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ABSTRACT

INFORMATION-THEORETIC ACTIVE PERCEPTION FOR MULTI-ROBOT TEAMS

Benjamin Charrow

Vijay Kumar

Nathan Michael

Multi-robot teams that intelligently gather information have the potential to transform

industries as diverse as agriculture, space exploration, mining, environmental monitoring,

search and rescue, and construction. Despite large amounts of research effort on active

perception problems, there still remain significant challenges. In this thesis, we present a

variety of information-theoretic control policies that enable teams of robots to efficiently

estimate different quantities of interest. Although these policies are intractable in general,

we develop a series of approximations that make them suitable for real time use.

We begin by presenting a unified estimation and control scheme based on Shannon’s mu-

tual information that lets small teams of robots equipped with range-only sensors track a

single static target. By creating approximate representations, we substantially reduce the

complexity of this approach, letting the team track a mobile target. We then scale this

approach to larger teams that need to localize a large and unknown number of targets.

We also examine information-theoretic control policies to autonomously construct 3D maps

with ground and aerial robots. By using Cauchy-Schwarz quadratic mutual information, we

show substantial computational improvements over similar information-theoretic measures.

To map environments faster, we adopt a hierarchical planning approach which incorporates

trajectory optimization so that robots can quickly determine feasible and locally optimal

trajectories. Finally, we present a high-level planning algorithm that enables heterogeneous

robots to cooperatively construct maps.
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Chapter 1

Introduction

Gathering information quickly and efficiently is a fundamental task for many real-world

applications of robotics. Inspecting ship hulls for structural defects [36], building 3D models

of damaged buildings [83], determining which crops need to be irrigated [2], and localizing

devices in smart buildings [107] are all examples of information gathering tasks with broad

commercial applicability. At their core, they are “active perception” problems which require

robots that can both estimate quantities of interest and autonomously take actions to

improve those estimates [4].

Teams of robots are particularly appealing for these types of problems. Unlike individual

robots, they can obtain multiple sensor measurements from different places at the same point

in time. When each robot is only equipped with sensors that provide limited information

like RF antennas, teams are able to estimate quantities that an individual robot cannot.

Even when using information rich sensors like cameras and laser range finders, the time

it takes to gather information can decrease super-linearly with the size of the team [134].

Different types of robots also often have substantially different capabilities in terms of

available sensors, where they can move, and how long they can be active before they run

out of power. Consequently, teams comprised of heterogeneous robots are more capable

than any individual robot.

However, designing teams of robots that can effectively gather information is a chal-
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lenging problem that encompasses many different areas of robotics research. For example,

robots must be capable of autonomously navigating to various parts of an environment.

This requires robots that are capable of planning paths that do not collide with obstacles

or other robots and using controllers that can generate inputs to actuators such that robots

follow those paths. Navigation also requires that each robot is capable of determining where

it is in space, a task known as localization. Depending on whether or not the robots are op-

erating in an environment whose essential structure is known, robots may also need to solve

the mapping problem, which requires them to build a detailed model of the environment

they are in. In addition to all of these tasks, active perception problems require robots to

estimate external quantities such as the location of a lost piece of medical equipment or

the exact geometry of a building. As much as possible, a team of robots must effectively

coordinate its actions.

Although each of these subproblems is challenging in its own right, the primary focus

of this thesis is on principled and computationally efficient information gathering strategies

for multi-robot teams. In the remainder of this chapter, we discuss some of the primary

research challenges in designing such strategies. We then summarize the remainder of this

thesis which describes a series of active perception problems and corresponding strategies

to solve them.

1.1 Research Problems

The ultimate goal of an active perception problem is to estimate some unknown quantity of

interest. Most modern perception approaches are probabilistic; instead of forming a single

concrete guess of what something is, they determine a probability distribution over possible

values that it could be. Consequently, the goal of an active perception strategy is to reduce

the uncertainty of the probabilistic estimate as quickly as possible. To formally define this

goal of “uncertainty reduction,” we use information theory, a branch of mathematics that

provides several tools for reasoning about the relative uncertainty of different distributions.

Given the goal of reducing uncertainty, there are a number of high-level characteristics

2



that we want any strategy to exhibit:

1. General. Given the wide variety of active perception problems, it is desirable to de-

velop algorithms that generalize across different sensing modalities and enable robots

with different mobility constraints to reduce an estimate’s uncertainty as much as

possible.

2. Clarifying. The faster robots can obtain low uncertainty estimates the better. This

means that an approach should take actions that are likely to reduce an estimate’s

uncertainty.

3. Online. Robots continuously gather measurements as they take actions, enabling them

to gradually form more certain estimates. An active perception approach should be

able to take advantage of this increased information and adapt its actions to exploit

everything that it knows.

4. Collaborative. An estimate’s uncertainty can often be reduced faster by effectively

coordinating multiple robots. Strategies that can achieve this are preferable to those

that can’t.

Developing a control policy that achieves all of these goals is difficult. Strategies that use

approximations and simplified models may be quick to compute, but the selected actions

may not substantially reduce the uncertainty of the estimate. Conversely, robots may be

able to use detailed probabilistic models to predict how their actions are likely to improve

the estimate. Unfortunately, given the inherent uncertainty in these predictions, computing

these policies can take a long time. This issue is particularly important in time-critical

scenarios such as search and rescue.

Although there are many different types of active perception problems, there are two

broad classes that can be addressed: estimating low-dimensional state with low-information

sensors and estimating high-dimensional state with high-information sensors.

A characteristic example of the low-dimension low-information problem is range-only

target localization, where robots must estimate the position of a target only using measure-

ments of their relative range (i.e., measurements contain no information about the relative
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angle between a robot and the target). In addition to being a challenging active perception

problem, range-only target localization can also be used to solve real world problems. For

example, in the near future, automated buildings will use a large number of devices for

a variety of services including power and water monitoring, building security, and indoor

localization for smart phones [107]. Effectively using and maintaining this many devices will

require knowing where each of them is located. A cost-effective way of getting this informa-

tion would be to equip each device with RF or audio based range-only sensors [74, 99]. This

approach could even work when sensors are embedded in a building’s walls [43]. Because

range-only sensors only provide limited information about a device’s location and having

humans localize all devices would be a time consuming and error prone task, it is natural

to try and automate the process using a team of robots.

On the opposite extreme of active perception are problems like active mapping which

require robots to build a complete and low uncertainty model of the environment that they

are operating in. These maps typically consist of probabilistic estimates of the presence and

location of obstacles and require the use of sensors like laser-range finders or 3D cameras

like the Microsoft Kinect. Active mapping is then a problem that involves estimating high-

dimensional state with high-information sensors. Being able to autonomously construct

these maps has a large number of potential applications like inspecting ship hulls for defects

or mines [36], exploring the surface of other planets [30], and assisting in disaster relief by

giving safety workers a clear idea of how buildings are damaged [83].

Studying both range-only localizing and active mapping is useful for understanding ap-

proaches to active perception. A methodology that can address both types of problems can

be considered general, because each problem requires robots to exhibit different types of

behavior. To reduce uncertainty in range-only localization, robots must account for the lack

of angular information their sensors provide and gather complementary measurements to

the same target. In contrast, sensors used for active mapping provide information about a

robots’ immediate surroundings and they primarily need to gather measurements through-

out the environment. These differences also mean that teams of robots must exploit different
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collaboration strategies. In range-only localization teams can reduce uncertainty faster by

gathering multiple measurements to the same target, but in active mapping they can often

reduce uncertainty faster by observing different parts of the map.

1.2 Thesis Overview

The primary goal of this work is to develop computationally tractable information-theoretic

control laws that enable multi-robot teams to effectively coordinate their actions to gather

measurements that reduce the uncertainty of estimates. This thesis makes a variety of

contributions that make substantial progress towards solving the research problems outlined

in the previous section:

1. Ch. 3 introduces a basic form of the range-only localization problem, in which a small

team of robots must localize a single static target in a known environment. We develop

an accurate estimation scheme for a commercially available RF range-only sensor as

well as a mutual information based control law.

2. Ch. 4 develops techniques for approximating mutual information, enabling it to be

calculated substantially faster. This enables the approach from Ch. 3 to track a

mobile target, by enabling the team to consider the impact of multiple measurements

over time while planning, going beyond a greedy one-step maximization. Importantly,

we prove that the approximations introduce bounded error. This proof also bounds

the difference in mutual information between different control inputs, which makes it

easier to generate appropriate actions.

3. Ch. 5 extends the range-only problem to the case where a team of robots must localize

an unknown number of targets throughout an environment. It also addresses the

exponential complexity inherent in multi-robot planning problems, enabling larger

teams of robots to effectively work together. The computational complexity of the

resulting control strategy is polynomial in all relevant variables.

4. Ch. 6 examines the use of alternative information-theoretic objectives, like Cauchy-

Schwarz quadratic mutual information, for an active mapping problem. In contrast
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to many other approaches, we explicitly model the dependence of separate measure-

ments over multiple time steps to develop online algorithms that search over multiple,

multi-step actions. This chapter also examines how information-theoretic control laws

generalize across different platforms by conducting experiments where individual air

and ground robots map different environments.

5. Ch. 7 shows how a hierarchical planning framework combined with trajectory opti-

mization can substantially improve the performance of active mapping strategies, by

enabling robots to quickly compute feasible and locally optimal information-theoretic

trajectories.

6. Ch. 8 introduces a method for generating high-level plans for heterogeneous robots

that are exploring and mapping an environment. The goal of this work is to enable air

and ground robots to cooperatively build better maps than either could individually.

All of these contributions build on a large body of research in robotics and information-

theory. Ch. 2 discusses this work, and also compares the information-theoretic approach to

other active perception strategies. To conclude the thesis, we summarize all contributions

in Ch. 9 and discuss some potential directions for future research.
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Chapter 2

Background and Related Work

This chapter introduces the basic concepts of information theory and how it can be used to

develop an active perception control law. It also surveys recent research in active perception

that is relevant to this thesis.

2.1 Information Theory

Information theory was developed in the 1940’s by Shannon [115] and others. Shannon’s

work was motivated by designing ways to encode, transmit, and decode messages without

them being corrupted by noise.

One fundamental contribution of the theory is Shannon’s entropy, a general measure

of the uncertainty of a random variable. For a discrete random variable X, that can take

values in the set X = {x1, . . . , xN}, Shannon’s entropy is defined as:

H[X] = Ep(X) [− log2 p(X = x)] = −
∑
x∈X

p(X = x) log2 p(X = x) (2.1)

In general, H[X] is non-negative and 0 if and only if X is not random (i.e., takes a value

with probability 1). The units of Shannon’s entropy are bits when the base of the logarithm

is 2 and nats when the natural logarithm is used.

To gain some intuitive understanding of entropy, consider the outcome of a fair coin

toss, F . Because p(F = Heads) = p(F = Tails) = 0.5, F ’s entropy is H[F ] = 1 bit. This
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Figure 2.1: Entropy of a Bernoulli random variable X.

value is sensible, as a single bit can encode two different values, and both outcomes are

equally likely. For comparison, suppose B is a biased coin where p(B = Heads) = 0.99 and

p(B = Tails) = 0.01. B’s entropy is H[B] = 0.08 bits. This is also a sensible value as the

outcome of B is quite certain; we would be surprised if we got a tails. Fig. 2.1 shows that

the entropy of a generic Bernoulli random variable. As one would hope for a measure of

uncertainty, entropy is highest when the outcome is most uncertain, and gradually decreases

to 0 as the outcome becomes more certain.

Shannon’s entropy can be extended by analogy to continuous distributions. If X is a

continuous random variable, then its differential entropy is:

H[X] = Ep(X) [− log p(X = x)] = −
∫
p(X = x) log p(X = x) dx (2.2)

Unlike discrete entropy, differential entropy can be negative. While it has a similar form

to discrete entropy, it is not the limit of discrete entropy, and in fact differs by an infinite

offset [27]. Despite this, differential entropy is similar conceptually, and we will use the two

concepts interchangeably. As many quantities in robotics are continuous, most of the work

in later chapters uses differential entropy.

Another important question in information theory is “what is the uncertainty of a ran-

dom variable given the outcome of a different random variable?” In other words, suppose
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we have two random variables X and Z, and we want to know the entropy of X given

Z. This would be straightforward if Z were known; it would simply be the entropy of the

distribution p(X | Z = z). However, Z is also a random variable, so we take an expectation

over it:

H[X | Z] = Ep(Z) [H[X | Z = z]] (2.3)

=
∑
z∈Z

p(Z = z)

(
−
∑
x∈X

p(X = x | Z = z) log2 p(X = x | Z = z)

)
(2.4)

Similar to differential entropy, conditional differential entropy can be defined for continuous

random variables by replacing the appropriate sums with integrals.

Together, entropy and conditional entropy can be used to measure the likely decrease

in uncertainty of a random variable. This quantity is known as mutual information:

IMI[X;Z] = H[X]−H[X | Z] (2.5)

= H[Z]−H[Z | X] (2.6)

Note that for both discrete and continuous distributions, mutual information is always non-

negative and 0 if and only if the two random variables are independent. The non-negativity

has an interesting interpretation that “information never hurts” [27]; learning the outcome

of a random variable cannot increase uncertainty.

One important property of mutual information is that it can be expressed in two different

ways. In other words, each random variable contains the same amount of information about

the other. This is helpful, because when Z is the measurement and X is the state, p(Z | X)

is the measurement model, which can often be modeled in robotics. This makes (2.6) easier

to calculate than (2.5), as (2.5) requires calculating p(X | Z) which is either the posterior

distribution or an approximate inverse measurement model [134].

It is important to know that Shannon’s entropy is not an ad-hoc measure. Shannon

[115] derived the expression by specifying axioms that any measure of uncertainty must
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satisfy. For example, one requirement is that the uncertainty of independent events must

be the sum of the uncertainty of the individual events. Shannon described five axioms and

proved that (2.1) is the only definition of uncertainty that satisfies all of them.

However, there are alternative axiomizations of uncertainty, notably by Renyi [104].

These measures only satisfy some of Shannon’s axioms, but still provide useful characteri-

zations of uncertainty. Renyi’s α-entropy for continuous random variables is defined as:

Hα[X] =
1

1− α
log

∫
pα(X = x) dx (2.7)

Any α > 1 including α→∞ results in a valid entropy. In the limit as α goes to 1, Renyi’s

entropy converges to Shannon’s entropy [100].

Our primary motivation for studying alternative forms of uncertainty is that Shannon’s

entropy and mutual information are hard to compute, except in certain special cases like

Gaussian models. The source of this difficulty is the expectation over the logarithm in

(2.1), which frequently prevents the integral from being evaluated analytically. For this

reason, Renyi’s quadratic entropy (RQE), also known as the collision entropy, is particularly

interesting:

H2[X] = − log

∫
p2(X = x) dx (2.8)

As noted by Principe [100], this form is computationally useful because 1) the logarithm

appears outside the integral and 2) when p(X) is a Gaussian or a Gaussian mixture model,

the integral can be calculated analytically, because all of the integrals are the products of

Gaussians.

There are also computational advantages in considering concepts that are similar to

mutual information. One way of generating these is by re-expressing mutual information

in terms of the Kullback-Leibler divergence (KL divergence or KLD). KL divergence is one

way of measuring the “distance” between two densities. For two densities f and g, it is
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defined as:

DKL[f || g] = Ef [log f/g] =

∫
f(x) log

f(x)

g(x)
dx (2.9)

KL divergence is non-negative and 0 if and only if f and g are equal almost everywhere. In

general, it is not symmetric (i.e., DKL[f || g] 6= DKL[g || f ]) and does not obey the triangle

inequality, making it a pseudo-metric [27]. Interestingly, the mutual information of two

variables X and Z, can be expressed as the KL divergence between their joint distribution,

p(X,Z), and the product of their marginal distributions, p(X)p(Z):

IMI[X;Z] = DKL[p(X,Z) || p(X)p(Z)] (2.10)

Because p(X,Z) = p(X)p(Z) if and only if X and Z are independent, mutual information

can be viewed as a measure of how dependent X and Z are. If they are independent, then

there is no difference between the product of the marginals and the joint distribution, so

their mutual information is 0. But if X and Z are very dependent – the outcome of one

random variable changes likely outcomes of the other – then their mutual information will

be high.

Viewing information as a measure of dependence between random variables makes it

easier to define alternative measures of information. Specifically, we can define a new

notion of information by replacing KL divergence in (2.10) with a different probability

measure. Gibbs and Su [44] provide a good survey of different metrics and how they are

related. Principe [100] also discusses several different options. Of particular interest is the

Cauchy-Schwarz divergence (CS divergence), which for two densities f and g is defined as:

DCS[f || g] = − log

(∫
f(x)g(x) dx

)2

(∫
f2(x) dx

)(∫
g2(x) dx

) (2.11)

The CS divergence’s name comes from the Cauchy-Schwarz inequality, which is used to prove

11



that it is non-negative and 0 if and only if the densities are equal almost everywhere [100]. It

can be used to define the Cauchy-Schwarz quadratic mutual information (CSQMI) between

random variables:

ICS[X;Z] = DCS[p(X,Z) || p(X)p(Z)] (2.12)

There is a connection between CS divergence and Renyi’s quadratic entropy that is quite

similar to the relationship between KL divergence and Shannon’s entropy. This similarity

then links mutual information and CSQMI. KL divergence can be written in terms of

Shannon’s cross entropy and Shannon’s entropy:

DKL[f || g] = −Ef [log g]−H[f ] (2.13)

The cross entropy, Ef [− log g], measures the efficiency of encoding a message using a dis-

tribution given by g rather than the true distribution f . Similarly, Rao [102] showed that

CS divergence can be expressed as:

DCS[f || g] = (− logEf [g]−H2[f ]) + (− logEg [f ]−H2[g]) (2.14)

H2[·] is Renyi’s quadratic entropy, and − logEf [g] can be viewed as Renyi’s quadratic cross

entropy. The grouped terms are thus completely analogous to KL divergence, suggesting

that CSQMI and mutual information express similar concepts.

As a brief comment on notation, the observant reader may notice that (2.13) and (2.14)

take the entropy of a probability density function, but we defined entropy (2.2) as a function

of a random variable. This difference is not significant, as each random variable has a cor-

responding density function. We use both conventions throughout this thesis. Additionally,

in this section we have used capital letters for random variables and lower case letters to

denote their instantiations. As is common in most robotics papers, the remainder of this

thesis will use lower case letters for both quantities, as it will often be clear from context
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what is intended.

We defined all of the concepts in this section in terms of random variables, but the

definitions for random vectors are nearly identical. The only change is that the domain

and dimensionality of the probability mass and density functions increases. This is useful

as it gives us a consistent notation for handling all cases. When it makes the presentation

clearer, we will use boldface to denote vector quantities.

2.2 Information Based Control for Robotics

Given its basis as a theory of communication, information theory may not seem connected

to active perception. However, the fundamental goal of active perception is to reduce

uncertainty of an estimate, and information theory provides many ways to quantify this

intuitive notion. In this section, we use a simple range-only localization problem to explain

how information theory can be applied to active perception. The work presented in later

chapters will formalize and expand this approach, but the fundamental ideas will remain

the same.

A generic estimation problem is to estimate some state, x, given a sequence of measure-

ments taken from time 1 to time t: [z1, . . . , zt] = z1:t. The posterior distribution over the

state is p(x | z1:t). At time t, the robot must take an action to obtain a better estimate

of x. If the state of the robot is c, then the measurements that it gets should depend on

the true state as well as the robot’s position; the measurement model – distribution over

measurements – can be specified as p(z | x, c). After the robot takes an action, it will get a

new measurement, update its estimate, repeat the process. One reasonable control policy

is to select an action that will likely result in the smallest entropy (i.e., uncertainty) of the

posterior estimate at time t+ 1. Formally, given a set of possible actions A = {a1, . . . , aN},

this control policy would be:

a∗ = arg min
a∈A

H[x | zt+1, z1:t, a] (2.15)

Note that measurements z1:t have already been collected (i.e., are instantiations of random
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Figure 2.2: 1D active perception problem. (a) Orange and blue dots show two possible
locations for a target. When the robot is equidistant from both, d1 = d2, the robot can
predict that future measurements, (c), will not help distinguish between the two hypotheses.
(b) and (d) show that the robot can predict that moving closer to one hypotheses is a better
choice, because the received measurement depends on the target’s true location.

variables), whereas x and zt+1 are unknown as they’re in the future.

Minimizing the conditional entropy of the future estimate, (2.15), is equivalent to max-

imizing mutual information. Using (2.5):

arg min
a∈A

H[x | zt+1, z1:t, a] = arg min
a∈A

H[x | z1:t]− IMI[x; zt+1 | z1:t, a] (2.16)

= arg max
a∈A

IMI[x; zt+1 | z1:t, a] (2.17)

This equivalence serves as the primary motivation for maximizing mutual information and

other quantities that measure the dependence between random variables.

To understand this type of policy more concretely, consider the simple 1D problem

shown in Fig. 2.2. Here, there are two possible locations along the line where the target

can be, and a robot is equipped with a sensor that measures the absolute value of the

distance to the target, perturbed by some small amount of noise. Using its current estimate

of where the target is, and the measurement model, p(z | x, a), the robot can calculate
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the distribution over measurements that it is likely to receive using the marginalization

rule of probability: p(z | a) =
∫
p(x)p(z | x, a) dx. Fig. 2.2c and Fig. 2.2d show the

distribution over measurements that the robot can predict at the current time t. Due to

the symmetry of the target’s position in Fig. 2.2c, the uncertainty of the measurements,

H[z], is due to the uncertainty inherent in the sensor itself. As this uncertainty is given

by H[z | x], H[z] = H[z | x], meaning the mutual information is close to 0. In contrast, the

uncertainty of measurements in Fig. 2.2d is substantially higher, due to the fact that it’s

unclear whether the robot is close to or far from the target. In this case H[z] >> H[z | x],

so mutual information will be high. Consequently, an information based strategy will pick

the action that brings it closer to the target, which is the better choice.

The simple 1D example illustrates the benefits of using an information based control

policy. A primary advantage is that because this approach uses the same probability models

as the estimation process, it naturally accounts for sensor limitations like noise or limited

field of view. Additionally, maximizing information naturally extends to multiple time steps,

robots, and sensing modalities, as each of these have well defined effects on the posterior

distribution.

The 1D example also illustrates some of the drawbacks of information. While the ex-

pressions are quite general, they are difficult to compute, as they require integrating over

the joint state and measurement spaces. Except in more restricted settings like linear-

Gaussian models, the requisite integrals are difficult to evaluate. Developing appropriate

approximations and measures to avoid these issues is a central focus of this thesis.

