
1st Reading

March 6, 2009 16:28 WSPC-IJIA 00169.tex

International Journal of Information Acquisition
Vol. 5, No. 4 (2008) 1–17
c© World Scientific Publishing Company

IMPLEMENTATION OF A LOCALIZATION-ORIENTED
HRI FOR WALKING ROBOTS IN THE

ROBOCUP ENVIRONMENT

RENATO SAMPERIO
Logistics and Production Robotics

German Research Centre for Artificial Intelligence
Robert-Hooke-Str. 5, 28359 Bremen, Germany

renato.samperio@dfki.de

HUOSHENG HU∗ and DONGBING GU†
Department of Computing and Electronic Systems

University of Essex, Wivenhoe Park
Colchester CO4 3SQ, United Kingdom

∗hhu@essex.ac.uk
†dgu@essex.ac.uk

Received
Accepted

This paper presents the design and implementation of a human–robot interface capable
of evaluating robot localization performance and maintaining full control of robot behav-
iors in the RoboCup domain. The system consists of legged robots, behavior modules,
an overhead visual tracking system, and a graphic user interface. A human–robot com-
munication framework is designed for executing cooperative and competitive processing
tasks between users and robots by using object oriented and modularised software archi-
tecture, operability, and functionality. Some experimental results are presented to show
the performance of the proposed system based on simulated and real-time information.

Keywords : Human–robot interface; GUI; walking robots.

1. Introduction

To design controllers for autonomous robots,
software development platforms play an impor-
tant role, especially before a prototype sys-
tem is available. In general, a good software
platform can provide simulated functions that
speed up the development of different algo-
rithms, including complex programming and

huge data collection. There are mainly two
types of software development platforms for
robotics research. One is a simulated platform
in which modeled robotic systems are developed
for method testing. In many cases, a simula-
tion is also based on assumptions where mod-
els can work as a base for a further robot
implementation.

1

CORE Metadata, citation and similar papers at core.ac.uk

Provided by University of Essex Research Repository

https://core.ac.uk/display/9995171?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


1st Reading

March 6, 2009 16:28 WSPC-IJIA 00169.tex

2 R. Samperio, H. Hu & D. Gu

The second type of software development is
related to the hybrid control, which partially
relies on the real robotic system. The parameters
of these systems are collected from robots sen-
sors in an applied use case. The proposed work-
ing development achieves that if the algorithm
works well under such a hybrid platform, it can
also work well on real robots.

There are some human–robot interfaces
(HRIs) that have been already developed for
proposed robot control [Martin et al., 2004],
behavior design [Hugel et al., 2005], vision-based
applications [Lovell, 2004], and multi-activity
platforms [Golubovic et al., 2004]. These sys-
tems manage robot behaviors within indepen-
dent functionality, and offer an instructional
execution between users and robots [Liu and Hu,
2006]. In such cases, the robots reaction to envi-
ronmental stimulus are designed by user criteria
[Sangpetch, 2005]. Moreover, the robot can sup-
port an auto-designing behavior which assim-
ilates user instructions referred to an initial
trajectory [Ogata and Takahashi, 1994]. This
type of control platform adapts to processing
resources and communication schemes for real-
time or remote robot control.

Our research work is based on Sony AIBO
walking robots which presents some difficulties
in the development of control software and sens-
ing algorithms for these robots. Firstly, pro-
gramming AIBO robots takes a long time and
may have a risk to damage them. It would be
much safer for such development cycle done on
a hybrid experimental platform in which most
of the work is done on a PC efficiently.

Secondly, the processor on the Sony AIBO
robot is not powerful enough. Complex algo-
rithms cannot be implemented on real robots in
real-time. So it becomes necessary to exchange
information with the robot during the develop-
ment phase with an efficient transfer rate.

Thirdly, the current interface between the
Sony robot and human operators is not friendly.
Each time when the experiment is completed,
all the results need to be downloaded from
the memory stick manually, which is very time
consuming for the user. With the proposed
hybrid platform, the progress of experiments
is displayed on the screen directly and any

Fig. 1. HRI during a “Combined behavior” experiment
with an overhead low quality tracker (top-left), GUI
(bottom-left) and observed robot environment (bottom-
right).

problem with the experiment can be seen imme-
diately, i.e. a convenient way to develop control
and vision algorithms [Samperio and Hu, 2006;
Samperio and Hu, 2008].

The rest of the paper is organized as fol-
lows. Section 2 describes the system design and
a client–server scheme. Section 3 outlines the
robot architecture from an embedding software
perspective.

Simulated and tracking interfaces for local-
ization support is detailed in Sec. 4. Experi-
mental results are given in Sec. 5 to show the
feasibility and performance of the proposed sys-
tem. Finally, a brief conclusion and future work
are described in Sec. 6.

2. The Proposal System

2.1. System configuration

The configuration of the proposed hybrid HRI
is shown in Fig. 2. The user-robot interface
manages robot localization information and user
commands from a graphic user interface (GUI).
The overhead VICON tracking system is used
for evaluating robot positions.

