently the pellets contain subangular silt-size 

quartz grains randomly scattered throughout the groundmass (Figure 

8.3). These frequently give the impression of a nucleus. But the 

presence of organic carbon and argillaceous material within pellets 

suggests precipitation within the pore-spaces of a sediment, the 

silt-size quartz being also present in these pore spaces. (Attempts 

to determine the organic carbon content by direct combustion first in 

an atmosphere of nitrogen and again in an atmosphere of oxygen, 

produced inconclusive results. However, hydrochloric acid leaching 

of the apatite left behind a black fibrous organic carbon-like 

residue which was rapidly oxidized by peroxide). In only one partially 

corroded pellet was a well developed oolitic ~tructure present showing 

concentric shells of radiating anisotropic francolite. Figure 8.3 

shows the occurrence of a well rounded grain that is predominantly 

quartz, but includes one portion of phosphorite. Although the 

phosphorite formed originally as an autochthonous mineral within the 

pore-spaces of an older formation, in the latest cycle of erosion the 

phosphorite has become associated with the detrital components of 

the sediment and has been abraded to the typical pelletal form. Figure 

8.4 demonstrates typical pellet form. It also demonstrates the 



Figure 8.3 Pellets with quartz grain inclusions. 
Arrow indicates a well-rounded grain composed 
of part phosphorite and part quartz. 

~igure 8.4 Typical structure of pelletal phosphorite. 
Arrow indicates biogenous particle. 
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ubiquitous nature of organic carbon in the pellets, and shows a 

pellet of biogenous origin. At the base of W'5 (Witteklip) the 

pellets are saturated with organic carbon (Figure 8.5). 

Many of the pellets contain smallJaths (Figure 8.6) possibly of 

organic material, but it is impossible to identify these. 

Phosphorite pellets with oxidized rims are common. Similar features 

led Rooney and Kerr (1967) to suspect extensive reworking. The 

ellipsoidal pellets have had a longer period for oxidation of the 

organic constituents to take place (their shape implies a longer 

period of abrasion), whereas the more angular pellets have a fresher 

appearance due to their comparative youthfulness. The pellets owe 

their colour to disseminated aggregates of carbonaceous, argillaceous 

and ferruginous impurities. The iron oxide (Fe203) content of many 

pellets is as high as 3,4 per cent. Opaline silica is frequently 

present within the pellet s, and in other cases has formed a shell 

about the pellet from within which the apatite has been dissolved 

leaving a fragile empty shell. O'Anglejan (1967) records a similar 

phenomenon. The coarser platey pellets have in many cases a texture 

typical of shell debris. Some sections strongly resemble young bone 

or cartilage (Figure 8.7) and tooth dentine (Figure 8.8). It was 

found that some of the pellets on Witteklip have a texture very similar 

to that of the Hoedjiespunt microsphorite. The Langeberg pellets 

likewise have a texture very similar to that of the matrix of the 

underlying phosphatic sandstone. 

Figure 8.9 shows the minute dimensions of the crystallites in the 

phosphorite. The texture of the fracture surface of the pellets is 

further illustrated in Figures 8.10 and 8.11. 

B. Phosphate Rock 

Phosphatic sandstones have resulted from the precipitation of 

collophane within the pore-spaces of a quartzose sand. At Hoedjiespunt 

the microsphorite horizin, 1,5m thick, contains l ess than 1 per cent 

quartz. Bushinsky (1966) defines a phosphorite as rock containing 
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Figure 8.5 Pellets coloured black due to carbonaceous 
material. 

Figure 8.6 Organic material present as small laths. 
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Figure B.7 Pellet structure resembling young bone 
or cartilage . 

. ' 
. 1: 

• • 
100p 

Figure B.B structure similar to tooth dentine. 

•• I 



Figure 8.9 Scanning electron photomicrograph 
showing apatite crystals in phosphorite 
pellet . 

. Figure 8.10 Scanning electron photomicrograph 
showing structure of pellet fracture 
surface. 
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more than 18 per cent P20
5 

(approximately 50 per cent apatite). In 

only 38,1 per cent of the phosphatic rocks of this study did the P20
5 

concentration exceed 18 per cent. The highest P205 value is 27,2 

per cent. The average value for the basal bed is 14,9 per cent P
2

0
5

, 

Parker and Siesser (1972) report an average of 15 per cent P205 in 

the continental margin phosphate rocks. 

1. Miocene Phosphorite - Saldanha Formation 

The rock is brown with a surface that is polished and undulating or 

pitted by differential erosion. Numerous burrows of marine animals 

show that the rock still displays its original surface. Essentially 

the rock of this horizon consists of fine sand size quartz embedded in 

a matrix of finely divided argillaceous and organic material that is 

collophane cemented. Frankel (1943) has identified the argillaceous 

material as montmorillonite. The detrital quartz fraction constitutes 

from 20 to 95 per cent of the rock. It is a mixed grain fraction 

(in the sense of varying textures of the quartz grains), generally 

poorly sorted, and frequently shows considerable iron staining. Fe203 

percentage ranges from 0,3 to 6,5. 

Near the southwestern corner of the New Varswater Quarry the basal bed 

is markedly conglomeratic, and in places brecciated (Figures 8.12 and 

8.13). Intraformational conglomerates frequently occupy erosional 

channels (scour and fill) (Figure 4.4). Fractures in the larger 

non-phosphatic sandstone clasts are penetrated by collophane. The 

clasts are usually rounded and sometimes bent while in a semilithified 

state, and some have been almost completely phosphate mineralised. 

Such conglomerates indicate that lithification was disrupted by erosion 

and redeposition (Blatt et al 1972). Very similar conglomeratic 

phosphorites have been described from the continental shelf (Parker 1971, 

1975). 

Most of the onshore Saldanha Formation phosphatic sandstones may be 

described as medium to fine grained collophane packstones. In the 

majority of cases the collophane has undoubtedly originated by direct 



Figure 8.11 Scanning electron photomicrograph 
showing typical structure of pellet 
fracture surface. 

Figure 8.12 Intraformational conglomerate typical 
of parts of the Miocene phosphatic 
sandstone. 



Figure 8.13 Preferential phosphate mineralisation of Miocene 
~ediments. 

Figure 8.14 Concentric structures in phosphatic sandstone 
produced either by algae or diagenesis. 



89 

precipitation of phosphate within the pore-spaces of a quartz sand 

from phosphate-rich waters. But in a few cases precipitation of the 

phosphate has possibly been induced by algae present in the sediment· 

(Tankard 1974b). Figure 8.14 shows a structure that has developed 

in the form of concentric shells of different mineral composition. In 

Figure 8.15 which is an enlargement of part of the previous figure, it 

is shown that this structure has developed independently of the basic 

sediment texture, and is possibly diagenetic. The concentric shells 

reflect zones of enrichment by collophane and sometimes iron oxide. 

Iron oxide (? goethite) would appear to be ubiquitous in these phosphate 

rocks, but it could be younger than the phosphate component in many 

cases. 

Heavy minerals, mainly ilmenite, are present only in trace amounts. 

Bone fragments, which are common, are always completely phosphatised. 

Shell debris is much less common but, nevertheless, still observed. 

A single shark tooth was found still embedded in reworked phosphatic 

sandstone, and in a very coarse-grained sample shark teeth were 

abundant. 

Packing of sediments is easiest described by the packing proximity 

which is the ratio of the number of grain-to-grain contacts to the total 

number of grains observed in a thin-section traverse (Kahn 1956). The 

packing proximity for the phosphatic sandstone is occasionally as 

high as 50 per cent (i.e. 5 contacts along a traverse of 10 grains). 

But an average value of 10-20 per cent is more diagnostic. This low 

packing proximity is a result of the high mud content, and in some 

cases due to apatite crystal growth pushing the quartz grains aside. 

The quartz fraction is a mixed grain fraction, the largest grain-size 

being about 0,4mm and well rounded. The quartz fraction is largely 

negatively skewed and poorly sorted with a mean grain-size of about 

3~. Many of these well rounded grains have been broken in the last 

cycle of erosion, the rounded aspect having been inherited from a 

previous cycle. Corrosion of quartz grains has also occurred. An 

interesting feature of the phosphate rock is the frequency of pellets 

of phosphorite with much silt-size quartz in the matrix (Figure 8.16) 

and which constitute 3-5 per cent of the sandstone. Some of the 

. ,."".~'I"-



Figure 8.15 Enlarged section of previous figure 
showing that the concentric structure 
has developed independently of sediment 
texture. 

Figure 8.16 Phosphorite pellets containing quartz 
grains in phosphatic sandstone of 
basal bed. 
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included phosphorite pellets are, like the quartz, corroded. Some

times pore-spaces are lined with drusy francolite. Generally the 

matrix is yellow brown under plane-polarized light. It consists often 

of a rim of anisotropic francolite grown from the walls of the voids, 

the remaining space being filled with isotropic collophane. Precipi

tation of the apatite has taken place in the pore-spaces of the 

sediment, and Figure 8.17 illustrates typical drusy francolite. Calcite 

was seldom observed. 

The wave-generated beach cobbles from the Gravel Member of the Varswater 

Formation were derived by marine erosion during the Pliocene trans-

gression. Thin-section examination shows that they are identical to 

their parent phosphatic sandstone of the Saldanha Formation in every 

respect. They consist of about 90 per cent quartz with a packing 

proximity 10-30 per cent. The matrix, like the basal bed, is composed 

of isotropic or slightly anisotropic collophane. 

The Hoedjiespunt exposure is a microsphorite ~ stricto. It contains 

3,6 per cent Si02 , 1,8 per cent A1203 , 0,3 per cent Fe203, and 34-36 

per cent P205 (Table 8.2). The iron oxide content of the Hoedjiespunt 

microsphorite is considerably lower than that of the Langeberg basal 

bed. Thin-section examination and X-ray diffraction data confirm 

that little of the Si02 is present as free quartz, in fact less than i 
per cent. Even the clay mineral that accounts for the A120

3 
and 

the balance of the Si02 is present in small amounts. The low fluorine 

content in sample 33 suggests that the apatite mineral is in part 

dahllite, but sample 34 has a fluorine content more characteristic of 

francolite. 80th dahllite and francolite are members of an 

isomorphous series. Like the francolite of Langeberg, it is isotropic 

to very slightly anisotropic under crossed nicols. 

The microsphorite is preserved in a bedrock depression within the 

granite platform. The lower part is bedded while the upper part 

contains more phosphatised microcoquina, wave-generated granite boulders, 

and reworked and rounded fragments of microsphorite from the lower unit. 

Shell debris, bryozoan remains and foraminifera tests, including a 



Figure 8.17 Drusy francolite grown from walls of 
the voids in the phosphatic sandstone. 

Figure 8.18 Hoedjiespun t microsphori te showing 
foraminifera and shell debris. 
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planktonic element, are set in microsphorite. Figure 8.18 shows 

typical phosphatisedmicrocoquina. Reworking of the earlier lithified 

microsphorite already mentioned, may take the form of cleavage flakes 

of phosphorite which sometimes resemble micro-mud-flake breccia, 

(Figure 8.19). It certainly is indicative of rapid lithification 

and reworking,while further collophane precipitation is shown in Figure 

8.19 as infillings of cavities in the collophane matrix. Oolitic 

texture (Figure 8.20) is common in the Hoedjiespunt microsphorite, 

and is identical to oolitic phosphorite from the Meade Peak Mine, Utah 

(Trueman 1971, plate 7A). The wave-generated granite boulders at 

Hoedjiespunt, the reworked microsphorite and microsphorite-flake

breccia, the bioclastic material, and the oolitic textures all suggest 

a very shallow depositional environment. Moulds of Fissurella and 

Patella show the close proximity to the intertidal zone. 

The phosphatic sandstones of Miocene age at Ysterplaat have also been 

examined. In thin-section the coarser quartz grains of the lower 

unit are seen to be rounded to well-rounded, while the finer grains are 

subround. Fracturing of the grains is common. The closely packed 

detrital quartz is set in a microsphorite matrix. Anisotropic franco

lite haS formed about the quartz grains, while the remaining voids are 

filled with isotropic collophane. Occasional pellets were observed 

( < 1% ), together with a few phosphatised foraminiferal tests and 

phosphatised bone fragments. Two phosphate determinations show 8,0 

per cent and 9,2 per cent P20S respectively (analyst: Chemfos Limited). 

2. Phosphate Rock of the Varswater Formation 

Precipitation of isotropic collophane within the pore-spaces of the 

quartzose sands of the Varswater Formation has been induced by local 

concentrations of organic matter. This has resulted in the development 

of thin lenses and concretions of phosphatic sandstone. Figure 8.21 

shows how a tortoise bone has acted as a nucleus for phosphate 

deposition which has followed the contours of the bone. Although the 

bone is completely phosphatised, the maximum phosphate deposition 

outside the bone is slightly separated from the bone. The following 
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Figure 8.21 Tortoise bone that has acted as a nucleating 
centre for phosphate precipitation. 

Figure 8.22 Typical phosphatic sandstone lens structure 
from the Varswater Formation. 
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TABLE 8.1 

Comparison of P205 Percentage in Phosphate Rock with 

that of surrounding Phosphoritic Sands, Pelletal 

Phosphorite Member. 

P205 0/0 

Borehole Depth 

I Rock Sand 

M6-100-N6 15,Om 13,6 12,1 

" 16,0 14,2 3,9 

" 17,2 12,0 3,0 

" 23,6 5,2 3,1 

" 24,6 n,8 1,3 

812 41,7 18,5 16,8 

" 42,8 n,6; 19,6 8,7 

" 43,8 10,7 3,1 

Q12 36,4 21,0 13,6 

" 43,8 13,3 10,4 

W 1 43,8 13,8 11,1 

" 44,9 12,3 12,0 

W 5 38,5 6,4 1,8 

" 43,8 n,o 4,6 

Analyst: Chemfos Limited 

C. Mineralization 

j 

I 
I 

I 
I 

Petrographic eJidence suggests that at least three distinct periods of 

post-depositional phosphatisation have occurred. The conglomeratic 

phosphate rock or packstone of the Langeberg basal bed shows two 

periods of mineralisation. The first phase is represented by fragments 

of an older phosphate rock as well as occasional phosphorite pellets. 

These older components were reworked, and the new sediment lithified 

in the second phase of phosphatisation. In the basal bed phosphate 
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precipitation has resulted in a phosphate packstone only one metre 

thick. Phosphate mineralisation must have taken place fairly 

rapidly after deposition, and must have been nearly contemporaneous 

with sedimentation, because it depended upon the close proximity of 

upwelling of phosphate-rich water (to be discussed later)~ Phos

phatisation appears to be nearly uniform through much of the rock of 

the basal bed, although contact with phosphate rich water has increased 

the degree of phosphatisation in a thin layer at the surface. The 

overlying phosphatic packstone cobbles of the Gravel Member are 

identical to the basal bed and have been derived by erosion of that 

bed which suggests that the phosphatisation must have preceded the last 

phase of erosion. On Langeberg phosphate mineralisation has taken 

place within the pore-spaces of a Miocene quartz sediment, mineralising 

the argillaceous material already there. Organic matter within the 

argillaceous material has probably behaved as a catalyst. On 

Langeberg there is little evidence that this mineralisation has 

proceeded via a lime replacement mechanism and it is certainly not a 

phosphatised calcrete as suggested by Wolff et al (1973). I have 

suggested that locally the phosphate precipitation could possibly have 

been induced by algae. If this were so the algae would have behaved 

in a similar way to the other organic matter. On Langeberg the 

phosphorite pellets of the Varswater Formation have a very similar 

aspect to that of the matrix of the basal bed, although some do show 

concentric layering. In these rare cases the concentric structure is 

probably the result of apatite growth about an initial pellet. There is 

no evidence to suggest growth of the pellets about nuclei, although 

silt-size quartz inclusions give the impression of nucleation. Thin

section analyses show that the quartz was present in the matrix of the 

original phosphorite as was the organic material. Summerhayes (1970) 

argues that if the francolite in the original phosphatic rock has grown 

from the walls of the voidS, these layers may act as lines of 

structural weakness. Disintegration along such lines leads to the 

fonnation of pellets of collophane that contain impurities but have a 

clear collophane margin. 

On Langeberg the third phase of phosphate mineralisation is marked by 

the appea~3nce of phosphatic sandstone lenses and concretions in the 
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Varswater Formation. The estuarine sediments are capped by a thin 

phosphatic sandstone horizon. In the Pelletal Phosphorite Member 

the phosphatic sandstone lenses and concretions include pelletal 

phosphorite in the same abundance as the surrounding sediments. In 

this same member there are phosphatised foraminiferal tests, indicating 

a lime replacement mechanism while the presence of phosphatised cartilage 

or young bone (Figure 8.7) shows just how rapid phosphate mineralisation 

may be. Shell material, shark teeth, bone fragments, echinoid spines 

and foraminiferal tests are all well phosphatised. On Hoedjiespunt 

the bedded microsphorite, by coincidence, also demonstrates three phases 

of phosphate mineralsation. The first two phases are demonstrated by 

phosphatisation of a microsphorite-flake breccia (Figure 8.19), and in 

a third phase of mineralisation fractures within this phosphatised wacke-

stone have been the sites of phosphate deposition. Foraminiferal tests 

and microcoquina have all been completely phosphatised. 

Within the Varswater Formation deposition appears to be confined to 

deposition of fine sand material. Frequent erosional episodes have 

resulted in concentration of shark teeth and mollusc shells into definite 

horizons. Widespread reworking is attested by the broken detrital 

grains and shell debris and worn foraminiferal tests. All evidence suggests 

low rates of sedimentation. 

D. Chemical Composition of the Phosphorite 

The apatite mineral of all the pelletal phosphorites and the Langeberg 

basal bed is francolite, while the apatite of the Hoedjiespunt micro-

sphorite ranges through dahllite to francolite. Francolite is the name 

applied to an apatite containing appreciable CO2 and more than 1 per 

cent fluorine, whereas the name dahllite has been applied to apatite 

containing abundant CO2 but less than 1 per cent fluorine (McConnell 1938). 

Table 8.2 shows the major-element geOChemistry for the pelletal 

phosphoritic sands, pelletal phosphorite concentrates, phosphatic sand

stone, phosphatic aeolianite from Darling, phosphatised bone, and 

microsphorite. In the next chapter these values have been re-calculated 



Figure 8.19 Microsphorite flake-breccia. 

Figure 8.20 Oolitic texture in Hoedjiespunt microsphorite. 
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hypothesis of origin of this type of texture is suggested: 

(i) the bone acts as a nucleating centre for precipitation 

of phosphate to form a nodule; 

(ii) the apatite of the bone, which is dahl lite (Carlstr~m 

1955), is not in equilibrium with the surrounding 

francolite in the nodule and phosphate is withdrawn 

from the surrounding matrix in converting the bone 

apatite to francolite. Tankard (1974c) has shown how 

the original bone apatite takes up more fluorine from 

the phosphate-rich environment. 

A typical phosphatic sandstone from the Varswater Formation is shown 

in Figure 8.22. The detrital components of the phosphatic pack-

stones are always similar to that of the surrounding sediment, and they 

include phosphorite pellets. Cementation has taken place by 

precipitation of francolite about the grains to give a radially disposed 

cryptocrystalline francolite with the pore-spaces filled with clear 

collophane or mud. (The collophane disseminated through the matrix 

of the phosphatic sandstone can truly be referred to as microsphorite, 

as can the collophane component of the pelletal phosphorite already 

discussed). Only occasionally is drusy quartz found. In some of 

the packstones a crudely graded bedding has been observed. The 

colour of these phosphatic packs tones ranges from pale brown to black. 

Samples from borehole 812 (42,8m) were analysed. The brown variety 

contained 11,6 per cent P20S and the black variety 19,6 per cent 

P20
S

' Where phosphate rock has formed as lenses or concretions within 

the Pelletal Phosphorite Member, P20S concentration is always 

substantially higher than that of the surrounding phosphoritic sands 

(Table 8.1). Towards the base of the Varswater Formation a collophane 

mudstone is frequently encountered (Figure 8.23). It contains S to 

10 per cent detrital quartz set in a fine phosphatised argillaceous 

matrix. 



Sample 1 2 3 4 5 

Si02 
A1203 
Fe203 1,74 1,87 1,79 1,83 1,24 

Cao 46,76 39,97 39,23 44,58 49,01 

MgO 1,64 5,83 6,67 2,83 0,04 

~Ja20 0,70 0,75 0,70 0,69 0,73 

~O 
H2O+ 

H2O-

P205 34,15 34,12 33,98 34,66 35,55 

CO2 4,32 4,04 4,19 4,05 4,02 

F 3,43 3,40 3,27 3,87 3,33 

S03 0,90 0,78 0,80 0,69 0,92 

Total 93,64 90,76 90,63 93,20 94,84 

T.ABLE 8.2 

MAJOR ELEMENT GEOCHEMISTRY 

Varswater Formation 

- -

pelletal P ho sp hori te Concentrates 
, -

6 7 8 9 10 11 

1,56 1,73 1,34 1,48 2,15 1,72 

43,69 47,81 49,38 47,53 47,67 47,11 

3,49 0,50 0,16 0,91 1,01 0,30 

0,76 0,71 0,74 0,76 0,77 0,76 

33,87 33,72 34,55 34,51 33,19 32,67 

4,38 4,62 4,03 3,96 4,73 4,91 

3,30 3,67 3,92 4,37 4,00 3,30 

0,83 0,78 1,05 0,73 0,80 0,90 

91,88 93,56 95,17 94,25 94,32 91,67 

.~.- .. ~. ---~ 

12 13 14 

1,61 1,45 1,67 

47,95 48,09 48,51 

0,30 0,34 0,20 
.. 

0,76 0,77 0,77 

33,88 34,06 34,35 

4,65 4,37 3,95 

3,38 3,33 2,85 

0,84 0,91 0,96 

93,37 93,32 93,26 

15 16 

3,15 3,43 

49,07 47,11 

0,20 0,81 

0,75 0,77 

34,01 32,27 

3,85 3,83 

2,95 2,92 

0,96 1,62 

94,94 92,76 

17 

4,13 

1,73 

1,77 

46,97 

0,28 

0,68 

0,26 

2,43 

0,44 

33,16 

3,81 

3,44 

0,17 

99,27 

lO 
()) 



Varswater Formation S:l.ldanha S:l.ldanha 
Formation Phosp. Formation 

Aeo- Bone 
Phos. Pelletal Phospho Sands Phospho Phospho sst. lianitE Microsphorite 
sst. sst. 

Sample 18 19 20 21 22 23 24 25 26 Z7 28 29 30 31 32 33 34 

Si02 10,30 44,80 56,30 50,24 72,26 67,24 80,88 54,56 20,86 59,92 35,16 63,08 29,78 1,72 3,60 

A1203 1,25 1,72 1,76 1,72 3,27 1,93 2,29 1,11 0,62 0,94 2,70 0,66 1,38 0,60 1,83 

Fe203 0,80 1,54 1,29 1,16 1,Z7 2,19 0,93 0,96 0,71 0,51 0,63 2,02 0,36 4,23 0,16 0,27 

CaD 23,97 44,36 25,74 19,57 22,99 9,59 13,91 6,62 21,65 40,55 19,35 29,72 18,06 31,63 50,36 46,04 49,59 

MgO 0,30 2,54 2,02 1,57 1,76 0,75 0,96 0,55 0,76 0,88 0,99 1,04 0,93 0,75 1,16 2,32 0,47 

Na20 0,45 0,61 0,55 0,46 0,56 0,21 0,32 0,28 0,37 0,36 0,22 0,36 0,17 0,26 0,44 1,27 1,00 

~O 0,41 0,79 0,81 0,76 0,57 0,87 0,88 0,29 0,09 0,32 0,18 0,12 0,01 0,01 0,06 0,05 

H 0+ 
2 2,24 

H
2
O- 0,77 0,70 0,61 0,71 0,61 0,42 0,33 1,42 1,48 0,72 0,91 0,45 1,46 1,79 2,55 2,54 

P205 18,28 31,19 17,79 14,02 16,24 7,54 10,50 5,37 16,00 28,47 14,52 21,93 13,59 23,47 36,19 33,97 35,39 

CO2 1,97 3,02 1,87 1,59 1,77 0,83 1,06 0,53 1,13 1,92 0,75 1,84 0,85 2,02 2,50 3,28 4,08 

F 1,50 2,00 1,50 1,30 1,40 0,72 1,10 0,43 1,20 2,00 1,30 1,60 1,20 1,70 1,50 0,57 1,59 

503 0,39 0,34 0,24 0,18 0,20 0,06 0,16 0,14 0,06 0,06 0,16 0,22 0,08 0,06 0,12 0,44 0,80 

Total 47,66 98,33 99,09 99,39 99,69 98,62 99,45 99,31 99,28 97,82 99,87 97,75 99,58 96,77 96,59 96,35 97,75 

(Note: Sample locations as for Table 9.1) 
Analysts: 1-18, 34 - General Superintendence Co. 

19-33 - Anglo American Research Labs. 



98 

to an impurity free basis so as to characterise the apatite mineral. 

Sample 33 has only 3,6 per cent Si02 which is partially present as 

free quartz, or bound up with the A1203 and Fe203, as a clay mineral. 

The low fluorine content in this sample (0,57 per cent) defines the 

major apatite component as dahllite (less than 1 per cent F). The 

inorganic component of bone is dahllite, but sample 32 shows 

enrichment in fluorine due to post-depositional diagenesis. In this 

respect the sample 34 microsphorite with a similar concentration of 

fluorine (1,59 per cent) has been similarly affected. The bone sample, 

both microsphorite samples and the Pleistocene aeolianite sample are 

all characterised by low amounts of ~O. (The geochemistry of the 

apatite will be discussed fully in a later chapter). It is worth 

noting how closely the major element geochemistry of the pelletal 

phosphorite approaches that of the Saldanha Formation phosphatic 

sandstone and microsphorite. This indicates a genetic relationship 

and strengthens the argument that the pellets are detrital particles 

derived by erosion of these older rocks. 

IV. ALUMINIUM PHOSPHATES 

The aluminium phosphates will be discussed only briefly as they are not 

directly related to the marine phosphorites, although both are related 

to the upwelling of phosphorous-rich waters. These aluminium phosphates 

have been described in some detail by du Toit (1917), Hutchinson (1950) 

and Tankard (1974b). 

The aluminium phosphate distribution map (Figure 8.24) shows how 

outcrops of the phosphate rock occur sporadically about granite hills 

north and south of Saldanha Bay. They are not confined to any 

particular altitude. The degree of phosphatisation is very variable 

over the area and even varies within any particular hand specimen. On 

Konstabelkop the insular phosphate rock is hard and of moderate yellowish 

brown (lOYR 5/4) coloration, while the phosphatised clay of slickensides 

is grey - brown (5YR 3/2). North of Saldanha Bay the insular 

phosphate rock has a green hue. On Konstabelkop an exploration pit 

in a (7) marine terrace at 152m a.s.l. shows rounded boulders lying on 
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weathered porphyry. Both the underlying porphyry and the rounded 

boulders have been phosphatised, but in the case of the boulders the 

degree of phosphatisation is greatest near the surface, suggesting 

post-depositional phosphatisation and demonstrating that the 

phosphatising solutions were exotic. 

In the main quarry on Konstabelkop the highest concentration of P20
5 

is close to the surface, the concentration decreasing irregularly 

with depth. The maximum depth ranges from 1,5m to 12 m, the base 

being highly irregular. 

lateritic phosphate. 

At the surface weathering has produced 

A feature of the Konstabelkop insular phosphatic rock is the existence 

of numerous slickensides along which phosphatisation is extensive. In 

thin-section it is seen that the ground-mass is a fine clay material 

which has been phosphatised. The phosphatised parts of the clay 

are isotropic while slight anisotropism is evident at the contact of 

the phosphatised and unphosphatised clay. Larger quartz grains are 

generally fractured and have fissures filled with the same isotropic 

phosphate mineral. The faulting"appears to have followed the 

phosphate mineralisation since the texture of the rock shows the drag 

effect of movement along the fault plane. The clay minerals must 

originally have developed along joint planes in the granite. A 

detailed thin-section study was carried out andrnported by du Toit 

(1917). 

The altitude of the phosphate deposits is very variable (as shown in 

Figure 8.24) and cannot be related to any particular sea level as 

Visser and Schoch (1973) maintain. On Baviaansberg within the 

grounds of the Naval Academy (SAS SALDANHA) the phosphates occur at 

45m a.s.l. and have imparted a green colouration to the granites. 

On Malgaskop the phosphates range from 40 to 100m a.s.l. The lower 

limits of these phosphate deposits are not significant as they have 

originated by percolating solutions. 

Partial chemical analyses of the phosphate rock are listed in Table 

8.3. 
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T.ABLE 8.3 

Partial chemical analyses of the aluminium phosphate rock 

. Phosphatized Phosphatized r Yellow-sandy Phosphatized 
porphyry . porphyry I regolith limestone 

0/0 ojo I ojo ojo 

S102 59,20 65,40 10,72 10,70 

A1203 8,32 6,78 31,11 5,66 

Fe203 4,02 5,29 7,14 0,43 

caD 0,10 - 0,42 40,90 

~O 0,60 0,48 2,41 0,60 

P
2

05 12,14 11,68 18,31 0,92 

CO2 - - - 31,40 

F Trace Trace Trace Trace 

Analyst: A.E. & e.r. Limited. Results supplied by Mr Botha of the 

Konstabelkop Mine. 

Several significant features are apparent: 

(i) the Fe203 content is high on the granite areas, but insignificant 

on the phosphatised limestone; 

(ii) 

(iii) 

A1203 is highest in the yellow sandy regolith (31,11 per cent). 

Also in this horizon the Fe203 value is highest (7,14 per cent). 

Fluorine is always present in only trace quantities. 

The yellow sandy regolith has resulted from supergene alteration of the 

underlying phosphatised granite to produce the superficial lateritic 

zone. Under normal soil forming processes weak solutions from the 

leaching of the rock evaporate and the least soluble components precipitate 

first. These include hydroxides of iron and aluminium, silica and 
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carbonates. Further solution leaves behind the aluminium and iron 

hydroxides in an insoluble state. 

X-ray diffraction analyses were carried out on samples from the 

phosphatised granite and from the enriched layers associated with 

slickensides. The only phosphate mineral identified from these two types 

was variscite. The strongest measured X-ray lines are: 5,37 (6) -

4,79 (4) - 4,27 (10) - 3,90 (3) - 3,32 (6) - 3,05 (4) - 2,86 (3) - 2,70 

(6) - 2,46 (2). 

Du Toit (1917) suggested that the average composition of the Konstabelkop 

phosphate is close to that of barrandite while minute yellowiSh crystals 

may be referred to wavellite or variscite. In the samples examined the 

X-ray lines characteristic of barrandite and wavellite were absent. 

Barrandite is an intermediate mineral in the variscite (AlP04 ,2H20) 

strengite (FePD
4

.2H20) group, i.e. it is an aluminium iron phosphate 

mineral. The high iron content shown in Table 8.3 also suggests that 

barrandite could be encountered. None of the other phosphate minerals 

identified by Harrington et al (1966) and Altschuler et al (1956) from 

the United states have been encountered, fiz. metavariscite, crandallite, 

wavellite and millisite. 
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CHAPTER 9 

GEOCHEMISTRY OF THE APATITE IN THE PHOSPHORITE 

I. INTRODUCTION 

The Pliocene Varswater Formation is characterised by economic concen-

trations of pelletal phosphorite. The pellets are an allogenic 

component of this formation, having been derived by erosion of the 

underlying Miocene basal bed of the Saldanha Formation where the 

authigenic apatite occurs in the microsphorite matrix. This chapter 

summarises the chemical composition of the pelletal phosphorite of 

the Varswater Formation in the Langebaanweg area (the farm Langeberg) 

and the Saldanha area (the farm Witteklip). Also discussed is the 

authigenic apatite of the basal bed on Langeberg and the microsphorite 

bed at Hoedjiespunt. The results presented in this chapter have largely 

been published (Tankard 1974c). 

The microcrystalline sedimentary apatites differ. in composition from 

fluorapatite, CalO(P04)6F2' because of extensive substitution of 

carbonate and fluorine for phosphate and of other metals for calcium 

(smith & Lehr 1966). McConnell (1938) subdivides the carbonate-apatite 

according to fluorine content. oahllite, a carbonate-hydroxyapatite, 

has less than 1 per cent fluorine, while francolite has more than 1 

per cent fluorine. Isomorphous substitution is common among the 

natural apatites. In its substitution for phosphate the carbonate ion is 

accompanied by fluorine. This has the effect not only of maintaining 

charge balance, but also of retaining the original tetrahedral co

ordination of the P04 group (Gulbrandsen et al 1966), Although it is 

now generally accepted that the carbonate ion substitutes for the 

phosphate ion, the high CO2 content of phosphorites has also been 

attributed to "amorphous" calcite present as an impurity and to carbonate 

ions adsorbed to the crystallite surfaces. This aspect will be discussed 

further. A voluminous literature discusses carbonate-apatite, the 

major component of phosphorite (for instance: Altschuler et al 1953; 

Gulbrandsen 1969; Lehr et al 1967; McClellan & Lehr 1969; McConnell 1952; 
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Raoney & Kerr 1967; Smith & Lehr 1966; Tooms ~ 1969; Whippo & 
Murowchick 1967). 

II. METHODS 

A. X-ray Methods 

Powder diffraction data were obtained using a General Electric XRD-3 

diffractometer. Iron-filtered CoK« radiation was used at 25 kv/10 

mao Samples were scanned at 0,50 28 per minute with a chart speed of 

150 cm/hour. Quartz was used as a standard. 

The lattice constants a and c were calculated from the measured (300) 

and (002) reflections. The interplaner spacings (dhkl ) are related 

to the cell parameters, a and c, by the following formula: 

1 
dhkl = 

4(h2+hk+12 ) + 12 

3a
2 c2 

B. Infrared Spectral Analysis 

Infrared spectra were obtained using a KBr disc technique on a double

beam spectrophotometer. 

C. Chemical Methods 

Analyses were made of rock samples and of pelletal phosphorite. 

Pelletal phosphorite samples 1 to 17 were concentrated by heavy liquid 

separation, and leached of free carbonates. The heavy liquid separation 

resulted in concentrates of pelletal phosphorite in excess of 90 per 

cent in all cases. Pelletal phosphorite samples 19 to 25 were not 

concentrated, but analysed as phosphoritic-quartzose sands. Analytical 



methods used were as follows: 

CaD; MgO 

P20S 

Na20; ~O 

. +-
Sl02; S03;C02;H20 ; H20 

F 
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8:imples 1-18, 34 

Volumetric (MgO in 

sample 34 A.A.S.) 

Volumetric 

Flame photometric 

Gravimetric 

Spectrophotometric 

(distillation) 

S:lmples 19-33 

Spectrophotometric 

Volumetric 

Spectrophotometric 

Gravimetric 

Fluoride electrode 

The majority of elements in samples 19 to 33 were checked by X-ray 

fluorescence analyses. 

III. CHEMICAL CHARACTERISATION 

The chemical composition of the carbonate-apatite can be approximated 

by the content of CaD, P20S ' CO2 and F, while Na20, MgO, and S03 are 

minor constituents. The carbonate-apatite differs considerably in 

composition from pure fluorapatite in that a carbonate ion replaces a 

phosphate ion in the lattice, while the vacant oxygen site may be occupied 

by fluorine (Smith & Lehr 1966). The results of chemical analyses of 

pelletal phosphorite and rock phosphorite are shown in Table 9.1, while 

the range of constituents is shown in Table 9.2. 
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TABLE 9.1 

CHEMICAL COMPOSITION 

Composition wt. in (recalculated to impurity free basis) 

No. Cao MgO Na 20 P205 CO2 S03 F F/P205 CaO/P205 

1 51,69 1,81 0,77 37,75 4,78 0,99 3,79 0,10 1,37 

2 45,70 6,67 0,86 39,01 4,62 0,89 3,89 0,10 1,17 

3 44,85 7,62 0,80 38,85 4,79 0,91 3,74 0,10 1,15 

4 49,68 3,15 0,77 38,62 4,51 0,77 4,31 0,11 1,29 

5 53,16 0,04 0,79 38,56 4,36 1,00 3,61 0,09 1,38 

6 49,13 3,92 0,85 38,09 4,93 0,93 3,71 0,10 1,29 

7 52,96 0,55 0,79 37,35 5,14 0,86 4,07 0,11 1,42 

8 53,57 0,17 0,80 37,48 4,37 1,14 4,25 0,11 1,43 

9 52,27 1,00 0,84 37,95 4,36 0,80 4,81 0,13 1,38 

10 52,67 1,12 0,85 36,68 5,23 0,88 4,42 0,12 1,44 

11 53,20 0,34 0,86 36,89 5,54 1,02 3,73 0,10 1,44 

12 53,08 0,33 0,84 37,50 5,15 0,93 3,74 0,10 1,42 

13 53,16 0,38 0,85 37,65 4,83 1,01 3,68 0,10 1,41 

14 53,67 0,22 0,85 38,00 4,37 1,06 3,15 0,08 1,41 

15 54,19 0,22 0,83 37,56 4,25 1,06 3,26 0,09 1,44 

16 53,47 0,92 0,B7 36,63 4,35 1,84 3,31 0,09 1,46 

17 53,95 0,32 0,78 38,09 4,38 0,19 3,95 0,10 1,42 

18 51,84 0,65 0,97 39,54 4,26 0,84 3,24 0,08 1,31 

19 53,'30 3,05 0,73 37,48 3,63 0,41 2,40 0,06 1,42 

20 52,44 4,12 1,12 36,25 3,81 0,49 3,06 0,08 1,45 

21 51,31 4,12 1,21 36,76 4,17 0,47 3,41 0,09 1,41 

22 51,86 3,97 1,26 36,63 3,99 0,45 3,16 0,09 1,42 

23 49,43 3,86 1,08 38,87 4,28 0,31 3,71 0,10 1,27 

24 50,48 3,48 1,16 38,11 3,85 0,58 3,99 0,10 1,32 

25 48,18 4,00 2,04 39,08 3,86 1,02 3,13 0,08 1,23 

26 53,25 1,87 0,91 39,35 2,78 0,15 2,95 0,07 1,35 

27 55,23 1,20 0,49 38,79 2,62 0,08 2,72 0,07 1,42 

28 52,67 2,69 0,60 39,52 2,04 0,44 3,54 0,09 1,33 

29 53,03 1,86 0,64 39,13 3,28 0,39 2,86 0,07 1,36 

30 52,55 2,71 0,49 39,54 2,47 0,23 3,49 0,09 1,33 

31 53,46 1,27 0,44 39,67 3,41 0,10 2,87 0,07 1,35 

32 54,84 1,26 0,48 39,41 2,72 0,13 1,63 0,04 1,39 

33 52,38 2,64 1,44 38,65 3,73 0,50 0,65 0,02 1,36 

34 52,11 0,49 1,06 37,19 4,29 0,84 1,67 0,04 1,40 

Analysts: 1-18, 34 General Superintendence Co. Limited 

19-33 Anglo American Research Laboratories 
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TABLE 9.1 (Sample Localities) 

Samples 1-17, 19-25 Pelletal phosphorite from Varswater Formation; 

IB, 28-30 phosphatic sandstone (Miocene basal bed); 26, 27 phosphatic 

sandstone from Varswater Formation; 32 phosphatised bone; 33,34 

microsphorite. Sample localities (borehole, depth) : (L) = Langeberg, 

(W) = Witteklip. 1. 020, 45m (L); 2. M14, 20m (L); 3. 012, 33m (L); 

4. 81, ? (L)i 5. V14, 19m (L); 6. ru6, 44m (L); 7. P4, 13m (L)j 

B. X6, 11 m (L)j 9. U4, 16m (L); 10. T14 36m (L); 11. 810, 37m (L); 

12. PB,22m (L); 13. W'5, 32m (W)j 14. VB, 20m (L); 15. W'l, 44m (W); 

16. W'5, 40m (W)i 17. R6, ? (L)j lB. Quarry (L); 19. R6, ? (L); 

20. Q12, 37m (L)j 21. 812, 33m (L)j 22.812, 36m (L); 23. W'l, ? (W); 

24. Q12, 31m (L)j 25. W'4,? (W); 26. Quarry (L); 27. Quarry (L)i 

2B. Quarry (L)i 29. Quarry (L)i 30. Quarry (L); 31. Darling area; 

32. Quarry (L)j 33. Hoedjoespunt; 34. Hoedjiespunt. 

TABLE 9.2 

Range and Average Composition of the Pelletal Phosphorite (Samples 1-17) 

Constituent Range (wt. ojo) Average (wt . ojo) 

caD 44,85 - 54,19 51,79 

MgO 0,44 - 7,62 1,69 

Na20 0,77 - 0,B7 0,B2 

P205 36,63 - 39,01 37,BO 

CO2 4,25 - 5,54 4,70 

803 
0,19 - 1,B4 0,96 

F 3,15 - 4,Bl 3,85 

F/P205 O,OB - 0,13 0,10 

CaO/P205 1,15 - 1,46 1,37 

Specific gravity 2,90 - 2,95 2,91 
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These analyses have all been recalculated to an impurity-free basis 

and reflect primarily the composition of the apatite. The Si02 , 

A1203 and ~O content cannot be assigned to the apatite structure. 

In the rock phosphorite the Si02 is present largely as free quartz with 

a minor amount assigned to a clay mineral. Minute quantities of 

quartz are an ubiquitous component of the pelletal phosphorite, but 

there is also abundant argillaceous material present. Frankel (1943) 

noted that the clay mineral present in the Langebaanweg phosphorite 

is essentially montmorillonite. Three analyses are here of interest, 

numbers 32, 33 and 34 (Table 9.1). In sample 32, a portion of 

phosphatised rhinoceros rib bone, the Si02 content was 1,72 per cent, 

A1
2
03 0,60 per cent and K20 < 0,01 per cent. The inorganic component 

of calcified bone tissue is carbonate-hydroxyapatite (Carlstr~m 1955). 

Samples 33 and 34 were taken from the microsphorite lens at Hoedjiespunt. 

Again it is found that Si02 , A120
3 

and K20 content is low: 3,60 per 

cent, 1,83 per cent and < 0,06 per cent respectively. 

Inspection of Table 9.1 shows that all samples contain an appreciable 

amount of carbonate. Sample 33 alone contains less than 1 per cent 

fluorine. By McConnell's (1938) definition samples 1 to 32, and 34 

are francolite and sample 33 is dahllite. This division is also 

borne out by X-ray data. The range and average ratios of F/P205 
and CaO/P205 (Table 9.2) are within the range of apatite composition. 

The ideal F/P205 ratio for a non-carbonate apatite is 0,OB9 (Rooney & 
Kerr, 1967). Parker and Siesser (1972) report a very high F/P205 
ratio (0,143) for phosphorite samples from the South African 

continental shelf. They also report unusually high CO2 content, 

average 5,7 per cent, for their continental shelf phosphorites. 

The structural formulae for the apatite of the pelletal phosphorite 

and basal bed, and the method of formula calculation are shown in 

Table 9.3. 
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TABLE 9.3 

Formula Calculations on Average of Analyses 10, 11, 12,32 

Redistr. 
ions: 
10 in ca 

Mol. Ionic No. of Oistr. of + posns. 
wt.oh Ratios Ratios Ions Ions Charges Charges 6 in P posns. 

CaO 52,52 0,937 0,937 9,27 Ca=9,27 18,54 9,29 

MgO 1,98 0,050 0,050 0,49 Mg=0,49 0,98 0,49 

Na20 0,68 O,Oll 0,011 0,11 Na=0,22 0~22 0,22 

9,98 10,00 

CO2 3,01 0,068 0,137 1,35 C = 0,68 2,72 0,65 

P205 39,43 0,278 1,389 13,75 P = 5,50 27,50 5,29 

S03 0,48 0,006 0,018 0,18 S = 0,06 0,18 0,06 

6,24 6,00 

F 3,28 0,173 0,173 1,71 F = 1,71 1,71 

101,38 

-O=F 1,38 

100,00 

0 ° = 24,29 48,58 

26,00 50,14 50,29 

Calculated structural Formulae 

1. (Ca9,31M9,42Na,27) (C,25)(P4 ,91C,73S,11024,02)(F1 ,98) 

2. (Ca9 ,29M9 ,49Na ,22) (C,16)(P5 ,29C,49S,060 24,29)(Fl ,71) 

3. (ca9,52M9,13Na,35) (C,23)(P4 ,98C,69S,10(OH)1,34022,66)(F,84(OH)1,16) 

1 = Pelletal phoshorite apatite 

2 = Miocene phosphatic sandstone apatite 

3 = Hoedjiespunt apatite 
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The contents of the unit-cell have. been recalculated to an even 10 

cations in the Ca positions and 6 cations in the P positions. Although 

sulphur has been included it never forms a significant part of the unit 

cell. Comparing the structural formulae with that of fluorapatite, 

CalO(P04)6F2' it is immediately apparent that the francolite is 

markedly Ca deficient and slightly P deficient. Whereas most francolite 

analyses show excess of fluorine over that required in the fluorapatite 

formula , the western Cape francolites have slightly less. In Table 

9.2 it will be seen tht there is a wide range in composition of the 

pelletal phosphorite, particularly with respect to CaD, MgO and 80
3

, The 

other constituents, however, are relatively constant. The MgO content 

is much higher than would normally be found in pure carbonate-fluorapatite. 

Rooney and Kerr (1967) have also found this to be the case with their 

North Carolina pelletal phosphorite. They suggest that Mg could either 

substitute for Ca or be present as an impurity. 

Gulbrandsen (1970) has found a relationship between CO2 content of 

apatite and regional facies. In the Varswater Formation on Langeberg 

maximum CO2 content is centred around 810 with values decreasing fairly 

regularly outwards to form a lobate NW-SE trending body (Figure 9.1), 

which parallels the gross structure of the platform area on which it lies 

(see Tankard 1974a). 

IV. X-RAY DIFFRACTION DATA 

Mehmel (1930)and Naray-8zab6 (1930) independently determined the 

structure of fluorapatite. 

a = 9,37 ~ and c = 6,88 ~ 
The hexagonal unit-cell has the dimensions 

(Whippo & Murowchick 1967). 8ut the 

difference in characteristic d-spacings between carbonate and non-carbonate 

apatite is small. In Table 9.4 the measured interplanar spacings 

for pelletal phosphorite, bone apatite, and Richtersveld francolite are 

tabulated and compared with North Caroline pelletal phosphorite 

(Rooney & Kerr 1967). 
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no 

TABLE 9.4 

Francolite X-ray diffraction Data 

(Fe-filtered Cobalt Radiation) 

N. Carolina Richtersveld Langebaanweg 

Pellets Encrustation Pellets Bone Intensity 
0 0 0 0 

d(A) d(A) d(A) d(A) I 

8,12 8,12 8,12 8,15 M 

4,04 M 

3,87 M 

3,45 3,46 3,44 3,44 VS 

3,16 3,18 3,16 3,17 M 

3,06 3,06 3,06 3,06 M 

2,79 2,79 2,79 2,79 VS 

2,78 

2,70 2,70 2,70 2,70 S 

2,62 2,63 2,62 2,62 S 

2,52 W 

2,29 2,28 2,28 2,36(7 M 

2,24 2,24 2,24 2,23 S 

2,13 2,13 2,13 2,13 M 

2,06 2,06 2,06 2,06 M 

2,02 2,03 W 

1,996 1,995 1,998 1,992 M 

1,932 1,932 1,932 1,924 S 

1,875 1,877 1,878 1,879 M 

1,835 1,838 1,833 1,830 S 

1,789 1,789 1,782 1,791 M 

1,763 1,763 1,763 1,763 M 

1,738 1,743 1,742 1,746 M 

1,723 1,724 1,720 1,721 M 

1,634 1,629 W 

1,607 W 

9,34 9,354 9,344 9,363 

6,89 6,836 6,879 6,884 

0,7377 0,7308 0,7362 0,7352 
-'----- -.---~- ---
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The Richtersveld sample comes from the Wondergat at Annisfontein 

where 1,2m of pure, clear carbonate-apatite overlies the Kaigas 

limestone. The francolite forms a thick botryoidal crust on the altered 

limestone and slate (de Villiers & S~hnge 1959). The Richtersveld 

francolite gives well developed diffraction peaks. The cryptocrystalline 

nature of the pelletal phosphorite, on the other hand, results in poorly 

resolved diffraction peaks. But in all cases the diffraction patterns 

are typically apatitic. 

McClellan. and Lehr (1969) and Gulbrandsen (1970) have attempted to 

correlate the degree of substitution of carbonate for phosphate with 

changes in the lattice dimensions. In this study it was found that the 
0 

range of the a-cell dimensions (9,34 to 9,42 A) was far greater than the 
0 

range of the c-cell dimensions (6,B8 to 6,91 A) (Table 9.5). 

TABLE 9.5 

0 
Unit Cell Dimensions (A) 

No. a c cia 
1 9,344 6,879 0,7362 

2 9,344 6,879 0,7362 

3 9,344 6,885 0,7369 

4 9,347 6,884 0,7365 

5 9,352 6,884 0,7361 

6 9,352 6,879 0,7356 

-7 9,344 6,876 0,7359 

8 9,347 6,876 0,7356 

9 9,347 6,876 0,7356 

10 9,344 6,884 0,7367 

11 9,342 6,884 0,7369 

12 9,347 6,884 0,7365 

13 9,347 6,884 0,7365 

14 9,347 6,876 0,7356 

15 9,352 6,876 0,7352 

16 9,347 6,888 0,7369 

17 9,354 6,884 0,73'38 

18 9,356 6,876 0,7349 
32 9,~63 6,884 0,7352 
33 9,423 6,908 0,7333 
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It would be expected that the various substitutions would have a 

greater effect in the a-cell dimension. Figure 9.2 shows that with 

increasing CO2 content there is a tendency for the a-cell dimension to 

decrease. This relationship is expressed as follows: 

Y = -0,02x + 9,44 

where Y = CO2 content and x = a-cell dimension. The rEjsults of 

correlation tests were disappointing, probably due to the effect of non-

additive substitutions. However, although the points show considerable 

scatter they do suggest a trend, i.e. that CO2 content is inversely 

proportional to the a-cell dimension. 

Although the interplanar spacings of the francolite are very similar 

to those of fluorapatite, it appears that the a-cell dimension is 

sufficient to distinguish between the mineral species. As a result of 

isomorphous substitution francolite shows contraction along the a-cell 
o 0 

dimension, and the range 9,34 to 9,36 A is smaller than the 9,37 A of 

fluorapatite quoted by Whippo a~d Murowchick (1967). The crystal 

chemistry shows the Hoedjiespunt apatite to range from dahllite through 

francolite and measurements show that it has an a-cell dimension of 
o 

9,42 A. Other reported a-cell dimensions of dahllite are: 
o . 000 

9,45 A (McConnell 1960); 9,39 A to 9,41 A (McConnell 1938); 9,42 A 

(Carlstr~m 1955); 9,41 ~ (Oeer,Howie and Zussman 1962). 

It was mentioned earlier that although it is now generally accepted 

that the carbonate is an intimate part of the apatite, there have been 

suggestions that it could be present as a separate Cac03 phase. If 

attributed to calcium carbonate the range of CO2 shown in Table 9.2 

would equate to a range of 9,7 to 12,6 per cent CaC03 • Ames (1959) 

found experimentally that the apatite can contain up to 10 per cent 

carbonate, above 10 per cent a separate carbonate phase can be expected. 

But more recently Legeros et al (1967) have prepared synthetic carbonate

apatite containing 16,5 per cent CO2 while natural carbonate-apatite 

containing 16 per cent CO2 has been reported from the Moroccan continental 

shelf (Eldefield et al 1972). McConnell and Gruner (1940) believe that 

a separate Cac0
3 

phase would be detectable at 10 per cent concentration, 

Carlstr~m (1955) believes it to be detectable at 1 to 2 per cent 
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concentration. In none of the diffractograms obtained in this study 

was there any indication of characteristic calcium carbonate reflections. 

It must thus be assumed that the carbonate of the apatites from the south

western Cape is a structural part of the mineral. 

V. INFRARED SPECTRAL ANALYSIS 

Table 9.6 lists the characteristic infrared absorption bands of franco-

lite, calcite and aragonite. A characteristic of apatite is a large 

absorption peak at 9,60 to 9,66~ which is apparently caused by P - ° 
antisymmetric stretch (V3 mode) while the band at 10,38)U is the result 

of P - ° symmetric stretch (Vl mode) (Adler 1964). The presence of a 

TABLE 9.6 

Characteristic Infrared Absorption Bands Vu) 

Band Francolitea Francoliteb Francolite Calcite AragoniteC 

[. calcite 

C - ° 5,57 5,61 

P - ° 6,17 

C - ° 6,88 6,90 6,81 

C - 0 7,00 7,02 7,00 7,12 

P - 0 9,15 

C - 0 9,23 

P - ° 9,60 9,60 9,66 

P - 0 10,37 10,38 

C - 0 11,42 11,46 

C - 0 11,56 11,59 1l,59 1l,80 11,70 

P - 0 12,56 12,56 

P - 0 12,90 12,90 

C - 0 14,06 14,04 

C - ° 14,50 14,50 14,31 

a Colorado (Rooney & Kerr 1967) 

b Langebaanweg 

c (Adler & Kerr 1962) 
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very weak VI peak is indicative of the lowering of the symmetry of 
3-

the P04 group, these vibrations being forbidden the full tetrahedral 

symmetry. The presence of carbonate ion gives rise to similar peaks 

at 6,90jU and 7,00 to 7,02jU. Adler and Kerr (1963) find that calcite 

has only one peak in this region, presumably the 7,12jU band in 

Table 9.6. But it is interesting that aragonite has a band at 6,81/~' 

Obviously the carbonate in the francolite behaves differently to that 

in either calcite or aragonite, and indicates that there is no separate 

Cac0
3 

phase. Neither are the C - 0 bands at 11,59,0 and 14,50JU in 

the francolite matched by corresponding bands in either calcite or 

aragonite. According to Gulbrandsen ~ (1966) the band at 11,59fU 

in the phosphorite represents a shift from the corresponding position of 

11,46 I-' in the calcite. 

Rooney and Kerr (1967) found that spectral analysis of finely ground 

and citrate leached francolite left the 7 ~ doublet essentialy unchanged, 

which precluded the possibility of calcite being a separate phase. This 

was also confirmed for the Langebaanweg phosphorite. Finely ground 

pellets from the Varswa ter Formation were treated wi-th hot, dilute acetic 

acid. This treatment had no effect on the characteristic francolite 

absorption bands. 

VI. DISCUSSION 

Chemical and X-ray data show that the phosphorite at Hoedjiespunt is 

partly dahllite (less than 1 per cent fluorine and a-cell dimension 
o 

9,42 A), but that it probably also forms an isomorphous series with 

francolite since in one sample the fluorine content was 1,67 per cent 

(sample 34). The basal bed on Langeberg contains a carbonate-apatite 

in the matrix but it is defined on fluorine content (~l per cent F) and 

a-cell dimension (9,34 to 9,36 ~) as francolite. Whereas the apatite 

of the basal bed is authigenic, reworking by a Pliocene transgressive 

sea gave rise to the pelletal phosphorite of the Varswater Formation 

(Tankard 1974b). The pelletal phosphorite is identical to the basal 

bed phosphorite chemically and structurally. 
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Several apatites form a continuous series of solid solutions and cell 

dimension can be expected to vary with variation in composition. 

Figure 9.2 shows that there is a tendency for the a-cell dimension to 

decrease with increasing ctlrbonate substitution for phosphate. This 

substitution, however, had little effect on the c-cell dimension. The 

a-cell dimension distinguishes carbonate-fluorapatite from other 

apatites (Altschuler et al 1953; Silverman et al 1952). Increasing 

carbonate substitution causes a contraction of the a-cell dimension from 
o 

that of pure fluorapatite (a = 9,36 A). Dahllite on the other hand is 

marked by a larger a-cell dimension. 

At the base of the Varswater Formation in estuarine sediments there are 

extensive mammal fossil remains. In fresh bone the mineral of the 

inorganic part is dahllite, a carbonate-hydroxyapatite (Carlstr~m 1955), 

and is characteristically low in fluorine content. At Langebaanweg 

post-burial diagenesis has affected all these remains. The lengthy 

association of these fossils with a phosphate rich environment has caused 

enrichment in fluorine and over a length of time the bone apatite has 

changed from dahllite to francolite (F = 1,61 per cent; a-cell dimension = 
o 

9,36 A). 

To account for the CO2 content of carbonate-apatite Hendricks (1952) 

postulated that the carbonate was present outside the lattice as 

adsorbed or "amorphous" carbonate. Gruner and McConnell (1937) hypo

thesised that the carbonate ion was an intimate part of the apatite 

lattice. Borneman-Starinkevitch and Belov (1955, quoted in Smith & 
Lehr 1966) explained that the substitution of the planar C03

2- group for 

the tetrahedral P0
4
3- group leaves a vacant oxygen site which is then 

filled by fluorine, thus preserving electroneutrality. Although the 

role of the carbonate is not completely resolved, it is now generally 

agre8d that the carbonate group substitutes for the phosphate group 

(McConnell 1952; Altschuler et al 1958; Ames 1959; Altschuler et a1 

1953; Silverman et al 1952). This conclusion has been confirmed in 

this study. 

It was shown that if the CO2 content was attributed to a free carbonate 

phase it would equate to 9,7 to 12,6 per cent Caco3 , but X-ray 
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diffrac~ion has failed to reveal any extraneous carbonate. It was 

also shown that increasing CO2 content results in contraction of 

the a-cell dimension, which could only occur if the carbonate were 

part of the apatite lattice. Infrared spectral analysis showed the 

presence of C03
2

- but in an environment different to that of calcite 

or aragonite. Furthermore, acid leaching of finely ground phosphorite 

failed to remove the carbonate. 