2.3 Limited Information Active Perception

There is extensive work on estimation and active perception for limited sensing domains.

Two widely studied problems are range-only localization and bearing-only localization.

Olson et al. [95], Djugash et al. [32, 33] both considered situations where a single mo-

bile robot localizes itself and the nodes in a sensor network with many nodes using range

measurements. Jourdan et al. [62] and Prorok and Martinoli [101] examined methods for
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handling disturbances to Ultra-Wideband (UWB) radios that are caused by line-of-sight

conditions and different construction materials. Researchers have also examined situations

where the target is moving. For example, Hollinger et al. [54] studied how to estimate a

mobile target with fixed and uncontrollable range radios. While the preceding approaches

used a Bayesian filter to obtain estimates, researchers have also formulated range-only es-

timation as a non-linear optimization problem [88] or a spectral learning problem [9]. For

active perception, using a recursive Bayesian filter for estimation has the advantage of pro-

viding an up to date belief at each point in time. All of these works used a human operator

to manually drive a robot to gather measurements.

Given that estimation often produces probabilistic estimates, many researchers have

formulated the active perception problem as an optimization of some information-theoretic

quantity. Grocholsky [49] and Stump et al. [132] designed controllers which maximized

the rate of change of the Fisher information matrix (FIM) to localize a stationary target.

As the FIM lower bounds the covariance (i.e., uncertainty) of any unbiased estimator [27],

minimizing its inverse enables better estimates. However, this work assumed that the

belief is Gaussian, which is not the case for typical range measurements. More recently,

Levine et al. [77] looked at how to combine the FIM with rapidly-exploring random trees to

plan informative paths for robots with non-trivial dynamics. Mart́ınez and Bullo [81] also

examined using the determinant of the FIM for target tracking.

Of particular relevance to this thesis are works that use mutual information as their

objective function. Hoffmann and Tomlin [52] showed how particle filters can be used in

obstacle-free environments with non-linear sensor models to calculate a mutual information

based control law. They limited coordination between robots to keep the observation space

small. Ryan and Hedrick [110] investigated information-theoretic control and developed a

receding horizon controller for a single mobile robot to track a mobile target. Their approach

considers the impact of multiple measurements over time, and they approximate mutual

information using a sampling based algorithm. However, their approach is computationally

expensive. Most of the work in this thesis uses dynamically simpler ground robots, but our
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approximations enable us to calculate control inputs for multiple robots in real-time.

In probabilistic estimation problems, it is often difficult to obtain theoretical guarantees

about the performance of an active control policy. One exception is Vander Hook et al.

[137], who developed an approach for a single target bearing-only sensor problem. They

proved that the time it takes their approach to decrease the covariance of the estimate by

any given factor is constant factor competitive with any active control policy. While this

result is limited to bearing-only sensors and open environments where a robot can move

freely, it is still an interesting guarantee, particularly as the bound is with respect to time.

The focus of this thesis is different, as we develop algorithms for teams of robots with a

variety of sensors that take intelligent actions even when their movement is constrained.

Any active control policy faces the question of how to parameterize the actions the robots

can take. One popular approach is to use motion primitives, which has the advantage that

the objective only needs to be computed over a discrete set and can be used to incorporate

other properties such as obstacle avoidance. However, it is often possible to locally optimize

an initial action for the robots by considering the gradient of an objective. Spletzer and

Taylor describe a sampling based method for evaluating the gradient of several different

types of objectives [126, 125] while Schwager et al. [112] give an explicit characterization of

the gradient of mutual information with respect to the configuration of the team.

There are alternative formulations of active perception problems, in particular those

that build on geometry. The book by Bullo et al. [11] describes a wide variety of geometric

coverage and deployment problems. In contrast to the information based strategies, the

geometric approaches often use a set based “bounded uncertainty” model. In this setting,

it is often possible to theoretically analyze the performance of a system, which is typically

difficult with a probabilistic formulation. For example, Spletzer and Taylor [127] examined a

cooperative localization problem where a team must take actions to estimate the position of

its own members. They model measurements as having bounded uncertainty, which means

the set of possible team configurations that are consistent with received measurements are

a convex polytope within the team’s full configuration space. This geometric formaliza-
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tion allows them to provide guarantees on the rate of convergence for their active search

procedure. Geometric and probabilistic strategies are not mutually exclusive. For exam-

ple, Schwager et al. [113] examined different ways of combining geometric and probabilistic

objectives.

A number of researchers have studied issues relating to communication. Kassir et al.

[68] developed a distributed information-based control law that explicitly modeled the cost

of sending data between agents. In a range-only tracking problem, they showed how their

algorithm reduced the amount of inter-agent communication in a Decentralized Decision

Making algorithm without significantly affecting the system’s overall performance. In re-

lated work, Gil et al. [45] developed a controller to position a team of aerial robots to create

a locally optimal communication infrastructure for a team of ground robots. Julian et al.

[64] developed distributed algorithms for calculating mutual information to estimate the

state of static environments using multi-robot teams.

In many scenarios, the number of targets that needs to be localized is unknown a priori,

so there has also been research on strategies to discover and precisely localize multiple

targets. Dames and Kumar [29] considered a scenario where a team of robots must perform

these tasks simultaneously using range-only devices. They assumed measurements have

an unknown association, which for computational reasons limits their control law to only

consider whether or not a future measurement will be received (i.e., the possible value of the

measurement is ignored). All of the range-only work in this thesis assumes measurements

have a known association, but as discussed in Ch. 5, this is reasonable as RF-based range

sensors typically have a unique identifier like a MAC address. Carpin et al. [13] also localized

multiple targets, using a variable resolution binary filter to discover targets throughout an

environment and maximize mutual information to control an individual robot. Pursuit-

evasion games where a team must find or maintain visibility to targets [25] are also quite

relevant.
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2.4 Information Rich Active Perception

Information rich problems are those where a robot must estimate high dimensional state.

A prototypical example of this problem is active mapping, for which there is a considerable

body of prior work [133, 128]. One key question for any active mapping approach is how to

represent a static map of the environment. Such representations include, but not limited

to, topological maps, landmark-based representations, elevation grids, point clouds, meshes,

and occupancy grids [134].

Given a map representation, strategies for mapping and exploration can be primarily

grouped into two categories: (i) Frontier-based, and (ii) Information-gain based strategies.

Frontier-based strategies [142] are primarily geometric in nature and travel to the dis-

crete boundary between the free and unknown regions in the map. Extensions of this strat-

egy have been successfully used for building maps of unknown environments in 2D [47, 12].

Holz et al. [56] provide a comprehensive evaluation of frontier-based strategies in 2D envi-

ronments. Direct extensions to voxel grid representations of 3D environments using frontier

voids have also been proposed [42, 35]. Shade and Newman proposed a combination of a

frontier-based and a local vector-field based strategy to generate shorter exploration trajec-

tories [114]. Although they do not compute frontiers directly, Shen et al. [117] used a similar

strategy with a particle-based representation of free space for computational tractability.

While frontiers are somewhat difficult to use in 3D environments [117], they do provide a

useful way to generate potential actions for information-theoretic objectives [129].

Information-gain based mapping strategies optimize an information-theoretic measure

for exploration. Prior work has investigated minimization of the map entropy, which is

a measure of uncertainty associated with all grid cells [84]. Several methods have been

proposed that choose to maximize mutual information to reduce map uncertainty [1, 112].

Of particular relevance to the work in this thesis is the recent approach by Julian et al. [66],

where a beam model is employed to calculate the mutual information between a laser range

finder and a 2D occupancy grid. They show that a mutual information based control law

will eventually cause a robot to drive towards unknown space. However, these approaches
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use a greedy controller with a one-time step look ahead. Soatto [123] suggests planning over

multiple time steps to deal with the issue of a greedy explorer getting stuck in local minima.

To address this issue, researchers have proposed considering a discrete set of actions and

executing the one that maximizes information gain [10, 40]. Rocha et al. [105] use the

gradient of map entropy to select promising frontiers for exploration. These strategies do

not locally optimize the robot trajectory with an intent to gain more information as the

robot is traveling to the next selected frontier, which might result in inefficient mapping

behavior.

Prior work has used trajectory optimization over a finite horizon to optimize information-

theoretic criteria [90, 24, 110, 80]. However, these approaches have been primarily limited

to continuous representations of the belief and measurements.

One drawback to many frontier-based and information-based strategies is that they

only plan over a finite horizon. Particularly when a robot must travel to every destination

in an environment, this can result in the robot repeatedly traversing the same parts of

an environment in order to observe everything. When an uncertain but complete prior

estimate is available, coverage strategies, which are geometric in nature, avoid this issue by

planning paths that will observe every portion of the environment. Englot and Hover [36]

developed such a strategy to build a detailed model of a ship’s hull. Kollar and Roy [71]

adopted a similar approach and framed exploration as a constrained optimization problem,

but learned to predict how trajectories would reduce the robot and map’s uncertainty using

reinforcement learning.

Another consideration for any exploration strategy is whether or not to model the uncer-

tainty of the robot itself. Throughout this entire thesis, we assume that the robot is capable

of localizing itself using a simultaneous localization and mapping (SLAM) [134, 93, 75] sys-

tem. Modern SLAM systems [93], which account for uncertainty in the map and the robot’s

state, are now reasonably robust, and in many situations it is still possible to achieve good

performance without considering this uncertainty in the control policy. However, in cases

where reliable localization is not possible, it is important to plan trajectories that actively

20



reduce the uncertainty of the robot’s state and the map [10, 129, 136, 69, 60]. Stachniss

et al. [129] also considered the active SLAM problem. Using a Rao-Blackwellized particle

filter to estimate the joint distribution over maps and the robot’s trajectory, they proposed

selecting actions that maximize the expected reduction in the filter’s entropy, accounting

for uncertainty in the robot’s pose as well as the uncertainty of the map. However, this

approach is expensive, as it requires calculating entropy by repeatedly copying the filter

and updating it with a randomly sampled measurement.

For planning approaches that seek to maximize mutual information, one important ques-

tion is how close to optimal they are. Although these problems are typically NP-hard, build-

ing on work in combinatorial optimization by Nemhauser et al. [87], Krause and Guestrin

[72] derived approximation guarantees for greedy maximizations of mutual information and

other submodular set functions. These results were applied to mobile robot environmental

monitoring problems by Singh et al. [119] and Binney et al. [7]. These guarantees only

hold in offline settings where teams do not update their actions based on measurements

they receive. Golovin and Krause [46] generalized these ideas to online settings, deriving

performance guarantees for adaptive submodular functions. Unfortunately, these guaran-

tees require all actions to be available to all robots at all times, making them not directly

applicable to the problems discussed in this thesis. Hollinger and Sukhatme [53] develop a

sampling based strategy for maximizing a variety of information metrics with asymptotic

optimality guarantees. However, they assume that information is additive across multiple

measurements (i.e., measurements are independent). This assumption limits cooperation

in multi-robot settings (Ch. 3) and can lead to overconfidence when considering multiple

measurements of the same quantity (Ch. 6). Unlike the guarantee provided by Vander Hook

et al. [137], these guarantees are all with respect to an objective like mutual information

and not a performance metric like time to reduce uncertainty by a given amount.

Besides active mapping, information-theoretic objectives have also been used for plan-

ning and control in robotics for related information rich tasks involving uncertainty such

as inspection [55], environment modeling [120], extrinsic calibration of LIDAR sensors [79],
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visual servoing [28], and active object modeling [140]. They have also been used for ap-

plications outside of active perception. For example, Kretzschmar and Stachniss [73] use

mutual information as a criterion for storing a minimal number of laser scans toward map

reconstruction.

For additional related work focused on active vision, see the survey article by Chen et al.

[22].
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Chapter 3

Estimation and Control for

Localizing a Single Static Target

Having robotic teams that are capable of quickly localizing a target in a variety of environ-

ments is beneficial in several different scenarios. Such a team can be used in search and

rescue situations where a person or object must be located quickly. Cooperative localiza-

tion can also facilitate localization of robots within a team towards tasks like cooperative

mapping or surveillance. Given these multiple applications, it is reasonable to equip the

robots with additional sensors to support localization. In this chapter, we focus on the case

where each robot is equipped with a range-only radio frequency (RF) sensor. These sensors

provide limited information about the state of the target, necessitating the development of

an active control strategy to localize it.

This chapter makes two primary contributions. The first is an experimental model

for radio-based time-of-flight range sensors. The second is a general framework for active

control which maximizes the mutual information between the robot’s measurements and

their current belief of the target position. Both of these pieces serve as building blocks for

Ch. 4 and Ch. 5, which extend the approach to consider the effect of multiple measurements,

larger teams, and to scenarios with mobile or multiple targets.

Both the estimation and control strategies presented are fully centralized and require
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communication throughout the team. This limitation is typically not significant in the sce-

narios we consider as the team’s only sensor is RF-based. If the team was in an environment

where they could not communicate, they could not gather measurements either.

In the rest of this chapter we detail the estimation and control algorithms that enable a

team of robots to successfully localize a single stationary target in non-convex environments.

Our primary focus is on a series of experiments that we designed to test the approach across

different indoor environments and a variety of initial conditions. Overall, we are able to

repeatedly localize a target with an error between 0.7−1.6 m using only two robots equipped

with commercially available RF range sensors. A highlight of this work is that despite the

limited information that the team has when they are at any fixed position, they are able

to effectively coordinate and use their mobility so that the estimate of the target rapidly

converges.

This chapter originally appeared in [14, 17].

3.1 Technical Approach

In our approach, the robotic team maintains a distribution over possible locations of the

target’s location using a particle filter. The team constantly seeks to maximize the mu-

tual information between the current estimate of the target’s state and expected future

measurements. Both the filter and the control directions are computed in a centralized

manner as illustrated in Fig. 3.1. This approach could be made tolerant to some types of

communication limitations similar to the system presented by Dames and Kumar [29].

3.1.1 Measurement Model

We consider the case where the team’s only way of sensing the target is through a range-only

sensor. A standard approach for building these sensors is to use the round trip time (RTT)

of a signal between two nodes. Because of this, any delay in the signal’s propagation results

in an over-estimate of the distance. Conversely, an overestimate of the signal’s speed results

in an under-estimation of the distance. We use the nanoPAN 5375 – a RTT RF sensor which

operates in the 2.4GHz spectrum – and show that it exhibits both positive and negative
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Table 3.1: Notation.

Symbol Description

x Mobile target’s 2D position

z Range measurements

t Current time

σ2
m Measurement noise

σ2
p Process noise

c Destinations for the
team

T Length of future time
interval

R Size of team

M Num. of particles for
target prediction

Target	  
Es*ma*on	  

Target	  
Predic*on	  

Team	  Trajectory	  
Genera*on	  

Range	  sensing	  

Naviga*on	  

Robot 1 

Robot 2 

Robot 3 

Control	  Law	  

Range	  sensing	  

Naviga*on	  

Range	  sensing	  

Naviga*on	  

Figure 3.1: System overview with three robots. In this ex-
ample, Robot 3 aggregates range measurements and estimates
the location of the target. This estimate is used to predict the
target’s future locations over several time steps. The control
law selects the trajectory that maximizes the mutual informa-
tion between the target’s predicted location and measurements
the team expects to make. This trajectory is sent to the other
robots which follow it.

biases, which are primarily a function of whether or not the sensors are in line of sight

(LOS) or non line of sight (NLOS). Our data also show that the magnitude of the bias and

variance increase with the true distance between the sensors.

There is significant empirical and theoretical support for treating LOS and NLOS mea-

surements differently [103, 99]. Fig. 3.2 shows a histogram of biases which demonstrates

this. RTT methods work best when radios are not obstructed by obstacles and have clear

LOS conditions. However, when radios do not have LOS they are more likely to be affected

by scattering, fading, and self-interference, causing non-trivial positive biases. We model

the error of the measurement conditioned on the true state as:

p(z | x) =


N (z;α0 + rα, rσ2

L) LOS

N (z;β0 + rβ, rσ2
N ) NLOS

(3.1)

where r is the true distance between the sensors and N (z;µ, σ2) is a normal random variable

with mean µ and variance σ2. α0 and β0 are the biases, while α and β determine how the

biases change with distance. It is straightforward to calculate the maximum likelihood

estimate (MLE) of these parameters for this model with labeled data. Throughout this

paper, we assume that measurements are conditionally independent of each other given the
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Figure 3.2: Normalized histograms of LOS and NLOS measurements. Both histograms have
20,000 measurements. LOS measurements typically underestimate distance (negative bias),
while NLOS overestimate it (positive bias).

true state (i.e., p(z1, z2 | x) = p(z1 | x)p(z2 | x)).

Models for TDoA sensors typically use a biased Gaussian with constant or time-varying

variance [111, 62], whereas (3.1) is more similar to those used in power based range models.

We have chosen this approach because, as Patwari et al. noted, the Gaussian model does not

perform as well at large distances as the tails of the distribution become heavy [99]. Letting

the variance increase with distance ensures that the model handles large deviations from

the truth without using a Gaussian mixture model, which would increase the computational

complexity of the control as we discuss later.

Because the error statistics of LOS and NLOS measurements are so different, it is

important to correctly classify measurements. Using the wrong model to incorporate mea-

surements can result in the filter converging to an incorrect location of the target.

One approach – assuming the robots have a map of the environment – is to use geometric

LOS and check if a raycast between a hypothesized target location and the measuring robot

intersects any walls. This works well with particle filters as measurements can be classified

on a per particle basis.

The primary drawback to the geometric approach is that geometric LOS can be different

from RF LOS. As we show experimentally, measurements can have a negative bias and

relatively low variance – indicating RF LOS – even when the target and robot do not have

geometric LOS.

We address this issue by using a Hidden Markov Model (HMM) to classify sequences of
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measurements based on their observed mean and variance. By using the statistics of the

measurements, the HMM typically differentiates RF LOS and RF NLOS more accurately

than the geometric method because it does not rely on the assumption that geometric

LOS predicts RF interference. Concretely, we model noise as a two state HMM with non-

distance dependent Gaussian emissions. To classify a group of measurements, we subtract

their mean and find the maximum likelihood sequence of hidden states using the Viterbi

algorithm [8]. We train the HMM using the EM algorithm and a collection of unlabeled

range measurement errors. Unlike the geometric method, the HMM approach uses the

same measurement model to update all particles in the filter. In practice we have found

this works better than classifying measurements on a per particle basis using (3.1) as the

emission density.

Hidden Markov Models (HMMs) are widely used in several fields. They are a latent

variable model that make the same conditional independence assumptions as the Kalman

filter. The latent (i.e., unobserved) random variables are discrete and determine the emission

(i.e., observed) random variables which can be continuous or discrete. Most relevant to what

we present here, Morelli et al. [85] used an HMM to simultaneously localize a mobile beacon

with static nodes and classify the line of sight (LOS) conditions of range measurements

online. We only use an HMM to classify the LOS conditions, focus on how to coordinate

mobile nodes, and report experimental results.

More sophisticated models for predicting RF interfence exist [143], but they often require

detailed knowledge of the environment (e.g., the permittivity and conductivity of walls) or

an extensive training period. However, in this paper we are mainly interested in accurate

estimation and not in building models of RF propagation. Using an HMM is simpler, and

still enables accurate estimation.

3.1.2 Estimation

Range measurements are a non-linear function of the target state and can easily lead to

non-trivial multi-hypothesis belief distributions as well as rings and crescents. For these

reasons, we use a particle filter for the estimation. Formally, let xt = [x, y] be the state
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of the target at time t and cit be the 2D position of the ith member of the team. The full

configuration of the team is ct = [c1
t , . . . , c

n
t ]. Each robot makes a 1D range measurement zit

as they move around the environment. Aggregating these measurements produces a vector

zt = [z1
t , z

2
t , . . . , z

n
t ]. Where appropriate, we will condition zt on ct to emphasize that the

measurements depend on the configuration of the team.

The belief at time t is the distribution of the state conditioned on all measurements up

to time t. A typical Bayesian filter incorporates measurements over time recursively and a

particle filter approximates this as a weighted sum of Dirac delta functions [134]:

bel(xt) = η p(zt | xt)
∫
bel(xt−1)p(xt | xt−1,ut) dxt−1 ≈

∑
j

wjδ(xt − x̃j) (3.2)

where η is a normalization constant, x̃j is the location of the jth particle and wj is its

weight. While this equation is standard, we wish to emphasize that the approximation is

discrete. As we show in Sect. 3.1.3, this enables approximations of mutual information.

While the standard particle filter equations allow for the incorporation of non-linear

control inputs, ut, in our scenario the target is stationary. Despite this, during experiments

we injected noise into the system to avoid particle degeneracy problems. Specifically, we

perturbed the polar coordinates of each particle in the local frame of the robot that is

making the measurement with samples from a zero-mean Gaussian distribution. We also

used a low variance resampler when the number of effective particles dropped below a certain

threshold. All of these techniques can be found in standard books on estimation [134].

Assuming that the team has a map of the environment, they could sometimes improve

their estimate of the target’s location by rejecting particles that fall in occupied space. We

do not take this approach because in some situations the target may be in a region that the

team considers occupied (e.g., the target is on top of a desk or inside a room not on the

team’s map).

Particle filters are expressive, but can also be computationally expensive, requiring

many samples to accurately estimate a distribution. While we use KLD sampling [41] to
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keep the number of particles small, it is reasonable to ask whether the target’s position

should be estimated with a parametric filter such as the Extended Kalman Filter (EKF) or

Unscented Kalman Filter (UKF). However, the EKF and UKF are only appropriate when

the belief can be well approximated as a single Gaussian. This could be helpful once the

team’s estimate has converged, but at that point in time the particle filter should be able

to represent the belief using a few hundred particles, making it fast for both estimation

and control. Using a filter like the EKF also has its drawbacks. Hoffmann and Tomlin

[52] describe how linearizing the measurement model introduces error into the calculation

of mutual information, potentially hurting the team’s overall performance.

3.1.3 Control

Our control strategy is designed to drive the team so that they obtain measurements which

lead to a reduction in the uncertainty of the target estimate. The mutual information

between the current belief of the target’s state and expected future measurements captures

this intuitive notion. The advantage of this approach is that it incorporates the current

belief of the target’s state along with the measurement model to determine how potential

future measurements will impact the state. By design the team will move in directions

where their combined measurements will be useful. This is particularly important when

using sensors which provide limited information about the state of the target.