The robot localization is receiving infor-
mation from visual perception, motion, and
behavior modules which continuously sends
robot positioning information. In this case, the
localization process is executed independently



1st Reading

March 6, 2009 16:28 WSPC-IJIA 00169.tex

Implementation of a Localization-Oriented HRI for Walking Robots in the RoboCup Environment 3

Fig. 2. The configuration of the proposed HRI system.

from robot behavior and it shares computing
resources. Therefore, users can control experi-
ment execution by using a GUI tool that is com-
posed by tasks for robot applications.

Asynchronously, the VICON overhead visual
system for tracking robot pose and position is
also part of our user-robot interface. The track-
ing results are used as a ground truth to evalu-
ate robot self-localization results, which are sent
to a GUI host PC for the purpose of further
analysis.

This section describes a client–server scheme
which works as a request-and-response service
for human–robot communication. The design is
implemented using a message exchange sequence
where the server side is an information provider
and client side is a service solicitor.

A wireless OpenR IPv4 stack is used for a
TCP/IP robot communication process which is
conformed by server service, GUI client inter-
face, and a message. The service is used as
a stand alone communication process among
robot, overhead tracking, and user interaction.
Proposed system also has an ignored time
delay in transmission based on petition and
response transactions. Therefore, the use case
related to communication process is described in
Fig. 3.

2.2. Client–server module

Initially, the client module starts a service ses-
sion through a server petition. As soon as
the client establishes a connection with the

Fig. 3. Client–server task communication process.

server, it states communication characteristics
by providing a time stamp, transmission rate
and message type, and priority. The transmis-
sion can continue until the client or server
generates a halt in the service by way of a user
command or an unexpected interruption. After
all, the communication is finished once the infor-
mation has been fully transmitted. The infor-
mation process is contained in a message-object
that is independent from any operative system
and it is transmitted for communicating the GUI
client and server interface. Moreover, it could be
adapted to tolerate further modules for integrat-
ing any other functional environments.

2.3. GUI — client

On the client side is a GUI implementation
which receives, sends, and presents informa-
tion from services on-demand. It also provides
robot operational commands for movement con-
trol, image processing, landmark, and localiza-
tion tracking and behavior development. It has
been implemented using a collection of Java
API packages which operate according to user
requirements.

As illustrated in Fig. 4, a GUI is imple-
mented for evaluating robot localization and
for monitoring support tasks which inte-
grate an active visual robot with localiza-
tion performance. These user-oriented tasks are
asynchronously executed at any time by using
command line messages.

The GUI is implemented into a thin client
using a Java front view which can be used



1st Reading

March 6, 2009 16:28 WSPC-IJIA 00169.tex

4 R. Samperio, H. Hu & D. Gu

Fig. 4. User tasks design for localization process.

in any operating system and reusing code.
Moreover, native Java packages are used for
multi-threading, image treatment operations,
distributed processing, and communication
interfaces and contained into a client mod-
ule. The implemented Java modules are as
follows.

Image treatment: This module uses Java
Advanced Imaging package for image manage-
ability in a flexible, extensible and distributed
image processing environment.

Networking: Java Net package is used for all
messages sent in a wireless transmission form
between robot commands, behavior design, and
any other sensing device.

User interface: This is created with Java
Swing package using a “look and feel” window
screen navigation for visual calibration, behav-
ior design, robot teleoperation, and positioning.

This client also coordinates experimental
execution and integrates synthetic or real-time
data processing for robot positioning. Moreover,
modules execution is realized asynchronously
by multi-task assigned services which allows to
alternate information analysis. The characteris-
tics of the client include:

(1) Adaptability : The client can be adapted for
additional elements.

(2) Multi-platform: The client implements Java
front view (JSwing).

(3) Distributed processing : The client
uses multi-threading for sharing processing
resources.

(4) Code reusing : The client implements inter-
faces with the same functionality, as telnet
sessions for robot console communication.

2.4. Server

The server task is to alternate robot and over-
head positioning information by using asyn-
chronous ports for each service. On the one
hand, the tracking service is used as a ded-
icated channel for sending robot positions or
landmarks tracking from an overhead perspec-
tive. On the other hand, the robot position is
sent by a TCP/IP implementation which follows
an Apertos object-oriented schema.

On the robot side, the server acts as a robot
service with reserved memory space for oper-
ations and variables, as described in [Martin
et al., 2004]. In such cases, the server provides
networking routines for dealing with transmis-
sion delay and loss of information in an TCP/IP
socket.

More specifically, the object in charge of any
TCP/IP connectivity is an ANT entity which
belongs to OpenR Network Toolkit. The server
generates a dedicated communication channel
for robot control and it formats information for
client interactivity. In summary, the server pro-
vides information for robot movement control,
image processing, observed features definition
and, behavior control, as shown in Fig. 5.

