4 research outputs found

    INTRODUCING AN OPTIMAL QCA CROSSBAR SWITCH FOR BASELINE NETWORK

    Get PDF
    Crossbar switch is the basic component in multi-stage interconnection networks. Therefore, this study was conducted to investigate performance of a crossbar switch with two multiplexers. The presented crossbar switch was simulated using quantum-dot cellular automata (QCA) technology and QCA Designer software, and was studied and optimized in terms of cell number, occupied area, number of clocks, and energy consumption. Using the provided crossbar switch, the baseline network was designed to be optimal in terms of cell number and occupied area. Also, the number of input states was investigated and simulated to verify accuracy of the baseline network. The proposed crossbar switch uses 62 QCA cells and the occupied area by the switch is equal to 0.06µm2 and its latency equals 4 clock zones, which is more efficient than the other designs. In this paper, using the presented crossbar switch, the baseline network was designed with 1713 cells, and occupied area of 2.89µm2

    Security Analysis With Novel Image Masking Based Quantum-Dot Cellular Automata Information Security Model

    Get PDF
    Mask of an image is generated in this article using Quantum Dot Cellular Automata. An encoder circuit is drafted to produce the Mask Image. This encoder can function as a decoder as well. A mask image is used to retrieve the original image,although the secret key remains unknown. Power dissipation calculations are performed to comprehend the proposed circuit consumes lower power dissipation at nano-scale level design.The security of the proposed circuit is guaranteed by validating with different security standards. The design paradigm matches the theoretical values, which authorizes the accurateness of the proposed circuit. The Structural Similarity (SSIM) index of the retrieved image is calculated to establish the degradation of the image quality is minimal. The stuck-at-fault analysis is performed to prove the stability of the circuit

    Area and Energy Opimized QCA Based Shuffle-Exchange Network with Multicast and Broadcast Configuration

    Get PDF
    In any wide-range processing system, rapid interconnecting networks are employed between the processing modules and embedded systems. This study deals with the optimized design and implementation of Switching Element (SE) which operates in four modes, accepting two inputs and delivering two outputs. The Shuffle-Exchange Network (SEN) can be used as a single-stage as well as a multi-stage network. SEN is used as an interconnection architecture which is implemented with exclusive input-output paths with simple design. The SE acts as a building block to the Multi-stage Shuffle-Exchange Network (M-SEN) with facilities to perform unicast and multicast operation on the inputs. An 8x8 M-SEN model is also implemented, which works in three modes of communication, termed as "One-to-One", "One-to-Many" and "One-to-All" M-SEN configuration. All the QCA circuits have been implemented and simulated using CAD tool QCADesigner. The proposed QCA-based M-SEN design is better in terms of area occupied by 14.63%, average energy dissipation by 22.75% and cell count with a reduction of 84 cells when compared to reference M-SEN architecture. The optimization of the design in terms of cell count and area results in lesser energy dissipation and hence can be used in future-generation complex networks and communication systems
    corecore