To motivate the choice of mutual information as an objective function for range-only

localization, we analyze its behavior in two typical scenarios. Fig. 3.3a shows a belief

distribution made up of two distinct hypotheses, a distribution that often arises when

using range-only measurements. We consider the mutual information gained by two robots

when their position is restricted to the blue line. Each robot’s position is parameterized

by a number in the interval [0, 1]. Intuitively, if both robots are within [0, 0.6] then their

estimate will not improve because any range measurement they make will support both

hypotheses. Alternatively, measurements made in the interval [0.6, 1.0] will eliminate one

of the hypotheses. Fig. 3.3b shows that mutual information captures this intuition. It is

close to its lower bound of 0 when the robots are within [0, 0.6] and much higher once they
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Figure 3.3: Mutual information cost surface. (a) and (c) show two separate belief distribu-
tions as well as a line parameterized from [0, 1] where two robots can move. (b) and (d)
show the value of mutual information as a function of the position of the robots on the line.
Overall, mutual information is higher in places where robots will make useful measurements.

leave that area. Fig. 3.3c and Fig. 3.3d show similar results when the belief is circular. In

this case, mutual information agrees with the intuition that as robots move away from the

center of the belief – 0.3 on the line – they will make more useful measurements.

Accordingly, we formalize our control law as follows. We select the next configuration

for the robotic team using the objective function:

ct+1 = arg max
c∈C

IMI[xt; z | c] = arg max
c∈C

H[z | c]−H[z | xt, c] (3.3)

The domain of the optimization problem is the configuration space of the team, C, and
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all other terms are defined in Ch. 2 (see (2.6)). Here we are concerned with the mutual

information between random vectors (i.e., the target state and measurements) as opposed

to random variables. Also, note that the team’s configuration c has a concrete value, while

the target’s state x is uncertain.

Determining Locations

Typical indoor environments are non-convex, meaning we must maximize mutual infor-

mation over a non-convex set. To do this, we propose searching over a discrete set of

configurations of the team. In our experiments, we do this by creating a connectivity graph

along with an embedding into the environment. At each time step, robots find candidate

locations by performing breadth first search and taking nodes within specified range inter-

vals. Short ranges allow a robot to continue gathering useful measurements where it is,

while long ranges enable it to explore new locations.

To create the connectivity graph we perform a Delaunay triangulation of the environ-

ment and define the incenters of the triangles as nodes. This requires a polygonal represen-

tation of the obstacles which can be created from an occupancy grid map. For edges, we

connect nodes from adjacent triangles as well as their transitive closure. Fig. 3.5 shows two

examples of this approach, which we used in our experiments.

Calculating The Objective

Hoffmann and Tomlin [52] developed an approach for calculating mutual information with

particle filters that we use here. In particular, they showed that by using the particle filter’s

discrete approximation of the belief, (3.2), the entropies can be expressed as:

H[z] ≈ −
∫
z

(∑
i

wi p(z | x = x̃i)

)
log

(∑
i

wi p(z | x = x̃i)

)
dz (3.4)

H[z | x] ≈ −
∫
z

∑
i

wi p(z | x = x̃i) log p(z | x = x̃i)dz (3.5)

Where we have dropped the measurement’s dependence on the configuration of the team

for brevity. The approximate equalities are due to the particle filter’s approximation of the
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belief.

It is necessary to predict each robot’s LOS conditions to select a measurement model

when calculating the entropies. In contrast to estimation, the geometric method’s predic-

tions are more accurate than the HMM’s. This is because the HMM treats LOS conditions

as a Bernoulli distribution that evolves over time according to a doubly stochastic matrix

that is independent of the environment. Consequently, it predicts the same LOS conditions

for all future measurements regardless of where the team goes. The geometric method does

not have this issue, which is why we use it for prediction.

In our work, we exploit the assumed conditional independence of the measurements

given the state when calculating the conditional entropy. By exchanging summation and

integration, we can rewrite (3.5) as

H[z | x] ≈
∑
i

wi
∑
j

H[zj | x = x̃i]

This reduces the conditional entropy to be multiple separate integrals over a single mea-

surement space – which can often be done analytically – as opposed to one integral over

the joint space of all measurements the team makes.

The entropy of the measurement distribution (3.4) is harder to compute. However, the

particle filter transforms the distribution into a finite dimensional mixture model, which

enables new approximation techniques.

Approximating Mutual Information

Unfortunately, performing the mutual information calculations in real time for teams with

more than 3 or 4 robots is computationally impractical: evaluating the mutual information

of a single configuration requires numerically integrating over the full measurement space

to calculate the measurement entropy. Rather than performing numerical integration over

subsets of the space [52], we view the measurement distribution p(z) as a mixture model.

The ith component is p(z | x = x̃i, c) with weight wi, both of which are determined by

the ith particle. Because our measurement model is Gaussian, we can use a deterministic
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approximation algorithm for evaluating the entropy of Gaussian mixture models [59].

The algorithm is based on a Taylor series expansion of the logarithmic term in the

integral. This replaces the log term by a sum. Exchanging the order of integration and

summation, the entropy can be expressed as a weighted sum of the Gaussians’ central

moments. The integrals can be calculated analytically, and only the weighting terms need

to be computed online.

We only use the 0th-order term in the Taylor series expansion:

H[z] ≈ −
∫
z

∑
k

wkN (z;µk,Σk) log g(µk) dz = −
∑
k

wk log g(µk)

g(µk) is the likelihood of the mixture model evaluated at the mean of the kth component.

The computational complexity of this approximation is Θ(n2l) where n is the number of

particles and l is the number of robots. The time is linear in l because the conditional

independence assumption in the measurement model results in the covariance matrix of the

measurements being diagonal. Table 3.3 summarizes the computational complexity of the

entire approach.

This approach also works when the measurement model is itself a mixture of Gaussians.

However, this would result in one mixture component for every separate combination of

mixture components from all robots, leading to exponential growth. This is partly why

we use a Gaussian measurement model with distance dependent variance rather than a

Gaussian mixture model.

3.2 Experiments

3.2.1 Experimental Design

There are four primary questions that we seek to answer with our experiments: 1) does

our measurement model result in an accurate estimate of the target’s location? 2) does

classifying measurements with an HMM do better than the geometric approach? 3) does

our approximation of mutual information result in trajectories that reduce the uncertainty
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of the team’s estimate? 4) are our results repeatable across different environments and with

various starting conditions?

We design five separate experiments to answer these questions. All of the experiments

have two robots trying to locate a third stationary robot. To assess repeatability, we run

several independent trials of each experiment. For each trial, we let the robots explore the

environment without interacting with them, and only stop them once the filter reaches a

stable estimate.

To evaluate the performance of each trial, we calculate the empirical mean of the filter’s

distribution as well as the volume of its covariance matrix (i.e., its determinant). These

statistics are not always an accurate reflection of the filter’s performance (e.g., the average

of two distinct hypotheses may be far from either hypothesis), but will show whether the

filter accurately converges to a single estimate over time.

We use a qualitative approach to evaluate the trajectories of the robots, and manually

assess whether or not they are reasonable. As a baseline comparison, in open environments

with no prior knowledge of the target’s location, it is best to move two range sensors

orthogonally to one another as is seen in other approaches [49, 132, 95].

In Experiment 1, we place two robots within 0.5m of each other and put the target in

NLOS conditions approximately 16m away. A good control strategy for this experiment

will result in the robots moving in complementary directions rather than staying tightly

clustered together.

For Experiment 2, we place the robots far away from each other to see if they still move

in complementary directions. The separation also tests whether the measurement model

consistently combines measurements from different modalities; if the robots follow good

trajectories, they will achieve LOS to the target at different times.

In Experiment 3, we place the robots within 0.5m of each other with the target more

than 30m away. Experiment 3 also takes place in a different environment. Experiments 1

and 2 take place in Levine Hall at the University of Pennsylvania, which was constructed

primarily in 2003 with modern constructions materials – its walls are primarily made up of
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Figure 3.4: Starting configurations of robots. Blue dots show the starting location of the
two mobile robots and the red square shows the location of the target.
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wood or metal framing with drywall. Experiments 3 and 4 take place in Towne Building

which was built in 1906 – its walls are typically made of brick or concrete.

For Experiment 4, we again place the robots close to each other with the target 20m

along a hallway that has a slight bend. The robots and the target do not have geometric

LOS, but the wall between them just barely obstructs their view, making it ambiguous

whether or not the RF signal will exhibit LOS or NLOS behavior.

In Experiment 5, we examine how the robots move when they are in a more open

environment. The robots start next to each other and have more control options to select

from than in the first four experiments since they are not constrained to move along a

hallway. This experiment takes place in Skirkanich Hall which was completed in 2006 and

also features modern construction materials.

Fig. 3.4 shows the starting location of the target and robots for each experiment.

3.2.2 Equipment and Configuration

We use the 3rd generation of the Scarab mobile robot Sect. A.1. The Scarabs are simple

differential drive robots equipped with laser scanners for localization and 802.11s wireless

mesh cards for communication [82]. The experimental software is developed in C++ and

interfaced via Robot Operating System [106]. The range sensor is commercially available

as part of the nanoPAN 5375 Development Kit [86]. The target remains stationary for

the duration of each trial while the Scarabs are limited to a maximum speed of 0.2 m/s.

The particle filter and mutual information calculations are performed on a laptop with

4GB RAM and an Intel Core Duo processor. To prevent inter-robot collisions, we use the

Optimal Reciprocal Collision Avoidance algorithm provided in the RVO2 library [122, 109].

For localization, planning, and determining LOS conditions we use a known occupancy

grid map of the environment with a resolution of 0.05 m. The results of the triangulation

algorithm in Sect. 3.1.3 are shown in Fig. 3.5. Robots consider nodes within 1.0 − 2.0 m

or 8.0 − 9.0 m of their current location for the control update, which typically result in

7-12 locations per robot. We chose these distance cutoffs because they generate few enough

options to compute everything in real time, while still enabling the team to evaluate several
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Figure 3.5: Graphs for candidate locations. Delaunay triangles are shown along with their
incenters which form the vertices of the graph.

Table 3.2: Measurement Model Parameters.

LOS NLOS

α0, β0 2.51 -1.34
α, β 0.20 -0.24
σ2
L, σ

2
N 7.00 14.01

distinct choices. In Ch. 4 we develop a theoretical justification for these parameters by

proving that mutual information cannot change substantially when the robot’s position

change doesn’t change substantially more than the standard deviation of individual range

measurements.

We uniformly sample 2500 locations throughout the environment to initialize the particle

filter and run a low variance resampler when the proportion of effective particles drops

below 0.3. We calculate the MLE of the measurement model’s parameters, (3.1), using a

separate dataset gathered in Levine. During the experiments, we double the MLE variances

to prevent the filter from prematurely converging without affecting the location of the

convergence. Specifically, if σL,MLE and σN,MLE are the MLE values of the variance for

LOS and NLOS conditions, we set σL = 2σL,MLE for LOS and σN = 2σN,MLE for NLOS.

Parameter values for the experiments are listed in Table 3.2. We emphasize that we used

the same parameters for the Towne, Levine, and Skirkanich experiments.
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Table 3.3: Computational complexity of control law. (3.3) with n particles, l robots, and d
potential locations per robot.

Task Cost

Single Evaluation Θ(n2l)
Solving Objective Θ(n2ldl)

3.2.3 Results

Fig. 3.6 shows the error of the nanoPAN 5375’s measurements as a function of distance. At

short distances in LOS conditions the nanoPAN provides consistent measurements with an

error larger than 2.0m. In NLOS conditions there is significant variability in both the mean

and variance of the measurements as the distance between source and receiver increases.

This data helps justify our choice of measurement model as it is clear that LOS and NLOS

conditions have different sensor measurement biases and variances.

Overall, our approximation of mutual information resulted in good trajectories for the

robots. Fig. 3.7 shows that the robots moved to gain complementary measurements; they

moved orthogonally to one another when possible, and once they had localized the source,

they maintained LOS. Fig. 3.8 shows this process in more detail. Initially, both robots moved

away from each other. Next, the robot on the left moved up the vertical hallway, while the

other robot moved laterally; an orthogonal movement pattern. Once measurements along

the horizontal hallway were no longer helpful due to the symmetry of the distribution,

Fig. 3.8b, both robots moved up the vertical hallway, which caused the filter to converge.

We stress that these behaviors arose organically from our objective.

Fig. 3.8 also serves as a good example of the types of distributions that typical parametric

approaches that assume a unimodal distribution cannot reliably track as there are clearly

multiple equally valid hypotheses.

Figures 3.9 and 3.10 show the mean and covariance of the estimate over time across

all trials and experiments when using an HMM to classify measurements. Across all ex-

periments, the mean converged to the true state of the target, ultimately surpassing the
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Figure 3.6: How geometric LOS and NLOS affects nanoPAN range measurements. The
subfigures show standard box-plots with outliers marked as ×’s. Each plot contains approx-
imately 10,000 data points. NLOS conditions are significantly noisier than LOS conditions
with statistics that vary with distance.

Table 3.4: Mean and std. dev. of RMSE of filter’s error over last 30 seconds for each
experiment. The error is lower when using an HMM, particularly in Expt. 4.

Expt. 1 Expt. 2 Expt. 3 Expt. 4 Expt. 5
Geometric 0.73 m (0.25) 0.94 m (0.33) 2.13 m (0.45) 5.53 m (0.09) 2.14 m (0.94)

HMM 0.70 m (0.24) 0.72 m (0.23) 1.61 m (0.63) 1.51 m (0.35) 1.11 m (0.40)
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Figure 3.7: Trajectories from maximizing mutual information. Each subfigure is a typical
trajectory from each experiment. The robots move to gather complementary measurements,
causing the estimate of the target to converge.
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Figure 3.8: Evolution of the particle filter and the robots’ movement in Experiment 1.
Particles are black dots, the target’s position is shown by a box with a “T” and each
robot’s position is shown by a box with a number. a) Early range measurements cause a
ring. b) Both robots move laterally, generating two hypotheses. c) The robots move up,
and the filter converges.
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baseline accuracy of an individual measurement. Table 3.4 provides the resulting root mean

square error (RMSE) of the converged filter. The slightly increased error in Experiments

3, 4 and 5 suggests that the parameters learned from data collected in Levine do not per-

fectly transfer to Towne and Skirkanich. However, the overall error is still low. The fact

that the covariance decreases and ends in the range [−3, 0] on a natural logarithmic scale,

shows that filter consistently converges to a single hypothesis. For reference, the natural

logarithm of the determinant of the identity matrix (i.e., 1 meter variance in only x and y)

has a value of 0. The consistent trends across all trials and experiments demonstrate that

the fundamental approach is robust to various starting conditions and changes in the sensor

across environments.

As shown in Tab. 3.4, the results for using the geometric LOS approach result in similar

accuracies except in Experiment 4. For that experiment, we ran 3 separate trials and in

each case the filter converged to a single estimate that was 5.7 m away from the target’s true

location. The essential problem is that at the start of the experiment the robots and the

target do not have geometric LOS, but the RF interference is low. As Fig. 3.11a shows, the

measurements exhibit negative bias and relatively low variance. Comparing these results to

the HMM’s classification, Fig. 3.11d it is clear that the HMM classifies measurements more

accurately, enabling the filter to accurately correct for the bias. It is worth noting that the

robots still followed a reasonable trajectory when using geometric LOS; the control did not

fail.

Fig. 3.11 shows two additional datasets from Levine which exhibit the same phenomena.

Fig. 3.11b and Fig. 3.11e show measurement classifications from an experiment where a

robot drives up and down a long hallway with a target at one end (Fig. 3.12a). There are

no obstructions; the robot and target always have geometric LOS. Fig. 3.11c and Fig. 3.11f

show classifications from another experiment where a robot drives along a short hallway

with a target just around the corner (Fig. 3.12b). The robot only has geometric LOS to

the target at one end of its path. As in Experiment 4, these results show that geometric

LOS is not always equivalent to RF LOS; there are times when the bias and variance of
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the measurements suggest one measurement regime, but the geometric method predicts

another. Because the HMM uses the statistics of the measurements, it classifies them more

accurately.

3.3 Conclusion

This chapter described an active control strategy which leverages the current estimate of the

target’s state and knowledge of the sensor model to direct a team of robots towards locations

where they will make informative measurements. We showed how approximations for the

entropy of Gaussian mixture models can be used to calculate the necessary control inputs

in real time. Most importantly, we presented extensive experimental results demonstrat-

ing that 1) our measurement model results in accurate estimates of the target’s location,

2) LOS and NLOS measurements differ for typical RF range sensors, and that classifying

measurements with a Hidden Markov Model outperforms a simple geometric approach, 3)

our approximation of mutual information results in the team following intelligent trajecto-

ries and 4) our results are repeatable across different environments with various starting

conditions.

Our methods for approximating mutual information work well, but still present signif-

icant computational challenges. In Ch. 4 we show how approximating the belief can sig-

nificantly speed up the calculation of mutual information, while introducing limited error.

In Ch. 5 we address the exponential complexity inherent in planning actions for multiple

robots.
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Figure 3.9: Distance from weighted average of particles to target location using an HMM.
Experiments 1-3 and 5 have 10 trials, while Experiment 4 has 5. Overall, the filter converges
to an accurate estimate.
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Figure 3.10: Logarithm of the determinant of covariance when using an HMM. The covari-
ance decreases, indicating the filter converges to a single hypothesis.
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Figure 3.11: HMM vs. Geometric. (a)-(c) labels from geometric LOS. (d)-(e) labels from an
HMM. The HMM more accurately classifies measurements, enabling the filter to accurately
correct for the different biases.
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Chapter 4

Approximate Representations for

Maximizing Mutual Information

In this chapter, we address the problem of controlling a small team of robots to estimate

the location of a mobile target using range-only sensors. While the mutual information

based control law in Ch. 3 is a good starting point, it has two problems that preclude it

from solving this problem. The first problem is that the control law is computationally

expensive due to the complexity of the particle filter representation. If the team cannot

compute control actions quickly in this scenario, the mobile target will move substantially,

making it difficult to track. The second issue is that the control law only considers mutual

information at a single point for each team member. This means that the team does not

consider the impact of multiple measurements over time, making it more difficult to select

appropriate control actions. Calculating mutual information over a finite time horizon is

difficult, as it requires integration over the joint measurement space of the team, which

grows with the time horizon of the plan and size of the team.

To address these difficulties we develop a new approximation and theoretical design

criterion which enables us to build a real-time mutual information controller for our mobile

target tracking problem. A primary contribution in this chapter is a method to approximate

mutual information by approximating the distribution over the target’s predicted location.
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While this approximation necessarily introduces error into the control law, we show that

this error is bounded for Gaussian measurement models. Importantly, this bound yields

insight into the degree to which we can speed up the calculation of mutual information via

approximation without significantly affecting the team’s performance. The other primary

contribution is a bound on the difference in mutual information between two control inputs

as a function of the noise of the range sensors. This analysis further aids in the design of a

real-time system by enabling us to appropriately design the set of control inputs.

We evaluate the proposed methodology and design trade-offs through simulations and

real world experiments. Our results show that the approximation significantly decreases

the time to compute mutual information and enables the team to quickly and successfully

estimate a mobile target’s position.

This chapter continues to focus on range-only RF-based sensors. However, as the pro-

posed mutual information based techniques are broadly applicable, the approximations in

Sect. 4.2 remain general.

This chapter originally appeared in [15, 16].

4.1 Mutual Information Based Control

In this section we describe a mutual information based control law for the mobile target

tracking problem. The approach and discussion are similar to Sect. 3.1 except that here

1) the filter estimates a moving target, 2) the control law considers the impact of multiple

measurements made by the team, and 3) the discrete action set is generated using path

planners as opposed to a Delaunay triangle decomposition of the environment. As before,

the team shares observations to jointly estimate the target’s location (Sect. 4.1.1). By

predicting where the target will go next and what measurements they are likely to receive

(Sect. 4.1.2), the team chooses control directions that maximize the predicted reduction in

entropy of the target’s uncertainty over a finite time horizon (Sect. 4.1.3).
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4.1.1 Target Estimation

To estimate the target’s position, we use a particle filter, and the same basic representation

described previously (Sect. 3.1.2). However, we now also need to account for the target’s

mobility. Similar to other work on predicting the motion of an un-cooperative target [110,

138] we use a Gaussian random walk for the process model: p(xt | xt−1) = N (xt;xt−1, σ
2
pI)

where I is the identity matrix and N (x;µ,Σ) is a Gaussian with mean µ and covariance Σ.

Throughout this chapter, we also make the simplifying assumption that the measurement

model, p(zt | xt), can be modeled as the true distance between the target and measuring

robot perturbed by Gaussian noise. As discussed in Sect. 3.1.1 this assumption is not always

valid for range sensors, but this simpler model enables us to analyze the effect of various

approximations.

4.1.2 Target and Measurement Prediction

To determine how they should move, the team must predict where the target will go

and what measurements they will receive. Specifically, if the team plans an action over

the time interval τ
4
= t+ 1 : t+ T , they need to estimate the target’s future state:

xτ = [xt+1, . . . ,xt+T ]. This can be done using the current belief and process model:

p(xτ | z1:t) =

∫
p(xt | z1:t)

t+T∏
i=t+1

p(xi | xi−1) dxt ≈
M∑
j=1

wjδ(xτ − x̃jτ ) (4.1)

Where δ(·) is the Dirac delta function, x̃jτ is the trajectory of the jth particle, and wj is its

weight.

Over this time interval, the team will execute an action, which we define as a discrete se-

quence of poses for each team member. An action can be expressed as cτ = [ct+1, . . . , ct+T ]

where cri is the 2D position of robot r at time i (we ignore orientation as it does not affect

range measurements). As the team executes it action it will receive range measurements

zτ = [zt+1, . . . , zt+T ]. For a team of R robots, zi = [z1
i , . . . , z

R
i ] is the vector of 1D mea-

surements the team receives at time i. The measurement distribution can be calculated by
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marginalizing over the state and applying the conditional independence assumption of the

measurements:

p(zτ | z1:t, cτ ) =

∫
p(xτ | z1:t)

t+T∏
i=t+1

p(zi | xi, ci) dxτ (4.2)

Because the measurement model is Gaussian, substituting (4.1) into (4.2) results in a Gaus-

sian mixture model representation of the measurement density. After applying the condi-

tional independence assumption, the jth mixture component has a weight of wj with a

distribution equal to
∏t+T
i=t+1

∏R
r=1 p(z

r
i | xi = x̃ji , c

r
i ). Individual range measurements are

1-dimensional, which means the measurement space is RT -dimensional.

