963 research outputs found

    Mitigating a transient response of a series stacked AC-DC converter

    Get PDF
    Generator operating at a limited speed range is essential for improving mechanical to electrical conversion efficiency in many high-power conversion systems, such as wind turbines and future ship turbine-generator systems. To meet the power quality requirements while supporting the variable speed operation, ac-dc conversion is required as the interface between the generators and a dc power grid. Therefore, high-efficiency ac-dc conversion is crucial to improve the overall conversion efficiency. An ac-dc conversion architecture integrating power electronics to a multi-port permanent-magnet synchronous generator was proposed for higher ac-dc conversion efficiency and higher system reliability. This architecture series stacks passive rectifiers and one active rectifier to generate a constant dc bus. Each of the rectifiers is powered by one three-phase port from the generator. The efficiency and reliability improvements come from the use of passive rectifiers to process a portion of the total power. A simulation model and a laboratory prototype were built to illustrate the feasibility of the proposed architecture. However, the prototype still has unsatisfactory dynamic performance. The dc bus voltage under a generator speed change still contains unwanted oscillation in the transient response. This thesis focuses on resolving the problem by two methods: (i) study the oscillation mechanism by investigating a realistic generator model and implementing a ramp command in speed change; (ii) achieve a better transient response of the dc bus voltage profile under the changes by appropriately improving the dc bus voltage controller on the experimental setup.Ope

    Power Conversion System for Grid Connected Micro Hydro Power System with Maximum Power Point Tracking

    Get PDF
    This research analyzed and simulated an electrical power conversion system for a grid-connected variable speed micro hydro turbine (MHT) system. Different from traditional hydro power systems, the MHT is running at variable speed condition with permanent magnet synchronous generator(PMSG). To decouple the relationship between the generator rotation speed and the output frequency, rectifier and DC boost converter is developed to maintain the output voltage when the generator is rotating in a low speed. The reference generator speed is given by the perturbation and observation maximum power point algorithm to extract more energy from the micro hydro turbine. The grid connected inverter converts the power from the DC side to the grid with a D-Q frame control. If the generator speed is high enough, the inverter will directly control the generator speed

    A piezoelectric based energy harvester interface for a CMOS wireless sensor IC

    Get PDF
    In this thesis a piezoelectric energy harvesting system, responsible for regulating the power output of a piezoelectric transducer subjected to ambient vibration, is designed to power an RF receiver with a 6 mW power consump-tion. The electrical characterisation of the chosen piezoelectric transducer is the starting point of the design, which subsequently presents a full-bridge cross-coupled rectifier that rectifies the AC output of the transducer and a low-dropout regulator responsible for delivering a constant voltage system output of 0.6 V, with low voltage ripple, which represents the receiver’s required sup-ply voltage. The circuit is designed using CMOS 130 nm UMC technology, and the system presents an inductorless architecture, with reduced area and cost. The electrical simulations run for the complete circuit lead to the conclusion that the proposed piezoelectric energy harvesting system is a plausible solution to power the RF receiver, provided that the chosen transducer is subjected to moderate levels of vibration

    Low Wind Speed Turbine Development Project Report: November 4, 2002 - December 31, 2006

    Full text link

    Modern Diagnostics Techniques for Electrical Machines, Power Electronics, and Drives

    Full text link
    © 2015 IEEE. Personal use of this material is permitted. Permissíon from IEEE must be obtained for all other uses, in any current or future media, including reprinting/republishing this material for advertisíng or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other works.[EN] For the last ten years, at least three different special sections dealing with diagnostics in power electrical engineering have been published in the IEEE transactions on industrial electronics [1]-[5]. All of them had their specificities, but the last ones, starting in 2011, were more connected to relevant events organized on the topic. In fact, these events have been clearly the only international forums fully dedicated to diagnostics techniques in power electrical engineering. For this particular issue, it has been decided to separate the different submissions into six parts: state of the art; general methods; induction machines (IMs); synchronous machines (SMs); . electrical drives; power components and power converters. The second section includes only one state-of-the-art paper, which is dedicated to actual techniques implemented in both industry and research laboratories. The third section includes three papers on diagnostic techniques not specifically aimed at a particular type of machine. The fourth section includes three papers devoted to diagnostics of rotor faults, two dedicated to stator insulation issues, and four papers dealing with mechanical faults diagnosis in IMs. The fifth section includes papers focusing on different types of SMs. The first two papers deal with wound-rotor SMs, the following three papers are dedicated to permanent-magnet radial flux machines, and the last one deals with permanent-magnet axial flux machines. Regarding the types of faults analyzed, there are three papers devoted to the diagnosis of interturn short circuits in the stator windings, i.e., one dedicated to the detection and location of field-winding-to-ground faults and a paper devoted to the diagnosis of static eccentricities. In the sixth section, two papers investigate issues related to faults in drive sensors, and one is devoted to fault detections in the coupling inductors. The last section includes two papers devoted to diagnosis of faults and losses analysis in switching components of power converters.Capolino, G.; Antonino-Daviu, J.; Riera-Guasp, M. (2015). Modern Diagnostics Techniques for Electrical Machines, Power Electronics, and Drives. IEEE Transactions on Industrial Electronics. 62(3):1738-1745. doi:10.1109/TIE.2015.2391186S1738174562