The working platforms of the robot and
tracking system are implemented in C++ for the
TCP/IP communication routines. It also makes
use of a object-oriented architecture for its func-
tionality. The most representative classes for
server implementation are related to a message
generation and transmission.

In the robot’s case, competition between the
processes will cause a latency, which interferes
directly with the robot’s performance of tasks.

Fig. 5. Server operations.



1st Reading

March 6, 2009 16:28 WSPC-IJIA 00169.tex

Implementation of a Localization-Oriented HRI for Walking Robots in the RoboCup Environment 5

Similarly, for the overhead tracking system
service, the local control service sends informa-
tion to the central GUI interface by transmit-
ting an object implementation to a different port
for each service. Both cases cause a depreciable
delay of information.

2.5. OpenR System

OpenR is a Sony developed operating system
that is based on an Apertos process structure.
As mentioned in Yokote [2004], from a software
design perspective and for robot programming
are offered several advantages such as

Portability: It offers modularised and inter-
changeable dependencies working directly on
parts, devices or processes.

Code sharing: It creates a more efficient reuse of
code with standardized schemes of development.

Separation of policy from mechanism: It offers a
dynamic changing of policy management as in
the process scheduler.

Optimization: It allows an effective and constant
redefining or optimizing algorithm evaluation.

Embedded trading: For an inefficient but
portable class, elements can later be replaced
with a more efficient, less portable, machine spe-
cific class.

Component testing: It presents case tests for
evaluating and debugging multiple objects.

Adaptable interfaces: It can add new compo-
nents by modifying object bindings from a name
server.

Mutual exclusion and synchronization: It allows
control of object mutual exclusion through a
method definition and by providing protection
to variable access.

OpenR uses an object message communi-
cation scheme for multi-task processing on a
single-processor platform. The communication
process initially requires an object definition for
generating a synchronized functionality between
its components and communications. Inside an
OpenR object, many other objects interact and
share processing resources by exchanging mes-
sage content.

Fig. 6. Content specifications for Connect.cfg file.

For an inter-object communication, pro-
cessed data is written in a shared memory sec-
tion and is sent as an event notification. The
communication process is divided into three
stages: (a) Message construction and notifica-
tion of sending, (b) Generation of shared mem-
ory and (c) Message reception. Each message
object contains a Subject for handling the send-
ing part and an Observer for encapsulating the
receiving part.

The message is defined in a stub file called
“connect.cfg”. As shown in Fig. 6, this file
syntax contains a subject and observer name,
message type, and messaging structure. This
communication process uses a unique charac-
ter reference to identify unidirectional messages.
Also, message objects are processed one message
at a time. Extra messages generated are queued
in a message stack awaiting the next processing
notification.

The communication process is also described
in Algorithm 1.

3. Robot Architecture

3.1. Layered design

A layered architecture is proposed for structur-
ing information treatment, which enables easy
design of independent and autonomous tasks
with shared processing resources. A robot local-
ization is adapted to a concurrent task list for
further results analysis.

Each layer controls different robot skills from
sensed information, an operative system struc-
ture, object containers for sensed traces, and
robot behavior objects. From bottom up, layer
capabilities are getting close to robot control



1st Reading

March 6, 2009 16:28 WSPC-IJIA 00169.tex

6 R. Samperio, H. Hu & D. Gu

Algorithm 1. Communication process between subject and observer.

(Subject) (Observer)
Require: Message {m}
{Initialise message to send.}

1: MessageReady({m})
{Inform message is ready.}

2: NotifyObservers({m})
{Notify of data which can be used.}

3: {m} ← NotifyData()
{Finish processing data and get
ready for next message.}

4: {m} ← AssertReady({m})
{Process another message.}

5: {m} ← CreateMessage()

Fig. 7. Robot software layer design.

and from top down, layers create user applica-
tions. The four layered programming scheme is
synchronized by a modularised architecture and
a priority-based processing. The layers are illus-
trated in Fig. 7 and described as follows:

Actuators, sensors, and input/output : This first
layer is in charge of controlling hardware
devices. Aibo robot has a MIPS R7000 64bit
RISC processor 576 MHz of clock speed with
512Mbit of SDRAM and 32 Mbit of flash mem-
ory. It handles 18 degrees of freedom for mouth,
head, legs, ears and, tail. Also, it contains sen-
sors for monitoring temperature, infrared dis-
tance, acceleration, and pressure on its chin and
paws. All input/output devices include: a face,
ear, head, and back LED; CMOS image camera
of 350000 pixels; wireless IEEE 802.11b; mem-
ory stick slot; and miniature microphones and
speaker.

Apertos operative system: The Apertos layer
includes a distributed object-oriented opera-
tive system which uses a reflective architecture
which assigns a specific use for each inherited
object, and it is associated with a set of meta-
objects with object semantics. A reflector offers
meta-operations provided by meta-objects con-
stituting a meta-space and it is defined by a
class hierarchy or meta-hierarchy. This sort of
reflective programming reuses existing reflectors
whilst a meta-hierarchy checks object compat-
ibility. Objects can also be changed by meta-
space composition and their semantics modified.
Hence, new object behavior can replace old ones
using components of the operative system.