In view of the wide range of substitutions possible in apatite, and 

in view of the marine origin of the phosphorite, one would expect the 

chemical composition to be related to depOSitional environment. The 

cations most readily available as replacements for calcium are Na~ 

K and Mg (Lehr et al 1967). The phosphatic s~ndstone of the basal 

bed on Langeberg is situated now at about 30m above sea level but the 

actual beach zone is probably now at 56m above sea level. On the other 

hand the Hoedjiespunt microsphorite represents a deeper water facies 

in which the free quartz and clay mineral form a very small portion. 

This microsphorite is now situated at only 5m to 6m above sea level and 

probably formed at a depth of 50m in a sheltered environment. This 

difference in environment probably explains why at Hoedjiespunt the 

apatite is partly dahllite, but at Langeberg it is francolite. 
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CHAPTER 10 

GENESIS OF THE PHOSPHORITE ANO ALUMINIUM PHOSPHATE 

I. PHOSPHORITE 

A. Introduction 

Since very few (if any) phosphorites are known to be forming at 

present the processes that form phosphorite can only be inferred from 

geologically young deposits. Many authors have remarked on the 

close relationship between phosphoritic deposits and areas of active 

upwelling of nutrient-rich water (McKelvey 1959, 1963; McKelvey 

et al 1953; Sheldon 1964; Tooms ~ 1969). 

Geologically young phosphorite is commonly found insediments adjacent 

to areas of modern oceanic upwelling. These are mainly on the west 

coasts of continents but also to a limited degree on other coasts. 

Such areas of active upwelling and phosphorite occurrence lie between 

the 40th parallel (Sheldon 1964) e.g. S.W. Cape Province, Morocco, 

S. America, California. Ancient phosphorites on the other hand are 

found at higher latitudes, their present distribution being the result 

of lateral displacement of continents. Pevear (1966) has shown that 

upwelling is certainly not a prerequisite for phosphate enrichment. 

He has suggested an estuarine origin for the phosphate of the Phosphoria 

Formation of the Atlantic coastal plain of the U.S.A. SUch an estuarine 

environment would be an area of high biologic productivity. Although 

an estuarine origin has also been proposed for some of the Agulhas 

Bank phosphorites (Pa~ker 1975), the evidence is not conclusive. 

Marine apatites could be formed in many different environmental settings, 

but the optimum conditions for apatite formation that would account 

for the major phosphate deposits concern us most. Most accounts of 

phosphorite genesis follow Kazakov's (1937) model of direct inorganic 

precipitation of marine apatite. This model attributes phosphorite 

formation to direct precipitation of apatite from upwelled phosphate-
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rich waters. 

Sea water is saturated with respect to calcium, and this calcium is 

common to both the CaC03 and apatite phases. It is important, 

therefore, that the phosphate is supplied in such quantities that 

'apatite becomes the solid phase in equilibrium with sea water, rather 

than CaC03 or in combination with CaC03 (Gulbrandsen 1969). 

Brongersma-Sanders (1957) has related marine mass mortalities, and 

phosphorite deposition to regions of upwelling. Accumulation and 

dissolution of organic matter in the oceans at depths below 500m 

concentrate phosphorus, and with upwelling of this phosphorus-rich 

water caused by trade-winds blowing the surface water offshore,large 

populations of organisms arise and precipitation of apatite occurs. 

The contribution from decaying organic materials is the most important 

factor controlling phosphorite formation (Burnett 1974). Burnett 

notes that diatoms contain large quantities of phosphorus. The factors 

favouring phosphorite formation are summarised in Figure 10.1. 

Precipitation of the phosphate occurs when the amount of phosphate 

supplied exceeds the saturation value of sea water. Precipitation of 

the apatite from such saturated water is accelerated by increasing 

temperature and pH (Sheldon 1964). SUch conditions are the result of 

solar heating of cold upwelled water over the shallow continental 

shelf. Increase in temperature results in a decrease in partial 

pressure of CO
2 

with a consequent rise in pH. Rising temperature and 

pH lowers the solubility of apatite (Kramer 1964). Rising temperature 

and pH are also conditions favouring the precipitation of calcium 

carbonate (Gulbrandsen 1969). But one situation that would favour 

apatite precipitation would be that of high organic content of sediments. 

Organic material acts as an inhibiting agent to calcium carbonate 

precipitation, but as a catalyst to apatite formation (Burnett 1974). 

SUch conditions exist in the reducing pore waters of sediments close 

to the sediment-water interface which may even be supersaturated with 

respect to calcium carbonate. 

Factors such as changes in organic productivity, intensity of upwelling, 

changes in ocean currents and continental runoff, possibly have a 
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Figure 10.1 Diagrammatic illustration of optimum conditions 
for formation of phosphorite. 
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significant influence on the depositional environment (Burnett 1974). 

Tooms et al (1969) ha~e found a close association between ancient 

phosphorites and arid areas. These areas, adjacent to upwelling 

water masses, generally display low rates of sedimentation. They 

have Fllso suggested that carbonate apatite forms within the pore 

waters of sediments where phosphate is more concentrated than in bottom 

waters. Bushinsky (1966) and d'Anglejan (1967) suggest that phosphorites 

have formed in water shallower than 100m, while Parker and Simpson 

(1972) have found the greatest concentration of phosphate nodules on the 

Agulhas Bank between 100 and 140m. 

B. Phosphorites of the Saldanha Area 

The phosphorites of the Langebaanweg-Saldanha area have much in common 

with other phosphorite deposits. These deposits occur onshore 

adjacent to a belt of active upwelling of nutrient rich water. These 

conditions are illustrated in Figure 10.1 where the shelf is steep 

and the shelf-break deep. The upwelling is generated by strong off

shore winds, related to the anticyclone at 300 S, driving the surface 

water offshore. This belt of cold upwelled water is an effective 

barrier against the moisture laden winds from the central Atlantic, 

causing precipitation offshore. The climate on the adjacent coastlands 

is consequently arid (average annual rainfall about 260mm) and 

perennial runoff is restricted to the Berg, Olifants and Orange Rivers. 

These rivers are contributing only small quantities of terrigenous 

sediments to the shelf at the present-day (Dingle 1973b) while the Cape 

Submarine Canyon probably acts as a sediment drain to movement of 

sediment (Tankard in press b). Sedimentation rates would be relatively 

slow along the west coast, and dilution of the phosphorite would have 

been minimal. 

The marine apatite is formed authigenically in the Miocene sands. 

Although these phosphatic sandstones have been truncated at 30m a.s.l. 

on Langeberg, it has been inferred that littoral limestone at 56 m 

a.s.l. north of Saldanha represents the furthest inland extent of that 

sea (Tankard 1974a). A shallow marine genesis of the Hoedjiespunt 
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microsphorite is suggested by the ooli.tic texture, bioclastic material, 

microsphorite-flake breccia, wave-generated granite boulders, 

reworking, and Fissurella and Patella fossils. But the Hoedjiespunt 

microsphorite could still be a deeper water facies relative to the 

Langeberg phosphatic sandstone where the microsphorite forms the 

matric of a clastic sediment. 

A common characteristic of phosphorite accumulations is their location 

on one side of a basin where deep phosphate-rich waters are upwe~ling 

adjacent to a shallow shelf (Blatt et al 1972). Although uneconomic 

concentrations of phosphorite do occur on the open Atlantic coast 

between Saldanha Bay and st Helena Bay, the major locus of accumulation 

(Figure 10.1) is found in the erosional basin between Langebaanweg 

and Saldanha. The nearly Ubiquitous presence of organic matter within 

the pellets suggests high productivity and a common origin for the 

organic matter and the phosphorite. At the base of the Varswater 

Formation on Witteklip the pelletal phosphorite is black due to 

excessive quantities of carbonaceous material (Figure 8.5). The locus 

of major apatite formation is also that of maximum organic-matter 

production (Gulbrandsen 1969). The Saldanha-LanGebaanweg erosional 

basin would have been such a locus (Figure 10.1), where sheltered 

conditions would act as a trap. Likewise, on t~e Agulhas Bank the 

only significant local concentration of phosphate other than that 

provided by the erosion of Tertiary phosphorite, is in sediments 

enriched in non-skeletal organic matter (Summerhayes 1973). 

In the Miocene basal bed on Langeberg the phosphorite occurs as an 

interstitial component of a quartzose sandstone (packstone). Frequently 

the phosphorite occurs as drusy-encrustations about the quartz grains 

indicating crystal growth from the grain surfaces, while the remaining 

voids are filled with clear collophane and argillaceous and organic 

material. The structureless aspect of the phosphorite pellets of the 

Varswater Formation, the rare occurrence of nuclei and the mixing of 

collophane with organic, argillaceous and ferruginous material suggests 

precipitation within the interstices of the sediment, an origin 

identical to that of the basal bed from which it was derived. Ames 

(1959) found that the replacement of calcium carbonate was possibly the 
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only way in which the carbonate fluorapatites could form. Rooney & 
Kerr (1967) have suggested that the North Carolina phosphorite probably 

originated by replacement of calcareous matter and by chemical 

precipitation under reducing conditions in a large shallow lagoon or 

estuary with a restricted circulation. Pevear T1966) suggests that 

the reason why phosphorite is not forming today in Georgian estuaries 

is because virtually no calcium carbonate is forming at present. 

The only evidence for a replacement mechanism within the phosphatic 

sandstones of the saldanha Formation consists of very occasional 

phosphatised foraminiferal tests and echinoid spines. The radial 

growth of francolite crystals about quartz grains, and the euhedral 

crystals of francolite (Figure 8.9) are more consistent with a direct 

precipitation mechanism. Tooms et al (1969) have shown that the 

synthesis of carbonate apatite from solution means that the prior 

existence of calcium c~rbonate is not a prerequisite to formation of 

this mineral. 

The Hoedjiespunt microsphorite consists of less than 1 per cent quartz, 

and the apatite mineral ranges in composition from dahllite through 

fr.ancolite. Oolites are common in the microsphorite. It is con-

ceivable that the microsphorite arose by phosphate mineralisation of 

a micrite and bioclastic material (biosparite). Certainly much of the 

microsphorite has arisen from replacement, but not necessarily all of 

it. The elemental ratios (CaO/P205 and F/P205) for the Hoedjiespunt 

microsphorite and the Langeberg matrix are close to those predicted for 

pure apatite, leaving no residual calcium carbonate to s~ggest an 

original carbonate phase. It was shown in the previous chapter that 

the carbonate in these deposits is an integral part of the apatite. 

The close proximity of the Langeberg and Hoedjiespunt phosphorites 

throws further light on the origin of phosphorite. Burnett (1974) and 

Manheim et al (1975) have noted that wherever youthful phosphorite was 

encountered on the sea floor off Peru and Chile, the bottom waters 

were deficient in dissolved oxygen. These low oxygen values resulted 

from the high organic productivity off those coasts. The composition 

of pore water in bottom sediments is extremely sensitive to slight 
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changes in the oxygen content of the sea water, and phosphate content 

is high where dissolved oxygen is lowest (Sholkovitz 1973). Burnett 

(op.cit.) predicts that such conditions are most likely to be found 

within pore spaces of sediments. The Langeberg deposits confirm this 

type of origin, where the precipitation of apatite has taken place in 

the pore spaces close to the sediment-water interface. The high 

organic carbon content of the matrix suggests low oxygen values at time 

of formation, and this also inhibited formation of calcium carbonate. 

But the Hoedjiespunt microsphorite does not have a clastic framework, 

and the bioclastic and oolitic material suggests a very shallow 

depositional environment. The low detrital quartz and clay content 

are suggestive of a sheltered environment with minimal circulation. 

The apatite on Hoedjiespunt is preserved in a depression in the granite 

platform. It is suggested that this was a shallow area in the Miocene, 

and the sheltering was such that water circulation and oxygenation were 

minimal and the environmental conditions equated with those of the 

pore waters of anoxic sediments. Low oxygen values at Hoedjiespunt 

would have been maintained because of its location on the seaward edge 

of an embayment adjacent to active upwelling where organic productivity 

was high. 

Summerhayes (1970, 1973) has noted the limited evidence for contempor

aneous formation of phosphorite. Very few submarine phosphorites are 

of Recent a~e. MCKelvey et al (1953) found no bedded phosphorites 

younger than Late Tertiary. The environmental conditions most favourable 

to phosphorite formation occurred in the warmer mid-Tertiary seas 

(Tooms ~ 1969). 

Because phosphate deposition is favoured by periods of warmer seas 

(Burnett 1974) there is only limited evidence for contemporaneous 

formation of phosphorite (Goldberg & Parker 1960; d'Anglejan 1968; 

Baturin 1970, 1971; Summerhayes et al 1972; Summerhayes 1973; Burnett 

1974). Baturin (1971) and Summerhayes (1973) discuss possible 

present-day .formation of phosphorite along the South African shelf. There 

is evidence that phosphorite is forming at present off Peru (Manheim 

et al 1975), but even there it is limited to replacement of foraminiferal 

tests, There is no evidence for substantial present-day formation of 
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bedded phosphorites from any of the continental shelves. 

Haughton (1932) attributed the phosphorites of Langebaanweg to 

alteration of a calcareous deposit by phosphatic solutions. He thought 

the aluminium phosphate and the phosphorite had a similar phosphate 

source, in that both were derived from organic masses such as guano. 

Haughton saw three possible ways in which the phosphate could have 

arrived in the sediments at Langebaanweg: 

(i) the phosphate was derived from the guano deposits about 

Vredenburg by percqlating waters; 

(ii) the area in question could be covered by continuously 

replenished quano-dust blown in by west winds; 

(iii) the guano was deposited on islands at Langebaanweg, but 

he notes that no evidence of the guano can be found in 

the area. 

If the phosphate was transported by groundwater from Vredenburg, it 

must be remembered that the Langeberg deposits are 13km from that area. 

Phosphorite deposits are also found along the Namaqualand coast where 

the topography is not conducive to guano accumulation. 

analysis has already confirmed a marine origin. 

Thin-section 

Certainly on the granite hills north and south of Saldanha Bay 

percolating phosphate solutions have produced aluminium phosphates, 

the mineral produced depending entirely upon the rock being phosphatised, 

e.g. on Konstabelkop the phosphatisation of granite and limestone. On 

Witteklip-Sandheuwel the phosphorites are banked against the same 

granite masses but the phosphate is a carbonate fluorapatite just as 

at Langeberg. Similarly the phosphorite at Hoedjiespunt is a carbonate 

apatite, although it rests on a granite shelf which it has phosphatised. 

It has been shown that the basal bed at Langeberg contains the 

phosphorite as an interstitial material and that there is no evidence 

of calcium carbonate replacement. Chemically the pelletal phosphorite 

of the Varswater Formation and the aluminium phosphates of the granite 
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terrain are totally different (compare Tables B.2 andB.3). The 

phosphorite characteristically has a higher F content, while the 

aluminium phosphates contain higher concentrations of A1
2

03 and Fe
2

03 • 

If these deposits had a similar origin then surely the pelletal 

phosphorites should include an aluminium-rich component. Frankel 

(1943) has noted the small percentage of iron and aluminium phosphates. 

Frankel suggests that the sources for the fluorine must be found in 

either the sea or the granitic areas. The latter option must be 

discarded since the aluminium phosphates on the granitic rocks are 

notably poor in fluorine and the phosphate mineral is variscite. 

Frankel concludes that phosphatic solutions in percolating through these 

deposits "converted the limestone and calcareous nodules into (probably) 

hydroxy-apatite and the argillaceous rock types into aluminium and iron 

phosphates". Marine phosphorites are generally oversaturated with 

fluorine, and insular and lateritic phosphate deposits undersaturated 

with respect to fluorine. 

Parker (1975) has attempted to reconstruct the depositional environments 

for Agulhas Bank phosphorites. He describes the intraformational 

conglomeratic nature of the rock which shows no transportation. He 

points out that the textural features resemble poorly sorted mudflow 

conglomerates, and believes that they could be largely attributed to 

density currents. It is unfortunate that he complicates the model by 

invoking an unlikely sequence of eustatic sea level oscillations. 

East of Cape Agulhas the conglomerates are located on a flat and 

shallow shelf where, he suggests, they could best be explained as having 

an estuarine origin since the area would be favourable to the develop

ment of mudflows and turbidity currents. An estuarine origin is not 

necessarily correct as it is known that the Agulhas Current does have 

a considerable effect on that shelf where immense submarine dune fields 

are forming at present (B. Flemming, pers. comm). 

Various authors have attributed the origin of pelletal phosphorites 

to four processes: 

(i) Replacement of CaC03 pellets; 
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( ii) excretion; 

(iii) inorganic accretion, and 

(iv) mechanical erosion of phosphorite beds (Trueman 1971). 

Trueman also notes that there is evidence that some pellets have formed 

by all these processes. In the Varswater Formation no evidence was 

found of oolitic pellets, although oolitic structure was noted in the 

Hoedjiespunt phosphorite. The common inclusion of finely divided 

argillaceous and organic material in the pellets as in the phosphatic 

sandstone matrix, and sedimentological and chemical data suggest that 

the pellets must have originated mainly from mechanical erosion of 

the Saldanha Formation. Summerhayes (1973) says that the bulk of the 

phosphorite in the unconsolidated sediments of the Agulhas Bank must 

also have had a detrital origin, and was eroded from outcrops of 

Tertiary phosphorite during Late Tertiary and Pleistocene regressions. 

In Morocco there are very extensive deposits of emerged Eocene pelletal 

phosphorite while offshore there are rock phosphorites. Trueman (1971) 

points out that the offshore rock phosphorite is older than the pelletal 

phosphorite and that the microsphorite matrix represents the original 

source of the pellets which were formed by mechanical reworking. 

Bushinsky (1966) suggests that pelletal phosphorite may form by 

phosphatisation of faecal pellets. Some, but very few, of the pellets 

from the Varswater Formation are morphologically identical to faecal 

pellets. If the majority had originated as faecal pellets,' it seems 

unlikely that they could have survived the littoral energy conditions 

of the Pelletal Phosphorite Member. The warm mid~Aiocene seas were 

a time of phosphorite genesis, and the Saldanha Formation is 

characterised by authigenic phosphorite which always contains fewer than 

5 per cent pellets. If the Varswater Formation pellets were of faecal 

origin, it would be difficult to explain how they survived in a high 

energy environment, and how large scale and selective phosphatisation 

took place in the pliocene. Thin-section, mechanical and chemical 

analysis show a very close relationship between the Pliocene pelletal 

phosphorite and the Miocene bedded phosphorite. The Miocene rocks 
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are the source of the Pliocene pellets which have formed by mechanical 

erosion of the former. 

c. Summary 

Evidence suggests that a lime-replacement mechanism is not essential 

for phosphorite formation, although phosphatised bioclastic material 

at Hoedjiespunt and foraminiferal tests in the Varswater Formation 

illustrate that such replacement does take place. The main require

ments favouring inorganic precipitation of marine apatite are: 

(i) There must be strong and persistent upwelling of water 

with high inorganic phosphate content. 

(ii) 

(iii) 

(iv) 

(v) 

(vi) 

(vii) 

High pH. 

High temperature. 

An oxygen minimum zone. 

Suitable nucleating sites, e.g. voids of sediments. 

Supply of organic detritus to inhibit calcium carbonate 

precipitation, and facilitate phosphorite formation. 

Low supply of detrital sediment so that the incipient 

phosphorite is not unduly diluted. Such conditions are 

found adjacent to arid regions. 

II. ALUMINIUM PHOSPHATE 

The aluminium phosphate on the granite hills north and south of 

Saldanha Bay is very different from the marine phosphorites of the 

Varswater Formation, although it, too, can be related indirectly to 
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upwelling phenomena. The upwelling of nutrient rich water inaugurates 

a food chain upon which great colonies of seabirds thrive. The largest 

guano deposits are found associated with such areas (Hutchinson 1950). 

On the Cape West coast the most important guano birds are Morus capensis 

(Cape gannet), Spheniscus demersus (Jackass penguin) and Phalacrocorax 

capensis (Cape cormorant). Sea bird guano is a richly nitrogenous 

phosphorous material, the phosphate concentration increasing as the 

more soluble nitrates are leached out. Flack (1916) reports the 

total nitrogen and P205 contents of mixed guano from Malagas, Marcus 

and Jutten Islands (Figure 8.24) as 10,94 per cent and 13,80 per cent 

respectively. CaD for this sample was 12,49 per cent. 4,11 per cent 

of the P205 was water soluble and the rest acid soluble. Fresh guano 

is characteristically rich in nitrogenous phosphorus, but with leaching 

of soluble nitrates the P205 concentration increases. Low PH waters 

transport the phosphate from the guano to the bedrock where it reacts 

to form new minerals. Thus reaction with limestone has produced 

calcium phosphate and reaction with clay minerals formed along joint 

planes in the granite on Konstablekop has produced the aluminium 

phosphates. Whereas the phosphorites have high carbonate content and 

are oversaturated with fluorine, these are dependent entirely upon the 

type of rock that is being phosphatised in the Case of the aluminium 

phosphates. Although the original source of the phosphate can be 

attributed to guano accumulations with confidence, direct evidence of 

a guano deposit has been destroyed by weathering. The formation of 

phosphorite, on the other hand, appears to be largely due to precipi

tation from phosphate-rich sea water. At Hoedjiespunt this has led 

to formation of microsphorite. While the precipitation of this 

phosphorite is temperature and pH dependent, the aluminium phosphates 

appear to be dependent upon large sea bird colonies. Upwelling of 

nutrient rich waters could at present sustain vast seabird colonies 

but there is little evidence of phosphorite deposition at present. Thus 

although the two phosphate deposits are dependent upon the upwelling, 

there is no reason why the phosphorites and aluminium phosphates should 

be related in time. It is more likely that the aluminium phosphates 

are derived from leaching of guano deposits which have accumulated over 

a considerable length of time. Visser and Schoch (1973) believe that 

these phosphates can be correlated with particular sea levels, but if 
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they owe their origins to seabird colonies no such relationship seems 

likely. 

According to Harrington et al (1966) aluminium phosphates result from 

the solution and transportation of phosphate minerals from phosphatic 

limestone or guano by low-pH waters in hot humid regions. Hutchinson 

(1950) and Harrington ~ (1966) have shown that the largest guano 

deposits are found in the vicinity of the same regions of upwelling 

of cold phosphorus-rich water as the marine phosphorites (high pH 

control). Harrington et al infer that where the bedrock consists of 

silicates the phosphate will form a variety of aluminium silicate 

minerals such as variscite or metavariscite and crandallite. Du Toit 

(1917) found that the average composition of the Konstabelkop phosphate 

is close to that of barrandite while minute yellowish crystals may be 

referred to wavellite or variscite. Altschuler ~ (1956) have found 

that the upper part of the Pliocene Bone Valley Formation, Florida, 

has been altered to aluminium phosphate in a zone averaging about 2m in 

thickness. This alteration has taken place by weathering and ground

water which has produced a progressive change in mineralogy with depth. 

They found that the top of the zone is characterised by the aluminium 

phosphate wavellite while the middle zone is characterised by the 

calcium aluminium phosphates crandallite and millisite. Both 

crandallite and millisite are virtually isotropic. The Bone Valley 

phosphates are characterised by higher CaO and F than the Konstabelkop 

phosphates, but then the original phosphate was a marine phosphorite in 

which higher CaO and Fwould be expected. On Konstablekop the only 

phosphate mineral definitely identified is variscite, while chemical 

data (Table 8.3) suggest the possibility of barrandite. 

III. CONCLUSIONS 

Bedded marine phosphorites of Late Tertiary age are found today in 

warm climates between the 40th parallels in areas adjacent to divergent 

upwelling of nutrient-rich waters. Precipitation of the phosphate is 

dependent upon an increase in temperature as the upwelling water reaches 
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the surface and low rates of supply of terrigenous detritus. At 

Langeberg a consolidated phosphatic sandstone of Miocene age, has 

formed by precipitation of the phosphate (francolite) in the voids of 

a marine sand. The francolite is associated with finely divided 

argillaceous, ferruginous, and carbonaceous material. On Hoedjiespunt 

on the other hand the bedded apatite contains a total of only 3,6 per 

cent Si02 , most of this being present in a clay mineral. The Hoedjiespunt 

microsphorite is characterised by oolitic and bioclastic texture and 

the apatite is defined by the concentration of fluorine and carbonate 

as dah'llite in part, but ranges through francolite. At both Hoedjies

punt and Langeberg sedimentation rates were very low in a sheltered 

environment. In the phosphatic sandstone at Langeberg the francolite 

has grown from the quartz grain surfaces, the voids being finally filled 

with isotropic collophane. The basal bed shows scour and fill structures 

with intraformational conglomerate infill. 

Deposition of the Miocene basal bed was followed by a period o~ emergence. 

Then in the Pliocene the basal bed was partially reworked by a further 

transgression, and the Varswater Formation deposited. Mechanical 

erosion of the basal bed liberated the matrix material which then became 

associated with the detrital component of the Varswater Formation as 

pelletal phosphorite. In thin-section the pelletal phosphorite is 

very similar to the authigenic microsphorite matrix of the basal bed in 

texture. It contains much argillaceous, ferruginous and carbonaceous 

material as well as silt-size quartz particles. Also included with 

the pellets are biogenic remains, foraminiferal tests, minute fish 

teeth, etc. The highest organic carbon content is found at the base 

of the Pelletal Phosphorite Member on the seaward side of the basin, 

and organic carbon content decreases shoreward. 

The phosphorite deposits are briefly compared with the aluminium 

phosphates which occur on the granite hills north and south of Saldanha 

Bay. Whereas the phosphorite has formed as a marine precipitate, 

the aluminium phosphates probably originated by leaching of guano deposits 

and subsequent reaction of these solutions with the bedrock to form 

insular phosphate rock. SUbsequent supergene alteration has produced 

a superficial lateritic zone. 
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CHAPTER 11 

NEOGENE OF THE SOUTH-WESTERN CAPE: 

SYNTHESIS ANO DISCUSSION 

1. MIOCENE 

Bedded marine phosphorites of Neogene age are found today in warm 

climates between the 40th parallels in areas adjacent to divergent 

upwelling of nutrient-rich waters. Phosphatisation may be a rapid 

process, and at Langeberg very rapid lithification has formed a thin 

(approximately 1m) bed of phosphatic sandstone which has protected a 

complex suite of sediments of terrestrial and fresh-water origin. Two 

cyclothems dominated by peats and their overlying kaolinitic clays are 

separated by a high-energy beach sand. All of these sediments have 

formed close to sea level and their cyclic nature is probably indicative 

of a fluctuating environmental setting, for instance marine breaching 

of a barrier and flooding of the freshwater deposits, rather than 

tectonic downwarping. Undoubtedly considerable compaction of the 

peats and clays has taken place. 

The saldanha Formation, consisting of bedded phosphorites, originated 

by authigenic precioitation of apatite in the pore waters of anoxic 

sediments, conditions which would inhibit precipitation of GaC0
3

. The 

phosphate originated in the Central Water where it accumulated at a depth 

of 500m (Brongersma-Sanders 1957), and was brought to the surface by 

active upwelling. Phosphorites have generally formed in water 

shallower than 100m (Bushinsky 1966; d'Anglejan 1967), while suggested 

depths of formation in the Saldanha-Langebaanweg area are shallower 

than 50m. Riggs and Freas (1965) have shown that the Florida 

microsphorite formed in very shallow water. The phosphorite deposits 

of Israel form part of the major upper Cretaceous to Eocene phosphogenic 

province stretching from Morocco through North Africa to Turkey 

(Trueman 1971). In Israel there is a deeper water facies characterised 

by oolitic microsphorite with a dominantly calcareous matrix, and a 

shallower water facies characterised by bone beds containing some pellets 
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and cemented by a microsphorite matrix. This account of Trueman's 

also fits the Hoedjiespunt-Langeberg outcrops. 

~The Saldanha Formation is the result of a major Miocene marine trans-

gression. other marine sediments of Miocene age along the South 

African coast with which the Saldanha Formation is correlated include 

those of Zululand (King 1953; Frankel 1960) and the eastern Cape 

(Ruddock 1968; Bourdon & Magnier 1969). This worldwide Miocene trans

gression has been attributed to changes in elevation of mid-oceanic 

ridges due to changes in spreading rates (Russell 1968; Hallam 1971; 

Frerichs & Shive 1971; Flemming & Roberts 1973; Rona 1973).~ 

optimum conditions for precipitation of aratite existed in the warm 

Late Tertiary seas (Tooms et al 1969) when extensive phosphorite deposits 

were formed. 

Flemming (1944) found that during the Miocene New Zealand lay wholly 

within the subtropical zone but during the Late Miocene to Middle 

Pliocene polar faunas expanded. Kennett (1972) has recorded from deep

sea cores from the Southern Ocean an increase in planktonic foraminiferal 

diversity and a reduction in amount of ice-rafted debris in Early and 

Middle Miocene time indicating a warming trend that ended in the late 

Middle or early Late Miocene. Ingle (1967) and Jenkins (1967) have 

suggested that Late Miocene through Middle Pliocene water temperatures 

were as cool as those of the Pleistocene. The Late Miocene-Early 

Pliocene Antarctic ice sheet was much thicker than at present, and 

glaciation has been continuous since then (Shackleton & Kennett 1974). 

One can hazard a few guesses at Mid-Miocene climatic conditions in the 

southwestern Cape based on the following facts: 

(i) phosphorite formation took place in warmer mid-Miocene 

seas; 

(ii) although eastern Antarctica was extensively glaciated at that 

time, the major ice sheet only developed in the Middle to Late 

Miocene; 



132 

(iii) apatite precipitation to form phosphorite is the direct 

result of upwelling of nutrient-rich Central Water. 

Upwelling is the direct result of offshore winds blowing the warm 

surface water offshore and this wind system is related to the South 

Atlantic anticyclone (Tankard, in press b) which is presently situated 

at 300 S in summer. The position of the anticyclone in space and time 

would vary with solar radiation. The warmer Mid-Miocene climate would 

have moved the intertropical convergence and the South Atlantic 

anticyclone southward so that upwelling off the saldanha coastline may 

have been more intense than at present. A very interesting possibility 

bearing on phosphorite genesis, and which has not hitherto been 

suggested, is that the upwelling may have become a year-round phenomenon. 

This certainly would enhance the chance of phosphorite formation. The 

phosphate would still be derived from Central Water which originated 

in the Southern Ocean. But if the Antarctic ice sheet was less 

extensive than at present it would seem likely that the upwelled water 

would be warmer than the present Central Water. This would have been 

further heated by solar radiation so that the pH of the surface water 

may have been higher than today, although the water was not necessarily 

more saline. But the organic productivity would probably have been 

at the same level as at present. Together all these factors would 

facilitate the formation of phosphorite. 

~The saldanha Formation sediments in the saldanha-Langebaanweg and 

Ysterplaat areas are shallow marine deposits. On Langeberg this is 

evidenced by scour and fill structures, with the fill material consisting 

of intraformational conglomerate. The basal bed is truncated at 

30m a.s.l., so that there is no indication of the actual shoreline. 

The Hoedjiespunt microsphorite consists of a lower bedded unit which has 

become reworked in a higher flow regime. Reworking, oolitic texture, 

bioclastic material, and Fissurella and Patella moulds show the close 

proximity of a shoreline. It is believed that these deposits can be 

equated with a 56m shoreline in the saldanha area. North of the town, 

and exposed in a quarry, is a 100m section through a contact of massive 

marine limestone and overlying high-angle cross-bedded aeolianite 

(Bredasdorp Formation). The interface between the two units, where 
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they are banked against the granite hills is at 56,4 m a.s.l. The 

S3.1danha Formation at Ysterplaat contains a conservatilJe endemic 

mollusc fauna at 9m a.s.l. The mollusc fauna which is similar to that 

of the Alexandria Formation described by Newton (1913), suggests a 

sandy beach facies. 

other occurrences of the S3.ldanha Formation phosphorites are found 

onshore north of Hondeklipbaai, where they are preserved in bedrock 

depressions; and offshore, particularly between the Agulhas Bank and 

longitude 250 E. Dingle (1974) suggests that there were two phases of 

Tertiary phosphorite formation on the Agulhas Bank, Late Eocene and Late 

Miocene-Early Pliocene or Late Pliocene. Furthermore, he attributes 

these phases of phosphorite formation to regressive sea level movements. 

The onshore phosphorites are of Middle Miocene to early Late Miocene 

age, and it is known that this wcts a period of worldwide marine 

transgression and warmer climates. Marine limestones directly over-

lying the Agulhas Bank phosphorites have recently been dated as Middle 

Miocene (Rogers 1974), which suggests contemporaneous formation of the 

Agulhas Bank category a and b phosphorites and the onshore phosphorites. 

Northwards to South West Africa, and eastwards along the Cape south 

coast, Tertiary marine deposits are recorded at higher elevations 

relative to those of the southwestern Cape. This leads one to suspect 

that during the time of higher Late Tertiary sea levels, the Swartland 

between Elands Bay and the Cape Peninsula was above sea level, and 

subsequent sagging has reduced the Tertiary S3.ndveld deposits to their 

low elevations. The two most likely explanations for planation of 

the ~Jartland would be marine planation or pediplanation. But the 

total absence of marine sediments on the Swartland platform suggests 

it is an ancient feature and probably pre-Miocene since the Miocene 

shoreline is 250m below the Swartland platform. 

II. PLIOCENE 

The Varswater Formation is a "classic" transgressive complex; the 

cyclothem starts with a freshwater kaolinitic clay and passes upwards 



134 

through marine, estuarine and fluvial, to a dominant marine unit. 

On Langeberg the cyclothem displays a complex relationship of facies 

change over very small areas and, presumably, in a short time range. 

In the new Varswater Quarry the Varswater Formation lies unconformably 
, 

upon the Saldanha Formation. The unconformity is an erosional one 

attributed to tilting and marine transgression. The tilting took 

place in Late Miocene or Early Pliocene. Wolff et al (1973)include 

the Miocene phosphatic sandstone, which they believe to be phosphatised 

calcrete, with the Varswater Formation, but the South African Committee 

for Stratigraphy, Tertiary-Quaternary Working Group, has accepted it 

as a separate formation. 

With transgression of the Pliocene sea the kaolinitic clay ecozone 

migrated landward and was overlain by littoral deposits as transgression 

progressed. Truncation of the basal bed at 30m a.s.l. was associated 

with a temporary stillstand of the sea which, on a shallow mesotidal 

coast, allowed a barrier-beach complex to develop along the outer edge 

of the platform. Fluvial inflow from the north and northeast 

developed a complex suite of estuarine sediments in the lee of the 

barrier. These sediments include clean quartzose sands which grade 

laterally into carbonaceous sands and peats. The extensive mammal 

fauna is associated with the estuarine sediments. Final transgression 

reworked some of these lower units and carried the shoreline to 50-55m 

above present sea level. 

The 30m shoreline is represented at Langeberg, sandheuwel and Ouyker 

Eiland. The sea must have remained stable for a considerable period 

of time since it allowed a considerable amount (1m) of peat to 

accumulate on the lee of the barrier-beach on Langeberg. The mollusc 

fauna from the 30m level includes a thermophilic element which suggests 

water temperatures approximately 5
0

C warmer than today. These species 

are: Cellana capensis, Turbo sarmaticus, Barbatia obliquata, Ostrea 

atherstonei, and Striostrea cf. margaritacea. All except the Striostrea 

come from deposits within the saldanha-Langebaanweg basin, and occur 

in great numbers. The sheltered and shallow nature of the basin 

would, in part, account for the warm conditions where the thermoPhilic 
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molluscs could have survived as relicts. But the Duyker Eiland 

site with Striostrea faces the adjacent ocean. Oyster valves are 

very common there, but the very thick valves may indicate conditions 

that were not quite optimum. 

Like the Miocene phosphorites, these thermophilic molluscs enable one 

to guess at the Pliocene hydroclimate. Miocene phosphorites do occur 

on the Duyker Eiland and Paternoster platform, but the absence of 

Pliocene phosphorite suggests that water temperatures were cooler. 

Striostrea margaritacea occurs extensively in Namaqualand Early 

Pleistocene sediments adjacent to the open coast (Haughton's Ostrea 

prismatica). There the valves are in no way stunted or overthickened, 

and suggest optimum conditions for survival. S. margaritacea requires 

minimum summer temperatures in excess of 240 C (Korringa 1956). Tankard 

(1975a) suggested that with warmer Early Pleistocene climates the 

consequent southward movement of the Intertropical Convergence and 

anticyclone centre brought tropical conditions down as far south as the 

Olifants River. One can argue that in the Pliocene these conditions 

had operated even further south so that the Saldanha-Elands Bay area 

was transitional. S. margaritacea was thus able to form reproducing 

communities on the open coast, but it was existing at the extreme of its 

distribution. Hence the stunted and overthickened valves. Upwelling 

of cold Central water would still have taken place, and the Central 

Water would have been as cold as at present since the Antarctic ice 

sheet was more extensive than the present ice sheet (Shackleton & 

Kennett 1974). In the Late Pliocene rapid melting of the Antarctic 

ice sheet brought it to the present volume, and this was accompanied 

by a rise of sea level (Tankard, in press c). Bandy (1967) and Bandy 

and Wilcoxon (1970) found that a Late Pliocene rising sea level v~s 

associated with expansion of tropical marine faunas. 

It is with the Pliocene mammal fossils of the estuarine facies of the 

Quartzose Sand Member that Cenozoic research at the South African 

Museum has been mainly concerned. Hendey (1974) called this horizon 

the "estuarine faunal unit 1". Marine fossils are rarely found in 

this unit. Regarding the concentration of the bones Visser and Schoch 

(1973) suggest that the bones were washed across a beach into the sea 

! 

i . 



136 

by rain, and that with withdrawal of the sea the bones were 

concentrated by the wind and buried beneath shifting dunes. Butzer 

(1973a), on the other hand, has suggested longshore drift as the 

concentrating mechanism. The distribution of the fossils and the 

fact that bones from individual animals are often closely grouped is 

against any reworking or concentrating agent. Not many of the bones 

show signs of transportation (Hendey,pers. comm.) while there is 

evidence to suggest subaerial accumulation on banks or bars of an 

estuary. Many of the bones have been chewed by carnivores, while others 

still show evidence of burning. The most compelling evidence for 

subaerial accumulation is that suggested by coprolites. Coprolites do 

not lend themselves to transportation, while groups of coprolites and 

some with plant impressions on the surface suggest in situ occurrences 

(Hendy, OPe cit.). 

A very strong argument against Visser and Schoch (1973) and Butzer (1973a) 

is the lateral facies change. Over a very short distance these 

quartzose sands grade into carbonaceous sands, with peat. The fossils 

from the peat are generally less complete and land tortoise remains 

common, suggesting brief periods of high energy conditions. But it 

is envisaged that the peat deposits may have represented a waterhole 

for the mammals. This is certainly supported by the finding of the 

distal extremities of a sivathere fore-and hind-limbs, still articulated, 

and vertically disposed (Hendey, pers. comm.). It is easy to imagine 

the animal being caught in the mud while drinking, and unable to 

extricate itself. waterbirds are common, and egg-shells with colour 

preserved have been found. The mollusc fauna includes well-preserved 

forms with a freshwater species common. 

Professor E.M. van Zinderen Bakker kindly examined the peats for pollens. 

A,preliminary examination showed a rich pollen, but the usefulness of 

the spectrum was reduced by the fact that 92 per cent of the 

sporomorphae belong to one unidentified taxon. Grasses (Gramineae) 

constituted approximately 3 per cent of the spectrum, a reed 

(Restionaceae) and a bush (Cliffortia) each account for about 1,5 per 

cent. The inclusion of grasses is very significant as the high

crowned teeth of Ceratotherium and Hipparion are indicative of grass-
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lands (Hendey 1972). Giraffe remains suggest the presence of trees. 

Hendey (1973) visualjsesan environment characterised by riverine 

woodland flanked by grasslands. This suggests strong seasonality of 

rainfall, with most of the rain falling in the summer months. The 

present environment is characterised by Mediterranean Macchia vegetation 

and winter rainfall. Professor Bakker (pers. comm.) notes that the 

"morphology of the dominant unidentified pollen type is comparable 

to that of Cuscuta and Elphantorrhiza and also certain members of the 

Aizoaceae, but because of small differences it could not be definitely 

assigned to any of these". The most likely plant would appear to be 

Aizoceae (mesembrianthemum) since that is a dry-area plant and very 

common on the Sandveld today. Professor Bakker's report continues: 

"The great abundance of this form (dominant) makes interpretation of 

the assemblage very difficult. It is possible that the plant which 

produced it is not important for the understanding of the whole flora. 

The possibility exists, especially with a great dominance like this, 

that it is an autochthonous form which does not represent the 

pollen rain, or even that a flower of the particular plant was present 

in the sample. In this case the percentage of other types like the 

grasses, Restionaceae and Cliffortia, would in reality form a much greater 

part of the spectrum ..... 

"The presence of Restionaceae and Cliffortia, which are typical of the 

Cape Flora and winter rainfall, suggests that this flora was already 

established at the time of sedimentation. It is interesting that 

only about half of the taxa which were distinguished could be identified. 

This could be the result of extinction, which would suggest that the 

flora was still very different from the present one. 

"The Gramineae, Restionaceae, Cliffortia, Myrica, Compositae and 

Chenopodiaceae suggest a treeless, probably coastal, vegetation. The 

only positively identified tree pollen is that of Podocarpus. As is 

often known to be the case with Podocarpus, its pollen could have been 

wind-transported over a great distance from the mountains. The data 

is, however, inadequate to definitely state that the vegetation was 

treeless. There is, for instance, no way to prove that the unidentified 

types do not belong to trees. 
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"It is difficult to know whether there was more grass present than now. 

The value of about 3 per cent does not suggest this. If the dominant 

form is removed from the spectrum, the grasses would form about 30 

per cent. This is still considerably less than the average percentage 

of more than 60 per cent from the grassveld of the Orange Free State". 

A recent paper by Wolff et al (1973) is unduly critical of Hendey's 

(1970a, 1970b) interpretation of the geology of the Varswater 

Formation. They write that it is "unfortunate that attempts to date the 

Langebaanweg mammalian assemblage have been made in the light of 

assumed maximum heights for former marine sediments in the Langebaanweg 

area in relation to Pleistocene strandlines elsewhere in South Africa 

..... and even the 'classical' Mediterranean sea levels of Zeuner 

(1959)". This criticism is very true, and Hendey (1973), in a paper 

ignored by Wolff et al (1973, published June 1975), has admitted these 

faults and given a more objective interpretation of the geology. But 

Wolff et al are also guilty of very subjective reasoning. In their 

paper (Wolff et al 1973) they question Hendey's taxonomic work. They 

then attempt to show that the Baard's Quarry and New Varswater Quarry 

deposits are related and represent merely facies changes. These 

authors had not seen the Baard's Quarry geology and have to base their 

entire argument on faunal lists from the two sites published by Hendey. 

In their list of species (table 1) they go on to list the faunas 

together so that the reader is unable to compare the faunas. Hendey 

(pers. comm.) suggests that the original faunal lists now need updating 

as the result of continuing taxonomic work. Bearing in mind that the 

New Varswater Quarry contains over 70 identified mammalian species, 

there are only two species in common with the Baard's Quarry fauna, 

although the two sites are only 2500m apart. These two species are 

Mammuthus subplanifrons and Mesembriportax acrea, both of which have a 

wide time range. Equus at Baard's Quarry shows that it definitely 

post-dates the Varswater Formation (Hendey pers. comm.). 

There is evidence that fluvial deposits of similar age occur in the 

Hondeklipbaai area. Hooijer (1972) mentions an isolated rolled tooth 

of Ceratotherium praecox of Pliocene age that was found in poorly sorted 
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fluviatile gravel at 18m a.s.l. These gravels overlie an Early 

Pleistocene marine sand, and it appears that the tooth was reworked 

from earlier deposits. 

Deposition in the estuarine-fluvial phase at Langeberg ended with the 

final transgression, possibly induced by renewed tilting and subsidence, 

which took the shoreline to 50-55m a.s.l. Reworking of earlier 

deposits took place. The pellets of the Pelletal Phosphorite Member 

are detrital grains which originated in the microsphorite matrix of 

the Miocene phosphatic sandstone. The pellets were formed by mechanical 

reworking. They are denser than the quartz sand component (S.G. 2,91 

vs. 2,655) and are always better sorted, i.e. spread over a narrower 

size range. But in spite of it being the denser mineral it usually 

has the slightly larger grain size. In testing for hydraulic 

equivalence this apparent inversion is explained. Grain-size 

distribution data show the quartz fraction to be composed of three 

populations separated by inflexion points at 1,25 ¢ and 3,00~. Between 

these two inflexion points lies the saltation population whose hydraulic 

behaviour is governed by the same Impact-Law (Newton's law of 

resistance) as is the pelletal phosphorite. Comparison of the median

size of the saltation population with that of the pelletal phosphorite 

shows that the two minerals approach hydraulic equivalence. 

Generally the l'~)w flow regime over the platform and in the shelter of 

the breaker-bar was insufficient to suspend all the grain sizes, so that 

only a part of each grain-size range has been selected by settling 

velocity. Bottom traction has probably modified the size-distributions, 

while post-depositional changes have been brought about by addition 

of smaller grains by percolating water. Along the edge of the 

platform, and the exposed western part of the platform more turbulent 

conditions operated, so that hydraulic equivalence is approached. The 

structure contour map (Figure 5.1) shows that the area southwest of 

the platform was low lying and must have been a deeper water area, and 

indeed the sediments become finer grained in that direction. Sediments 

in this area are better sorted than in other areas, indicating more 

active winnowing conditions. Although these sediments are finer 

grained, the skewness values show the coarser fractions of the sediment 
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to be dominant over the finer fractions. All these facts would 

indicate a low flow regime at the platform edge. That the pelletal 

phosphorite is detrital is indicated by the similar median grain 

diameters of the quartz and pelletal phosphorite and similar sorting. 

The reversal of skewness values, compare Figures 6.3 and 6.7, would 

possibly be explained by the narrow size range of the phosphorite; 

very few phosphorite pellets are smaller than 3,5~. The size 

distribution of the pelletal phosphorite has been shown to be related 

to the detrital part of the sediment and must have been influenced by 

the same mechanical processes. Whereas the source area for the pelletal 

phosphorite was very close, the polymodality of the quartz suggests 

more than one generation for that mineral. Similar grain-size 

relationships between quartz and pelletal phosphorite have been noted 

by D'Anglejan (1967) and Summerhayes (1970). The average phosphorite 

grain-size on Langeberg (c.2 ~) is somewhat coarser than that found 

by O'Anglejan, but the size of the pellets is related to degree of 

exposure of the coast. On the exposed Namaqualand coast typical 

pelletal phosphorites north of Hondeklipbaai have a range of 0,5 to 1,5 ~, 

as opposed to the embayment environment of the Langeberg deposits. 

Hendey (1972) has subdivided the Pelletal Phosphorite Member into beds 

3a and 3b on palaeontological grounds. Terrestrial and marine aquatic 

vertebrates are concentrated in Bed 3a, but become progressively less 

common upwards. Bed 3b is largely unfossiliferous, the only fossils 

tending to be of a smaller size. The larger mammals so characteristic 

of the underlying estuarine sediments are either not recorded from 

Bed 3a or are very fragmentary. Whereas Hendey reads paleaontological 

significance into this relationship, it is here thought to be a graded 

deposit. The difference in size is attributed to mechanical processes 

and is not of palaeontological significance. The fossils of Beds 3a 

and 3b have been derived from the underlying estuarine sediments and 

marine fossils added during the final transgression. The smaller 

size of fossils on ascending the sediments reflects the energy of the 

eroding medium. Their fragmentary nature also indicates reworking. 

Large lumps (remanie) of clay have also been torn from the lower hori

zons and included in the Pelletal Phosphorite Member. 
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Butzer (197Ja, published 1975) has described, from the lower part of 

the Pelletal Phosphorite Member (Bed Ja), "a number of lenticles 

of compact, laminated, gray to very dark gray (lOYR 3-6/1), clay with 

sandy pockets ..... Sorting is poor in a bimodal distribution with 

a secondary grade maximum near 175jU These lenticles are seldom 

over 1 cm thick and possibly include rootlet or worm structures". 

Butzer's cumulative curve (figure 1) shows a broad clay peak as 

characterising Bed Ja. His description is misleading since what 

he apparently sampled was a block of kaolinitic clay reworked from 

underlying strata. The lower part of the Pelletal Phosphorite Member 

does not contain clay lenticles in quantities sufficient to characterise 

the member. 

Butzer has analysed 12 samples from the Varswater Formation and 2 from 

the modern Saldanha beach. Comparison of these samples suggests 

to him similar depositional environments. But it must be emphasized 

that he used the 37, 63, 210, 595 and 2000tu sieves. This sieve 

spacing is not sufficient to give an environmental interpretation. 

Furthermore, his statistics are calculated from the Trask (1930) 

formulae, which make use of the 25 and 75 percentiles, i.e. they avoid 

the environment sensitive extremes of distribution. The Trask 

sorting coefficient, for instance, has only a 37 per cent efficiency 

rating, compared to -79 per cent for the Folk and Ward (1957) formula. 

Pelletal phosphoritic sands also occur on the Namaqualand coast, north 

of Hondeklipbaai, where they overlie Miocene phosphatio sandstone 

and siltstone (A.J. Carrington, pers. comm.). There the Miocene 

sediments have been truncated at 36m a.s.l. Pelletal phosphorite 

supplied by Mr. A.J. Carrington comes from the "Upper E-stage" (mining 

terminology) which he considers to be of latest Pliocene age. It 

has strong West African faunal affinities and reflects water 

temperatures considerably warmer than present. He envisages an arid 

climate. The final altitude of the "Upper E-stage ll is not known. 

The widespread occurrence of the pelletal phosphorites and the 

presence of warm-water molluscs suggests a possible correlation with 

the Varswater Formation. 
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III. SUMMARY 

The sediments of the Saldanha and Varswater Formations are trans

gressive complexes associated with climates that were warmer than 

today, and the Miocene warmer than the Pliocene. Onshore deposits 

of Miocene age are extensive around South Africa, and are a world-

wide phenomenon. These Miocene deposits can be attributed to eustatic 

sea level movement consequent upon elevation of the mid-ocean ridges 

(Flemming & Roberts 1973). Since the Miocene the sea has generally 

been regressive. But on the west coast of the Cape Province a 

secondary transgression, in the Pliocene, has resulted from tilting 

so that transgression has occurred within a regressive phase of sea 

level. It is impossible to separate the tectonic from the eustatic 

components. 
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CHAPTER 12 

REVIEW OF OTHER SOUTHERN AFRICAN 

MARINE NEOGENE DEPOSITS 

1. MOZAMBIQUE 

Tertiary sediments in Mozambique include bedded marine Eocene limestone 

at Salamanga 32km inland (du Toit 1954; King 1972) and Nummulitic 

limestones, 180m thick, which form plateaux north and west of Beira. 

The foraminifera include several species of Nummulites and suggest a 

Middle Eocene (Lutetian) age (du Toit, op. cit.). In the south of 

Mozambique calcareous sandstones have been described as the Santaca 

Formation (Soares G DB Silva 1970). Mollusc fossils in the Santaca 

Formation includeGlycymerisborgesi (= G. austroafricana), Pecten 

sapolwanaensis, Aequipecten uloa, and Amusium umfolozianum. These 

fossils correlate the Santaca Formation with the Pecten bed at Uloa. 

Elevation of the Neogene shoreline at 26
0
45'S is 60rn a.s.l. 

II. ZULULANo 

A. Stratigraphic Setting 

Although exposures of Neogene sediments are best developed where river 

incision by the White Umfolozi River has occurred, marine Neogene 

sediments probably underlie much of the Zululand (including Kwazulu) 

coastal plain. 

Ever since the first discovery of Megaselachus teeth at Uloa in 1951, 

the lithology and stratigraphic correlations of scattered outliers 

of marine ~leogene sediments in Zululand have led to an unfortunate 

controversy (King 1953, 1966, 1970, 1972; Frankel 1960a; 1966, 1968). 

Although the contentious sequences at Uloa and [-apolwana are "classic" 

regressive complexes, complications have arisen due to unnecessary 

debate about precise age and the relationship of these Neogene sediments 
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and "unconformities" to land surfaces. King (1966) believes that 

continuations of "unconformities" within the marine sediments are 

represented by an elevated pair of land surfaces. Frankel (1968) 

suggests that if the pre-Miocene unconformity in the Lower Umfolozi 

area, which according to King contains reworked laterite, and the 

inland erosion surface had once been continuous, then originally 

both were probably nearly horizontal. But he finds it impossible to 

accept that the sub horizontal unconformity could correlate, with 

a land surface at 600m elevation and only 50km to the west. However, 

the structure of coastal Natal is dominated by step-faulted tilted 

blocks, and not monoclinal tilting (Maud 1961) so that if King is 

correct in his correlation a mechanism does exist to explain both 

the rapidly varying elevations and the low dip of the pre-Miocene 

unconformity. The debate is unnecessary since the concepts involved 

are probably unprovable. 

A composite and idealized stratigraphic column is shown in Figure 12.1. 

Most of the Zululand Neogene deposits lie unconformably upon Cretaceous 

(Maestrichtian) silty mudstones which dip eastward at 1_20. The 

Miocene-Cretaceous unconformity is irregular, but shows no uniform 

seaward dip in the Uloa area (Frankel 1966). This unconformity is 

also essentially horizontal in the Richards Bay area, with no 

discernible landward rise in 5km (Maud & Orr, in press). Maud and Orr 

show that the higher elevation of the unconformity in the Uloa and 

st Lucia areas compared with the Richards Bay area indicates a 

southerly dip of 1,5m/km. The unconformity is a marine abrasion 

platform, and the presence of reworked phosphorites suggests that 

it originated in the Eocene, but was probably remodelled in the Neogene. 

The base of the Neogene strata at Uloa, 18m a.s.l., consists of a brown 

gravel bed 30-100 cm thick. Frankel (1966) named this the ferruginous 

nodule bed. The gravels are poorly sorted and include reworked 

ammonites, silicified Cretaceous wood, Tertiary shark teeth, bone, 

phosphatised nodules and Tertiary glauconitic sandstone pebbles. 

Frankel believes the phosphatised nodules originated in the Cretaceous 

and Eocene. P205 determinations were 16,2 per cert, 18,1 per cent and 
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24,44 per cent. Together with a CaD determination of 45,1 per 

cent, a francolite containing phosphorite is suggested. A radiometric 

date of 55 m.y. on the glauconite suggests the earlier existence of 

Lower Eocene marine sediments. The gravel bed has been ferruginised 

by percolating groundwater, and does not contain reworked laterite. 

The basal gravel at Uloa grades vertically into the Pecten bed which 

is 4,6 m thick. This bed is characterised by Aequipecten uloa, 

although other invertebrate fossils are also abundant. These fossils 

include coral, crinoid ossicles, echinoid fragments, bryozoans, 

foraminifera, and shark teeth. King (1953) discusses the palaeontology 

in detail. The Pecten bed is a coquina in which fine to medium, 

subround quartz constitutes less than 5 per cent of the total (Frankel 

1966). Sparry calcite fills the interstices. The bivalves are usually 

disarticulated and show a horizontal stratification. The unbroken 

valves suggest low energy conditions (lower flow regime). 

At Uloa the Pecten bed is overlain by 6,7m of well-bedded, flaggy, fine 

to coarse grained, foraminiferal calcarenites with low-angle cross-

stratification. The interface between the Pecten bed and the calcarenites 

is marked by water-rounded discoidal cobbles. The contact between 

the two units is an erosional surface, typical scour and fill, which has 

resulted from an increasing flow regime during a regression. But this 

does not imply an unconformity as King and King (1959) suggest. 

McCarthy (in Frankel 1968), on the other hand, believes that the 

irregularities in the stratified sequence are due to sagging of the 

strata where removal of carbonates has caused local subsidence. It 

seems unlikely that solution of a coquina would produce sagging on this 

scale, because solution would affect the matrix initially while the 

macrofossils form a self-supporting framework. 

The best exposure of the calcarenites is at Sapolwana where alternating 

coarse and fine calcarenites form fairly continuous flaggy layers 

5-15cm thick (Figure 12.2). The thicker layers are well cemented 

and alternate with less coherent coarser intercolations which are up to 

30 cm thick in places (Frankel 1966). This type of sequence is typical 



Figure 12.2 Pecten bed overlain by flaggy calcarenite 
at S3polwana. 

Figure 12.38 Coquinite lime packstone of the Pecten bed, 
Uloa. Crossed nicols X24. 



Figure l2.3b Coquinite lime packstone of the calcarenite 
at Sapolwana. Crossed nicols.X24. 

Figure l2.3c Coquinite lime packstone of the foreshore 
accretion unit at Sapolwana. Crossed nicols. 
X24. 
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of a shallow tidal to subtidal environment, and the coarsening

upward beds (Figure 12.2) demonstrate continuous regression. With 

continued regression the flaggy calcarenites at Sapolwana grade 

upwards into massive limestones (Figure 12.1), while the top of the 

succession is capped by a foreshore accretion unit with subordinate 

Pecten-bearing lenses. 

Figure 12.3 illustrates the texture of Pecten bed matrix, calcarenite, 

and the foreshore accretion limestone. Note the similar textures of 

the Pecten bed and foreshore accretion unit, and the coarser 

calcarenite. 

Neogene sediments in the Richards Bay area are only 5-6m thick and 

comprise a lower yellowish brown coarse coquina which is overlain by 

an upper sandy calcarenite horizon. High-angle cross-stratification 

in the upper part of the calcarenite shows transition from subaqueous 

to aeolian deposition (Maud & Orr, in press). 