4.1.3 Information Based Control

Control Law

As in Ch. 3, our control law maximizes the mutual information between the future state of

the target and future measurements made by the team. The primary difference is that it

now considers the impact of multiple measurements over time, selecting a better action than

a greedy maximization would. Formally, at time t the team plans how it will move over the

time interval τ by considering a set of actions, C, that they can follow. After generating C,

the team selects the action that maximizes mutual information:

c∗τ = arg max
cτ∈C

IMI[zτ ;xτ | cτ ] = arg max
cτ∈C

H[zτ | cτ ]−H[zτ | xτ , cτ ] (4.3)

Although it is not explicit, both entropies are conditioned on measurements made up to

time t.

To generate C, we use motion primitives generated by path planners. For example, in

an open environment the set of actions could be composed of straight line paths whose final

destinations are uniformly spaced on a circle (Fig. 4.1a). When non-convex obstacles are

present (e.g., in an office building), we generate C by generating paths to all points that

are a user specified distance away using Dijkstra’s algorithm. Each endpoint has a single
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(a) Points on a Circle (b) Indoor Planner

Figure 4.1: Representative actions for a single robot using a finite set of motion primitives
with a finite horizon. The black boxes are the starting locations, the black circles are the
final destinations, and the hollow circles show intermediate points.

Figure 4.2: Representative actions generated by path planning. Blue lines show shortest
paths from the red circle to nearby locations using an occupancy grid.

shortest path which defines an action. To determine the points at which a robot makes

measurements, the path is discretized into a fixed number of waypoints (Fig. 4.1b).

We generate motions by planning paths instead of using the connectivity graph approach

described in Sect. 3.1.3 for two reasons. First, paths can be planned using an occupancy

grid, while the previous approach required creating a polygonal representation of the en-

vironment. Second, paths planned in a occupancy grid with a reasonable resolution are

smoother than those between incenters of Delaunay triangles (e.g., compare Fig. 4.2 to the

zig-zag paths that would be planned in Fig. 3.5).

Calculating the Objective

To evaluate the objective for an action cτ , we separately evaluate the conditional measure-

ment entropy and measurement entropy.
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Calculating the conditional entropy is straightforward. Using its definition and the

assumed conditional independence of the measurements given the state:

H[zτ | xτ , cτ ] ≈
M∑
i=1

wi

t+T∑
j=t+1

R∑
r=1

H[zrj | xj = x̃ij , c
r
j ] (4.4)

M is the number of particles used to predict the target’s future state (4.1) and the ap-

proximate equality is due to the particle representation. Because each measurement comes

from a Gaussian distribution, the entropies in the summand can be calculated analytically,

making the running time Θ(MRT ).

Unfortunately, as shown in Sect. 4.1.2 the measurement density, p(zτ | z1:t, cτ ), is

a Gaussian mixture model (GMM) and there is no analytic method for calculating its

entropy. Numerical integration methods can be used, but the domain of integration is RT -

dimensional, making it large even when there are a few robots over short time scales. This

necessitates the use of algorithms like Monte Carlo integration which scale exponentially

with the dimension, making them unsuitable for real-time performance.

However, there is a deterministic approximation for the entropy of a GMM developed by

Huber et al. [59]. This algorithm uses a truncated Taylor series expansion of the logarithmic

term in the entropy which allows the integration to be performed analytically. We use the

0th order approximation:

H[g] ≈ −
M∑
k=1

wk log

M∑
j=1

wjN (µk;µj ,Σj) (4.5)

where g(x) =
∑M

i=1wiN (x;µi,Σi). While this approximation is not tight, we show experi-

mentally that it suffices for information based control.

The time complexity of (4.5) is Θ(M2RT ). The dependence on the number of particles

which represent the target’s future state, M , is problematic as it grows exponentially with

the time horizon, T . While there are algorithms for reducing the number of components in

a GMM, their time complexity is also quadratic in the number of components [108, 58]. In
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Sect. 4.2.2 we describe a different approach which reduces the number of components by

approximating the distribution over the target’s future state and prove that such approxi-

mations result in similar distributions over measurements.

4.2 Approximate Representations

In Sect. 4.1 we outlined a general control law for a multi-robot team. However, it is com-

putationally infeasible as the team’s size and time horizon grow. It is also unclear which

actions to consider. We address these problems in Sect. 4.2.2 where we analyze how an

approximation of the target’s future state affects the objective function, and in Sect. 4.2.3

where we develop a theoretical design criterion for generating actions. These analyses use

an information theoretic relationship that we prove in Sect. 4.2.1.

4.2.1 Bounding Entropy Difference

Intuitively, if two Gaussian mixture models (GMMs) are similar, then their entropies should

be similar as well. In particular, one would expect that if the means of individual compo-

nents of a GMM are slightly perturbed, then the entropy of the GMM would not change

substantially. Our primary theoretical contribution is proving that this intuition is correct.

We do this by building on a previously known result that relates the L1 distance between

discrete distributions and their difference in entropies. For clarity of presentation, all proofs

are deferred to the Appendix.

The L1 distance is one way of measuring the difference between distributions. For two

densities f and g, it is defined as ‖f − g‖1 =
∫
|f(x) − g(x)| dx. To concisely state the

following results we do not use boldface to denote vectors, define φ(x) = N (x; 0, 1) as the

standard 1-dimensional Gaussian, Φ(x) as its cumulative distribution function, ‖x‖Σ =
√
xTΣ−1x as the Mahalanobis distance, and | · | as the determinant of a matrix.

Theorem 1 (L1 bound on entropy). Let f and g be probability density functions such that

‖f − g‖1 ≤ 1/2, 0 ≤ f(x) ≤ 1 and 0 ≤ g(x) ≤ 1. Then

|H [f ]−H [g] | ≤ −‖f − g‖1 log ‖f − g‖1 + ‖f − g‖1 H

[
|f(x)− g(x)|
‖f − g‖1

]
(4.6)
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Cover and Thomas [27, Theorem 17.3.3] prove this result for discrete distributions, but

the proof extends to continuous distributions whose likelihood is between 0 and 1. Using

the following lemmas, we use Theorem 1 to prove that the entropy of a GMM does not vary

substantially if the means of its components are perturbed.

Lemma 1 (L1 between Gaussians with same covariance). If f(x) = N (x;µ1,Σ) and g(x) =

N (x;µ2,Σ) are k-dimensional Gaussians then

‖f − g‖1 = 2 (Φ (δ)− Φ (−δ)) = 2 (2Φ (δ)− 1) (4.7)

where δ = ‖µ1 − µ2‖Σ/2.

Lemma 2 (Entropy bound of normalized difference of Gaussians). If f(x) = N (x;µ1,Σ)

and g(x) = N (x;µ2,Σ) are k-dimensional Gaussians with µ1 6= µ2 then

H

[
|f − g|
‖f − g‖1

]
≤ log

√
(2πe)k|Σ|

(
1 + δ2 +

2δφ(δ)

2Φ(δ)− 1

)
(4.8)

where δ = ‖µ1 − µ2‖Σ/2

Theorem 2 (Bound on Entropy Difference of GMMs). Let f(x) =
∑N

i=1wifi(x) be a k-

dimensional GMM where fi(x) = N (x;µi,Σi) and |Σi| ≥ (2π)−k so 0 ≤ fi(x) ≤ 1. If

g(x) =
∑N

i=1wigi(x) where gi(x) = N (x;µi + ∆i,Σi) is the GMM created by perturbing the

means of components of f by ∆i such that ‖fi − gi‖1 ≤ 1/2 for all i then:

|H [f ]−H [g] | ≤
N∑
i=1

−wi‖fi − gi‖1 log
wi‖fi − gi‖1√

(2πe)k|Σi|
(

1 + δ2
i + 2δiφ(δi)

2Φ(δi)−1

) (4.9)

where δi = ‖∆i‖Σi/2 and ‖fi − gi‖1 = 2(2Φ (δi)− 1).

There are two primary limitations to Thm. 2, both of which come from Thm. 1. The

first is that the bound only applies to GMMs where the determinant of the covariance

of individual components is not too small; this is necessary to ensure that the maximum

likelihood of each component is at most 1. This issue is not significant for our application as

the covariance is determined by the noise of range measurements, which is typically quite
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Figure 4.3: Approximate measurement distribution.. (a) The original particle set (circles)
can be approximated by a smaller set of particles (triangles) using a grid. (b) The different
particle sets result in similar distributions over range measurements (e.g., peaks at d1 and
d2)

large [17]. Another limitation is the L1 constraint between components, which requires

that each perturbation not be large relative to the covariance. This requirement can be

relaxed by using a variant of Thm. 1. The L1 constraint arises in the proof of Thm. 1

from an inequality of the entropy function, h(t) = −t log t. Fannes [38] proved a similar

inequality for h(t) that is weaker, but does not have the L1 constraint; this inequality can

be substituted into the proof for Thm. 1 to eliminate the requirement that components be

near each other.

There are other results that connect similarity metrics between distributions to the

difference of their entropies. For example, Silva and Parada [118, Theorem 2] recently

proved that in the limit as the KL divergence between bounded continuous distributions

goes to 0, their entropies become equal. Research on rate distortion theory often looks

at similar problems (e.g., how to find approximations of distributions without exceeding

a certain distortion). However, we are not aware of prior work which bounds the entropy

difference of continuous densities like GMMs whose support is unbounded.

4.2.2 Approximating Belief

As discussed in Sect. 4.1.3, the number of particles needed to predict the location of the

target grows exponentially in time. This complicates calculating the entropy of the mea-

surement distribution (4.2), as it depends on the predictive distribution of the target (4.1).
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In this section, we show that a simple approximation of the predictive distribution can

speed up calculations of the objective (4.3), without significantly affecting its value.

Our approach for approximating a particle set is to replace subsets of similar particles

with their average. Specifically, we partition the state space with a regular square grid

and create an approximate particle set by replacing particles in the same cell with their

weighted average. Figure 4.3 shows an example of this process. In Fig. 4.3a the original

particle set representing a multi-modal distribution over the target’s location is reduced

via a grid. The new set is smaller, but it slightly changes the measurement distribution as

shown in Fig. 4.3b.

To analyze the error introduced by this approximation, we assume that the range based

measurement model has a constant variance σ2
m and is unbiased. With these assumptions,

the conditional entropy (4.4) is H[zτ | xτ ] ≈ (TR/2) log(2πeσ2
m), which doesn’t depend on

the number of particles or their location. Thus, the approximation does not introduce any

error for this term.

The approximation does introduce error for the entropy of the measurement density,

H[zτ ]. We use Thm. 2 to bound this error, by showing that the approximate measurement

distribution is a perturbed version of the original measurement distribution. Let X be

the original set of particles and f(z) =
∑M

j=1wjN (z;µfj , σ2
mI) be the Gaussian mixture

model (GMM) it creates with the action cτ and measurement model, using superscripts

to index components. Let G(j) be a map from the index of a particle in X to the index

of the corresponding particle in the approximate particle set Y. The density Y creates is

g(z) =
∑N

i=1 πiN (z;µgi , σ2
mI), where the ith component’s mean and weight is determined by

the particles in X that map to the ith particle in Y. While f(z) and g(z) may have a different

number of components, M ≥ N , the expressions are related in that each component in f(z)

corresponds to a single component in g(z). This means the approximated measurement

distribution can be re-expressed as g(z) =
∑M

j=1wjN (z;µfj + ∆j , σ2
mI) where ∆j is the

difference between µfj and µgG(j) . Each ∆j can be bounded. Note that measurements are

unbiased. If crk is robot r’s position at time k and x̃
Xj
k is the position of the jth particle in
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X at time k, the corresponding element of µfj is µ
fj
k,r = ‖crk − x̃

Xj
k ‖2. Similarly, if x̃Yik is

the particle in Y that lies in the same cell as x̃
Xj
k , then µgik,r = ‖crk − x̃Yik ‖2. Because x̃

Xj
k

and x̃Yik lie in the same cell the farthest they can be apart is ‖x̃Xjk − x̃Yik ‖2 ≤
√

2L where

L is the cell’s length. Thus, each component of the perturbation is at most
√

2L. As the

perturbation vector is RT dimensional for all j:

‖∆j‖σ2
mI
≤
√

2LRT

σm
(4.10)

This bounds the Mahalanobis distance between the mixtures corresponding means.

When the difference is small, Thm. 2 bounds the difference in entropies. Importantly,

the bound shows that if the length of a grid cell is below the standard deviation of the

measurement model, then the error from the approximation will be negligible.

4.2.3 Selecting Motion Primitives

A central aspect of our approach is the use of motion primitives to generate actions. To

select an informative action quickly, we wish to generate as few as possible without ignor-

ing important directions. In this section we show that mutual information cannot change

significantly when the team’s movements change on the order of the standard deviation of

the measurement model. This suggests that generating multiple actions that are close to

one another is computationally wasteful as their mutual information will be similar. It also

suggests that the intermediate waypoints from motion primitives (e.g., Fig. 4.1) should be

spaced as a function of the standard deviation of the measurement model. We exploit both

of these observations when designing the system.

Let c be an action and f(z) =
∑M

i=1wiN (z;µfi , σ2
mI) be the measurement density it

determines when combined with the measurement model and X , the particle set representing

the predicted motion of the target. If α is a perturbation to the team’s position at each point

in time, c + α is a new action with measurement density g(z) =
∑M

i=1wiN (z;µgi , σ2
mI). X

is the same for c and c + α, so f(z) and g(z) have the same number of components with

identical weights. Similar to the last section, the conditional entropy of the measurements is
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the same for the original and perturbed actions. Consequently, to determine the difference

in mutual information, we need to determine the difference in entropies between f(z) and

g(z).

The entropy of f(z) and g(z) are not necessarily equal as the means of individual

components may change. To bound this difference, consider the distance between the ith

particle and the rth robot at time k for both actions: µfik,r = ‖x̃ik − crk‖2 and µgik,r =

‖x̃ik − (crk + αrk)‖2. The triangle inequality tells us |µfik,r − µ
gi
k,r| ≤ ‖α

r
k‖2. Defining ∆i as a

perturbation to µfi that transforms it to µgi , and summing over all time steps and robots:

‖∆i‖σ2
mI

= ‖µgi − µfi‖σ2
mI
≤

t+T∑
k=t+1

R∑
r=1

‖αrk‖2
σm

(4.11)

When the change in a robot’s position is small relative to the standard deviation of the mea-

surement model, the mixture components will not be significantly perturbed. By Thm. 2,

this means the entropy of the mixture will not change significantly.

4.2.4 Bounding Entropy Difference using Kullback-Leibler Divergence

In previous work, we argued that the KL divergence can be used to bound the difference in

entropies of GMMs. However, this reasoning was flawed and we incorrectly concluded that

the bounds provided useful insight into how the entropy of a GMM can change. To correct

the record, we detail this prior result and clarify the source of the issue.

Lemma 3 (KLD Bound on Entropy for Gaussians). If f(x) and g(x) are two k-dimensional

Gaussian densities:

|H[f ]−H[g]| < min{DKL[f || g],DKL[g || f ]}+
k

2

Lemma 4 (Entropy Upper Bound for Mixture Models). If f(x) =
∑

iwifi(x) is a mixture

model density then H[f ] ≤ H[w] +
∑

iwi H[fi] where H[w] is the discrete entropy of the

mixture weights (Proved by Huber et al. [59]).

Lemma 5 (Entropy Lower Bound for Mixture Models). If f(x) =
∑

iwifi(x) is a mixture
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model, H[f ] ≥
∑

iwi H[fi].

Theorem 3 (Entropy Difference for Mixture Models). If f(x) =
∑N

i=1wifi(x) and g(x) =∑N
i=1wigi(x) are mixture models whose components have equal weights then

|H[f ]−H[g]| ≤ H[w] +

N∑
i=1

wi|H[fi]−H[gi]|

where H[w] is the discrete entropy of the mixture weights.

Theorem 3 does not connect the difference in entropies between f and g to their similarity

as measured by KL divergence or a similar quantity. In previous work, we listed a slight

variant of it, [15, Thm. 1], which used Lem. 3 to bound the summand in Thm. 3. While

that is valid, it is not relevant for GMMs where each component has the same covariance

because the summand is always 0: the entropy of a Gaussian only depends on its covariance,

so when corresponding components have the same covariance, they have the same entropy,

making their difference 0. Because the fixed covariance noise model results in GMMs whose

components have identical covariance, it is incorrect to conclude, as we previously did, that

a bounded KL divergence between components gives insight into the entropy difference

between the GMMs.

A challenge to the pragmatic contribution of Thm. 3 is that the upper and lower bounds

used to prove it are strong at different times. The upper bound on the entropy (Lem. 4) is

tightest when each of the components is separated and their shared support is minimal [59].

In contrast, the lower bound (Lem. 5) is tightest when each component is essentially iden-

tical. It is also worth noting that the bound on entropy difference is looser as the mixture

weights come closer to each other. In the worst case, w is the uniform distribution meaning

H[w] = logN [27]. Note that Thm. 2 has no such offset term, making it a more insightful

bound. Consequently, Thm. 2 in this paper enables us to reach the same conclusions we

previously made, which we believe resolves the issue.
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Figure 4.4: Monte Carlo integration vs. 0th order Taylor approximation for evaluating
mutual information. The Taylor approximation is more efficient.

4.3 Experiments

This section describes a series of simulations and real world experiments which evaluate the

proposed methodology and design trade-offs. All of our software is written in C++, run

on an Intel Core i7 processor, and interfaced using the Robot Operating System [106].

4.3.1 Computational Performance

In Sect. 4.1.3 we discussed how the primary computational challenge of the objective is

the calculation of the measurement density’s entropy. We now study the performance of

Huber’s 0th order Taylor approximation and show that the approximation algorithm in

Sect. 4.2.2 makes it tractable for longer time horizons. We also discuss the impact of using

an alternative filter for estimation and calculating the objective.

To assess the performance of the Taylor approximation, we compare it to the Vegas algo-

rithm – a Monte Carlo integration algorithm provided by the Cuba library [50] – on a variety

of mixture models. To generate a mixture we sample particles and a team action uniformly

at random and then apply the measurement model. Figure 4.4 shows the time to calcu-

late the entropy of a single mixture using different numbers of particles and measurement

dimensions. Teams often have to evaluate dozens to hundreds of actions, so calculations

longer than a fraction of a second make the control law infeasible. The data show that

unlike Monte Carlo integration, the Taylor approximation is feasible in higher dimensional

spaces when the number of particles is not large. Its lack of growth with dimension is not
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Figure 4.5: Effect of approximating belief on mutual information (MI). Two robots move
along a parameterized line from [0,1] (blue, (a) and (d)). Approximating belief introduces
limited error into mutual information when calculating it via Monte Carlo integration ((b)
vs. (e)) or the Taylor approximation ((c) vs. (f)).

surprising as its dependence on dimension is from simple matrix operations.

4.3.2 Effects of Approximations

To understand the effect of the approximations on the team’s decisions, we visualize their

impact on the mutual information cost-surface in a few typical scenarios.

Figure 4.5 depicts the effect of approximating the belief on the calculation of mutual

information as two robots are constrained to move along a parameterized line from [0, 1].

Given a circular belief distribution represented by a particle filter (M = 2500, Fig. 4.5a),

mutual information is computed using Monte Carlo integration for all possible locations

of the team with range-only observations (σ2
p = 3 m, Fig. 4.5b). The value of mutual

information matches intuition; as the robots move away from the center of the belief (0.3

on the line), measurements become increasingly informative with corresponding increases
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Figure 4.6: Effect of approximating different beliefs on mutual information (MI). Two robots
move along a parameterized line from [0,1] (blue, (a), (d), (g) and (j). The approximation
introduces limited error for Monte Carlo integration and the Taylor approximation.
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in mutual information. An approximate belief representation with fewer particles (N = 26,

Fig. 4.5d) corresponding to a grid length of 3.0 m yields mutual information values that

are similar to the original distribution (Fig. 4.5e). The mean absolute error between the

original and approximate mutual information is 0.03.

It is also important to understand the effect of approximating the belief on the Taylor

approximation, as that is how we calculate mutual information in simulations and exper-

iments. Comparing Fig. 4.5c to Fig. 4.5f, it is clear that the approximation introduces

limited error for the Taylor approximation as well; the mean absolute error is 0.06. While

this is larger than it was for numerical integration, it still represents a small change.

To further verify that the approximation introduces limited error, Fig. 4.6 shows its effect

when the belief is distributed as a crescent or two separate hypotheses. These distributions

are useful examples as they often arise when using range-only measurements [32, 17]. As in

Fig. 4.5, it is clear that the belief approximation introduces limited error for both Monte

Carlo integration (mean absolute error below 0.04) and the Taylor approximation (mean

absolute error below 0.09). It also significantly reduces the number of particles resulting in

a substantial computational speedup (M = 1500 to N = 12 for the crescent and M = 500

to N = 8 for two hypotheses).

Looking at the Taylor approximation in isolation might suggest that it performs poorly.

For example, it sometimes results in a negative value for mutual information which is a

non-negative quantity [27]. However, for the purposes of selecting a control action, the

location of the maxima matter more than their value. Given this, by comparing Fig. 4.5b

and Fig. 4.5c it is clear that using the Taylor approximation will cause similar actions to be

selected: the maxima occur at the same place in both plots, demonstrating that the Taylor

approximation performs well.

The previous plots demonstrate that the approximation introduces relatively small

amounts of error in typical scenarios. However, they do not illustrate the theoretical bound

on entropy difference (Thm. 2). A simple example comparing the entropy of a single Gaus-

sian to a two-component mixture model makes the bound clearer. Let f(x) = N (x; 0, 1)
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Figure 4.7: Comparison of actual entropy difference to bound from Thm. 2 for mixture
models that differ by one component. The theoretical bound is not sharp, but becomes
tighter as the components become more similar.

be the standard 1D Gaussian and g(x;µ) = 0.5N (x; 0, 1) + 0.5N (x;µ, 1) be a 2-component

mixture model where the mean of the second component is µ. Figure 4.7 shows the actual

entropy difference, |H[f ]−H[g]|, between these mixtures along with the upper bound from

Thm. 2 for various values of µ. When µ is close to 0 the mixtures are similar and have

similar entropies, which the bound captures. As µ increases, the bound is weaker, becoming

much larger than the true entropy difference. Despite this fact, Thm. 2 still provides useful

theoretical insight into the effect of the approximation.

