66 research outputs found

    Two is better than one: The effects of strategic cooperation on intra- and inter-brain connectivity by fNIRS

    Get PDF
    Inter-brain synchronization during joint actions is a core question in social neuroscience, and the differential contribution of intra- and inter-brain functional connectivity has yet to be clarified along with the role of psychological variables such as perceived self-efficacy. The cognitive performance and the neural activation underlying the execution of joint actions were recorded by functional Near-Infrared imaging during a synchronicity game. An 8-channel array of optodes was positioned over the frontal and prefrontal regions. During the task, the dyads received reinforcing feedback that was experimentally manipulated to induce adoption of common strategies. Intra- and inter-brain connectivity indices were computed along with an inter-brain/intra-brain connectivity index (ConIndex). Finally, correlation analyses were run to assess the relationship between behavioral and physiological levels. The results showed that the external feedback could modulate participant responses in both behavioral and neural components. After the reinforcing manipulation, there were faster response times and increased inter-brain connectivity, and ConIndex emerged primarily over the dorsolateral prefrontal cortex. Additionally, the presence of significant correlations between response times and inter-brain connectivity revealed that only the \ue2\u80\u9ctwo-players connection\ue2\u80\u9d may guarantee an efficient performance. The present study provides a significant contribution to the identification of intra- and inter-brain functional connectivity when social reinforcement is provided

    Two is better than one : the effects of strategic cooperation on intra- and inter-brain connectivity by fNIRS

    Get PDF
    Inter-brain synchronization during joint actions is a core question in social neuroscience, and the differential contribution of intra- and inter-brain functional connectivity has yet to be clarified along with the role of psychological variables such as perceived self-efficacy. The cognitive performance and the neural activation underlying the execution of joint actions were recorded by functional Near-Infrared imaging during a synchronicity game. An 8-channel array of optodes was positioned over the frontal and prefrontal regions. During the task, the dyads received reinforcing feedback that was experimentally manipulated to induce adoption of common strategies. Intra- and inter-brain connectivity indices were computed along with an inter-brain/intra-brain connectivity index (ConIndex). Finally, correlation analyses were run to assess the relationship between behavioral and physiological levels. The results showed that the external feedback could modulate participant responses in both behavioral and neural components. After the reinforcing manipulation, there were faster response times and increased inter-brain connectivity, and ConIndex emerged primarily over the dorsolateral prefrontal cortex. Additionally, the presence of significant correlations between response times and inter-brain connectivity revealed that only the \u201ctwo-players connection\u201d may guarantee an efficient performance. The present study provides a significant contribution to the identification of intra- and inter-brain functional connectivity when social reinforcement is provided

