2,437 research outputs found

    MOMA: Visual Mobile Marker Odometry

    Full text link
    In this paper, we present a cooperative odometry scheme based on the detection of mobile markers in line with the idea of cooperative positioning for multiple robots [1]. To this end, we introduce a simple optimization scheme that realizes visual mobile marker odometry via accurate fixed marker-based camera positioning and analyse the characteristics of errors inherent to the method compared to classical fixed marker-based navigation and visual odometry. In addition, we provide a specific UAV-UGV configuration that allows for continuous movements of the UAV without doing stops and a minimal caterpillar-like configuration that works with one UGV alone. Finally, we present a real-world implementation and evaluation for the proposed UAV-UGV configuration

    A Factor Graph Approach to Multi-Camera Extrinsic Calibration on Legged Robots

    Full text link
    Legged robots are becoming popular not only in research, but also in industry, where they can demonstrate their superiority over wheeled machines in a variety of applications. Either when acting as mobile manipulators or just as all-terrain ground vehicles, these machines need to precisely track the desired base and end-effector trajectories, perform Simultaneous Localization and Mapping (SLAM), and move in challenging environments, all while keeping balance. A crucial aspect for these tasks is that all onboard sensors must be properly calibrated and synchronized to provide consistent signals for all the software modules they feed. In this paper, we focus on the problem of calibrating the relative pose between a set of cameras and the base link of a quadruped robot. This pose is fundamental to successfully perform sensor fusion, state estimation, mapping, and any other task requiring visual feedback. To solve this problem, we propose an approach based on factor graphs that jointly optimizes the mutual position of the cameras and the robot base using kinematics and fiducial markers. We also quantitatively compare its performance with other state-of-the-art methods on the hydraulic quadruped robot HyQ. The proposed approach is simple, modular, and independent from external devices other than the fiducial marker.Comment: To appear on "The Third IEEE International Conference on Robotic Computing (IEEE IRC 2019)

    Information-Theoretic Active Perception for Multi-Robot Teams

    Get PDF
    Multi-robot teams that intelligently gather information have the potential to transform industries as diverse as agriculture, space exploration, mining, environmental monitoring, search and rescue, and construction. Despite large amounts of research effort on active perception problems, there still remain significant challenges. In this thesis, we present a variety of information-theoretic control policies that enable teams of robots to efficiently estimate different quantities of interest. Although these policies are intractable in general, we develop a series of approximations that make them suitable for real time use. We begin by presenting a unified estimation and control scheme based on Shannon\u27s mutual information that lets small teams of robots equipped with range-only sensors track a single static target. By creating approximate representations, we substantially reduce the complexity of this approach, letting the team track a mobile target. We then scale this approach to larger teams that need to localize a large and unknown number of targets. We also examine information-theoretic control policies to autonomously construct 3D maps with ground and aerial robots. By using Cauchy-Schwarz quadratic mutual information, we show substantial computational improvements over similar information-theoretic measures. To map environments faster, we adopt a hierarchical planning approach which incorporates trajectory optimization so that robots can quickly determine feasible and locally optimal trajectories. Finally, we present a high-level planning algorithm that enables heterogeneous robots to cooperatively construct maps

    Internet of robotic things : converging sensing/actuating, hypoconnectivity, artificial intelligence and IoT Platforms

    Get PDF
    The Internet of Things (IoT) concept is evolving rapidly and influencing newdevelopments in various application domains, such as the Internet of MobileThings (IoMT), Autonomous Internet of Things (A-IoT), Autonomous Systemof Things (ASoT), Internet of Autonomous Things (IoAT), Internetof Things Clouds (IoT-C) and the Internet of Robotic Things (IoRT) etc.that are progressing/advancing by using IoT technology. The IoT influencerepresents new development and deployment challenges in different areassuch as seamless platform integration, context based cognitive network integration,new mobile sensor/actuator network paradigms, things identification(addressing, naming in IoT) and dynamic things discoverability and manyothers. The IoRT represents new convergence challenges and their need to be addressed, in one side the programmability and the communication ofmultiple heterogeneous mobile/autonomous/robotic things for cooperating,their coordination, configuration, exchange of information, security, safetyand protection. Developments in IoT heterogeneous parallel processing/communication and dynamic systems based on parallelism and concurrencyrequire new ideas for integrating the intelligent “devices”, collaborativerobots (COBOTS), into IoT applications. Dynamic maintainability, selfhealing,self-repair of resources, changing resource state, (re-) configurationand context based IoT systems for service implementation and integrationwith IoT network service composition are of paramount importance whennew “cognitive devices” are becoming active participants in IoT applications.This chapter aims to be an overview of the IoRT concept, technologies,architectures and applications and to provide a comprehensive coverage offuture challenges, developments and applications

