111 research outputs found

    Two is better than one: The effects of strategic cooperation on intra- and inter-brain connectivity by fNIRS

    Get PDF
    Inter-brain synchronization during joint actions is a core question in social neuroscience, and the differential contribution of intra- and inter-brain functional connectivity has yet to be clarified along with the role of psychological variables such as perceived self-efficacy. The cognitive performance and the neural activation underlying the execution of joint actions were recorded by functional Near-Infrared imaging during a synchronicity game. An 8-channel array of optodes was positioned over the frontal and prefrontal regions. During the task, the dyads received reinforcing feedback that was experimentally manipulated to induce adoption of common strategies. Intra- and inter-brain connectivity indices were computed along with an inter-brain/intra-brain connectivity index (ConIndex). Finally, correlation analyses were run to assess the relationship between behavioral and physiological levels. The results showed that the external feedback could modulate participant responses in both behavioral and neural components. After the reinforcing manipulation, there were faster response times and increased inter-brain connectivity, and ConIndex emerged primarily over the dorsolateral prefrontal cortex. Additionally, the presence of significant correlations between response times and inter-brain connectivity revealed that only the \ue2\u80\u9ctwo-players connection\ue2\u80\u9d may guarantee an efficient performance. The present study provides a significant contribution to the identification of intra- and inter-brain functional connectivity when social reinforcement is provided

    Conversational Alignment: A Study of Neural Coherence and Speech Entrainment

    Get PDF
    Conversational alignment refers to the tendency for communication partners to adjust their verbal and non-verbal behaviors to become more like one another during the course of human interaction. This alignment phenomenon has been observed in neural patterns, specifically in the prefrontal areas of the brain (Holper et al., 2013; Cui et al., 2012; Dommer et al., 2012; Holper et al., 2012; Funane et al., 2011; Jiang et al., 2012); verbal behaviors such acoustic speech features (e.g., Borrie & Liss, 2014; Borrie et al., 2015; Lubold & Pon-Barry, 2014), phonological features (e.g., Babel, 2012; Pardo, 2006), lexical selection (e.g., Brennan & Clark, 1996; Garrod & Anderson, 1989), syntactic structure (e.g., Branigan, Pickering, & Cleland, 2000; Reitter, Moore, & Keller, 2006); and motor behaviors including body posture, facial expressions and breathing rate (e.g., Furuyama, Hayashi, & Mishima, 2005; Louwerse, Dale, Bard, & Jeuniaux, 2012; Richardson, March, & Schmit, 2005; Shockley, Santana, & Fowler, 2003; McFarland, 2001). While conversational alignment in itself, is a largely physical phenomenon, it has been linked to significant functional value, both in the cognitive and social domains. Cognitively, conversational alignment facilitates spoken message comprehension, enabling listeners to share mental models (Garrod & Pickering, 2004) and generate temporal predictions about upcoming aspects of speech. From a social perspective, behavioral alignment has been linked with establishing turn-taking behaviors, and with increased feelings of rapport, empathy, and intimacy between conversational pairs (e.g., Lee et al. 2010; Nind, & Macrae, 2009; Smith, 2008; Bailenson & Yee, 2005; Chartrand & Barg, 1999; Miles, Putman & Street, 1984; Street & Giles, 1982). Benus (2014), for example, observed that individuals who align their speech features are perceived as more socially attractive and likeable, and have interactions that are more successful. These cognitive and social benefits, associated with conversational alignment, have been observed in both linguistic and neural data (e.g., Holper et al., 2012; 2013, Cui et al. 2012; Jiang et al., 2012; Egetemeir et al., 2011; Stephens et al. 2010). The purpose of the current study was to examine conversational alignment as a multi-level communication phenomenon, by examining the relationship between neural and speech behaviors. To assess neural alignment, we used Near-Infrared Spectroscopy (NIRS), a non-invasive neuroimaging technology that detects cortical increases and decreases in the concentration of oxygenated and deoxygenated hemoglobin at multiple measurement sites to determine the rate that oxygen is being released and absorbed (Ferrari & Quaresima, 2012). While still considered a relatively new neural imaging technique, NIRS has been well established as an efficacious and effective data collection approach, particularly appropriate for social interaction research (e.g., Holper et al., 2013; Jiang et al., 2012; Holper et al., 2012; Suda et al., 2010). We utilized hyperscanning, a technique that allows for the quantitation of two simultaneous signals, allowing us to document neural alignment between two individuals (Babiloni & Astolfi, 2012). Recent studies have revealed neural alignment between two persons in cooperative states, including alignment in the right superior frontal cortices and medial prefrontal regions (Cui et al., 2012; Dommer et al., 2012; Funane et al., 2011). This increased prefrontal interbrain alignment has also been observed in other social interactions, including joint attention tasks (Dommer et al., 2012), imitation tasks (Holper et al., 2012), competitive games (Cheng et al., 2015, Duan et al., 2013), teaching-learning interactions (Holper et al., 2013), face- to-face communication (Jiang et al., 2012), mother-child interactions (Hirata et al., 2014), and during cooperative singing tasks (Osaka et al., 2015). Interestingly, Jiang et al. (2012) showed that increased neural alignment only occurred between conversational participants when they were speaking face-to-face, but not when participants had their backs facing one another. The authors speculated that the multi-sensory information, for example motor behaviors such as gestures, was required for neural alignment to occur