4.3.3 Flexibility of Motion and Number of Robots

The team can presumably gather better measurements by evaluating more actions, but

this adds computational expense, and additional actions may not be helpful. To examine

these trade-offs in a controlled setting, we run simulations in an open environment and vary

the number of robots in the team and destination points they use to generate actions (see

Fig. 4.1a). We evaluate 1) how quickly the team obtains a stable and accurate estimate

and 2 how accurate the estimate is over longer periods of time.

For each of these experiments the team moves at 0.2 m/s while the target moves at 0.15

m/s. All members of the team start in the same location with the target 10 m to their right.

The target repeatedly drives straight for 5 m and then selects a new direction uniformly

at random. To make meaningful comparisons across experiments, the target always follows

the same random path. The simulator generates range measurements between the target
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and each team member at 10 Hz using a Gaussian whose mean and variance are equal to

the true distance. The simulator is asynchronous; the target moves even if the team is

planning.

At each point in time, the team plans a 15 second action – simulating 3 target steps –

and evaluates mutual information at 3 points along each action. Although each robot will

make significantly more than 3 measurements while executing its action, it is not necessary

to evaluate mutual information at each position that a measurement will be received. As

described in Sect. 4.2.3, mutual information at nearby locations must be similar, so densely

evaluating it will not further distinguish which actions are more informative than others.

To ensure that the motion model of the filter generates samples in all areas where the

target could be, we set the standard deviation to be σp = 0.3, a small multiple of the

maximum speed of the target multiplied by the sampling interval. To predict the target’s

future location (4.1), the team simulates a step every 5 seconds with σp = 0.25.

The team “acquires” the target once they sustain an estimate for 10 seconds with a mean

error below 1.5 mand a spread (i.e., the square root of the determinant of the covariance)

below 1.5. We chose these values as they are close to the best the estimator can do. Table 4.1

shows acquisition times for 5 trials with a variable number of robots and destination points.

Surprisingly, the 3 robot team does worse with more destination points. This is a direct

consequence of the exponential growth in the number of actions the control law evaluates,

which makes the robots spend a long time planning their initial actions. In contrast, the 2

robot team’s acquisition time improves by considering more than 3 destination points, after

which point it does not change. Planning time is not an issue for the 2 robot team – they

have at most 36 actions – which suggests that they are primarily limited by their team size.

This is emphasized by the 10 second difference in performance between the best 2 robot

time and the best 3 robot time.

To assess the long term performance of the team, we ran the same set of experiments for

5 minutes. Figure 4.8a shows the estimate’s error over time. While the target is acquired at

different points in time, the final error is the same for all parameters. The computational
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Table 4.1: Effect of motion primitives and team size on the time to acquire the target.
Mean and std. dev. are shown for 5 trials.

2 Robots 3 Robots

3 Points 80.55s (22.68) 42.57s (3.55)
4 Points 56.00s (6.07) 49.00s (15.24)
5 Points 56.17s (7.31) 51.83s (15.94)
6 Points 55.10s (12.24) 69.71s (9.94)

0 100 200 300
0

2

4

6

8

10

12

14

Time (sec)

E
rr

o
r 

--
 W

e
ig

h
te

d
 A

v
g
 X

Y
 P

o
s
it
io

n
 (

m
)

 

 
3 Points

4 Points

5 Points

6 Points

(a) Random walk

0 100 200 300
0

2

4

6

8

10

12

14

Time (sec)

E
rr

o
r 

--
 W

e
ig

h
te

d
 A

v
g
 X

Y
 P

o
s
it
io

n
 (

m
)

 

 
3 Points

4 Points

5 Points

6 Points
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Figure 4.8: Mean error of estimate for various motion primitives with 3 robots. The number
of primitives do not affect the long term error regardless of how the target moves.

difficulties that teams with more actions have are not present once the filter has converged,

as the belief can be represented with fewer particles. Figure 4.8b shows the long term error

from a separate experiment where the target moves 15 m to the right of its starting location

and then back. This motion makes it harder to obtain and maintain an accurate estimate

because the target moves away from the team for a long time without periodically stopping

and turning. The similar results across experiments indicate that the estimation and control

approach work well.

4.3.4 Indoor Experiment

To study the real world performance of a team we run two real world experiments where two

mobile robots track a third mobile robot as it moves in a loop through an office building as

shown in Fig. 4.9. The target’s path is 55 m long and it moves at 0.12 m/s, traversing the

loop in about 8 minutes. The team starts across the map, travels at 0.2 m/s, and plans using

destination points that are 6.0m away. Each robot is equipped with a Hokuyo-URG04LX

laser scanner for localization, a 802.11s wireless mesh card for communication, and a range
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Figure 4.9: Indoor experimental setup. The target starts at the blue “X” and moves in a
loop. The team starts at the red circle.

sensor that is commercially available as part of the nanoPAN 5375 Development Kit [86].

The nanoPAN 5375’s measurements often have an error larger than 2.0 m [17].

In our first experiment, the target traverses its loop once. Figure 4.10a shows the error

of the estimate over 7 trials. Overall, the team is able to obtain a good estimate quickly

and maintain it. The mean root mean square error (RMSE) from t = 60 s to the end of the

experiment was 2.43 m with a standard deviation of 0.68. The authors previously achieved

errors of 1.0 − 2.0 m when localizing stationary nodes with the same sensor [17]. Given

that the target is moving in this experiment, we believe these results indicate that the team

performs well.

In our second experiment, we assess the longer term performance of our approach by

having the target traverse the same loop 4 times. Figure 4.10b shows the error of 2 different

trials and Fig. 4.11 shows the filter’s evolution in trial 1. Again, the team does a good

job tracking the target and obtains RMSEs of 3.88 m and 2.83 m. These slightly higher

error rates are due to multiple hypotheses that sometimes arise as a result of the limited

information range measurements provides. Given the limited travel directions in this envi-

ronment, it is also difficult for the team to obtain measurements that remove ambiguities.

Figure 4.11d and Fig. 4.10b at t ≈ 1000 s show this happening. However, whenever the

error increases, it eventually decreases. It is also important to note that when the estimate’s

error increases, its covariance also increases; the rise in error is not indicative of the team

being overly-confident of a bad estimate.
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(b) 4 loops (2 trials)

Figure 4.10: Distance from the estimate’s mean to the target’s true location as the target
drives around.

(a) t = 2.29 s (b) t = 47.08 s (c) t = 349.64 s (d) t = 1028.41 s (e) t = 1091.81 s

Figure 4.11: Evolution of particle filter for trial 1 of the 4 loop experiment. Blue dots
represent particles and the red “X” shows the filter’s mean. Gray boxes with numbers
show the team’s position. a) Initially, the target’s location is uncertain. b-c) By moving
intelligently, the team accurately estimates the target’s location. d-e) Multiple hypotheses
can arise due to the target’s motion and the limited information of range measurements,
but they are eventually eliminated.

4.4 Conclusion

In this chapter we presented a control policy for maximizing mutual information over a

finite time horizon to enable a team of robots to estimate the location of a mobile target

using range-only sensors. To enable calculation of our policy in real-time, we developed

an approximation of the belief. By proving that the entropy of a Gaussian mixture model

cannot change substantially when its components are perturbed, we argued that these ap-

proximations do not significantly affect the teams behavior. We also developed a theoretical

design criterion for generating motion primitives by connecting the incremental motions the

team makes to the variance of the measurement model. We validated our approach using

simulations and real world experiments in which a team of robots successfully track a mobile
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target.

While the techniques in this chapter substantially improve the online information gath-

ering strategy, there are two fundamental issues that still need to be addressed. The first is

that the complexity of the control law is still exponential in the number of team members.

This means that this approach will not scale to teams with more than 2 or 3 members.

The second issue is that the control law only works when the team knows that the target is

present and can always obtain measurements to it. We address all of these issues in Ch. 5.

4.5 Proofs

4.5.1 Integrating Gaussians Over a Half-Space

Proving Lems. 1 and 2 requires integrating Gaussian functions over a half-space. The follow-

ing identities will be used several times. Owen [96] gives these identities for 1-dimensional

Gaussians, but we have been unable to find a reference for multivariate case. For complete-

ness, we prove them here.

Lemma 6. If f(x) = N (x;µ,Σ) is a k-dimensional Gaussian and A = {x : aTx + b > 0}

is a half-space then

∫
A
f(x) dx = Φ (p) (4.12)∫

A
xf(x) dx = Φ (p)µ+ φ (p)

Σa√
aTΣa

(4.13)∫
A
xxT f(x) dx = Φ (p) (Σ + µµT ) + φ (p)

(
ΣaµT + µaTΣ√

aTΣa
− pΣaaTΣ

aTΣa

)
(4.14)

where p = (aTµ + b)/
√
aTΣa is a scalar, φ (x) = N (x; 0, 1) is the PDF of the standard

1-dimensional Gaussian and Φ (x) is its CDF.

Proof of (4.12). All of these integrals are evaluated by making the substitution x = Ry,

where R is a rotation matrix that makes the half-space A axis aligned. Specifically, define

R such that aTR = ‖a‖eT1 where e1 is a k-dimensional vector whose first entry is 1 and all

others are 0. This substitution is advantageous, because it makes the limits of integration
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for all components of y except y1 [−∞,∞].

Because RTx = y, y is a k-dimensional Gaussian with density q(y) = N (y;RTµ,RTΣR).

The determinant of the Jacobian of y is the determinant of a rotation matrix:

|∂y/∂x| = |RT | = 1. Substituting:

∫
aT x+b>0

f(x) dx =

∫
(aTR)y+b>0

|RT |q(y) dy =

∫
‖a‖y1+b>0

q(y) dy =

∫ ∞
−b/‖a‖

q1(y1) dy1

(4.15)

Where q1(y1) = N (y1; eT1 (RTµ), eT1 (RTΣR)e1) is the density for the first component of

y. The final step follows as the limits of integration marginalize q(y). To simplify the

remaining integral, apply the definition of R, q1(y1) = N (y1;µTa/‖a‖, aTΣa/‖a‖2), and use

1− Φ (−x) = Φ (x):

∫ ∞
−b/‖a‖

q1(y1) dy1 = 1− Φ

(
−b− µTa√

aTΣa

)
= Φ (p)

Proof of (4.13). First, we perform a change of variables so that the integral is evaluated over

the standard multivariate Gaussian g(x) = N (x; 0, I). This substitution is x = Σ1/2y + µ

which can be seen by noting that 1) |∂y/∂x| = |Σ|−1/2 and 2) f(x) = |Σ|−1/2g(Σ−1/2(x− µ)):

∫
A
xf(x) dx =

∫
B

(Σ1/2y + µ)g(y) dy = Σ1/2

∫
B
yg(y) dy + µ

∫
B
g(y) dy (4.16)

where B = {y : (aTΣ1/2)y + (aTµ+ b) > 0} is the transformed half-space.

To evaluate the first term in (4.16), we calculate
∫
C yg(y) dy, where C = {y : cT y+d > 0}

is a new generic half-space. This integral is easier than the original problem as g(y) is the

density of a zero-mean Gaussian with identity covariance. To proceed, substitute y = Rz

where R is a rotation matrix that makes C axis-aligned (i.e., cTR = ‖c‖eT1 ) and observe

69



that g(Rz) = g(z):

∫
C
yg(y) dy =

∫
cTRz+d>0

Rzg(Rz)|RT | dz = Re1

∫ ∞
−d/‖c‖

z1φ(z1) dz1 =
c

‖c‖
φ

(
d

‖c‖

)
(4.17)

e1 appears because g(x) is 0-mean; the only non-zero component of the integral is from z1.

The 1-dimensional integral follows as dφ(x)/dx = −xφ(x).

To finish, (4.16) can be evaluated using the formula in (4.12) and (4.17):

∫
A
xf(x) dx = Σ1/2

(
Σ1/2a√
aTΣa

)
φ (p) + µΦ (p)

Proof of (4.14). Similar to the last proof, make the substitution x = Σ1/2y + µ with g(y)

as the standard multivariate Gaussian and expand terms.

∫
A
xxT f(x) dx =Σ1/2

∫
B
yyT g(y) dyΣ1/2 + Σ1/2

∫
B
yg(y) dyµT

+ µ

∫
B
yT g(y) dyΣ1/2 + µµT

∫
B
g(y) dy (4.18)

where B = {y : (aTΣ1/2)y + (aTµ+ b) > 0} is the transformed half-space.

To evaluate (4.18), we only need a formula for the first integral; the previous proofs have

expressions for the other 3 integrals. To evaluate the first integral, let C = {y : cT y+d > 0}

be a new half-space and use the same rotation substitution y = Rz as in the last proof.

∫
C
yyT g(y) dy = R

(∫
z1‖c‖+d>0

zzT g(z) dz

)
RT

= R

(
Φ

(
d

‖c‖

)
I − d

‖c‖
φ

(
d

‖c‖

)
e1e

T
1

)
RT

= Φ

(
d

‖c‖

)
I − d

‖c‖
φ

(
d

‖c‖

)
ccT

‖c‖2
(4.19)

The previous integral can be evaluated by analyzing each scalar component. g is the stan-

dard multivariate Gaussian, so g(z) =
∏k
i=1 φ(zi). There are three types of terms:
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• z2
1 : The limits of integration marginalize g and the resulting integral can be solved

using integration by parts:

∫
z1‖c‖+d>0

z2
1g(z) dz =

∫ ∞
−d/‖c‖

z2
1φ(z1) dz1 = Φ

(
d

‖c‖

)
− d

‖c‖
φ

(
d

‖c‖

)

• z2
i (i > 1):

∫
z1‖c‖+d>0

z2
i g(z) dz =

∫ ∞
−d/‖c‖

φ(z1) dz1

∫ ∞
−∞

z2
i φ(zi) dzi = Φ

(
d

‖c‖

)

The integral over zi is 1 because it’s the variance of the standard normal.

• zizj (i 6= j, i 6= 1): These indices cover all non-diagonal elements.

∫
z1‖c‖+d>0

zizjg(z) dz =

∫ β

α
zjφ(zj) dzj

∫ ∞
−∞

ziφ(zi) dzi = 0

zi 6= 1, so its limits are the real line. Because g is 0 mean the integral is 0.

We now have an expression for all of the terms in (4.18) and we just need to plug them

in. Recall that B = {x : (Σ1/2a)Tx+ (aTµ+ b) > 0}. Using p = (aTµ+ b)/
√
aTΣa, (4.12),

(4.13), and (4.19):

∫
aT x+b

xxT f(x) dx =Σ1/2

(
Φ (p) I − pφ (p)

Σ1/2aaTΣ1/2

‖a‖2

)
Σ1/2+

Σ1/2

(
φ (p)

Σ1/2a√
aTΣa

)
µT + µ

(
φ (p)

Σ1/2a√
aTΣa

)T
Σ1/2+

Φ (p)µµT

=Φ (p)
(
Σ + µµT

)
+ φ (p)

(
ΣaµT + µaTΣ√

aTΣa
− pΣaaTΣ

‖a‖2

)

which is the formula we sought.
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4.5.2 Proof of Lem. 1

The norm can be evaluated by splitting the integral up into regions where the absolute

value disappears. Let A be the set where f(x) > g(x) and Ac be the complement of A

where f(x) ≤ g(x). Noting that
∫
A g(x) = 1−

∫
Ac g(x):

∫
|f(x)− g(x)| dx =

∫
A
f(x)− g(x) dx+

∫
Ac
g(x)− f(x) dx

= 2

(∫
A
f(x)− g(x) dx

)
(4.20)

f and g have the same covariance, so f is bigger than g on a half-space A = {x :

aTx + b > 0} where a = Σ−1(µ1 − µ2) and b = (µ1 + µ2)Σ−1(µ2 − µ1)/2. This means

(4.20) can be evaluated using Lem. 6. To do this, we need to evaluate p for
∫
A f(x) dx and∫

A g(x) dx. There are three relevant terms:

µT1 a+ b =
‖µ1 − µ2‖2Σ

2
(4.21)

µT2 a+ b = −
‖µ1 − µ2‖2Σ

2
(4.22)

√
aTΣa = ‖µ1 − µ2‖Σ (4.23)

Using δ = ‖µ1 − µ2‖Σ/2 we get (aTµ1 + b)/
√
aTΣa = δ and (aTµ2 + b)/

√
aTΣa = −δ.

Plugging these values into Lem. 6 completes the proof.

4.5.3 Proof of Lem. 2

Let X be a random variable whose density is |f(x)−g(x)|/‖f−g‖1. Calculating the entropy

of X is difficult as the expression involves the log of the absolute value of the difference of

exponentials. Fortunately, the covariance of X can be calculated. This is useful because the

maximum entropy of any distribution with covariance Σ is (1/2) log ((2πe)k|Σ|), the entropy

of the multivariate Gaussian [27, Theorem 8.6.5]. By explicitly calculating the determinant

of the covariance of X, we prove the desired bound.

To calculate X’s covariance, use the formula covX = E
[
XXT

]
−E [X]E [X]T . Similar
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to the proof of Lem. 1, we evaluate the mean by breaking the integral up into a region A

where f(x) > g(x) and AC where g(x) ≥ f(x) vice-versa:

E [X] =

(∫
A x(f(x)− g(x)) dx+

∫
Ac x(g(x)− f(x)) dx

)
‖f − g‖1

(4.24)

As before, f and g have the some covariance, so A = {x : aTx + b > 0} and Ac = {x :

(−a)Tx+(−b) ≥ 0} are half-spaces with a = Σ−1(µ1−µ2) and b = (µ1 +µ2)Σ−1(µ2−µ1)/2.

Each of the terms in (4.24) are Gaussian functions integrated over a half-space, which

can be evaluated using Lem. 6. To simplify the algebra, we evaluate the integrals involving

f and g separately. This involves calculating a few terms, three of which are repeats: (4.21),

(4.22), and (4.23). The other term is Σa = µ1 − µ2. As the difference of the means will

arise repeatedly, define ∆ = µ1 − µ2. Noting 2δ = ‖∆‖Σ and φ(x) = φ(−x), the integrals

involving f are:

∫
A
xf(x) dx−

∫
Ac
xf(x) dx

= Φ (δ)µ1 +
φ (δ)

2δ
∆−

(
Φ (−δ)µ1 +

φ (−δ)
2δ

(−∆)

)
= (Φ (δ)− Φ (−δ))µ1 +

φ (δ)

δ
∆ (4.25)

Next, evaluate the integrals in (4.24) involving g. This can be done by pattern matching

from (4.25). The main change is that µ1 becomes µ2 and the sign of p in Lem. 6 flips,

meaning the sign of the arguments to φ (·) and Φ (·) flip (see (4.21) and (4.22)).

∫
A
xg(x) dx−

∫
Ac
xg(x) dx

= (Φ (−δ)− Φ (δ))µ2 +
φ (−δ)
δ

∆ (4.26)

Subtracting (4.26) from (4.25), recognizing φ(x) = φ(−x), and dividing by ‖f − g‖1 =
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2(Φ (δ)− Φ (−δ)) simplifies (4.24):

E [X] =
µ1 + µ2

2
(4.27)

We now evaluate X’s second moment. Split the integral up over A and Ac:

E
[
XXT

]
=

(∫
A xx

T (f(x)− g(x)) dx+
∫
Ac xx

T (g(x)− f(x)) dx
)

‖f − g‖1
(4.28)

Once again, we evaluate this expression by separately evaluating the integrals involving f

and g.

Starting with f and using Lem. 6 with ∆ and δ:

∫
A
xxT f(x) dx = Φ (δ) (Σ + µ1µ

T
1 ) + φ (δ)

(
∆µT1 + µ1∆T

2δ
− δ∆∆T

4δ2

)
(4.29)∫

Ac
xxT f(x) dx = Φ (−δ) (Σ + µ1µ

T
1 )− φ (δ)

(
∆µT1 + µ1∆T

2δ
− δ∆∆T

4δ2

)
(4.30)

Taking the difference of (4.29) and (4.30):

∫
A
xxT f(x) dx−

∫
Ac
xxT f(x) dx

= (Φ (δ)− Φ (−δ))(Σ + µ1µ
T
1 ) +

φ (δ)

δ

(
∆µT1 + µ1∆T − ∆∆T

2

)
(4.31)

To evaluate the integrals in (4.28) involving g, we can pattern match using (4.29) and

(4.30). As in the derivation of (4.26), this involves negating the p terms and replacing µ1

with µ2.

∫
A
xxT g(x) dx−

∫
Ac
xxT g(x) dx

= (Φ (−δ)− Φ (δ))(Σ + µ2µ
T
2 ) +

φ (δ)

δ

(
∆µT2 + µ2∆T +

∆∆T

2

)
(4.32)

Note the sign difference of ∆∆T compared to (4.31).

To finish calculating the second moment, subtract (4.32) from (4.31) and divide by
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‖f − g‖1, simplifying (4.28)

E
[
XXT

]
=

1

2
(2Σ + µ1µ

T
1 + µ2µ

T
2 ) +

φ (δ)

δ‖f − g‖1
∆∆T (4.33)

We can now express the covariance of X.

E
[
XXT

]
− E [X]E [X]T = Σ +

∆∆

4

T

+
φ (δ)

δ‖f − g‖1
∆∆T (4.34)

= Σ +

(
δ2 +

2φ (δ) δ

2Φ (δ)− 1

)
∆∆T

4δ2
(4.35)

Which follows as (µ1µ
T
1 + µ2µ

T
2 )/2− (µ1 + µ2)(µ1 + µ2)T /4 = ∆∆T /4.

To calculate the determinant of the covariance, factor Σ out of (4.35) and define α =

δ2 + 2φ(δ)δ
2Φ(δ)−1 :

| covX| =
∣∣∣∣Σ(I + α

Σ−1∆∆T

4δ2

)∣∣∣∣ = |Σ| (1 + α) (4.36)

The last step follows from the eigenvalues. Σ−1∆∆T only has one non-zero eigenvalue; it

is a rank one matrix as Σ−1 is full rank and ∆∆T is rank one. The trace of a matrix is

the sum of its eigenvalues, so tr(Σ−1∆∆T ) = tr(∆TΣ−1∆) = ‖∆‖2Σ = 4δ2 is the non-zero

eigenvalue. Consequently, the only non-zero eigenvalue of αΣ−1∆∆T /4δ2 is α. Adding I to

a matrix increases all its eigenvalues by 1 so the only eigenvalue of I + Σ−1∆∆T /4δ2 that

is not 1 has a value of 1 +α. The determinant of a matrix is the product of its eigenvalues,

so det(I + Σ−1∆∆T /4δ2) = 1 + α. As discussed at the beginning of the proof, substituting

(4.36) into the expression for the entropy of a multivariate Gaussian achieves the desired

upper bound.