The Neogene deposits at Umkwelane Hill, 13km west of Uloa, consist 

of a basal conglomeratic zone, 1,5m thick, at 46m a.s.l. The conglo

merate is overlain by fine to medium calcareous sandstone and limestone~ 

Subround quartz averages medium grade. The bioclastic material 

includes an abundance of benthonic foraminifera and mollusc shell 

fragments (Frankel 1966). High-angle cross-stratification at the 

top is indiciative of aeolian deposition. 

B. Depositional Environments and Correlation 

The deposits described above are a typical shallow marine regressive 

sequence, but lithological correlation between them is not as clear

cut as Frankel (1968) believes. He has commented on the close 

lithological similarily between the calcarenites at Warner's Drain, 

Sapolwana, Uloa, P8aston and Umkwelane Hill, and the fact that there 

is a basal conglomerate both at Umkwelane Hill and Ulba. 
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The Pecten bed at Uloa, Sapolwana and Richards Bay with the dis

articulated but nevertheless, unbroken, Aequipecten valves suggests 

deposition in a shallow offshore environment. Pectenids are 

characteristically shallow infra tidal molluscs. The upward-coarsening 

calcarenite at Sapolwana and the overlying foreshore accretion unit 

suggest a regressive sea. If the Umkwelane Hill deposit is broadly 

time-equivalent, then an intertidal depositional environment is suggested. 

This is borne out by the foraminifera. Whereas the foraminiferal 

assemblage at Uloaincludesnumerous planktonic as well as benthonic 

forms which suggest an offshore facies with free access to the sea, the 

exclusively benthonic foraminiferal assemblage at Umkwelane Hill 

(Frankel 1958) suggests a sheltered nearshore facies (e.g. lagoonal). 

The foraminifera from both the Pecten bed and the calcarenite are very 

similar (Or Albani, quoted in Frankel 1958), so that the time interval 

between these two units is small. On sedimentological and palaeonto

logical grounds the Pecten bed can differ only slightly from the 

overlying calcarenite in age and both are the product of a single and 

continuous regressional episode. Although there are no sedimentological 

grounds for placing the Umkwelane Hill deposits into the same episode, 

similarities in the foraminiferal assemblages do suggest a correlation. 

Differences in these assemblages would appear to be environmental. 

C. Age of the Zulu land Neogene Deposits 

Accepting these Neogene sediments as being the product of a single 

regressive cycle implies that they are contemporaneous. But it is 

the age of these deposits that has been most contested. King (1953) 

has attempted to date the deposits as Early Miocene by means of the 

mollusc fossils, even though he recognises the very high proportion 

of extant species, and the fact that the rate of organic evolution is 

slow in tropical waters. Molluscs are notoriously conservative and 

can seldom be used for precise dating. Biesiot (1957) has suggested 

an Early Miocene age on the basis of foraminifera he examined. But his 

determinations were made on benthonic forms which are the least 

reliable. Subsequent investigators (quoted in Frankel 1960a, 1950b, 
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1966, 1968) have also attempted to date these deposits by means of 

foraminifera and have used planktonic forms to suggest a Late 

Miocene age. Several points should be stressed however. Most of 

these determinations, it would appear, have been made from thin--section 

examination. This method is highly unreliable when used on Cenozoic 

foraminifera. Furthermore, recrystallisation of the rock is extensive. 

Most of the specific identifications are cited as sp.aff., which would 

hardly make them valid for age determination. 

The only three firm determinations cited by Frankel (1960c) were 

Anomalina aegyptica (Lower Eocene or Palaeocene), Elphidium parri 

(Miocene) and Triloculina angularis (Aquitanian to Recent). The genus 

Elphidium is rare before the Miocene. More recently Orbulina universa 

has been recorded (Frankel 1969). O.universa is usually taken as 

post-Burdigalian, except in tropical Burdigalian rocks. King (1953) 

and Biesiot (1957) have both shown the tropical character of the 

zululand Neogene fauna, so that even O.universa does not necessarily 

contradict a Burdigalian age. 

A very important study is that of Dr R.P. Stapleton who has examined 

and identified 13 planktonic species which were separated from the rock 

by crushing (pers. comm.). According to Dr Stapleton the assemblage 

is restricted to the ~~17 planktonic foraminiferal zone, and the age 

assigned depends upon the position of the Miocene-Pliocene boundary. 

Since this boundary is taken as 6 m.y. in this thesis, following 

Berggren (1971), the N-17 zone would be late Late Miocene. Maud and 

Orr (in press) have also suggested a Late Miocene age for the Richards 

Bay coquina and calcarenite, rather than an Early Miocene age, but 

concede that the fauna cannot be older than Middle Miocene. 

Shark teeth, also somewhat unreliable as a means of dating, have been 

used by Davies (1964) and Applegate (1970). Applegate writes that 

there is no reason why the fauna, all from the coquina, should not have 

a Late Miocene age, but that it could certainly not be Early Miocene. 

Davies suggested a Middle Miocene age. The Megaselachus megalodon is 

the large form which would agree with a Miocene age. 
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On palaeontological grounds the coquina and calcarenite, including the 

Umkwelane Hill calcarenite, are all broadly time-equivalent. A 

Miocene age younger than Early Miocene is now becoming generally 

accepted. The nearly horizontal nature of the Miocene-Cretaceous 

unconformity shows that warping has not taken place in the Tertiary, 

and Frankel (1966) and Maud (1968) could find little evidence for 

substantial epeirogenic movement. Clearly these sediments must be 

attributed to eustatic sea level movement. There are several reasons 

why this eustatic movement must be of Middle to early Late Miocene 

age: 

(i) this coincides with an ocean floor spreading discontinuity 

at 10 m.y. (Flemming & Roberts 1973); 

(ii) the development of the Antarctic ice sheet to its maximum 

extent in the Late Miocene (Kennett et al 1974) would have 

caused a significant fall of sea level; 

(iii) the warm climates of the Middle Miocene were conducive 

to phosphorite formation and expansion of tropical marine 

faunas (Bandy 1967; Bandy & Wilcoxon 1970; Tankard in 

press a). 

The Zululand Neogene sediments can then be attributed to a sea level 

peak in the Middle to early Late Miocene, with a general regression 

through the Pliocene. 

III. NATAL 

The geology of the Natal coast lands is dominated by a sequence of 

aeolianites which extend to 100m below sea level (Maud 1968). Although 

Krige (1932), King (1962) and McCarthy (1967) have attributed these 

sediments to a single depositional cycle, Kent (1938), Parr (1958) and 

Maud (1968) have recognised several aeolian depositional cycles. 

Frankel (1964) described calcareous sandstones at Burman Bush with 

, 
I 
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a terrestrial gastropod assemblage. Foraminifera in the Burman Bush 

calcareous rocks are of shallow marine origin, and allegedly Pliocene

Pleistocene age (Frankel 1966). But these assemblages differ greatly 

from the older assemblages of the Uloa and Umkwelane Hill calcarenites. 

King (1966) and McCarthy (1967) have dated the Natal aeolianites as 

Pliocene on the foraminiferal evidence. But dating rocks of Late 

Tertiary and post-Tertiary age by means of foraminifera is unreliable 

since the forms could have evolved little in this time (Maud 1968). 

Maud's interpretation of these aeolianites in terms of Pleistocene 

sea level movements is undoubtedly correct. The Pliocene foraminifera 

(if they are really Pliocene) would have been blown inland from marine 

sediments exposed on the continental shelf as the sea regressed. 

IV. EASTERN CAPE 

The marine Cenozoic geology of the eastern Cape differs greatly from 

the zululand geology, and lends itself to a different approach. 

Detailed studies have been made of two quarries situated on an east

west ridge on Needs Camp Farm between King Williams Town and East 

London, at an altitude of 365m a.s.l. The lithology has been most 

recently described by Lock (1973). The lower quarry, 17m below the 

upper quarry, was thought to be of Danian age by Chapman (1916) and 

Upper Senonian to Maestrichtian by McGowran and Moore (1971), The 

upper quarry haS usually been accepted as of Tertiary age (see Lock 

1973, for discussion), although King (1973) has reinterpreted the 

palaeontology to suggest that these deposits are also of Cretaceous 

age. Lock refutes this claim. 

The fossils from the upper quarry include (Lock 1973): Voluta sp., 

Isognomon cf. gaudichaudi, Ostrea atherstonei, Glycymeris 'pilosa', 

'Panopea l gurgitis, and ~ SPa The Glycymeris, if it is the same 

species that Newton (1913) recorded from the Alexandria Form~tion, 

would be G. borgesi (Cox) rather than G.pilosa (Linn). G. borgesi 

is the extinct form and pilosa the extant Mediterranean form. Both 
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of these species apparently occur at Uloa (Professor L.C. King, pers. 

comm.). Although Mollusca are generally conservative and unreliable 

as a means of dating, the assemblage would suggest a ~Jeog8ne rather 

than a Palaeogene or Quaternary age. 

Neogene features of the area between the Swartkops and Sundays Rivers 

have been studied in detail by Ruddock (1968) who has attempted to 

establish the Cenozoic diastrophic and eustatic histories. Cenozoic 

littoral deposits lie on a dissected and stepped platform. Ruddock 

follows Engelbrecht et al (1962) in restricting the term Alexandria 

Formation to the marine crystalline and sandy limestones and pebble 

beds of Tertiary age. The Alexandri~ Formation averages 3-9m thick. 

Discontinuous conglomerates occur at the base. The upper part of 

the limestones are coarsely porous and less recrystallised. Kinkelbos 

silts overlie the Alexandria limestones in places and form a wedge 

thickening from about 6m at the seaward margin to 37m at the landward 

margin. These silts have been attributed to shallow marine and 

lagoonal depositional environments, and their upper surface has been 

remodelled by Quaternary sea level fluctuation. The upper surface 

of the Alexandria Formation is frequently erosional, while a boulder 

horizon sometimes separates it from the Kinkelbos silts. 

The marine component of the Alexandria Formation overlies a composite 

seaward-sloping surface (Ruddock 1968, 1972). The inland margin 

of this surface is situated at 305m a.s.l. in the Bathurst area, and 

at 2B4m near Uitenhage. Ruddock describes the salt Pan escarpment 

which separates the Grassridge platform above from the Coega platform 

below. The Grassridge platform is also composite, consisting of 

an older outer part (slope 1:100) which was truncated by a sea which 

formed the younger inner part (slope 1:200). 

There is very little evidence available to date these various units. 

Certainly comparison with the Zululand Cenozoic deposits would be 

insufficient to date the complex diastrophic history. In fact this 

diastrophic history is more closely parallel to that of the western 

Cape. Chapman (1930) dated the oldest limestones at Birbury (elevation 

204m) as Upper Eocene. But Bourdon and Magnier (1969) were able to 
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distinguish two micro-faunas: a reworked Lower-Middle Eocene one 

and a well-preserved Miocene one. Furthermore, the Eocene fauna is 

more truly marine than the Miocene one. Haughton (1925) mentions a 

Megaselachus megalodon tooth from Birbury. Middle Eocene-Middle 

Miocene shark teeth were identified by Or S.P. Applegate (quoted in 

King 1972b). The writer collected shark teeth from the Birbury site 

in 1971, and submitted these to Or Applegate. He reported (in litt. 

26.X.71) that the "material from Birbury near Bathurst turned out to 

be Eocene. In this fauna is Dtodus obliquus. Also there is Ddontaspis 

macrota and probably Odontaspis cuspidata. There may be also several 

species of Odontaspis in this collection but more and hopefully better 

material will be needed to confirm this, particularly of the small teeth 

would be valuable. Professor King sent me similar material from 

Bathurst which I determined to be Eocene in age". 

The Birbury deposits overlie the inner Grassridge platform, and would 

appear to date the original planation as Eocene. The fresh Miocene 

micro-fauna indicates the reworking of the original Eocene strata and 

truncation of the inner part of the Grassridge platform when the sea 

finally reached the 284m level. This interpretation is in agreement 

with that already suggested by Ruddock (1968, 1972). King (1972b) has 

shown a Pliocene age for some of the marine limestones on this 

platform. 

Most of the molluscs described are from limestones overlying the Coega 

platform. Newton (1913) lists the following species (his designation 

in brackets where the name has been changed): 

GASTROPODA 

Bullia annulata Lamarck 

Melapium patersonae Bullen Newton 

Pirenella stowi Bullen Newton 

Voluta africana Reeve 

BIVALVIA 

Cardium edgari Bullen Newton 

Glycymeris borgesi (Cox) (= G. pilosa). 
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Isognomon gaudichaudi (Orbigny)(= Melina gaudichaudi) 

Macoma orbicularis Sowerby 

Notocallista schwarzi (Bullen Newton)(= Chamelea 
schwarzi = C. rogersi) 

Ostrea atherstonei Bullen Newton (including O.redhousiensis) 

Scissodesma spengleri Linn. (= Schizodesma spengleri) 

Tellina sp. (= T. perna) 

Tivela baini Bullen Newton 

Venus verrucosa Linn. 

Engelbrecht et al (1962) also list many of these species, but their 

species list includes several superceded generic names and many 

invalidated and superceded synonyms for the species names. The entire 

collection would have to be re-examined before the list could be used. 

Although several of the species listed by Newton are still extant, 

the assemblage as a whole can be taken to indicate a Neogene age. The 

following Neogene zone fossils could be suggested: Cardium edgarij 

Glycymeris borgesij Isognomon gaudichaudij Notocallista schwarzi and 

Tivela baini. Newton was careful to separate the Neogene fossils from 

the very different Quaternary fossils in his report. 

King (1972b) has listed foraminifera derived from the Alexandria 

Formation which were identified by Dr L.R. Nolten of Royal Dutch Shell. 

Dr Nolton reports that the three markers Ammonia ammoniformis, Ammonia 

italica and Florilus victoriense indicate a probable Pliocene age, but 

notes that of these three only A. italica is common. 

the earlier interpretations of Ruddock (1968, 1972). 

This confirms 

The dates Eocene, Miocene and Pliocene serve as a means of labelling 

the diastrophic history, Miocene tilting caused a transgression which 

carried the shoreline to the inner edge of the Grassridge platform, 

while the Salt Pan escarpment is probably a Pliocene feature created by 

further tilting and incision. Ruddock (1968, 1972) suggests that 

tilting has taken place about an axis situated about 33km inland. 

He documented the three episodes of seaward tilting and transgressive 

cycles as: Early Tertiary, Miocene-Pliocene and Late Pliocene . 

... 
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V. MOSSEL BAY - BREDASDDRP 

Considerably less detail exists for the ~rea between Bredasdorp and 

Mossel Bay. But even here the Bredasdorp Formation, which reaches 

a maximum thickness of 14D-15Dm, has been recognised as a regressive 

sequence (Haughton et al 1937). The Bredasdorp Formation rests on 

a platform formed across rocks of the Table Mountain and. Bokkeveld 

Groups. This platform dips to the south in the Riversdale district 

with a slope 1: 160 (Wybergh 1919). 

Silcretes cap remnants of a landsurface inland of the Bredasdorp 

Formation, and King (1963) realised the possibility of dating this 

surface by examining the conglomerates at the base of the formation. 

He was able to state (P. 264) that "pebbles of silcrete occur in the 

conglomerate present at several places beneath the limestone ..••• 

The age of the limestone may thus determine whether the silcrete capped 

remnants belong to the early or late Tertiary cycle which here are 

crossing each other into the coastal depositional sequence ....... In 

a later publication King (1972) reinterpreted the data. "The basal 

limestones do not contain any such abundance of silcrete or ironstone 

fragments as might be expected if they rested upon the older Tertiary 

landscape (c f. Miocene of Uloa). Instead, all the field indications 

are that the limestones rest upon a marine modified continuation of 

the lower cyclic surface of presumed Miocene development. This then 

requires that the limestones are younger, perhaps of Pliocene age". 

The Bredasdorp Formation consists of a discontinuous conglomeratic 

zone which averages about 1m thick at Die Kelders (chapter 4) and in 

the Riversdale area, although it may locally be as much as 6m thick 

(Wybergh 1919). Overlying the conglomerates are crystalline limestones 

and coquina, the petrography of which has been described by Siesser 

(1970). In the Riversdale area the crystalline limestones are 

frequently separated from the conglomerates by soft reddish sands 

(Wybergh op. cit.). These sands may be an alteration product of the 

limestones similar to an occurrence on the Cape Peninsula where 

Late Pleistocene aeolianites overlie reddish sands. 
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Little is known about the depositional history of the Bredasdorp 

Formation. According to Wybergh, the formation is largely aeolian, 

while Spies et al (1963) concede that the lower part must be marine. 

Two measured stratigraphic sections at Bredasdorp and Still Bay 

(Siesser 1972, figure 2) show only 2-3m of shelly limestone which 

contain the remains of molluscs, foraminifera, and shark teeth. 

This limestone reaches an elevation of approximately 93m in the 

Bredasdorp area. King (1972) gives the maximum inland extent as 106m 

a.s.l. 

In the De Hoop valley (34
0
24'S; 200 l9'E) the marine limestones are 

8m thick. They are conglomeratic at the base, but display a fining

upward sequence through gravels and coquina (Figure 12.4). The 

gravels and coquina contain oyster and gastropod fossils. The top of 

the marine unit is marked by cross-bedding typical of a shoreface 

situation, and well rounded discoidal pebbles. High-angle cross

bedded aeolianites overlie the marine unit. These aeolianites form 

a prominent east-west ridge, possibly marking an old shoreline, between 

Bredasdorp and the Bre~ River mouth. 

The mollusc fauna (Wybergh 1919; Barnard 1962; Spies ~ 1963 and 

De Villiers et al 1964) provides the only basis on which to hazard a 

guess at the age of the Bredasdorp Formation. Wybergh has suggested 

a Pleistocene age. The Mollusca include: Bullia annulata, Melapium 

sp., Pirenella sp., Voluta africana, Glycymeris "pilosa" (probably 

borgesi), Ostrea atherstonei, Notocallista schwarzi, Striostrea 

margaritacea and Tivela baini. This assemblage is identical in all 

respects to that of the Alexandria Formation described by Bullen 

Newton (1913) and Spies et al (1963) are correct in assigning the marine 

strata to the Neogene. 

VI. SOUTH WEST AFRICA 

Tertiary sediments occur as isolated pockets preserved in bedrock 

depressions between 40 and 160m a.s.l. north and south of LQderitz

bucht (Haughton 1963). Kaiser (1926) described the geology in detail 



Figure 12.4 

Figure 12.5 

Marine limestone with basal conglomerate exposed 
in the De Hoop valley, 8redasdorp district. 

The 8untfeldschuh escarpment (27°35'8; 
150 35'E) which terminates the Namib plateau. 
The plateau is overlain by Eocene volcanics. 
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and suggested a Middle to Late Eocene age on the basis of the faunas 

at Bogenfels and Buntfe1dschuh. (This extensive fauna has been 

described in the same volume by B~hm). Both Kaiser (1926) and 

Greenman (1969) describe these deposits as being overlain by 

phonolitic lavas which erupted 35,7 m.y. ago (ZSA 53). Haughton 

(1963) has suggested that the cephalopod Aturia lotzi and most of the 

other molluscs are of Miocene age, and that in ~ Eocene strata are 

preserved at higher elevations. The writer briefly examined these 

deposits in February 1975. At Buntfeldschuh the strata lie upon a 

wave-cut platform at approximately 120m a.s.l. The platform is 

overlain by gravels containing shark teeth, followed by 15m of marl 

with large concretions (lower part of Figure 12.5), then 5m of marl. 

Overlying the marls are horizontally bedded fine-grained quartzose 

sands (Figure 12.5). Planar cross-bedding cosets (Figure 12.6) are 

suggestive of shallow marine deposition. The marine strata are 

overlain by cross-bedded aeolianites (Figure 12.7). Shark teeth 

from the marine strata have been submitted to Or S.P. Applegate for 

dating. 

At Bogenfels marine molluscs occur in shallow marine sands and clays. 

Most common at the site examined were Ostrea subradiosa and Turritella 

kaiseri. The interesting aspect about this assemblage is that the 

oysters are "fresh" and still have a calcareous shell. But they occur 

amongst an older fauna typified by silicified and corroded shells. It 

would seem that Haughton (1963) was correct to suggest Miocene reworking 

of Eocene deposits. The Buntfeldschuh deposits are a coarsening 

upward regressive sequence and probably of Eocene age. 

VII. CONTINENTAL SHELF 

Cenozoic sedimentation on the continental shelf is concentrated in two 

large basins, the Orange Basin off the west coast and the Agulhas 

Basin off the south coast (Dingle 1973c). Sedimentation commenced 

with an Eocene transgression, while a major regression and erosion 

started in the Late Eocene and lasted througho~t the Oligocene and into 



Figure 12.6 Planar cross-bedding cosets in the 
Bun t feldschuh Tertiary succession 
suggestive of shallow marine deposition. 

-.-

Figure 12.7 Aeolianites overlying the Buntfeldschuh 
marine deposits. 
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the Early Miocene (Dingle 1973c, 1974; Siesser et a1 1974). 

records confirm this major hiatus. Basalt and trachyte plugs 

(Alphard Banks) have been radiometrically dated as 58 m.y. old. 

Seismic 

The Tertiary rocks dre broadly divisible into the Cape st Blaize Group 

(Palaeogene) and the Agulhas Group (Neogene) which are separated by 

the major mid-Tertiary hiatus. The Cape st Blaize Group (Upper 

Palaeocene to Upper Eocene) comprises calcareous clays, siltstones, 

sandstones, glauconitic-quartzose limestone, and glauconitic siltstones 

and sandstones (Dingle 1973aj Siesser et al 1974). The Agulhas Group 

(Early Miocene-Pliocene), on the other hand, comprises mainly 

foraminiferal-bryozoan limestones, and a great abundance of phosphorites. 

The Agulhas Group was deposited in mOderately deep water. Pelletal 

phosphorite has formed by Late Cenozoic erosion. Generally the 

Palaeogene strata are thicker than the Neogene strata: in the Orange 

Basin 800m and 300m respectively, and in the Agulhas Basin 500m and 400m. 

The Neogene deposits of the west coast differ from those in the south 

coast in having a prominent intra-group unconformity (Dingle 1973a). 

Several boreholes which were sunk into the Mozambique Basin from the 

Glomar Challenger in mid-1972 (JOIDES DSDP leg 25 - Geotimes November 

1972) confirm the above history. At site 248 an unconformity spans 

the entire Oligocene from latest Eocene to earliest Miocene. 

At site 249 two unconformities were recognised: Maestrichtian-Middle 

Miocene, and Late Miocene and Early Pleistocene. 

In fact, the only strata allegedly of Oligocene age are Pecten bearing 

shelly limestones recorded in borehole J(c)-l 24km east of Stanger 

on the Natal coast (du Toit & Leith 1974). These limestones contain 

reworked Eocene sediments. Du Toit and Leith equate the unconformity 

beneath the Oligocene strata with that below the Pecten bed at Uloa, 

and with the Oligocene hiatus in the JOIDES DSDP boreholes. 
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CHAPTER 13 

PLEISTOCENE HISTORY AND COASTAL MORPHOLOGY OF 

THE YSTERFONTEIN - ELANDS BAY AREA 

I. INTRODUCTION 

In the Pleistocene sea level fluctuated in sympathy with the repeated 

waxing and waning of northern hemisphere ice sheets, and palaeo

geographic studies show that coastal lowlands allover the world have 

been subjected to periods of alternating submergence and emergence. 

In South Africa the Pleistocene history of the coast is related to such 

a sea level history. 

Previous literature on the Pleistocene marine history of the coastal 

areas of the southwestern Cape is limited to a few texts, most of which 

are of a geomorphic nature. Krige (1927) published the first major 

study. He found evidence for two general emergences: shorelines 

at l5-l8m he called the Major Emergence, and those at 6-9m the Minor 

Emergence which was thought to be of Recent occurrence. In the Saldanha 

area he identified the Major Emergence at 6-l2m and proposed that the 

area had been downwarped. Haughton (1931) briefly described the 

geology and palaeontology. Mabbutt (1956, 1957) claimed marine 

terraces at 91m, 45-60m, 20m, 13m, 9m, and 7,5m a.s.l. (above mean sea 

level). All of the terraces above 9m he identified as marine terraces 

on the basis of flattish surfaces. The most detailed geological 

approach to the problem has been that of Parker (1968). Davies (1973) 

found evidence of transgressions to 9m a.s.l. (Eem) and 1,5m a.s.l. 

(Recent). 

This chapter describes the results of an investigation into the 

Pleistocene history of the coastal area between Elands Bay and Yster

fontein (Figure 13.1). All altitudes are recorded as height above mean 

sea level (a.s.l.). Tidal amplitudes are shown in Figure 13.1. Mean 

wave height is 3m, and the highest recorded waves 9,5m (Pomeroy 1965). 

Ocean swell is predominantly southwesterly. 
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II. EARLY PLEISTOCENE MARINE DEPOSITS 

Deposits of presumed Early Pleistocene age occur sporadically around 

Saldanha Bay: on either side of the Hbedjiespunt peninsula, 

Elandspunt, and 2,1 km north-east of Langebaan (Figure 13.1). The 

underlying platform on Hoedjiespunt is uneven, ranging in elevation 

from 6,2m to 8,9m a.s.1. At the Bomga't on Hoedjiespunt peninsula 

the Early Pleistocene deposit is separated from the granite floor by 

a lens of Miocene microsphorite which occupies a bedrock depression. 

The contact between the microsphorite and the limestone is an 

erosional one. On the South Head, at Elandspunt, the eroded uneven 

surface of the granite is at 7m a.s.l. The Early Pleistocene deposit 

north of Langebaan rests on the surface of an older marine limestone 

which is probably of Neogene age (not an aeollanite as thought by 

Davies 1973). Here the contact is at 9,5m a.s.l. A terrace at the 

same altitude may indicate a greater lateral extent of the Early 

Pleistocene deposits in the Langebaan area. 

The relationship of the Early Pleistocene marine limestone at the 

Bomgat to the underlying microsphorite and the overlying L3ngebaan 

limestone is shown in Figure 13.2. The limestone contains wave-

generated granite boulders at the base of 1,5m of coquina. The matrix 

consists of micrite which indicates a sheltered environment. Although 

articulated Perna perna would also indicate a sheltered environment, 

much fragmented debris is indicative of periods of higher energy marine 

conditions. Parker (1968) found that calcareous material constituted 

more than 95 per cent of the limestone. 

The base of the marine limestone on the northern side of Hoedjiespunt 

peninsula (behind the Sea Harvest factory) is characterised by 

wave-generated granite boulders. The limestone consists partly of 

unconsolidated shell deposits, and partly of coquina and microcoquina. 

The marine limestone is overlain by approximately 20m of aeolian 

limestone. The microcoquina is a medium-grained skeletal lime 

grainstone with a drusy calcite cement. Detrital shell grains form 

in excess of 95 per cent of the rock and the remainder is quartz. 

, , 
~ . 
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The quartz and shell grains are generally well rounded but corroded. 

The shell grains include foraminifera and echinoid spine fragments. 

Although the limestone rests on a granitic platform, thin-sections 

show a total absence of felspar grains. 

of a high-energy beach environment. 

This is characteristic 

Wave-generated granite boulders occur at the base of the coquina 

at Elandspunt. The coquina consists of much disarticulated and 

fragmented bivalve fragments, and less fragmented gastropod remains. 

The coquina, shown in Figure 13.3, is very different from Late 

Pleistocene deposits (Figure 13.9). 

The Early Pleistocene mollusc fauna is shown in Table 13.1. The 

nature of the outcrop prevented a shell count being made at the 

Bomgat and Elandspunt sites. The fauna as a whole is indicative of 

shallow-water, mainly intertidal, conditions. Although Bullia 

annulata is commonly dredged today, it is sometimes found inter-

tidally. All of the species of Patella are intertidal, except 

P. tabularis which is infratidal. Littorina knysnaensis is found 

most abundantly above HWS (high water spring). The barnacle Balanus 

amphitrite which still encrusts the limestone bedrock at the Langebaan 

site, is indicative of the infra tidal zone. 

TABLE 13.1 

Early Pleistocene Invertebrate Fauna 

Bomgat Sea Elands- Langebaan Harvest punt 

GASTROPODA 

Haliotis midae Linnaeus <'1 <1 

Fissurella robusta (Haughton) X 30 X 2 

Helcion cf. pruinosus 
(Krauss) X 3 

Patella argenvillei (Kraus~ 2 

---_.- -----.... -~. --------------



TABLE 13.1 (Continued) 

GASTROPOOA (Continued) 

P. barbara Linnaeus 

P. cochlear Born 

P. granatina Linnaeus 

P. granularis Linnaeus 

P. oculus Born 

P. tabulllris Krauss 

P. variabilis Krauss 

Gibbula rosea (Gmelin) 

Turbo cidaris Gmelin 
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Oxystele trigina (Chemnitz) 

Littorina knysnaensis Philippi 

"Rissoa" capensis Sowerby 

Solariella unda ta So'Nerby 

Cerithidea bifurcata Kilburn 
& Tankard 

Crepidula sp. 

Thais cingulata (Linnaeus) 

Purpura praecingulata 
(Haughton) 

Burnupena papyracea cincta 
(R~dingJ 

Triumphis dilemma I(ilburn & 
Tankard 

Bullia annulata (Lamarck) 

B. digitalis Meuschen 

B. laevissima (Gmelin) 

Nassarius capensis (Dunker) 

N. Scopuhircus Barnard 

N. speciosus Adams 

Fusus sp. 

Peristernia nassatula (Lamarck) 

Marginella capensis Krauss 

Marginella piperata Hinds 

Bomgat 

x 

x 

x 
X 

X 

X 

X 

Sea I Elands
Harvest punt 

7 

2 

1 

<1 

< 1 

< 1 

19 

..(1 

X 

18 

2 

x 

X 

Langebaan 

2 

<.1 

2 

1 

<1 

7 

26 

<1 

3 

1 

3 

4 

1 

1 

2 

11 

-<:1 

1 

.<..1 

2 
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TABLE 13.1 (Continued) 

Bomgat Sea Elands- Langebaan Harvest punt 

GASTROPODA (Continued) 

Marginella sp. <.1 

Cythara amplexa (Gould) "'-1 

Conus mozambicus mozambicus 1 
Hwass 

BIVALVIA 

Aulacomya ater (Molina) <.1 2 

Perna perna (Linnaeus) X 3 2 

Gryphaea sp. <1 

Ostrea atherstonei Newton <1 

Mysella convexa (Gould) 1 

Tellimya trigona Barnard 1 

C~rditella capensis Smith <1 

Thecalia concamerata 
Bruguiere .(1 <1 

Eucrassatella sp. <'1 

Lutraria lutraria (Linnaeus) 2 

Tivela tomlini Haughton 1 .(1 

Petricola prava Kilburn & 
Tankard 8 14 

CIRRIPEDIA 

Balanus amphitrite Darwin <1 4 

Total individuals - 172 - 220 

The Hbedjiespunt molluscs indicate, in general, the close proximity of 

a rocky shore. But whereas the Bomgat assemblage is characteristed 

by abundant-Perna perna, the Sea Harvest assemblage h~s fewer bivalves 

and abounds in patellids. Although rock-dwelling forms are common 

at the Langebaan site, Patella is generally absent. s:tnd-dwelling 
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forms predominate there. Furthermore, species such as Cerithidea 

bifurcata and Thecalia concamerata are indicative of sheltered mud 

flats. The Elandspunt assemblage tabulated by Parker (1968) could 

not have come from the Early Pleistocene limestone. 

Assigning these deposits to any age with confidence is difficult. 

Parker (1968) reports two 14C dates for the Elandspunt site: 41 100 

B.P. (Pta - 097), and greater than 49 500 B.P. (Pta - 098). Besides 

the fact that the 14C technique is unreliable on carbonate of this 

age, there is also a distinct possibility that the molluscs were not 

collected in situ from the limestone. The number of extinct molluscs 

in the fauna seems to preclude a very young age. These include 

Fissurella robusta, Cerithidea bifurcata, Crepidula sp., Purpura 

praecingulata, Triumphis dilemma, Tivela tomlini, and Petricola prava. 

The Crepidula possibly originated from a C. porcellana-type ancestor 

(Kilburn & Tankard 1975). Stratigraphically the fauna resembles the 

45-50m transgression complex fauna of the Namaqualand coast. It has 

in common Fissurella robusta, Purpura praecingulota, Triumphis dilemma, 

the large form (20cm) of Perna perna, and Petricola prava. The 

absence of Donax haughtoni and Striostrea margaritacea, 45-50m 

transgression complex zone fossils, is attributed to the higher energy 

environment and colder water conditions in the Saldanha area. 

Darrington and Kensley (1969) have assigned an Early Pleistocene age 

to the Namaqualand 45-50m transgression complex. This is based on 

altimetric correlation with the Moroccan succession, the number of 

extinct species, the low degree of lithification, and the fresh 

appearance of the shells. They also note that this was the last warm 

water fauna. 

III. THE 13m SHORELINE 

At the southern entrance of the Elandsberg tunnel at Cape Deseada 

there is a prominent horizon of large wave-generated boulders banked 

against the foot of the cliff at 13m a.s.l. Another horizon of well 

! 
i 
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rounded cobbles and boulders occurs beneath talus material on the 

southern shore of Verlorevlei at 13m a.s.l. No fossils are 

associated with these two horizons. This shoreline is pre-Late 

Pleistocene, since it is considerably higher than the Late Pleistocene 

sea level datum at 6m. Possibly it correlates with the 10m Early 

Pleistocene deposits of the Saldanha area. If younger than that, 

then the most likely correlation would be with the Namaqualand 17-21m 

transgression complex which Carrington and Kensley (1969) assign to 

the Middle Pleistocene. 

IV. LATE PLEISTOCENE MARINE HISTORY 

The geomorphology and mollusc fossils indicate several depositional 

environments. 

sandy shores. 

An open-coast facies includes rocky shores and exposed 

An estuarine-lagoonal facies is identified in the 

vicinity of Saldanha Bay-Langebaan Lagoon, Berg River and Verlorevlei. 

At Velddrif (Figures 13.1 and 13.8) lagoonal deposits are situated 

between breaker-bars of the open-coast facies. The mollusc fauna 

of the open-coast facies includes rock and sand-dwelling forms which 

still inhabit the adjacent coast. But the estuarine-lagoonal facies 

regularly contains several species which today live in tropical waters 

to the north. 

Description of the marine deposits between Ysterfontein and Elands 

Bay will be discussed according to the dominant depositional 

environment which also coincides closely with a regional approach. 

The mollusc fauna has been described elsewhere (Tankard 1975a). 

A. Open-Coast Facies Rocky Shores 

Formation of a platform results from waves breaking in shallow water 

and the movement of detritus across the rock surface. All bottom 

loss of energy takes place shoreward of the surf base which Dietz 

(1963) defines as the greatest depth where the waves begin to peak 

I' 
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appreciably during storms. The depth of vigorous abrasion is thus 

1,5 times the wave height. The abrasion platform is a function of 

the energy generated by the average waves. The depth of the abrasion 

base off the Cape Peninsula is 15m (B.W. Flemming in press). wave 

energy is reflected from slopes greater than 300 so that erosion is 

slow, while maximum erosion takes place on slopes less than 15 
o 

(Flemming 1965). Examples of this are, firstly, the Chapmans Peak 

coast of the Cape Peninsula where a very steep slope and consequent 

reflection of wave energy is associated with little erosion. Secondly, 

in the Saldanha area slopes are low and vigorous abrasion has resulted 

in a well-defined platform. 

In the Saldanha area mean wave height is 3m (Pomeroy 1965), suggesting 

that most vigorous abrasion will take place shallower than 4,5m. 

Davies (1973) attempts to identify Holocene platforms which are 

related to sea levels at 5,4m, 3,9m and 1,8m a.s.l. The platform on 

the seaward side of the Vredenburg pluton varies in altitude up to 

10,7m (Visser & Schoch 1973), so that the relief is about 7m. It is 

likely that the platform was eroded during a single stationary sea 

level, and it is highly unlikely that short-term oscillations of sea 

level would have left a permanent record on a platform of low relief. 

Table Mountain sandstone forms a natural groyne at cape Deseada where 

structurally controlled abrasion has formed a narrow platform. The 

outer margin of the platform is 4,7m a.s.l., and the inner margin 

6,5m a.s.l. 

The most widespread platform is that bordering the Vredenburg pluton, 

broken only by the deep entrance to Saldanha Bay. At Hoedjiespunt 

bedded Miocene phosphorite lies in a bedrock depression with a contact 

at 5,25m a.s.l. This suggests that the platform may be an old 

feature that originated in the Miocene. Tankard and Schweitzer (1974) 

have shown that a similar planation surface at 7-8m a.s.l. at Die 

Kelders on the southern Cape coast is overlain by Neogene limestone. 

But Early Pleistocene limestones in the Saldanha area suggest that 

there the platform has been remodelled in the Pleistocene, and that it 

is a composite feature. "Fresh" stacks on the North Head platform 
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possibly originated in the late Pleistocene. The present sea does 

not appear to be cutting a notch or platform at mean sea level. 

Instead the rocky shore plunges vertically about 3-4m before 

flattening out onto a sandy bottom. 

Parker (1968) has mentioned two beach ramparts which parallel the 

present coast on the North Head and South Head platforms. 80th 

ramparts, or storm beaches, are composed of well rounded granite 

boulders with a matrix of coarse and comminuted shell. Slight 

imbrication of the boulders suggests that storm waves have played 

little part in forming these ridges. The outer rampart on North Head 

is a composite feature. It rises from the shoreline with a concave 

surface to a vegetated crest 7m a.s.l. It thus has a fossil as well 

as a modern component. The second rampart (Figure 13.4) peaks at 

12,1 m a.s.l. and is approximately 40-50m behind the lower and outer 

rampart. The flat between them is underlain by coquina, and shelly 

sand typical of a foreshore accretion unit abuts against the inner 

rampart. Pans have developed behind the ramparts. 

The crests of these ramparts, like breaker-bars, probably relate to 

MHWS, which at St Helena Bay is 0,75m above MSl. The two ramparts 

thus reflect sea levels at 6,25m and 11,35m a.s.l. The 7m rampart 

would most likely be of last interglacial age since it agrees with 

the late Pleistocene datum, but the 12m rampart would be older, and of 

unknown age. 

Shell deposits are extensive on the platform and mollusc assemblages 

from sites at Paternoster and North Head will be discussed in the 

next chapter (Table 14.1). Parker (1968) has listed the molluscs 

from other sites. A horizontally bedded Shelly sand is exposed below 

the Paternoster lighthouse. The bedding takes the form of layers of 

complete shells separated by layers of comminuted shell. Whole 

shells constitute 25-30 per cent of the organic remains. Gastropods 

constitute 96 per cent of the assemblage. Most species are rock

dwelling intertidal forms. Only Patella compressa of the six 

patellids is infra tidal. Conus scitulus and Cypraea algoensis are 

common. 



Figure 13.4 Excavation through inner storm beach on the North 
Head platform. Elevation of the crest is 12m a.s.l. 

Figure 13.5 Rhythmically and wavy laminated evaporite deposit 
at Cape Oeseada. 
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The Paternoster deposits are typical of the marine sediments covering 

the platform. Rock-dwelling forms are always in excess of 90 per 

cent, and gastropods predominate. On the North Head platform at the 

entrance to Saldanha Bay occasional «10/0) and stunted Ostrea 

atherstonei valves occur. There are also seal bones. Barnacles 

are common. Due to maximum exposure to the swell this part of the 

platform has a great amount of comminuted shell (>950/0). Beach rounded 

boulders and cobbles are common, as well as fragments of coquina. 

These shell beds regularly occur up to 6m a.s.l. This and the outer 

rampart suggest a Late Pleistocene shoreline dominated by a 6,25m 

sea level. 

Several localities have features which suggest lower sea levels than 

that at 6,25m a.s.l. Inside the Bomgat (Figure 13.2) there is an 

horizon of bedded wave generated granite boulders 0,7m thick resting 

on the cave floor at 3,5m a.s.l. The molluscs are typically rock

dwelling, open-coast forms. The 80mgat is an extension of a gully 

through the granite platform through which waves surge high above mean 

tide level. The cave deposit was probably formed above high tide 

level and would have been related to a sea level below 2m a.s.l. The 

fresh appearance of the molluscs and the cave setting permit the 

possibility that the beach could be a modern feature, related to 

exceptionally high seas. 

There is an intertidal occurrence of beachrock at the northern end of 

Jutbaai. It is a medium-grained skeletal lime grainstone. The 

lath-shaped, well rounded shell detritus constitutes 95 per cent of 

the rock. The absence of felspar is characteristic of a beach 

environment. The shell and echinoid spine detritus shows a preferred 

orientation, and is drusy calcite cemented. Coquina is preserved 

at two further localities amongst beach boulders at 1,6m a.s.l. and 

3,9m a.s.1. 

B. Open-Coast Facies Exposed Sandy Shores 

Waves tend to break further from the shore with decreasing gradient so 
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that there is also a decreasing amount of energy available for 

shoreline erosion (Flemming 1965). With loss of energy in crossing 

the shallow floor, coarse stirred-up particles are deposited and 

these lead to formation of breaker-bars (Holmes 1965). Since the 

slope of the sea floor adjacent to the Berg River is only 1 in 400, 

one would expect accretion units to develop. Gut this area is 

relatively sediment-starved since perennial runoff is restricted to 

the Berg River which contributes only a small quantity of sediment, 

and the Cape submarine canyon possibly acts as a sediment drain. 

Late Pleistocene sandy shore deposits are most prominent between 

Slippers Bay (west of the Berg River mouth) and Cape Deseada. The 

present shoreline forms a smooth curve. At Cape Deseada, where the 

coastal plain is narrowest, aeolian sands tend to form a concave 

profile. Further south the coastal plain becomes more complex. 

1. Evaporite Deposits 

Gypsum deposits are frequently encountered on the flats behind the 

coastal dunes (Figure 13.1). Generally, these evaporite deposits 

are less than 6m in altitude and are believed to be mainly of last 

interglacial age. The evaporite deposits north of Dwarskersbos 

(Figure 13.1, Gyp 2) and Ysterfontein (Gyp 7) are probably still forming 

today since they are associated with salinas. (A salina is a modern 

salt pan on an arid coast). Visser and Schoch (1973) record several 

CaS0
4

12H20 determinations on these deposits. The gypsum content of 

the evaporite deposits usually exceeds 80 per cent. The gypsum 

usually occurs in uneven masses of fine grained texture. Elevations 

above sea level are as follows: Cape Deseada (Gyp 1) 4,5-5mj 

north of Dwarskersbos (Gyp 2) 3,5-4,5m; Kruispad (Gyp 3) 3,5m; 

st Helena Bay area (Gyp 4 and 5) 3m; Naval Academy (Gyp 6) 2m; 

Ysterfontein (Gyp 7) 2m. 

The Cape Deseada occurrence (Gyp 1) was the only one examined in detail. 

Here the coastal plain is backed by 180m high sandstone cliffs. The 

sedimentary succession of the terrace from bottom to top is as follows: 



(i) 

(ii) 

(iii) 

(iv) 
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shelly calcareous sands overlying the sandstone platform; 

rhythmically laminated (2mm units) carbonate-gypsum

halite units (Figure 13.5); 

a thin layer of saline mud; 

modern dune sands which also form extensive coastal dunes. 

The shelly calcareous quartzose sands at the base are attributed to 

a transgression to 6-7m a.s.l. The mollusc assemblage is indicative 

of an intertidal sandy beach, except for Choromytilus meridionalis, 

which is a rock-dweller. Solen capensis suggests a sheltered 

environment which, adjacent to the present high energy beach, could 

only have prevailed in a lagoonal environment on the leeward side 

of a breaker-bar. An extensive emerged bar which once formed a 

barrier-beach follows the st Helena Bay coastline. In the Cape 

Oeseada region a salina must have developed behind the bar. Flooding 

of the salina occurred at spring tides. Precipitation from the 

stranded brine led to formation of the evaporite .• The evaporite 

is now about O,75m thick and would have required a seawater column 

of 45m for its formation (by extrapolation from statistics quoted by 

HsO 1972). 

The evaporite contains a microfauna suggestive of a complex history 

of formation. The microfauna is summarised in Figure 13.6 and Table 

13.2. The foraminifera, which constitute only 5 per cent of the 

assemblage, are all abraded. In contrast, the ostracodes (95 per 

cent of the assemblage) are thin shelled, show no signs of abrasion, 

and are frequently still articulated. All growth stages are also 

encountered. Candona sp., Pionocypris assimilus, and Cypridopsis 

are all fresh-water species. Aurila dayii suggests a more saline 

environment as found in estuaries and lagoons. Cyprideis of. 

limbocostata is an inhabitant of brackish-water, salt lagoons and 

marsh environments. Species of Cyprideis have both smooth forms 

and nodose forms, but the number of nodose dimorphs decreases with 

decreasing salinity (Benson 1961). The smooth tests of Cyprideis 
I 
i . 



Figure 13.6 
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TABLE 13.2 

LATE PLEISTOCENE MICROFAUNA ('Yo) 

Sites 3 4 7 8 9 12 18 21 22 

FORAMINIFERA 

Quinqueloculina spp. 3 6 21 X X X 

Sigmoilina sp. X 

Frondicularia sp. <'1 

Lagena hexagona (Williamson) <1 3 X X 

Lagena semistriata Williamson 7 3 

Lagena cf. orbign~ana (Seguenza) <1 

Lagena spp. 2 X X 

Bolivina variabilis (Williamson) <1 23 

Bulimina sp. 7 

Rotalia beccarii (Linnaeus) 69 73 X 46 15 X X X 

Elphidium alvarezianum (d'orbigny) 17 6 

Elphidium macellum (Fichtel & Moll) 1 X 21 

Elphidium spp. 21 50 X X X 

Cibicides cf.eseudoun~eriana(Cushman) <I X 

Cibicides spp. X 

Virgulina cf. advena Cushman 2 

OSTRACODA 

Eucypris sp. 1 

Paracypretta ampullacea Bars 7 

Cypridopsis ochracea Bars 69 

Pionocypris assimilis Bars 25 

Candona sp. 2 

Paracypris westfordensis Benson & 
Maddocks 5 

Aglaiella railbridgensis Benson & 
Maddocks 1 7 

Cytheretta knysnaensis Benson & 
Maddocks X 

Cyprideis cf. limbocostata Hartmann 2 

Perissocytheridea estuaria Benson & 
Maddocks 6 6 

Cytherura SPa <1 

Hemicytherura parvifossata Hartmann X 

Bairdia cf villosa Brady 1 

Aurila da yii Benson & Maddocks 4 1 X 27 22 38 
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TABLE 13.2 (Continued) 

3 4 7 8 9 12 18 21 

OSTRAPOOA (Continued) 

Caudites knysnaensis Hartmann X 

Procythereis sp. 4 

Urocythereis sp. 1 <1 12 

Loxoconcha parameridionalis 
Benson & Maddocks <1 <.1 X 20 

L. peterseni Hartmann 21 16 3 

Cytheromorpha sp. 49 49 7 

Bradleya sp. 8 7 10 

Xestoleberis capensis G.W.M~ller 17 1 X 56 X 8 

Cytherella punctata Brady 21 1 

(X = identified, not counted) 

cf. limbocostata confirm the fresh-water nature of the assemblage. 

Since fresh-water ostracodes are scarce in waters more saline than 20
/00 

(Benson 1961), the Cape Deseada assemblage must reflect low salinities 

considering the abundance of these ostracodes. But gypsum will only 

precipitate from a brine at salinity of about 117 0/00 , 3,35 ti~es that 

of normal sea-water. The apparent contradiction between the ostracode 

evidence and the gypsum evidence suggests a complex history of sea-water 

inflow, evaporation to dryness, and fresh-water inflow (Figure 13.7). 

Krumbein and Sloss (1963) discuss the origins and associations of 

evaporite deposits. Two conditions are necessary for the genesis of 

evaporites: a warm and arid climate with little fresh-water runoff, 

and a restricted body of sea water. Excessive evaporation at high 

temperature and little dilution by inflow of fresh-water raises salinity 

above that of the open sea, and ultimately leads to precipitation of 

salt. Calcium carbonate is the first to precipitate when evaporation 

halves the volume of water. Gypsum is next to precipitate at about 

250 C, followed by halite after 85 per cent of the gypsum has 

precipitated. 

22 

25 

25 

12 



Bobbejaansberg 

A _~_ ~ 
qJef) sea ~reEe<<<<~ 

B 

c 
open 

o 
open 
sea 

I 
Modem dune sand 

Evaporite 
Calcareous quartzose sand 
Table Mountain sandstone 

figure 13.7 Summary of history of evaporite 
accumulation at cape Oeseada. 



172 

At Cape Oeseada a restricted lagoon has developed behind an emerged 

breaker-bar in a warm and arid climate. The mollusc fauna of this 

transgression suggests a hydroclimate warmer than today (next 

chapter). Present-day rainfall is less than 200 mm/year. 

Microscopic examination of evaporite specimens shows that each 

cycle begins with carbonate precipitation, and is followed by gypsum 

and frequently by halite. But the absence of halite in some of 

the units suggests inflow of more sea-water, probably tidal, before 

precipitation of gypsum from the previous brine had been completed. 

The precipitation cycle would be terminated at that stage and a new 

cycle initiated. Since each carbonate-gypsum-halite unit is, on 

average, about 2mm thick, it would have taken 300 to 400 tidal floodings 

of the salina (Figure 13.7 A-B) to accumulate the 0,75m of evaporite. 

The broken foraminifera tests suggest that they have come from the 

neighbouring high-energy beaches. Complete evaporation of the brine 

was occasionally followed by inflow of fresh-water, runoff from the 

si~ndstone hills, to produce fresh-water pans (Figure 13.7). This is 

suggested by the ostracode fauna of fresh-water affinity (salinity 

less than 20/00). The articulated valves and completeness of the thin

shelled carapaces suggest little agitation and the abundance of juvenile 

forms suggests that the population was probably suddenly exterminated, 

possibly by another tidal flooding of sea-water. 

It is possible that the unique conditions of a saline water-fresh water 

cycle could also be satisfied by movement of sea water through the 

shelly breaker-bar, rather than over the top during high tides as 

suggested above. The sea-water would at some stage meet and dip 

beneath ground water (density control). Saline or fresh water 

conditions in the salina area would then depend entirely upon advance 

or retreat of the mixing zone due to ground water fluctuations. But 

this explanation would not necessarily account for the rhythmic sedi

mentation illustrated in Figure 13.5. 

2. Barrier-Beach Coast 

The entire length of the st Helena Bay coastline is marked by an 

emerged breaker-bar which, at some stage, must have formed a barrier-
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beach. Dune sands now accentuate the crest of this breaker-bar, and 

only south of Dwarskersbos are there any good exposures. 

Northeast of Dwarskersbos (2,5km) surface exposures show the terrace 

behind the bar to consist of shell beds with entire valves in a 

predominantly detrital shell deposit with pebbles of Malmesbury rock. 

The shells are not evenly distributed throughout the exposure. 

Frequently shells of one species, e.g. Aulacomya ater, may occur 

together. The mollusc assemblage is characteristic of an intertidal 

sandy shore. 

The a~semblage is dominated by Crepidula capensis (46,7 per cent), 

Tellina trilatera (12 per cent) and Venerupis senegalensis (12 per 

cent). The predominance of undamaged valves of T. trilatera, a 

thin-shelled species, suggests relatively low energy conditions such 

as are presently found on the adjacent shore. 

5,5km southwest of this site the mollusc assemblage is very different. 

Crepidula capensis is less dominant, Tellina trilatera is totally 

absent, and Lutraria lutraria and Argobuccinum argus make up nearly 

70 per cent of the assemblage. Many barnacles, patellids, and 

Choromytilus meridionalis suggest a partly rocky shoreline. There are 

also many angular Malmesbury rock fragments. The Malmesbury platform 

is at 4m a.s.l. 

The Malmesbury platform continues west of the Berg River, and is 

exposed behind the Varkvlei homestead where it is associated with 

rounded boulders at 6,7-7m a.s.l. (Visser & Schoch 1973). A deep 

excavation west of the homestead penetrated 4m of horizontally bedded 

shell deposits with little detrital quartz before reaching the 

Malmesbury platform at 1m a.s.l. The platform is mantled with wave-

generated boulders. 

of 6m a. s.1. 

The shell bed rises gently inland to an elevation 

Two breaker-bars are well developed in the Velddrif area (Figure 13.8). 

They are composed mainly of shell material with little detrital quartz, 

suggesting low sedimentation rates. Longitudinal excavations show 
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Figure 13.8 Late Pleistocene marine features in the Velddrif area. Note the two emerged 
bars which parallel the present coast. The broken line on Kruispad indicates 
the furthest inland extent of last interglacial shell beds. 
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subhorizontal bedding with alternating beds of whole shells and 

fragmented shells. 

The mollusc assemblage of the outer bar north of Laaiplek is 

dominated by Crepidula capensis, and Venerupis senegalensis. The top 

O,5m of the bar has a maximum of whole shells, and Venerupis 

senegalensis has a high articulation ratio (6,2). This horizon is 

underlain by l,lm of comminuted shell. Scissodesma spengleri is 

common. Its present geographic range is False Bay to Algoa Bay 

(Barnard 1964), suggesting slightly warmer conditions in the Late 

Pleistocene. The assemblage suggests an intertidal sandy beach. 

Figure 13.9 shows the concentration of shell debris and articulated 

shells constituting the bar. 

The seaward side of the second bar at Velddrif (site 9) is constructed 

of four basic units (Figures 13.10 and 13.11). The lowest unit is 

at least 0,5m thick (base concealed) and consists of horizontally 

bedded sand and shell debris. From 2,5m a.s.l. to 3,6m a.s.l. whole 

bivalves increase in proportion. The disarticulated valves are 

convex-up and have a preferred long-axis direction 220°. Then 

follows 1,4m of fine quartzose sand with several shell bands containing 

articulated Perna perna. Other bivalves are convex-up and have a 

preferred long-axis orientation 130°. The fourth unit from 5m-7m 

a.s.l., consists of a cross-bedded partially cemented shell deposit, 

with cross-bed azimuths 1800 _2200
• 

Wave-energy appears to have been at a maximum in the lower unit where 

shell debris is broken down and finer quartz sand winnowed out. 

Incipient bar development to the west reduced the wave-energy and 

resulted in a greater amount of unfragmented shell. But the very 

thick shells of Venerupis senegalensis reflect the high energy conditions 

nearby. Further growth of the breaker-bar afforded a greater degree 

of shelter. Energy on the leeward side was insufficient to winnow 

away the fine quartz sand. Fragile Perna perna and Phaxas pellucidus 

lived in the sand. There are generally more juveniles in these 

sediments, and Venerupis senegalensis is thinner shelled. There was 

only enough energy to turn the shells over, but not enough energy to 
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2 Crepi dula capensis ; 3 Bullia l a evissima; 
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-Figure 13.11 Bar exposure at Velddrif. 

Figure 13.12 Convex-up bivalves in the quartzose sand unit 
of the inner bar. Note articulated Perna perna 
(lower left). Velddrif. 
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fragment them (Figure 13.12). Finally, the bar migrated shoreward 

aver the lower units. Crass-bedding frequently dips 100, but dips 

in the uppermost part of the bar are shallow and characteristic of 

a washover fan. 

The fine quartz sand reflecting sheltered conditions was nat 

necessarily brought across the tap of the bar, but could have arisen 

from longitudinal transport an the leeward side and could have derived 

from tidal channels. Another excavation in the bar south of 

Velddrif shows small scale crass-beds suggestive of a tidal inlet. 

Figure 13.9 shows the typical composition of the mollusc assemblage. 

Sand-dwelling farms predominate, and one of these, Venerupis 

senegalensis, always exceeds 50 per cent, and in the upper crass-

bedded unit 81 per cent. Thin-shelled Perna perna are commonest in 

the sandy unit. 

Callianassa. 

There are also burrows in the sandy unit, possibly 

The crest of the bar (7m a.s.l.) is a washover fan which probably 

relates to MHWS and can be correlated to a last interglacial sea 

level of 6,25m a.s.l. 

C. Estuarine - Lagoonal Facies 

Shorelines of the open-coast facies parallel the present shoreline 

very closely. Besides Saldanha Bay and its southerly offshoot 

Langebaan Lagoon, the Late Pleistocene sea extended up the Berg River 

valley and along Verlorevlei to form two extensive estuaries. Whereas 

the open-coast facies is continuous, the estuarine-lagoonal facies 

is laterally discontinuous. 

1. Ver lorev lei 

Verlorevlei is situated in a northwest trending drowned valley which 

was farmed along a fault plane by the ancestral Papkuils, Antonies, and 
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Kruis Rivers which now feed into the head of the vlei. Fossiliferous 

sediments are exposed on the steeper southern bank. The present vlei 

is 16km long, and a maximum of 1,Skm wide. The present mouth of 

the vlei is marked by a bar of Palaeozoic sandstone at 1m a.s.l. A 

slight rise of sea level, as in the last interglacial, would effect 

considerable environmental changes, although the low bar at the 

mouth would still ensure a low energy regime. Recent bridge 

foundations showed that the deepest channel, and hence a previous 

mouth, was further to the north. 

Geological sheet 3118 C/3218 A shows a sand covered terrace on the 

north bank to 60m a.s.l. A thick sand cover buries any evidence that 

may indicate a marine origin. 

Late Pleistocene fossiliferous deposits (sites 1-3) are typically of 

a saltwater estuarine environment. Maximum thickness (site 3) is 

2,2m where shelly sands lie unconformably upon Palaeozoic siltstones. 