OpenR collection classes: This layer con-
tacts the Apertos Operative System using
the programming operations with OVirtual-
RobotComm, OVirtualRobotAudio, and ANT
TCP/IP objects. The OVirtualRobotComm
object provides a service for the Effectors, Sen-
sor, and OFbkImageSensor objects. The Effec-
tors object is in charge of gain and LED control
via the OCommandVectorData structure. The
Sensor object acquires information from sensor
and joint values using an OSensorFrameVector-
Data structure. The OFbkImageSensor object
manages camera input with an OFbkImageSen-
sor structure and it can modify image quality
and color segmentation. Finally, the ANT object
is in charge of the endpoint buffers for input and
output data.

Application classes: This layer contains pro-
grams for robot behavior and a localization



1st Reading

March 6, 2009 16:28 WSPC-IJIA 00169.tex

Implementation of a Localization-Oriented HRI for Walking Robots in the RoboCup Environment 7

module. It is composed of three main mod-
ules: AiboEssexControl, AiboEssexObserver, and
AiboEssexComm. The AiboEssexControl object
performs contact with robot actuators and
input/output devices as well as their required
algorithms of treatment. The AiboEssexOb-
server object translates any sensed input data
into positioning, such as robot odometry, pose,
and position. The AiboEssexComm object is
in charge of TCP/IP communication proto-
col, as well as of information formatting for
transmission. Robot walking styles and head
tracking; image analysis and feature detection;
sound generation; and behavioral control; are all
included as subtasks of the AiboEssexControl
object.

This architecture integrates environmental
information from robot sensors for obtaining
localization results during a robot behavior exe-
cution. Moreover, these modules adapt reusable
code for odometry measurements, image treat-
ment, walking styles, playing behaviors, and net-
working communication.

3.2. Localization module

The localization module transforms sensed data
from image perception and robot odometry into
a stand alone localization process. On the one

Fig. 8. Localization module.

hand, landmarks are detected from image anal-
ysis to offer distance and angle references for
robot positioning. On the other hand, robot
odometry is used for approximating displace-
ment by measuring the speed of the leg. The
complete procedure is illustrated in Fig. 8 and
the process is described in Algorithm 2.

The algorithm is:

(1) Initially, localization landmarks and robot
odometry are generated independently from
each other and used, respectively, by
the receiveOdometry and receiveLandmarks
methods. The receiveOdometry method cre-
ates suitable odometry values for the local-
ization method which are encapsulated in
Odometry object. The receiveLandmarks
method organizes observed candidate land-
marks into an LandmarksSeen object.

(2) Afterwards, the Robot generates a posi-
tion using a localization method from the
Localize object and follows an update–
observe–predict Bayesian structure. From
this stage, a positioning vector is repre-
sented by x, y, θ, γ which corresponds to x
and y robot space coordinates, orientation
angle, and a level of confidence, respectively.

(3) Then, information is formatted and trans-
mitted for further local reuse in a method



1st Reading

March 6, 2009 16:28 WSPC-IJIA 00169.tex

8 R. Samperio, H. Hu & D. Gu

Algorithm 2. Robot Localization algorithm.

Require: Initialise Odometry odometry
Require: Initialise Landmark Map landmarks

{Predict and Update are asynchronous because images are obtained faster than odometry}
1: for all LocalisationCycle i do

2: if odometryi ∃ then {Predict phase generates a new state from robot odometry}
3: odometryi = receiveOdometry(i)

4: < x, y, θ, γ > ← LocalisationModule. update(odometryi)

5: end if

6: if landmarksi ∃ then {Update phase use landmark information for final state}
7: landmarksi = receiveLandmarks(i)

8: < x, y, θ, γ > ← LocalisationModule. predict(landmarksi)

9: end if

10: formatlnformation(< x, y, θ, γ >) {Information is prepared for transmission}
11: checkPositioning(< x, y, θ, γ >) {State further control is applied}
12: end for

called FormatInf. Also during this stage,
information can be sent to the client
TCP/IP service in sendTCP() if a petition
is received.

(4) Lastly, state is weighted and validated
according to localization method’s policy
during a checkPositioning method.

The localization module treats and exchan-
ges any localization method which follows an
update–observe–predict scheme of sensing inte-
gration. The output of this module is a posi-
tioning vector which can be used by simulated
or robot localization objects.

3.3. Behavioral control module

A behavior module is implemented for relating
robot execution to its environment. A behav-
ior is a sequence of states which guides robot
activities using the perceived environment as
a stimulus for a robot activity [Hugel et al.,
2005]. The behavior module has a state machine
as part of a list for assigned actions in which
each state executes a robot task or set of tasks.
The state machine is linked and evaluated by
tasks required for sensing information in order
to decide on a new state selection from assigned
roles.