    Conversational Alignment: A Study of Neural Coherence and Speech Entrainment

    Get PDF
    Conversational alignment refers to the tendency for communication partners to adjust their verbal and non-verbal behaviors to become more like one another during the course of human interaction. This alignment phenomenon has been observed in neural patterns, specifically in the prefrontal areas of the brain (Holper et al., 2013; Cui et al., 2012; Dommer et al., 2012; Holper et al., 2012; Funane et al., 2011; Jiang et al., 2012); verbal behaviors such acoustic speech features (e.g., Borrie & Liss, 2014; Borrie et al., 2015; Lubold & Pon-Barry, 2014), phonological features (e.g., Babel, 2012; Pardo, 2006), lexical selection (e.g., Brennan & Clark, 1996; Garrod & Anderson, 1989), syntactic structure (e.g., Branigan, Pickering, & Cleland, 2000; Reitter, Moore, & Keller, 2006); and motor behaviors including body posture, facial expressions and breathing rate (e.g., Furuyama, Hayashi, & Mishima, 2005; Louwerse, Dale, Bard, & Jeuniaux, 2012; Richardson, March, & Schmit, 2005; Shockley, Santana, & Fowler, 2003; McFarland, 2001). While conversational alignment in itself, is a largely physical phenomenon, it has been linked to significant functional value, both in the cognitive and social domains. Cognitively, conversational alignment facilitates spoken message comprehension, enabling listeners to share mental models (Garrod & Pickering, 2004) and generate temporal predictions about upcoming aspects of speech. From a social perspective, behavioral alignment has been linked with establishing turn-taking behaviors, and with increased feelings of rapport, empathy, and intimacy between conversational pairs (e.g., Lee et al. 2010; Nind, & Macrae, 2009; Smith, 2008; Bailenson & Yee, 2005; Chartrand & Barg, 1999; Miles, Putman & Street, 1984; Street & Giles, 1982). Benus (2014), for example, observed that individuals who align their speech features are perceived as more socially attractive and likeable, and have interactions that are more successful. These cognitive and social benefits, associated with conversational alignment, have been observed in both linguistic and neural data (e.g., Holper et al., 2012; 2013, Cui et al. 2012; Jiang et al., 2012; Egetemeir et al., 2011; Stephens et al. 2010). The purpose of the current study was to examine conversational alignment as a multi-level communication phenomenon, by examining the relationship between neural and speech behaviors. To assess neural alignment, we used Near-Infrared Spectroscopy (NIRS), a non-invasive neuroimaging technology that detects cortical increases and decreases in the concentration of oxygenated and deoxygenated hemoglobin at multiple measurement sites to determine the rate that oxygen is being released and absorbed (Ferrari & Quaresima, 2012). While still considered a relatively new neural imaging technique, NIRS has been well established as an efficacious and effective data collection approach, particularly appropriate for social interaction research (e.g., Holper et al., 2013; Jiang et al., 2012; Holper et al., 2012; Suda et al., 2010). We utilized hyperscanning, a technique that allows for the quantitation of two simultaneous signals, allowing us to document neural alignment between two individuals (Babiloni & Astolfi, 2012). Recent studies have revealed neural alignment between two persons in cooperative states, including alignment in the right superior frontal cortices and medial prefrontal regions (Cui et al., 2012; Dommer et al., 2012; Funane et al., 2011). This increased prefrontal interbrain alignment has also been observed in other social interactions, including joint attention tasks (Dommer et al., 2012), imitation tasks (Holper et al., 2012), competitive games (Cheng et al., 2015, Duan et al., 2013), teaching-learning interactions (Holper et al., 2013), face- to-face communication (Jiang et al., 2012), mother-child interactions (Hirata et al., 2014), and during cooperative singing tasks (Osaka et al., 2015). Interestingly, Jiang et al. (2012) showed that increased neural alignment only occurred between conversational participants when they were speaking face-to-face, but not when participants had their backs facing one another. The authors speculated that the multi-sensory information, for example motor behaviors such as gestures, was required for neural alignment to occur

    Sincronismo cardiolocomotor : interação entre parâmetros locomotores, neuromusculares e fisiológicos e sua repercussão sobre a bioenergética da corrida de longa distância