The highest contact is at Sm a.s.l. where Ostr.ea stentina was found 

still adhering to the rock. The lowest O,Sm of the shelly sand 

consists of complete shells and valves, fragmented shell, and fine-

grained quartzose sand. From 1,Sm to 2,35m a.s.l. is a reworked 

horizon where the original deposit is diluted with coarse, iron

stained sand. From 2,35m to 3,8m a.s.l. the deposit consists of 

poorly sorted colluvium with scattered shell debris. 

The mollusc assemblage (Table 14.1) consists of an infaunal bivalve 

element and a minor epifaunal gastropod element. The assemblage is 

dominated by Dosinia lupinus (SO per cent) and contains several 

thermophilic species such as Tellina madagascariensis, Loripes liratula, 

Macoma tricostata, Venerupis dura, etc. The assemblage suggests an 

estuarine sandy substrate. But Argobuccinum argus, Burnupena papyracea, 

Dxystele variegata, Patella spp., Dstrea stentina, indicate that the 

shore was in part rocky. The low numbers of rock-dwelling forms 

show that they were derived from a neighbouring environment, which may 

not have been extensive. 

The ratio of foraminifera to ostracodes (Figure 13.6, Table 13.2) is 
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9 to 1, indicating an open exit to the sea. Cytheromorpha sp., which 

constitutes 49 per cent of the ostracode assemblage, can tolerate 

brackish water. Aurila dayii, Loxoconcha parameridionalis, Xestoleberis 

capensis, and Cytherella punctata, are today found in estuarine 

environments (Benson & Maddocks 1964; Hartmann 1974). They indicate 

saline water and a sandy substrate. Xestoleberis and Loxoconcha indicate 

the presence of marine grasses such as zostera. The foraminifera are 

dominated by Rotalia beccarii (69 per cent) and Elphidium alvarezianum 

(17 per cent). Rotalia beccarii thrives in brackish water (Loeblich 

& Tappan 1964). 

Estuarine animals generally colonise the area from mid-tide to low-tide 

(Emery & Stevenson 1957). Ostrea stentina, which encrusts the rock at 

5m a.s.l., is always found infratidally. These deposits would thus 

indicate a mean sea level in the region of Bm a.s.l. or more. 

The molluscs constitute a mixed life and indigenous death assemblage. 

Although some winnowing of juveniles may have taken place, the organisms 

appear to have lived in one broad environment reflected in the sediments 

(see next chapter). 

2. Berg River 

The Berg River has not developed a net of tributaries over the sandveld 

where infiltration capacity is high. In its lower reaches it meanders 

and gives rise to the usual feature~ associated with meandering streams, 

e.g. oxbow lakes, meander scrolls. The last interglacial climatic 

peak was probably associated with aridity so that the Berg River did not 

flow as strongly as today, and a last interglacial transgression to 

6-7m a.s.l. would have extended saline conditions far up the valley. 

Fossiliferous deposits containing marine molluscs are encountered 15km 

up the Berg River on the farm Kruispad (Figure 13.8). The terrace 

contains evidence for still-stands of the sea at about Bm a.s.l. and 

3,5m a. s.1. The furthest inland extent of the terrace (Figure 13.8) 

has been drawn from aerial photographs. The inner edge of the terrace 
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is covered with dune sand and calcrete so that it is impossible to 

evaluate the significance of this shoreline. Mr D.S. Melck of 

Kruispad has determined the furthest inland extent of the shell deposits 

(Figure 13.8) by hand-augering. 

A shallow excavation southeast of the homestead and lSkm from the 

Berg River mouth, revealed a shell bed beneath 1m of dune sand. The 

surface of the shell bed is S,lm a.s.l. The mollusc assemblage is 

typically estuarine, and contains several tropical west African species: 

Nuculana bicuspidata, Loripes liratula, Leporimetis hanleyi, ·Venerupis 

~, and Panopea glycymeris. Mr S. Kannemeyer of the South African 

Museum identified the otolith of the sea eel Tachysurus fossor. 

Excavation shows Panopea glycymeris to be always articulated and in life 

orientation, and on the same plane 0,6-0,7m from the surface of the shell 

deposit, i.e. a siphon-length from the surface. Living Panopea 

glycymeris in the Mediterranean is always infra tidal , and never extends 

into the intertidal zone. 

of 6m a.s.l. or higher. 

This suggests a sea level in the vicinity 

The microfauna (Figure 13.6, Table 13.2) consists almost entirely of 

ostracodes, and the dominant species are Aurila dayii (27 per cent), 

Loxoconcha peterseni (16 per cent), and Xestoleberis capensis (S6 per 

cent). They confirm a shallow estuarine-type environment. Loxoconcha 

and Xestoleberis suggest an abundance of zostera. 

The sediment is fine-grained quartzose sand with 8-10 per cent shell 

debris. Except for Panopea glycymeris few of the bivalves are 

articulated. Panopea is a deep burrower and would have been protected 

from disturbance. A dark layer (hydrotroilite) with corroded pollens 

is situated 0,2Sm from the surface of the shell bed. The pollens 

include many Gramineae, Chenopodiaceae, Cyperacae, Compositae (Professer 

E.M. van Zinderen Bakker, pers. comm.). The Gramineae (grasses) and 

the Compositae are very varied. Chenopodiaceae is a small plant that 

thrives in a salt marsh environment in relatively dry climates. 

Cyperaceae (sedge) indicates the presence of water. These pollens 

suggest that for a time the site was isolated from open circulation. 

Hydrotroilite (FeS.nH20) suggests reducing conditions which have resulted 
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from a restricted circulation. 

An excavation to a depth of 10m just inland of this site shows that the 

shell bed does not continue landward. 

There is evidence in the river bank a few hundred metres west of the 

homestead of two separate transgressions (sites 13 and 14). The oldest 

unit consists of a semi-consolidated shelly sand with rounded quartz 

pebbles, 1m thick, with a surface 4,5m a.s.l. The mollusc assemblage 

which is leached, is characterised by an abundance of Mactra glabrata. 

Solen capensis occurs articulated. Loripes liratula is the only 

thermophilic mollusc. This bed grades upwards through silty loam to a 

dune sand. The shelly deposit is most likely a continuation of the 

6m transgression complex. 

A shell bed dominated by 'fresh' Dosinia lupinus is banked against this 

older unit up to 3,2m a.s.l., but extending below river level. At 

river level there is an extensive oyster reef 50m in length consisting 

of Ostrea algoensis. Nearer the homestead gypsum deposits indicate 

former saline conditions with little dilution by fresh water. The 

younger shell bed reflects a sea level in the vicinity of 3,5m a.s.l. 

other fossiliferous deposits are exposed on the south bank of the Berg 

River at Bloemendal (site 11) at 3-4m a.s.l. and near the bridge at 

Velddrif. The Bloemendal assemblage, which contains the thermophilic 

species Loripes liratula and Leporimetis hanleyi is suggestive of a 

shallow, sheltered environment. The bridge assemblage is a mixture of 

sand-dwelling and rock-dwelling forms: Patella sp., Choromytilus 

meridionalis, Dosinia lupinus, and Venerupis senegalensis. 

cobbles are suggestive of a surf beach. 

Well rounded 

Withdrawal of the 6,25m sea left the barrier-beach and bar complex at 

Velddrif emerged, while a lagoon developed in the area between the 

bars. Aerial photography (Figure 13.13) shows that this area is an 

old lagoon floor with microrelief of shallow channels and sand-bars. 

Several pits into these fine-grained lagoonal sediments enabled the 

collecting of mollusc fossils (site 8). All the forms were small. 



Ftgure 13.13 Aerial photograph showing relict Late Pleistocene 
lagoon floor between emerged bars at Velddrif and 
Laaiplek; trend north-east. (Aerial photograph 
reproduced under Government Printer's Copyright 
Authority 4603 of 2 November 1971), . 
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Figure 13.14 Typical section through Blouwaterbaai limestones. 
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"Rissoa" constitutes about 90 per cent of the assemblage. Nassarius 

kraussianus is abundant in weed-beds at low tide on muddy sands (oay 

1969). Other fossils include crab (Brachyura) chelae, echinoid 

spines, bryozoan remains, sponge spicules, ostracodes and foraminifera. 

The ratio of foraminifera to ostracodes is 34 to 1, indicating free 

access to the sea. The foraminiferal assemblage (Figure 13.6, Table 

13.2) is dominated by Elphidium sp. (50 per cent) and Rotalia beccarii 

(46 per cent). Snider and Curran (1974) have found large numbers of 

Rotalia beccarii and Elphidium spp. to characterise the lagoonal environ

ment. The large number of tests per unit volume of sediment indicate 

slow sedimentation rates. Carter (1951) has found that sorting governs 

the size of the specimens, so that the size of the foraminiferal tests 

would be similar to the sediment grain size. According to Krasheninnikov 

(1960, quoted in Loeblich & Tappan 1964) large numbers of Elphidium 

indicate mobile water. The tests of the Velddrif (site 8) specimens 

show no wear or evidence of transportation. 

In comparison with other west coast sites the tests of Rotalia and 

Elphidium are small, and are present in large numbers. Phleger (1960) 

has found that under optimum conditions, and in large living populations, 

small size may be taken to indicate unusually favourable conditions 

and rapid reproduction. 

Cytheromorpha sp. constitutes 49 per cent of the ostracodes, Loxoconcha 

peterseni 21 per cent, and Perissocytheridea estuaria 6 per cent. But 

8 per cent of the assemblage comprises freshwater forms: Eucypris sp. 

(1 per cent) and Paracypretta ampullacea (7 per cent), suggesting 

periodic influxes of freshwater. Cytheromorpha can tolerate brackish 

water. Loxoconcha and Xestoleberis prefer saline water (Benson 1961) 

and suggest the presence of marine grasses. 

These fossiliferous deposits between the bars are at 1,5m a.s.l. and 

must pelate to a transgression about 2m a.s.l. 
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3. Saldanha Bay 

Saldanha Bay, the only major inlet on this coast today, has a deep 

entrance (42m) which shoals to 2m at the mouth of Langebaan Lagoon. 

The bay probably originated by differential erosion of the different 

granite types and Malmesbury shale. (Drilling operations show the 

presence of extensive shale north and north-east of the shoreline). 

There is no evidence of faulting nor of an old river valley. 

On the landward side of the Hoedjiespunt peninsula a low plain below 

10m connects Noordbaai with Smitswinkelbaai. Fossiliferous deposits 

show that this area was probably flooded by the last interglacial sea. 

The surface of the shelly sands is only 1m a.s.l. (site 18). The 

dominant molluscs are oxystele variegata (15,7 per cent), Clionella 

sinuata (19 per cent) and Tellimya trigona (26,1 per cent). The 

assemblage is composed of rock-dwelling and sand-dwelling forms, and 

indicates a shallow environment. 

Limestones form a low cliff along the Blouwaterbaai shore (Figure 

13.14). The oldest unit is an indurated aeolianite which is capped 

with calcrete. At 2,8m a.s.l. the calcrete is overlain by O,6m of 

shelly marine limestone which contains angular cobbles of Malmesbury 

hornfels. The molluscs from this marine unit include rock-dwelling 

forms such as Patella spp., Burnupena papyracea, etc., and sand-dwelling 

forms such as Turritella capensis, Sullia digitalis, etc. They suggest 

an intertidal deposit. The youngest unit is a thin pavement of 

beachrock in the present intertidal zone, and reaches nearly to the foot 

of the cliff. Beachrock is formed in the intertidal zone. 

4. Langebaan Lagoon 

Extensive shell beds along the southern and western shores of the 

lagoon show that the lagoon is a feature which existed at least by the 

Late Pleistocene. The lagoon is a north-westerly trending body 15km 

long and a maximum of 4km wide whose present channels are maintained 

by strong currents generated by the summer south-easterly winds. Where 

I 
I. 
I 
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the eastern shore is controlled by granite topography the last 

interglacial and present shorelines probably coincide. But extensive 

shell beds on the southern shore on the farms Geelbek, Abrahamskraal, 

and Skrywershoek, demonstrate a more southerly extension in the Eem. 

The lagoon is separated from the Atlantic Ocean by a long ridge that 

connects ysterfontein with the South Head granites. One can only 

surmise that it developed as a prograding spit and tombolo or a 

barrier-beach complex. Whatever its origin, it was reinforced by dune 

sand accumulation. The present lagoon is the result of Flandrian 

flooding of a pre-existing dune landscape. 

The Geelbek deposits are a lagoon floor shelly limestone accumulation 

reaching an elevation of 2m a.s.l. and overlain by calcrete. The 

coquina includes quartz porphyry cobbles. Many of the bivalves are 

still articulated. The mollusc assemblage is indicative of a shallow, 

sandy substrate, and contains several thermophilic molluscs (Table 

14.1), for example Loripes liratula, Tellina madagascariensis, Venerupis 

dura. 

At Churchhaven a shelly limestone haS been locally planed at 1,2m a.s.l. 

(Figure 13.15). Thin-section examination shows the limestone to 

consist of 90 per cent quartz and 10 per cent detrital shell with drusy 

calcite cement. All the detritus is fine-grained and well rounded, 

and both quartz and shell are extensively corroded. Most of the 

shell grains are molluscan, with only occasional echinoid spines and 

foraminiferal tests. Figure 13.16 which shows the growth of 

calcite scalenohedra on the inside of an ostracode carapace 

(Urocythereis sP.), demonstrates the extensiveness of diagenesis in these 

deposits. 

A layer of mollusc shells contains many articulated shells and unbroken 

valves. They are predominantly shallow water, sand-dwelling forms. 

Aurila dayii and Aglaiella railbridgensis are common ostracodes (Figure 

13.6, Table 13.2). Ichnofossils include crab-burrows (Figure 13.17), 

and some 2-3cm diameter vertical burrows, probably Ophiomorpha which is 

attributed to the marine decapod Callianassa. 



Figure 13.15 Planation platform on marine limestone at 
Churchhaven. 

Figure 13.16 Calcite scalenohedra in inner surface of ostracode 
carapace demonstrates extensive diagenesis in 
the Churchhaven limestone. 
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According to Mr B.W. Flemming (pers. comm.) the erosional platform at 

Churchhaven is part of an extensive platform which he has traced for 

100m off Kraalbaai. At Kraalbaai there is a contact with the marine 

limestone and overlying aeolianite at 2,5m a.s.l. (Figure 13.18) with 

bivalve remains at the contact. Ophiomorpha is common in the marine 

limestones at this site. A very interesting trace-fossil that 

indicates that the top of the marine limestone at Kraalbaai is partly 

non-erosional is the series of footprints of a terrestrial mammal, 

probably the strandwolf Hyaena brunnea (Figure 13.19) .. The preservation 

of these footprints, the depth of the print, and the detail of the 

print, suggest a wet surface. Ridges of sand on one side of each 

footprint demonstrate that the animal was walking on a slope. Together 

with ripplemarks on the same plane this suggests a wet beach. 

That the platform was eroded by another transgression is shown by the 

sedimentary succession at Churchhaven (Figure 13.20). The lower marine 

limestone platform is overlain by dune sands in which at about 4m a.s.l. 

there is an outwash deposit. The outwash consists of cobbles derived 

from the lower limestone along with mollusc shells. Excavation showed 

that the platform extends beneath the outwash. The outwash deposit 

is composed of 90 per cent cobbles arid 10 per cent shells (Parker 1968). 

The shells are mainly disartiQulated. 

Parker (1968) recognised two distinct units at Churchhaven,which he 

separated according to lithology and the mollusc fossils. He 

recognised that the lower unit was not a shoreline feature, but a 

lagoon floor deposit. He believed the outwash deposit to be a 4,3m 

shoreline. Davies (1973), on the other hand, recognised only one bed 

into which a 1,5m transgression incised. 

The outwash deposit occurs at varying altitudes in this region, that 

at 4m a.s.l.being the highest exposure. Pie diagrams comparing the 

mollusc and ostracode assemblages from the two horizons (Figures 13.6 

and 13.20) confirm Parker'S interpretation. But the field evidence 

shows that this shelly conglomerate is not an ~ ~ marine unit, but 

rather a colluvial deposit that has gravitated down a dune surface. 

It must therefore reflect a shoreline higher than 4m a.s.l. Although 



Figure 13.17 Crab-burrows associated with marine limestone 
at Churchhaven. 

Figure 13.18 Contact of marine limestone and aeolianite at 
Kraalbaai. 



Figure 13.19 Mammalian footprints at the surface 
limes tone at Kraalbaai , and detail. 
marks in photograph on the right. 

of the marine 
Note claw 

Figure 13.20 Sedimentary succession at Churchhaven showing 
lithology and mollusc distribution. 
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the higher beach material (outwash) may well contain fossils derived 

from the lower limestone unit, its mollusc assemblage does appear to 

be distinct. Furthermore, the shells are fresher. 

The conglomeratic colluvium at Churchhaven implies a more vigorous 

abrasion than occurs along the shores of the present lagoon. Two 

explanations can be suggested. The first assumes that the peninsula 

separating the lagoon from the ocean owes its present extent to dune 

accumulation during the last glacial lowering of sea level. (Evidence 

will be cited shortly to sUbstantiate this claim). The width of the 

tombolo or barrier-beach would have been considerably less than at 

present. The ratio between the present lagoon width to barrier width 

is 2:1, whereas the world average is 6:1 (Tanner 1960). A sudden 

rise of sea level, as suggested at Churchhaven, could have partially 

breached the barrier, or pushed it back, and reworked the lower 

limestone. The mollusc and ostracode fauna in the colluvium demonstrates 

that sheltered lagoonal conditions did exist at some stage during this 

sea level rise. 

An alternative explanation could be that the breach of the barrier took 

place further north where Kraalbaai is connected with the ocean by a 

low area. But it is doubtful that this would have created the 

vigorous abrasion at Churchhaven. Besides, this gap may be the last 

remaining evidence of more extensive breaching or flooding of the 

original barrier. 

For several years oyster deposits (Ostrea atherstonei) have been 

commercially dredged from the floor of the lagoon where there are 

reputed to be reserves of 3 million metric tons. East of Kraalbaai 

they form a layer I-3m thick 5,5m beneath the lagoon surface. Oysters 

generally settle on a hard substrate and it is possible that initial 

colonisation took place on the limestone platform. Ostrea atherstonei 

valves are common in the Geelbek and Skrywershoek deposits as well as 

among the colluvium at Churchhaven, but rare in the older limestone. 

The lagoon floor oyster deposits would most likely correlate with these 

last interglacial deposits which in turn are correlated with a climatic 

peak at that time (Tankard 1975). 
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D. Age of the Deposits 

Assessing the ~ge of these deposits depends upon the assumption that 

they are primarily of glacio-eustatic origin, and that they can be 

regionally correlated. Despite the evidence for substantial down-

warping in the Pleistocene, there is good reason to believe that 

tectonism has been minimal in the last 100 ka or so, and that shore

lines below +7m can be correlated. 

Table 13.3 summarises the available 14C dates pertaining to former 

sea levels between present sea level and +7m between Muizenberg (False 

Bay) and the Berg River. All the dates except pta-461 and G r N-·5878 

are greater than 20 ka. 

TABLE 13.3 

Radiocarbon Determinations on Samples from the Area oetween False Bay 
and the Berg River 

Sample Locality Altitude . Material. Date 
No. (m) Dated (B.P.) 

Pta - 094 Kreeftebaai 3 - 5 shell 40 200 .:: 130 

- 095 Luisterhoek 3 - 5 shell 48 200 + 2600 
- 2200 

- 096 Churchhaven 1,5 shell 48 500 + 3600 
- 2900 

-097 Elandspunt 6,5 shell 41 100 .:!: 1200 

- 098 Elandspunt 6,5 shell >49 500 

- 461 Jutten Point 6 - 7 shell 2 070 .:!: 50 
I 

- 794 Kruispad 5,1 shell 43 700 + 4300 I 

- 2700 

- 796 Kruispad 5,1 shell 39 000 .:!: 1860 I 

GrN - 5803 Melkbos 4 shell 43 200 + 2000 . 
- 1500 

- 5878 Langebaan Lagoon -1 (?) shell 6410.:!: 45 

I - 8372 Milnerton 1,5 shell 33 750 .:!: 1780 

- Muizenberg Intertida.! Beach- 25 860 + 1040 
rock - 1190 

- Muizenberg Intertida Bedch- 25 430 + 1050 
rock - 1210 

-

(References: Parker 1968; Vogel 1970; Vogel & Marais 1971j Davies 1973; 
pta-794 and pta-796, Dr Vogel pers. comm. 30.1.73; 1-8372, Or B. Kensley 
pers. comm; Muizenberg beachrock, Siesser 1974). 
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M~rner (1971) discusses some of the difficulties of dating shell 

material older than l5ka. Miniscule contamination of shells older 

than 20ka will give completely spurius dates (Fairbridge 1971). 

Glacio-climatic evidence suggests that any interstadial glacio-eustatic 

sea levels close to present sea level or higher are unlikely 

(Fairbridge 1971; M~rner 1971; Thom 1973). All of the dates shown 

in Table 13.3 greater than 20ka would be pre-last glacial. 

Only two dates (Pta-46l and GrN 5878) are comparatively young. The 

date of 2070 8.P. (pta-46l) was derived from Patella argenvillei which 

appears to have been surface collected from a heavily vegetated rampart 

at 6-7m a.s.l. (Davies 1973). Even if reliable this date would hardly 

date the rampart; Davies mentions the "high throw" of waves along this 

coast in connection with the ramparts. The other date (6410 B.P.) 

was derived from an Ostrea atherstonei valve dredged from the southern 

end of Langebaan Lagoon. This date would appear to be too young 

because sea level would only have recovered by 5,5 ka (Godwin et al 

1958). Furthermore, 3 million metric tons of shells implies a lengthy 

period of accumulation and optimum conditions for reproduction which 

would be better satisfied in the last interglacial. Flandrian 

transgression sediments and their mollusc fossils at an equivalent 

depth below present sea level show that water temperatures in Saldanha 

Bay in the mid-Holocene were no warmer than at present. 

Available l4C measurements indicate that the marine deposits are older 

than the range of this technique, and suggest a pre-Weichselian age. 

The mollusc fauna indicates an Eem age. Composition of the fauna 

compared with older Pleistocene faunas suggests a comparatively young 

age. Abundance of thermophilic forms correlates best with the warm 

isotopic substage 5e peak of deep-sea cores (Shackleton 1969) which 

occurred at 100-120 ka. Chappell (1974a) points out that the widely 

recognised shoreline between 2 and 7m a.s.l. in areas remote from plate 

boundaries, and dated as 120-130 ka, is becoming widely used as a 

Late Pleistocene sea level datum. 

The higher shoreline up to 6,25m a.s.l. would thus date to about 120 ka, 

although the lower shorelines nearer present sea level may be younger. 

In Die Kelders cave on the south coast wave-generated boulders are 
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preserved up to 2m a.s.l. in an erosional strike-passage in steeply 

dipping Table Mountain sandstone. Occupation of the cave by Middle 

stone Age people which followed soon after withdrawal of the sea, 

serves to date the boulder bed as pre-Weichselian, but not much older. 

Since the boulder bed would have arisen from wave surges through the 

passage, it probably reflects a sea level close to the present and 

would correlate with the intertidal beachrock at Muizenberg described 

by Siesser (1974). An immediately pre-Weichselian age, about SO ka, 

is suggested for these lower units. 

V. RECENT 

Figure 13.21 summarises the stratigraphy revealed in an excavation 

100m from the Saldanha Bay shoreline at lSoE. Cross-bedded units of 

variable direction in medium and fine-grained sands with articulated 

Perna perna, and suggestive of shoreface sedimentation, form the lowest 

bed from -4m to -3,4m. This passes upwards into horizontally laminated 

fine sand and coarse sand with Perna perna, a typical fining-upward 

beach sequence. There is a gradual coarsening of the sediment to -1,4m 

suggestive of a temporary regression. Shells are more fragmented, 

and the bivalves disarticulated. The assemblage is an intertidal 

sand~dwelling one. A period of pedogenesis resulted in calcrete 

formation. The calcrete is again overlain by a fining-upward shelly 

sand due to a final transgression. 

The molluscs include: Turritella capensis, Burnupena papyracea, Bullia 

digitalis, B. laevissima, Clionella sinuata, Petricola bicolor, ~ 

perna, Scissodesma spengleri, Lutraria lutraria, Donax serra, and 

Venerupis senegalensis. 

Drilling operations on the coastal flats adjacent to Saldanha Bay 

have shown the widespread occurrence of shelly sands and shelly 

limestones, with intercalated calcrete horizons, below sea level datum. 

Furthermore, several boreholes into the bay floor north of Hoedjiespunt 

penetrated a peat at -22m which was preserved beneath calcrete (Mr A. 

de la Cruz, pers. comm.). 
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VI. FLUVIAL tEDIMENTS 

At several localities from Cape Town to Verlorevlei there is evidence 

of considerable fluvial activity in the past. These sediments are 

presumably of Pleistocene age, although extensive deltaic sediments 

on the continental shelf between Dassen and Robben Islands have been 

assigned to the Lower Tertiary (Dingle 1971). 

A. Baards Quarry 

Uneconomic phosphate deposits occurring on Muishondsfontein are totally 

different from the phosphates of the Varswater Formation. Most 

exploration was done by trenching, the trenches having long since been 

back-filled. Most of my conclusions are based on Chemfos records, 

although there are samples in the collection of the South African 

Museum from Baards Quarry. Cut into greenish white clayey sands are 

channels of clayey sand with phosphatic sandstone (Figure 13.22). The 

depth of the channels is up to 1,Bm. Bone and Singer (1965) describe 

the phosphatic sandstones as "phoscrete", but this term has the 

disadvantage of implying a duricrust-type origin. Some excavations 

have shown that the phosphatic sandstone occurs in places as a thin 

depressed bed 12-20m thick. Bone and Singer have described the 

phosphatic sandstone at Baards Quarry on Muishondsfontein asa "hard 

compact mass of phosphatised sand consisting of sand grains cemented 

and partially corroded by an amorphous calcium phosphate cement 

The phoscrete and nodular phosphate sands represent replacement of 

older shelly sands by phosphate solutions, the phosphate of which is 

probably derived from guano". Thin-section examination of phosphatic 

sandstone from Baards Quarry (Museum collection) has shown no trace 

of phosphatised shell material. The phosphatic sandstone is composed 

of rounded, poorly sorted, quartz grains ranging in size from 0,4 to 

0,04mm set in a matrix of finely divided argillaceous material, with 

organic carbon, the whole of the matrix being phosphatised. Many of 

the quartz grains bear phosphatic haloes. The sand has a packing 

proximity 10-30 per cent. The excavations by Chemfos Limited on 
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Figure 13.22 Lithology of Early Pleistocene 
fluvial deposits on Muishondsfontein. 

Figure 13.23 Relict fluvial sediments at the head of 
Verlorevlei. 
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Muishondsfontein show the phosphates to occur as channel deposits which 

are north-south orientated. 

The 8aards Quarry fossils come from two distinct horizons. The younger 

occur in the surface sands (Figure 13,22) which are unconsolidated 

sands with duricrusts. The older assemblage comes from the clayey channel 

sands. These assemblages are distinctive in appearance and preservation. 

According to Hendey (pers. comm.) both units contain teeth of Equus 

which appear to represent two separate species. Hipparion spp. teeth 

occur only in the channel sediments. All the 8aards Quarry equids 

apparently postdate those from the Varswater Formation where only 

Hipparion is represented, this Hipparion being less evolved than the 

8aards Quarry Hipparion. The 8aards Quarry channel sediments have only 

two species in common with the Varswater Formation: Mammuthus 

subplanifrons and Mesembriportax acrea, both of which have a wide time 

range. Hendey suggests that the 8aards Quarry channel sediments are 

of Makapanian age (Lower Pleistocene) and the surface sand assemblage 

younger (Cornelian or Florisian). 

The Muishondsfontein channel deposits were mineralised by phosphate 

drawn from the Varswater Formation. Nearly spherical well-rounded 

cobbles and boulders of riverworn quartz porphyry are frequently found 

on the surface in this area, while riverworn cobbles can be identified 

in the 8aards Quarry material. 

a t 3D-35m a. s . 1. 

The Muishondsfontein deposits occur 

C. Other Fluviatile Deposits 

The planed surface of the Malmesbury Group at 30m a.s.l. east of the 

Bout River is an old river terrace and is mantled with angular gravel 

(the farms Maatjesfontein and Hamburg in the Hopefield area). 

At ysterplaat (Cape Town) an exposure of cross-bedded, rounded quartz 

gravel is suggestive of a point-bar deposit, while opposing dips 

laterally separated through the section suggest a meandering stream. 

Another exposure through relict fluvial sediments occurs at Redlinghuys 
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(Figure 13.23), at the eastern extremity of Verlorevlei (26km from 

the mouth). Here at least 18m of river sediment occupy an old 

channel with a thalweg less than 6m (concealed) above vlei level. 

The sediment is predominantly fine-grained, iron-stained, quartzose 

sand, with lenticular, gravelly, channel lag deposits which show some 

imbrication of the pebbles. 

Extensive fossiliferous deposits demonstrate that the ancestral Berg 

River valley cutting was pre-Eem. Consolidated fluvial gravels and 

bog-iron-ore are exposed in the bank at Swartjiesbaai. Weichselian 

lowering of sea level to -130m lowered the controlling base level of 

the Berg River. Visser and SChoch (1973) mention four boreholes for 

the Velddrif bridge foundations which intersected at least 4,3m of 

conglomerate beneath a 5m cover of shelly sands which probably 

originated during the Flandrian rise of sea level. 

VII. AEOLIANITES 

The coastal plain is covered with a veneer of dune sands and aeolianites. 

Du Toit (1917) referred to the aeolianites as Oorcasia limestone, while 

Visser and SChoch prefer the name Langebaan limestone since the common 

fossil land-snail shell is Trigonephrus globulus and not Dorcasia. 

These authors present a lengthy discussion of the aeolianites. 

Several exposures suggest that the aeolianites may range in age back 

to the Neogene. In a quarry 4km north of Saldanha high-angle cross-

bedded aeolianite overlies marine Bredasdorp Formation rock of probable 

Miocene age. Behind the President Jetty on Saldanha Bay a well 

lithified, fine-grained aeolianite underlies younger aeolianites. 

Overlying the Varswater Formation is a shelly-quartzose sand of aeolian 

origin. Shell fragments of the land-snail Trigonephrus are common. 

These sands are usually capped with a brown sandy soil overlying 

calcrete. On the southern part of Langeberg these sands are 4lm 

thick, and in the Witteklip-Sandheuwel area l5-20m thick. In this 

latter area they have a regular horizon of ferricrete at a depth of about 



191 

8m indicating wetter conditions. Post-depositional diagenesis has 

produced a layer of aeolian phosphatic sandstone (llphoscrete ll
) on 

Witteklip-Sandheuwel and Langeberg. 

On Langeberg Tankard (1974a) has taken the contact of the Pleistocene 

dune sands and the marine Varswater Formation as the 2 per cent P205 
cutoff, but Wolff ~ (1973) have actually recorded this interface 

as an unconformity. In the vicinity of the New Varswater Quarry the 

top of the Varswater Formation is marked in places by burrow 

structures, while teeth of Hipparion namaquense show not only the 

terrestrial environment but also confirm a Pleistocene age for the dune 

sands. 

Grading analyses are shown in Figure 6.10 where it will be observed that 

there is a tendency towards positive skewness. The quartz grains 

are generally rounded to well-rounded,and frosting is common. Calcrete 

rock fragments brought to the surface during coring illustrate the 

widespread occurrence of this rock. At various levels the quartz grains 

are iron stained. 

Also present in some horizons are multigranular aggregates. These 

are rounded aggregates of fine grained quartz cemented with lime. Some 

of these have been rounded. Also frequently present with these 

aggregates are rounded calcareous fragments. 

An interesting feature of these sands is the microfauna they contain. 

Abundant foraminifera represent two genera, Anomalina and Elphidium 

(5:1). Often the foraminifera are in a fresh state but frequently they 

are worn by wind abrasion. All of these are unphosphatised. Fragments 

of echinoid spines on the other hand are frequently phosphatised. It is 

interesting that in the Varswater Formation the majority of foraminifera 

identified were Elphidium. Near the top of M6-15-N6-l5 the -1,5 ~ 

fraction is composed entirely of rounded shell fragments. In all 

boreholes the heavy mineral content of the aeolian sands is always 

considerably less than in the VfiTswater Formation. 

The fact that the microfauna is almost entirely unphosphatised, save for 

'" 

a portion of the echinoid spines, and that the foraminifera are essentially 
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fresh Anomalina as opposed to the weathered Elphidium tests in the 

underlying Pelletal Phosphorite Member of the Varswater Formation suggests 

that these sands were blown inland subsequent to the regression of the 

sea in which the Varswater Formation was deposited. The abundance 

of land-snail shell fragments (Trigonephrus sP.) along with a marine 

fauna demonstrates the close proximity of a shoreline. 

Most of the aeolianites appear to be much younger, and probably accumulated 

during the last glacial lowering of sea level when vast tracts of 

unvegetated sand lay exposed on the emerging sea floor. Several 

occurrences of interbedded outwash suggest that the climate was not 

necessarily arid. Cross-bedding azimuths at Kraalbaai (mean 3600
) 

show that a southerly wind was prevalentw Rogers and du Toit 

(1909) describe a borehole at Paternoster which penetrated sandy limestone 

containing land-snail shells and tortoise bones to 21m below sea level. 

Tankard and Schweitzer (1974) have described the former seaward 

extension of dunes in Die Kelders area, and also mention in situ Middle 

stone Age artefacts in the outwash deposits which shows that there the 

aeolianites must be Weichselian or younger Furthermore, limestone 

blocks in the cave show that lithification of the aeolianites occurred 

prior to about 6000 B.P. Similar inter-bedded outwash deposits 

containing Middle Stone Age a.rtefacts occur as far north as Saldanha. 

A single 14C assay on ostrich egg shell from a midden in the limestones 

behind the Sea Harvest factory gave an age greater than 40 000 years 

(UW 282). 

An interesting feature of the coastal limestones is the solution-pipe 

cavities which have formed by karst weathering. At Churchhaven and 

Velddrif they penetrate the last interglacial marine limestones and 

shell beds. The pipes are O,3-0,8m in diameter and vertical. At 

Churchhaven they are marked by a 3cm thick lithified crust. All of the 

pipes are filled with non-calcareous terrestrial terra rosa type sediment. 

Blackburnet al (1965) described an identical situation from Australia 

and suggested that they arose from solutional weathering and the filling 

of the voids with sediment by simple gravitation. The terra rosa 

sediment together with the karst weathering and colluvial deposits 

suggests a wetter climate in the southwestern Cape in the last glacial age. 
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Extensive Late stone Age shell middens overlie the Langebaan 

limestone on the North and South Heads. 

is in part calcretised. 

On the South Head the midden , 

Aeolian phosphatic sandstones are also common. Besides the limited 

"phoscrete" horizons within the Pleistocene aeolian sands, there are 

larger bodies of aeolian pho~phatic sandstone. North of Elands Bay 

a north-south trending ribbon of aeolianite, apatite cemented, lies 

banked against the western face of Table Mountain sandstone hills 

(Figure 13.24). The aeolianites are extensively dune-bedded and lie 

exposed between 120 and ISO m a.s.l. In the Oarling-Mamre area 

similar aeolianites are known to exist, and high P20S values on the 

geological sheet demonstrate their extent. X-ray diffraction data 

show that the cementing material is a carbonate fluorapatite. The 

aeolianites contain much fine shell-debris and are, in fact, very 

similar to the "phoscrete" already mentioned. 

been phosphate replaced. 

The shell material has 

VIII. PROPOSED NEW LITHOSTRATIGRAPHIC NAMES 

The Bredasdorp Formation comprises a variety of limestone types of 

marine and aeolian origin. It includes marine limestone with 

conglomerate and coquina horizons, and beds consisting mainly of whole 

shells. The major part of the formation consists of dune sand and 

"shell grit and locally grades into pure shell-beds; it has been 

calcified into rocks varying from crumbly calcareous sandstone to 

hard, crystalline limestone ~.... Solution channels are often 

encountered in the limestone" (Spies et al 1963). Lithologically this 

description describes the marine and aeolian limestones and shell beds 

of the saldanha area. Although locally the limestones may be 

indistinguishable lithologically, it is usually possible to separate 

the aeolian and marine components. 

Formation are here defined: 

Two members of the Bredasdorp 

(i) Velddrif Member: the type-section is the bar exposure at 

Velddrif (Figures 13.10 and 13.11). Lithologically it 
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consists of unconsolidated beds of shell and comminuted 

shell, locally cemented, and with little quartz. But 

it ranges through limestones with shell layers to coquina, 

for example, Churchhaven. 

(ii) Langebaan Limestone Member: type-section on Hoedjiespunt 

behind the Sea Harvest factory where it is over 20m thick. 

It consists of fine to medium-grained calcareous sand, loess, 

and limestone with fine shell detritus and complete shells 

of the land-snail Trigonephrus globulus. This land-snail 

is distinctive enough to feature as a lithological component. 

The member includes outwash horizons and Middle Stone Age 

middens. 

IX. CONCLUSIONS AND SYNTHESIS 

Tilting and warping since the Miocene have displaced marine units from 

their original elevations, so that the~uivalent of the Namaqualand 

45-50m transgression complex (Carrington & Kensley 1969) is situated 

at only 10m a.s.l. in the Saldanha area. Sediments equivalent to the 

Namaqualand 17-21m transgression complex are possibly submerged in the 

Saldanha area. But there is good reason to believe that warping has 

been minimal in the Late Pleistocene. 

Evidence for stillstands of the sea in the last interglacial is not 

always unequivocal. There is no difficulty in recognising shorelines, 

but it is frequently difficult to discriminate between major stillstands 

and lesser features. In summary, data from the Elands Bay-Ysterfontein 

area identifies three stillstands of the sea in the last interglacial, 

with the shoreline at 6,3m a.s.l. being a major feature. These 

stillstands are at 6,3m a.s.l. (CI), 2-3,5m a.s.l. (CII), and sea 

level (CIII). 

The platform on the seaward edge of the Vredenburg pluton was carved 

partly in the Neogene, remodelled in the Early Pleistocene but owes its 

present relief to Late Pleistocene abrasion. Relief of the platform 
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is such that it could have been carved by a single stationary sea 

level. The outer ramparts on the North Head and South Head platforms 

were formed by a sea level in the region of 6,3m a.s.l. Shell beds 

on the platform agree with this interpretation. Similarly, shell beds 

on the Malmesbury platform west of the Berg River mouth are related 

to a major stillstand at 6,3m a.s.l. as are the extensive barrier-beach 

and breaker-bar complex of the st Helena Bay coastline. That there 

are few indications of lower last interglacial shorelines along the 

open coast suggests that this stillstand was a major one. 

Shell deposits in the former Verlorevlei and Berg River estuaries have 

maximum elevations of 5m a.s.l. Infratidal molluscs still in their 

living positions suggest a mean sea level at least 6m a.s.l. But the 

fauna in general, which in estuaries would inhabit the mid-tide to 

low-tide zone (Emery & Stevenson 1957), shows that this sea level could 

not have been much above 6m and thus agrees with the CI transgression. 

Evidence for a transgression to 2-3,5m (CII) consists of a shell bed 

which is banked against older CI sediments on Kruispad, the lagoon 

sediments between the emerged bars at Velddrif, Blouwaterbaai sediments, 

Geelbek tidal flat sediments at 2m a.s.l. and the Kraalbaai aeolianite -

marine limestone contact at 2,5m a.s.l. 

A boulder bed in the Bomgat on the Hoedjiespunt peninsula obviously 

owes much of its present elevation to waves surging up the passage 

through the granite in front of the cave. Considering that the 

elevation of this boulder bed is only 3,5m a.s.l. it could be attributed 

to very heavy surf during high tides. The 'fresh' appearance of the 

shells which still have their colour preserved would suggest a Recent 

age, and the elevation is certainly not excessive given the physical 

setting of the cave. But it must also be borne in mind that this 

beach could date to the last interglacial CII or the CIII transgressions. 

Samples have been submitted for radiocarbon dating even though ground-

water contamination seems likely. This site illustrates some of 

the difficulties encountered in raised shoreline studies. 

At four sites there is evidence for a sea level in the last interglacial 
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coinciding with the present beach (CIII). This includes beachrock 

at Muizenberg (Siesser 1974), Blouwaterbaai and Jutbaai. Wave-

generated boulders beneath Middle stone Age sediments in Die Kelders 

cave are attributed to waves surging into the cave from about the 

present position of sea level, or even lower. 

These results are summarised in a graph of Late Pleistocene eustatic 

sea level changes (Figure 13.25). That portion of the curve from about 

47ka to the present is based on 14C dates of submerged material, and has 

been fully discussed in the first chapter. The last interglacial 

part of the curve agrees well with the shorelines on Mallorca (Butzer 

& Cuerda 1962). It is suggested that the CI shoreline correlates with 

their Tyrrhenian (T) IIa, CII with T lIb, and CIII with T III. According 

to Butzer and Cuerda, it is the T II shoreline (5-10m) which contains 

thermophilic molluscs, and Tankard (1975) has suggested correlation of 

the CI thermophilic fauna with that sea level. Broecker et al (1968) 

have dated three Eem transgressions on Barbados: BIll (6m a.s.l) at 

122 ka, BII at 103ka, and BI at 82ka, and Chappell (1974b) has dated 

three sea level peaks on New Guinea at 120 ka, 100 ka and 80 ka. The 

thermophilic mollusc content of the C I and C II shorelines suggests 

the distinct possibility that the three last interalacial peaks of the 

southwestern Cape may all correlate with the warm peak at 120 ka, 

and that the two lower shorelines would then represent only temporary 

halts in a regression from the 6,3m level. 

It is not known whether the C II and C III shorelines represent temporary 

stillstands in regression from the major C I stillstand, or whether 

they are, in fact, transgressive and separated by regressions. 

Withdrawal of the Sea with the build-up of high latitude glaciers left 

vast, unvegetated tracts of sand exposed on the emerging shelves, and 

these were blown into dune fields by wind systems which may have 

increased in intensity with the onset of glaciation. But in the south-

western Cape they do not signify an arid climate. On the contrary, there 

is evidence that precipitation was at times higher than today. 

There is no evidence to suggest Holocene sea levels higher than the present. 
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CHAPTER 14 

LATE PLEISTOCENE MARI~E PALAEOECOLOGY 

AND PALAEOCLIMATOLOGY 

I. INTRODUCTION 

Isolated fossiliferous, marine sediments occur on the wave-cut 

platforms and in the sheltered Late Pleistocene embayments from Elands 

8ay on the west coast to Knysna on the south coast. The fossils 

occur in unconsolidated quartzose shelly quartzose sands. The 

invertebrate fauna is essentially modern in composition and comprises 

some 150 species which today live in shallow-water environments. 

Only three of the mollusc species from the west coast deposits are 

not known to be living today. In so far as most of these taxa are 

still living, and are inhabitants of shallow water, they provide ideal 

material for e palaeoecological study. 

The Late Pleistocene fauna of the west coast is broadly divisible into 

two distinct, but contemporaneous, ecologic zones. These are, firstly, 

a cool-water, open-coast facies characterised by rocky shore and sandy 

beach assemblages, and secondly, a warm-water, sheltered embayment 

facies (estuaries and lagoon~). Whereas the open-coast facies is 

laterally continuous, the sheltered embayment facies is restricted in 

distribution. The open-coast facies is characterised by molluscs 

which commonly inhabit the present coast. A striking feature of 

the estuarine-lagoonal facies is the association of extant and extra-

limital thermophilic species. ("Thermophilic" and "extralimital" 

imply species which occur outside their normal spawning range). 

Examination of their present latitudinal ranges indicates that a 

significantly warmer hydroclimate prevailed when those species were 

common along the south-western Cape coast. In attempting to reconstruct 

the palaeoenvironment, a detailed examination of a south coast 

assemblage is necessary. The fossiliferous deposits at Knysna are 

therefore included in this study. 

Late Pleistocene faunas of open-coast and sheltered-embayment aspects 

I· 
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from southern California are similarly distinctive. Nearly all the 

dominant species also inhabit the adjacent coast. But the sheltered 

embayments also contain a high proportion of thermophilic molluscs 

which are found far north of their present-day geographic range end

points. Several authors have used these anomalies as a key to Late 

Pleistocene climatic interpretation(Valentine 1955, 1957, 1961; 

Valentine & Meade 1961; Addicott & Emerson 1959; Emerson & Chase 

1$59; Kern 1971). Valentine (1955) explained the diverse nature of 

the fauna by changes in intensity of the oceanic circulation and 

upwelling, while the water of the embayments was heated by increased 

solar radiation. A recent alternative explanation suggests that the 

larvae of tropical molluscs were transported into the cooler areas by 

periodic local and temporary current changes, and that they became 

only temporary, non-breeding, members of the community (Zinsmeister 

1974) • 

The south-western cape Province, with its extensive Late Pleistocene 

fossiliferous deposits, and its complex present-day ocean current 

systems, is well placed to make a contribution to the knowledge of 

Late Pleistocene hydroclimates. The purpose of this chapter is to 

describe the mollusc fauna, particularly between Ysterfontein and Elands 

Bay, and to examine their palaeoenvironmental significance. 

II. METHCDS 

The absolute density of fossil specimens of each molluscan species at 

any particular site is difficult to determine because of the sampling 

problems inherent on the size of the shell. For instance 'Rissoa' 

capensis is a small gastropod (usually less than 3mm) and would 

frequently number in the hundreds from just 100 g of sediment, while 

the larger (approximately 200mm) Panopea glycymeris would occur at 

approximately 1m intervals. Bearing in mind that the present study 

is a palaeoecological one, and that the larger molluscs have been 

better studied with respect to taxonomy and ecology, emphasis has in 

all cases been placed on the macro-molluscs. A further source of 

error arises from the differential fragmentation of shells. Bivalve 
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shells are more easily broken than gastropod shells, and in the living 

assemblage they may have been far more abundant than the faunal list 

suggests. Table 14.1 should be taken only as an approximation to 

the original community structure. 

The procedures adopted in drafting table 14.1 are as follows: 

(i) It was desirable to sample as small an area as possible 

to obtain not only the absolute density of each species, 

but also to obtain restricted samples for size-frequency 

analyses. In most cases a quadrat size of 1 square 

metre has been found adequate, although quadrat size may 

have to be adjusted up or down depending upon the 

relative abundance of specimens. 

(ii) For a shell to be counted as an individual it must be 

nearly complete, or so nearly so that the remainder 

could not be identified and counted separately. Left 

and right valves of each bivalve species were counted 

separately, and the highest count taken as the total 

number of individuals of that species in that quadrat. 

(iii) Each species has been recorded in Table 14.1 as 

percentage frequencies in the sample where more than 

50 individuals were counted. Where a total of less 

than 50 individuals were counted they are recorded in 

Table 14.1 as "X". 

No attempt has been made to relate species to sediment texture since 

every mollusc at some time must have been living among already dead 

and fragmented shells. The substrate would thus consist of quartzose 

sand and bioclastic material ranging in size from complete shells 

to finely comminuted fragments. 

" 

I 



TABLE 14.1 

Distribution and Abundance (~) of Late Pleistocene Mollusca 

Lagoon 

2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 Floor Knysna 

GASTROPODA 
Amblychilepas sculella <1 < 1 <1 

(Gmelin) 
Fissurella aperla (Sowerby) <1 

F. mu/OOilis Sowerby <1 x 1,3 1,0 

Helclon pec/unculus < 1 <1 
(Gmelin) 

Pa/ella argenvillei Krauss 7,8 7,2 

P. barbara Linnaeus 2,0 7,4 <1 X 

P. cochlear Born 2,0 2,6 X 

P. compressa Linnaeus 1,0 3,9 1,3 <1 
P. granal/na Linnaeus <1 1,0 X 8,3 2,0 

P. granularls Linnaeus 4,9 10,5 
P. longlcos/ata Lamarck < 1 

P. min lata Born X <1 <1 f\) 
0 

Cantharidus J'uarezensis 
ful/oni (Sower by) 9,8 0 

Gibbl/la eicer (Menke) <1 
Minoliasp. <1 
Oxyslele /rigina (Chemnitz) <1 <1 

O. variegata (Anton~ 1,4 <1 15,7 9,4 2,7 2,4 

Monilea alexandria (Tomlin) 1,8 

Solariella sp. 1,0 

Pseudos/omatella orbiculata <::: 1 

(A. Adams) 
Turbo cidaris Gmelin <1 <1 
T. sarmaticlIs Linnaeus < 1 
Lillorina kny.naensis < 1 2,0 4,6 < 1 

Philippi 
Alvania alfredensls Bartsch <1 
Coriandria cr. halia <1 

(Bartsch) 
• Rissoa' algoensls Thiele x 
• Rlssoa' cr. capensi. Sowerby x x x X x x x x x 
Turritella capensis Krauss x <1 18,0 2,0 1,7 2,6 

T. carlnlfera Lamarck 18,4 7,1 6,6 

T. sangl/inea Reeve 10,3 X 

Cerlthil/m kochl Philippi 3,7 

C. scOOrldum nifonodulosum 16,3 

E. A. Smith 
Diala 111Irasulcata Sowerby <1 

Alaba pinnae Bartsch < 1 

Calyptraea chlnensls x <1 x <I 1,0 

(Linnaeus) 
Crepldula aCl/leata (Grnelin) 1,3 <1 x x 3,3 <1 1,0 

C. porcellana Lamarck x x <1 < I x 1,5 <1 x 1,2 1,9 <1 

C. capensls praerugulosa <1 x 46,7 18,1 <1 10,8 
Kilburn & Tankard 

Cypraea algoensis Gray <1 
Na/ica genuana Reeve <1 4,0 <1 1,0 12,9 <1 



TABLE 14.1 (Continued) 

Argobucclnllm argus <1 2,7 <1 5,4 6,S x <1 
(Gmelin) 

Cymatit/m dolarium <1 
(Linnaeus) 

Thais eingulata (Linnaeus) X 1,5 3,3 
T. dubia (Krauss) <1 <1 < 1 
T. squamosa (Lamarck) 1,3 X <1 X <1 X 12,3 19,6 X 1,3 
Burnt/pena papyracea papy-

racea (Roding) X <1 3S,9 x 7,8 10,6 < 1 
B.p. cilleta (Bruguiere) < 1 <1 t9,1 2,0 1,0 3,3 
B. digiralis Meuschen 8,0 X X X 1,0 X < 1 1,3 <1 1,2 5,S 1,0 
B. laevissima (Gmelin) 5,3 X X 10,5 <1 < 1 
Nassarius analogicus X <1 

Sowerby 
N. kochiallus (Dunker) < 1 
N. kraussiallus (Dunker) X 1,6 
N. plicatelllls (A. Adams) 4,1 2,3 5,1 4,1 
N. scopu/arclIs Barnard 4,7 X <1 X 30,0 II,S X 

N. speciaslIs A. Adams < 1 <1 1,0 <1 1,0 
Fascia/aria /ugllbris Reevo <I < 1 < 1 <1 3,5 < 1 2,5 f\) 

Marginella capellsis Krauss X X -:: 1 X 5,8 X 2,0 3,0 3,5 1,0 0 
l>f. piperara Hinds <1 < 1 I-' 

Mirra aerumllosa Melvill < 1 
Vexil/um capense (Reeve) <1 
Cyrhara amplexa (Gould) <I < 1 
Clionella sinuara (Born) 1,0 <1 19,0 3,0 10,6 2,3 4,1 
Conus sci/ulus a/goensis 6,4 1,3 X 

Sowerby 
Syrno/a aganea (Bartsch) <1 
Turbanilla krauss; Clessin < 1 
Tt/rbonil/a sp. <1 
Pupa daviesi Kilburn & <1 

Tankard 
Ring/eu/a turtoni Bartsch <1 
Phi/ine aperta (Linnaeus) <1 
Cyliehna tubu/osa Gould < 1 
Dul/aria ampulla (Linnaeus) 1,0 
Arys cylindrica Sowerby <1 
Siphollutia aspera Krauss 1,5 1,3 5,2 
S. capensis Quoy & Gaimard <1 1,0 1,6 1,7 

BIVALVIA 
Nuculana blcuspidata 3,2 

(Gould) 
Aulaeomya ater (Molina) < 1 1,3 X X 2,9 <1 1,0 
Perna perna (Linnaeus) X 1,3 X 1,0 X 1,3 
Choromyli/us meridionalis X X <1 

(Krauss) 
Chlamys tinctus (Reeve) < 1 
Pecten suleicostata Sowerby <1 
Lima/ragilis (Chemnitz) < 1 
L. rorunda Sowerby < 1 
Ostrea arhers/olle; Newton <1 5,1 7,1 < 1 5,0 > 99 
O. stentina Ranson 2,7 
O. algoensfs Sowerby 9,6 x <1 

~---------

._---_ ... _---------_._-------_ .. _ ... __ ........ __ .. _- -.. _-----



TABLE 14.1 (Continued) 

Lagoon 
BlV ALVIA (conld.) 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 Floor Knysna 
Loripes Uralllia (Sowerby) 9,0 20,0 26,4 8,0 15,4 x x 20,4 14,1 <1 4,1 57,S 
Anodolllia edentula 1,4 

(Linnaeus) 
Felallia diaphana (Gmelin) <1 
F. sllbrat/iala Sowerby 1,0 
Erycina subrat/iala (Gould) X 

La.wu:a rllbra Montagu < 1 1,0 1,0 
Mysella C01!veXa (Gould) < 1 < 1 
Tellimya Irigona Barnard <1 26,1 
Tellimyasp. X 

Cart/itasp. <I 
Parvicardium turtoni <1 

(Sowerby) 
Mactra glabrata Linnaeus X 4,1 11,4 f\) 

M. avaUna Lamarck 1,0 1,2 2,3 1,7 1,2 0 
Scissodesma spengleri X X 

f\) 

(Linnaeus) 
Lulraria lu/raria (Linnaeus) 2,7 X X 11,4 X 1,3 
Lulraria sp. <1 
Solen capellsis Fischer 1,4 X <1 2,0 1,9 X 1,3 <1 1,2 <1 <1 
Phaxas pellucidus (Pennant) <1 
Tellina ponsonbyi Sowerby <1 
T. madagascariensis Gmelin 6,0 10,0 8,1 < 1 10,2 9,4 23,4 3,3 <1 
T. trilatera Omelin 12,0 <1 
T. gilchristi Sowerby < 1 <1 <1 
Macoma crawfordi Sowerby X <1 
M. litoralis (Krauss) <1 
M. tricos/ata (Romer) 2,0 3,0 <1 
Gastrana matadoa (Omelin) 4,1 X 1,0 9,1 < 1 < 1 
G. fibrosa Kilburn & 1,3 

Tankard 
Leporimetis hanleyi (Dunker) 2,0 1,0 < I <I 
DOllax serra (Cbemnitz) 2,7 X 1,0 < I < I 3,1 
D. sanctllarium Kilburn & 1,0 

Tankard 
Psammolellina capensls X X 34,0 1,0 

Sowerby 
Theora alfredensis Bartsch < 1 1,0 < 1 
Venus verrucosa Linnaeus <1 2,7 <1 x 16,3 3,5 18,4 < 1 
Tivela lomlini Haughton 1,7 
Dosinia lupinus Linnaeus 81,0 67,0 50,0 x 2,0 18,6 X 1,0 39,1 9,9 < 1 
D. hepatica (Lamarck) < 1 
Venerupis senegalens;s < 1 X 12,0 X 55,0 x 12,8 X X 1,0 3,3 3,5 1,7 1,0 

Gmelin 
V. dura Gmelin <1 6,4 X 4,1 1,2 < I 
Pallopeo glycymer(s (Born) 1,3 

Tolal number individuals 100 lOa 148 75 105 50 156 204 IS3 153 98 85 256 121 492 
% thermophilic species 60,0 75,0 26,1 22,2 25,8 20,0 33,0 6,9 26,9 31,6 22,6 25,9 12,8 
% thermophilic individuals 17,0 33,0 41,9 20,0 42,9 45,9 32,9 28,1 35,5 60,4 

~,------------ -<- -.- -~ --------------, . ~~-----. ----~, .... -~---~.--.------
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III. PALAEOECOLOGY 

In this chapter past extensions of tropical and subtropical mollusc 

geographic ranges are used as a basis for interpreting Late Pleistocene 

palaeotemperature changes. These inferences are based only on fossils 

of still extant species, and the assumption (Durham 1950) that 

stenothermal organisms are in general more critically limited by 

minimum temperatures than by maximum temperatures. The validity of 

such palaeotemperature inferences depends on the fossils being 

preserved in the sediments in which they once lived. 

In describing the relationship between the fossils, after death, and 

the sedimentary environment, we define the following types of fossil 

assemblages: 

(i) Life assemblage: disturbance after death negligible 

(H311am 1960). 

(ii) Death assemblage: 

(iii) 

(a) Indigenous: organic remains disturbed after death 

but not transported very far (H311am 1960). 

(b) Transported : organic remains introduced from a 

neighbouring contemporaneous or older environment. 

Mixed assemblage: this comprises any combinations of the 

above possibilities and is the general case (Hallam 1960). 

The status of this assemblage is clarified by describing 

it, for instance, as a mixed life and indigenous death 

assemblage. In the present chapter this is the commonest 

case. 