A behavior requires transitional state rules
for executed states such as “Initial,” “Ready,”
“Play,” and “Finish” steps. The “Initial” step

initializes robot objects and devices; “Ready”
sets up robot devices and uploads object behav-
ior configuration; “Play” step executes the cur-
rent state; and the “Finish” step stops any
service, destroys memory objects, and power
off robot devices if necessary. Behavior execu-
tion is iterated until an explicit end behavior is
reached or it receives an external stop command.
The behavior module execution is illustrated in
Fig. 9 and is described as follows:

(1) Firstly, any robot devices required for each
behavior are initialized into an object con-
figuration in the InitBehavior() method.
This method includes an initial scanning of
the internal and external robot status. A
behavior can also execute states or meta-
behavior states in which additional behavior
states are included in this step.

Fig. 9. Behavior control module sequential procedure.



1st Reading

March 6, 2009 16:28 WSPC-IJIA 00169.tex

Implementation of a Localization-Oriented HRI for Walking Robots in the RoboCup Environment 9

(2) A chooseState() method evaluates the next
behavior selection depending on transition
conditions and the previous behavior state.
Additionally, it is assigned a confidence
value for evaluating the quality of transition
state. This evaluation is based on combining
input/output information that state consis-
tency with the state to be executed.

(3) An executeBehavior() method realizes robot
tasks which are executed as independent
processes and it also shares robot compu-
tational resources for completing a state
behavior.

(4) The checkLocalization() method obtains
information from robot localization in order
to be executed asynchronously and simulta-
neously to robot behavior.

The behavior state can be finished once the
implied devices are released and the robot is put
into a “Stand By” mode awaiting any action to
be performed. Also, transition states are eval-
uated combining the accountability of behav-
ior performance, speed of execution, and accom-
plishment of rules for state transition. Therefore,
a transition with multiple choices is more likely
to recall successful states than ones with a lower
evaluation value. So, a useful state transition can
be traced whenever behavior states are not being
realized as expected.

4. Environmental interface

4.1. Localization Simulator

Even, method accuracy and effectiveness are
evaluated for robot conditions by comparing
localization values with a high precision track-
ing system. Initially, the simulator diagnoses
method accuracy and effectiveness in a testing
environment where localization algorithms are
developed and evaluated with and without noise
presence.

The first stage of localization analysis is
based on a simulation of a moving robot play-
ing with a ball. The mobile robot is simulated
as a 2D holonomic movement composed by the
speed of two-wheeled movement as illustrated
in Fig. 10 and Eq. (1). Then, the prediction
for robot positioning is represented in a football

Fig. 10. Simulated holonomic movement.

pitch as the value where odometry velocities are
obtained from the difference between the last
and current position as in Eqs. (2) and (3).

Vr = V x + V y, (1)

where Vr is the robot velocity, V x the velocity
in X, and V y the velocity in Y. Each speed in
X and Y orientation is, respectively, defined as

V x = V xi + V xi+1, (2)

V y = V yi + V yi+1, (3)

where the index i indicates current state and
i + 1 for next robot step as components for cur-
rent robot mobility.

A 2D collision detection is adapted between
robots, ball, and limiting walls, as is assigned
to an initial speed and angle value. The initial
speed is calculated from robot speed and a ran-
dom kick speed value as illustrated by a ball
kicking movement in Fig. 11 and Eq. (4).(−→

V ball

−→Θball

)
=

rand(−→Fi) · ti
m

∗
(−→

V robot

−→Θ robot

)
, (4)

where −→
V robot is the speed which the robot is

walking to the ball, −→Θ robot the angle related to
the pitch which the robot has, −→

Fi is the force
that the robot kicks the ball only modified by
other body (wall or robot) and reduced each
time iteration ti, m is the mass of the ball, −→V ball

is the resultant velocity, and −→Θball the resultant
angle both of the ball.

The initial ball angle is used as the robot
speed angle and is activated when the robot



1st Reading

March 6, 2009 16:28 WSPC-IJIA 00169.tex

10 R. Samperio, H. Hu & D. Gu

Fig. 11. Simulated ball kicking execution.

is close to the ball. The ball representation is
divided according to time step approximations
where each x and y ball coordinate depends on
each speed component (Vx, Vy) as partial dis-
tances for every time step realized.

As in previously simulated applications [Liu
and Hu, 2004], a three-layered object definition
architecture is implemented for the localization
process and user software interface. In this case,
each layer has a specific purpose in architec-
tural design, as shown in Fig. 12 and described
below:

• Robot object : This layer encloses the physi-
cal modeling and a graphical representation of
robots, ball, or landmark, as well as attributes
such as dimensions, kinematics, and collisions.