4.5.4 Proof of Theorem 2

To prove the theorem, we build on Thm. 1. However, it cannot be directly applied because it

is difficult to evaluate 1) the L1 norm between GMMs and 2) the entropy of the normalized

difference of mixture models. However, from Lem. 1 and Lem. 2 provide a way to evaluate
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these quantities when the densities are individual Gaussians. To exploit this fact, we split

the problem up and analyze the difference in entropies between GMMs that only differ by

a single component.

To start, define dj(x) =
∑j

i=1wigi(x) +
∑n

i=j+1wifi(x). dj is a GMM whose first j

components are the first j components in g and last n − j components are the last n − j

components in f . Note that d0(x) = f(x) and dn(x) = g(x). Using the triangle inequality:

|H [f ]−H [g] | = |H [d0]−H [d1] + H [d1]−H [dn] |

≤ |H [d0]−H [d1] |+ |H [d1]−H [dn] |

≤
N∑
j=1

|H [dj−1]−H [dj ] | (4.37)

where the last step applied the same trick n − 2 more times. Because dj−1(x) − dj(x) =

wj(fj(x)− gj(x)) each term in the summand can be bounded using Thm. 1:

|H [dj−1]−H [dj ] | ≤ − ‖wj(fj − gj)‖1 log ‖wj(fj − gj)‖1 (4.38)

+ ‖wj(fj − gj)‖1 H

[
|fj(x)− gj(x)|
‖fj − gj‖1

]
(4.39)

Because fj(x) and gj(x) are Gaussians with the same covariance, we can apply Lemmas 1

and 2 to complete the proof.
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Chapter 5

Discovering and Localizing

Multiple Devices with Range-only

Sensors

This chapter addresses the problem of actively controlling robotic teams with range-only

sensors to a) discover and b) localize an unknown number of devices. We develop separate

information based objectives to achieve both goals, and examine ways of combining them

into a unified approach. Despite the computational complexity of calculating these policies

for multiple robots over long time horizons, a series of approximations enable all calculations

to be performed in polynomial time. We demonstrate the tangible benefits of our approach

through a series of simulations in complex indoor environments.

There are three major components to this problem: 1) estimating the location of discov-

ered devices 2) estimating where undiscovered devices might be, and 3) controlling the team

to reduce the uncertainty of both estimates until the team is confident that every device

has been discovered and localized. Figure 5.1 illustrates the complexity of these goals, and

shows why the team must account for the limited information their sensors provide, as well

as their limited mobility in office environments.

The primary contribution of this chapter is an approach for controlling a multi-robot
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Figure 5.1: Problem overview. A robotic team must discover and localize an unknown
number of devices (shown as beacons) using range-only sensors. The team must consider
multiple trajectories (black arrows) and the finite range of their sensors (orange circles).

team to concurrently discover and localize an unknown number of devices using noisy range-

only sensors. To start, in Sect. 5.1 we present a generic algorithm for reducing the uncer-

tainty of an estimate by maximizing mutual information. We then separately address the

problems of actively localizing discovered devices in Sect. 5.2 and actively discovering de-

vices in Sect. 5.3. In Sect. 5.4 we discuss how the team can simultaneously localize and

discover devices by creating a unified objective function that can be used in the algorithm

in Sect. 5.1. We evaluate the performance of our approach in Sect. 5.5 through a series of

simulations and demonstrate that it outperforms two baseline strategies with teams of up

to 8 robots.

This chapter originally appeared in [18].

5.1 Preliminaries

5.1.1 Assumptions

In the problem we are considering a robotic team must localize all devices within one

floor of a modern building. We assume the building has a wireless network that allows

high bandwidth communication throughout the team at all times. This enables us to

adopt centralized estimation and control strategies where all measurements are aggregated

at a single robot who sends commands to the rest of the team. In situations where the

building’s network is only available in certain places, we could use the approach proposed

by Dames and Kumar [29]. We also assume that robot’s are equipped with a map of the
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Algorithm 1: Adaptive Sequential Information Planning (ASIP)

1: Iteration = 0 // Iteration counter
2: repeat
3: Iteration = Iteration + 1
4: τ = t+ 1 : t+ (T · Iteration) // Adapt end time of plan
5: C∗ = {} // Best team trajectory, C[r] is trajectory of robot r
6: Info∗ = 0.0 // Information resulting from current C∗
7: for each robot r = 1 : R do
8: P = Plan trajectories robot i can follow over τ
9: C = C∗ × P // Trajectories for robots 1 : r; trajectories of 1 : r − 1 are fixed

10: Info, cr∗τ = maxcτ∈C IMI[xτ ; zτ | cτ ] // r’s best action given previous actions
11: if Info− Info∗ > MinRobotInfo then
12: C∗[r] = cr∗τ , Info∗ = Info
13: else
14: C∗[r] = ∅ // r should do nothing; it can’t further reduce uncertainty of xτ

15: until Info∗ > MinTotalInfo or Iteration > MaxIteration

environment and are capable of localizing themselves which is reasonable for an indoor office

environments. While planning, we do not account for uncertainty in the team’s position.

We expect that incorporating this uncertainty would not significantly affect the selected

control actions as range-only sensors typically have errors of a few meters [17] whereas

robot localization solutions are substantially more accurate. We further assume that each

measurement has a unique identifier (e.g., MAC address), which is typically the case for

range-only sensors that are designed for localization [74, 86, 99, 43].

Because we use a probabilistic approach, we assume that devices’ individual positions

are independent of each other, that measurements arrive at discrete time steps, and that

multiple measurements to a device are conditionally independent given the device’s loca-

tion [134].

5.1.2 Adaptive Sequential Information Planning

We are interested in a general control policy for a team of robots which maximizes

mutual information over a finite time horizon. This is difficult for two reasons. First, the

number of potential trajectories the team can follow grows exponentially in the team’s size.

Second, it is unclear how to select an appropriate time horizon over which to plan. To
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address these issues we develop “Adaptive Sequential Information Planning” (ASIP, Alg. 1)

an algorithm that efficiently selects actions and adapts the time horizon over which it plans.

Before describing ASIP in detail, we formalize a basic approach on which it builds. This

is the same approach developed in previous chapters, but we restate it here for ease of

reference. Assume the team is trying to estimate some unknown quantity x. At time t, the

team plans how it will move over the time interval τ
4
= t+ 1 : t+ T by considering a set

of trajectories C that they can follow. A trajectory for an individual robot r is a discrete

sequence of poses crτ = [crt+1, . . . , c
r
t+T ] where crk is the 2D pose of robot r at time k. The

team’s trajectories, C, is the Cartesian product of each robot’s individual trajectories. As

the team moves they will receive a random vector of measurements zτ = [zt+1, . . . , zt+T ],

that each depend on the team’s location at that point in time. Our objective is to select

the trajectory cτ ∈ C that maximizes IMI[x; zτ | cτ ], the mutual information between the

device’s estimate and future measurements the team makes.

A major computational challenge of the basic approach is that the number of trajectories

for the team, |C|, grows exponentially in the team’s size. To address this issue, ASIP

sequentially optimizes mutual information over individual robot’s trajectories given the

trajectories of preceding robots. This approach is similar to the “Sequential Information

Planning” algorithm of Singh et al. [119]. For each robot r, ASIP generates the trajectories

it can follow (Alg. 1, Line 8) and combines them with trajectories the preceding robots

have already selected (Line 9). This gives a set of trajectories for robots 1 to r, but only

robot r’s trajectory changes: all others are fixed. ASIP then optimizes mutual information

over this set of trajectories (Line 10), and repeats until all robots have been considered.

The advantage of this approach is that robots still account for each others’ movements but

mutual information is only calculated O(RC) times, where R is the number of robots and

C is the number of trajectories per robot.

Another shortcoming of the basic approach is that it is difficult to determine the time

horizon, τ , that the team plans over. If it is too short, the team may get trapped in

low information regions, but making it too long will significantly affect computation time.
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To balance these issues, ASIP adapts the horizon over which it plans. It does this by

requiring the team to decrease the uncertainty of their estimates by a sufficient amount

(MinTotalInfo on Line 15). If the team is unable to achieve this gain, it increases the time

horizon of the plan (Line 4). It is possible that there are no further actions the team can

take to reduce the uncertainty of their estimate. By including a maximum time horizon over

which the team can plan (MaxIteration on Line 15), ASIP ensures the team will eventually

terminate.

Finally, because the team may be spread out over the environment, only some members

of the team may be able to decrease the uncertainty of the estimates over the given horizon.

ASIP identifies these robots by examining the change in mutual information given a robot’s

action (MinRobotInfo on Line 11). Robots that do not reduce the uncertainty are not

commanded anywhere (Line 14) freeing them for other tasks. We discuss strategies for

what to do with these robots when we discuss how to simultaneously localize and discover

devices in Sect. 5.4.

5.2 Actively Localizing Discovered Devices

This section describes a strategy for actively localizing a known number of devices with

prior estimates using range-only sensors. In previous work, we presented a similar approach

for localizing individual devices [15, 16]. In comparison, here we model the finite range of

the sensors.

5.2.1 Estimating Devices’ Locations

Because devices are independent of each other and measurements have a known data asso-

ciation, we estimate the position of D different devices using separate particle filters. Each

filter uses a measurement model that accounts for noisy range measurements, as well as the

probability of a measurement being received.

Formally, the distribution over device d’s 2D position at time t is approximated as

p(xd | z1:t) =
∑N

i=1wiδ(x
d − x̃d) where δ(·) is the Dirac delta function, x̃di is the 2D

position of the ith particle, wi is its weight, and z1:t are measurements the team has made
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from time 1 to t [134]. Devices are static, so we omit a time subscript for them, but we

do use a zero mean 2D Gaussian with a small fixed covariance for the process model of the

filter to avoid particle degeneracy problems.

At time t the team receives a random vector of measurements zt, where zd,rt is the 1-

dimensional range measurement robot r makes to device d. If the distance from a robot to

a device is within the maximum range of the sensor, zmax, we assume that with probability

γ the robot receives a measurement of the true distance perturbed by Gaussian noise. With

probability 1 − γ, the robot does not detect the device, and gets a measurement of zmax.

Defining the true distance as s = ‖xd − crt‖, the measurement model can be expressed as:

p(zd,rt = z | xd) =


γN (z − s, σ2) + (1− γ)N (z − zmax, σ

2
max) s < zmax

N (z − zmax, σ
2
max) otherwise

(5.1)

where σ2 is the variance of the sensor and N (z−µ, σ2) is the likelihood of z with a Gaussian

whose mean is µ with covariance σ2.

Real world sensors may return an error when they fail to measure the distance to a

device instead of zmax. To compensate for this behavior, a robot can incorporate a “virtual”

measurement of zmax for each measurement error. Additionally, when a sensor fails to make

a measurement, it will not be perturbed by noise; σ2
max should be 0, resulting in Dirac deltas

in (5.1) that are centered on zmax. However, this measurement model would be difficult to

work with analytically (e.g., the entropy would become −∞). We have also encountered

difficulties using small values for σ2
max, as this results in a rapid change in variance of

particles that are close to zmax. Consequently, we set σ2
max = σ2, which is a reasonable

model: when a measurement of zmax is incorporated into the filter, particles that are less

than zmax away from the robot will become less likely, while those that are farther away

will become more likely.
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5.2.2 Calculating Mutual Information

To evaluate mutual information between the expected future location of discovered devices

and measurements the team will make, we use the particle representation of the device’s

position, p(x | z1:t) and the range-only measurement model (5.1), to calculate the distribu-

tion over expected future measurements, p(zτ ). This approach, which we covered in detail

in Ch. 4, results in a computationally intractable problem that we address through a series

of approximations.

The expression for mutual information between all devices and measurements for a given

team trajectory is:

IMI[x; zτ | cτ ] =

D∑
d=1

IMI[x
d; zdτ ] =

D∑
d=1

H[zdτ ]−H[zdτ | xd] (5.2)

H[zdτ ] is the differential entropy of the measurements to device d, while H[zdτ | xd] is the con-

ditional differential entropy of measurements to device d. We drop the measurements depen-

dence on the team’s trajectory, cτ , for brevity. The expression is a sum over the information

from devices because devices and their associated measurements are pairwise independent,

p(x, zτ ) =
∏
d p(x

d, zdτ ) [27].

Calculating the entropy, H[zdτ ], is difficult because the distribution over future measure-

ments to each device d is a Gaussian mixture model (GMM):

p(zdτ ) =
∑N

i=1wi
∏t+T
j=t+1

∏R
r=1 p(z

d,r
j | xd = x̃di ) where wi is the weight of the ith parti-

cle in p(xd), x̃di is its location, N is the number of particles, R is the number of robots, and

T is the time horizon of the plan (Sect. 5.1.2, Sect. 5.2.1). Unfortunately, p(zd,rj | xd) is

also a GMM when the robot is in range of the device (5.1). Consequently, p(zdτ ) can be the

sum of products of GMMs, resulting in a GMM with a number of components that is ex-

ponential in RT . We avoid this computational issue by approximating (5.1) with the most

likely component (i.e., the one with maximum weight) when calculating entropy, making the

number of components equal to RT . This is reasonable when the probability of detection is

high, which is typically the case for range-only sensors. Despite this simplification, p(zdτ ) is
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still a GMM, whose entropy cannot be evaluated analytically. We approximate it using the

2nd order Taylor-series approximation developed by Huber et al. [59]. This approach has a

time complexity of O(N2RT ).

Using the conditional independence assumption, the expression for the conditional en-

tropy simplifies H[zdτ | xd] =
∑N

i=1wi
∑t+T

j=t+1

∑R
r=1 H[zd,rj | xd = x̃di ]. Re-applying the max-

imum likelihood estimate for detection, each term is the entropy of a 1-dimensional Gaus-

sian, which can be evaluated in constant time [27].

5.3 Discovering All Devices

In this section we present a method for actively controlling the team to discover all devices.

We achieve this by estimating the probability of an undiscovered device being present at any

point in the environment, and formulate another information based control law to reduce

the uncertainty of this estimate.

5.3.1 Estimating Locations of Undiscovered Devices

We form a probabilistic estimate of any undiscovered device existing at different locations

in the environment using a 2D occupancy grid. The grid, g, is made up of a set of G

different cells {g1, . . . , gG}, which are created by uniformly discretizing the environment at

a fixed resolution. Each cell is associated with a Bernoulli random variable that represents

the probability of any undiscovered device existing at that point in the environment (i.e.,

gi = 1 means an undiscovered device is present at cell gi). Like occupancy grids that are

used in mapping [134], because device’s locations are independent of each other, we also

assume the probability of undiscovered devices being in different cells are independent of

each other: p(g) =
∏
i p(g

i). When the team starts, we initialize each cell in the environment

with a uniform prior.

We update p(g) using the detection model for the sensors that the team carries. We

assume that each robot receives a binary measurement to each cell within the maximum

range of its sensor. A reading of 1 corresponds to an undiscovered device being present,

while a reading of 0 corresponds to no device being present. Letting qi,rt be the measurement
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robot r gets to cell gi at time t the measurement model is:

p(qi,rt = 1 | gi = 1) = γ p(qi,rt = 0 | gi = 1) = 1− γ

p(qi,rt = 1 | gi = 0) = 0 p(qi,rt = 0 | gi = 0) = 1 (5.3)

We model the probability of a false positive (i.e., the robot detects a new device is present

in a cell when there is no new device at the cell) as 0 because range-only sensors with known

association will not return a measurement to a device that does not exist.

Real world range-only sensors will return a set of range measurements to devices that

are actually detected. Consequently, if at time t robot r only receives measurements to

devices that have been previously observed, we treat that as a measurement of qi,rt = 0

for all cells within zmax. Alternatively, if robot r detects a new device, we treat that as

a measurement of qi,rt = 1, and immediately initialize a new particle filter to estimate its

location.

Using this model with the standard occupancy grid filtering equations it is straight-

forward to determine the posterior probability of the occupancy grid given all detection

measurements the team has made: p(g | q1:t).

5.3.2 Active Device Discovery

To discover all devices, we maximize mutual information between the estimate of undis-

covered devices, g, and the expected future binary measurements the team will make, qτ .

Similar to Sect. 5.2.2, we use a series of approximations to achieve computational tractabil-

ity.

For these quantities, mutual information can be expressed as:

IMI[g;qτ ] =

G∑
i=1

IMI[g
i;qiτ ] =

G∑
i=1

H[qiτ ]−H[qiτ | gi] (5.4)

where qiτ is the set of measurements that the team makes of grid cell i at any point in time

along the trajectory. Note that g and qτ are both discrete random variables, and so we
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use the discrete versions of entropy and conditional entropy, as opposed to the differential

entropies in Sect. 5.2.2. (5.4) is a sum because cells and their associated measurements are

independent of other cells and measurements p(g,qτ ) =
∏
i p(g

i,qiτ ).

As before, calculating the entropy, H[qiτ ] = −
∑

q̃ p(q
i
τ = q̃) log p(qiτ = q̃) is computa-

tionally difficult. While p(qiτ = q̃) can be evaluated by marginalizing over the state:

p(qiτ = q̃) = p(gi = 0)p(qiτ = q̃ | gi = 0) + p(gi = 1)p(qiτ = q̃ | gi = 1) (5.5)

the sum in the entropy calculation is over all possible instantiations q̃. An individual

measurement is binary, so the number of terms grows exponentially in the number of mea-

surements at a cell.

To address this issue, we again approximate entropy. Fortunately, for binary detection

measurements, there is relatively little gain in planning to make multiple observations of the

same cell. This is because when the probability of detection is reasonably high, even a single

observation will substantially reduce the cell’s uncertainty. Consequently, we calculate the

information gain between all measurements and a cell as the gain from the most informative

measurement:

IMI[g
i;qiτ (cτ )] ≥ max

q∈qiτ
IMI[g

i; q] = max
q∈qiτ

H[q]−H[q | gi] (5.6)

where q is an individual measurement made by one robot at one point in time. The in-

equality holds because mutual information increases monotonically with additional mea-

surements [27]. (5.6) can be evaluated in O(QRT ) where Q is the number of cells one robot

observes at a single time step.

5.4 Actively Localizing and Discovering All Devices

We propose several different active control strategies for localizing and discovering all devices

by using ASIP (Sect. 5.1) with the objectives in Sect. 5.2 and Sect. 5.3. We also describe two

baseline approaches that serve as a useful benchmark for our strategies. For each approach,
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Table 5.1: Computational complexity of selecting a trajectory for the team to follow. R
is number of robots, D is number of devices, N is particles per device, |P| is number of
trajectories per robot, W is number of waypoints, T is length of horizon, and Q is number
of grid cells within the maximum range of the sensor.

Approach Complexity

Switching O(|P|(DN2RT +QRT ))
Combined O(|P|(DN2RT +QRT ))
Coverage O(|P|QRT )
Exhaustive O(max{R,W}4)

we are interested in 1) whether all devices will be discovered, 2) whether all devices will

be localized, 3) how long it takes to compute plans, and 4) how long it takes to discover

and localize all devices. We describe some theoretical properties of points 1-3 for each

algorithm. However, analyzing the completion time is difficult given that the number of

devices is unknown and the beliefs of the devices’ positions evolve in complex ways as a

function of many different parameters of our model. Consequently, we evaluate this aspect

through a series of simulations described in Sect. 5.5.

5.4.1 Proposed Approaches

Switching Between Localization and Discovery

One approach to localizing and discovering all devices is to adopt a policy where robots

make forward progress on either task: each robot either tries to localize known devices, or

discover new ones. At each planning step, the team uses ASIP to maximize the information

gained about localized devices using (5.2). As described in Sect. 5.1.2, it is possible that

only some members of the team will be able to reduce the devices’ uncertainty over a given

horizon. For robots that cannot help, the team again uses ASIP, but this time maximizes

the information gained about undiscovered devices using (5.4).

The team stops when information is 0 (MinTotalInfo in Alg. 1), so this approach will

eventually discover all of the devices and localize them to the best of their ability. This is

because mutual information is 0 if and only if the two random variables are independent.

For the estimate of a device’s position, this would mean p(x | zτ , z1:t) = p(x | z1:t) and

for a grid cell this would mean p(g | qτ ,q1:t) = p(g | q1:t); in these cases expected future
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measurements will not change the estimate. In practice, mutual information will not reach

0 due to the team’s noisy estimates. However, we have found that small positive cutoff

values (e.g., MinTotalInfo ≈ 0.1) work well.

Combining Localization and Discovery

A general approach for devising a single objective from multiple information-theoretic func-

tions is to normalize each one and introduce weights to trade-off between them [10]. We

propose using ASIP with the objectives for localizing and discovering all devices:

I[x; zτ ] = α
IMI[x; zτ ]

max IMI[x; zτ ]
+ (1− α)

IMI[g;qτ ]

max IMI[g;qτ ]
(5.7)

Where the maximums are taken with respect to all actions the team considers over the

current planning horizon and 0 ≤ α ≤ 1 is the parameter that weighs the relative importance

of the two objectives. The normalization is necessary because the information gains are not

directly comparable: the reduction in uncertainty of the devices location (a set of continuous

random variables) can be substantially different the reduction in uncertainty of undiscovered

devices (a much larger set of Bernoulli variables).

We have encountered two problems combining objectives this way. One is that when one

of the terms is small, its impact is substantially elevated by the normalization. To address

this issue, we drop a term if the absolute information drops below a small threshold (e.g.,

0.1). The other issue is that robots that do not contribute to the change in objective are

not given a separate task. Consequently, we modify ASIP so that whenever any member of

the team does not improve the objective, the planning horizon is extended. This means the

team may plan over longer horizons, but ensures the whole team is used more efficiently.

We consider three different values of α. The first is α = 0.1, which we refer to as

“Discovery” because the team primarily seeks to discover unknown devices. The opposite

extreme is to heavily favor actions that reduce the uncertainty of discovered device’s posi-

tions by setting α = 0.9, which we refer to as “Localization.” In between these two extremes

is α = 0.5, which we refer to as “Balanced.” Similar to task switching, these approaches
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will continue making actions that reduce the uncertainty of both estimates. Consequently,

they will eventually discover all of the devices that they can and localize them to the best

of their ability.

5.4.2 Baseline Approaches

Coverage

A coverage based strategy is one that seeks to obtain at least one measurement everywhere

in the environment. We formulate this policy by setting α = 0 in (5.7). While this ap-

proach will discover all devices, it will not necessarily localize all of them given the limited

information of range-only measurements.