A. Population Dynamics 

8oucot (1953), Olson (1957), Craig and Hallam (1963), and Craig and 
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Oertel (1966) have attempted to discriminate between life and indigenous 

death assemblages on the one hand and transported death assemblages 

on the other, by using size-frequency distributions. According to 

Boucot an indigenous death assemblage is characterised by a positively 

skewed distribution (large number of small forms), while negative 

skewness or a normal distribution characterises the transported death 

assemblage. He suggested that negative skewness resulted from winnowing 

of the smaller shells. Craig and Oertel (1966) question this and 

maintain that the shape of the size-frequency distribution in a fossil 

population depends principally upon the growth-rate and mortality-rate 

of the relevant species. In this way negative skewness could arise 

from a decreasing growth-rate with constant mortality.-rate which would 

concentrate the older age-classes in a few size-classes. 

Oertel suggest the following options: 

Craig and 

Growth-rate 

decreasing 

constant 

constant 

constant 

Mortality-rate 

constant 

decreasing 

increasing 

constant 

Size-frequency distribution 

negative skewness 

positive skewness 

flattening of curve, 

possibly negative 

skewness 

mirror image of living 

popUlation by dead 

popUlation. 

Growth-rate and mortality-rate complement each other when one decreases 

and the other increases, but cancel each other if both increase or 

decrease. 

Higher mortality-rates which favour large populations may result from 

a fluctuating environment (Valentine 1971). Mortality is affected 

by nutrients, temperature, and salinity changes. In general, 

invertebrates have higher mortality-rates in the early stages of life, 

but the rate may be lower in some species than others (Craig & Oertel 

1966). Environmental conditions in estuaries and lagoons would be 

expected to fluctuate widely and rapidly. They would be expected to 

I 

I 

I 
I 
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show a variable salinity range due to evaporation and influx of fresh 

water, and a high diurnal temperature range. Furthermore, seasonal 

upwelling of cold water along the Cape west coast leads to marked 

instability of the environment on the open coast too. 

Although growth rate is an important factor in this type of study, 

it is one of the attributes about which there is little information. 

There is evidence, however, that most bivalves maintain a slightly 

decreasing, but nearly linear, growth-rate throughout life (Craig & 

Oertel 1966). This has been shown to be the case for Cardium edule, 

Tapes japonica, Dosiniaexolata, and Venus striatula (Kristensen 1959; 

Wilbur & Yonge 1964). 

The most likely effect of the unstable environmental characteristics 

of the west and south coasts of the Cape would be a high mortality-

rate among the juvenile molluscs. Assuming a constant growth-rate 

for the bivalves, the interplay of mortality-rate and growth-rate should 

lead to' positively skewed size-frequency distribution for a life assemblage, 

or an indigenous death assemblage. 

Besides the effect of growth-rate and mortality-rate on the shape of 

the histogram, the assemblage may be affected by post-death mechanical 

change such as sorting or winnowing by currents (Boucot 1953) and 

selective fragmentation, and solution of the smaller or thinner shells. 

Experience with the west coast fossils shows that crushing and 

fracturing is of primary importance and affects the bivalves more than 

the gastropods. 

The large number of fragmented shells in both the open-coast facies 

and estuarine-lagoonal facies sediments suggests death assemblages 

that have undergone considerable modification by wave-action. WheredS 

the open-coast bivalves are usually disarticulated, those in the 

estuarine-lagoonal sediments show a high degree of articulation. These 

sheltered embayment sites contf!in epifaunal and infaunal molluscs, some 

of which are preserved in their living positions. Size-frequency 

distributions for some of the bivalves are shown in Figure 14.1. 

the warm-w6ter element inhabited the Late Pleistocene lagoons and 

Since 
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estuaries, samples from those environments have been analysed in most 

detail. 

A single sample from a known high-energy open-coast site was examined 

in detail. Figure l4.lA shows the size-frequency distribution for 

Venerupis senegalensis from the Velddrif site. The field-setting 

suggests a transported death assemblage in which vigorous wave-action 

piled shell debris up to form a breaker-bar. In these deposits the 

thinner shells have generally been fragmented. 

population is composed of thick-shelled forms. 

The V. senegalensis 

Its estuarine 

ecomorph, on the other hand, has a thinner shell and is of more constant 

morphology. The Velddrif V. senegalensis shows marked negative 

skewness (-0,82). It has an articulation ratio of less than 0,05. 

Articulation ratio is defined as the ratio of complete shells/~ (RV + 

LV). 

Size-frequency distributions of bivalves from the estuarine-lagoonal 

facies differ from the pattern of the Velddrif example. Tellina 

madagascariensis from Verlorevlei (Figure l4.lC) and Churchhaven (Figure 

l4.lH) tends to have a flattened histogram. The Verlorevlei Tellina 

has a size-peak at 64-66 mm, and the Churchhaven species at 56-60 mm. 

While the narrower size range of the Verlorevlei material (50-86 mm) 

suggests a transported death assemblage, the greater range of the 

Churchhaven material (16-74 mm; more juveniles) suggests an indigenous 

death assemblage. That this argument can be misleading is shown 

by their articulation ratios of 1,46 and 0,47 respectively. At both 

of these localities T. madagascariensis is associated with comminuted 

shells and disarticulated valves of other species. T. madagascariensis 

at Verlorevlei was observed in a nearly horizontal attitude as were the 

other bivalves. But whereas most bivalves burrow with the shell 

vertical, Tellina burrows rapidly and settles in a horizontal position. 

For this reason the posterior end of the shell is strongly flexed to 

the right so as to broaden the radius of curvature of the siphons 

to minimise the current flow constriction. 

In a small quadrat at Verlorevlei 29 articulated shells were observed. 

Of these 26 had the right valve uppermost, i.e. flexure upwards, and 
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with the posterior end slightly raised. Many of the T. madagascar-

iensis shells still had the ligamental material attached across both 

valves as a powdery residue. Clearly these animals must have died 

in their life's positions where the weight of sediment prevented 

opening of the shells after relaxation of the adductor muscles. If 

they had opened after death and subsequently closed again due to 

increased sediment load, the liga~ent would have broken. 

At Verlorevlei the T. madagascariensis (site 3) size-frequency 

distribution can be compared with those of Gastrana matadoa and Oosinia 

lupinus (Figures 14.1 B, 0, E). Oosinia lupinus at site 1 (Figure 

14.1 B) has a positively skewed (+ 0,37) histogram with an articulation 

ratio of 0,40. The field occurrence suggests that reworking of the 

sediment has taken place, although the shells are still situated close 

to their original life habitat. Although the articulation ratio is 

high, relative displacement of each valve is common. 

O. lupinus histogram is bell-shaped (Figure 14.1 0). 

At site 3 the 

Here the 

articulation ratio is only 1,10. The bell-shaped distribution suggests 

less winnowing of the small specimens. Both O. lupinus populations 

peak at 22-24mm. From site 1 to site 3 at Verlorevlei there is a 

tendency for a greater spread of size-ranges of O. lupinus: 16-34mm at 

site 1 and 6-40mm at site 3. Conceivably the histogram for O. lupinus 

(site 1) was originally bell-shaped but winnowing may have removed 

the smaller sizes. This is borne out to an extent by the increase 

in relative proportions of Loripes liratula in the assemblage, from 9 

per cent at site 1 to 26,4 per cent at site 3. The size-range of 

L. liratula 3-17mm (Figure 14.1 G, J) coincides with the juvenile 

fraction of O. lupinus. Because of the close similarity in shape of 

O. lupinus and L. liratula, equal-size specimens of each species would 

be expected to be hydraulically equivalent. 

The size-frequency distribution of Oosinia lupinus at Churchhaven has 

a tail towards the larger specimens (Figure 14.1 r) suggesting winnowing. 

It has a narrow size-range, 14-42mm and peaks at 2B-30mm. 

articulation ratio (0,13) suggests reworking. 

The low 

At Kruispad, the Oosinia lupinus population again hE,ls a wide size-range, 
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6-40mm (Figure 14.1 F), but an articulation ratio less than 0,05. 

Furthermore, the histogram has two peaks, at IB-18mm and 28-40mm. 

The bimodal distribution could be explained by extinction of one 

living population, followed by fresh recruitment when environmental 

conditions improved. The site is 15km up the Berg River and could 

possibly have been influenced by sudden influxes of fresh water. But 

Loripes liratula at this site appears to represent a single population: 

this histogram is bell-shaped and peaks at 12-13mm. Its low 

articulation ratio «0,05) may be meaningless since this species does 

not have prominent dentition, and seldom in this study were articulated 

valves encountered. For example, Loripes liratula from Knysna has 

an articulation ratio less than 0,05 although juveniles predominate. 

Craig (1967) found that of five species he examined, only Oivaricella 

quadrisulcata tended toward a normal distribution. (Oivaricella 

and Loripes are both Lucinidae). 

G1.strana matadoa (Figure 14.1 E) at Verlorevlei is positively skewed 

and has a high articulation ratio (2,56). This high articulation 

ratio, compared with that of Or)sinia lupinus from the same site, could 

be due to the more robust dentition of the former, but the greater 

proportion of juveniles of G. matadoa suggests it probably is closer 

to a life assemblage. 

In general, the sign of skewness alone as used by Boucot (1953) is 

insufficient to distinguish between indigenous and transported death 

assemblages. The field-setting shows the Velddrif breaker-bar 

deposit to contain a transported death assemblage. It has strong 

negative skewness and a low articulation ratio. This tail towards 

the left has been produced by winnowing of the finer fractions, and 

effectively displacing the mode towards the coarser size-grades. 

The other size-frequency distributions are suggestive of indigenous 

death assemblages which have in most cases been slightly reworked. 

In -Figure 14.1 B the lack of juveniles of Oosinia lupinus coincides 

with low numbers of the hydraulically equivalent Loripes liratula. 

other indications that the shells are found in the sediment in which 

they once lived include relatively high articulation ratios of the 

I 
I 
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larger shells. Smaller shells, e.g. Loripes liratula, tend to have 

weaker hinge attachments, while juveniles of other species may have 

been subjected to predation. Tellina madagascariensis at Verlore

vlei appears to be in a life orientation, and also has the ligamental 

material still attached. At Kruispad a bed contains Panopea 

glycymeris still in the life orientation. The shells were all 

articulated, all posterior end upwards, and all on the same horizontal 

plane, i.e. they had all burrowed a siphon-length below the sediment-

water interface. At most sites, left and right valves were present 

in equal proportions. 

In conclusion, the field-setting shows that open-coast assemblages 

are all transported death assemblages, but transportation has been 

only local. The faunas of the sheltered environments are mixed life 

and indigenous death assemblages. Taken as a whole the fauna of the 

open-coast facies and the estuarine-lagoonal facies are consistent 

with the inferred Late Pleistocene environments. 

Predation 

Many of the bivalve shells are punctured by countersunk borings, 

1-2mm in diameter, made by predatory gastropods. The bored bivalves 

include: Dosinia lupinus, Tellina madagascariensis, Gastrana 

matadoa, Venerupis senegalensis, Venerupis dura and Ostrea algoensis. 

Crepidula capensis and Natica qenuana were the most frenuentlv bored 

gastropods. 

At Churchhaven 17 per cent of Dosinia lupinus and 17 per cent of 

Tellina madagascariensis were bored. In the case of the former an 

equal number of right and left valves were bored, as would be expected 

in view of the fact that it burrows in a vertical position. Analysis 

of predation of T. madagascariensis reveals a very different pattern. 

Successfully bored valves fell into two size-classes (Figure 14.1 H). 

The first group comprised juveniles with a size range 20-22 mm and the 

se;~ond group adults with a size range 46-64 mm. Only right valves 

of adults were bored, which is to be expected because this species 

l· 
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lives ,buried in sediment in a horizontal position with right valve 

uppermost. Craig (1967) found that the right valve of Tellina 

radiata was also preferentially bored. The second group of T. 

madagascariensis comprised juveniles in which left valves were 

preferentially bored, although a few right valves were also bored. 

The preferential boring of juvenile left valves could be the result 

of the burrowing characteristics. Tellina is a rapid burrower 

(Stanley 1970). Depth of burrowing would be cont~olled by length 

of the siphons, and for this reason the juveniles would presumably 

live at shallower depths than the adults and would possibly burrow 

more slowly. Subsequent current scour would possibly reach only 

the juveniles and flip them over to leave them left valve uppermost, 

hydrodynamically the most stable position. This also suggests that, 

besides predation, the juvenile bivalves would be more susceptible 

to environmental changes since they live closer to the surface. 

Most of the bored bivalve shells have only one hole, which is not 

surprising since only one puncture is necessary to kill the animal. 

In a few cases two holes per shell were encountered. As far as 

Tellina madagascariensis is concerned the borings occur most frequently 

in the antero-dorsal half of the shell (Figure 14.2). It was also 

observed that all bored specimens of T. madagascariensis at Churchhaven 

consisted of separate valves, while four bored articulated shells 

of Dosinia lupinus were observed. 

Of the gastropods, Crepidula capensis was the most extensively bored. 

Again there was usually only one hole per shell, although up to three 

were recorded. The reason why Crepidula capensis is so susceptible 

~predation is because it lives exposed at the surface where it is 

an easy prey. Unlike the bivalves,Crepidula does not appear to have 

any preferred a~ea for boring (Figure 14.2). Crepidula capensis 

from the shell beds north of Laaiplek have smaller bored holes (less 

than 1 mm) than other C. capensis or the bivalves. 

It is difficult to isolate the species that would have been the 

predator, although it seems probable that the borings were made by 

a gastropod. The most likely predator would probably be the buccinid 
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8urnupena papyracea. Where many bivalves were found to be bored at 

Churchhaven, 8. papyracea was very prominent. At Verlorevlei there 

was a total absence of 8. papyracea and no sign of predation on 

bivalves. 

Teratological specimens 

Teratological specimens are those that are outside the normal range 

of variation of a species (Ager 1963). At most sites an occasional 

aberrant form was observed, and it was found generally that Gastrana 

matadoa was the most susceptible to damage during life. This was 

very apparent at Verlorevlei (site 3) where 27 per cent of G. matadoa 

were in some way deformed, compared with less than 2 per cent for 

Tellina madagascariensis. Perhaps this reflects the degree of 

adaptation of G. matadoa to its niche, and that the environment at 

Verlorevlei in particular did not favour this species. 

Depth 

Regional geomorphic analysis suggests that the depth of water reflected 

in the strata of all open-coast and sheltered-embayment sites examined 

could not have exceeded 5 m. The Late Pleistocene estuarine-lagoonal 

facies is dominated by intertidal deposits, and the open-coast facies 

by beach deposits. At Velddrif there is a good exposure of a breaker

bar with a wash-over fan, the top of which is probably a close 

approximation to high water spring tide. At Churchhaven and 

Kraalbaai Callianassa burrows and crab-burrows are still preserved, 

indicating an intertidal or shallow subtidal environment. The 

ostracode fauna, too, is indicative of intertidal conditions. 

Very few of the 124 species listed in Table 14.1 suggest water depths 

greater than 25 m. Most of these species live today in intertidal 

and the uppermost sublittoral zones. Less than 4 per cent of the 

fauna lives today in water deeper than 25 m. 
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Of the open-coast assemblages Nassarius speciosus is today usually 

dredged, although it is sometimes found intertidally. No more than 

a few isolated shells were found. Erycina subradiata has been 

encountered at 26 m (Barnard 1964). Other species have a wide depth 

range although they are common in the intertidal zones. Nearly all 

species of Patella encountered at open-coast sites are intertidal. 

Only P. miniata, P. tabularis, P. compressa are infratidal (Branch 1971). 

Other intertidal molluscs include: Littorina knysnaensis (above HWN), 

Marginella capensis (low tide down), Bullia digitalis (follows the 

tide), B. laevissima, Thais cingulata, Burnupena papyracea (below mid

tide), Perna perna (mid-tide), Aulacomya ater (mid-tide to low tide on 

rocky Shores), Choromytilus meridionalis, Dosinialupinus, Donax 

~ (borrows in surf beaches below mid-tide), Venus verrucosa (found 

on the surface at mid-tide). Depth ranges are given by Day (1969). 

Of the estuarine-lagoonal facies molluscs Ostrea algoensis prefers 

depths of 25-200 m, Tellina ponsonbyi prefers off-shore waters to 

depths of 95 m, and Theora alfredensis has been dredged from depths 

below 70 m (Barnard 1964). Ostrea algoensis and Theora alfredensis 

are common in this facies. Only one Tellina ponsonbyi valve was found 

at Churchhaven, suggesting that this specimen strayed into shallow 

water. 

Most of the sheltered embayment molluscs prefer very shallow or inter

tidal water. These include the gastropods, Patella spp., 

Littorina knysnaensis (HWN), Turritella capensis (quiet water shallower 

than 3 m), Oxystele variegata, Burnupena papyracea, Nassarius 

kraussianus (mud-banks and weed-beds of estuaries); the bivalves 

Loripes liratula (muddy sand at low tide), Solen capensis (muddy sand 

of estuaries), Venus verrucosa, Choromytilus meridionalis, perna perna, 

Aulacomya ater, Tellina madagascariensis (extensive infratidally), 

Dosinia lupinus, Donax serra and Panopea glycymeris. 

None of the constituents of the open-coast or estuarine-lagoonal 

facies required water depths greater than about 25 m. Modern 

bathymetric ranges for these species suggest maximum Late Pleistocene 

I 
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water depths at these sites of the order of 0-5 m. 

consistent with the geomorphic evidence. 

This is 

Temperature 

Since the primary purpose of this chapter is a discussion of a 

southerly migration of tropical and subtropical mollusc species in 

the later interglacial, the most important criteria are those 

indicative of temperature. Sea surface temperature inferences may 

be made by comparing geographic ranges of living molluscan species with 

those of their fossil counterparts. Although the fossil fauna of 

the west coast is distinctly modern in character, the estuarine

lagoonal facies assemblages regularly contain several species whose 

present-day distribution is restricted to tropical and subtropical 

waters. The modern geographic range end-points of the thermophilic 

species that live further north on the west African coast are separated 

by 2 000 km from the fossil occurrences in the south-western Cape 

so that the fossil assemblages contain species that do not today live 

in association. Northward migration of the extralimital species 

was probably induced by deteriorating environmental conditions. 

Since the geographic ranges of recent molluscs seem to be determined 

mainly by temperature (Valentine 1955), it would appear that falling 

temperature was the compelling factor. It could also be argued 

that lower temperatures accompanied the advance of the Weichselian 

ice-sheets, in which cass falling sea level would have drained the 

Late Pleistocene estuaries and lagoons. But with reflooding of these 

environments in Recent time, the thermophilic molluscs did not return. 

Mollusc assemblages in the estuarine-lagoonal facies of the west and 

south coasts contain a total of more than 20 species that do not 

sustain populations in those areas today. West coast sites contain 

15 such species, mainly bivalVes. These extralimital molluscs, 

their present-day geographic ranges, and minirnum temperature 

tolerances, are shown in Table 14.2. 



TABLE 14.2 Present-day 

Geographic Ranges, 

Temperature Minima, and 

Distribution of some 

Fossil Mollusca. 

(The paper by Kilburn 

& Tankard is now published: 

1975) . 

GASTROPODA 
(?)Cantharidus suarezensis 
Alvania a/fredensis 
Cerithium kochi 
(?)Cerithium scabridum 
Cypraea algoensis 
Marginelfa piperata 
Atys cyfindrica 

BIVALVIA 
Nuculana bicuspidata 
Ostrea atherstonei 
O. stentina 
O. algoensis 
Loripes liratula 
Felallia diaphana 
F. subradiata 
Mactra ovalina 
Scissodesma spengleri 
Tellina ponsonbyi 
T. madagascariensis 
Macoma !ricostata 
Gastrana matadoa 

Leporimetis hanleyi 
Theora al/redensis 
Venerupis dura 
Panopea glycymeris 

GASTROPODA 

WARM WATER TAXA 

Durban - Tanzania (Kilburn & Tankard, in press) 
Still Bay- Port Alfred (Kensley 1973) 
Algoa Bay-Mozambique (Kenslcy 1973) 
Red Sea-Quirimba Is. (23,4°S; 40,rE) (Kilburn & Tankard, in press) 
Algoa Bay-Natal (Kensley 1973) 
Jeffreys Bay-Zululand (Kensley 1973) 
Mozambique (Kensley 1973) 

Mauritania - Angola (Nickles 1950) 
Saldanha Bay-Bushmans River (Korringa 1956) 
Morocco-Congo Republic (Nickles 1950) 
False Bay-Delagoa Bay (Korringa 1956) 
Mauritania-Angola (Kilburn & Tankard, in press) 
Mauritania-Angola (Kilburn & Tankard, in press) 
Still Bay- Durban (Barnard 1964) 
Durban-Delagoa Bay (Kilburn 1971a) 
False Bay (Barnard 1964) 
Still Bay-Zululand (Boss 1969) 
Gabon-Baia dos Tigres (17°S) (Boss 1969) 
Angola (Kilburn & Tankard, in press) 
Mauritania -Ivory Coast (Nickles 1950) 
Still Bay-Delagoa Bay (Barnard 1964, as G. abi/dgaardiana) 
Luanda (Kilburn & Tankard, in press) 
Algoa Bay-Zululand (Barnard 1964) 
Morocco-Angola (Nickles 1950) 
Mediterranean-Senegal (Kensley 1974) 

COLD WATER TAXA 

Thais cingulata Port Nolloth-False Bay (Kensley 1973) 
Bumupenapapyraceapapyracea Paternoster-Hermanus (Kensley 1973) 
Nassarius plicatellus Walvis Bay-Table Bay (Kensley 1973) 
N. scopularcus Saldanha (Kensley 1973) 
Conus scitulus algoensis Table Bay- Kommetjie (Kilburn 1971b) 

BIVALVIA 
Telfimya trigona 
Lutraria lutraria 

LUderitz-Langebaan Lagoon (Barnard 1964) 
LUderitz-False Bay (Barnard 1964) 

• References: Naval Oceanographic Office, Washington: Spec. Pub!. SP-99 
Sverdrup et al. 1942 
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It is often difficult to assess the minimum termperature tolerance 

of living molluscs. Zinsmeister (1974) divides the normal 

biogeographic range of a taxon into a spawning range, and a non-

spawning range. The modern geographic range of Ostrea atherstonei, 

from Saldanha to Bushmans River, implies a minimum temperature 

tolerance of about 130 C. But it appears that present temperatures 

in Saldanha Bay are too low for spawning (Korringa 1956). Spawning 

experiments in this area have confirmed this, and suggest that the 

oyster larvae may actually originate in an area of higher water 

temperature. It is possible that several species of molluscs extend 

their geographic range end-points by inhabiting local pockets of 

warm water such as estuaries. If this is the case then the tempera-

ture minima shown in Table 14.2 may actually be too low. It is not 

always clear from the literature whether the range end-points are 

open-coast, estuaries, or embayments. other difficulties arise from 

taxonomic problems. For instance, Macoma ordinaria and M.crawfordi 

may be geographic variants of the Mediterranean M. cumana. 

1. WEST COAST ESTUARINE-LAGOONAL FACIES 

Because of physiographic changes at Verlorevlei and the lower reaches 

of the Berg River, present temperature ranges would be meaningless 

standards against which to measure Late Pleistocene changes. The 

present shoreline of Langebaan Lagoon has changed little since the 

last interglacial, and present temperatures at Churchhaven could be 

used as an approximation for the other sites as well. Day (1959) 

gives a surface temperature range for Churchhaven of 13,50 C to 370 C 

(HW) and 3S,50 C (LW). 

The fossil assemblage at Verlorevlei (site 3) is represented by 23 

species of molluscs, 6 of which are indicative of warm water. 

six thermophilic species constitute 42 per cent of the total 

These 

ind iv idua Is. The modern geographic range of Loripes liratula (26,4 

per cent of the fauna) is Mauritania to Angola (Nickl~s 1950), where 

its minimum temperature requirement would be 17_lS
o

C. Ostrea stentina 

(2,7 per cent), Tellina madagascariensis (S,l per cent), Macoma 
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tricostata (..:::. 1 per cent) and Venerupis dura « 1 per cent) are also 

tropical west African species and could not tolerate temperatures 

below about 17oC. Castrana matadoa (4,1 per cent) extends into water 

as cool as 14oC. Accepting that stenothermal organisms are more 

critically limited by minimum temperatures than by maximum temperatures 

(Dunham 1950), it would appear that the minimum temperature in this 

Late Pleistocene estuary must have been 17-lSoC or at least 40 C 

warmer than present Churchhaven surface temperatures. 

At Kruispad (site 12) S of the 31 species prefer warm water, and 

constitute 47,9 per cent of the total individuals. Of these Nuculana 

biscupidata (3,2) per cent, Loripes liratula (15,4 per cent) and 

Leporimetis hanleyi (1,0 per cent) have a minimum temperature requirement 

of 17_lSoC. A significant constituent of this assemblage is Panopea 

glycymeris. Although it forms less than 1 per cent of the total 

individuals, it is nevertheless very common (because it is a large 

animal, about 200 mm, and is always found in life orientation, a shell 

count in aIm quadrat would be unlikely to yield more than one or two 

specimens). Panopea glycymeris lives in areas with a temperature 

range 20_27oC (Kensley 1974), although it could probably tolerate 

cooler water. This assemblage is thus indicative of a temperature 

minimum of about lSoC. At Bloemendal (site 11) Loripes liratu1a and 

Leporimetis hanleyi are common. 

Three sites examined along the shore of Langebaan Lagoon yielded a 

significant proportion of thermophilic molluscs: Gee1bek (site 19: 

7 species in 26 constituting 46,0 per cent of the fauna), Skrywershoek 

(site 20: 6 species in 19 constituting 32,9 per cent of the fauna), 

and Churchhaven (site 21/22: 7 species in 31 constituting 2S,1 per 

cent of the fauna in the lower unit; 7 species in 27 constituting 35,5 

per cent of the fauna in the upper unit). 

content of these sites is as follows: 

The dominant thermophilic 
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Churchhaven 

Geelbek Skrywershoek Lower !!£eer 

ojo 0/0 ojo ojo 

Ostrea atherstonei 5,1 7,1 1,0 5,0 

Loripes liratula 20,4 14,1 1,0 4,1 

Mactra ovalina 1,0 1,2 2,3 1,7 

Tellina. madagascariensis 10,2 9,4 23,4 3,3 

Leporimetis hanleyi <'1,0 

Venerupis dura 4,1 1,2 

All of these species, except Ostrea atherstonei and Mactra ovalina, 

have a minimum temperature requirement of l7
o

C. Ostrea atherstonei 

is found living today in Saldanha Bay,: but temperatures are apparently 

too low for spawning. It is possible that this species has a minimum 

temperature tolerance of 14oC. The floor of the present lagoon is 

underlain by about 3 million metric tons of O. atherstonei shells, 

with little detrital sediment, suggesting optimum temperatures for 

breeding, and hence probably greatly in excess of 14oC. Mactra 

oval ina has a minimum requirement of 190 C. A minimum temperature in 

the Late Pleistocene lagoon of about lSoC is indicated, about 4-5°C 

warmer than the present surface temperature minimum at Churchhaven. 

2. SOUTH COAST ESTUARINE-LAGOONAL FACIES 

A Late Pleistocene site at Knysna was the only one on the south coast 

examined in detail. But examination of material in collections of the 

South African Museum shows that very similar fossil faunas exist at 

Sedgefield, and Groot Brak and Klein Brak estuaries. The fossil 

assemblage at the Klein Brak estuary contains Panopea glycymeris, but 

their shells are, on average, much smaller than the Kruispad 

specimens (Kensley 1974). 

The Knysna assemblage contains 47 molluscan species, of which 6 are 

extralimital and which constitute 60,4 per cent of the individuals. 

But these 6 species include the extinct subspecies Cantharidus 

suarezensis fultoni (9,S per cent) and Cerithium scabridum 
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rufonodulosum (16,3 per cent). Although the geographic range of 

the species is shown in Table 14.2, it is obviously not certain that 

the extinc t subspecies had the same tempera ture tolerances. Their 

Recent relatives Cantharidus suarezensis suarezensis and Cerithium 

scabridum have minimum temperature requirements of 190 C and 240 C 

respectively. Atys cylindrica « 1 per cent) has a minimum temperature 

requirement of 2loC. Of the bivalves Felania diaphana (3 per cent), 

Tellina madagascariensis « 1 per cent), Leporimetis hanleyi tel per 

cent) and Venerupis dura (1 per cent), all suggest temperature 

minima of 17
o

C. Loripes liratula (57,5 per cent) also suggests a 

temperature minimum of 17
o

C, but the fact that it occurs in such great 

numbers, and the fact that all growth stages are present (Figure 

14.1 J) suggest optimum conditions. Together the evidence suggests 

a temperature minimum in excess of 17
0

C for the Late Pleistocene 

estuary. Day ~ (1952) give a temperature range at the railway 

bridge of 12_24oC. 

3. WEST COAST OPEN--COAST FACIES 

The present-day temperature range on the adjacent open coast is about 

l3-150 C (Shannon 1966). The fossil assemblage contains only three 

species which prefer warm water, but which never constitute more than 

I percent of any assemblage: Cypraea algoensis, Marginella piperata 

and Scissodesma spengleri. The marked paucity of warm-water species 

indicates that Late Pleistocene nearshore water temperatures were 

not very different from the present. 

Summary 

Before discussing the palaeoclimatic significance of the extralimital 

molluscan species, it may be as well briefly to summarise the evidence. 

1. All fossiliferous Late Pleistocene estuarine-lagoonal 

facies deposits contain extralimital species which usually 
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constitute more than 30 per cent of the individuals 

of each assemblage, and which indicate minimum water 

temperatures 4-6°C warmer than the present-day estuaries 

and lagoons, with minimum temperatures in excess of lSoC. 

Kanakoff & Emerson (1959) suggest temperatures in excess 

of 190 C for similar Californian occurrences. 

2. All growth stages of the thermophilic molluscs are present 

(Figure 14.1). The importance of this is that it implies 

that temperatures were such that the normal spawning range 

of each mollusc is represented. Normal spawning range 

is characterised by a population which continually maintains 

its numbers (Zinsmeister 1974). The large number of 

individuals and presence of all growth stages show that the 

thermophilic taxa formed self-sustaining populations that 

were adequately adapted to the depositional environment. 

3. The estuarine-lagoonal facies contains mixed life and 

indigenous death assemblages of molluscs. These molluscs 

obviously lived in environments reflected in the sediments 

and have suffered little post-death transportation. 

4. The sediments and their mollusc fossils indicate water 

depths in general less than 5 m. 

5. The fact that sediments with high proportions of extralimital 

molluscan species characterise most Late Pleistocene estuary 

and lagoonal situations, that these molluscs formed self

sustaining populations and inhabited very shallow water, 

suggests that the marine transgression to 6 m in the last 

interglacial was a major event during a climatic optimum. 

Zinsmeister (1974) has suggested that similar well documented 

occurrences of thermophilic molluscs in Californian Late Pleistocene 

embayments represent only temporary, non-breeding members of the 

community. He believes that periodic local and temporary current 

changes introduced tropical mollusc larvae into areas of cooler water, 

I 
! 
I 

I 
I 
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and that these molluscs represent only temporary members of the 

community since temperatures would have been too low for them to 

maintain self-sustaining populations. 

Zinsmeister's arguments stem from the fact that previous studies paid 

scant attention to the population dynamics, and consequently they 

fail to prove the presence of self-sustaining populations. Similar 

occurrences in the south western Cape support the view that these 

faunas are the result of a warmer climate which must have affected 

the whole world. Age-wise these deposits are also similar and 

probably coincide with a high climatic peak (substage 5e) and sea 

level up to 7m higher than present at 120 ka (Shackleton 1969). 

6. Configuration of the coastline was probably very important. 

Today a low Palaeozoic rock bar just above high-tide level 

keeps the sea out of Verlorevlei. A slight rise of sea 

level would create radical changes at Verlorevlei. Likewise 

the lower reaches of the Berg River formed a prominent 

estuary due to flooding by last interglacial high sea levels. 

Normally one would expect to find an overlap of geographic 

ranges of tropical and temperate species. In an overlap 

area the tropical species would be restricted to inshore, 

protected environments, and temperate species would live 

in the cooler open coast sites (Emerson 1956). 

IV. PALAEOCLIMATIC INTERPRETATION 

A. Review of Present Climate and Hydrology 

The south-western Cape has a Mediterranean-type climate. Hot, dry 

summers are the result of the dominant anticyclones in those months, 

while depressions associated with westerly winds bring rainfall in the 

winter. 

Hart and Currie (1960) have summarised the effect of the wind system 

on the climate of the south-western Cape Province. A subtropical 
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high-pressure system is centred between 260 and 300 S. To the south 

this high-pressure system borders on the "westerlies" causing a. steep 

pressure gradient. The south-easterly winds of the south-western 

Cape are the result of winds blowing anticyclonically ftround this 

high-pressure system. In summer the centre of the anticyclone lies 

at about 300 S and brings strong south-easterly winds to the south

western regions, but in winter it moves northwards to 260 S. The 

westerly wind system follows the anticyclone northward and the southern 

Cape is then frequented by depressions which bring rain from the 

south-west Atlantic, although the Namib Desert is still influenced by 

the Trade Wind belt. 

The west coast of southern Africa, like the west coasts of other 

countries in similar latitudes, is characterised by a linear belt 

of centres of upwelling of cold subsurface water (Central Water) from 

LOderitz to the Cape Peninsula (Figure 14.3). There is a north-

south isotherm lineation with the coldest and least saline water near 

the coast (Shannon 1966). This upwelling, the Benguela Current, 

varies in intensity depending upon the wind system and local topography. 

The upwelling phenomenon arises from the displacement of surface 

water northwards and off-shore by the south-easterly wind system. 

Cooler subsurface water wells up to replace this warmer water. The 

result of this active upwelling is a complex system with tongues of 

cold water alternating with intrusions of warmer oceanic waters, and 

all diverging to the north-west (Bang 1971). Bang defines the 

Benguela Current as the area east of a belt of off-shore divergence 

within which the oceanic processes are dominated by short-term 

atmospheric interactions. 

During the winter months when the anticyclone centre moves northward, 

weakening of the southerly wind component results in weakening of 

the upwelling system also. With less upwelling the surface waters 

over the inner part of the continental shelf are warmer by 2
o

C, but 

off-shore a drop in temperature tends to minimise this effect. With 

weakening of the Benguela Current system and the greater prominence 

of westerly and north-westerly winds, a southward-flowing inshore 
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counter-current develops. This southward-flowing inshore counter-

current is known as the Angola Current and it follows the decaying 

northern end of the Benguela Current. Shannon (1966) mentions a 

predominantly southward-flowing counter-current between Lambert's Bay 

and Cape Point which is present during all seasons, but most marked 

in winter. A southward-flowing counter-current carries "seeboontjies" 

from Angola and driftwood from the Orange River southwards (Wagner & 

Merensky 1928). SUrface temperatures at the Orange mouth rise 

noticeably when the north-westerly winds blow. 

The highest surface-water temperatures are encountered in the lagoons 

and estuaries which are protected from the effect of upwelling. The 

temperature range in the Langebaan Lagoon, 10_39
0

C (Day 1959), 

contrasts markedly with that of the near-by open sea, 13-15
0

C (Shannon 

1966) • During the summer months temperatures in Langebaan Lagoon 

are at a maximum,while those of the open sea drop. 

The currents off the east and south coasts, the Mozambique Current and 

Agulhas Current, have been studied by Clowes (1950), Orren (1963, 1966) 

and Darbyshire (1964). Both of these currents are southward extensions 

of the great South Equatorial Current which flows westward across the 

Indian Ocean. At 260 S the Mozambique Current is met by the southern 

branch of the South Equatorial Current, which is divided by Madagascar, 

and they combine to form the Agulhas Current. The Agulhas Current 

is finally deflected by the Agulhas Bank (Clowes 1950}(Figure 14.3). 

Upwelling does take place off Cape Agulhas but it is a geostrophic 

upwelling, i.e. the upwelling varies with the velocity of the current. 

Here the Agulhas Current is weakest and Agulhas water retreats 

northwards in winter, thus allowing Central Water to reach the surface. 

In summer when the Agulhas Current is flowing at its strongest, 

it overrides the Central Water (Darbyshire 1964). Sometimes in 

summer the warm Agulhas Current moves away from the south coast and 

allows cold Central Water to replace it inshore, and within a day 

or two the temperature may fall by as much as 100C (Day 1963). 

Schell (1968) describes the occasional penetration of the Agulhas Current 

round the Cape into the South Atlantic. 

I : . 
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B. Late Pleistocene Climate 

It would be expected that the intensity, and probably position, of 

the anticyclones would vary with the solar radiation. A climatic 

optimum at 120 ka produced temperatures warmer than at any other time 

in the last 120 ka (Shackleton 1969). The anticyclone would have 

moved south of latitude 30
0

S (Van Zinderen Bakker 1967, figure 6). 

This would lead to the linear west coast upwelling belt moving south 

in response, and the winter-rainfall area would be more strictly 

restricted to the south-western Cape. Such a southward movement 

would be accompanied by more pronounced upwelling off the west coast 

south of the Olifants River than at present, and would operate over a 

longer period of time just as happens on the Namib Desert coast. 

Since the Central Water originated in the Southern Ocean, and since the 

Antarctic ice-sheet was essentially stable throughout the Pleistocene 

(Mercer 1968a), it is unlikely that the upwelling water would have been 

any colder than at present. This is confirmed by the fossil molluscs 

from the open-coast facies which suggest little temperature change. 

Addicott and Emerson (1959) and Valentine (1955) have also suggested 

intensified nearshore upwelling and a poleward expansion of isotherms 

to explain their mollusc faunas. 

Eustatic rise of sea level would have changed the configuration of the 

coast by forming salt-water estuaries at Verlorevlei and the Berg 

River, as well as at numerous sites along the south coast. The 

present coast is not as embayed as the Late Pleistocene coast would 

have been. Thermally anomalous assemblages existed contemporaneously 

only in the vicinity of the protected bays where the increased solar 

radiation of the last interglacial heated the surface water considerably. 

Periodic current changes permitted the introduction of tropical 

mollusc larvae into these pockets of warm water. The intensification 

of atmospheric circulation that led to more pronounced upwelling pre

sumably also affected the inshore counter-current which possibly 

flowed more strongly than at present. Isaacs and Sette (1959) described 

anomalous wind fields in the Pacific area during 1957 and 1958 which so 
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changed the oceanic circulation that tropical taxa were found far 

north of their expected ranges. This demonstrates that circulation 

changes as proposed in this chapter GO happen at present, albeit 

less frequently and less pronounced than is here suggested. 

On the east coast with intensification of the air circulation 

intensification of the present summer conditions would also be 

anticipated. Presumably the Agulhas Current flowed more strongly than 

today and continually overrode the Central Water, perhaps with frequent 

eddies of Agulhas water around the Cape Peninsula. This would limit 

the likelihood of sudden incursions of cold water, such as presently 

affect the Knysna estuary in summer and cause temperatures to drop 
o . 

between 10 and 15 C (Korringa 1956). 

These possible changes in the ocednic circulation during the hyper

thermal period would have had far-reaching effects on the distribution 

of molluscs. Because of the low migratory ability of molluscs in 

the post-larval stage, the:iir geographic distribution depends primarily 

on the dispersion of larvae. 

depends upon ocean currents. 

Distribution of the planktonic larvae 

About 85 per cent of tropical marine 

molluscs have a free-swimming pelagic larval stage which can exist, 

on average, three to four weeks before settling (Zinsmeister 1974). 

Dietrich (1935, quoted in Korringa 1956) gives the velocity of the 

Agulhas Current as 50 km per day. At this rate larvae could be 

transported 1 000 km before metamorphosis. Larvae can apparently 

withstand sudden changes of temperature; Korringa mentions a change 

from 250 C to 20 C which did not adversely affect oyster larvae. 

A general southward movement of isotherms on the west and south 

coast is envisaged. This would have brought the tropical mollusc zone 

closer to the south-western Cape. Periodic expansions of the warm-

water isotherms coupled with an intensified inshore counter-current 

on the west coast would have enabled tropical mollusc larvae to 

pass the cold Benguela barrier. If the larvae redched the sheltered 

estuaries and lagoons of the south-west coast, increased solar heating 

(substage 5e) would have allowed these molluscs to sustain their 

populations and persist there even after the open-coast thermal barrier 
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became impassable again. Those thermophilic larvae that reached 

metamorphosis on the open coast may well have survived, but there 

is no evidence that they were able to sustain their populations. 

South coast estuarine facies show that larvae from the tropical 

west African coast were able to pass the Cape Peninsula; e.g. 

Tellina madagascariensis, Loripes liratula, Leporimetis hanleyi, 

Venerupis dura, Panopea glycymeris. The Agulhas Current was also able 

to transport Indo-Pacific mollusc larvae around the Peninsula to 

the west coast sites. 

survived as relicts. 

In these sheltered embayments warm-water taxa 

V. DISCUSSION 

The occurrence of thermophilic molluscs in Late Pleistocene sediments 

of the south-western Cape far beyond their present-day geographic 

range endpoints is not unique. Similar occurrences in California 

have been extensively studied, and the same conditions appear to have 

operated in the Miocene where the configuration of the coastline was 

very different from the present. The San Joaquin basin was a 

protected embayment in the Late Miocene, and there relict faunas persisted 

long after the temperate faunas had spread southward along the open 

coast (Addicott & Vedder 1963). The thermally anomalous Late Pleistocene 

molluscs also lived in shallow protected embayments (AddicoU & 

Emerson 1959). The only significant point of difference between the 

two regions is that the open-coast facies of the Cape coast contains 

molluscs which nearly all live on the adjacent coast, while the 

Californian open-coast facies contain a fauna that reflects cooler 

water than the present. Valentine (1955) proposed that during the 

last interglacial of California upwelling was intensified, while at 

the same time the warmer water of the sheltered embayments was derived 

from increased solar radiation. He also suggested a general warming 

of the ocean ic wa ters by inc:ceased solar heating. 

The Late Pleistocene estuarine-lagoonal facies of the Cape Province 

are attributed to a eustatic rise of sea level which changed the 

configuration of the corist and produced a great number of estuaries 
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where the effects of seasonal upwelling were excluded. A southward 

movement of the South Atlantic anticyclone at this time shortened 

the cold-water barrier on the western open coast by causing a southward 

shift of the Benguela Current, and possibly strengthened the inshore 

counter-current, so that thermophilic mollusc larvae were able to 

migrate southwards where they could sustain their populations in the 

solar-heated estuaries and lagoons. It would appear that the present 

temperatures are too low for breeding. 

This history contrasts with that of the Early Pleistocene when sea 

temperatures on the open coast were much warmer than at present. The 

last of these warm-water open-coast episodes is associated with the 

45-50 m transgression complex of the Namaqualand coast (Carrington 

& Kensley 1969). Striostrea margaritacea was common on the open coast, 

forming the so-called "oyster line" (Haughton 1931). This oyster 

requires a minimum water temperature of 250 C in summer (Korringa 

1956) . The 45-50m transgression complex sediments were probably 

pre-glacial Pleistocene. SUch warm conditions must have been in 

response to the warmer conditions prevailing in the northern 

hemisphere, since the Antarctic ice-sheet is thought to have been sta.ble 

throughout the Pleistocene (Mercer 1968a). Warming of the northern 

hemisphere would have moved the intertropical convergence farther 

south than even its Late Pleistocene position. This would have moved 

the South Atlantic anticyclone south, and with it the belt of upwelling, 

bringing tropical waters down the Namaqualand coast. But Striostrea 

margaritacea is totally absent from Early Pleistocene deposits in 

the Saldanha area, suggesting that cool water, and upwelling, were 

still dominant there, probably as far as the Olifants River. 

If the model for a southward shift of the anticyclone system in the 

last interglacial is correct, then one would expect the opposite 

trend during the Weichselian. Lamb (1961) suggests that Ice Age 

circulation was marked by intensified circulation of the belt of 

westerlies, and greater mobility in the subtropical anticyclones 

which generate upwelling systems such as the Benguela Current. Van 

Zinderen Bakker (1967 and in press) presents evidence to show that 

during hypothermal periods the influence of the anticyclones and the 
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Benguela Current would have shifted northwards to the equatorial 

regions. Displacement of the westerlies towards lower latitudes 

would have expanded the winter-rainfall area of the southern Cape 

and would have caused a northerly shift of the Namib Desert. 

Tankard and Schweitzer (1974) have demonstrated, from Die Kelders cave 

sediments, that wetter conditions in the Weichselian coincided with 

a cooler period. Butzer (1973) has found a similar record in the 

Nelson Bay cave. A northward migration of the belt of westerlies 

would have resulted in a longer rainy season, if not year round 

precipitation (Tankard, in press d). 

Finally, this chapter suggests a possible correlation of the last 

interglacial deposits of the Cape Province with the Eutyrrhenian of 

the Mediterranean. Although warping of the Eutyrrhenian shorelines 

is universal (Richards 1962), Bonifay and Mars (1959) have attempted 

to restore these shorelines to their original elevations. They 

attribute the Eutyrrhenian shoreline to a transgression to 2-3m a.s.l. 

Chronologically the Eutyrrhenian shoreline and last interglacial 

shorelines of the south-western Cape appear to be similar. 

The Strombus fauna of the Eutyrrhenian deposits is characterised by 

Strombus bubonius and other species typical of Senegal and west 

Africa (Richards 1962) which suggest warmer hydroclimates than today. 

Like the warm water fauna of the south-western Cape, the Strombus 

fauna can also be attributed to poleward expansion of isotherms, 

and once in the Mediterranean the molluscs remained a relict fauna 

which survived in water heated by increased solar radiation. 

I· 
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CHAPTER 15 

PLEISTOCENE HISTORY AND COASTAL MORPHOLOGY 

OF THE AREA BETWEEN THE CAPE PENINSULA AND 

DIE KELOERS 

I. INTRODUCTION 

As in the case of the west coast, previous studies of Pleistocene 

shoreline history of this part of the south coast are restricted to 

relatively few references: viz. Krige (1927), Mabbutt (1954), 

Gatehouse (1955), and Davies (1971, 1972). The most original of these 

studies is perhaps that of Krige. On this part of the coast his major 

emergence is situated at 18m a.s.l., and his minor emergence at 9m 

a.s.l. Gatehouse recognised shorelines at 90, 50, 29, 18 and 7,5m. 

Most of his sites have now been checked and will be commented on later. 

Davies recognised shorelines on the south coast at 60m (Cromerian), 

50m, 30m, 18m, 9m, 6m,3,5m and 1,5m. The last two he believes are 

Holocene. 

The aims of this part of the project will be: 

(i) to record heights of elevated Pleistocene shorelines; 

(ii) to group these measured shorelines into equally spaced 

sets so as to be able to correlate them (if possible) 

and possibly determine the relative stability of the 

coastal margin; 

(iii) to examine the influence of lithology on platform 

development. 

II. COASTAL MORPHOLOGY 

The Cape Peninsula geology is dominated by resistant ortho-quartzites 

overlying granite. Steeply plunging slopes on the Camps Bay-Hout Bay 
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and Chapmans Peak coastlines result in nearly total reflection of 

wave energy so that little platform development is taking place. 

Elsewhere horizontally bedded sandstones lead to structurally controlled 

platforms. Furthermore, the differing degree of shoaling across these 

bedded sandstone platforms leads to variable altitudes of old storm 

beaches behind the modern beaches. 

Rock structure has also had a pronounced effect on platform development 

east of Gordons Bay (Figure 15.1). For instance, at the Steenbras 

River mouth (5 km south-west of Gordons Bay) the sandstone dips away 

from the shore at approximately 400
• Marine abrasion and undercutting 

have collapsed the strata so that platform development operates well 

below mean tide level. The outer edge of the platform here varies 

between 15 and 25 m, but averages 17-18 m a.s.l. Little beach material 

is preserved on the platform. Generally, strata dipping seaward, or 

sheared strata, are conducive to formation and preservation of lower 

terraces. Their preservation is the result of shoaling dissipating 

wave energy away from the shore. Figure 15.2 illustrates the effect 

of inland dipping strata on the outer edge of a platform. 

The coastal pl~tform is usually narrow and is backed by high mountain 

ranges with scree slopes graded to the platform level (Figure 15.3). 

Rivers have incised deeply into the platform during lower stands of 

sea level, and in Figure 15.3 such a drowned river valley is still clearly 

visible. The coastal platform appears to be a composite feature which 

originated in the Neogene. At Die Kelders Breda~dorp limestone of 

presumed Miocene age lies upon the sandstone platform at only 7-8 m 

a.s.l. (Figure 4.9). But it seems that this platform has been consis-

tently remodelled in the Pleistocene. The platform appears to be 

stepped since its edges are usually encountered at predictable elevations, 

e.g. 7m,12-14m, 17-18m, 30m. 

other rock types result in sandy shores and estuary development. The 

Cape Flats are underlain by dune and beach sands lying upon a low 

level platform cut across weak ~almesbury rock. Tillites west of 

Kleinmond disintegrated easily under marine erosion to form wide sandy 

beaches. While the Bot River and its estuary have developed along 
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Figure 15.1 Locality map showing sampling sites (numbered) and 
sectors (lettered). 



Figure 15 .2 Platform cut across inland dipping quartzite; 
note absence of lower platform. Koeelbaai area . 

Figure 15.3 Coastal platform on either side of Palmis t River. 
The Palmiet River valley extends below sea level. This 
photograph also shows the small amount of sedimentation 
that has taksn place since the Flandrian flooding of 
the river valley. (Photograph by courtesy of Earldons 
(pty) Ltd.). 
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synclinial Bokkeveld strata, the Klein River, its estuary, and the 

sandy extent of Walker Bay are the result of rapid erosion of a granite 

inlier. 

III. ELEVATED SHORELINES 

The results of a detailed survey of the coastal margin are summarised in 

Table 15.1. Most of these occurrences take the form of storm beaches 

which probably relate to MHWS. All elevations have been corrected to 

mean sea level (subtracting 0,7 m). In drawing up Table 15.1, the coast-

line has been divided into equally spaced sectors (A - 0) so as to 

obtain a clearer impression of elevation trends. One consequence of 

this presentation is to show how beach development and elevation are 

functions of exposure. For instance, there are regular elevated shore

lines at 6-7m a.s.l. (average 6,3 m) in sectors B-E and K-O, while a 

shoreline at this elevation is less pronounced along the western edge 

of False 8ay (sectors F-H). 

Table 15.1 shows significant variation in shoreline elevation. 

variations reflect the problems in measuring old elevated sites. 

These 



TABLE 15.1 

Summary of Elevated Shoreline Data (m) 

Nama- Slldanha 
qualand Area A B C D E F G H I J K L M N 0 

2 0 1,5 1,3 0-1,3 1,3 0 
5 2-3,5 2,6 2,3 3,1 

4,5 4,6 4,3 4,0- 4,6 4,6 
4,7 

7-8 6,3 6,9 6,6- 5,8- 6,1 6,3 6,2 6,3 
7,1 6,3 

10,0 11,3 9,3 10,3 8,3 
13,0 

15,0 15,0 15,0 
17-21 20,0 20,0 20,0 
29-34 28,7 29,6- 29,3- f\) 

w 
32,3 31,3 I-' 

45-50 
75-90 

Suggested Correlation 
0 1,5 1,3 0-1,3 1,3 0 

2 2-3,5 2,6 2,3 3,1 
5 4,5 4,6 4,3 4,0- 4,6 4,6 

4,7 
7-8 6,3 6,9 6,6- 5,8- 6,1 6,3 6,2 6,3 

7,1 6,3 
11,3 9,3 10,3 8,3 

. 15,0 15,0 15,0 
17-21 13,0 20,0 20,0 20,0 
29-34 28,7 29,6- 29,3-

32,3 31,3 
45-50 10,0 
75-90 
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Problems encountered in measuring these elevations throw considerable 

doubt on previous claims (e.g. Davies 1971, 1972) that the low level 

shorelines occur at regularly spaced intervals. The first difficulty 

always encountered is the problem of recognising a fixed datum, 

usually mean sea level. How does one accurately identify mean sea 

level during a survey when the behaviour of the waves is controlled 

by degree of exposure and shoreface configuration? It was found in 

several cases that it was impossible to approach within 2 m of mean 

sea level even during calm seas. 

Even if mean tide level is accurately approximated, what is the 

significance of the elevation measured? For instance, there is a 

prominent storm beach at Cape of Good Hope (site 33) which peaks at 

6,2 m a.s.l (7,5m according to Davies 1972). The crest is vegetated, 

indicating that the storm beach is an old feature. The modern beach 

which rests on this ridge is composed of coarse shell detritus. A 

kelp line produced by storm waves is situated 2-3m above mean tide level. 

Although a washover fan situated behind the storm beach is also ancient, 

modern beach accretion is still taking place over this complex. Even 

though the crest elevation is corrected to MSL, it does not necessarily 

indicate a sea level as high as that. 

At many sites (e.g. site 31) the old storm beach and the present boulder 

beach form a composite concave up profile, which displays effective 

size selection by the waves. Boulder-size material occupies the low 

tide level, and size decreases regularly to cobble size at the storm 

beach crest. Obviously size sorting is not merely a function of modern 

sea level, but is rather a product of repeated sea level oscillation. 

A. The 30 m Shoreline 

Beds composed of wave-generated beach boulders are exposed close to 30m 

a.s.l. at sites 25 (28,7 m), 44 (32,0 m) and 45 (30-32 m). Figure 

15.4 illustrates a typical exposure of the 30 m shoreline above Ko~elbaai, 

where shoreline retreat has exposed this old beach on the inner edge of 

a platform at the foot of the mountains, (i.e. it could not rise much 



Fi gure 15 . 4 The 30 m beach expos ed below talus in a road 
cut above Ko~elbaai . 

~20m 

Figure 15.5 Illustration of storm beach development just 
west of the Palmiet River mouth . The inland 
d i pping quartzite is sheared . 

Sea 
leve l 
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more above this elevation). The boulders are composed entirely of 

orthoquartzite. They are well rounded and have chattermarks. Maximum 

boulder size is 1 m. The bed is well sorted and contains no scree 

material, indicating little post-depositional surface creep. 

On the Atlantic coast of the cape Peninsula, this shoreline is exposed 

at 21 m at site 26, and 28,7 m at site 25. The beach boulders lie 

upon deeply weathered granite and vary considerably in elevation even 

over small distances, filling a platform of considerable relief. 

8. Beaches between 8 and 20 m 

Deposits of the 20 m shoreline occur sporadically on the coastal 

platform east of Gordons Bay (sites 47, 55, 56). Seldom do they form 

prominent horizons, suggesting that the 20 m sea level stillstand was 

minor compared with the 30 m event. Wave-generated cobbles and 

boulders occur on the platform west of the Palmiet River from 15,0 to 

20,0 m a.s.l. The most widespread occurrence of the 20 m deposits 

is at Somerset West where they form a wide terrace protected on a re

entry in the mountainous terrain. 

Even less significant are elevated shorelines at 15 m a.s.l. (Sites 

30, 37, 55), and 8,3-11,3 m a.s.l. (sites 36, 46, 54, 57) which form 

discontinuous horizons beneath talus deposits. 

levels possibly also belong to the 15 m level. 

Some of these low 

In some cases ridges 

of boulders pond vlei deposits. Extensive reaction with the acidic 

vlei waters has so completely corroded the boulders that all rounding 

has been removed. 

c. Low Elevation Beaches 

The low elevation littoral deposits include those up to about 7 m 

a.s.l. The best developed are those at 5,8-7,1 m and 4,0-4,6 m a.s.l. 

(Table 15.1). The average elevation of the higher set is 6,3 m a.s.l. 

(C I ) which is equivalent to the 6,3 m shoreline of the west coast 



234 

(Chapter 13). The lower set (4,0-4,6 m shoreline) does not have a 

correlative on the west coast, and its development suggests that it 

was no more than a brief halt from the C I event. It has already 

been noted that the modern storm beach grades upwards into a vegetated 

component, and that the composite concave-up feature displays size 

sorting. Figure 15.5 shows a typical section through one of these 

storm beaches at the Palmiet River mouth. Average boulder size 

decreases from about 50 cm at low tide level to 15 cm at 3,5 m a.s.l. 

A recent excavation through the storm beach at site 50 shows imbricated 

cobbles up to 4,0 m a.s.l. Along other parts of the coast narrow sandy 

terraces with occasional shells fringe the sandstone platforms. The 

6,2 m storm beach at Cape of Good Hope has already been cited as an 

example where modern beach accretion reaches its crest. In other 

areas (e.g. sites 28 and 32) 6,3 m ramparts are preserved on the inner 

edge of boulder terraces, while the outer edge of the terrace forms part 

of the modern beach complex. 

other beaches include those at 2-3,1 m a.s.l. which correlate with the 

2-3,5 m shoreline (C II) of the Saldanha area, while a lower set at 

0-1,5 m represents the C III shoreline. At Strandfontein this horizon 

takes the form of beach rock. Wave-generated boulders beneath the 

Middle stone Age strata in Oie Kelders I cave have been 'attributed to 

waves surging through the cave from a sea level approximately coincident 

with present datum (Tankard & Schweitzer 1974). The importance of 

the Die Kelders I horizon is that it occurs at the same elevation as 

the storm beach in front of the cave, and shows that the present storm 

beaches are possibly formed by repeated occupation of this level by 

interglacial seas. 

A feature of all of these deposits, compared with those of the Saldanha 

area is the dearth of faunal remains. One site with an abundance of 

animal remains has recently been described by Kensley (in press). The 

site (Figure 15.1, site 24) is situated at approximately 1,5 m a.s.l. 

near the Milnerton lighthouse. Kensley identified 82 mollusc species 

in these deposits and noted that rock-dwelling forms predominated 

(59,3 per cent). Sand-dwelling and estuarine species formed 24,7 per cent 
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and 8,6 per cent respectively. Kensley envisaged shell accumulation 

on a low energy beach, with the estuarine forms being contributed from 

flushing of nearby estuaries. The assemblage is dominated by 

Crepidula capensis praerugulosa (25,1 per cent). Twelve of the species 

are typical inhabitants of the warmer south coast. 