• Localization object : This layer encapsulates
the Localization algorithms with standard-
ized input and output contents. The simulated
odometry information is based on a two-
wheeled robot model with variable noise
speeds and simulated visible landmarks. Also,
it offers a (x, y, and θ) set of values as the
positioning interface.

• GUI object : This GUI has similar front-end
characteristics to the localization monitor in
the GUI architecture with options for control-
ling robot behavior, pace speed, and noise.

The simulator is used for testing localization
algorithms and was built following a GUI archi-
tecture model. Even its capabilities do not hold

Fig. 12. Architecture of a task for a localization process.

visual and robot mobility, localization method-
ology, and algorithm implementation, it does fol-
lows an scalable robot architecture. Thus, the
simulator is a developing platform for practi-
cal maintenance and to evaluate localization
methods.

4.2. Tracking system

The overhead tracking system for recording
robot positioning data is used in order to obtain
a ground truth reference. The tracking system
is a 3D optical VICON system which has less
than 10 ms of latency, a positional accuracy of
0.1 mm, and an angular accuracy of 0.15◦. It
is composed of eight CMOS cameras that are
positioned around robot space and at a height
of 4.80 m. Also, it can track up to 50 and 150
markers that are made of light reflective mate-
rial. Figure 13 shows the VICON tracking sys-
tem used for obtaining the ground truth.

An object generated by the tracking inter-
face is transmitted with robot heading, posi-
tion, confidence of perception, time stamp, and
if relevant a landmarks position. Robot tracking



1st Reading

March 6, 2009 16:28 WSPC-IJIA 00169.tex

Implementation of a Localization-Oriented HRI for Walking Robots in the RoboCup Environment 11

Fig. 13. The VICON tracking system for ground truth.

follows a five marker set placed in observable
joints on the robot body. Independent robot
poses and positions are obtained from this
marker set as (x, y, θ, ϕ) which corresponds to
robot 2D positions, heading, and confidence val-
ues. Then, similar values are obtained from a
virtual robot mass centre as is described in
Vicon and Woods [2004–2005] for tracking a
mass skeleton.

4.3. Complementary software

The complementary software gives robot control
and gives support for analysis of results in order
to evaluate robot localization. This complemen-
tary software incorporates additional tasks as
part of the proposed methodology, as shown in
Fig. 14. The task make use of color calibration
for image interpretation, behavior designing for

Fig. 14. Methodology of modeling a localization algorithm.

robot environmental interaction, robot move-
ments construction for adjusting robot move-
ment online, and localization results monitoring
for method evaluation.

The support software is described as
follows:

(1) Part of this software create appropriate
movements for kicks or walking styles and
speeds in a specific interface.

(2) A behavior generation tool for a faster
design and debug of robot control and its
environment adaptability.

(3) Another section is a camera calibration used
for color segmentation with a specific user
interface. The camera calibration interface
is used for generating appropriate color
space values for environmental and camera
conditions.

(4) Alternatively, an interface for localization
monitoring informs and simulates posi-
tioning information. This information is
combined with a overhead ground truth
for achieving a more efficient method
evaluation.

The modules provides a control tool for
robot operability during experimental con-
ditions. They also enable experiments with
simulated or real-time data to be analyzed and
replicated. The platform has been designed to
work in Java for improving easy module adapt-
ability from independently created modules.



1st Reading

March 6, 2009 16:28 WSPC-IJIA 00169.tex

12 R. Samperio, H. Hu & D. Gu

5. Experimental Results

In this section, Extended Kalman Filter (EKF),
Fuzzy-Markov (FM), and Fuzzy-Markov-
Kalman (FM-EKF) positioning methods are
compared by using proposed HRI. For each
experiment, we analyzed simulated and real-
time experiments which evaluate localization
performance compared with a ground truth
generated by the overhead vision system.
The experiments approach is described as
follows:

(1) Simple movements: This stage is realized
by a squared trajectory limited by land-
mark positions along football pitch. Then,
the robot follows a trajectory in order to
obtain a variety of visible points along the
pitch.

(2) Combined behaviors: This experiment is
composed by a playing session using a single
robot which is constantly looking to score.
Originally, it is evaluated by two dissimilar
experiments: (a) robot reaching predefined
points as accurately as possible and (b) a
playing session for a robot to play a session
alone and against an opponent.

(3) Kidnapped robot : This stage is realized in
randomly sequences of kidnapping by time
and pose. In each kidnap, the objective is to
obtain information about where the robot is
and how fast it can localize again.

The evaluation criteria for all experiments
is defined by measuring parameters and relat-
ing obtained results with robot environment.
Specifically, measured conditions for these
experiments describe robot performance during
execution as it is shown in Table 1 and described
below:

• Robot mobility is the distance covered by
robot for a complete experiment obtained
from ground truth movement tracking. The
total displacement from all experiments is of
186,190 mm.

• Time of execution is the time required for
each experiment performance. The total time
of execution for all the experiments is of
1170 s.

Table 1. Experimental conditions.