Exhaustive

All of the previous approaches incorporated the uncertainty of discovered or undiscovered

devices in some way. A useful comparison is to ignore this uncertainty, and have robots

exhaustively gather measurements by visiting every location in the environment. This

approach may take longer, but should discover and localize all devices.

There are many different ways to formulate this approach. Here, we manually define a set

of W waypoints that any member of the team must visit at least once. Planning paths that

minimize the total distance traveled by the entire team is a variant of the multiple traveling

salesman problem, and it is unlikely that an exact polynomial time algorithm exists [6].

Instead, we use the nearest neighbor heuristic, and at each planning step assign robots

to unvisited waypoints such that the maximum distance any robot travels is minimized.

Calculating each assignment can be done in O(max{R,W}4) time by repeatedly solving

linear assignment problems using the Hungarian algorithm [124].

5.5 Evaluation

In this section we evaluate the strategies in Sect. 5.4 and examine their ability to discover

and localize devices. To evaluate an approach, we measure the wall clock time – including

planning time – that it takes to be confident that all devices are discovered and localized.
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(a) Initial estimates (b) Final estimates

Figure 5.2: A single robot (orange arrow) is present in a corridor environment with two
devices (black x’s). Using the information based strategies, the robot discovers both devices
and obtains the best estimate it can for both of them.

We define discovery and localization as the bounding of the uncertainty of each estimate.

Formally, we define the discovery of all devices as an indicator function that is 1 when

the probability of an undiscovered device at any point in the environment is below 0.05.

Similarly, a device is localized when the variance of its x and y position estimate both

drop below 0.4 (i.e., σ2
x ≤ 0.4 and σ2

y ≤ 0.4). These metrics enable reasonable comparisons

between different strategies. If the team fails to meet either of these requirements, we define

the completion time as the point at which the algorithm stops commanding the team.

We use a real time asynchronous simulator based on ROS. All code is written in C++

and runs on an Intel Core i7 processor. To simulate the range sensors, we set a maximum

range of zmax = 7.0 m with a variance of σ2 = 5.0 m2 and a measurement rate of 5 hz.

We use a constant probability of detection, γ = 0.9, though in general it could change as a

function of the team’s distance to a device or their line of sight conditions. Each member

of the team is considered to be a differential drive robot with a maximum linear speed of

0.4 m/s. We use a resolution of 0.25 m for the occupancy grid used to discover devices. To

plan trajectories, we generate paths to destinations that are within 10.0 m of each robot

and discard endpoints that are within 1.0 m of each other. We also stop commanding the

team when no trajectory under 60 m is above the minimum information threshold.

5.5.1 Corridor Environment

In our first simulation, we examine the ability of the information based strategies to discover

devices and determine that they cannot fully localize all of them. To do this, we consider
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an environment where a single robot is in a narrow corridor with two devices. Because the

corridor is narrow and the variance of measurements is high, there are two valid hypotheses

for one of the devices. Figure 5.2a shows the initial setup; the orange circle indicates the

robot’s maximum range and the black x’s show the true locations of the devices. Each of

the information based strategies moves along the environment, and discovers both devices,

with a final result similar to Fig. 5.2. Particles are shown as teal dots, gray cells represent

areas where the probability of an undiscovered device is 0.5, while clear cells indicate the

probability is close to 0. While the information gain never drops to exactly 0, in all our

simulations it eventually decreased below 0.1, resulting in every information based strategy

successfully terminating. This demonstrates the ability of these strategies to correctly

reason about the sensors they carry, and what effect their actions can have on the position

estimate of the devices.

5.5.2 Large Office Environment

To more completely evaluate the utility of information based strategies, we conduct a larger

scale simulation study in which teams of up to 8 robots simultaneously localize 40 different

devices spread throughout a complex indoor environment. Due to its interesting structure

and widespread use in the robotics community, we conduct this simulation in the Intel

Research Lab using an occupancy grid generated by Stachniss [92]. For each strategy, we

ran 5 trials with teams of 2, 4, and 8 robots.

Figure 5.3 shows representative trajectories for each strategy with 2 robots and the

location of all 40 devices. The exhaustive strategy visits 71 distinct waypoints in every

room of the environment. In contrast, the coverage based strategy has the robots stay in

the corridors which is sufficient to observe all of the grid cells. The other strategies follow

trajectories in between these two extremes, and generally only enter rooms when devices

are present. Note that for the information based approaches, robots naturally spread out,

and did not repeatedly get stuck in an area, demonstrating they did not get trapped in

local minima and effectively extended their planning horizon when necessary.

In every trial, each approach discovered all devices. The team ensured that the proba-
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(a) Exhaustive
578 seconds, all devices localized

(b) Coverage
184 seconds, 15 devices not localized

(c) Switching
419 seconds, all devices localized

(d) Discovery
393 seconds, all devices localized

(e) Balanced
373 seconds, all devices localized

(f) Localization
425 seconds, all devices localized

Figure 5.3: Time to localize targets. The proposed approaches (c)-(f) outperform the
baselines (a)-(b) by localizing all devices faster. Solid lines show the team’s path and black
x’s show device locations. The dashed orange line shows the maximum range of the sensors
at the team’s starting location (red dot).
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bility of an undiscovered target being present anywhere in the environment was below 0.05.

Not surprisingly, the coverage approach was the fastest to discover all devices. However, it

often failed to localize all of them, in many cases obtaining poor estimates for more than 8

devices. This failure is caused by the coverage strategy not rewarding the team for reducing

the uncertainty of the devices’ position estimates. Localizing a device with range-only sen-

sors requires measurements that are either close to it or at multiple angles relative to it. If

these types of measurements are not rewarded, the team will not necessarily obtain them,

resulting in devices not being localized. All of the other approaches localized all devices in

every trial as they reward measurements that reduce the uncertainty of devices’ positions.

Figure 5.4 shows the completion times of all approaches except coverage. We omit the

coverage approach’s completion time as it routinely failed to localize all devices. Across all

team sizes, the information based approaches generally performed better, and never per-

formed substantially worse, than the exhaustive approach. Overall, the balanced strategy

discovered and localized all devices the fastest, with an average improvement of 25% over

exhaustive. We attribute the balanced strategy’s performance to its tendency to gather

every potentially useful measurement when it is in an area, meaning it tends to not revisit

areas. In contrast, the task switching and localization approaches prioritize reducing the

uncertainty of discovered devices. Consequently, they tend to localize all devices quickly,

but not fully reduce the uncertainty of grid cells, meaning they must revisit parts of the

environment (e.g., rooms without devices). The discovery approach has the opposite issue:

it quickly discovers all devices, but then has to retraverse parts of the environment in order

to localize them. For completeness, the coverage approach took 184 s, 170 s, and 128 s to

complete for teams of 2, 4, and 8 robots respectively.

The performance gains in Fig. 5.4 are substantial given the density of devices throughout

the environment. Robots must move to many different areas, resulting in actions closer to

that of exhaustive sampling. In environments where the density of devices was lower, we’d

expect the information based strategies to outperform exhaustive sampling even further,

given that they reduce to the coverage strategy when all discovered devices are localized.
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Figure 5.4: Time to localize all devices. In general, the balanced approach performed the
best, outperforming the baseline exhaustive approach by ≈ 25%

Table 5.2: Average percent of time spent planning per trial. Due to the series of approxi-
mations we use, the team’s performance is primarily dominated by travel time.

Robots Exhaustive Switching Localization Balanced Discovery Coverage

2 3.5% 3.2% 3.8% 4.7% 4.4% 5.2%
4 6.7% 4.7% 6.5% 5.8% 7.2% 14.2%
8 17.8% 12.4% 18.5% 22.6% 39.0% 14.0%

Table 5.2 shows the percentage of time that the team spent planning. Overall, the trial

time was dominated by traveling places, demonstrating the computational effectiveness of

the series of approximations we use.

Finally, the completion times show that adding robots increase performance for all

strategies. The information based strategies absolute performance increase over the ex-

haustive strategy also decreases. This highlights the fact that given unlimited resources,

active control strategies offer fewer gains. However, the data in this section shows that with

even with moderately sized teams, there is a clear benefit to using informed strategies such

as mutual information to select control actions.

5.6 Conclusion

We presented a variety of information based approaches for actively discovering and local-

izing an unknown number of devices using range-only sensors. Through a series of approxi-

mations and a sequential optimization technique, our approaches can be calculated in time

that is polynomial in all relevant variables. We compared our approaches to two baseline

strategies in a complex indoor environment, and found that their gain in performance was

substantial.
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Chapter 6

Mapping Using Cauchy-Schwarz

Quadratic Mutual Information

The preceding chapters developed a mutual information based control law and applied it to

several different range-only estimation problems. A central issue was the difficulty of quickly

calculating mutual information. In this chapter, we examine an alternative information-

theoretic objective based on Cauchy-Schwarz quadratic mutual information (CSQMI). Like

mutual information, CSQMI is theoretically well motivated. However, for certain types

of noise models the requisite integrals can be calculated analytically, enabling substantial

gains in performance.

To examine the performance of CSQMI, this chapter focuses on the problem of active 3D

mapping. This is a challenging active perception problem. Noise, limited angle of view, and

limited sensing range are common considerations for many robotics sensors. These systemic

limitations yield degraded algorithm performance as the robot also contends with limited

mobility, precluding it from positioning its sensors arbitrarily throughout the environment.

In this chapter, we seek a method that accounts for these limitations, enabling a robot to

build and refine a map through continued control actions and sensor observations. Using

active mapping also enables us to examine how well information based approaches generalize

to robots with different mobility capabilities; where a robot can move has a substantial
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impact on the type of map it can construct.

This chapter makes three primary contributions. First, we show that by using CSQMI,

we get significant gains in efficiency, enabling mobile robots to build and refine a 3D map.

Second, in contrast to many previous methods, we explicitly model the dependence of

separate measurements over multiple time steps to develop online algorithms that search

over multiple, multi-step actions enabling us to go beyond one step maximizations. By

selecting informative paths, rather than greedily selecting informative destinations, robots

choose better control actions that improve the quality of the map with greater efficacy.

Third, because we consider models of sensing and mobility, our method naturally applies to

both ground and aerial vehicles. We evaluate the approach through a series of simulations

and experiments in which mobile robots must build a 3D map using an RGB-D sensor. Our

results show that maximizing CSQMI results in a robot exploring the entire environment,

while simultaneously ensuring that the map is sufficiently certain.

This chapter appeared in [21] and an accompanying technical report [20].

6.1 Occupancy Grid Mapping

We represent the environment as a 3D occupancy grid. Occupancy grids are advantageous

in this setting because they are a volumetric and probabilistic representation of 3D space.

The volumetric representation enables the robot to determine where it can move next, and

knowing the probabilities that various regions are occupied enables it to reason about how

its noisy sensors will change the representation.

The typical occupancy grid mapping algorithm discretizes 3D space into a set of regular

cubes that we refer to as cells or voxels (volumetric pixels). The map, m, is made of

cells {c1, . . . , c|m|} each of which have a probability of being occupied. Occupancy grid

mapping makes three standard assumptions: 1) cells are independent of one another, so the

probability of a particular map is p(m) =
∏
i p(ci), 2) the robot’s position is known and

3) unobserved cells have a uniform prior of being occupied [134]. The probability that an
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individual cell ci is occupied given sensor measurements from time 1 to t (i.e., z1:t) is:

p(ci | z1:t) =

(
1 +

1− p(ci | zt)
p(ci | zt)

1− p(ci | z1:t−1)

p(ci | z1:t−1)

)−1

(6.1)

This expresses the probability that a cell is occupied in terms of the probability of the cell

being occupied given just the latest measurement, p(ci | zt), and all other measurements,

p(ci | z1:t−1). p(ci | z1:t) can be efficiently calculated by expressing (6.1) in log-odds

notation:

L(ci | z1:t) = L(ci | z1:t−1) + L(ci | zt) (6.2)

Where L(ci | zt) is an inverse measurement model [134].

As described, occupancy grid mapping does not estimate the pose of the robot. Con-

sequently, we assume that the robot is capable of estimating its own pose as well as the

pose of its sensor in its local frame. Although they are not the focus of this work, modern

SLAM systems [93], which account for uncertainty in the map and the robot’s state, can be

used to construct an occupancy grid using the maximum likelihood estimate of the robot’s

path. The grid can typically be updated incrementally, but when estimates of previous

poses change substantially (e.g., due to loop closures) a completely new occupancy grid can

be quickly regenerated [131].

6.2 Cauchy-Schwarz Quadratic Mutual Information

We are interested in a control policy for the robot that maximizes the Cauchy-Schwarz

quadratic mutual information (CSQMI) between the map and measurements the robot will

receive over the next several time steps. This formulation gives a unified objective that

drives map refinement and exploration, while accounting for limitations of the sensor (e.g.,

noise, field of view, maximum range) and the robot’s own limited mobility.
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6.2.1 The Control Policy

We define an action over a time interval τ
4
= t+ 1 : t+ T as a discrete sequence of poses,

xτ = [xt+1, . . . ,xt+T ]. For a given action, the robot will receive a random vector of mea-

surements zτ = [zt+1, . . . , zt+T ] that each depend on the pose of the robot at that time.

Using the distribution over the current state of the environment, p(m), and its expected

future locations, the robot can estimate the distribution over measurements, p(zτ | xτ ). At

each planning step, the robot generates a set of actions X (Sect. 6.4), and selects the one

that maximizes the rate of information gain:

x∗τ = arg max
xτ∈X

ICS[m; zτ | xτ ]

D(xτ )
(6.3)

Where ICS[m; zτ | xτ ] is the CSQMI between the map and measurements the robot will

receive if it follows action xτ , and D(xτ ) is the time to execute the action. In this problem,

CSQMI can be expressed as:

ICS[m; zτ | xτ ] = − log

(∑∫
p(m, zτ | xτ )p(m)p(zτ | xτ ) dzτ

)2∑∫
p2(m, zτ | xτ ) dzτ

∑∫
p2(m)p2(zτ | xτ ) dzτ

(6.4)

where the sums are over all possible maps, and the integrals are over all possible measure-

ments the robot can receive. In Sect. 6.3 we give an algorithm that can approximately

evaluate this quantity with a time complexity that is linear in the number of cells that

potential measurements could hit. For a general review of CSQMI and its definition, see

Ch. 2.

Unlike the objectives previously developed in this thesis, (6.3) incorporates the time

to execute an action, D(xτ ). This is useful as it enables meaningful comparisons between

actions that take substantially different amounts of time to execute. In the range-only

problems in Chapts. 3-5, robots primarily compared actions of similar length, and so it was

not necessary to incorporate a cost. However, in an active mapping scenario a robot often

needs to consider its ability to reduce the map’s uncertainty where it currently is (short

actions) compared to areas much farther away (long actions). Researchers have examined
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a variety of utility functions for combining information (reward) and time (cost) [129, 139].

We choose this objective as it can be intuitively understood as the rate of information gain.

6.2.2 Relationship to Mutual Information

A natural question is how CSQMI compares to mutual information (MI), a well understood

and widely used objective function for active perception [110, 65]. We explain this relation-

ship using a simple 2D environment when a robot is equipped with an omnidirectional 2D

laser. The MI between the map and the robot’s future measurements can be expressed as:

IMI[m; z] = H[z]−H[z |m] (6.5)

where both quantities are implicitly conditioned on the robot’s pose. Figure 6.1 shows

the reward surfaces for MI and CSQMI. In Fig. 6.1a, white cells have a low probability of

occupancy, black cells have a high probability of occupancy, and gray cells are uncertain.

Color in Fig. 6.1b and Fig. 6.1c show the value of each objective if the robot places a laser

with a minimum range of 0.5 m and a maximum range of 5 m at that position. Julian et

al. [65, Fig. 1] use this example to illustrate why choosing MI is beneficial: its maximization

would clearly result in the robot moving to regions where it could observe high uncertainty

regions of the map. In Fig. 6.1c we see that maximizing CSQMI leads to similar behavior.

While frontier-based methods would also perform well in this scenario, directly extending

them to 3D environments is difficult as noted by Shen et al. [117] and demonstrated in our

experiments (Sect. 6.5).

Importantly, all of the integrals to calculate CSQMI can be evaluated analytically in

this setting, making it fast to evaluate, whereas calculating MI requires numerical integra-

tion [65]. Therefore, we choose CSQMI to derive our control policies.

6.3 Calculating CSQMI

This section describes how to efficiently calculate the Cauchy-Schwarz quadratic mutual in-

formation (CSQMI) between the map and the robot’s future measurements (i.e.,
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Figure 6.1: Mutual information vs. CSQMI. For an omnidirectional 2D laser in (a), mu-
tual information (MI) and CSQMI are similar and result in the robot moving to make
observations that reduce the map’s uncertainty.

ICS[m; zτ | xτ ] in (6.3)). We first describe the measurement model, and then use that

to calculate the CSQMI for a single beam at a single time step. We then extend this to

CSQMI with multiple beams over several time steps.

6.3.1 Measurement Model

As discussed in Sect. 6.2, at time k, the robot receives a random vector of measurements

zk. We model this vector as a collection of B beams so that zk = [z1
k, . . . , z

B
k ], where zbk is

the 1-dimensional random variable of the distance that beam b travels. We model multiple

beams using spherical coordinates by uniformly discretizing the horizontal and vertical field

of view of the sensors and generating a beam for each combination of angles (e.g., Fig. 6.2b).

We assume the distribution over distances for a single beam is determined by the true
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Figure 6.2: Beam based measurement model. (a) one beam, the cells it intersects at
various distances, and the resulting distribution over measurements when zmin = 0.5 and
zmax = 2. (b) Raycasts for multiple beams.

distance, d, to the first obstacle that the beam intersects:

p(zbk = z | d) =


N (z − 0, σ2) d ≤ zmin

N (z − zmax, σ
2) d ≥ zmax

N (z − d, σ2) otherwise

(6.6)

Where zmin and zmax are the minimum and maximum range of the sensor, and N (z−µ, σ2)

is a Gaussian with mean µ and variance σ2. This noise model is somewhat simplistic, as

measurements from real sensors have non-axial distance dependent noise as well as radial

distortion [121]. While (6.6) only accounts for axial noise and assumes a constant variance,

Sect. 6.5 shows that this is sufficient for good experimental results.

Given a map, m, we can calculate the distribution over measurements, p(zbk), via

marginalization. First, let c ⊆ m be the list of C cells within the maximum range of

the sensor that a beam intersects (Fig. 6.2a). Given the measurement model, (6.6), cells

not in c have no effect on zbk, and can be ignored. The distance to the first occupied cell

completely determines the distribution for each beam, so cells in c behind an occupied cell

can be ignored. This means:

p(zbk) =
C∑
i=0

p(c = ei)p(z
b
k | c = ei) (6.7)
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Where ei, i > 0, means that the ith voxel in c is the first occupied cell the beam encounters

and e0 means that all cells in c are unoccupied, so the maximum range will be returned.

See Julian et al. [66] for a similar derivation. Fig. 6.2a shows a typical distribution over

measurements using (6.7).

6.3.2 CSQMI for a Single Beam

In this section we give the expression for the CSQMI between beam b at time k and the

map. This is equivalent to calculating the CSQMI between the beam and cells the beam

intersects because the beam cannot reduce the uncertainty of cells that it does not intersect

(i.e., ICS[m; zbk | xk] = ICS[c; zbk | xk]). As we show in Appendix 6.7.2, ICS[c; zbk | xk] can be

calculated by plugging the measurement distribution (6.7) into (6.4):

ICS[c; zbk | xk] = log
C∑
`=0

w`N (0, 2σ2)

+ log

C∏
i=1

(o2
i + (1− oi)2)

C∑
j=0

C∑
`=0

p(ej)p(e`)N (µ` − µj , 2σ2)

− 2 log
C∑
j=0

C∑
`=0

p(ej)w`N (µ` − µj , 2σ2) (6.8)

where C = |c|, oi = p(ci = 1) (i.e., the ith cell in c is occupied), and p(ej) is the probability

that cj is the first occupied cell. µj is determined by (6.6) and ej . The w’s are:

w` = p2(e`)
C∏

j=`+1

(o2
j + (1− oj)2) (6.9)

for 0 < ` < C while w0 = p2(e0) and wC = p2(eC).

Because they can be calculated iteratively, computing p(e`) and w` for all ` takes O(C)

time. The double sums each have C + 1 Gaussian components, so calculating them exactly

takes O(C2) time.

The primary advantage of (6.8) is that all of the integration is performed analytically.

Another nice property is that the double sums can be approximated in O(C) time with
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practically no error. While general techniques like the Fast Gauss Transform [48] could also

be used, this problem lends itself to a simpler approximation.

The approximation relies on the fact that Gaussians fall off quickly, andN (µ`−µj , 2σ2) ≈

0 when |µ` − µj | > β
√

2σ (i.e., the means are more than a few standard deviations apart)

and β specifies the degree of approximation. Determining which means are close to each

other is normally difficult, but in this case we know the means monotonically increase with

the index, because they are determined by their distance along the beam. Occupancy grid

mapping typically uses cell lengths that are slightly larger than the variance of an individual

beam, because finer resolutions will not result in significantly different maps. Thus, means

separated by more than a few grid cells must be substantially different, so the double sums

can be approximated as:

C∑
j=0

j+∆∑
`=j−∆

αj,`N (µ` − µj , 2σ2) (6.10)

where ∆ is the number of cells beyond which the contribution is effectively 0 and αj,` is a

weight that is 0 when ` < 0 or ` > C. As the αj,` in (6.8) are small, ∆ is typically 3 or 4

for β = 3, making the complexity of (6.10) O(C), meaning CSQMI’s complexity is linear

in the number of cells the beam intersects.

6.3.3 CSQMI for Multiple Beams and Time Steps

We now discuss evaluating CSQMI between all beams across all time steps: ICS[m; zτ | xτ ].