    Optimization of wavelet coherence analysis as a measure of neural synchrony during hyperscanning using functional near-infrared spectroscopy.

    Get PDF
    SIGNIFICANCE: The expanding field of human social interaction is enabled by functional near-infrared spectroscopy (fNIRS) that acquires hemodynamic signals during live two-person interactions. These advances call for development of methods to quantify interactive processes. Aim: Wavelet coherence analysis has been applied to cross-brain neural coupling. However, fNIRS-specific computations have not been explored. This investigation determines the effects of global mean removal, wavelet equation, and choice of oxyhemoglobin versus deoxyhemoglobin signals. APPROACH: We compare signals with a known coherence with acquired signals to determine optimal computational approaches. The known coherence was calculated using three visual stimulation sequences of a contrast-reversing checkerboard convolved with the canonical hemodynamic response function. This standard was compared with acquired human fNIRS responses within visual cortex using the same sequences. RESULTS: Observed coherence was consistent with known coherence with highest correlations within the wavelength range between 10 and 20 s. Removal of the global mean improved the correlation irrespective of the specific equation for wavelet coherence, and the oxyhemoglobin signal was associated with a marginal correlation advantage. CONCLUSIONS: These findings provide both methodological and computational guidance that enhances the validity and interpretability of wavelet coherence analysis for fNIRS signals acquired during live social interactions

    Donate or receive? Social hyperscanning application with fNIRS

    Get PDF
    Recent research in social neuroscience has shown how prosocial behavior can increase perceived self-efficacy, perception of cognitive abilitites and social interactions. The present research explored the effect of prosocial behavior, that is giving a gift during an interpersonal exchange, measuring the hyperscanning among two brains. The experiment aimed to analyze the behavioral performance and the brain-to-brain prefrontal neural activity of 16 dyads during a joint action consisting in a cooperative game, which took place in a laboratory setting controlled by an experimenter, to play before and after a gift exchange. Two different types of gift exchange were compared: experiential and material. Functional Near Infrared Spectroscopy (fNIRS) was applied to record brain activity. Inter-brain connectivity was calculated before and after the gift exchange. In behavioral data, a behavioral performance increase was observed after gift exchange, with accuracy improvement and response times decrease. Regarding intra-brain analyses, an increase in oxygenated hemoglobin was detected, especially in the dorsolateral prefrontal cortex (DLPFC) in both donor and receiver; and in the dorsal part of the premotor cortex (DPMC) in the donor. Moreover, as regards the gift type, greater activation in the DPLFC emerged in both the donor and the receiver after receiving an experiential gift. Finally, the results of the inter-brain connectivity analysis showed that after gift exchange, the donor and receiver brain activity was more synchronized in the DPMC and Frontal Eye Fields (FEF) areas. The present study provides a contribution to the identification of inter-brain functional connectivity when prosocial behaviors are played out

    How Two Brains Make One Synchronized Mind in the Inferior Frontal Cortex: fNIRS-Based Hyperscanning During Cooperative Singing.