    High power high frequency DC-DC converter topologies for use in off-line power supplies

    Get PDF
    The development of a DC-DC converter for use in a proposed range of one to ten kilowatt off-line power supplies is presented. The converter makes good use of established design practices and recent technical advances. The thesis begins with a review of traditional design practices, which are used in the design of a 3kW, 48V output DC-DC converter, as a bench-mark for evaluation of recent technical advances. Advances evaluated include new converter circuits, control techniques, components, and magnetic component designs. Converter circuits using zero voltage switching (ZVS) transitions offer significant advantages for this application. Of the published converters which have ZVS transitions the phase shift controlled full bridge converter is the most suitable, and assessments of variations on this circuit are presented. During the course of the research it was realised that the ZVS range of one leg of the phase shift controlled full bridge converter could be extended by altering the switching pattern, and this new switching pattern is proposed. A detailed analysis of phase shift controlled full bridge converter operation uncovers a number of operational findings which give a better and more complete understanding of converter operation than hitherto published. Converter design equations and guidelines are presented and the effects of the new improvement are investigated by an approximate analysis. Computer simulations using PSPICE2 are carried out to predict converter performance. A prototype converter design, construction details and test results are given. The results obtained compare well to the predicted performance and confirm the advantages of the new switching pattern

    Next generation RFID telemetry design for biomedical implants.

    Get PDF
    The design and development of a Radio Frequency Identification (RFID) based pressure-sensing system to increase the range of current Intra-Ocular Pressure (IOP) sensing systems is described in this dissertation. A large number of current systems use near-field inductive coupling for the transfer of energy and data, which limits the operational range to only a few centimeters and does not allow for continuous monitoring of pressure. Increasing the powering range of the telemetry system will offer the possibility of continuous monitoring since the reader can be attached to a waist belt or put on a night stand when sleeping. The system developed as part of this research operates at Ultra-High Frequencies (UHF) and makes use of the electromagnetic far field to transfer energy and data, which increases the potential range of operation and allows for the use of smaller antennas. The system uses a novel electrically small antenna (ESA) to receive the incident RF signal. A four stage Schottky circuit rectifies and multiplies the received RF signal and provides DC power to a Colpitts oscillator. The oscillator is connected to a pressure sensor and provides an output signal frequency that is proportional to the change in pressure. The system was fabricated using a mature, inexpensive process. The performance of the system compares well with current state of the art, but uses a smaller antenna and a less expensive fabrication process. The system was able to operate over the desired range of 1 m using a half-wave dipole antenna. It was possible to power the system over a range of at least 6.4 cm when the electrically small antenna was used as the receiving antenna

    Application of Modular Multilevel Converter technology to HV power supplies of Neutral Beam injector

    Get PDF
    Evaluation of the possible application of Modular Multilevel Converter at the AGPS of NBI

    Sustainability of the Renewable Energy Extraction Close to the Mediterranean Islands

    Get PDF
    The aim of this work is to explore the possibility of transitioning a fuel powered island to a renewable powered one. This transition is analyzed for the real MV/LV distribution system of the island of Pantelleria, in the Mediterranean Sea. Particularly, this work is focused on a renewable source nowadays totally unused: wave energy. Thanks to the innovative generator prototype designed by Department of Energy of University of Palermo (Italy), wave energy is able to represent a primary source for the production of electric energy in the Mediterranean islands. The procedures applied in the present article, as well as the main equations used, are the result of previous applications made in different technical fields that show a good replicability
    • …
    corecore