    Get PDF
    Introdução: O sincronismo cardiolocomotor (SCL) ocorre quando as frequências desses dois sistemas assumem um ritmo oscilatório comum e tem sido observado em atividades cíclicas. Porém, pouco se sabe sobre sua repercussão no desempenho esportivo. Dentre os possíveis efeitos do SCL destaca-se o aperfeiçoamento da função cardíaca e a consequente otimização da perfusão sanguínea nos músculos ativos, com redução no dispêndio energético do músculo cardíaco. Tais efeitos podem impactar positivamente a economia de corrida. Objetivo: Analisar as interações entre parâmetros locomotores, neuromusculares e fisiológicos, especialmente o SCL, e a repercussão dessas interações na bioenergética da corrida de longa distância. Métodos: Corredores de longa distância realizaram testes de corrida em esteira rolante, com duração entre três e cinco minutos cada, em diferentes velocidades. Sinais de eletrocardiografia (ECG) e eletromiografia de superfície (EMG) dos músculos vasto lateral e gastrocnêmio medial foram registrados para determinar o SCL por meio da Coerência Wavelet que retornou o Coeficiente de Coerência Wavelet (CCW) variando de 0 (ausência de coerência) até 1 (coerência perfeita), bem como as frequências de sincronização (Freq Sincro). Nós consideramos o SCL como manifesto quando o CCW > 0,8. Os parâmetros espaço-temporais da corrida foram obtidos por cinemetria e os parâmetros energéticos (custo de transporte) e hemodinâmicos (pulso de oxigênio) por análise de gases metabólicos Na análise estatística usou-se os Modelos Lineares Mistos Generalizados (GLMMs), com nível de significância de 5%. Resultados: Em todos os testes, observamos poucos eventos considerados como SCL, em média menos de 1% dos dados analisados, embora tenhamos observado de forma sistemática um componente de frequência (Fsincro) nos sinais centrado na frequência de passo, algo entre 160 a 170 passos min-1, que pode ser indicativo do arrastamento da frequência cardíaca pela frequência locomotora. As diferenças estatísticas encontradas nas variáveis hemodinâmicas e metabólicas não parecem ser consequência da SCL. Conclusão: Visto que o SCL não foi identificado nos nossos achados, a repercussão deste nas variáveis mecânicas, hemodinâmicas e metabólicas, incluindo a economia de corrida, são apenas especulativas.Introduction: Cardiolocomotor synchronization (CLS) occurs when the frequencies of these two systems assume a common oscillatory rhythm and has been observed in cyclic activities such, but little is known about its repercussion in sports performance. Among the possible effects of CLS are the improvement of cardiac function and the consequent optimization of blood perfusion in the muscles involved in the activity, with reduction of the energy expenditure of the cardiac muscle. Such effects may positively impact the running economy. Aims: To analyze the interactions between locomotor, neuromuscular and physiological parameters, especially cardiolocomotor synchrony, and the repercussion of these interactions on bioenergetics of long distance running. Methods: Long distance runners performed treadmill running tests, lasting between three and five minutes each, at different speeds. Electrocardiography (ECG) and surface electromyography (SEMG) of the vastus lateralis and medial gastrocnemius muscles signals were recorded to determine the CLS by Wavelet Coherence that returned the Wavelet Coherence Coefficient (WCC) ranging from 0 (no coherence) to 1 (perfect coherence), as well as the synchronization frequencies (Freq Synchro). We considered CLS as manifested when WCC > 0.8. The running spatiotemporal parameters were obtained by cinematic and the energetic (cost of transport) and hemodynamic (oxygen pulse) parameters by metabolic gases analysis. Statistical analysis was performed using Generalized Mixed Linear Models (GLMMs), with a significance level of 5%. Results: In all tests, we observed rarely events considered as CLS, on average less than 1% of the data analyzed, although we systematically observed a component of frequency (Freq Synchro) in the signals centered on the step frequency, something between 160 and 170 steps min-1, which may be indicative of the entrainment of the heart rate by the locomotor frequency. The statistical differences found in hemodynamic variables and metabolic variables do not seem to be a consequence of CLS. Conclusion: Since CLS was not identified in our findings, its repercussion on mechanical, hemodynamic and metabolic variables, including running economy, is just speculation

    Neural Mechanisms of Social Emotion Perception: An EEG Hyper-scanning Study

    Get PDF
    International audienceEEG-based hyper-scanning refers to two or more subjects engaged in a task together or performing the same action together while neurophysiological signals are simultaneously recorded from them. This is one of the manners for investigating between-subject neural activities involved in social interactions. Emotion perception plays an important role in human social interactions. Interaction and emotional state influence each other. In this study, we aim to investigate how between-subject interaction modulates emotion perception based on event related potentials (ERPs), connectivity analysis and classification analysis. We found that there are distinct differences appearing between paired subjects who performed the task together, which are early ERP components (N250 and N400), late ERP components (P1500 and N1500), and the greater amplitude in N250 for the seconding responding subject compared to the first one. In the exploration of connectivity using phase locking value (PLV), we found that there are significant differences among different frequency bands for each subject under positive and negative stimuli and the significant difference of hyper-connectivity existed in the gamma frequency band between positive and negative stimulus trials. In the classification analysis, we compared the hyper-features for two individual subjects separately, the performance was improved when hyper-features of the PLV was employed compared to the features of power spectrum density

    Cooperation and Competition with Hyperscanning Methods : Review and Future Application to Emotion Domain

    Get PDF
    Cooperation and competition, as two common and opposite examples of interpersonal dynamics, are thought to be reflected by different cognitive, neural, and behavioral patterns. According to the conventional approach, they have been explored by measuring subjects' reactions during individual performance or turn-based interactions in artificial settings, that don't allow on-line, ecological enactment of real-life social exchange. Considering the importance of these factors, and accounting for the complexity of such phenomena, the hyperscanning approach emerged as a multi-subject paradigm since it allows the simultaneous recording of the brain activity from multiple participants interacting. In this view, the present paper aimed at reviewing the most significant work about cooperation and competition by EEG hyperscanning technique, which proved to be a promising tool in capturing the sudden course of social interactions. In detail, the review will consider and group different experimental tasks that have been developed so far: (1) paradigms that used rhythm, music and motor synchronization; (2) card tasks taken from the Game Theory; (3) computerized tasks; and (4) possible real-life applications. Finally, although highlighting the potential contribution of such approach, some important limitations about these paradigms will be elucidated, with a specific focus on the emotional domain