In the vicinity of Melkbosstrand (site 23) Malmesbury rock forms a 

platform at -10 m. The platform is overlain first by a palaeosol and 

then by a coarse-grained shelly foreshore accretion unit up to 1,5 m 

a.s.l. The molluscs are modern in character, and usually very 

fragmented. The shell detritus, rounded cobbles, pebbles and the 

coarse sediment all indicate a high energy littoral origin, although it 

is thought that this deposit is contemporaneous with the Milnerton 

deposit described by Kensley. Furthermore, the palaeosol underlying 

these deposits is clear evidence that they are not merely temporary halts 

in the regression from the 6,3m (C I) shoreline. These occurrences 

suggest that the regression carried the shoreline below present sea 

level, and that the C II shoreline was the result of a new transgression. 

The Cape Flats are underlain largely by Wurm and Recent dune sands. 

Only on the western fringe north of Muizenberg (Sandvlei and Seekoevlei) 

is there evidence of shelly estuarine beds. These form a prominent 

terrace at 1,5 m a.s.l. The mollusc fauna is typically estuarine and 

includes species such as Bullia laevissima, Nassarius kraussianus, 

Turritella capensis, 'Rissoa' capensis, and Solen capensis. They 

suggest shallow water with a sandy substrate. 

There is little evidence to suggest Holocene sea level higher than the 

present. But the Flandrian transgression was rapid (167 cm/century: 

Chapter 1). This led to drowning of the river valleys which were 

incised across the coastal platforms. Figure 15.3 illustrates the 

drowned valley of the Palmiet River, and shows how insignificant 

sedimentation has been since that flooding. 

The upper reaches of the Bot River (30
0 

16'S; 19
0 

11'E) have a 

pronounced terrace underlain by immature but well-sorted and rounded, 

I 

I 

I 
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ferruginised river gravels at 67 m a.s.l. This terrace is extensive 

on both sides of the valley. A lower ferruginised gravel terrace 

is situated at 20-23 m a.s.l. nearer the mouth (340 22'S; 190 09'E). 

During the Eem the sea initially formed a deep funnel-shaped embayment 

at the mouth of the Bot River (Figure 15.6). But during the Holocene 

the shoreline has advanced by prograding spits with back filling of 

the area behind the spits. Later Stone Age midden material suggests 

accretion of 600 m in the last 2000 years. 

D.!. Al:£ AND CORRELATION 

As far as the 30 m shoreline is concerned, there is hardly any means 

of dating it. But it is probably no younger than Early Pleistocene. 

Oxygen isotope studies of deep sea cores (Shackleton & Opdyke 1973, 

figure 9) show that glacio-eustatically sea level could not have exceeded 

present sea level by much in the last 800 ka. Shackleton and Opdyke 

argue that if the age of the 30 m shoreline was equivalent to their 

stage 9 (approximately 560 ka) it would have formed close to present sea 

level. To elevate such a beach to 30 m a.s.l., either by coastal 

uplift or tectono-eustatic regression, would ensure that the Eem (120 ka) 

shoreline at 6 m would today be recorded at +15 m. Since I am confident 

that this shoreline on the southcoas"tis situated at 6 m a.s.1., it 

must be assumed that the 30 m event is of considerable antiquity. 

It is possible to discuss the minimum age of the 20 m shoreline in more 

concrete terms. Acheulian handaxes and cleavers, and beach cobbles 

are at present being eroded from a black palaeo sol at cape Hangklip 

(Sampson 1974). Sampson could be correct in attributing this material 

to the 20 m shoreline. Furthermore, he describes the artefacts as Late 

Acheulian. Since Acheulian time stretches back to 700 ka (Klein 1974) 

from approximately 180 ka( Wendorf et al 1975), it would appear that the 

shoreline could be no younger than about 300 ka, and using the same 

arguments as for the 30 m sea level, it is suggested thHt this shoreline 

(20 m) possibly dates to the late Early to early Middle Pleistocene. 

Davies (1971, 1972) cites numerous radiocarbon dates to suggest that the 
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6 m sea level of the southern and south-eastern Cape originated during 

the WOrm interstadial. Detailed glacio-climatic studies, oxygen 

isotope studies, and reliably dated sequences prove the impossibility 

of his claim (discussed in detail in Chapter 1). All the dates quoted 

by Davies were derived from carbonate material which yielded ages older 

than 29 000 years. All of these dates should be taken as minima 

(see Chapter 1, and Davies 1973). The only young date (2300 years; 

Pta -445) derived from an Argobuccinum shell is used to suggest a 

Holocene age for the 5,7 m shoreline. Again this date may be meaning-

less since many of these storm beaches are capped with midda. material 

and modern beach accretion. Two other dates (6870 B.P., Y-466j 1905 B.P., 

Y-467) from Sedgefield (Martin 1962) show a sea level close to present 

datum for this period. The dated beachrock at Muizenberg (25 860 B.P. 

and 25 430 B.P., Siesser 1974) and the molluscs at Milnerton (33 750 

B.P.: I-8372, Kensley in press) give minimum ages which suggest that 

all beach deposits between present datum and 7 m are of last interglacial 

age. The wave-generated boulders in Die Kelders I, attributed to sea 

level equivalent to present datum, are overlain by Middle stone Age 

sediments which confirm a last interglacial age. 

The mollusc fossils discussed by Kensley (in press) show that the 

Milnerton beach deposits at 1,5 m a.s.l. are equivalent to the last 

interglacial deposits in the Elands Bay-Saldanha area. Furthermore, 

the Milnerton deposits contain a similar thermophilic fauna. 

Table 15.1 shows a suggested correlation of shorelines in the Peninsula

Die Kelders area compared with Sa.l'danha and Namaqualand sequences. 

There is no reliable data east of Die Kelders. It will be seen (Table 

15.1) that the shoreline at 6,3m (average) provides a useful and fixed 

datum. But it should be pointed out that even though the coastline 

between Cape Town and Die Kelders has been examined fairly exhaustively, 

not enough sets of beaches at regular and small intervals were found to 

substantiate this correlation, even for distances shorter than 30 km. 
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V. AEOLIANITES 

Aeolianite accumulations of WOrm age occur along the coastal margin of 

the southern Cape. Cross---bed azimuths indicate deposition by southerly 

winds. The most impressive sequence is at Swartklip 8 km east of 

Muizenberg (360 06'S; 180 30'E) where they form a 25 m cliff above the 

beach. Professor K.W. Butzer is currently re-examining these aeolianites 

in detail. The only detailed geological description is that of Singer 

and Fuller (1962), while Hendey and Hendey (1968) have described the 

mammal fossils. 

The cliff section consists of an alternating succession of coarse and 

medium-grained sands which are carbonate cemented, and several horizons 

of calcrete and ferruginous staining (palaeosols). Together these 

imply changing environmental conditions, while the palaeosols suggest 

periods of non-deposition during times of moister climate and possibly 

year-round precipitation (Tankard in press d, and Chapter 16). At 

Swartklip and Die Kelders the extension of the aeolianites below sea 

level implies formation during glacial times. Tankard and Schweitzer 

were aqle to show from Middle Stone Age artefacts in colluvial deposits 

that they formed during the WOrm lowering of sect level. Furthermore, 

it was also shown that lithification had occurred prior to about 6000 B.P. 

(Chapter 16). The colluvial deposits were thought to have originated 

by movement of saturated regolith through a local karst terrain. 

IV. DISCUSSION 

A detailed examination has shown prominent terraces at 67 m a.s.l. (Bot 

River terrace), 30 m, 20 m, 6,3 m (C I), 4,4m (C IA), 2,3-3,1 m (C II) 

and 0-1,5 m (C III). It was suggested that the 30 m sea level could 

be no younger than Early Pleistocene, while the 20 m sea level could 

also possibly of late Early Pleistocene age. The shorelines from 6,3 m 

a.s.l. and lower would most likely be of Eem age, while the C II 

shoreline represents a transgression and wot merely a halt in the 

regression from the C I level. 
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Perhaps the most valuable outcome of this part of the project is the 

negative aspect. The difficulties experienced in measuring any 

particular feature, its interpretation, problems experienced in dating, 

etc., cast considerable doubts on those studies which consistently 

find raised beaches at the 'right' elevations. For example, Davies 

(1972) assigns the estuarine beds with the Swartkops fauna to a 9 m sea 

level, when in fact most of these estuarine occurrences relate to a 

sea level close to 6 m a.s.l. It is not difficult to recognise raised 

beaches at practically any desired elevation. The difficulty lies in 

recognising the major stillstands of the sea and deriving a chronology. 

Recognition of the Late Pleistocene datum close to 6 m a.s.l. between 

Elands Bay and Die Kelders suggests comparative stability in the Late 

Pleistocene. Above this datum exposures are generally too far apart for 

adequate correlation without a mollusc fauna. 

On the Peninsula considerable time was spent re-examining shoreline 

features described by other workers (Krige 1927, Gatehouse 1955, Davies 

1972). In the case of Krige many- of his higher shorelines are no more 

than structurally controlled terraces. But his work perhaps still 

remains the most original analysis, unconfused by any preconceived 

concepts. The value of his work lies in his recognition of sea level 

stillstands at 18 m and 6 m. He found that the major emergence 

shoreline rose from 15 m a.s.l. at Cape Town to 30 m a.s.l. at Infanta, 

before falling again to 13 to 15 m a.s.l. in the Mossel Bay area. 

The emergence seemed to Krige to be so Ubiquitous as to suggest a lowering 

of sea level, with local subsidence of the coastal areas. But Krige's 

work certainly does not merit the general acceptance that has been 

bestowed upon it by South African geologists because of: 

(i) incorrect identification of terraces; for example the 

Cape Flats, underlain by dune sand, are explained as a 

marine terrace, and 

(ii) field evidence is accepted or rejected to suit his own 

prejudices; for example, a cave below Cape st Blaize 

lighthouse at 27,4 m a.s.l. is rejected as of marine 

origin because it is cut along the unconformity between 
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Peninsula sandstone and Enon conglomerate. Yet he 

does not similarly discard caves on the Robberg 

Peninsula which are cut along the interface between 

these same units. Finally, 

Krige rejects other evidence of "strandlines" that do 

not coincide with his narrow constraints on the grounds 

of subsidence of that area. 

These same objections can be raised to the more recent studies also. 

Gatehouse (1955) usually correctly identified shorelines up to 30 m 

a.s.l., but his reliability decreased with increasing elevation. 

Those shorelines above 30 m were either not re-discovered, or else they 

appear to be isolated midden remnants or structurally controlled 

terraces. Davies' (1972) account is very difficult to understand. He 

is of the opinion that the 6 m shoreline is a WUrm interstadial feature, 

the 5,4 m shoreline a Holocene feature, and yet rejects the 7,5 m 

level recorded by others as an old and exhumed pre-Late Pleistocene 

feature. Davies incorrectly recognises terraces at 6 m and'l,5 m 

a.s.l. on granite promontories at Llandudno (1972, figure 22). He has 

taken no account of abrasion characteristics and the fact that platforms 

are generally graded to wave-base (see Chapter 13). 

Finally, Davies (1970 - 1973) has extensively used archaeological 

implements as zone fossils. In the southern Cape only rarely are 

primitive tools found above the 60 m shoreline, but artefact abundance 

increases with decreasing altitude (Davies 1971). There appears to be 

little direct evidence of pre-Acheulian hominid occupation of the 

southern Cape (Klein 1974). Klein believes that the Acheulian of the 

southern Cape may span the Middle to Late Pleistocene time, from about 

700 ka to 100 ka. He also suggests a possible span of the Middle stone 

Age culture from 100 ka to about 40 ka. 

To be able to use artefacts as zone fossils it is necessary to assume 

that they are older than the beach in which they were found, and that 

their inclusion is truly the work of the sea which deposited the host 

I 

I 

I 

I 



241 

sediment. It is necessary that the artefacts show signs of marine 

Objections against the use of artefacts are: abrasion. 

(i) little is known about the precise age of these artefacts; 

(ii) if the artefacts are unworn, as all the illustrations 

in Davies' papers suggest, then they were not part of 

the original depositional environment; 

(iv) if the artefacts are worn to suggest that they were an 

original inclusion, then it must be doubtful that they 

can be recognised. It would seem unlikely that vigorous 

abrasion on a cobble or boulder beach would always 

product just the required amount of abrasion; 

(iv) I have only witnessed the collection of unworn artefacts 

from terrace surfaces and not in situ. 

Against this background, and accepting that some artefacts may be 

genetically related to the sediments, I submit an alternative 

explanation for what must be the majority of in situ occurrences. The 

following argument is given in the hope that it will stimulate 

discussion of this problematical aspect. 

Since the artefacts appear, from illustrations, to be remarkably fresh, 

and since they are found in suc~ profusion, it would seem obvious that 

their occurrence is not genetically related to the sediments in which 

they are found and that they are, in fact, much younger than the 

terraces which they purport to date. It is my contention that 

Acheulian and Middle Stone Age peoples have found the flat remnants of 

terraces in an otherwise rugged terrain a very convenient place on 

which to live and scatter their artefacts in great profusion. The 

increasing quantity of artefacts with decreasing altitude (? or age) 

of the terraces merely suggests that the larger extent of the lower 

terraces would offer a more suitable site for habitation. The inclusion 

of the artefacts in a pseudo-stratigraphical context could have been 
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the result of downward movement by erosion and undercutting, and the 

same processes of expansion and contraction that form the very con

spicuous gravel lines seen in so many South African soil profiles. 

Downward movement would be arrested once the artefacts had come into 

contact with the firm gravel and boulder horizons. There is no mention 

in the literature whether the artefacts are an intimate part of the 

gravel or lie on the top of the gravels. 

A comparison of the shoreline elevations in the area between the Cape 

Peninsula and Die Kelders with other recently published elevations for 

other parts of South Africa is presented in Table 15.2. The data from 

the Namaqualand coast, although appearing solely as a table in a taxonomic 

paper (Carrington & Kensley 1969) is based upon years of intensive mining 

operations in a small area north of Hondeklipbaai on the Namaqualand 

coast, and is probably the most reliable data avaiiable. The close 

agreement of these Namaqualand shorelines with those of the Algoa 8ay 

area (Ruddock 1968) is interesting and confirms the apparent correctness 

of Ruddock's corrections for tilting. 

TABLE 15.2 

Comparisons of some published shoreline elevations for 
South Africa (m) 

This Carrington & Ruddock Maud 
Dissertation Kensley 1969 1968 1968 

1,0 
0 -1,5 1,5 
2;3--3,1 2 2,4 
4,0-4,7 5 4,5 
5,8-6,9 7-8 6 

8-11 8 
12 

15-20 17-21 18 18 
24 

29-32 29-34 30 33 

45-50 52 45 

58 
64 

70 
75-90 84 

91 
106 115 

170 
-~ --- - ----_ .. _------------

Davies 
1970 

1,5 

3,5 
6 
9 

18 

30 
38 
48 

61 
73 
82 

110 
155 



243 

The most important aspect of Table 15.2 is the lack of agreement, 

even by two workers in the same province, Natal (Maud 1968, Davies 

1970). Without precise stratigraphic control regional studies of 

high level shorelines prove to be no more than exercises in 

correlation. And since it is possible to find a raised beach at 

almost any desired elevation some sort of correlation is always 

possible. Apart from tabulating these various shoreline elevations 

(Table 15.2) there is little that can be said about them. It is 

not possible to suggest a chronology other than a relative one 

(i.e. the order of decreasing altitude is also that of decreasing 

age). Without a precise means of correlation and on the evidence 

available it is impossible to distinguish between eustatic effects 

and the effects of local tectonism. 
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CHAPTER 16 

DIE KELDERS CAVE AND ITS PALAEOENVIRONMENTAL 

SIGNIFICANCE 

1. INTRODUCTION 

In recent years archaeology has become very much an interdisciplinary 

science. Descriptions of the cultural and dietary aspects of 

excavations, and cursory stratigraphic descriptions are now regarded 

as insufficient in any attempt to understand prehistoric man and his 

habitat. Geologists and archaeologists have now combined to extend 

the approach pioneered in Europe by Lais (1941). Techniques 

commonly used by sedimentologists to determine depositional environ

ments have been successfully applied to cave sediments along the Cape 

south coast (Butzer 1973; Tankard 1974d, in press d; Tankard & 

Schweitzer 1974 and in press). These techniques include grain size 

analysis, surface textures of detrital grains (by electron microscopy) 

and sedimentary structures. 

The importance of Die Kelders I is that it is situated in the winter 

rainfall area of South Africa, an understanding of which is important 

to an understanding of the climate of a greater part of South Africa. 

The cultural sequence in the cave ranges through the Middle Stone Age 

(MSA) and Later Stone Age (LSA). This represents potentially a time 

span of some 80 ka, i.e. the entire hypothermal period. In reality 

the MSA occupation may have been brief, perhaps as short as 25 000 years, 

and from 40 ka or 50 ka until 2000 B.P., the cave remained unoccupied. 

The MSA fauna includes seal and penguin, but no fish or mollusc 

remains, while the LSA is represented by a shell midden which contains 

vertebrate remains of a very different aspect to that of the MSA. The 

LSA vertebrate fauna includes sea birds, fish and seal. 

The aim of this chapter is to discuss the changes in depositional 

environments occurring in Die Kelders I and environs, and to discuss the 

implications pf these changes for our understanding of Late Quaternary 
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environments. 

Excavation of Die Kelders I was carried out from mid-1969 to early 

1973 by Mr F.R. Schweitzer of the South African Museum. 

II. GEOLOGICAL SETTING. 

Die Kelders I is a north facing cave situated on Walker Bay 160 km 

south-east of Cape Town (34
0 

32,8'S; 19
0 

22,3'E) (Figure 16.1). The 

back of the cave is 8 m a.s.l. and 10 m inland from the high-watermark. 

The cave has formed along the unconformity between Palaeozoic Table 

Mountain sandstone (TMS) and Miocene marine limestone of the Bredasdorp 

Formation. The unconformity, which rises gently inland, was formed 

by planation during the Neogene transgression. The TMS dips in a 

northerly direction at 400 (Figure 16.2). Erosion along the strike 

of the sandstone produced a series of east-west passages which have 

acted as sluices for the movement of groundwater. The importance of 

the unconformity to an understanding of the cave depositional history 

lies in the fact that it forms an impermeable surface for the shoreward 

movement of groundwater from the mountains behind the coastal plain. 

This groundwater gives rise to an active spring near the cave, while 

sculpturing at the back of Die Kelders I shows that the cave too was a 

site of active groundwater movement in the past. 

The frequent occurrence of caves situated at 7 to 10 m a.s.l. along the 

southern Cape coast suggests that they were formed during a period or 

periods of higher than present sea level. If the cave complex at Die 

Kelders was formed primarily by erosion by a high sea level (+6-8m), 

it is interesting that this also coincides with the height of the 

unconformity along this part of the coastline. 

The cave complex originated from the fortuitous interaction of two 

dominant processes. Firstly, precipitation on the mountains behind 

the coastal plain results in surface run-off, and some water finds 

its way down to the impervious TMS and then flows· down the north-

westerly dipping unconformity. At about 120 ka there was a world-wide 
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F~gure 16.2 The Die Kelders cave complex. The excavated 
section is situated in the cave immediately behind 
the figures. Note the formation of the cave along 
an unconformity between steeply dipping sandstone 
and Bredasdorp limestone. Also note the northward 
dipping aeolianite above the cave (the lighter 
colour). 
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glacio-eustatic rise of sea level to 6-9 m above present sea level. 

The interaction of this higher sea level, the convenient occurrence 

of a plane of weakness (the TMS-Bredasdorp unconformity) in the 

coastal strata, and water flowing along this plane all contributed to 

formation of the cave complex. Enlargement of the cave has proceeded 

by chemical weathering of the limestone roof rock, frost weathering, 

and possibly even by collapse of the cave roof by a catastrophic 

earthquake shock (Tankard & Schweitzer 1974 and in press). 

The second high sea level is marked by wave-generated beach boulders 

beneath the MSA succession. The altitude of this boulder bed (+2m) 

matches that of the beach rampart in front of the cave, suggesting that 

they were formed at the same time by a sea level coincident with 

present sea level. A minimum age for these beach boulders is fixed 

by the overlying MSA strata in the cave; MSA occupation appears to 

have followed soon after withdrawal of the sea. This suggests that 

the Om sea level probably dates from late in the last interglacial. 

Late Pleistocene aeolianites overlie the Bredasdorp limestone. Cross

bedding azimuths show that they were deposited by a southerly wind 

regime. Along the coast of Walker Bay the aeolianites obviously 

extend below present sea level and are now being cliffed by the present 

sea. The Walker Bay aeolianite cliffs, remnants of aeolianite on 

quartzite promontories, and truncated cross-beds abov.e the cave 

complex (Figure 16.2) sho~ that they were formed when sea level was 

lower and newly exposed sands on the continental shelf were blown 

inland by the southerly winds. 

A poorly sorted outwash deposit containing MSA artefacts interbedded 

with the calcarenite occurs just north of the cave. The outwash 

deposit originated by movement of saturated regolith down a gentle 

slope. The calcarenites can be no older than. the MSA. Rubble of the 

calcarenite forms a relict talus deposit immediately below the midden 

in Oie Kelders I, suggesting that lithification had been completed 

before about 6000 B.P. Origin of the calcarenites during the last 

glacial while sea level was lower is thus confirmed. 

l· ! 

r 
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III. GENERAL FEATURES OF THE C,C>,VE DEPOSITS 

A. Stratigraphy 

Excavation at Die Kelders I has proved the existence of more than 

7m of sediment preserved in an erosional strike-passage through the 

TMS. The stratigraphy of the cave deposits can be summarised as 

follows (from bottom to top, Figures 16.3 and 16.4): 

(i) An incompressible horizon of quartzite "beach" boulders 

and coarse poorly sorted interstitial quartz sand 

containing weathered echinoid spines (layers 16 and 

17). 

(ii) Middle Stone Age sequence comprising alternating 

(iii) 

(iv) 

occupation and non-occupation layers. The occupation 

layers are compacted and characterised by cultural 

material and faunal remains. The non-occupation layers 

consist of fine to medium quartz sands (layers 4 

through 15) and micro-fauna. 

Sterile yellow sands, fine to medium grained, iron

stained (layer 3). 

Shelly quartz sand, fine to medium grained, echinoid 

spines, foraminifera (layer 2), Talus material at the 

base. 

(v) Late Stone Age shell middens with intercalated lenses 

of fine to medium calcareous sand (layer 1), Radiocarbon 

dates on charcoal samples range from 2020 B.P. to 1465 

B.P. (Schweitzer 1970). 

The history of the Die Kelders I deposits begins with accumulation of 

wave-generated "beach" boulders which arose from waves surging through 

the passage from a level approximately coincident with present sea 



Figure 16.4 Die Kelders I excavation showing from top down: 
Later stone Age shell midden; shelly quartzose sands 
with shell grains and foraminiferal and echinoderm 
remains; talus rubble; sterile yellow iron stained 
sands; massive roof reck boulders across the top 
of the Middle stone Age succession. 

Figure 16.5 Rhythmically bedded iron stained sands overlying 
roof rock collapse and underlying talus. 
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level. With the onset of glaciation in the high latitudes and the 

consequent lowering of sea level, the cave became available for 

occupation, and accumulation of the Middle Stone Age succession began. 

The Middle Stone Age quartzose sediments (layers 4 through 15) have 

been modified by the addition of cultural debris (artefacts and bone),. 

small rodent bones probably dropped by predators such as owls, spalled 

fragments of roof rock and humus. The mud-humus content reaches a 

maximum in occupation layers 6 and 14. The Middle Stone Age is 

represented in all by six occupations (layers 4, 6, 8, 10, 12 and 14) 

which are separated by sterile non-occupation layers (5, 7, 9, 11 and 

13). The occupation layers are generally darker coloured than the 

non-occupation layers due to the higher'mud and humus content, and 

characterised by artefacts and vertebrate remains. The occupation 

layers have a range of carbon values from 0,16 to 0,36 per cent, while 

the range in the non-occupation layers is 0,08 to 0,12 per cent (carbon 

determined by oxidation and titration). (Carbon in soils can be as 

much as 1 to 2 per cent). There is a total absence of marine shells 

suggesting that the shoreline was at that time some distance from 

the cave. But seal and penguin bones which are most abundant in 

the lowest occupation level do suggest that the sea was still exploited. 

Occupa tion layer 6 near the top of the Middle Stone Age sequence is 

the most conspicuous, being 0,7 m thick. It is a dark yellowish 

brown colour (lOYR 3.2-4.2: Rock Colour chart of the Rock Colour 

Committee 1970), but mottled red by hematite and yellow by limonite. 

The quartz grains in this horizon are extensively iron-stained. The 

underlying and older occupation layers are less distinct in terms of 

coloration and thickness, and considerable compaction has taken place 

due to leaching of the mud and humus. In layers 4, 10 and 12 leaching 

and compaction have resulted in the horizons being represented largely 

by artefacts and bone. In this respect it is envisaged that the 

strike-passage in which the cave sediments are preserved acted as a 

natural channel for drainage of groundwater and elutriation during 

accumulation of Middle Stone Age sediments. 

An important component of the earliest MSA occupation layer and the 
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succeeding non-occupation layer are flattish, angular, spalled 

flakes of roof rock. Unlike modern flakes of roof rock the edges are 

sharp and free of chemical weathering. Tankard and Schweitzer (1974) 

interpreted these angular fragments as the result of alternating 

freeze-thaw conditions. These eboulis secs diminish in quantity 

upwards through the MSA succession, until at the very top of the MSA, 

which is marked by a mass.ive collapse of roof rock, they are totally 

absent. So extensive and massive are the tabular roof rock boulders 

that pneumatic drilling was required to remove them. It is thought 

that such an extensive collapse of roof rock could best be explained 

by a catastrophic earthquake shock. Frost action is an unlikely 

explanation because of the limited amount of small cryoclastic debris. 

But it should be noted that recent earthquakes (1969) have collapsed 

cliff rock along the present shore. 

Extensive weathering of the collapsed roof rock boulders and leaching 

of the last occupation layer to the extent that it was reduced to a 

thin condensed layer demonstra te t:l. lengthy period of non-deposi tion 

t'0llowing the MSA occupation of the cave. The next cycle of 

deposition (layer 3) took place into standing water which was ponded 

between the back of the cave and the quartzite bar in the front. An 

alternating sequence of yellow medium bedded quartzose sands and 

laminae of red quartzose sands demonstrates rapid and rhythmic deposition. 

The broad yellow bands (? limonite stained) are thought to represent 

the wet part of the cycle, and the red bands (? hematite stained) a 

dry phase (Tankard & Schweitzer 1974). The only faunal remains 

consist of very occasional rodent bones in the red bands. otherwise 

the sequence is sterile. There are no shell grains or eboulis sees. 

The top of this sterile unit is marked by a micro-soil horizon 

(Figure 16.6) which suggests prolonged stability of the cave environ

ment. 

By the time deposition was renewed a new environment prevailed. Shelly 

quartzose sands and talus rubble, with no iron staining, overlie the 

yellow sterile unit. The bioclastic component includes foraminiferal 

tests and echinoid spines. Complete echinoid spines demonstrate the 

1 
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nearness of the shoreline. Finally, the cave was reoccupied by 

Later Stone Age people who left behind an extensive shell midden. 

B. Structure 

Onset of high latitude glaciation caused a lowering of sea level which 

left the cave free for occupation by MSA people. But occupation 

of the cave was not immediate. Layers 16 and 17 at the base of the 

succession are incompressible sands and "beach"boulders. Figure 

16.3 clearly illustrates how the Middle Stone Age succession consists 

of alternating occupation and non-occupation strata which dip towards 

the centre of the cave. On the east face (Figure 16.3) dips range 

from about 35
0 

to nearly vertical against the quartzite wall rock, 

but flatten out to a subhorizontal attitude away from the wall rock. 

Sections of the south wall show that the general dip is 20 to 250 to 

the centre of the cave. It is most significant that the dips of 

35
0 

to 90
0 

against the wall rock are greater than the angle-of-repose 

for clean, dry quartz sands. 

Occupation layer 14 is more loamy in content than either the sediments 

above or below. But microscopic examination shows that the quartz 

grains from underlying layer 15 are humus coated. The vertical dip 

in the central part of layer 14 could only have arisen by compaction 

or removal of part of the underlying layer (15). Since it is 

difficult to account for a massive removal of quartz sand, it must be 

assumed that layer 15 at one stage contained an appreciable mud-humus 

content. Assuming that at the time of formation of layer 14, the 

occupants lived on an almost horizontal surface, the present 

configuration of the base of this layer suggests that the compaction 

of the underlying sediment (layer 15) has been of the order of 75 to 

80 per cent. Compaction undoubtedly resulted from post-depositional 

leaching of organic matter, and possibly by elutriation of fine 

material from the sediment by groundwater using the strike-gully as 

a sluice. Upwards through the MSA succession the dip of each 

succeeding occupation layer becomes less and shows that compaction has 

operated throughout the history of the cave sediments, and is probably 
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still operational. Compaction has been so extensive as to leave 

some occupation layers (4, 10 and 12) represented only by condensed 

layers of artefacts and bones which in layer 4 amounted to 60-80 per 

cent. But the occupation layers still have a higher loam content 

than the intervening non-occupation layers, as a result of which they 

are darker coloured. 

Whereas the laminae in the sediments overlying the Middle Stone Age 

horizons are always sharply defined, the laminae in the Middle Stone 

Age succession are wavy and considerably less distinct, a natural 

response to compaction. Compaction has also resulted in the 

formation of numerous microfaults in the sediments (Figure 16.6). 

The laminae of the overlying yellow sands are always sharply defined 

(Figure 16.5), showing a minimum effect of compaction of the underlying 

strata. The maximum dip is 20 to 25
0 

towards the back of the cave 

(southward) while the sediments are horizontally-bedded on the south 

wall. There is a general expansion of the laminae towards the back 

of the cave, illustrating clearly that the top of the Middle Stone Age 

succession formed a basin at the time of deposition. 

The sterile sands dip towards the back of the cave, .and individual 

laminae also expand in that direction, i.e. basinward. The highest 

elevation of the sterile sands is against the TMS bar at the cave 

mouth. Rhythmic bedding is typical of deposition into standing water. 

Broad bands of yellowish sands indicate rapid deposition into standing 

water. The narrow bands of red sands which separate the yellow layers 

represent drier periods. The only faunal component, small rodent 

bones, occurs along these dry-phase layers. The standing water into 

which deposition took place was ponded by the TMS bar across the cave 

entrance. The water probably originated by flow along the TMS

limestone unconformity. Numerous microfaults and micro-thrustfaults 

in layer 3 are the direct result of compaction due to dewatering. 

Pink shelly quartz sands (layer 2) overlie the yellow sands. The 

interface is sharply demarcated, and sometimes erosional. Initially 

I 
I 



Figure 16.6 Rhythmically bedded yellow sands. Note microfaulting 
due probably to continued compaction of underlying 
MSA strata and dewatering. Also note micro-soil at 
top of yellow sands. 

Figure 16.7 West wall section showing talus rubble dipping 
towards back of cave. 

l 

I 
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deposition of the shelly quartz sand was into standing water, but in 

the main they represent dry-phase deposition. There are two 

important constituents of this horizon. The sand-grade calcareous 

component consists of well-rounded shell grains, echinoid spines, and 

some foraminifera. On a larger scale are angular blocks of aeolian 

calcarenite, derived from the calcarenites outside the cave and 

forming a talus deposit within the cave (Figure 16.7). Calcarenite 

rubble gravitated down the flank of a dune which had accumulated in 

front of the cave. The surface of the talus slope formed a basin 

in which sedimentation once again took place briefly into standing 

water. This bed includes some lime mud. 

IV. TEXTURAL ANALYSES 

A. Grain Size Distribution 

Random sampling from the various levels of Die Kelders I sediments was 

carried out by Mr F.R. Schweitzer during the four years of excavation. 

The sampling was supplemented by the writer on several visits to the 

cave during 1973. 

1. Mineralogy and Grain Shape 

The major component of the cave sediments is quartz, with a heavy 

mineral fraction of less than one per cent consisting of ilmenite with 

minor amounts of garnet. The sediments in the Middle Stone Age 

horizons tend to have a significant humus content. Iron-staining of 

the quartz grain surfaces increases upwards through the stratigraphic 

column to the top of the yellow sands (layer 3). 

The sediments overlying the yellow sands are composed of quartz sand 

and shell fragments. The CaC03 content of this bed (layer 2) ranges 

upwards from 53 per cent. The shell midden (layer 1) is composed 

very largely of whole and fragmented marine mollusc shells with ash 
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and a very minor fraction of quartz sand. 

The quartz grains range from angular to round with the majority sub-

round. The sediments low in the stratigraphic column tend to be 

subangular to subround, with the very coarsest grains being angular. 

Generally the sphericity and degree of rounding increase with 

diminishing grain size. In layers I and 2 the quartz grains are 

better rounded than those of the underlying sediments. The quartz 

sands contain someeuhedral quartz crystals, generally with well defined 

and polished facets, although frosting has occurred in some instances. 

From the basal marine unit upwards through layer 3 the grain surfaces 

are lightly polished, with occasional grains displaying better polish 

or frosting. In layers 1 and 2 with the improvement in rounding there 

is also a significant increase in the degree of frosting, probably due 

to post-depositional diagenesis. 

2. Cumulative Size Freguence Distribution Curve 

The cumulative curve (Figure 16.8) depicts graphically the grain size 

variation in Die Kelders I sediments. The textural classes suggested 

by Cornwall (1958) have been adopted. The cumulative curve is 

semiquantitative with respect to layers 6 and 17 becau;:;e in both 

these levels the exposure allowed only an estimate of boulder size. The 

blanket of collapsed roof rock at the top of layer 6 is not shown. 

In layer 17 the "beach" boulders and cobbles constitute about 75 per 

cent of the material. The quartzite wave-generated boulders are water

worn round to subround. Again in layer 6 there is a high proportion 

of rubble and large tabular boulders of collapsed roof rock. The mud 

content throughout the column is generally less than 1 per cent, with 

two notable exceptions. Occupation layers 6 and 14 have a high 

mud-humus content and these correspond to dark colouration (10 YR 3.2-

4.2). 
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3. Character of the Sand Fraction 

The sediments of Die Kelders I have so far been considered in 

totality, i.e. sediments transported into the cave from some outside 

source and which have subsequently been modified by roof rock debris 

and local loam formation. In this section the sand fraction will be 

examined quantitatively with a view to understanding the source of 

the sediment and, of course, the environment outside the cave at the 

time of sediment accumulation. The sieved fractions of the sediments 

were examined microscopically and macroscopically and all cryoclastic, 

lithic and bone material removed. The shell fraction in layers 1 

and 2 has not been removed since the shell particles have, like the 

quartz sand, been transported into the cave from an outside source. 

Grain-size distribution analysis of the sediment samples was done 

by sieving at half-phi intervals and computing the textural parameters 

from the graphic formulae of Folk and Ward (1957). (Grain size 

statistics are summarised in Appendix 1.). 

(i) Mean 

The mean sediment size virtually throughout the sediment column is 

close to 2 ~ (Figure 16.9). The range of mean grain size measurements 

is 1,38 to 2,79 ~ with an average value of 2,06 ~ and a standard 

deviation of the mean size 0,32 ~. The sand is thus classified as 

fine sand, but close to the medium sand-fine sand boundary. 

The coarsest sediment is the interstitial component from the boulder 

bed at the base of the succession. If coarseness of the sediment 

is a reflection of current strength, then a sUbstantial current is 

indicated. This would be expected from the locality of the marine 

horizon where waves probably surged into the cave. 

Coarser sand (ca 1,50 ~) is again encountered in layer 2 due to the 

addition of much platey shell debris which occurs in the coarser grades, 
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but which is probably hydraulically equivalent to the finer quartz. 

Decrease in grain size (average 2,61 ~) in the Middle Stone Age 

succession is the result of admixture of a mud-humus fraction. In 

occupation layer 12 the mud fraction has been almost totally removed 

by leaching, with subsequent compaction, and the grain size is now 

marginally coarser than the sediment as a whole. 

(ii) Standard Deviation 

To describe the sorting of the cave sediments the classification of 

Folk (1966) is used. The plot of standard deviation (Figure 16.9) 

shows that the sediments average moderately well sorted (average 0,61; 

standard deviation of the standard deviation 0,15; distribution 

unimodal). In the basal marine unit the interstitial sand is 

mOderately to very poorly sorted, suggesting an inefficient transporting 

medium. Sorting is somewhat variable throughout the Middle Stone Age 

succession, largely due to admixture of "fines". The yellow iron

stained sands (layer 3) contrast markedly with the Middle Stone Age 

sediments. Here the spread of sorting values is small (mean 0,57; 

standard deviation 0,07), where two-thirds of the samples have standard 

deviations between 0,50 and 0,64. 

(iii) Skewness 

Skewness measures the non-normality of a population. The Die Kelders 

I sediments are nearly all slightly negatively skewed, implying that 

the size frequency distribution has a tail towards the coarser grades. 

Generally skewness is between -0,10 and -0,25 (Figure 16.9) but with 

a range +0,42 to -0,53. The interstitial sands from the boulder 

bed (layer 17) are markedly negatively skewed (-0,43 and -0,53). This 

is undoubtedly the result of surges of sea water flushing out the 

"fines". Admixture of mud and humus in occupation layer 6 has produced 

positive skewness. While the negative skewness of layer 3 is due 

mainly to the absence of fine material, in layers 1 and 2 the negative 

, , , 
I 
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skewness has been produced by admixture of platey shell material which 

occurs in the coarse grad~s. 

The significance of the skewness values in these cave sediments is 

difficult to interpret. Folk and Ward (1957), Mason and Folk (1958), 

Friedman (1961) and Duane (1964) agree that beach sands are generally 

negatively skewed and dune sands positively skewed. In this respect 

the interstitial sand from the boulder bed can safely be interpreted 

as marine. Friedman (op ~) explains the negative skewness of beach 

sands as due to the operation of two opposing forces, the incoming wave 

and the outgoing wash, which effectively winnow out the fine material. 

Positive skewness of dune sands he attributes to unidirectional flow. 

(iv) Kurtosis 

Kurtosis compares the sorting in the "tails" with the sorting in the 

central part. Normal curves have Kg equal to one. The Die Kelders I 

sediments are predominantly platykurtic to mesokurtic (platykurtic = 
0,67 - 0,90; mesokurtic = 0,90 - I,ll) with values close to one. The 

range of kurtosis values is 0,81 - 1,74. The largest deviation from 

the normal curve is in layer 6 where the sediment is leptokurtic (lepto

kurtic = 1,1 - 1,50): that is, better sorted in the central part than 

in the tails. 

(v) Scatter Diagrams 

By themselves the individual grain size parameters do not tell us 

much about the origin of the sediment, although they do define the 

sediments quantitatively. By plotting the grain size statistics 

against each other in 6 two-variant scatter diagrams their geological 

significance is revealed. 

In Figure 16.10 the mean grain size for the Die Kelders I sediments is 

plotted against standard deviation (sorting). The sorting is 
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practically independent of mean grain size, although sorting is poorest 

with the coarse marine sand and the fine loamy sand from occupation 

layer 6. 

mode. 

Best sorting is associated with the most prominent sediment 

In Figure 16.11 mean grain size is plotted against skewness. Apart 

from the two mar.ine samples, the path followed by all other size

skewness statistics is arcuate. Coarser than 2,4 ~ the sediments 

are generally negatively skewed. The decrease in grain size below 

2,4 ~ due to addition of a mud-humus mode to the sand mode is related 

to an increase in positive skewness. 

It was mentioned earlier in a discussion of skewness that many authors 

have found dune sands to be generally negatively skewed and beach sands 

positively skewed. It was suggested that in the case of [Jie Kelders 

I sediments the sign of skewness was perhaps not necessarily diagnostic. 

If the sands had originated from dune accumulation, it is likely that 

they had been dumped over the lip of the cave, from the higher ground 

above, and rapid burial would not favour efficient sorting. Friedman 

(1961) plotted mean grain size against skewness and found an almost 

complete separation of the dune sand and beach sand statistic plots. 

The dividing line between these two fields computed by Friedman is 

shown in Figure 16.11. It is observed that the two undisputed marine 

sediments lie well within the beach sand area, while only two of the 

other 37 samples lie just within the beach sand realm. It is argued 

that a dune origin for these sands is highly likely. In a cave 

environment sorting would be negligible and the skewness values would 

be expected to be inherited. Positive skewness of the samples finer 

than 2,4 ~ is not inherited; it is due to the addition of small 

amounts (3-10 per cent) of mud-humus in the primary sand mode. It was 

also shown earlier that the Middle Stone Age succession has been 

compacted considerably, probably due to leaching of humus and elutriation 

of the silt-clay fraction. Negative skewness of many of the samples 

could possibly have arisen in such a fashion. 

In Figure 16.12 mean grain size is plotted against kurtosis. It will 

be seen that two separate fields occur. For the bulk of the samples 
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kurtosis values range from 0,80 to 1,05, showing that the sand mode 

gives a near normal curve. In the occupation layers the admixture 

of 3 to 10 per cent fine material has resulted in not only a decrease 

in mean grain size, but also a concomitant increase in kurtosis. This 

addition of a fine mode results in a poorer sorting in the tails when 

compared with the central part. The occupation layer sediments 

tend towards leptokurtosity (kg>1,5). Of most significance is the fact 

that with progressive leaching and elutriation of the humus-mud fraction, 

the grain size statistics approach the field of the average "clean" 

sediment with kurtosis less than 1,05. In other words, a common 

origin for the sand fraction of these sediments is indicated. 

The same trend is revealed in the other scatter diagramsj skewness 

versus kurtosis (Figure 16.13), skewness versus standard deviation 

(Figure 16.14), and standard deviation versus kurtosis (Figure 16.15). 

In all of these scatter plots it is observed that the marine sands at 

the base of the Die Kelders I succession are separated from the other 

sediment size statistics. For most of the sands the plots are very 

concentrated, suggesting a common origin. The only wide scatter 

of points occurs in the occupation layers where the fine mode ranges 

from 3 to 10 per cent. With progressive post-depositional removal 

of this fine mode, the sand fraction approaches the other tight cluster 

of points. In Figure 16.13 in particular high positive skewness 

due to admixture of the fine mode in the cave sediment correlates with 

increasing leptokurtosity as the sorting in the tails becomes 

progressively poorer compared with the central part. 

B. Scanning Electron Microscopy 

During transportation, deposition and compaction detrital grains may 

be mechanically abraded and chemically al tered. A voluminous literature 

discusses the consequent surface textures, e.g. Krinsley & Takahashi 

(1962), Krinsley et al (1964), Krinsley & Donahue (1968a), Ooornkamp 

& Krinsley (1971), Margolis & Krinsley (1971), eoch & Krinsley (1971), 

Krinsley & Margolis (1971) ,Blackwelder & Pilkey (1972), Tankard & 
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Krinsley (1974). Krinsley & Takahashi (1962) and Krinsley & Margolis 

(1969, 1971) have listed criteria whereby the various depositional 

environments can be recognised. Littoral textures are characterised 

by V-shaped indentations, straight or slightly curved grooves, and 

blocky conchoidal breakage patterns. A medium to low-energy beach 

environment produces ~ echelon arranged V-patterns, but these become 

randomly oriented as energy increases to high-energy surf conditions. 

Typical aeolian textures are meandering ridges, graded arcs, flat 

pitted areas and upturned plates. All of these textures may be 

modified by solution and precipitation to produce an undulating topo-

graphy. These established criteria are the result of the analysis of 

many thousands of grains from modern unconsolidated deposits of known 

origin (Krinsley & Margolis 1971). 

1. Results 

Typical detrital grains observed in the Die Kelders I sedimentary 

succession are illustrated in Figure 16.16. The first grain illustrated 

(Figure 16.16A) is a rounded quartz grain from layer 2. Its roundness 

is inherited from a littoral environment. The well rounded shell 

grain (Figure 16.16B) is from the same sample. Its superior roundness 

is attributed to the softer nature and hence easier abrasion of the 

shell carbonate. Aeolian grains (e.g. Figure 16.16C) from layer 3 

are characteristically more poorly rounded than the layer 2 and layer 1 

quartz grains. But it is found that in degree of rounding and frosting 

they are identical to the Pleistocene aeolianites occurring on the 

high terrain above the cave. Post-depositional diagenesis results in 

solution and reprecipitationphenomena, and in Figure 16.16 D new 

crystal overgrowths on an older detrital grain are illustrated. 

(i) Textures of littoral origin 

A typical quartz grain from the sands which occur interstitially in 

the layer 17 "beach" boulders is illustrated in Figure 16.16 E. The 



~ Quartz grain rounded in 
littoral zone (layer 2). 

B Shell grain rounded in 
littoral zone (layer 2). 

C Dune quartz grain ( layer 3). 

D Development of new crystal 
faces on quartz grain. 

E Beach environment: 
mechanical gouge marks 
(layer 17, quartz grain). 

Figure 16.16 Scanning electron photomicrographs. 
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conchoidal gouge marks on the grain edge are probably the result of 

grain collisions caused by sea water surging through the cave during 

the last interglacial. 

Some of the types of modification a quartz grain may undergo in a 

littoral or beach environment are illustrated in Figure 16.17. The 

V-shaped patterns (v) are the most common feature observed on the 

rounded edges of beach quartz grains at high magnification (X5000). 

They are triangular indentations with irregular edges. Randomly 

oriented V-notches as illustrated in this photograph are believed to 

be the result of gouging on impact of grains in a high-energy sub

aqueous environment (Krinsley & Donahue 1968a). Also shown in this 

photograph are blocky conchoidal breakage patterns (b) which 

characterise medium to high energy conditions. Also the product of a 

high energy environment are the straight grooves or scratches (g), 

which on this grain are 1 to 2 microns in length. According to 

Krinsley and Donahue the grooves are generally associated with non

oriented V-notches and are used as a criterion for wave action. These 

same workers believe that the grooves are caused by the scratching of 

the sand grain surface by the sharp edge of another grain. 

Krinsley (1973) has found that mechanical V-shaped patterns and 

mechanical grooves decrease in number and the angles between the arms 

of the Vs increase with diminishing grain size, eventually to vanish 

at grain diameter of 300 microns. 

Sand grains from low-energy beaches are characterised by ~ echelon or 

oriented V~shaped patterns which are invariably larger than the 

mechanical Vs described above. They result probably from chemical 

etching in sea water (Krinsley & Donahue 1968; Krinsley & Margolis 

1969). The orientation is undoubtedly controlled by the lattice 

structure of the quartz. 

High energy littoral textures appear on sand grains from layers 1, 

2 and 17. No low energy features have been found. Layers 1 and 2 

also contain well-rounded shell grains and echinoid spines and 



F.igure 16 . 17 Beach environment: littoral 
V- shaped patterns (v) , grooves (g), 
and blocky conchoidal breakage (b) . 
Quartz grain from layer 2 . 
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foraminaferal tests. The degree of rounding of these carbonate 

components is also suggestive of high energy wave conditions as found 

today in front of the cave. 

(ii) Textures of Aeolian Origin 

Surface textures of sand grains from layers 3 to 16 have for the most 

part been diagenetically altered. However, where mechanical textures 

are preserved they are suggestive of an aeolian origin, a conclusion 

already arrived at from extensive grading analyses of the sediments. 

Krinsl~y and Donahue (1968) and Krinsley and Margolis (1969, 1971) list 

critera for recognition of dune sands. These include meandering 

ridges, graded arcs, flat pitted surfaces, and oriented fracture 

patterns. Only two of these textures were recognised on quartz grains 

from Die Kelders I. 

Figure 16.18 A illustrates a typical flat pitted surface. Krinsley 

and DonahUe suggest that flat pitted surfaces gradually replace 

meandering ridges and graded arcs. But because of larger size and 

higher relief oriented fracture patterns (Figure16.18B) would survive 

longer. No graded arcs or meandering ridges have been observed on Die 

Kelders samples. Solution has already subdued the original sharp 

edges of the oriented fractures shown in Figure 16.18 B. Krinsley and 

Margolis (1969, figure 9; 1971, figure 10) illustrate identical 

fracture patterns. They found oriented fracture patterns on samples 

of desert sands from various parts of the world. 

(iii) Quartz S:l.nd Diagenetic Textures 

Throughout the entire Die Kelders I stratigraphic column diagenesis 

of the quartz grain surfaces is common, and has largely destroyed the 

original mechanical textures. Diagenesis is manifested in solutional 

features and reprecipitation features. Solution is commonly controlled 



A, Flat pitted surface typical 
of dune grain. Quartz 
grain from layer 3. 

C. Diagenesis: smooth solution 
surface and crystallographically 
oriented triangles. Quartz 
grain. 

E Diagenesis: calcite over
growths on shell ~rain. 

B Oriented fracture patterns 
as found on dune ~ains. 
Quartz grain from layer 3. 

D Diagenesis: incipient 
crustal growth on quartz 
fracture surface. 

F Diagenesis: globules on 
shell grain. 

Figure 16.18 Scanning electron photomicrographs. 
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by the crystal lattice structure. New crystal development would be 

in optical continuity with the original grain structure. For a 

more comprehensive account of diagenetic features see Margolis and 

Krinsley (1971), Krinsley and Doornkamp (1973) and Tankard and 

Krinsley (1974). 

Slow solution at high pH has produced ~ echelon arranged V-shaped 

etch patterns (Figure ,16.18 C) which have developed on the trigonal 

quartz face. Note how much larger these triangles are than the 

littoral V-notches (Figure 16.17). The broad smooth surface shown 

in Figure 16.18 C is solutional. 

Finally, Figure 16.18 0 shows the development of incipient crystal 

growth on an original blocky disintegration surface. Figure 16.16 0 

shows crystal overgrowth almost entirely covering a quartz grain, 

while an irregular precipitation surface is preserved between the 

crystal faces. 

(iv) Detrital Shell Grain Surface Textures 

Detrital shell grains from layers 1 and 2 were hand-picked and 

examined by the SEM to determine if they would also bear mechanical 

textures. But in all cases only diagenetic textures were observed. 

The shape and well-rounded nature of the shell grains (Figce 16.16 B) 

is due to surface abrasion in a surf environment. On closer examination 

of the apparently featureless surface some very interesting diagenetic 

textures are revealed. Tankard (1974d) described five types of 

texture which were observed on Die Kelders shell grains. 

The earliest phase of diagenesis must have occurred soon after. the 

grains were blown into the cave from the nearby beach, or perhaps even 

in the littoral zone itself. The high polish observed with the 

optical-microscope is due to solution of the surface producing a smooth 

or very slightly pitted surface. A clear example is the background 

in Figure 16.18 E. In a highly energetic chemical environment overgrowths 
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are common. Old carbonate from the Bredasdorp limestone of the cave 

roof and recycled carbonate from other corroded shell have been 

reprecipitated as overgrowths. 

were also observed. 

Carbonate overgrowths on quartz grains 

In Figure 16.18 E rhombohedral calcite crystals have grown in chains 

over an initially smooth surface. The average crystal size is 5 to 6 

microns. Precipitation may also give rise to extensive plate-like 

overgrowths (Tankard 1974d, figure 15). 

Perhaps the most perplexing structures encountered are the numerous 

randomly distributed globular or spherical growths (Figure 16.18 F). 

Other specimens examined showed that many of these globules are 

surrounded by a furrow. These globules are possibly the result of very 

rapid precipitation of carbonate or could have formed due to bacterial 

activity. Slower precipitation would possibly form plate structures 

(Figure 16.18 E) and even slower precipitation would produce discrete 

crystal forms (Figure 16.18 E). 

C. Summary 

In general, then, it is seen that the grain size statistics for the 

sand fractions of all, save the marine sands, are very similar. Even 

sand from layers 1 and 2 which was blown into the cave from the nearby 

shoreline, conforms to the general pattern. The similar grain size 

statistics indicate a similar source for the sediments. Modification 

due to addition of a coarse shell mode or a fine mud-humus mode 

affects the skewness and kurtosis values most markedly. 

While grading analyses show that Die Kelders I sediments are unimodally 

distributed, the uniform degree of rounding supports a single origin. 

Any subpopulations with significantly different rounding in anyone 

sample occur to only a minor extent. Furthermore, the subround 

character of most of the sediment samples from layers 3 to 15 and their 

light polish are suggestive of an aeolian origin. 
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After the sea withdrew from the cave, the shoreline remained far 

distant for a long period. Its return is reflected in layers 1 and 

2. Dune bedded aeolianites along this coast show that the dominant 

sand movement was from the south-east. The cave is north facing and 

moving dunes above the cave would dump sand down their advancing front 

to the foot of the cliff where there would be little opportunity for 

sorting as the sediment would be rapidly buried and reworking would 

be negligible. It was argued that the sign of skewness did not 

necessarily negate an aeolian origin. A plot of mean grain size against 

skewness confirmed the aeolian nature of the sands. 

Detailed examination of quartz grain surfaces by scanning electron 

microscopy shows that textures diagnostic of sedimentary environment 

have largely been removed by post-depositional diagenesis in a highly 

active chemical environment (pH range 7,9 to B,9). But textures 

characteristic of a high-energy littoral or beach environment were 

observed on quartz grains from layers 1, 2 and 17 (Figure 16.17). 

Although these sand grains were blown into the cave from a beach, the 

total absence of aeolian textures suggests that the distance of transport 

was not great. Furthermore, littoral textures are more easily impressed 

than aeolian features. The" only environmental textures observed on 

quartz grains from layers 3 to 16 were suggestive of aeolian conditions. 

But the high degree of diagenesis has obliterated the finer textures. 

Detrital shell grains from layers 1 and 2 were found to contain only 

diagenetic textures. 

The results of this SEM study were in broad agreement with those of 

conventional sediment analysis, and in many respects the technique is 

successful, particularly with respect to high energy marine environments. 

But the writer is not convinced that SEM studies alone are sufficient 

to detail aeolian environments since the diagnostic textures could 

also be the result of diagenesis. 

V. RECONSTRUCTION OF THE PALAEOENVIRONMENT 

The Die Kelders cave complex and other caves along the southern Cape 
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coastline at similar altitudes were probably all formed by erosion 

by a sea 6 to 8 m higher than present at about 120 ka., although high 

sea levels of a previous interglacial may also have contributed. 

At Die Kelders formation of the cave complex was facilitated by erosion 

along an unconformity. The interaction of this high sea with ground 

water moving along the unconformity was probably a very important 

factor. 

A stillstand of the sea close to present datum, probably late in the 

last interglacial, is recorded by wave-generated boulders at the base 

of Die Kelders I succession. 

In Figure 16.19 the history of Die Kelders I from the time of formation 

of the basal marine horizon to the final Late Stone Age occupation 

is illustrated, and Figure 16.20 correlates the environmental changes with 

the cave stratigraphy. 

Regression of the last high interglacial sea level took place after 

80 ka. occupation of the cave was not immediate as is shown by the 

pre-occupation sediments. It is difficult to date the first occupation. 

Tankard and Schweitzer (1974) have suggested the possibility that 

angular limestone fragm9nts in the first occupation layer might equate 

with the world-wide temperature depression which accompanied the early 

warm glacial maximum at 75 ka-65ka (Shackleton and Opdyke 1973). 

Freezing temperatures are rare under the present climate, and the 

presence of eboulis secs indicates a significant lowering of temperatures 

during the initial MSA occupation. But frost-spalling also indicates 

the presence of moisture. The iron staining of the quartz sands 

confirms this. Although seal and penguin bones occur throughout the 

MSA sequence, they are most abundant in the earliest occupation layer 

but show a significant decrease in quantity upward (Dr R.G. Klein pers. 

comm.). This would suggest a nearby shoreline for the earliest MSA 

occupation and possibly a withdrawal of the sea soon afterwards. The 

eboulis secs may thus represent the first major drop in temperature 

which preceded the fall of sea level. Perhaps ,an explanation for the 
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upward reduction of eboulis sec in strata which possibly dated to a 

glacial maximum and shoreline retreat, is that the initial freeze-thaw 

cycle removed the outer zone of limestone roof rock which owed its 

fissure development to the preceding interglacial. Bo initial 

frost-spalling and the seal and penguin bone distribution would suggest 

an early WOrm age for the first MBA occupation, possibly about 75 ka. 

Throughout the MBA occupation the cave environment was damp while 

textural analyses show the existence of a persistent dune field in 

front of the cave. Again it is difficult to estimate the cessation 

of MBA occupation. Klein (1974) has suggested that the MBA lasted until 

about 40 ka. It would indeed be most fortuitous if Die Kelders I 

occupation had lasted until the limit of W.SA time. Instead it would 

be more probable that occupation had ceased sometime prior to this, 

say between 45 and 50 ka. And if the first occupation dated to, say 

75 ka, a period of MSA occupation of about 25 000 years would be 

indicated. 

An occupation hiatus follows the MSA occupation. The beginning of the 

hiatus is marked by solution of the tops of the roof rock boulders and 

complete leaching and elutriation of the youngest MSA unit. This was 

followed by a brief period (rapid sedimentation) when sedimentation 

took place into standing water. A precipitation maximum is indicated, 

and Tankard and Schweitzer (1974) have offered this as a partial 

explanation for the occupation hiatus. Butzer and Helgren (1972) 

record red podzolic soils, indicating a wetter climate, following the 

MSA of the Plettenberg Bay erea. Nearer Die Kelders, at Rietvlei, 

radiocarbon dated pollen stratigraphy shows two wet intervals: 

45-40,5 ka and 36,5 - 33 ka (Schalke 1973). It would seem 

reasonable to equate the rhythmically bedded sterile sands with these 

wet intervals. 