Experiment Mobility Time Cycles

Simulated 1 12528.84 160.44 185

Real-time 1 78821.24 593.67 4878

Simulated 2 12499.48 68.90 268

Real-time 2 5770.73 38.68 372

Simulated 3 14514.38 38.06 125

Real-time 3 62055.79 270.36 2566

• Localization cycles is the complete execution
of a correct and update step into localization
module. The total amount for these experi-
ments is of 8394 cycles.

The following experimental results were
obtained from the comparison of localization
methods realized in Samperio and Hu [2008] and
presented in previous research work in Samperio
and Hu* [2008]. Both real-time and simulated
results are presented for showing the feasibility
of methods design and execution whenever they
were in use of the proposed HRI.

Figures 15 and 16 show the results from
“Simple Movements” in which trajectories in
simulated environment predict a noiseless rep-
resentation of the real-time execution. For both
experiments, the EKF method is considered the
weakest of all the localization methods. More-
over, in the “Combined Behavior” experiment,
the robot trajectories presents periods of low
quality in localization as a consequence of addi-
tional behavioral head movements, as it is shown
in Fig. 18.

In contrast, the simulated trajectory of
Fig. 17 is conformed by a constant acquisition
of environmental information. Lastly, the “Kid-
napped robot” experiment was realized replicat-
ing sensed information from a real-time data
into simulation with a modeled motion model.
The results for both experiments are shown in
Figs. 19 and 20.

The results are shown in trajectory maps
obtained from sequences of localization cycles.
Afterwards, each localization method can be
evaluated with an independent ground truth
positioning service asynchronously attached to
the HRI. Therefore, proposed HRI architecture
is capable of presenting visual information from



1st Reading

March 6, 2009 16:28 WSPC-IJIA 00169.tex

Implementation of a Localization-Oriented HRI for Walking Robots in the RoboCup Environment 13

Fig. 15. Simulated experiment 1.

Fig. 16. Real-time experiment 1.

robot behavior operability and an analysis of
measured parameters.

This HRI also evaluates the available posi-
tioning information obtained from robot visual
perception. In this sense, we make use of

experiments presented in Samperio [2008] to
show the feasibility of proposed approach.

The visual information is also processed
in order to implement an on the flight land-
mark model for detecting and classifying robot



1st Reading

March 6, 2009 16:28 WSPC-IJIA 00169.tex

14 R. Samperio, H. Hu & D. Gu

Fig. 17. Simulated experiment 2.

Fig. 18. Real-time experiment 2.

environmental features. Also, the HRI can rede-
fine such landmark by adapting sensed informa-
tion into a robot self-constructed map, and a
further landmark definition.

Figure 21 shows a range of detected land-
mark poses from a static robot perspective
that can be created in real-time. In this, map
is possible to appreciate errors in landmark



1st Reading

March 6, 2009 16:28 WSPC-IJIA 00169.tex

Implementation of a Localization-Oriented HRI for Walking Robots in the RoboCup Environment 15

Fig. 19. Simulated experiment 3.

Fig. 20. Real-time experiment 3.

detection for a further visual calibration and a
real-time perception analysis. Then in Fig. 22 is
presented similar error detection when the robot
follows a circular trajectory.

So on, the HRI is an adaptable control
tool capable of presenting robot environment
for further adaptable changes during experi-
ment execution. Also, presented experiments



1st Reading

March 6, 2009 16:28 WSPC-IJIA 00169.tex

16 R. Samperio, H. Hu & D. Gu

Fig. 21. Landmark detection from a static robot.

Fig. 22. Landmark detection from a moving robot.

demonstrate the robot-user interaction in
an applied analysis methodology of robot
localization.

6. Conclusions and Future Work

In this paper, we present an interactive HRI that
is a useful tool for the development of robot
localization algorithms in the RoboCup domain.
It consists of a walking robot, an overhead visual
tracking system, and a user interface. Such a
system offers real-time control and evaluation
facilities for localization analysis using a GUI as
a central support tool. The overhead camera is
used to provide ground truth to compare exper-

imental results obtained from real robots with
the ground truth.

The experimental results demonstrated that
the proposed system is feasible and has good
performance. Further research will focus on the
development of an adaptable behavior-oriented
architecture suitable for any sort of mobile
robots with wireless communication, including
suitable interfaces for user control, behavior
design, robot interaction, and online analysis.

Acknowledgments

We would like to thank Dr Francisco Martin
from Universidad Rey Juan Carlos, Dr Vicente
Matellan from Universidad de Leon and Team-
Chaos of the RoboCup four legged league for
their programming work and the technical sup-
port from Essex University. Part of this research
was also supported by the Mexican CONACyT
government scholarship with reference number
178622.

References

Golubovic, D., Li, B. and Hu, H. [2004] “A hybrid
software platform for sony aibo robots,” in
IRoboCup 2003: Robot Soccer World Cup VII,
Vol. 3020/2004 (Springer, Berlin/Heidelberg),
pp. 478–486.