    Toward Adaptation of fNIRS Instrumentation to Airborne Environments

    Get PDF
    The paper reviews potential applications of functional Near-Infrared Spectroscopy (fNIRS), a well-known medical diagnostic technique, to monitoring the cognitive state of pilots with a focus on identifying ways to adopt this technique to airborne environments. We also discuss various fNIRS techniques and the direction of technology maturation of associated hardware in view of their potential for miniaturization, maximization of data collection capabilities, and user friendliness

    Activation detection in functional near-infrared spectroscopy by wavelet coherence

    Get PDF
    Functional near-infrared spectroscopy (fNIRS) detects hemodynamic responses in the cerebral cortex by transcranial spectroscopy. However, measurements recorded by fNIRS not only consist of the desired hemodynamic response but also consist of a number of physiological noises. Because of these noises, accurately detecting the regions that have an activated hemodynamic response while performing a task is a challenge when analyzing functional activity by fNIRS. In order to better detect the activation, we designed a multiscale analysis based on wavelet coherence. In this method, the experimental paradigm was expressed as a binary signal obtained while either performing or not performing a task. We convolved the signal with the canonical hemodynamic response function to predict a possible response. The wavelet coherence was used to investigate the relationship between the response and the data obtained by fNIRS at each channel. Subsequently, the coherence within a region of interest in the time-frequency domain was summed to evaluate the activation level at each channel. Experiments on both simulated and experimental data demonstrated that the method was effective for detecting activated channels hidden in fNIRS data

    The Entrainment Frequency of Cardiolocomotor Synchronization in Long-Distance Race Emerges Spontaneously at the Step Frequency

    Get PDF
    In forced conditions, where the heart rate and step frequency have been matched, cardiolocomotor synchronization (CLS) has been recognized. However, knowledge about the occurrence of CLS and its triggers in sports gesture in real contexts is little known. To address this gap, the current study tested the hypothesis that CLS in running spontaneous conditions would emerge at entrainment bands of muscle activation frequencies associated with a freely chosen step frequency. Sixteen male long-distance runners undertook treadmill assessments running ten three-minute bouts at different speeds (7, 7.5, 8, 9, 10, 11, 12, 13, 14, and 15 km c5h-1). Electrocardiography and surface electromyography were recorded simultaneously. The center frequency was the mean of the frequency spectrum obtained by wavelet decomposition, while CLS magnitude was determined by the wavelet coherence coefficient (WCC) between the electrocardiography and center frequency signals. The strength of CLS affected the entrainment frequencies between cardiac and muscle systems, and for WCC values greater than 0.8, the point from which we consider the emerging CLS, the entrainment frequency was between 2.7 and 2.8 Hz. The CLS emerged at faster speeds (13-15 km c5h-1) most prevalently but did not affect the muscle activation bands. Spontaneous CLS occurred at faster speeds predominantly, and the entrainment frequencies matched the locomotor task, with the entrainment bands of frequencies emerging around the step frequencies (2.7-2.8 Hz). These findings are compatible with the concept that interventions that determine optima conditions of CLS may potentiate the benefits of the cardiac and muscle systems synchronized in distance runners

    Using fiberless, wearable fNIRS to monitor brain activity in real-world cognitive tasks

    Get PDF
    Functional Near Infrared Spectroscopy (fNIRS) is a neuroimaging technique that uses near-infrared light to monitor brain activity. Based on neurovascular coupling, fNIRS is able to measure the haemoglobin concentration changes secondary to neuronal activity. Compared to other neuroimaging techniques, fNIRS represents a good compromise in terms of spatial and temporal resolution. Moreover, it is portable, lightweight, less sensitive to motion artifacts and does not impose significant physical restraints. It is therefore appropriate to monitor a wide range of cognitive tasks (e.g., auditory, gait analysis, social interaction) and different age populations (e.g., new-borns, adults, elderly people). The recent development of fiberless fNIRS devices has opened the way to new applications in neuroscience research. This represents a unique opportunity to study functional activity during real-world tests, which can be more sensitive and accurate in assessing cognitive function and dysfunction than lab-based tests. This study explored the use of fiberless fNIRS to monitor brain activity during a real-world prospective memory task. This protocol is performed outside the lab and brain haemoglobin concentration changes are continuously measured over the prefrontal cortex while the subject walks around in order to accomplish several different tasks
    • …
    corecore