The top of the sterile sands is marked by a micro-soil profile (Figure 

16.6) which indicates a moist and stable environment with no erosion 

or deposition for a considerable length of time. Tankard and Schweitzer 

(in press) have suggested that with continual dumping of sand over the 
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lip of the cave, which is north facing, complete or nearly complete 

burial isolated the cave. This would undoubtedly explain the period 

of stable microclimate in the cave associated with a period of non

deposition and non-erosion which led to soil formation on a small 

scale. This would also presuppose a drop in sea level, and shoreline 

retreat, so that a more extensive dune field could develop. The -25m 

shoreline which lasted until 25 000 B.P. (Chapter 1) would have been too 

close. A fall in sea level to -130m occurred at about 17 ka, while 

between 21 ka and 12 ka, sea level would have been low enough on the 

southern Cape coast for development of the dune field envisaged. It is 

thus suggested that burial took place during the upper WDrm temperature 

minimum. Even though the cave moisture may still have been high, the 

stability of the closed cave system would account for the absence of 

cryoclastic debris at the top of the sterile sands. 

Grading analyses and the use of scatter diagrams to present these results 

support this reconstruction. It was shown that the sediments from 

layers 1 to 16 are fine grained, but bordering on medium sand size. 

They are largely moderately well sorted and negatively skewed. If the 

sign of skewness was diagnostic the sediments should be interpreted 

as inherited from a beach environment, dune sands being generally 

positively skewed. Neither was kurtosis, by itself,found to be 

significant. But plotting all the grain size statistics as 6 two

variant scatter diagrams proved more illuminating. Essentially, the 

statistics separate into three broad groups in all the scatter diagrams. 

One group, the interstitial marine sands (layer 17) do not interest us 

immediately. The other two groups are overlapping and consist of 

samples from occupation and non-occupation layers. In the non-occupation 

samples the grain size statistics are tightly clustered in most of 

the scatter plots, suggesting a common origin. It was shown that the 

differences encountered in the occupation samples were due entirely to 

admixture of a fine mode~mud (silt and clay) and humus. With 

progressive leaching and elutriation of the humus and mud respectively, 

the occupation layer grain size statistics approach those of the non

occupation statistics more closely. Where the humus-mud mode has 

fallen to less than 1 per cent the statistics are the same. 
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Comparing mean grain size with skewness, Friedman (1961) found an 

almost complete separation between beach and dune sands. In plotting 

these two parameters (Figure 16.11) with Friedman's dividing line 

between dune and beach environments, Figure 16.11 shows that all but 

two of the sediments above the marine horizon fallon the dune side of 

Friedman's boundary, suggesting that all the sediments above layer 17 

are of aeolian origin. Although these sediments had an aeolian 

origin the iron-stained sand of layer 3 was clearly deposited in ponded 

water. But sedimentation was rhythmical and fairly rapid. Narrow 

hematite-stained laminae with microfaunal remains suggests that the 

pond periodically dried out. Layer 2 was in part deposited in standing 

water. The lower part of this layer is a talus deposit comprising 

shelly sands and aeolianite rubble that gravitated down the flank of 

a high dune that stood at the cave entrance. 

There is also other evidence to suggest a seaward extension of the dune 

belt during this period of lower sea level. Overlying promontories 

of quartzite along the coast are aeolianites. All along Walker Bay 

these aeolianites extend to below present sea level and are presently 

being cliffed by the sea. More specifically, above the cave the 

aeolianites extend to the edge of the cliff,and are found to contain 

Middle stone Age artefacts very similar to those in Die Kelders I. 

A panoramic view of the aeolianite shows not only the original extent 

of the dune field, but also strongly suggests that the cave complex may 

have been completely buried at some stage. Microscopic examination 

shows that the quartz grains of Die Kelders I average subround and 

are very lightly polished. The grains from the aeolianite are also 

subround and have the same degree of polish. In contrast sand grains 

from the beach in front of the cave are all well rounded and polished. 

Non-occupation of the cave from about 50 ka to 2 ka can be attributed 

to two basic causes. Firstly, we believe that for much of this period 

dampness of the cave probably discouraged occupation. The layer 3 

sediments even demonstrate the presence of standing water. Secondly, 

regression of the sea during the WOrm left behind vast qU2ntities of 

sand exposed on the continental shelf. With increased wind activity, 
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associated with glacial conditions in the high latitudes, a dune field 

built up above and in front of the cave. Not only would an active 

dune field discourage occupation, but dumping of sand over the lip of 

the cave would have built up a high dune there, and probably even have 

completely buried the cave at some stage. Sand falling over the brink 

of a cliff would enter a sand shadow where further transportation and 

sorting would be ineffective. 

Reopening of the cave is shown by deposition of talus rubble during a 

dry period, in fact the first dry period encountered in the cave 

stratigraphy. The sands contain rounded shell grains, foraminiferal 

tests, and complete echinoid spines, indicating a nearby shoreline. 

Recovery of sea level would be required to remove most of the dune field, 

and expose the cave to renewed deposition. But sea level would still 

have been low enough to leave some dunes in front of the cave down which 

talus material, from the aeolianite overlying the cave roof rock, would 

migrate into the cave. The interstadial sea level at about -25 m had 

been sufficient to keep the cave open before. Recovery of the sea level 

following the 17 000 B.P. lowering was very rapid (167 cm/IOO years, 

Chapter 1), and by 9 000 B.P. had reached -25 m, and by 6 000 B.P. was 

within a meter of present sea level. Reopening of the cave would most 

likely have occurred at 9 000-8 000 B.P. Occupation by LSA people only 

occurred at about 2 000 B.P. (Tankard & Schweitzer 1974). 

To summarise (Figure 16.19): The entire MSA succession is dominated 

by moist conditions in the cave, while eboulis secs at the base of the 

succession indicate an early WOrm temperature minimum. standing water 

in the cave occurred probably during the wet intervals from 45 ka to 

33 ka documented by Schalke (1973). Stable conditions in the cave due 

to burial beneath a dune field prevented frost-spalling during the 

upper WOrm temperature minimum. Butzer (1973) estimated that average 

winter temperatures 100e lower than at present along the southern Cape 

coast were necessary to produce frost-shattering. The age estimates 

used in the previous d5.scussion are reasoned guesses to establish a 

relative chronology. 
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VI. PALAEOCLIMATIC IMPLICATIONS 

A. Hypothermal Climate 

The position of the anticyclone varies with solar radiation, and 

Tankard (1975) has shown that last interglacial thermophilic molluscs 

of the southwestern Cape can be accounted for by a shift of the 

South Atlantic anticyclone during the climatic optimum at 120 ka. 

With cold climates that prevailed during the last hypothermal (glacial) 

period one would expect the opposite trend to take place. Lamb (1961) 

has §uggested that ice age circulation was marked by intensified 

circulation of the belt of the westerlies, and greater mobility of 

the subtropical anticyclones. The climatic zones move towards the 

equator in hypothermal periods (Van Zinderen Bakker 1967 and in press): 

A consequence of the northward displacement of the climatic zones 

would be a northward movement of the cyclonic belt. 

A northward movement of the belt of westerlies would have expanded 

the winter rainfall area of the southern Cape, and would have caused 

a migration of the Cape flora inland and along the eastern escarpment 

(van Zinderen Bakker in press). Relicts of this flora exist today in 

the Orange Free State. The arid belt which characterises the Karroo, 

and areas to the north, would have migrated northwards with the anti

cyclones which cause them. 

The present seasonal variation of the south Atlantic anticyclone is 

between 260 S and 300 S (Hart & Currie 1960). Hypothermal climatic 

maps compiled by van Zinderen Bakker (1967, figures 4 and 5) show a 

variation between approximately 22
0

S and 25
0

S, a northward shift of 

the order of 4-50. Since the present winter anticyclone centre is 

centred at 260 S, a summer position in the hypothermal at 25
0

S would 

ensure year round precipitation in the present winter rainfall area, 

as well as an expansion of the winter rainfall belt. 

would still have received a winter rainfall maximum. 

But the area 
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VII. EFFECT OF CLIMATIC MODIFICATIONS ON HUMAN OCCUPATIONS 

A long period of non-occupation of Die Kelders I followed the MSA 

occupation, and lasted some 45 000 - 50 000 years. Tankard (in 

press d) and Tankard and Schweitzer (1974 and in press) have discussed 

in detail this break in occupation, which was attributed to standing 

water and burial of the cave beneath a dune field. But standing water 

and burial single Die Kelders out as a special case. Obviously the 

same conditions would not adequately account for occupation breaks 

following the MSA of other caves. Klein (1974) records that every 

southern Cape site with sufficient data features a post-MSA break in 

occupation, which ganerally ranges between 20 000 and 50 000 years. 

These sites include: Klasies River Mouth, Die Kelders I, Montagu Cave, 

Nelson Bay cave and Kangkara Cave. A failure of all these sites to 

provide a continuous sequence can hardly be fortuitous. 

The following hypothesis may provide an explanation for the occupation 

breaks, and if accepted should indicate where one may look for 

occupations spanning the hiatus. Obviously the hiatus in occupation 

suggests that the entire coastal plain was an unsatisfactory habitat. 

In terms of structure and geography not every cave would contain 

standing water or be buried beneath dune fields. But northward movement 

of the belt of westerlies would ensure year round precipitation in 

the southern Cape. This alone would ensure that every cave site would 

be damper than today. The caves would also have been colder since 

this was also the time of lower world-wide temperatures, the upper 

WOrm minimum. Colder conditions would result in lower evaporation 

rates. This and the higher rainfall is reflected in the relict 

pluvial lakes and the saturated regoliths which gave rise to colluvial 

deposits interbedded with aeolianites of the southwestern Cape. Dr 

Klein (pers. comm.) points out that the fauna from the coastal 

MSA sites also suggests a greatly increased precipitation, if not year 

round precipitation. Solecki and Leroi-Gourhan (1961) have also 

had to attribute a 14 000 year occupation hiatus in the Shanidar Cave 

of northern Iraq, a region with a Mediterranean-type climate, to 

cooler and wetter conditions. 
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At the same time as the Cape south coast, with its possible year 

round precipitation, became an unsatisfactory habitat, so 

northward migration of the winter rainfall belt would have brought 

increased rainfall to the Little Karroo and perhaps even the Great 

Karroo. But in these parts rainfall would have been seasonal. 

Expansion of the Cape flora would have provided a more luxurious 

vegetation which could have supported a denser animal population. 

Plentiful game and a more amenable climate would have enticed 

prehistoric man away from the coastal belt. 

These climatic conditions and the consequent reduction in the human 

population along the coast suggest to the writer that any excavations 

of southern Cape coastal caves will reveal a significant period of 

non-occupation after the MSA. Sites that have been continuously 

occupied may therefore be sought on the fringes of the year round 

winter rainfall belt where rainfall would be seasonal. Such areas 

would be found inland of the coastal mountain ranges, or along the 

east coast, or perhaps further up the west coast. The validity of 

this argument is suggested by recent excavations at Boomplaas Cave 

in the Oudtshoorn district where occupation has been more or less 

continuous throughout the period of the coastal hiatus in 

occupation (Dr Klein pers. comm.). 
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CHAPTER 17 

NAMAQUALAND COASTAL DEPOSITS 

I. INTRODUCTION 

A detailed account has already been given of the Tertiary sediments 

of the Langebaanweg-Saldanha and Cape Town areas. The evidence of 

phosphatic sandstone, pelletal phosphorite and fossils suggest that 

contemporaneous sediments occur along the Namaqualand coast. 

However, there have been relatively few published descriptions of 

the Namaqualand Tertiary geology. Since the discovery of diamonds 

in 1908-1909 Krige (1927) has discussed the raised beaches very 

superficially, Wagner and Merensky (1928) and Haughton (1931) described 

the general geology while Reuning (1931) hypothesised on the origin 

of the diamonds. The only recent discussion of the sediments, albeit 

superficial, is that of Hallam (1964). 

An extensive diamond exploration project was initiated in the early 

1960s by De Beers Consolidated Mines Limited (Namaqualand venture). 

Between the Groen and Bitter Rivers prospecting was done by means of 

large diameter drills along lines perpendicular to the coast and spaced 

2,44 km apart. Further north, on the farms from Zwart Lintjies 

Rivier to Noup (Figure 17.1), prospecting was done by means of large 

diameter drills, trenching and shafting. 

intersected. 

In all cases bedrock was 

This chapter will discuss the geology of the Namaqualand coastal 

deposits in the areas Groen to Bitter Rivers, and Zwart Lintjies 

Rivier to Noup (Figure 17.1). The discussion will be superficial since 

the field work was carried out in the three months December 1965 to 

February 1966 . Use will be made of personal records and an 

. unpublished B.Sc. project report (Tankard 1966). Although geographi-

cally outside the scope of this thesis, it is included because it offers 

a very useful comparison with the Cenozoic sediments between Saldanha 

and Cape Town, and because it makes available a little more 

information on the all but unknown west coast Cenozoic geology. Mr 
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A.J. Carrington is currently examining the Namaqualand Cenozoic 

geology in detail. 

II. PRE-MIOCENE GEOLOGY AND GEOMORPHOLOGY 

The coastal sediments are underlain predominantly by Namaqualand 

granite-gneiss. The granite-gneiss is remarkably homogeneous, but 

becomes more leucocratic towards the Kheis System in the north. Ages 

of pegmatities in the granite-gneiss range from 1090 to 900 million 

years (Truswell 1970). The rocks are predominantly granitic biotite 

gneiss, often garnetiferous. The overlying Cenozoic sediments are 

in places rich in garnet and felspar derived from the granite-gneiss. 

Intrusive dykes follow the structural trends of late Precambrian 

origin (NNW)(Kr~ner 1973). On the farm Dikdoorn on the Groen River 

an intrusive melilite basalt was dated at 38,5 m.y. (ZSA 56). No 

Tertiary sediments in the area are intersected by the intrusives. 

This extrusive and the Klinghardt volcanics clearly suggest instability 

of the Namaqualand coast at least in the Early Tertiary; Furthermore, 

the lines of volcanic activity are related to older structures in the 

crust (Kr~ner 1973). 

Granite-gneiss is exposed along most of the coastline. Where sandy 

beaches are encountered they usually coincide wi th old river channels 

identified during prospecting (Figure 17.3). The lower reaches of 

the Groen, Bitter and Swartlintjies rivers, all ephemeral streams, are 

incised 45 to 90 m below the surrounding countryside, and the present 

channels run in flat, alluvial flood plains. 

III. BEDROCK MORPHOLOGY 

In the Groen River area extensive drilling has shown that the bedrock 

contours are fairly regularly spaced and are parallel to the present 

coastline. But they diverge northwards to form a broad embayment on the 
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farm Kwaas (Figure 17.1). On the northern part of Kwaas and 

Oriekop marine abrasion has developed a series of distinct platforms. 

The most promin.snt platforms, at 43 m, 20 to 21 m, 7,6 m and 4,6 m, 

probably represent major stillstands of sea level, although.someof 

their present altitude may be attributed to tilting. The 4,6m and 

7,6 m platforms are particularly well developed. The slope of the 

43 m platform is 0,75 to 10 towards the present coast. Generally, 

the platforms are broad and have undulating surfaces. 

depressions in the platforms contain gravels. 

Troughs and 

Little is known about the bedrock morphology between the Bitter and 

Swartlintjies rivers. North of the Swartlintjies River, on the farm 

Koingnaas, there is a large embayment (Figure 17.2) that has had a 

profound effect on the formation of diamondiferous ore bodies (Tankard 

1966). 

IV. LATE TERTIARY AND PLEISTOCENE GEOLOGY 

In the Koingnaas area the various Cenozoic stratigraphic units are 

separated by distinct unconformities (Tankard 1966; Carrington & 

Kensley 1969). Tertiary and Pleistocene sediments overlie the wave-

cut platforms bordering the shoreline. They consist of conglomerates, 

gravels and sands which are richly fossiliferous. 

sediments occur up to 4 km from the coastline. 

Generally the 

Haughton (1931) recognised two distinct mollusc faunas from the west 

coast. The older of these was a warm-water fauna characterised by 

Chamelea krigei, Striostrea margaritacea (Haughton's Ostrea prismatica) 

and Donax haughtoni (Haughton's D. rogersi). The younger marine 

sediments are characterised by a cold water fauna. 

The stratigraphic units, each of which is separated by an unconformity, 

will be described in order of diminishing age. 
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A. Tertiary 

Preserved today as bedrock-hollow infills are a series of sediment 

types which are distinguished from younger sediments by high phosphate 

content. The pockets of "E stage" (Mine terminology) sediments 

represent the remains of former widespread Miocene and Pliocene strata 

that have survived Pleistocene transgressions. 

1. "Lower E stage" 

"Lower E stage" strata consist of calcarenite, coquina, phosphatic 

siltstone, and a ferruginous sandstone. Thin-section study suggests 

that the phosphatic siltstone originated by phosphatisation of a 

micrite. The quartz grains are well rounded, while in the matrix 

there is evidence of finely bladed overgrowths developed syntaxially 

about intraclasts. Also present are finely crystalline microspar and 

medium to fine crystalline pseudospar which has replaced micrite (for 

explanations to the terminology see Folk 1965). There are occasional 

phosphate haloes about the intraclasts. The P205 content is low 

(1,3 per cent). Shell debris with crystalline overgrowths is common. 

Maximum thickness is 1 m (Carrington & Kensley 1969) as is the 

Miocene basal bed at Langebaanweg. Since authigenic, phosphate forms 

close to the water-sedimentinterface,athin horizon is expected. 

Furthermore, the surface of much of the phosphatic siltstone is water

worn and polished, as at Langebaanweg, and a conglomeratic fabric is 

common. On foraminiferal evidence Carrington (in litt) suggests a 

Late Miocene age for the "Lower E stage", and argues that it is the 

lithological and chronological equivalent of the Saldanha Formation. 

Furthermore, the calcarenites contain a conservative endemic mollusc 

fauna similar to that described from the Miocene Ysterplaat deposits 

by Tankard (in press c) and that of the east coast Alexandria Formation 

described by Bullen Newton (1913). Typical molluscs are Donax 

serra (same form as at Ysterplaat), Glycymeris borgesi, Lutraria 

lutraria, Scissodesma spengleri, Pitar' sp. 
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2. "Middle E stage" 

The "Middle E stage" is marked by a phosphatic siltstone and is 

equivalent to the phosphatic sandstone/siltstone bed that marks the 

top of the Quartzose Sand Member of the Varswater Formation. This 

"stage is known to contain the vertebrate fossils Prionodelphis 

capensis and Ceratotherium praecox. Hooijer (1972) mentions an 

isolated rolled tooth of C. praecox of Late Pliocene age found in 

poorly sorted fluvial gravels of Pleistocene age at about 18m a.s.l. 

He assumed that the tooth would have been derived from sediments older 

than the fluvial gravels. Carrington (pers. comm.) believes that it 

was derived from "Middle E stage" sediments. Recently the fresh and 

unrolled tooth of a seal, Prionodelphis capensis, was found in fine 

quartzose sands in section 290, line KN3, on Kiongnaas. Carrington 

points out that the tooth is phosphatised, but that the fine quartzose 

sands do not contain even a vestige of phosphate. He suggests that 

the tooth waS probably eroded from "Middle E stage" sediments by very 

low energy conditions. 

80th Ceratotherium praecox and Prionodelphis capensis were taken to 

characterise the Varswater Formatio~ (Hendey 1974). The genus 

Prionodelphis was previously known only from the Pliocene of Argenti~a. 

These fossils and the thin phosphatic siltstone suggest correlation 

of the "Middle E stage" with the Quartzose S3nd Member of the 

Varswater Formation. 

3. "Upper E stage" 

On line KN 3 (Figure 17.3) on the northern part of Koingnaas between 

sections 276 and 291 the weathered gneiss surface dips gently to the 

east (inland). Overlying the weathered gneiss is 0,6 to 0,9 m of 

rounded quartz pebbles and gneiss pebbly sand, all of which is iron

stained. These sediments are essentially bedrock-depression 

infillin§. Although all of the "E stage" is phosphatic to varying 

degrees, the "Upper E stage" is characterised by pelletal phosphorite 
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(Carrington pers. comm.). The pelletal phosphorite is somewhat 

coarser than the pelletal phosphorite of the Varswater Formation 

(0,5 to 1,5 ~ versus 1,8 to 2,3 ~). 

A very rich fossil fauna exists in the "Upper E stage" sediments. 

Abundant rounded or partially rounded bone fragments have been 

recorded. Phosphatic nodules and internal shell casts are common, 

as are shark and other fish teeth which show a high degree of polish. 

The mollusc fauna is west African in character and suggests water 

temperatures 5 to 8
0

C warmer than today (Carrington pers. comm.). The 

contemporary continental climate was arid. The terminal altitude 

of the "E stage" is not known with certainty. It has been recorded 

only up to 30 m a.s.l. 

4. Fluvial Beds 

Distribution of (?) Tertiary river channels is shown in Figure 17.3. 

On Somnaas the channels are confluent. In January 1966 a large 

diameter drill hole waS sunk into the centre of river channel 

sediments that had been discovered by earlier prospecting. . Once the 

channel sediments were encountered at a depth of about 25 m, the hole 

was drilled in 1,5 tol,8m segments and each segment logged in situ 

by lowering a geologist down the drill hole. An annotated section 

is shown in Figure 17.4 (from Tankard 1966). 

The fluvial bed on Koingnaas (KNIA Figure 17.4) is characterised by 

medium to fine quartzose sands with appreciable clay, broken by 

horizons which have amore clayey nature. At a depth of 28 m an 

horizon of blocks of brown, medium sandstone was encountered. The 

blocks gave the impression of a once continuous sandstone bed. From 

about 30 m massive, grey "channel clays" were encountered. Towards 

the base of this test hole proximity to bedrock was first shown by 

very weathered felspar. At this point heavy minerals were not 

encountered. With increasing depth weathered biotite and finally 

fresh biotite were found. 
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On Driekop the fluvial sediments can be subdivided into three 

horizons: 

(i) the basal unit is a carbonaceous sand composed of grey

black and brown fine to coarse sandy clay. It contains 

pebble and cobble size quartz. The colouration is due 

to the high carbon content. Well preserved wood and leaf 

impressions have been found in this horizon. When freshly 

excavated it has the smell of marsh sediments. 

(ii) Overlying the carbonaceous sands is a complex horizon 

of interbedded clay, sandy clay and sand. The clay beds 

overlie the carbonaceous sand and are light grey to purple 

in colour. 

(iii) The topmost unit is a coarse, angular clayey quartz sand. 

It is generally a grey colour but in places is red and 

contains ferruginous concretions. 

The exact relationship of the fluvial beds to the "E stage" sediments 

is not clear since the latter are preserved as relict bedrock-pocket 

infills. They are possibly equivalent to the peat-like sediments 

within/the Varswater Formation, but could also be much younger. The 

maximum thickness accorded the fluvial sediments is 20 m (Carrington 

& Kensley 1969). 

B. Pleistocene 

Carrington and Kensley (1969) have mentioned a series of transgressive 

complexes of Pleistocene age reaching to nearly 100 m above sea 

level. The highest beach deposit is situated at 98,3m a.s.l. in the 

north and sinks to 93 m southwards over a distance of 80 km. The 

transgressive complexes alluded to by Carrington and Kensley are 

as follows: 75-90m, 45-50m, 29-34m (thin, discontinuous), 17-21m, 

7-Bm, 5m, 2m. The 75 to 90m transgressive complex sediments are 
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not known to the writer but they are said to be unfossiliferous, 

coarse, porous, marine sands. 

1. 45 to 50 m Transgressive Complex 

At the base of the 45 to 50 m transgressive complex beds on Koingnaas, 

or perhaps forming the top of the "E stage", is an horizon of water

worn cobbles and boulders which are partly cemented with siliceous

ferruginous cement. It has a highly polished upper surface. Over

lying this indurated horizon is a gravel bed, 0,3m thick, which grades 

upwards into a fine to very fine pale green sand. 

Similarly on Driekop this horizon commences with a gravel and 

grades upwards into a fine grean sand. The colour of the sand when 

wet ranges from light yellow to olive green. The sand is mainly 

fine to very fine and is generally well sorted. There is a tendency 

for the sand to become coarser and more angular eastward, i.e. with 

shallowing of water. Interbedded clay bands frequently have heavy 

minerals associa ted wi th them. Below the clay the sands are finer 

grained than those above, a typical graded bedding sequence. 

Fluctuating conditions are suggested. 

The fossil fauna from the 45 to 50 m transgressive complex on 

Koingnaas is very rich. 

contains coral remains. 

Besides many "E stage" fossils it also 

The sediments are characterised by 

Striostrea margaritacea, Chamelea krigei, Donax haughtoni, Petricola 

prava, Fissurella robusta and Triumphis dilemma. The~ 

haughtoni has a more fragile shell than Donax rogersi and suggests 

that it would not tolerate turbulent conditions. This is supported 

by the fine nature of the sediment, while the more robust D. rogersi 

inhabited the coarser overlying sediments (Carrington & Kensley 1969). 

The 45 to 50 m transgressive complex, which is equivalent to 

Haughton's (1931) D-zone, contains a mollusc fauna typically of warm 

water affinity. 
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A typical section, situated on line KN 3 (Figure 17.3) is shown in 

Figure l7.5A. 

2. 17 to 21 m Transgressive Complex 

The 17 to 21 m transgressive complex is characterised by coarse 

iron-stained sands. This complex is equivalent to Haughton's B-Zone. 

That it is transgressive is demonstrated by the occurrence near the 

base of large rib and limb bones, small silicified limb bones, rodent 

teeth and land snail shells (Tankard 1966). 

A calcareous cemented pebble horizon marks the unconformity between 

the 17-21 m and 45-50 m transgressive complexes. The pebbles are 

composed of gneiss and reworked conglomeratic material from the base 

of the 45-50 m transgressive complex sediments. The fine green 

sand of the latter is interbedded with lenses of coarse sand at the 

base of the 17 to 21 m transgressive complex. This is followed by 

very coarse, red-brown sand. Broadly speaking, this horizon is 

graded; coarse to very coarse at the base and becoming progressively 

finer grained upwards. The coarse sand is moderately well sorted. 

Between the Groen and Bitter Rivers this complex is the most 

prominent horizon. Like the Koingnaas occurrence it displays a 

fining-upward sequence. The lower parts are a light coloured sand 

while the upper layers are more compact and orange-brown to green 

clayey sand. The basal parts are generally lime cemented. The 

finer grades are more angular. The top of this complex on Oriekop 

has a high mud content (~10 per cent). It is capped with calcrete. 

The fossils, which include limb and rib bones, rodent teeth and land 

snail shells, point to a terrestrial origin. But the poor sorting 

of the sand was found to be due to mixing of alternating coarse and 

fine cross-bedded layers which suggest fluctuating water currents. 

The sediments also contain comminuted shell. The zone-fossil would 

undoubtedly be Oonax rogersi. Fissurella robusta and Petricola 
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Figure 17.5 Typical lithology on Koingnaas (after Tankard 1966). 
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prava are also found. 

A typical section, situated on line KN 5 (Figure 17.3) is shown in 

Figure 17.5 8. Figure 17.6 illustrates cross-bedding typical of a 

shoreface situation on KN 3. Trough-cross beds of variable direction 

indicate current reversals, and suggest a tidal origin. 

3. Younger Pleistocene Marine Sediments 

Marine sediments younger than the 17-21 transgressive complex were 

included by Haughton (1931) in his ArZone. A typical section is shown 

in Figure 17.5 8. Note particularly the onlap aspect of this zone 

with sediments of the 17 to 21 m transgressive complex. The 

unconformity between the beds has a westerly dip. The unconformity 

is sharply defined by medium to coarse red-brown 17 to 21 m 

transgressive complex sediments in the east and highly calcareous shelly 

littoral deposits in the west. Mytilus and Patella are characteristic. 

C. Summary 

The earliest sediments encountered are Miocene and Pliocene phosphate

rich sediments preserved in bedrock-depressions. The Pleistocene 

witnessed a series of marine transgressions which reached a maximum 

altitude of 98 m. The mollusc faunas and phosphate horizons show 

that the 45 to 50 m transgressive complex sediments and older 

sediments may be classified as warm water marine sediments. The 17 to 

21 m transgressive complex sediments and younger are typically cold 

water deposits. 

Instability of the Namaqualand coast is hinted by the occurrence of 

Early Tertiary volcanics in South West Africa and the Groen River 

areas. Furthermore, the highest marine Pleistocene deposits in 

Namaqualand fall 5m in a southerly direction over 80 km (Carrington 



Figure 17. 6 Cross-bedding produced by tidal reversals. 
Exposure on line KN 3. 
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pers. comm.). Sediments of the 45 to 50 m transgressive complex 

in the Koingnaas area are encountered at 30 m a.s.l. in the Olifants 

River area where Oonax haughtoni is found at that altitude (Davies 

1973), i.e. a fall southward of 6 m in 80km. This supports the 

estimate derived from the highest Pleistocene deposits. 
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CHAPTER 18 

SYNTHESIS OF THE LATE CENOZOIC 

OF SOUTH AFRICA 

I. EUSTATIC HISTORY 

A. Introduction 

Sea level history since the Maestrichtian is one of general 

withdrawal of the sea from the continents. Superimposed upon this 

overall regression is an oscillatory pattern of transgressions and 

regressions. The vast Maestrichtian transgression has been 

unsurpassed in the Tertiary. The Cenozoic saga began with emergent 

continents, but two major eustatic transgressions occurred in the 

Middle Eocene and Miocene. Late Miocene, Pliocene and Quaternary 

time was marked by a progressive marine regression with superimposed 

glacio-eustatic oscillations of minor amplitude. 

Glacially induced sea level oscillations could only be significant 

from the Miocene onwards, since the Antarctic continental ice sheet 

developed to its present thickness between the early Middle and 

early Late Miocene (Shackleton & Kennett 1974; see chapter 1 for a 

full discussion). If the Tertiary stratigraphic record suggests a 

synchronous cycle of sea level oscillations, then these eustatic 

changes of sea level must be the result of volume changes in the ocean 

basins (Hallam 1971). 

The concept of plate tectonics and changes in ocean floor spreading 

rates is beQoming generally accepted as an explanation for these 

Tertiary transgressive-regressive cycles. A relationship between 

increased spreading rates and mid-oceanic ridge uplift has been 

recognised (Russell 1968; Hallam 1971; Frerichs & Shive 1971; 

Flemming & Roberts 1973; Rona 1973). In particular the Neogene 

transgression has been attributed to ridge accretion consequent upon 

a spreading rate discontinuity at 10 m.y. (late Middle to early Late 
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Miocene) (Flemming & Roberts 1973). 

8. Summary of South African Tertiary History 

Criteria usually used by geologists for correlation of strata are 

not necessarily logical when applied to young rocks. Palaeoecological 

and sedimentological approaches (i.e. the facies concept) used in 

conjunction with an understanding of the chronostratigraphy and 

lithostratigraphy offer, perhaps, the best means of understanding the 

origin of Cenozoic strata, although there are instances where 

structural and geomorphic approaches have proved more rewarding (e.g. 

the eastern Cape). 

The South African coastline originated in the Late Jurassic after the 

fragmentation of Gondwanaland (Dingle & Klinger 1971). Extensive 

Late Cretaceous marine strata along the coastal margins of Mozambique, 

Zululand, Natal, Cape Province and Angola demonstrate a vast 

transgression of that age (Cooper 1974, and others), while a Danian 

sea level rise has been documented at Richards Bay (Orr & Chapman 

1974) . Although world-wide the Middle Eocene transgression was much 

more extensive than that of the Miocene (Hallam 1963), Eocene 

sediments are comparatively rare in southern Africa. The only bedded 

Eocene strata are found south of LOderitz (these deposits require re

examination) (Kaiser 1926) and at Salamanga in Mozambique (du Toit 

1954; King 1972). South of latitude 28
0

S the only indication of 

Eocene strata is in the form of reworked particles at Uloa (Frankel 

1966), Eocene Nummulites in aeolianites in Durban (King 1961), and 

Lower to Middle Eocene microfossils at Birbury in the eastern Cape 

(Bourdon & Magnier 1969). Shark teeth from Birbury suggest a Middle 

Eocene to Middle Miocene age (Dr S.P. Applegate pers. comm.). 

The Neogene history along the entire South African coastline is 

remarkably similar, the only major variations being those of lithology 

and tectonic setting. Strata from Bredasdorp to Zululand are 

dominated by crystalline limestones, calcarenites, and coquinas. On 
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the west coast the characteristic rock type is phosphorite, the 

phosphate equivalent of limestone. The Bredasdorp and Alexandria 

Formations were recognised by Haughton (1925) as regressive complexes, 

but complicated by seaward tilting in the Algoa Bay area "(Ruddock 

1968). At Bredasdorp the limestones are indicative of littoral 

deposition. The Zululand limestones are essentially of littoral 

(Umkwelane Hill) and shallow marine origin. The gravel beneath the 

Pecten bed indicates transgression; the Pecten bed itself formed in 

shallow offshore conditions during a marine stillstand; and the 

upward coarsening flaggy calcarenites followed by foreshore deposits 

indicate a progressive regression. 

In the Saldanha area the same history prevailed except that there 

exists a better preserved record of lateral facies variation. In the 

Miocene these sediments include a basal regolith and two peat-clay 

dominated cyclothems which are separated by a thin marine horizon. 

This minor marine unit was attributed to breaching of a barrier-island 

which would flood an estuarine-vlei environment. The Saldanha 

Formation consists of bedded Miocene phosphorites. Tilting in the 

Pliocene (probably Late Pliocene) resulted in a secondary and irregular 

transgression which again permitted the formation of several facies 

of fluvial, estuarine, estuarine-vlei, lagoonal and littoral origin. 

Final transgression carried the shoreline to 50-55m a.s.l. Miocene 

and Pliocene strata also occur on the Namaqualand coast where they 

are preserved in bedrock depressions. 

Since the origin of Neogene transgressive complexes is attributed to 

a eustatic sea level rise, they must all be broadly contemporaneous, 

except for local variations due to epeirogenesis. The age of the 

Zululand deposits was discussed in detail. The most detailed 

examination of planktonic foraminifera from Uloa indicates a late Late 

Miocene age, the N-17 planktonic foraminiferal zone (Dr R.P. Stapleton 

pers. comm.). Likewise Maud and Orr (in press) have suggested a 

Late Miocene (possibly Middle Miocene, but certainly not Early Miocene) 

age for the Richards Bay Pecten bed. They came to this conclusion 

on the evidence of both benthonic and planktonic foraminifera (Dr R.R. 
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Maud pers. comm.). The foraminiferal assemblages of the eastern 

Cape have not permitted dating more precise than that of Miocene 

series. In the southwestern Cape a Middle Miocene age has been 

based on occurrence of phosphorite, and environment sensitive material 

which last formed extensively in the Middle Miocene. Other lines of 

evidence do not permit age determination more precise than that of 

Miocene. Foraminifera from phosphorite on the Namaqualand coast 

suggest a Late Miocene age (A.J. Carrington pers. comm) , and 

foraminifera from limestones overlying the continental shelf phos

phorites a Middle Miocene age. 

All of this data bearing on the age of the major Neogene transgression 

gives a limited range of Middle to Late Miocene. But if these 

geological features indicate a synchronous formation, then their age" 

must conform to that of the world-wide eustatic transgression, and 

preferably to the Miocene climatic optimum which led to the formation 

of phosphorite. A late Middle to early Late Miocene age is here 

suggested which would agree with palaeoclimatic data, and the 

spreading rate discontinuity at 10 m.y. 

C. Summary of the South African Quaternary 

Eustatic History 

Although there have been several accounts of the Pleistocene eustatic 

history (Krige 1927; Gatehouse 1955; Maud 1968; Carrington & Kensley 

1969; Davies 1970-1973), these accounts make little sense since they 

rely on preconceived notions (such as assuming a Pleistocene glacial 

chronology), long-distance correlation (such as between South Africa 

and Morocco), and they assume coastal stability. As Hey (1971) 

correctly points out, such studies are no more than exercises in 

correlation. There also appears to be a mistaken notion that inter

glacials are precisely dated. For instance, Davies (1970) writes 

that the 60 m shoreline is probably of Cromerian age, and he dates 

the Cromerian to the Bruhnes-Matuyama boundary (700 ka; Second SASQUA 

conference discussions). Shackleton and Opdyke (1973) have clearly 
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shown that the Comerian complex stretches back from 350 ka to well 

into the Matuyama Epooh (see Table 1.1). 

The soundest and most logical of these studies is that of Carrington 

and Kensley (1969) which is based upon a very extensive mining 

programme, and a thorough examination of lateral facies change, 

palaeoecology and palaentology. One of the answers this study does 

provide is that the Pleistocene eustatic history is not one of a single 

progressive regression since the various transgression complexes are 

separated by terrestrial sediments. 

If the elevation of these shorelines were attributable solely to 

glacio-eustatic control, then it would be assumed that each higher 

beach going back in time would have resulted from a greater degree 

of ice melting. This in turn would imply that each older interglacial 

would be warmer. The geological record does not bear this out. It 

must therefore be assumed that the raised beaches are the result of 

a glacio-eustatic sea level oscillation superimposed upon a longer 

term regression. 

The most precise data indicate that during the last interglacial there 

were at least three sea level peaks: C I at 6,3 m a.s.l. (120 ka), 

C II at 2-3,5 m a.s.l. and C III at 0 m. Advance of the Wtlrm ice 

sheets lowered sea level along the South African coast, but sea level 

approached to within 25 m of present sea level during the interstadial. 

During the maximum glacial advance sea level fell to -130 m below 

present datum at 17 ka. 

Table 18.1 tabulates an attempt at correlating the Late Cenozoic 

history of the Namaqualand coast (Haughton 1931; Carrington & Kensley 

1969) with that of the Elands Bay-Saldanha area (this thesis). 
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TABLE IB.l 

Correlation of Namaqualand and South-Western Cape Deposits 
i , 

Namaqualand 

S.W. Cape Carrington & 0 Haughton 
Kensley 1969 1931 

Late o m 2 m T.C. 

Pleistocene 2-3,5 tv] 5 M T.C. C - Zone 

6,3 m 7-B m T.C. A - Zone 
i 

Middle 13 m 17-21 m T.C. B - Zone 
Pleistocene 

! 
Early 45-50 m T.C. o - Zone 

Pleistocene 10 m 
75-90 m T.C. 

Pelletal ph os ph- "Upper E 
oritic sands stage" * 
----------- --------

Pliocene Phosphatic sand- "Middle E 
stone lens stage" * 
----------- --------

Estuarine seds. 

Phosphatic sand- "Lower E 

stone, microsph- stage"-h~ 

Miocene ori te ,limes tone 
i 

Pre-S31danha Channel I 

peats sediments 

---- ~- -- .. -.------.~-- - _____ L-__ ---- ..... --~~-~ --_._---------------

~~ Mining terminology. 
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II. REINTERPRETATION OF THE TECTONIC FRAMEWORK 

OF THE COASTAL MARGIN OF SOUTH AFRICA 

A. West Coast 

Several lines of evidence indicate that the west coast of the Cape 

Province was more unstable than the south coast during the Cenozoic. 

These two areas lie on opposite sides of a regional swell, the 

Agulhas Arch. The continental margin of the broad and gently sloping 

shelf east of the Agulhas Arch is controlled by transform faulting, 

while the narrow and steeply sloping shelf to the west has a margin 

controlled by tensional faulting (Oingle G Scrutton 1974). 

The shelf break east of the Agulhas Arch is at a normal depth, lying 

between 120 and 180 m, and 200 m at the southern tip of the Agulhas 

Bank (Oingle 1973a). West of the Agulhas Arch the nature of the 

shelf break is variable. West of the Cape Peninsula it has an average 

depth of 450 m, but shoaling to 200 m west of the Orange River (Dingle 

1973b). The west coast shelf break is one of the deepest in the 

world (Shepard 1963). Simpson (1971) noted the variation in depth 

of the west coast shelf break and attributed it to differential warping 

of the continental margin. A double shelf break which appears in 

places off the west coast (Figure 18.1) and which was apparently in 

existence during late Lower Tertiary times (Dingle 1973b) suggests a 

long history of instability. 

The Agulhas Arch is a N~~SE striking antiform coinciding with a 

structural trend (NNW) of Late Precambrian origin (Dingle 1973a). The 

arch is associated with igneous activity, with Early Tertiary intrusive 

dykes following its structural trend (Kr~ner 1973). Aegerine 

trachyte which forms intrusive plugs on the northeastern side of the 

Agulhas Arch (the Alphard Banks) has been dated at 58 m.y. (Palaeocene) 

by the K-Ar method (Siesser ~ 1974). 

On the farm Dikdoorn on the Groen River an intrusive melilite basalt 

has been dated at 38,5 million years (ZSA 56). In the Bogenfels area 
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of South West Africa phonolitic lavas of the Klinghardt volcanism 

have been dated at 35,7 million years (ZSA 53). 

Tilting of the area west of the arch apparently took place about an 

axis or "hinge line" which tended to follow NNW Precambrian structural 

lineaments further north and continued through the Agulhas ArCh. The 

relative position of this inferred "hinge line" has been drawn in 

Figure 18.1 by connecting the Agulhas intrusives and the Klinghardt 

extrusives. The axis so defined passes near but west of the Dikdoorn 

instrusives. In reality there probably would not have been a simple 

well-defined "hinge line" but rather an axial-zone about which tilting 

and differential warping would have taken place. 

It is suggested that tilting and warping west of the Agulhas axis 

have lowered the shelf break to abnormal depths. If the shelf west 

of the Agulhas Arch has tilted in relation to that east of it, it would 

be expected that the sedimentation to the west would be the more 

complex. Dingle (1971a, 1973a, 1973b) has shown just that. He has 

subdivided the Tertiary succession on both shelves by correlation of 

unconformities visible on seismic reflection profiles. A major 

intra-Tertiary unconformity separates Lower from Upper Tertiary on 

both shelves. In addition Dingle (1973b) found that the Upper Tertiary 

of the west shelf is further subdivisible by an unconformity into 

lower T3 beds (upper Middle Miocene) and upper T4 beds (Pliocene). 

Examination of onshore Neogene sediments between Cape Town and Saldanha 

has confirmed Dingle's subdivision of the shelf succession. 

In the Saldanha-Langebaanweg area Middle Miocene phosphorites are 

overlain unconformably by the Pliocene Varswater Formation. Regression 

of the high Middle Miocene sea continued thrDugh the Late Miocene and 

Pliocene, and the Middle Miocene trangression complex sediments were 

for a time SUbaerially exposed. But tilting again dropped the area 

below sea level causing a local transgression duringa time of 

world-wide regression. This second transgression resulted in erosion 

of the phosphorites and production of pelletal phosphorite from the 

liberated matrix. Pelletal phosphoritic sands are the dominant 
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distinguishing feature of the Varswater Formation. 

The maximum inland extent of the Miocene shoreline is at 56,4 m a.s.l. 

in the Saldanha area, where massive marine limestones are overlain by 

high-angle cross-bedded aeolianites. But northward in South West 

Africa and eastwards along the Cape south and east coasts, Tertiary 

marine strata are found at considerably higher elevations suggesting 

relative sagging and tilting of the Cape west coast since the Miocene. 

The highest Pleistocene marine sediments in the Saldanha area are now 

at 10 m a.s.l. The highest beaches in Namaqualand are at 98 m a.s.l. 

(Carrington & Kensley 1969). Furthermore, the mollusc fauna from the 

Saldanha 10 m beach correlates most closely with that of the 45-50 m 

transgression complex of the Namaqualand coast north of Hondeklip Bay. 

This fauna includes: Fissurella robusta, Purpura praecin~ulata, 

Triumphis dilemma, the largest Perna perna,and Petricola prava. 

Tilting about the "hinge line" shown in Figure 18.1 readily explains 

the lower elevation of the Early Pleistocene shoreline in the Saldanha 

area. Between the Olifants River mouth and Cape Agulhas the 

coastline forms a "bulge", and the coastline between Cape Town and 

Saldanha is parallel to and furthest removed from the axis 50 that for 

any degree of tilting shorelines in this area would be found at lower 

elevations than those north of the Olifants River where the coastline 

and the axis almost coincide. Tilting alone would not affect 

elevation of the raised beaches north of the Olifants River mouth much, 

but differential warping and the local position of the axis certainly 

could displace them. 

Dingle (1973b) has shown the existence of an outer shelf bar (T3) on 

the edge of the west coast continental shelf. Assuming that this bar 

formed close to sea level, it is possible to compute approximate rates 

of sinking since the end of the Miocene. Dingle calculated a rate 

of sinking Im/27 000 years west of the Orange River, and Im/1200 years 

west of the Olifants River. If the 10 m beach at Saldanha is 

equivalent to the 45-50 m transgression complex on the Namaqualand 

coast, and is of a late Early Pleistocene age, say 1 million years, an 
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approximate and average rate of sinking since that time can be 

computed. The average rate of subsidence at a distance from the 

axis equivalent to that of the shelf edge west of the Olifants River 

is Im/13 000 years. This agrees well with Dingle's estimate since 

the Miocene. The fact that last interglacial shorelines on the west 

coast show little variation from the Late Pleistocene 7 m datum 

implies that subsidence has either been episodic or has been operating 

at a decreasing rate. 

last 120-130 000 years. 

Little if any subsidence has occurred in the 

Some data suggest that besides a westwart tilting and warping about 

the NNW striking "hinge line", there has also been a southerly dip of 

the axis. The southward deepening shelf break on the west coast has 

already been mentioned, and Figure IB.l shows that the shelf break 

and the tilt axis are usually the same distance apart. Figure IB.l 

also shows the tilt axis closely following the Namaqualand coastline 

so that the effect of tilting and warping should be minimal in that 

area. And yet the highest Pleistocene beach dips south from 9B,3 m 

to 93 m over a distance of only BO km (6,25 m per 100 km) (Mr A.J. 

Carrington pers. comm.). The 45-50 m transgression complex shoreline 

also dips to the south from Hondeklip Bay. Oonax haughtoni is found 

in the Olifants River area at 3D m a.s.l. (dip 7,5 m per 100 km). The 

effect of tilting can also be demonstrated by comparing the three 

lowest Pleistocene shorelines: at Saldanha 6,3 m, 2-3,5 m and 0 mj 

on the Namaqualand coast 7-B m, 5 m, 2 m (Carrington & Kensley 1969). 

In the case of these Saldanha shorelines it is impossible to separate 

the westward tilting component from the southward tilting component. 

B. South and Southeast Coasts 

A plot of Neogene shoreline elevation from Saldanha to Bathurst in 

the eastern Cape (Figure IB.2) suggests an interesting tectonic 

history (data derived from Ruddock 1972, Siesser 1972, and Tankard 

1974a). This shoreline ascends regularly from 56 m a.s.l. at Saldanha 

to 305 m a.s.l. at Bathurst. As well as the tendency of the shoreline 
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to rise eastwards, there is a similar trend displayed by the modern 

shelf break (Figure 18.3). At the southern tip of Agulhas Bank the 

shelf break is found at a depth of 200 m (Scrutton & Dingle 1974). 

Off East London it is 120 m (normal shelf break depth) and off Port 

st Johns 100 m (Moir 1975). Although the shelf break dips regularly 

westwards, the Agulhas Arch has acted as a privotal point about which 

the shelf to the west of it has rotated, so that the depth of the shelf 

break increases rapidly from 200 m off Cape Agulhas to 450 m west of 

the Cape Peninsula (Figure 18.3). 

Ruddock (1968, 1972) has documented considerable evidence to show that 

repeated tilting has shaped the coastal morphology, and that this 

tilting took place about an axis situated 33 km from the present shore-

line. In Chapter 12 it was suggested that this could in effect have 

occurred during a single Neogene eustatic regressive cycle. 

known of the offshore stratigraphy. 

Little is 

Westwards towards Bredasdorp the tectonic history appears to be 

extremely complex. Hales and Gough (1962) have mapped positive 

isostatic anomalies along the coast between 19,6
0 

E and 24,50 E, and 

have attributed these positive anomalies partly to upwarping of the 

crust, and partly to uncompensated sediments deposited offshore. An 

effect of upwarping is seen in the deep incision of river valleys 

seaward. Taljaard (1948) described remnants of an old landsurface 

in the Swellendam-Heidelberg area, which is mantled by river gravels and 

duricrusts, and which dips inland. This northerly dip is due to 

upwarping and not pediplanation graded to river level. 

this includes: 

(i) northward tilting terraces; 

Evidence for 

(ii) southward decrease of size of these old river gravels, 

although the modern minor drainage is to the north; 

(iii) major abandoned valleys carved by southward flowing rivers, 

now occupied by northward flowing misfit streams. 
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The upwarping would appear to have taken place mainly in the Early 

Tertiary, and not the Late Tertiary as maintained by Taljaard. 

Evidence for this is provided by the Neogene marine limestones which 

dip gently seaward (probably an original depositional dip). Unlike 

the eastern Cape and the west coast there is only a single Neogene 

regressive sequence in this area. This is matched offshore by a 

Tertiary stratigraphy which is subdivided into Palaeogene and Neogene 

units by a major unconformity. But a Miocene-Pliocene unconformity, 

which characterises the west coast shelf geology, is absent (Dingle 

1973b). There is no known data to suggest seaward tilting in the 

Pliocene. 

C. East Coast 

Interpretation of the Neogene geology of the Zululand coastal plain 

has long been a contentious issue. King (1953, 1966) recognised two 

separate marine units (Miocene and Pliocene) which he ascribed to 

monoclinal tilting. Frankel (1960, 1966, 1968) and Maud and Orr 

(in press) recognised only one regressive sequence which was dated to 

Middle to Late Miocene. A re-examination of the Uloa and Sapolwana 

deposits (Chapter 12) has confirmed this latter view. And it has 

also been shown that the structure of coastal Natal is one of step

faulted tilted blocks and not monoclinal tilting (Maud 1961). A 

large positive isostatic anomaly follows the coastal margin from 

Zululand through Mozambique, but it is apparently entirely the result 

of thick uncompensated Cretaceous sediments which underlie the coastal 

plain (Hales & Gough 1962). 

Figure 18.2 shows the Neogene shoreline dipping southward from 

Mozambique through Zululand, also mentioned by Maud and Orr (in press), 

which is parallel to an abnormally shallow but southward dipping shelf 

break (Figure 18.3). Off St Lucia the shelf break is at 60 m, off 

Durban 80 m,and off Port st Johns 100 m (Moir 1975). (The Neogene 

shoreline was drawn from data in Soares and da Silva 1970, and King 

1972). 
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D. The Transkei Structure 

A major structural anomaly separates the high Neogene shoreline of 

the Uitenhage-Bathurst area from the northern Natal-Zululand

Mozambique area (Figure 18.2). This apparent offset is suggestive 

of a major fold. The outstanding topographic features of this area 

are the high Drakensberg mountain ranges, deeply incised drainage 

patterns, a rugged cliff coastline (an emergent form), and an 

exceptionally straight coast which Kent (1938) attributed to faulting. 

Francheteau and le Pichon (1972) suggested that the continental slope 

originated by shear faulting between South Africa and the Falkland 

Plateau of South America. Moir (1975) has noted "that a southward 

extension of the Lebombo volcanic trend coincides approximately with 

the trend of the coas"t south of Durban, lending weight to the postulate 

of a major geo-suture at this location. Duncan (pers. comm.) has noted 

on ERTS photographs covering eastern South Africa that a prominent, 

gently arcuate, dyke-like feature, concave northwards, bisects the 

Stormberg basaltic outpourings in Lesotho on an east-west trend which is 

strongly aligned with the Durban fault system previously mentioned, and 

the trend of the continental margin flexure. This is suggestive of 

a line of structural weakness which might have controlled the location 

of the plane of separation where the Falkland Plateau pulled away from 

the African plate". 

E. Synthesis of Structural Trends 

To construct a tectonic model the following structural trends have 

to be taken into account: 

(i) The variation in depth of the shelf break. The shelf 

break off the west coast is one of the deepest in the 

world (Simpson 1971). Off the southeast coast it is a 

a normal depth, and off the east coast abnormally shallow 

(Moir 1975). 

(ii) Neogene shorelines rising northwards and eastwards from 
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the southwestern corner of South Africa, with the 

highest point situated in the eastern Cape. 

Miocene and Pliocene transgressive cycles on the west 

coast, and in the Algoa Bay area, while the south coast 

(Bredasdorp area) and east coast (Zululand) Neogene 

geology is the result of a single transgressive-regressive 

cycle. Shelf sediments on the west coast have an intra

Neogene unconformity, and this is lacking from the southern 

shelf. 

(iv) Upwarping in the Bredasdorp area which is shown by the 

terrace morphology and drainage patterns, and by marked 

positive isostatic anomalies. 

(v) Early Tertiary volcanic complexes south of LOderitz 

(Klinghardt), Namaqualand coast (Oikdoorn) and the Alphard 

Banks. 

(vi) Maximum shearing of Cape supergroup rocks in the Cape 

Agulhas area (continuation of an old trend) and the origin 

of the Agulhas Arch. 

Simpson (1966) attempted to explain the variation in depth of the 

shelf break by means of tilting of the entire subcontinent about a 

north-south axis passing through Cape Agulhas. This would partly 

account for the variation, but would not explain the maximum depth (450m) 

west of the Cape Peninsula. Figure 18.3 shows that flexuring about 

the Agulhas Arch has taken place. In this sense there is an axis 

passing through the arch, but it is suggested that the axis follows 

the Precambrian structural trend, and passes through the volcanic 

complexes (Figure 18.1). 

King (1972, figure 1) explained the elevated Neogene deposits of the 

Algoa Bay area as the result of two converging strike lines producing 

a plunging anticlinal fold. His axis trends north-west from Algoa 
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Bay. If this axis (Figure 18.4) were a major feature about which 

rotation of the subcontinent took place, rather than Simpson's (1966) 

north-south Agulhas axis, the variation in depth of the shelf break 

from deepest in the south-west, to shallowest in the north-east, would 

be readily explained. Uparching along this major axis would explain 

the high elevation of the Algoa Neogene sediments, and the plunging 

anticlinal fold across Lesotho and the Transkei. 

It is possible to superimpose minor patterns upon this primary 

structure. In addition to the primary NNW-SSE axis, two other axes 

are drawn, one passing through the Agulhas Arch and the west coast 

Tertiary volcanics, the other through the south-eastern Cape. Rotation 

about these secondary axes has resulted in the complex transgressive 

histories of the west coast and the ~lgoa Bay coastal margin. In both 

of these areas land lies on the seaward side of the axes, hence 

seaward tilting. 

Extension of the two secondary axes would make them intersect over the 

Agulhas Arch. This could explain the folding, faulting, and intrusion 

of basalt and trachyte plugs on the northeastern side of the Agulhas 

Arch (the Alphard Banks) mentioned by Siesser et al (1974), the elevation 

of the Arch, and the considerable shearing of the Cape Supergroup 

rocks in the Cape Agulhas area. Furthermore, since the coastal margin 

here lies landward of the converging axes, the area would be upwarped. 

An interesting feature of the reconstruction (Figure 18.4) that is 

attempted is that the major axis PQssing through Algoa Bay, and the 

minor axis of the west coast are parallel. Besides the structural 

trends described it is possible that there could be a host of other 

trends determined by lines of old weaknesses of the continental 

block (see Fuller 1971). 

Finally, besides explaining anomalous features of the local Neogene 

stratigraphy, this tectonic model serves as a clear warning that 

height above sea level of raised beaches, whether Tertiary or Quaternary, 
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is unreliable as a means of correlation, even on the same side of 

the arch, let alone across it. 

III. EVOLUTION OF THE LATE CENOZOIC PALAEOENVIRONMENTS 

A. Introduction 

The physical, chemical, and biological components of a deposit are 

intimately related since they are the end products of processes which 

operated in a particular environment. These components, either 

individually or in association, may be used as indicators of a particular 

palaeoclimate or palaeoenvironment for a particular point in time. 

This project has been directed at the history of the coastal margin 

where evolution of the environment is a function of the development of 

the oceanographic framework. 

Motion of the ocean surface is the result of wind stress so that 

oceanic circulation is generally aligned with the prevailing winds. 

In the Atlantic and Indian Oceans the ocean surface circulates anti

cyclonically around centres in the high pressure belt south of the 

equator (Lamb 1961). Interaction of the wind system blowing 

anticyclonically about the South Atlantic high pressure centre with 

the low pressure centre over the continents results in a southerly 

wind component over the south-western Cape (Chapter 14). These 

southerly winds blowing offshore on the west coast generate an upwelling 

system, the cold Benguela Current. Nutrient rich cold Central Water, 

which upwells from a depth of 500 m off the continental slope, 

originated in the Southern Ocean. It is the development of the upwelling 

system and the Southern Ocean (giving rise to cold Central Water) which 

has dominated the hydroclimate and environment of the coastal margin 

of the south-western Cape Province in the Late Cenozoic. 

Van Zinderen Bakker (in press) has attempted to assess the age of the 

Namib desert biome by tracing the origin of upwelling of cold water along 
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the adjacent shelf. He points out that it was a prerequisite of 

this system that the South Atlantic Ocean should have sufficient width 

and that it was not until the mid-Tertiary that the width was 

sufficient for the development of the wind and ocean current systems. 

But even when this width was attained, the circulation patterns would 

be greatly influenced by the Circum-Antarctic Current. Development 

of this current did not occur until the Middle to Late Oligocene 

(Kennett et al 1974). 

Atmospheric pressure gradients are related to high latitude glaciation. 