    An Approach for Multi-Robot Opportunistic Coexistence in Shared Space

    Get PDF
    This thesis considers a situation in which multiple robots operate in the same environment towards the achievement of different tasks. In this situation, please consider that not only the tasks, but also the robots themselves are likely be heterogeneous, i.e., different from each other in their morphology, dynamics, sensors, capabilities, etc. As an example, think about a "smart hotel": small wheeled robots are likely to be devoted to cleaning floors, whereas a humanoid robot may be devoted to social interaction, e.g., welcoming guests and providing relevant information to them upon request. Under these conditions, robots are required not only to co-exist, but also to coordinate their activity if we want them to exhibit a coherent and effective behavior: this may range from mutual avoidance to avoid collisions, to a more explicit coordinated behavior, e.g., task assignment or cooperative localization. The issues above have been deeply investigated in the Literature. Among the topics that may play a crucial role to design a successful system, this thesis focuses on the following ones: (i) An integrated approach for path following and obstacle avoidance is applied to unicycle type robots, by extending an existing algorithm [1] initially developed for the single robot case to the multi-robot domain. The approach is based on the definition of the path to be followed as a curve f (x;y) in space, while obstacles are modeled as Gaussian functions that modify the original function, generating a resulting safe path. The attractiveness of this methodology which makes it look very simple, is that it neither requires the computation of a projection of the robot position on the path, nor does it need to consider a moving virtual target to be tracked. The performance of the proposed approach is analyzed by means of a series of experiments performed in dynamic environments with unicycle-type robots by integrating and determining the position of robot using odometry and in Motion capturing environment. (ii) We investigate the problem of multi-robot cooperative localization in dynamic environments. Specifically, we propose an approach where wheeled robots are localized using the monocular camera embedded in the head of a Pepper humanoid robot, to the end of minimizing deviations from their paths and avoiding each other during navigation tasks. Indeed, position estimation requires obtaining a linear relationship between points in the image and points in the world frame: to this end, an Inverse Perspective mapping (IPM) approach has been adopted to transform the acquired image into a bird eye view of the environment. The scenario is made more complex by the fact that Pepper\u2019s head is moving dynamically while tracking the wheeled robots, which requires to consider a different IPM transformation matrix whenever the attitude (Pitch and Yaw) of the camera changes. Finally, the IPM position estimate returned by Pepper is merged with the estimate returned by the odometry of the wheeled robots through an Extened Kalman Filter. Experiments are shown with multiple robots moving along different paths in a shared space, by avoiding each other without onboard sensors, i.e., by relying only on mutual positioning information. Software for implementing the theoretical models described above have been developed in ROS, and validated by performing real experiments with two types of robots, namely: (i) a unicycle wheeled Roomba robot(commercially available all over the world), (ii) Pepper Humanoid robot (commercially available in Japan and B2B model in Europe)

    Design and modeling of a stair climber smart mobile robot (MSRox)

    Full text link

    IMPLEMENTATION OF A LOCALIZATION-ORIENTED HRI FOR WALKING ROBOTS IN THE ROBOCUP ENVIRONMENT

    Get PDF
    This paper presents the design and implementation of a human–robot interface capable of evaluating robot localization performance and maintaining full control of robot behaviors in the RoboCup domain. The system consists of legged robots, behavior modules, an overhead visual tracking system, and a graphic user interface. A human–robot communication framework is designed for executing cooperative and competitive processing tasks between users and robots by using object oriented and modularized software architecture, operability, and functionality. Some experimental results are presented to show the performance of the proposed system based on simulated and real-time information. </jats:p
    • …
    corecore