Hugel, V., Amouroux, G., Costis, T., Bonnin,
P. and Blazevic, P. [2005] “Specifications and
design of graphical interface for hierarchical finite
state machines,” Lecture Notes in Computer Sci-
ence. RoboCup 2005: Robot Soccer World Cup
IX, Vol. 4020/2006 (Springer, Berlin/Heidelberg)
648–655.

Liu, J. and Hu, H. [2004] “3D simulation of
autonomous robotic fishes,” International Journal
of Automation and Computing 1, 42–50.

Lovell, N. [2004] “Real-time embedded vision system
development using aibo vision workshop 2,” Pro-
ceedings of the Fifth Mexican International Con-
ference in Computer Science, pp. 268–274.

Martin, F., Gonzalez-Careaga, R., Canas, J. and
Matellan, V. [2004] “Programming model based
on concurrent objects for the aibo robo,” Proceed-
ings of the XII Jornadas de Concurrencia y Sis-
temas Distribuidos, 367–379.

V. MX and V. series Systems [2004–2005] Poly-
gon 3.1 Visualization and reporting tool. System



1st Reading

March 6, 2009 16:28 WSPC-IJIA 00169.tex

Implementation of a Localization-Oriented HRI for Walking Robots in the RoboCup Environment 17

Tutorial Revision 1.2., (Vicon Motion Systems
Limited).

Ogata, H. and Takahashi, T. [1994] “Robotic assem-
bly operation teaching in a virtual environment,”
IEEE Trans. Robotics and Automation 10(3),
391–399.

Samperio, R. and Hu, H. [2006] “Kalman filter based
localization for aibo walking robots,” Proceedings
of the IEEE International Symposium on Robotics
and Automation, San Miguel Regla Hotel, Hgo.,
25–28 August 2006.

Samperio, R., Hu, H., Martin, F. and Mantellan, V.
[2008] “A Hybrid approach to fast and accurate
localization for legged robots,” Robotica.

Samperio, R. and Hu, H. [2008] “An interactive
HRI for walking robots in RoboCup,” IEEE

International Conference on Information and
Automation. 20–23 June, Hunan, China.

Samperio, R. [2008] “Visual-based localization for
Aibo walking robot” PhD. Thesis, University of
Essex.

Sangpetch, A. [2005] Visualizing Robot Behavior with
Self-Generated Storyboards, (PhD thesis, Carnegie
Mellon University), May 10.

Tzafestas, C., Palaiologou, N. and Alifragis, M.
[2006] “Virtual and remote robotic laboratory:
comparative experimental evaluation,” IEEE
Transactions on Education 49, 360–369.

Yokote, Y. [1992] “The apertostreflective operating
system: The concept and its implementation,”
Conference on Object Oriented Programming Sys-
tems Languages and Applications.

Huosheng Hu is a Professor in School of Computer Science and Electronic Engineering at the Uni-
versity of Essex, UK, leading the Human-Centred Robotics Group. He has held a number of research
grants from the EPSRC, the Royal Society, EU, RAEng, as well as from industry. His research
interests include behavior-based robotics, human-robot interaction, embedded systems, learning algo-
rithms, pervasive computing, and service robots. He has published over 270 papers in journals, books,
and conferences in these areas, and received a number of best paper awards.

He is one of the founding members of IEEE Robotics and Automation Society Technical commit-
tee on Networked Robots, a senior member of IEEE and ACM, and a member of IET and IAS. He is
a member of the EPSRC Peer Review College. He has been a chair or committee member for many
international conferences such as IEEE ICMA, IEEE ROBIO, IEEE IROS, RoboCup Symposiums,
and IASTED RA, CA, and CI conferences. He currently serves as Editors-in-Chief for International
Journal of Automation and Computing.

Dongbing Gu is a senior lecturer in School of Computer Science and Electronic Engineering at
the University of Essex, UK. His current research interests include multi-agent systems, wireless
sensor networks, distributed control algorithms, distributed information fusion, cooperative control,
reinforcement learning, fuzzy logic and neural network — based motion control, and model predictive
control. He has published over 80 papers in international journals and conferences. He has also served
as the member of organising committees and programme committees for many IEEE conferences.
He is the member of several IEEE technical committees and a senior member of IEEE.

Renato Samperio received his B.Sc. in Computer Science from Instituto Tecnologico de Estudios
Superiores de Monterrey Campus Estado de Mexico, Mexico, in 2002. He is finishing his Ph.D. degree
in Computer Science at University of Essex, UK. The research topic during his Ph.D. was ”Visual
based localization for Aibo walking robots.”

He is also working as a researcher in the area of Logistics and Production Robotics at the German
Research Centre for Artificial Intelligence (DFKI GmbH), in Bremen, Germany. His research interests
include mapping, SLAM, robot navigation, computer vision, legged robots, mobile robotics, sensors
fusion, and collaborative robotics.