Even if the South Atlantic Ocean existed in its present form by the 

mid-Tertiary, making an upwelling system along the west coast at that 

time feasible, the temperature of the upwelled water would still depend 

upon the temperature of the Southern Ocean (from which it was derived) 

and the existence of extensive Antarctic ice. Upwelling of warm 

pre-glacial water would not present an impenetrable barrier to moisture 

laden onshire winds, nor to migration of tropical and subtropical 

shallow marine animals. 

The development of the Antarctic ice sheet has already been discussed 

in detail (Chapter 1). Kennett et al (1974) have summarised the Cenozoic 

sequence of major Antarctic and high latitude glacial and climatic 

events (table 1, p.1162). The Antarctic climate was temperate in the 

Eocene with glaciers restricted to high altitude. Major cooling and 

expansion of the ice cap continued through the Oligocene. The major 

eastern Antarctic ice cap developed in the Middle to early Late Miocene, 

and reached its maximum extent in the Late Miocene or Early Pliocene. 

Northern hemisphere ice sheets were in existence by the Late Pliocene. 

Since the retreat of the Antarctic ice sheet from its Late Miocene Early 

Pliocene maximum to its present extent in the Pliocene, there have been 

only minor fluctuations in the ice cover (Hayes et al 1973) . ............... 

Against the background it is possible to hypotheSise about the 

evolution of the climate of the South African coastal margin since the 

mid-Tertiary when the South Atlantic Ocean probably existed in its 

present form. 
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B. Miocene 

optimum conditions for precipitation of apatite on a scale that would 

account for the major world-wide phosphorite deposits of Neogene age 

occurred in the warm mid-Tertiary seas (Tooms et al 1969). Such 

phosphorites are found today in sediments adjacent to areas of modern 

oceanic upwelling (McKelvey 1963; Sheldon 1964). Precipitation of 

apatite from sea water that is saturated with respect to phosphorus 

is accelerated by increasing temperature and pH (Sheldon 1964). Solar 

radiation has only a minor effect on the surface temperature of the 

cold upwelled water since phosphorites are not forming extensively today. 

The most obvious solution to this dilemma is that the upwelling water 

was originally much warmer than it is today. This in turn implies a 

warmer Southern Ocean and, of course, less extensive Antarctic 

glaciation. Securely dated Neogene phosphorites mostly suggest a 

Middle Miocene age, i.e. they pre-date the development of the major 

ice sheets. The continuous existence of these ice sheets since then, 

and consequently colder upwelled water, would explain why there are no 

extensive authigenic phosphorites younger than the Miocene. 

Pre-Saldanha Formation sediments on Langeberg include two extensive 

peat horizons with wood remains, lacustrine deposits, and soil horizons 

(Chapter 4). If the channel deposits on the west coast (Chapter 17) 

are contemporaneous, then it would be expected that a warmer Benguela 

Current did not act as a barrier to moisture laden winds, and that the 

west coast was considerably moister than today. 

The distribution of modern mollusc faunas about the southern African 

coast is strongly provincial. Although there are overlaps, the faunal 

distribution defines four provinces (Figure 14.3): east coast tropical 

and subtropical; warm-temperate; cold; and west coast tropical and 

subtropical. The faunas from each of these provinces is distinctive, 

and there is a great diversity of species. The Neogene molluscan 

assemblages, on the other hand, are cosmopolitan and show a low degree 

of latitudinal faunal organisation. For instance, mollusc assemblages 

from Namaqualand to Algoa Bay are characterised by Glycymeris borgesi, 
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Cardium edgari, ostrea atherstonei, Scissodesma apengleri, ~ 

verrucosa, Lutraria lutraria, Oosinia lupinus, etc. A dagree of 

provinciality is shown by the restriction of Pecten sapolwanaensis, 

Aeguipecten uloa, and Amusium umfolozianum to the Zululand and 

Mozambique deposits, although these deposits have Glycymeris borgesi 

in common with the south and west coasts (King 1953 has commented on 

the tropical nature of the Uloa fauna). An identical situation has 

been noted for the Cenozoic deposits of California (Addicott 1970). 

Speciation leading to latitudinal diversity gradients is the direct 

result of horizontal zonation of the oceans which was consequent upon 

development of high latitude glaciation. 

In summary, the evidence suggests a warmer hydroclimate about the 

entire South African coast at the time of the Miocene transgression. 

Furthermore, the environmental evidence tends to indicate that this 

transgression immediately predates the accumulation of the major ice 

sheets. This would imply a Middle to early Late Miocene age. And 

the cosmopolitan Mollusca at the base of the Alexandria Formation in the 

eastern Cape would agree best with a Miocene age. 

Van Zinderen Bakker (in press) has correlated the development of 

Antarctic glaciation with a northward shift of the South Atlantic 

anticyclone and the Benguela Current to lower latitudes. I suggest 

that aridifying effects were also the result of colder upwelled water 

consequent upon development of the major eastern Antarctic ice sheet. 

These aridifying effects led to accumulation of the Kalahari strata 

during the Miocene (probably Late Miocene), Pliocene and Quaternary. 

C. Pliocene 

Deposits of Pliocene age are less widespread than those of Miocene 

age since the sea was generally regressive at that time. Pliocene faunas 

of the Algoa Bay area have not been described in detail, and it is not 

easy from the literature alone to separate these from the Quaternary 

faunas. On the west coast, however, the palaeontology is known in 

more detail. 
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In the Langebaanweg-Saldanha area sediments of the Varswater Formation 

are preserved in a Pliocene embayment. Several fossil molluscs 

suggest shallow marine temperatures 3-5°C warmer than today (Tankard 

19748). These molluscs include: Cellana capensis, Turbo sarmaticus, 

Barbatia obliguata and ostrea atherstonei. Striostrea margaritacea 

. OQcurs adjacent to the open coast of Ouyker Eiland. S. margaritacea 

requires a minimum summer temperature of abo~ 25
0

C (Korringa 1956). 

However, their stunted valves suggest that they lived at the extremes 

of their distribution. The absence of authigenic phosphorite implies 

a hydroclimate colder than that of the Miocene, and yet S. margaritacea 

in deposits at Ouyker Eiland implies warmer water than today, possibly 

with the anticyclone centre further south. 

Peat and clay deposits from the Varswater Formation have yielded a 

pollen spectrum. The pollens indicate a flora not very different 

from the present flora (Prof. E.M. van Zindersn Bakker). This agrees 

with van Zinderen Bakker's claim (in press) that the Flora Capensis 

developed at the same time as the modern upwelling system, i.e. Late 

Miocene. But the spectrum does include Podocarpus and grass pollens. 

The large herbivore fossils suggest a luxuriant vegetation(Hendey 1974). 

Giraffe remains suggest the presence of trees, while the high-crowned 

teeth of Ceratotherium and Hipparion.are indicative of grasslands. 

Hendey (1973) visualised an environment characterised by riverine 

woodland flanked by grasslands. This suggests strong seasonality of 

rainfall, with most of the rain falling in the summer months. Fluvial 

sediments and peats also suggest higher precipitation. 

Ceratotherium also occurs in the Hondeklip Bay deposits (Hooijer 1972). 

Pliocene marine deposits from that area have strong west African faunal 

affinities and reflect water temperatures considerably warmer than today, 

possibly with an arid climate (Mr A.J. Carrington pers. comm.). 

O. Pleistocene 

1. Early-Middle Pleistocene 

Haughton (1931) recognised two distinct mollusc faunas in the Narnaqualand 
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coastal deposits. Above 50 m the fauna was characterised by "Chamelea" 

krigei, Striostrea margaritacea (which Haughton described as Ostrea 

prismatica) and Oonax "rogersi". Haughton attributed the widespread 

occurrence of oysters in these high beaches, the so called "oyster line", 

to changes in oceanic circulation. He suggested that the warm Agulhas 

Current by-passed the Cape Peninsula by means of the Cape strait, 

i.e. the submerged Cape Flats. The present restriction of the Agulhas 

Current is not due to emergence of the Cape Flats, but due to 

deflection by the Agulhas Bank (Chapter 14), although Agulhas water does 

occasionally penetrate the South Atlantic by rounding the Cape 

Peninsula (Schell 1968). Furthermore, Grindley (1969) has correctly 

pointed out that any flow through a shallow Cape strait would have been 

small compared with the volume of cold water washing the west coast, 

and could not have supported a warm water fauna north of Oranjemund 

(28, 70 S). 

The last warm water open-coast episode on the Namaqualand coast was 

associated with the 45-50 m transgression complex (Carrington & Kensley 

1969). The oyster Striostrea ~argaritacea from these deposits required 

a minimum water temperature of 25 0 C in summer (Korringa 1956). The 

45-50 m transgression complex sediments are apparently Early Pleistocene, 

i.e. pre-glacial Pleistocene. Such warm conditions must have been 

in response to the warmer conditions prevailing in the northern 

hemisphere, since the Antarctic ice sheet is thought to have been stable 

throughout the Pleistocene (Mercer 1968a). Warming of the northern 

hemisphere would have moved the intertropical convergence further 

south than its present location. This would have moved the South 

Atlantic anticyclone southwards and with it the belt of upwelling, 

bringing tropical waters down the Namaqualand coast. The absence of 

Striostrea margaritacea from Early Pleistocene deposits in the Saldanha 

area suggests that cool water, and upwelling, were still dominant 

there. 

Sediments of the 17-21 m transgression complex are probably of early 

Midale Pleistocene age. According to Carrington and Kensley (1969) 

the Mollusca are predominantly cold water forms indicating a hydroclimate 
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similar to the present. A difference between these Early and Middle 

Pleistocene deposits is that the fauna and fine-grained sediment 

of the 45-50 m transgression complex suggests a sheltered lagoonal 

environment, and the coarse sediment and the fauna of the 17-21 m 

transgression complex indicate a high energy open coast situation. 

2. Late Pleistocene 

Last interglacial deposits between Elands Bay on the west coast and 

Knysna on the south coast have been studied in considerable detail 

(Tankard 1975a and Chapter 14). It was found that these last 

interglacial faunas were characterised by the persistent occurrence 

of shallow-water tropical and subtropical molluscs far south of their 

present-day geographic ranges. These warm water taxa thrived and 

sustained their populations in the sheltered embayments. The warm 

water taxa on the west coast were characterised by Nuculana biscupidata, 

ostrea atherstonei, o. stentina, O. algoensis, Loripes liratula, 

Mactra ovalina, Tellina madagascariensis, Macoma tricostata, 

Leporimetis hanleyi, Venerupis dura and Panopea glycymeris. 

Without exception the warm water taxa survived in warm embayments, 

while the taxa from the adjacent open-coasts were simil(~r to those 

found on the present open-coasts. A palaeoecological interpretation 

was based on a comparison of these fossils with their living 

representatives. It was suggested that the warm water element was 

related to the configuration of the coastline which had more protected 

embayments, estuaries, and lagoons than today due to flooding by a 

sea level 6-7 m higher than today (C I) at 120 ka. Since this was 

also a time of warmer climates (isotope substage 5e of deep-sea cores; 

Shackleton 1969; Shackleton G Opdyke 1973) it was suggested that 

increased solar-radiation would maintain high temperatures in the old 

estuaries and lagoons. The increased solar-radiation would also have 

had the effect of expanding the warm water isotherms, and moving the 

anticyclone centre, and with it the belt of upwelling, southward. 

Shortening of the cold water barrier would increase the possibility of 
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mullusc larvae being able to reach the sheltered embayments. Extensive 

evaporites which are thought to bedflast interglacial age indicate 

a warm arid climate. 

With advance of WOrm and Wisconsin ice sheets sea level fell well 

below present datum. But detailed examination of cave sediments at 

Die Kelders (Tankard & Schweitzer 1974 and in press; Chapter 16) and 

Nelson Bay (Butzer 1973) has demonstrated a colder arid wetter climate 

along the coastal margin than today. A climatic model emerges 

whereby northward withdrawal of the anticyclone centre permitted the 

rain-bearing westerlies to sweep across the south coast throughout the 

year, albeit with a winter rainfall maximum (Tankard in press d). 

This northward expansion of the winter rainfall belt resulted in 

increased, but seasonal rainfall over the Little and Great KarDos. 

Relict patches of Flora Capensis still survive in the Orange Free State 

(van Zinderen Bakker 1967). These same conditions would explain the 

Late Pleistocene lake deposits at Alexandersfontein, Kimberley, which 

were recorded by Butzer et al (1973). 
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APPENDIX 1 

Grading Analyses 

Grain-size determinations were made on the sand fraction (763jU) 

by conventional dry-sieving methods (adequately described by Folk 

& Ward 1957). Approximately 50g of sample was disaggregated using 

a rubber stopper and porcelain mortar. Sieving was done for 20 

minutes on a Retac 3D machine with 8 inch (20,3 cm) screens spaced at 

half-phi intervals. Each sample was weighed to O,Olg. Percentage 

of aggregates still left were estimated with binocular microscope 

and deducted from the raw material. All results were plotted on 

arithmetic probability paper. (The normal cumulative curve is straight 

when the arithmetic probability scale is used). 

In computing the statistical parameters, the formulae of Folk and Ward 

(1957) were used because the samples frequently include the extremes 

of distribution, a region not covered by the more conservative 

measures (e.g. Trask 1930; Inman 1952). In those instances where 

the proportion of sand-size material was less than 95 per cent of the 

whole sample a pipette analysis at half-phi intervals was made. 

It might be argued that the moment parameters of Friedman (1961) would 

give the most efficient results, but they are realistic only for 

unimodal distributions (Solohub & Klovan 1970). It has been shown 

in this project that unimodality is the exception rather than the rule. 

With the use of Folk and Ward's formulae, the spread between the 5 

and 95 percentiles in a nQrmal distribution is 3,3 standard deviations. 

Folk (1966) discusses the merits of the computer against that of the 

hand-drawn graph for computing the textural parameters, and describes 

the use of the computer as "hasty sloppiness". 

disadvantages to the use of a computer are: 

(i) cannot detect bimodality; 

The most relevant 

(ii) cannot detect experimental errors in weighing; 
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(iii) cannot see genetic relationships that may be brought 

out by actual inspection of the curves; 

(iv) cannot compare the results with diagnostic curves such 

as those of Visher (1969). 

The statistical formulae of Folk and Ward (1957) are as follows: 

Phi Median (Md ) 

Phi Mean Diameter (M ) z 

standard Deviation (0() 

Skewness (Sk) 

Kurtosis (Kg) 

= ~50 

= ~16 + ~50 + ~84 
3 

~84 - @16 + @95 - @5 
4 6,6 

@16 + @84 - 2@50 ~5 + @95 - 2~50 
2(084 - ¢16) + 2(¢95 - ¢5 

f.!j95 - \i15 
2, 44~75 - ~25) 

Besides the Mean (Mz )' the average particle size may be expressed by 

either the median or the mode. The median is defined as the middle 

value (~50). It is a very misleading value. For example, sample 

W'5 (44,9 m) has a median value of 2,65@ and mean 1,27@. In Table 

A.l it will be seen that for positively skewed distributions the mean 

has a larger phi value than the median, the converse being true for 

negatively skewed populations. The difference between the median 

and mean may thus be used as a crude measure of skewness. The mode, 

the value of the variable which occurs most frequently, is certainly 

preferable to the median, but there exists no reliable formula for 

accurately determining the mode from graphs (Folk & Ward 1957). The 

present writer has found that the formula mode = 3@50 - 2M adequately z 
describes the mode for skewness values close to zero, but as the 

distributions depart from the log-normal so this formula becomes 

unreliable. 
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The standard deviation is a measure of the dispersion or sorting 

of the sediment. For descriptive purposes the sorting classifi-

cation of Folk and Ward (1957) has been adopted: 

c::: 0,35 

0,35 - 0,50 

0,50 - 1,00 

1,00 - 2,00 

2,00 - 4,00 ....•..•............ 

;:> 4,00 .......................... . 

Very well sorted (VWS) 

Well sorted (WS) 

Moderately sorted eMS) 

Poorly sorted (PS) 

Very poorly sorted (VPS) 

Extremely poorly sorted (EPS) 

Skewness is a measure of the degree of symmetry of the popUlation 

distribution. For a symmetrical distribution Sk 0, while negative 

skewness or positive skewness "tails" towards either the coarser or 

finer population. 

Kurtosis is a measure of peakedness of a distribution and depends on 

the relative concentration of observations in the vicinity of the 

mode, i.e. it is the "ratio of the sorting in the extremes of the 

distribution compared with the sorting in the central part" (Folk & 

Ward 1957). For a normal distribution K = 1 (mesokurtic). Excessively 

peaked samples, i.e. sorting better in the centre than the tails, 

are described as leptokurtic. Conversely a deficiently peaked 

distribution is described as platykurtic. 

McCammon (1962) has discussed the efficiencies of parameters for 

describing mean size and sorting of sediments: 

(i) Mean 

Efficiency (10) 

Inman (1952) (y116 + y184)/2 = 74 

Trask (1930) (y125 + ~75) / 2 = 81 

Folk & Ward (1957) (y116 + ~50 + ~84)/3 = 88 

McCammon (1962) (~10 + ~30 + ~50 + ~70 + ~90)/5 = 93 

McCammon (1962) (~5 + ~15 ..... + ~85 + ~95)/10 = 97 
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(ii) Standard Deviation (sorting) 

Trask (1930) 

Inman (1952) 

Folk & Ward (1957) 

McCammon (1962) 

McCammon (1962) 

(~75 - ~25)/1,35 

(~84 - ~16)/2 

(~84 - ¢16)/4 + {~95 - ~5)/6,6 

(~85 + ~95 - ~5 - ~15)/5,4 

(~70 + ~80 + ~90 + ~97 - ~3 

- ~10 - ~20 - ~30)/9,1 

Efficiency (0/0) 

= 37 

= 54 

= 79 

= 79 

= 87 
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TABLE A.l 

Grain-size Statistics 

m m 
.j.) 

rl tJ) .r-! 
m 0 Depth P205 

c c 
Locality rl.£: Md Mz c) Sk Kg .r-! .j.) 

o.m .j.) m~ 
E :;.., m in :;.., E 
lBg S rl 

H 

Langeberg S12 8,6 0,7 1,80 1,84 0,77 0,27 0,48 MS Trece 
11,8 0,9 2,00 2,00 0,75 0,21 1,66 MS Trace 
15,0 0,7 2,19 2,22 0,72 0,26 2,00 MS Trece 
20,4 0,9 1,90 2,Zl 1,43 0,47 1,35 PS Trece 
22,5 0,5 2,12 2,47 1,22 0,40 0,91 PS Trece 
24,6 0,7 2,38 2,46 I,ll 1,09 0,99 PS 0,10 
26,8 1,6 2,34 2,43 1,12 0,21 1,02 PS 0,20 
28,9 2,6 2,33 2,35 1,02 0,08 0,95 PS 0,12 
30,0 4,9 2,30 2,33 1,06 0,08 0,99 PS Trace 
31,0 6,3 2,52 2,49 1,01 -0,01 0,78 PS Trece 
32,1 10,7 2,53 2,57 1,42 0,08 0,90 PS Trace 
33,2 14,4 2,62 2,61 0,88 -0,02 0,97 MS Trace 
34,2 15,9 2,58 2,73 0,99 0,21 1,02 MS Trace 
35,3 17,9 2,56 2,67 0,92 0,18 0,99 MS 0,18 
36,4 14,5 2,40 2,46 0,84 0,08 0,95 MS Trace 
38,5 15,8 2,30 2,54 0,93 0,29 0,82 MS Trace 
39,6 16,8 2,45 2,53 0,89 0,12 0,92 MS Trace 
40,6 18,1 2,74 4,00 2,66 0,69 3,93 VPS Trace 
41,7 16,8 3,75 4,41 1,73 0,19 1,17 PS 0,40 
43,8 8,3 2,45 2,37 1,21 -0,23 1,38 PS Trace 

Q12 12,9 0,5 2,38 2,62 1,10 0,44 0,99 PS Trace 
16,1 ° 2,11 2,61 1,78 0,54 1,37 PS Trace 
19,3 ° 2,43 2,45 0,99 0,00 0,73 MS 0,15 
22,5 0,9 2,02 2,09 0,94 0,11 1,02 MS 0,10 
25,7 2,1 2,48 2,42 0,84 -0,13 0,83 MS 0,20 
26,8 4,3 2,35 2,28 0,99 -0,08 0,78 MS 0,50 
27,8 3,3 2,90 2,56 0,97 -0,41 0,86 MS 0,30 
28,9 5,9 2,36 2,35 0,92 0,02 0,84 MS 0,08 I 
30,0 7,5 1,99 2,15 1,02 0,23 0,69 PS 0,24 
31,0 10,8 2,39 2,34 1,06 -0,05 0,80 PS 0,24 
32,1 11,7 2,18 2,22 0,91 -0,11 0,55 MS 0,30 
33,2 15,0 2,18 2,28 1,10 0,17 0,93 PS 0,18 
35,3 16,4 2,23 2,37 0,93 0,21 0,81 MS 0,12 
36,4 13,6 2,55 2,58 0,94 0,04 0,80 MS 0,18 
37,4 15,6 2,33 2,46 0,81 0,21 1,09 MS 0,08 
38,5 6,1 3,08 2,70 0,99 -0,46 0,70 MS 0,70 
39,6 5,7 3,38 3,31 0,46 -0,34 2,54 WS 0,40 
40,6 7,2 3,34 3,07 0,73 -0,54 0,51 MS 0,36 
41,7 9,6 3,28 3,03 0,74 -0,45 0,98 MS 0,20 
42,8 2,6 2,55 2,74 0,66 0,37 1,73 MS 0,06 
43,8 10,4 2,63 2,72 0,80 0,06 1,07 MS 0,16 
44,9 1,2 2,49 2,63 0,41 0,59 2,02 WS Trace 
46,0 3,8 2,40 2,44 0,59 0,19 3,11 MS Trace 

V14 12,9 1,8 2,25 2,Zl 0,85 0,00 0,81 MS 0,70 
15,0 4,1 2,08 2,17 0,85 0,13 0,71 MS 0,60 
17,2 5,0 2,20 2,20 0.,97 -0,05 0,69 MS 1,20 

I 
-~.------ -~-~--~---- ---
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Q) Q) 
r-l OJ .j...l 

Q) 0 Depth P205 
c .r! 

Locality r-l.c Md Mz if Sk Kg .r! C 
0.Q) .j...l Q)-;:g, 
E ~ m 0/0 ~ EO ms 0 r-l co H 

Langeberg V14 19,3 7,6 1,73 1,90 0,87 0,29 0,92 MS 0,30 
21,4 7,2 2,10 2,20 0,90 0,14 0,61 MS 0,40 
23,6 8,0 1,97 2,11 0,90 0,20 0,61 MS 0,50 

~J4- 6,5 0,7 3,30 3,02 0,69 -0,54 1,41 MS 0,18 
76- 9,7 0,9 3,11 2,69 1,05 -0,53 0,81 PS 0,60 
04 12,9 4,4 2,18 2,23 1,00 0,25 1,20 PS Trace 

15,0 0,5 2,35 2,40 1,03 0,19 1,14 PS Trace 
16,1 Trace 2,33 2,39 1,05 0,23 1,15 PS Trace 
17,2 0 1,98 2,11 1,06 0,31 1,27 PS Trace 
18,2 ° 1,95 1,98 0,64 0,13 1,00 MS Trace 
19,3 ° 1,50 1,63 0,88 0,42 1,82 MS Trace 
20,4 ° 2,08 2,15 0,75 0,28 1,22 MS Trace 
21,4 ° 2,32 2,32 0,57 0,07 0,96 MS Trace 
22,5 ° 2,23 2,26 0,74 0,23 1,35 MS Trace 
23,6 ° 2,12 2,14 0,73 0,27 1,58 MS Trace 

M6- 4,3 Trace 2,26 2,29 1,20 0,04 0,95 PS Trace 
15- 6,5 Trace 3,10 2,87 1,03 -0,22 1,04 PS 0,10 
N6- 8,6 Trace 3,11 2,86 1,05 -0,26 1,00 PS 0,12 
15 10,7 0,5 2,78 2,56 0,95 -0,33 0,84 MS 0,26 

11,8 4,0 2,93 2,67 1,02 -0,27 1,03 PS 0,40 
12,9 5,3 3,01 2,87 1,09 -0,11 1,20 PS 0,35 
13,9 4,7 2,65 2,70 1,00 0,14 1,27 PS 0,08 
15,0 3,1 2,46 2,45 0,73 0,14 1,42 MS 0,04 
16,1 4,4 1,63 1,60 0,67 -0,05 0,92 MS Trace 
17,2 3,5 2,66 2,64 0,58 0,13 0,52 MS Trace 
18,2 3,7 2,56 2,56 0,54 0,12 1,75 MS Trace 
19,3 2,3 2,38 2,19 0,59 -0,12 1,13 MS Trace 
20,4 0,8 2,45 2,45 0,73 0,17 1,52 MS Trace 
21,4 2,6 0,88 0,94 0,90 0,49 1,44 MS Trace 
22,5 2,9 3,23 3,11 0,89 -0,15 1,55 MS Trace 

23,6 Trace 2,70 2,67 1,06 0,07 1,23 PS Trace 
25,7 a 2,45 2,62 1,07 0,30 1,21 PS Trace 

27,8 ° 3,45 4,12 1,47 0,69 1,30 PS Trace 
30,0 a 3,70 4,03 0,94 0,51 0,91 MS Trace 

Witteklip W'l 22,5 1,3 2,32 2,35 0,74 0,23 1,80 MS Trace 
25,7 3,2 2,47 2,39 0,63 -0,16 1,23 MS Trace 

28,9 2,9 2,20 2,18 0,77 0,06 I,ll MS 0,05 
33,2 1,3 1,98 1,98 0,67 0,05 1,00 [VIS Trace 

35,3 1,7 1,89 1,94 0,76 0,20 1,06 MS Trace 

37,4 4,0 2,00 2,10 0,91 0,28 1,16 MS 0,04 
39,6 10,6 2,16 2,54 1,30 0,46 1,79 PS Trace 

41,7 13,9 2,12 2,43 1,12 0,59 2,51 PS Trace 

43,8 11,1 1,58 1,60 0,51 0,17 1,08 MS Trace 

46,0 9,3 2,33 2,37 1,05 0,08 0,86 PS Trace 

W'5 8,6 ° 2,24 2,36 1,02 0,00 1,20 PS Trace 
10,8 Trace 2,40 2,35 0,96 -0,02 1,20 MS Trace 

12,9 5,2 2,69 2,89 1,38 0,19 0,95 PS Trace 

15,0 2,0 2,33 2,49 1,15 0,38 1,51 PS Trace 

17,2 4,4 2,50 2,85 1,19 0,45 1,26 PS Trace 

---
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m m r-l 
m 0 tn +l 

r-l..c 0-' 
c 'r! 

Locality o.m Depth P205 Md Mz Sk Kg .r! C 
E >-. +l m--;g, 

mJ5 10 
>-. E 0 

m S r-l 
H 

Witteklip W'5 19,3 0,6 2,33 2,32 0,90 0,08 1,43 MS Trace 
21,4 1,2 2,40 2,36 0,75 -0,01 1,28 MS Trace 
23,6 4,2 2,48 2,46 0,66 0,07 1,65 MS Trace 
25,7 5,2 2,40 2,37 0,52 -0,11 1,13 MS Trace 
27,8 7,0 2,53 2,49 0,81 0,03 1,17 MS Trace 
30,0 10,8 2,75 2,68 0,68 -0,08 1,33 MS 1,20 
32,1 13,6 2,58 2,59 0,62 0,18 1,30 MS 0,60 
34,2 9,2 2,90 2,79 0,98 -0,04 1,67 MS 0,80 
36,4 4,4 2,96 2,74 0,98 -0,11 0,82 MS 1,20 
38,5 1,8 2,70 2,44 1,02 -0,26 0,82 PS 0,20 
40,6 9,6 2,23 2,32 0,75 0,20 1,16 MS Trace 
42,8 3,8 3,31 3,26 0,48 -0,25 3,02 WS 0,40 
44,9 2,8 3,15 1,78 2,33 ..,..0,77 0,98 VPS 0,20 

Langeberg MIa 16,1 5,6 2,35 2,38 0,81 -0,01 0,73 MS 0,12 
M14 16,1 7,5 2,18 2,17 1,03 -0,12 0,83 PS 0,10 
M16 22,5 7,6 2,46 2,48 0,72 -0,03 0,81 MS 0,30 
N8 19,8 9,7 2,22 2,31 0,72 0,09 0,79 MS 0,25 
N12 27,1 13,9 2,04 2,13 0,87 0,11 0,72 MS 0,04 
N16 29,4 15,9 1,98 2,01 1,10 -0,05 0,91 PS 0,30 
06 18,8 10,1 2,02 2,09 0,94 0,04 0,74 MS 0,05 
010 29,4 12,4 2,75 2,60 0,78 -0,30 0,76 MS 0,05 
012 34,2 20,9 2,05 2,15 0,74 0,16 1,15 MS 0,04 
020 43,7 7,7 2,98 2,74 0,69 -0,53 0,95 MS 0,22 
P8 23,9 12,5 2,82 2,'67 0,72 -0,34 0,80 MS 0,10 
P12 34,8 18,5 2,05 2,11 0,94 0,04 0,80 MS 0,05 
P16 42,9 12,7 2,35 2,31 0,95 -0,11 0,58 MS Trace 
Q2 15,5 2,81 2,57 0,79 -0,46 0,90 MS 0,30 
Q6 15,4 10,8 2,49 2,47 0,81 -0,12 0,77 MS 0,30 
QI0 30,5 20,7 1,93 1,97 0,92 0,03 1,04 MS 0,04 
Q14 39,8 15,0 2,18 2,27 0,86 0,08 0,79 MS Trace 
Q20 39,3 2,62 2,57 0,70 -0,17 0,88 MS 0,20 
Rl 4,9 11,3 ·2,50 2,48 0,89 -0,19 0,76 MS 0,30 
R12 39,0 17,5 2,06 2,17 0,87 0,13 0,90 MS 0,25 
R16 43,3 8,8 1,90 2,03 0,86 0,19 0,87 MS 0,04 
S4 12,4 11,9 2,25 2,27 0,85 0,01 0,71 MS 0,50 
S10 34,8 16,6 2,33 2,42 0,72 0,10 0,81 MS 0,05 
S14 42,1 16,7 2,07 2,16 0,86 0,12 0,82 MS 0,10 
S18 38,0 7,8 2,20 2,07 I,ll ~0,13 0,64 PS 0,50 
820 30,7 1,98 1,92 0,61 -0,01 1,09 MS 0,04 
T8 23,0 12,1 1,90 2,03 0,83 0,24 0,95 MS Trace 
Tl2 34,8 16,5 2,45 2,57 0,71 0,11 0,75 MS 0,16 
Tl4 35,4 12,2 2,88 2,74 0,69 -0,37 0,89 MS 0,06 
Tl6 29,4 5,4 2,15 2,21 0,90 0,07 0,64 MS 0,15 
U4 15,0 12,1 2,23 2,31 0,78 0,12 0,77 MS 0,03 
U6 25,9 12,4 2,36 2,41 0,80 0,04 0,74 MS Trace 
U8 25,2 14,9 1,99 2,04 0,73 0,14 1,04 MS 0,12 
U14 29,4 12,2 1,44 1,69 0,76 0,51 0,94 MS Trace 

U16 29,4 9,9 2,43 2,36 0,87 -0,14 0,70 MS 0,08 
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E ~ m 0/0 ~ EO 
ffig 0 r-f 

(f) H 

Langeberg U18 27,3 7,9 2,64 2,45 1,02 -0,34 0,83 PS Trace 
V2 11,2 10,0 2,33 2,41 0,79 0,07 0,70 MS Trace 
V12 30,5 10,0 2,38 2,36 0,93 -0,08 0,59 MS 0,35 
W4 12,4 12,8 2,48 2,42 0,86 -0,14 0,64 MS 0,05 
W6 15,4 10,0 2,02 2,18 0,92 0,20 0,59 MS 0,08 
WID 20,9 6,8 2,32 2,31 0,92 -0,03 0,57 MS 0,08 
X8 13,4 11,5 2,20 2,27 0,70 0,11 0,90 MS 0,08 
Xl4 15,5 10,5 3,27 2,65 1,09 -0,81 1,04 PS 0,30 
Y12 15,5 9,7 2,95 2,49 1,06 -0,59 0,60 PS 0,35 
Y16 10,0 4,9 3,45 3,21 0,78 -0,93 0,44 MS 0,04 
Z14 11,8 4,5 3,26 3,17 0,69 -0,62 0,44 MS 0,50 

Sandheuwel S'58 23,5 3,8 3,03 2,54 1,32 -0,50 0,94 PS Trace 

Langeberg fA-
76- 2,15 2,20 0,81 0,26 1,32 MS Trace 
T4 

r-f - ~ 
£ Q) Q) 
O::>fl 0,0 3,10 2,98 0,63 -0,56 2,70 MS Trace a:! ~ E Q) Q) 
mCJ::2' 

r-f 
a:! 
Ul"O 3,53 2,58 I,ll -0,50 0,78 PS Trace a:! Q) 
mm 

PELLETAL PHOSPHORITE 

Langeberg M14 18,6 1,88 1,90 0,65 0,09 0,91 MS 
012 32,9 2,08 1,99 0,52 -0,28 0,94 MS 
020 44,7 1,92 1,86 0,60 -0,09 0,94 MS 
P4 13,4 2,02 1,98 0,57 -0,06 1,08 MS 
P8 21,9 1,96 1,90 0,54 -0,10 1,09 MS 
Q12 35,3 2,03 1,95 0,56 -0,16 0,94 MS 
R6-
30- 2,18 2,18 0,53 -0,02 1,21 MS 

I 
as 
R16 33,2 1,88 1,81 0,51 -0,13 0,86 MS 
Sl 2,23 2,24 0,56 0,02 1,32 MS 
84-
90-
T4- 2,23 2,25 0,56 0,05 1,20 MS 
60 
86-

106- 2,23 2,25 0,49 0,02 1,27 WS 
T6-
60 
SID 36,9 1,98 1,95 0,44 -0,12 0,88 WS 

- . --_._-
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0) 0 Depth P205 if 
c .r-! 
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0.0) .j...l 0) 
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(JJ H 

Langeberg 812 39,6 2,10 2,11 o,aE -0,06 1,15 W8 
812 36,4 2,27 2,16 0,52 -0,34 1,30 M8 
U4 36,0 2,13 2,13 0,55 -0,04 1,26 M8 
U4 15,5 2,08 2,12 0,47 0,07 1,44 W8 
V8 20,9 2,03 1,96 0,52 -0,15 1,00 M8 
V14 19,3 1,80 1,83 0,54 0,08 0,71 M8 
XB 11,8 1,97 1,87 0,53 -0,15 1,03 M8 

Wittek1ip W'l 43,8 1,43 1,48 0,48 0,15 0,88 W8 
W'4 2,78 2,69 0,54 -0,19 0,90 M8 
W'5 32,1 2,63 2,60 0,38 -0,10 0,80 W8 i 

W'5 40,6 2,32 2,31 0,43 -0,08 1,25 W8 
I 
I 

QUARTZ 

Langeberg M14 18,6 2,18 
012 32,9 2,20 
020 44,7 3,13 
P8 21,9 2,82 
Q12 30,0 1,99 
Q12 35,3 2,22 
R16 33,2 1,85 
810 36,9 3,32 
812 33,2 2,62 
812 36,4 3,02 2,73 0,91 -0,36 0,85 M8 
812 39,6 3,13 2,88 0,97 -0,34 0,90 M8 
U4 36,0 3,07 
U4 15,5 2,43 
V14 19,3 1,63 

Wittek1ip W'5 30,0 2,75 
W'5 32,1 2,80 
W'5 36,9 2,96 
W'5 41,2 2,25 
W'l 43,8 1,62 

ILMENITE 

W'5 41,2 3,65 3,60 0,42 -0,18 1,08 W8 
Wittek1ip W'l 43,8 3,50 3,38 0,56 -0,27 1,72 MS 

- - -- - ---- -
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E Ql H EO 
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Ysterplaat YS 1 9,2 1,60 1,89 0,76 0,48 0,80 MS 
YS 2 2,94 2,65 0,77 0,82 3,00 MS 
YS 3 1,02 0,92 0,76 0,22 1,80 MS 
YS 4 8,0 2,90 2,49 0,96 0,71 2,35 MS 
YS 5 0,96 0,99 0,77 0,19 1,51 MS 
YS 6 1,54 1,83 0,75 0,48 1,06 MS 
YS 7 3,00 2,98 0,20 -0,41 2,61 VWS 
YS 8 1,08 1,54 1,02 0,55 2,44 PS 
YS 9 2,98 3,03 0,35 -0,18 2,53 WS 
YS 10 1,55 1,91 0,78 0,53 0,67 MS 

Die Kelders OK 1 1,95 1,92 0,70 0,00 1,03 MS 
OK 2 1,90 1,84 0,53 -0,17 0,84 MS 
OK 3 2,07 1,98 0,57 -0,22 0,89 MS 
OK 4 2,07 2,01 0,49 -0,19 0,92 WS 
OK 5 2,12 2,03 0,51 0,22 0,95 MS 
OK 6 1,52 1,59 0,71 -0,12 0,96 MS 
OK 7 1,39 1,42 0,59 0,02 1,02 MS 
OK 8 1,66 1,67 0,6f" 0,00 0,93 MS 
OK 9 2,25 2,18 0,43 -0,23 1,02 WS 
OK 10 2,10 2,02 0,63 -0,20 0,91 MS 
OK 11 2,13 2,04 0,54 -0,26 0,86 MS 
OK 12 1,95 1,89 0,59 -0,16 0,89 MS 
OK 13 2,25 2,15 0,53 -0,27 1,04 MS 
OK 14 1,82 1,77 0,57 -0,13 0,87 MS 
OK 15 2,05 1,95 0,57 -0,25 0,84 MS 
OK 16 1,98 1,87 0,65 -0,24 0,84 MS 
OK 17 1,91 1,84 0,58 -0,15 0,85 MS 
OK 18 2,68 2,72 0,54 0,07 1,58 MS 
OK 19 2,55 2,53 0,67 -0,04 1,37 MS 
OK 20 2,56 2,51 0,64 -0,08 1,60 MS 
OK 21 2,55 2,67 0,64 0,42 1,66 MS 
OK 22 2,60 2,79 0,42 0,40 1,74 WS 
OK 23 2,46 2,45 0,94 0,14 1,61 MS 
OK 24 2,20 2,14 0,49 -0,19 0,99 WS 
OK 25 2,29 2,22 0,54 -0,15 1,13 MS 
OK 26 2,30 2,21 0,36 -0,27 1,00 WS 
OK 27 2,25 2,16 0,47 -0,26 0,93 WS 
OK 28 2,22 2,16 0,50 -0,18 1,01 WS 
OK 29 2,30 2,22 0,46 -0,24 1,04 WS 
OK 30 2,30 2,22 0,48 -0,25 0,98 WS 
OK 31 2,20 2,06 0,75 -0,24 0,81 MS 
OK 32 2,40 2,32 0,55 -0,20 1,08 MS 
OK 33 2,13 2,07 0,76 -0,02 1,04 MS 
OK 34 1,97 1,93 0,74 -0,07 0,94 MS 
OK 35 2,02 1,95 0,61 -0,17 0,94 MS 
OK 36 1,88 1,83 0,61 -0,20 0,88 MS 

OK 37 1,95 1,86 0,59 -0,25 0,89 MS 
OK 38 1,80 1,38 1,27 -0,53 1,16 PS 
OK 39 1,85 1,75 0,70 -0,43 1,09 MS 
-~--
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APPENDIX 2 

Scanning Electron Microscopy 

Each sample was sieved and the quartz grains soaked in dilute 

hydrochloric acid for 20 minutes to remove impurities. Shell 

grains were not treated in any way. The samples were then 

spread on a 1 cm diameter Etub and coated with a vacuum evaporated 

gold-palladium alloy. Coating was done from two different angles, 

high and low, and the stub slowly rotated to ensure a uniform 

thickness of the alloy. The JEoL JSM U3 scanning electron 

microscope at Rhodes University was used throughout this study. For 

a more comprehensive account of sample preparation see Krinsley 

and Margolis (1969). 

Much of the early work on quartz grain surface textures utilised 

the transmission electron microscope (TEM). But the TEM requires 

the use of replicas which are complicated and time consuming to 

make and which may be subject to distortion or to the introduction 

of artefacts. Furthermore, only half the grain is replicated and 

it is usually difficult to identify that part of the grain being 

examined. 

ScanninG electron microscopy (SEM) eliminates most of these problems. 

Numerous entire grains which are alloy coated on a stub permit the 

direct examination of each grain. Continuous magnification from 

about 40X to 60 OooX or even 100 oOOX is possible. Although the 
o 0 

TEM has a higher resolution than the SEM, 2,5A against 25A (Krinsley 

& Margolis 1971), the important textural features of sand grains 

are usually within the resolution capabilities of the latter. The 

SEM has the advantage of rapid processing of samples, ability to 

examine a large number of grains directly and greater depth of 

field. 
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APPENDIX 3 

NOTES ON SOME OF THE MOLLUSC FOSSILS 

The aim of this appendix is to present a few comments on some of the 

more interesting molluscan species encountered during this project. 

A taxonomic account would not only be voluminous, but would also be 

invalid since the International Commission on zoological Nomenclature 

states (Article 9) that the mere deposit of a document (e.g. a 

thesis) in a library does not constitute a valid publication. For 

a detailed account of those species mentioned in this thesis the 

reader would be better served using the appropriate texts. A 

taxonomic treatment of many of the species mentioned below appears 

elsewhere (Kilburn & Tankard 1975). Several of these species appear 

to be extinct, and most of the others no longer live in South African 

waters. 

CLASS GASTROPODA 

Cantharidus suarezensis fultoni (Sowerby) 

Figure A.l 

This species differs from its modern relative, C.S. suarezensis in 

having fine and weaker spiral lirae, and in the oblique growth lines 

which always override the spiral sculpture. In Figure A.2 the ratio 

breadth/height for fultoni is compared with suarezensis. Kilburn and 

Tankard (1975) explained the differences even within a single sub

species as the result, possibly, of habitat. Figure A.2 shows that 

the comparatively broader suarezensis from Inhaca Island lives on 

broad bladed "sea grass", Cymodocea, while the narrower Durban Bay 

population inhabits the thin bladed Zostera. It can be seen 

(Figure A.2.A) that these same differences exist within the fossil 

populations (fultoni), and these differences could be used to indicate 

the type of vegetation that inhabited Late Pleistocene estuaries. 

C.s. fultoni is restricted to last interglacial estuarine sediments 
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lmm 

Figure A.I Cantharidus sU5rezensis fultoni (Sowerby). 
B. Scanning electron photomicrograph showing 
sculpture on the base . Swartkops river mouth. 
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from Algoa Bay to Klein Brak River. The living C.s. suarezensis, 

on the other hand, is encountered only as far south as Durban. 

Pseudostomatella orbiculata (A. Adams) 

Figure A.3 

This species only occurs fossil in South Africa from Knysna to Klein 

Brak River in last interglacial beds. Its living range is 

Mozambique to Ceylon (Kilburn & Tankard 1975). Barnard 1963 described 

Pleistocene specimens in detail. 

Cerithidea (Cerithidea) bifurcata Kilburn & Tankard 

Figure A.4 

The closest ally to this species appears to be C. decollata (Linn.), 

a Recent Indo-Pacific species common in mangrove swamps in Natal, but 

living among salt marsh vegetation in estuaries as far west as the 

Gamtoos River. C. bifurcata may be the species described by Haughton 

(1931) as C. guinaicum Philippi (identified by J.R. le B. Tomlin) which 

today lives in the tropical west Atlantic. C. bifurcata was collected 

from the same site as Haughton's specimens: an Early Pleistocene 

shelly limestone 9,5m a.s.l., 1,5 km northeast of Langebaan in a quarry. 

Cerithium scabridum rufonodulosum E.A. Smith 

Figure A.5 

C.s. rufonodulosum occurs only fossil in South Africa. Its living 

relative is C.s. scabridum which has a range Quirimba Island (12,40 Sj 

40,70 E)to the Red Sea, Persian Gulf and India. Differences between 

rufonodulosum and scabridum are very small, and the only real difference 

is that the former has less prominent tubercles. C.s. rufonodulosum 

occurs in last interglacial beds from the Coega River mouth to 

Arniston. 

i 
I 
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Smm 

.Figure A.3 Pseudostomatella orbiculata (A. Adams) 
A. Fossil (Knysna). B. Living (Oar es Salaam). 

8mm 

Figure A.4 Cerithidea bifurcata Kilburn & Tankard. 
Early Pleistocene of Langebaan . 



5mm 5mm 

Figure A.5 A. Cerithium scabridum rufonodulosum E.A . Smith 
(Algoa Bay). B. C. s. rufonodulosum E. A. Smith 
(Sedgefield). C. C. s. scabridum Philippi (Gulf 
(}nan) . 

10mm IOmm 

Figure A. 6 Crepidula capensis praerugulosa Kilburn & Tankard 
Velddrif. 
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Crepidula capensis praerugulosa Kilburn & Tankard 

Figure A.6 

This is a Pleistocene chronosubs.pecies of Crepidula capensis Quoy 

and Gaimard, and differs in its marginal apex and larger size, and 

in the absence of rugose sculpture. The regularly curved ventral 

margin of C.c. praerugulosa suggests that it lived attached to mussel 

shells, a common habitat of Crepidula porcellana Lamarck. Living 

C. capensis appears to live entirely on the undersides of rocks. One 

specimen of praerugulosa even shows a series of xenomorphic ridges, 

strongly suggesting attachment to the ribbed mussel Aulacomya ater 

(Molina). 

C.c. praerugulosa is restricted to last interglacial beds, both 

estuarine-lagoonal facies and open-coast facies. Its known geographic 

range is Elands 8ay to Milnerton lagoon (west coast). 

A series of specimens from Early Pleistocene shelly limestone 1,5 km 

north of Langebaan is morphologically interesting, although preservation 

is poor. The apex in these specimens is more terminal than in 

typical C.c. praerugulosa, and the shells on the average more compressed, 

but the left side of the septum appears to be less lobate. This might 

be construed as indicating an origin from a porcellana-type ancestor. 

Triumphis dilemma Kilburn & Tankard 

Figure A.7 

The affinities of Triumphis dilemma are not clear. In some respects 

it resembles species of the genus Cantharus R~ding, 1798, but in 

apertural characters is closer to Triumphis Gray, 1857. The type area 

for this species is a quarry 1,5 km north of Langebaan at 9,5 m a.s.l. 

The deposit is of Early Pleistocene age. I have recently identified 

this species in the 45-50 m transgression complex fauna on the 

Namaqualand coast (Koingnaas, Hondeklip 8ay). 



Figure A.7 Triumphis dilemma Kilburn & Tankard 

Early Pleistocene, Langebaan. 

5mm 

Figure A.8 Pupa daviesi Kilburn & Tankard. Knysna. 

v 
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Pupa (Strigopupa) daviesi Kilburn & Tankard 

Figure A.8 

Pupa daviesi was initially reported from South Africa as the Philippine 

Pupa suturalis (A. Adams). The latter has a more conspicuously 

channelled suture. P. solidula (Linn.) which daviesi was originally 

referred to, is a globose species with very different columella folds 

and a rounded base. P. affinis which lives as far south as Durban 

is closely related to daviesi. 

Pupa daviesi occurs in last interglacial beds from the Coega salt works 

to the Klein Brak River (Kilburn & Tankard 1975). 

CLASS BIVALVIA 

Ostreidae 

Opinion number 338 of the International Commission on Zoological 

Nomenclature states that only the generic names, Ostrea and Gryphaea, 

are to be used for fossil oysters. This opinion arises because 

living oysters are classified according to their method of 

reproduction. But this decision would imply that a modern Striostrea 

valve washed up on a beach without its "soft parts" should be referred 

to Gryphaea, a change of generic name. 

the oysters have been used here. 

Only the "living" names of 

There are three species of oyster indigenous to the Cape south coast: 

Striostrea margaritacea (oviparous), Ostrea algoensis ("weed oyster"), 

and Ostrea atherstonei (larviporous). Conchologically the various 

species of oyster may be separated, although anyone species may show 

a great variety of shell shape. 
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Striostrea margaritacea (Lamarck) 

This species has a pronounced umbonal cavity (right valve), and ventral 

displacement of the adductor muscle is due to the presence of a 

promyal passage. There are no chalky deposits in the right valve 

as there are in Ostrea atherstonei. 

Haughton (1931) described a fossil oyster from the Namaqualand 

"oyster line". Mr J.R. Ie 8. Tomlin, who examined these specimens at 

Haughton's request, stated that the oyster was similar to fresh Ostrea 

prismatica Grey from Durban. Korringa (1956) has referred these 

specimens to Crassostrea margaritacea (Lamarck), the common South 

African oyster which is prolific along the east coast. Stenzel (1971) 

has referred this east coast species to Striostrea which "differs from 

Crassostrea in its reniform adductor muscle imprints, chomata, nacreous 

and irridescent interior, very foliaceous shell structure and 

rudistiform growth pattern". 

Ostrea atherstonei Newton 

This species was originally described as a fossil from the Alexandrj.a 

Formation (Newton 1913), but has since been found living on the south 

coast (Korringa 1956). It has no umbonal cavity, and has "chalky 

deposits" between the adductor muscle scar and the margin. The 

adductor scar is centrally placed and almost parallel with the hinge 

line. 

Undoubtedly the most extensive beds of O. atherstonei are beneath the 

floor of Langebaan Lagoon where there are reputed to be 3 million metric 

tons. It thrives in a sheltered environment with fine to medium sand. 

Nuculana (Leda) bicuspidata (Gould) 

Figure A.9 

Nickl~s (1950) records this species living between Mauritania and Angola. 



i . 

5mm 

~igure A.9 Nuculana (Leda) bicuspidata (Gould) . Kruispad . 

Smm 

Figure A.lO Loripes (Microlo~ipes) liratula (Sowerby) . 
Kruispad . 
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I have recently examined a large collection of molluscs dredged from 

the South West African continental shelf. N. bicuspidata is very 

common in the very north which shows its distribution to be limited 

by the belt of upwelling. N. bicuspidata is common in last inter

glacial beds at Redhouse, Kruispad and Milnerton. 

Glycymeris borgesi (Cox) 

Although Cox (1939) described this species as G. africana, he later 

renamed it G. borgesi (Cox 1946), since G. africana Cox was a secondary 

homonym for the South African Cretaceous G. africana (Griesbach). 

King (1953) independently made this discovery and renamed G. africana 

Cox G. austroafricana (Cox). 

Cox (1939) notes that borgesi is very close to the living Mediterranean 

pilosa. According to Professor King (pers. comm.) both pilosa and 

borgesi occur in the Uloa deposits, but were not separated in his 1953 

report. Generally it appears that the taxodont teeth of pilosa.are 

propor.tionately larger. Specimens from Ysterp+aat (Miocene) are 

identical in all respects to borgesi from Mozambique (specimens sent 

by Dr da Silva), Uloa (specimens sent by Professor L.C. King), and the 

Zwartkops area (illustrated by Newton 1913). It is an extinct 

species apparently restricted to Neogene deposits. 

Loripes (Microloripes) liratula (Sowerby) 

Figure A.lO 

This species was described by Barnard (1964) as a Divaricella, but its 

oblique internal ligament shows it to be a Loripes. Furthermore, 

liratula could be a synonym of the Recent west African L. contrarius 

(Dunker). 

Loripes liratula is common in the last interglacial beds from Swartkops 

River to Kruispad. 

,--"'"' 
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Felania diaphana (Gmelin) 

Figure A.Il 

This Recent west African species is common in last interglacial 

beaches along the south Cape coast from the Swartkops River to 

Mossel Bay. The species at present is known to range from Mauritania 

to Angola (Nickl~s 1950). 

Cardium cf. edgari Newton 

In shape and external sculpture specimens from the Miocene at 

ysterplaat most closely resemble specimens illustrated by Newton 

(1913), and specimens of edgari in the South African Museum collection. 

Newton's specimens were from the Alexandria Formation. 

Tellina (Eurytellina) madagascariensis Gmelin 

Figure A.12 

Boss (1969) showed that previous Recent records of Tellina madagascariensis 

were based on T. alfredensis Bartsch. He did, however, record the true 

West African madagascariensis from a raised beach at the Klein Brak 

River mouth. During the last interglacial this species (madagascariensis) 

was abundant along much of the south and west coasts of the Cape 

Province, from Redhouse to Verlorevlei, and in South West Africa at 

Cape Cross. After its extinction from the South African Coast due to 

climatic change, madagascariensis was replaced by alfre.densis. T. mada-

gascariensis is readily distinguishable from alfredensis by its larger 

size and deeper pallial sinus. 

Macoma (Heteromacoma) tricostata (Rt'lmer) 

Figure A.13 

Specimens from Verlorevlei agree well with Recent valves from Angola, 
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Figure A.ll Felania diaphana (Gmelin). Mossel Bay. 
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Figure A.12 Tellina (Eurytellina) madagascariensis Gmelin. 
Churchhaven . 
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except in being thicker. The Recent South African M. litoralis 

(Krauss) is a smaller, more compressed species with a lower umbo, 

stronger hinge-teeth and inconspicuous nymphs. M. tricostata has so 

far been identified only in the last interglacial deposits at 

Verlorevlei. 

Gastrana fibrosa Kilburn & Tankard 

Figure A.14 

G. fibrosa closely approaches G. rostrata Carrington & Kensley from 

the Early Pleistocene of Namaqualand in size and sculpture, but differs 

in its non-rostrate posterior end and dentition. It is very different 

from living matadoa. G. fibrosa is found in last interglacial beds 

at Saldanha and Churchhaven. 

Leporimetis (Leporimetis) hanleyi (Dunker) 

Figure A.l5 

These specimens agree closely with material from Luanda. The species 

shows slight variation in shape. It is encountered in last inter

glacial beds from Redhouse to Klein 8rak River. 

Donax sanctuarium Kilburn & Tankard 

Figure A.l6 

This species appears to be distinct from any other member of the 

genus. Its thin shell, weak dentition, and smooth inner ventral 

margins suggest that it is adapted to a sheltered environment. So far 

this species has been found only in the last interglacial beds at 

Churchhaven. 

Pitar (Lamelliconcha) sp. 

Figure A.I? 

The general shape, hinge detail (determined from silicone casts), and 
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Figure A.13 Macoma (Heteromacoma) tricostata (R~mer). 
Verlorevlei. 

25mm 

Figure A.14 Gastrana fibrosa Kilburn & Tankard. &3.ldanha. 
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,Figure A.15 Leporimetis (Leporimetis) hanleyi (Dunker). 
A. Knysna . B. Redhouse. 
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Figure A.16 Donax sanctuarium Kilburn & Tankard. Churchhaven . 
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configuration suggest similarities with P. madecassina of the Natal

Mozambique coast. A firm determination is precluded by the fact 

that only moulds are available from the Saldanha and Varswater 

Formations. 

Notocallista schwarzi (Newton) 

Newton (1913) described two new species of Chamelea, schwarzi and 

rogersi. Barnard (1962) was correct in synonymising these two species 

but erred in suggesting that they were based on worn Pitar madecassina. 

This Neogene species differs conspicuously from P. madecassina in its 

compressed valves, oblong-ovate shape, mOderately curved umbo and weak 

umbonal ridge; also the anterior and median cardinals of the left 

valve only intersect at the very dorsal margin. P. madecassina is 

tumid, ovate-trigonal, posteriorly subrostrate with a strong umbonal 

ridge, umbo strongly prosogyrate, left anterior and median cardinals 

intersecting some distance below the dorsal margin (Kilburn & Tankard 

1975). In dentition and wide, horizontal and pointed pallial sinus 

it most closely resembles Callista and Notocallista, but the sculpture 

of irregular concentric grooves and ridges is more like Notocallista. 

Venerupis dura (Gmelin) 

Figure A.IS 

This is a west African species living as far south as Luanda (Angola), 

but also abounding in last interglacial deposits from Redhouse to 

Verlorevlei. Mr C.P. Nuttall of the British Museum (Natural History) 

kindly examined specimens from Verlorevlei and Kruispad and found them 

comparable with "Callistotapes vetulus (Basterot) var. plioglabroides 

Sacco from the Pliocene (Astian) of Piedmont", Italy. V. rufiscensis 

Fischer-Piette & Metivier appears to be based merely on coarsely

ribbed examples of ~ (Kilburn & Tankard 1975). V. dura at present 

ranges from Morocco to Angola (Nick1~s 1950). 
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Figure A.17 Pitar (Lamelliconcha) sp. Miocene of Ysterplaat. 
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Figure A.18 Venerupis dura ( Cmelin ). Kruispad . 
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Petricola (Claudiconcha) prava Kilburn & Tankard 

Figure A.19 

The markedly inequivalve shell and large size distinguish prava 

from the three Recent South African species, P. (Rupellaria) bicolor 

Sowerby, P. (Petricola) ponsonbyi Sowerby, and P. (p) divergens 

(Gmelin). P. prava is common in the Early Pleistocene deposits at 

Langebaan and Saldanha. 

Panopea (Panopea) glycymeris (Born) 

Figure A.20 

Specimens of Panopea glycymeris are common in the last interglacial 

deposits of Kruispad and Klein Brak River. In the past they have 

been referred to P. aldrovandi Gray, P. natalensis Woodward, and P. 

dreyeri van Hoepen. Its present day range is Mediterranean to Senegal. 

Kensley (1974) was wrong in describing the South African fossils as 

Plio-Pleistocene. They are all of L.a te Pleistocene age. 
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, Figure A.19 Petricola (Claudiconcha) prava Kilburn & Tankard. 
Early Pleistocene Df Langebaan . 
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