    Get PDF
    One form of communication that is common in all cultures is people singing together. Singing together reflects an index of cognitive synchronization and cooperation of human brains. Little is known about the neural synchronization mechanism, however. Here, we examined how two brains make one synchronized behavior using cooperated singing/humming between two people and hyperscanning, a new brain scanning technique. Hyperscanning allowed us to observe dynamic cooperation between interacting participants. We used functional near-infrared spectroscopy (fNIRS) to simultaneously record the brain activity of two people while they cooperatively sang or hummed a song in face-to-face (FtF) or face-to-wall (FtW) conditions. By calculating the inter-brain wavelet transform coherence between two interacting brains, we found a significant increase in the neural synchronization of the left inferior frontal cortex (IFC) for cooperative singing or humming regardless of FtF or FtW compared with singing or humming alone. On the other hand, the right IFC showed an increase in neural synchronization for humming only, possibly due to more dependence on musical processing

    Interpersonal Agreement and Disagreement During Face-to-Face Dialogue: An fNIRS Investigation

    Get PDF
    Although the neural systems that underlie spoken language are well-known, how they adapt to evolving social cues during natural conversations remains an unanswered question. In this work we investigate the neural correlates of face-to-face conversations between two individuals using functional near infrared spectroscopy (fNIRS) and acoustical analyses of concurrent audio recordings. Nineteen pairs of healthy adults engaged in live discussions on two controversial topics where their opinions were either in agreement or disagreement. Participants were matched according to their a priori opinions on these topics as assessed by questionnaire. Acoustic measures of the recorded speech including the fundamental frequency range, median fundamental frequency, syllable rate, and acoustic energy were elevated during disagreement relative to agreement. Consistent with both the a priori opinion ratings and the acoustic findings, neural activity associated with long-range functional networks, rather than the canonical language areas, was also differentiated by the two conditions. Specifically, the frontoparietal system including bilateral dorsolateral prefrontal cortex, left supramarginal gyrus, angular gyrus, and superior temporal gyrus showed increased activity while talking during disagreement. In contrast, talking during agreement was characterized by increased activity in a social and attention network including right supramarginal gyrus, bilateral frontal eye-fields, and left frontopolar regions. Further, these social and visual attention networks were more synchronous across brains during agreement than disagreement. Rather than localized modulation of the canonical language system, these findings are most consistent with a model of distributed and adaptive language-related processes including cross-brain neural coupling that serves dynamic verbal exchanges

    Two is better than one : the effects of strategic cooperation on intra- and inter-brain connectivity by fNIRS

    Get PDF
    Inter-brain synchronization during joint actions is a core question in social neuroscience, and the differential contribution of intra- and inter-brain functional connectivity has yet to be clarified along with the role of psychological variables such as perceived self-efficacy. The cognitive performance and the neural activation underlying the execution of joint actions were recorded by functional Near-Infrared imaging during a synchronicity game. An 8-channel array of optodes was positioned over the frontal and prefrontal regions. During the task, the dyads received reinforcing feedback that was experimentally manipulated to induce adoption of common strategies. Intra- and inter-brain connectivity indices were computed along with an inter-brain/intra-brain connectivity index (ConIndex). Finally, correlation analyses were run to assess the relationship between behavioral and physiological levels. The results showed that the external feedback could modulate participant responses in both behavioral and neural components. After the reinforcing manipulation, there were faster response times and increased inter-brain connectivity, and ConIndex emerged primarily over the dorsolateral prefrontal cortex. Additionally, the presence of significant correlations between response times and inter-brain connectivity revealed that only the \u201ctwo-players connection\u201d may guarantee an efficient performance. The present study provides a significant contribution to the identification of intra- and inter-brain functional connectivity when social reinforcement is provided

    Distributed Neural Activity Patterns during Human-to-Human Competition

    Get PDF
    Interpersonal interaction is the essence of human social behavior. However, conventional neuroimaging techniques have tended to focus on social cognition in single individuals rather than on dyads or groups. As a result, relatively little is understood about the neural events that underlie face-to-face interaction. We resolved some of the technical obstacles inherent in studying interaction using a novel imaging modality and aimed to identify neural mechanisms engaged both within and across brains in an ecologically valid instance of interpersonal competition. Functional near-infrared spectroscopy was utilized to simultaneously measure hemodynamic signals representing neural activity in pairs of subjects playing poker against each other (human–human condition) or against computer opponents (human–computer condition). Previous fMRI findings concerning single subjects confirm that neural areas recruited during social cognition paradigms are individually sensitive to human–human and human–computer conditions. However, it is not known whether face-to-face interactions between opponents can extend these findings. We hypothesize distributed effects due to live processing and specific variations in across-brain coherence not observable in single-subject paradigms. Angular gyrus (AG), a component of the temporal-parietal junction (TPJ) previously found to be sensitive to socially relevant cues, was selected as a seed to measure within-brain functional connectivity. Increased connectivity was confirmed between AG and bilateral dorsolateral prefrontal cortex (dlPFC) as well as a complex including the left subcentral area (SCA) and somatosensory cortex (SS) during interaction with a human opponent. These distributed findings were supported by contrast measures that indicated increased activity at the left dlPFC and frontopolar area that partially overlapped with the region showing increased functional connectivity with AG. Across-brain analyses of neural coherence between the players revealed synchrony between dlPFC and supramarginal gyrus (SMG) and SS in addition to synchrony between AG and the fusiform gyrus (FG) and SMG. These findings present the first evidence of a frontal-parietal neural complex including the TPJ, dlPFC, SCA, SS, and FG that is more active during human-to-human social cognition both within brains (functional connectivity) and across brains (across-brain coherence), supporting a model of functional integration of socially and strategically relevant information during live face-to-face competitive behaviors

    Interpersonal neural synchrony when predicting others’ actions during a game of rock-paper-scissors

    Get PDF
    As members of a social species, we spend most of our time interacting with others. In interactions, we tend to mutually align our behavior and brain responses to communicate more effectively. In a semi-computerized version of the Rock-Paper-Scissors game, we investigated whether people show enhanced interpersonal neural synchronization when making explicit predictions about others’ actions. Across four experimental conditions, we measured the dynamic brain activity using the functional near-infrared spectroscopy (fNIRS) hyperscanning method. Results showed that interpersonal neural synchrony was enhanced when participants played the game together as they would do in real life in comparison to when they played the game on their own. We found no evidence of increased neural synchrony when participants made explicit predictions about others’ actions. Hence, neural synchrony may depend on mutual natural interaction rather than an explicit prediction strategy. This study is important, as it examines one of the presumed functions of neural synchronization namely facilitating predictions

    Dissecting social interaction:Dual-fMRI reveals patterns of interpersonal brain-behavior relationships that dissociate among dimensions of social exchange

    Get PDF
    During social interactions, each individual’s actions are simultaneously a consequence of and an antecedent to their interaction partner’s behavior. Capturing online the brain processes underlying such mutual dependency requires simultaneous measurements of all interactants’ brains during real-world exchange (‘hyperscanning’). This demands a precise characterization of the type of interaction under investigation, however, and analytical techniques capable of capturing interpersonal dependencies. We adapted an interactive task capable of dissociating between two dimensions of interdependent social exchange: goal structure (cooperation vs competition) and interaction structure [concurrent (CN) vs turn-based]. Performing dual-functional magnetic resonance imaging hyperscanning on pairs of individuals interacting on this task, and modeling brain responses in both interactants as systematic reactions to their partner’s behavior, we investigated interpersonal brain-behavior dependencies (iBBDs) during each dimension. This revealed patterns of iBBDs that differentiated among exchanges; in players supporting the actions of another, greater brain responses to the co-player’s actions were expressed in regions implicated in social cognition, such as the medial prefrontal cortex, precuneus and temporal cortices. Stronger iBBD during CN competitive exchanges was observed in brain systems involved in movement planning and updating, however, such as the supplementary motor area. This demonstrates the potential for hyperscanning to elucidate neural processes underlying different forms of social exchange
    • 

    corecore