Exact calculation is computationally intractable because different beams can observe the

same cells. As we show, this problem arises from the measurement model and affects all

information-theoretic policies and not just those based on CSQMI. Researchers typically

address this issue by assuming individual measurements are independent [66, 73]. We

adopt a different approach by calculating CSQMI with a subset of the measurements that

are nearly independent. This enables efficient computation, often yields better performance

than the independence assumption (Sect. 6.5), and can be applied to other information based

metrics like mutual information.
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To simplify the discussion, consider two beams zi and zj which originate from different

robot poses. For brevity, in the remainder of this subsection, we will often not explicitly

condition measurements on the robot’s position. Marginalizing over all cells in the map,

their joint density is:

p(zi, zj) =
∑
o

p(o)
∑
ci

p(ci)p(zi | ci,o)
∑
cj

p(cj)p(zj | cj ,o) (6.11)

where ci is the set of cells that only beam i intersects, cj is the set of cells that only beam j

intersects, and o is the set of overlapping cells both beams intersect. When zi and zj have

no cells in common they are independent because o is the empty set. CSQMI simplifies

in this case: ICS[m; zi, zj ] = ICS[ci; zi] + ICS[cj ; zj ] (see Appendix 6.7.1). Unfortunately,

calculating CSQMI – or any other information metric – when the beams overlap requires

summing over each instantiation of o in (6.11). There are 2|o| such instantiations, and while

the integrals can be done analytically, exact calculation is computationally infeasible.

However, even when the beams overlap, the probability that they both hit the same cell

may be small. For example, at each time step all beams intersect cells close to the robot,

but those cells usually have a low probability of occupancy, so none of the beams has a high

probability of hitting them. Fig. 6.3 illustrates this point. In these cases, the joint density

can be approximated as:

p(zi, zj) ≈
∑
ci,oi

p(ci,oi)p(zi | ci,oi)
∑
cj ,oj

p(cj ,oj)p(zj | cj ,oj) = p̂(zi)p̂(zj) (6.12)

which means zi and zj are approximately independent. Here oi ⊆ o is the subset of

overlapping cells that only zi is likely to hit and oj ⊆ o is the subset of overlapping cells

that only zj is likely to hit.

To establish (6.12), consider the case when the two beams are unlikely to collide (i.e.,

don’t hit the same cell). Let ho`
zi

be the event that zi hits o`, the `th cell in o. If zi is

likely to hit o` (i.e., p(ho`
zi

) 6= 0), then beam zj is not (i.e., p(ho`
zj

) ≈ 0). For beam zj , this

means p(zj | cj , o`) ≈ p(zj | cj). Consequently, p(o`) can be factored out of the outermost
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A

B
C

Figure 6.3: Nearly independent beams. Beam A intersects beams B and C, but it is nearly
independent of them because the probability it reaches the same cells is close to 0. Beams
B and C are not nearly independent, because they will likely hit the same cell.

sum in (6.11) and included in the sum over ci. This same argument works when p(ho`
zj

) is

non-negligible. If neither beam is likely to reach o`, it is effectively marginalized out by

the outermost sum. Repeating this process for each cell in o results in (6.12), which means

ICS[m; zi, zj ] ≈ ICS[ci,oi; zj ] + ICS[cj ,oj ; zj ]

This insight provides a way of approximating CSQMI using a subset of measurements,

Z, that are nearly independent:

ICS[m; zτ | xτ ] ≈
∑
zbk∈Z

ICS[m; zbk | xk] (6.13)

While the sum is an approximation, it tends to lower bound the true CSQMI as Z does not

contain all measurements.

Finding Z ⊆ zτ that maximizes (6.13) is an instance of the maximum-weight indepen-

dent set problem, meaning it is NP-hard and no polynomial time constant factor approxi-

mation algorithm exists [26]. Despite this, we have obtained good results by iterating over

all measurements and greedily building Z (Alg. 2). To test if a new beam zbk is independent

of those in Z, we check if beams in Z do not hit any cell that zbk hits (Lines 8-11). To check

if a collision is unlikely at cell ci we use the following test:

p

(
hci
zbk
,
⋃
z∈Z

hciz

)
≤ min

{
p(hci

zbk
),
∑
z∈Z

p(hciz )

}
≤ γ (6.14)

where γ is a user specified cutoff. If this is true for each cell that zbk, intersects, we treat it

as independent and add it to Z (Line 13). The inequality in (6.14) uses the monotonicity of
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Algorithm 2: Calculate ICS[m; zτ | xτ ]

1: CSQMI = 0 // CSQMI from measurements in Z
2: AnyHit = 0 // Mapping from each cell to probability that any measurement in Z hits

it; initially all 0
3: for k = t+ 1 to t+ T do
4: for b = 1 to B do
5: c = Raycast to get C cells that zbk intersects
6: Calculate [p(e0), . . . , p(eC)] // ith element is the probability that zbk hits cell ci
7: // See if zbk is independent of measurements in Z
8: independent = true
9: for i = 1 to C do

10: if min{p(ei),AnyHit[ci]} > γ then
11: independent = false
12: if independent then
13: CSQMI += ICS[m; zbk | xk] // Add zbk’s info
14: for i = 1 to C do
15: AnyHit[ci] += p(ei)

probability and the union bound to upper bound the probability of collision in a way that

does not require determining interactions between beams (Lines 14-15).

The computational complexity of Alg. 2 is O(TBC), where T is the number of poses

in the action and B is the number of beams the sensor has. The outer loops iterate over

all TB beams. For each beam, a raycast is performed and the weights are built, which as

described in Sect. 6.3.2 is linear, O(C), in the number of cells the beam intersects. Both

the independence check and updating AnyHit iterate over each cell, performing constant

time operations at each one.

6.4 Action Generation

The primary goal of action generation is to create paths whose rate of information gain is

large. To do this, we plan shortest paths to places where frontiers can be observed as shown

in Fig. 6.4.

First, we identify frontier voxels (i.e., voxels that are unobserved but neighbor observed

voxels) [142]. In 3D environments there are too many voxels to generate a path for each

one, so we group them into “clusters” with a greedy algorithm (Fig. 6.4a). Each cluster is
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(a) Detect and
cluster frontiers

(b) Sample poses that
view a cluster

(c) Plan a path to the
closest sampled pose

(d) Use Dijkstra’s algorithm to
plan paths that view all clusters

Figure 6.4: Planning paths to view frontier clusters. Occupied voxels in the map are colored
by their z-height. (a) Detected and clustered frontier voxels at the end of the hallway (top of
the figure). (b) Poses where a robot can view one cluster are shown as red arrows. (c) The
shortest path from the robot’s location (bottom of the figure) to one of the sampled poses
is shown as a blue line. (d) Paths that view all clusters. To plan all paths simultaneously,
first build a lookup table of where each cluster can be viewed (Alg. 3), and use it while
running Dijkstra’s algorithm to plan single source shortest paths.

created by sampling a frontier voxel and grouping it with other voxels within a specified

distance (0.4 m works well in practice). This process repeats until no frontier voxels remain.

The robot generates one action per cluster by planning a path to where the cluster is

visible. A cluster is “visible” from a pose if it is in the robot’s sensor footprint and the prob-

ability that a ray from the sensor reaches the cluster is high (i.e., the ray is unobstructed).

Planning these paths is difficult for two reasons. First, in 3D environments clusters may

exist in places that a robot can observe, but cannot go to (e.g., space above obstacles).

Second, a robot must consider its orientation when its sensor has a limited angle of view.
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Algorithm 3: Calculate VisibilityLookupTable, a mapping from robot poses to the clusters
it can view at that pose

1: for each cluster in clusters do
2: poses = samplePosesWhereVisible(cluster)
3: for each pose in poses do
4: VisibilityLookupTable.at(pose).update(cluster)

A straightforward approach to generate a path that can view each cluster is to use Di-

jkstra’s algorithm to plan shortest paths from the robot’s current pose to every destination

in the environment and check to see which clusters are visible from each destination. How-

ever, this is computationally expensive because it requires performing a visibility check to

all clusters at every destination. To speed the process up, we precompute which clusters are

visible from different destinations using Alg. 3. samplePosesWhereVisible(cluster) (Line 2)

returns a set of poses where a robot can view a cluster; it can be implemented by sampling

poses near the cluster and rejecting those that cannot view it [36]. For example, the poses

in Fig. 6.4b can all view a single cluster. Using a lookup table of these poses during the

Dijkstra search is substantially faster than performing the visibility checks at each destina-

tion. Fig. 6.4c shows a path that can view a single cluster, while Fig. 6.4d shows paths that

view all clusters.

6.5 Results

6.5.1 Approximating CSQMI With and Without Independence

We examine the result of our approximate evaluation of the objective (6.13), and compare

it to the values we get when we assume measurements are independent. Consider a simple

example where a robot with a planar 2D laser must evaluate the CSQMI at two different

positions as shown in Fig. 6.5. The laser has 30 beams uniformly spaced over its 90◦ field of

view. In this case, calculating CSQMI by assuming measurements are independent results

in an overestimate of the true CSQMI, and chooses pose A. Our approach lower bounds the

true value and picks pose B, which maximizes the true CSQMI.

Because we represent the map as an occupancy grid, the independence assumption may
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Figure 6.5: Independence leads to overconfidence. Positioning a sensor at B results in a
larger CSQMI than at A. The approximation from Sect. 6.3.3 picks pose B, but assuming
measurements are independent picks A.
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Figure 6.6: Percentage increase in CSQMI for a single beam observing the same cells over
multiple time steps. The approximation from Sect. 6.3.3 is more conservative, but also more
accurate.

appear more reasonable as a sufficiently fine discretization of space will result in beams that

are independent at a particular point in time. However, extending this to multiple time

steps is problematic. In particular, with the independence assumption the optimal policy

will be to position the sensor at the place that maximizes CSQMI at a single time step, and

stays there for all remaining steps. Fig. 6.6 shows this effect in more detail by calculating

the CSQMI of a single beam that intersects the same 10 cells multiple times. Each cell is

occupied with probability 0.5. Assuming independence results in a linear growth in CSQMI,

while the true CSQMI asymptotically reaches a 63% increase. Calculating CSQMI using

Alg. 2 only uses the beam at the first time step, as all subsequent beams are dependent on

it, which lower bounds the true value. In general, this approach is preferable as maximizing

a function by maximizing a lower bound results in better performance than maximizing an

upper bound.
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Figure 6.7: Ground robot results using CSQMI. (b) The black triangle shows the robot’s
starting location and the blue line shows the path it followed for one trial. (c) The final 3D
map from one trial (ceiling omitted) with occupied cells colored by height. (d) Shannon’s
entropy of 3D map over time for multiple trials and approaches. Using CSQMI to evaluate
the utility of actions helps the robot reduce the map’s uncertainty faster.
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Figure 6.8: Time to evaluate the information of a single beam. CSQMI is faster to compute
than MI and the approximation from (6.10) makes computing information linear in the
number of voxels.

6.5.2 Computational Performance

In this section, we benchmark the computational performance of CSQMI by comparing

it to mutual information (MI). To do this, we examine the time it takes to evaluate the

information of a single beam and a group of voxels over a large number of random trials.

Voxels are spaced 0.1 m apart, their probability of occupancy is randomly generated, the

beam’s noise is σ = 0.03 m and the distance to the last voxel is treated as the maximum

range of the sensor. MI must be computed numerically using (6.5). We also compare

calculations that exploit the rapid decay of a Gaussian, as we did in (6.10), by ignoring
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cross-terms whose means are separated by more than 4 standard deviations. Fig. 6.8 shows

the time to compute information with varying numbers of voxels (mean time using 105

samples). Using the approximation makes the asymptotic complexity of calculating MI

and CSQMI linear instead of quadratic. However, CSQMI is faster in both cases and

approximately 7 times faster when using the approximation. This difference is substantial,

as a robot often needs to evaluate tens to hundreds of actions during exploration, each of

which consists of multiple poses which each have hundreds of beams. Finally, note that this

approximation introduced little error; the relative error was below 10−3 for all trials.

6.5.3 Experimental Results With a Ground Robot

To test our approach experimentally, we use a ground robot to map a 40 m× 35 m× 2 m

portion of an office environment in Levine Hall at the University of Pennsylvania. A video

of experimental results is available at http://youtu.be/R3CW7VmkjFk.

The ground robot (Fig. 6.7a) is equipped with a UTM-30LX laser range finder and an

Asus Xtion Pro as its RGB-D sensor. The UTM-30LX is mounted parallel to the ground,

which the robot uses to estimate odometry and to construct a 2D map using a pose graph

based SLAM system [134]. The 3D occupancy grid is constructed with a resolution of

0.1 m using data from the Xtion and pose information from the 2D SLAM system. The

grid is updated incrementally as the robot moves, and regenerated whenever previous pose

estimates of the robot change significantly (e.g., due to loop closures). The robot’s maximum

linear velocity is 0.5 m/ s.

Evaluating CSQMI requires specifying several parameters. To predict future measure-

ments we discretize the 58◦ horizontal field of view and 48◦ vertical field of view of the

RGB-D sensor into 20 separate values each, resulting in 400 separate beams. With the

0.1 m resolution of the map, finer angular discretizations typically result in dependent

beams that do not substantially change the objective (Sect. 6.3.3). The sensor’s minimum

range is zmin = 0.5 m, its maximum range is zmax = 4.5 m, and its noise is σ = 0.03 m.

To classify measurements as independent, we use a cutoff of γ = 0.1. When evaluating

the CSQMI of an action, we include a pose every 3 m along the path or when the robot’s

111

http://youtu.be/R3CW7VmkjFk


heading changes by more than 50◦. All software is written in C++ and executes on the

robot which has an Intel Core i5 processor with 8 GB RAM.

Fig. 6.7 shows typical results from maximizing CSQMI. Fig. 6.7b shows a top down view

of the path the robot followed overlaid on its 2D laser based map and Fig. 6.7c shows the

maximum likelihood estimate of the 3D map at the end of the trial. The final map had

low uncertainty for every area that the robot could observe. Overall, the robot’s followed

path was efficient, with relatively little time spent revisiting areas that were already well

observed. While the robot did revisit sections of the environment, particularly in the lower

left corner, these actions occur near the end of the trial, after the robot has already observed

most of the environment. The accompanying video submission illustrates the robot’s overall

behavior more clearly.

To determine whether maximizing CSQMI yields improvements in performance over

other methods, we compare it to the common approach of driving to the nearest frontier.

To implement frontier-based exploration, we use the same action generation approach, but

select the action that takes the smallest amount of time to execute without evaluating

CSQMI. The CSQMI approach stops executing actions once the highest information gain is

below 30 (a low value for the sensor setup). The frontier-based approach terminates once no

frontiers are detected. When comparing these strategies, we are interested in how quickly

the robot obtains a low uncertainty estimate of the entire map.

To measure how the map’s uncertainty changes, we look at the Shannon entropy of cells

the robot could possibly observe (i.e., H[m] = −
∑

i oi log2 oi + (1− oi) log2(1− oi) where

oi is the probability that the ith cell is occupied). We sum over cells in the 3D map whose

x and y coordinate are within 0.1 m of an occupied or unoccupied cell in the final 2D map.

This excludes most cells that are impossible to observe (e.g., in between hallways) and –

because the laser based 2D map is complete – includes cells that the robot may have failed

to observe with its RGB-D sensor. Fig. 6.7d shows the entropy over time for 3 trials for

both approaches. For reference, there were approximately 6× 105 observable cells and the

maximum entropy of a single cell is 1 bit (i.e., an occupancy probability of 0.5). Overall,
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CSQMI significantly outperformed the nearest frontier approach. While the final maps

had similar entropies, the rate of decrease using CSQMI was faster. The mean time to

completion for CSQMI was 1945 s while for nearest frontier it was 2720 s. The primary

reason for this difference is that in 3D environments there are often a large number of

frontiers. However, these can be spurious in that the surrounding environment may already

be well observed. Evaluating the CSQMI of actions enables the robot to determine whether

traveling to a frontier will improve the map, while the frontier-based approach spends a lot

of time traveling to areas that have already been well explored. The long flat tail of the

entropy curve for the CSQMI trials indicates that the information termination criterion was

appropriately conservative.

6.5.4 Experimental Results With an Aerial Robot

To examine how our approach works with robots that have greater mobility, we conducted

experiments with a quadrotor in a 18 m × 17 m × 3 m section of Skirkanich Hall at the

University of Pennsylvania. Unlike a ground robot, a quadrotor can change its height,

enabling it to travel to more sections of the environment.

We use an AscTec Pelican (Fig. 6.9a) equipped with a UTM-30LX and Asus Xtion Pro.

It performs laser-based localization onboard using the system by Shen et al. [116]. The

state estimates are fed into the same SLAM and CSQMI framework used by the ground

robot, which run on a wirelessly connected laptop.

Fig. 6.9 shows results from a single trial which took 11 min to complete. Due to its

limited battery life, approximately 5 min, we manually landed the quadrotor twice to re-

place its battery. Obstacles (e.g., tables) were present throughout the environment, which

the quadrotor accounted for when generating actions (Fig. 6.9b). Despite these challenges,

Figs. 6.9c and 6.9d shows that it built a complete map, demonstrating that CSQMI gen-

eralizes to robots with more flexible motions.
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(a) Quadrotor (b) Candidate actions

(c) Final map (d) Followed path

Figure 6.9: Quadrotor results. By evaluating CSQMI, the quadrotor is able to build a
complete map with low uncertainty.

6.6 Conclusion

We presented a general approach and algorithms to plan multi-step actions for active per-

ception that lend themselves to robots equipped with high data rate sensors like RGB-D

cameras. The use of the CSQMI and reasoning about the independence and dependence

of observations over successive time steps allowed us to develop algorithms that are both

accurate and efficient. The paper included several experimental and simulation results that

illustrate the ability of robots to explore and map three-dimensional environments, even

with mobility constraints that may constrain them to a plane. Our current work addresses

cooperative control of aerial and ground robots.
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6.7 Proofs

6.7.1 CSQMI for Independent Subsets

If z1 and c1 are independent of z2 and c2: p(z1, z2, c1, c2) = p(z1, c1)p(z2, c2). Applying

this to ICS[z1, z2; c1, c2] and defining dz = dz1 dz2

− log

(∑∫
p(z1, c1)p(z2, c2)p(z1)p(z2)p(c1)p(c2) dz

)2∑∫
(p(z1, c1)p(z2, c2))2 dz

∑∫
(p(z1)p(c1)p(z2)p(c2))2 dz

= − log

(∑∫
p(z1, c1) dz1

)2∑∫
(p(z1, c1)2 dz1

∑∫
(p(z1)p(c1))2 dz1

−

log

(∑∫
p(z2, c2) dz2

)2∑∫
(p(z2, c2)2 dz2

∑∫
(p(z2)p(c2))2 dz2

= ICS[z1; c1] + ICS[z2; c2]

Induction on this equality establishes it for more general subsets.

6.7.2 Derivation of CSQMI for Single Beam

To derive (6.8), we note that because cells are independent of each other, it is possible to

show ICS[z;m] = ICS[z; c] using the technique in Appendix 6.7.1.

To evaluate ICS[z; c], we individually calculate each of the three separate terms in (6.4).

Starting with the square of the joint distribution we get:

∫ ∑
c

p2(z, c) dz =

∫ C∑
k=0

p2(z | ek)
∑
c∈Ek

p2(c) dz (6.15)

Where Ek is the set of all instantiations of c such that k is the first non-zero element. For

notational compactness, we define E0 = {e0} as the set whose only instantiation is the 0

vector. Defining the innermost sum as wk for k > 0 and factoring independent cells:

wk =
∑
c∈Ek

N∏
i=1

p2(ci) = p2(ek)
N∏

i=k+1

(o2
i + (1− oi)2) (6.16)

Where oi = p(ci = 1). Defining w0 = p2(e0) and applying the formula for the integral of
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product of Gaussians:

∫
N (z − µ1, σ

2
1)N (z − µ2, σ

2
2) dz = N (µ1 − µ2, σ

2
1 + σ2

2)

to (6.15) gives the first line in (6.8).

Turning to the squared product of the marginals, the two terms share no parameters

and can be factored:

∑
c

∫
p2(c)p2(z) dz =

∑
c

p2(c)

∫
p2(z) dz

=
C∏
k=1

(o2
k + (1− ok)2)

C∑
i=0

C∑
j=0

p(ei)p(ej)N (µi − µj , 2σ2)

The sum is calculated in the same way as (6.16). The integral is simplified by plugging

in the measurement density (6.7), squaring it, and applying the integral of Gaussians once

more. This gives us the second line in (6.8).

Evaluating the product of the marginals and the joint is all that remains.

∫
p(z)

∑
c

p(z | c)p2(c) dz

=

∫
p(z)

C∑
k=0

p(z | ek)
∑
c∈Ek

p2(c) dz

=

∫  C∑
j=0

p(ej)p(z | ej)

( C∑
k=0

wkp(z | ek)

)
dz (6.17)

=
C∑
j=0

C∑
k=0

p(ej)wkN (µi − µj , 2σ2)

The sum in (6.17) is the same as (6.16). After that, plugging in the measurement density

for p(z) and applying the product of Gaussians formula gives the last line in (6.8).
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Chapter 7

Planning with Trajectory

Optimization for Mapping

Every control policy in this thesis so far has been formulated as the optimization of an

information-theoretic objective over a discrete set of actions (e.g., a fixed set of motion

primitives or the output of a path planner). While we have obtained many good results

using this approach, it has two significant drawbacks. First, the actions are generated inde-

pendently of the objective and there is no guarantee the selected action is locally optimal.

Second, thus far, the generated actions have all been geometric paths (i.e., sequences of

waypoints) as opposed to time parameterized trajectories that account for a robot’s mo-

tion constraints. Consequently, a robot may not be able to follow the generated actions.

While these issues can be addressed by generating larger numbers of actions and planning

in higher-dimensional spaces, this substantially increases the computational complexity of

the control policy. Third, and finally, even generating simple paths can be expensive, par-

ticularly in active mapping scenarios (Ch. 6) where paths must be generated throughout

the entire environment.

There are several different strategies for generating control actions for the robot includ-

ing local exploration strategies involving greedy gradient ascent [1, 112, 66] or local motion

primitives [10, 15, 40]; and global strategies that use a variant of the frontier method to
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Global plans
Local motion primitives

(a)

Global plans
Local motion primitives

(b)

Global plans
Local motion  
primitives

Opt. Global plans
Opt. Local motion  
primitives

(c)

Figure 7.1: Local and global planning with trajectory optimization. (a) Local motion
primitives are useful when a robot is close to uncertain portions of the map (gray blobs)
and needs to react quickly to new information. (b) Global plans are useful when the robot is
far from uncertain portions of the map as they can escape local minima in the information-
theoretic objective. (c) Trajectory optimization can improve the informativeness of both
local motion primitives and global plans while respecting a robot’s motion constraints.

maximize the chosen objective [21, 105]. Local strategies are useful when the robot is close

to uncertain portions of the map and constantly observing new areas (Fig. 7.1a), but are

susceptible to local minima [123]. Global strategies can escape local minima when the robot

is far from uncertain portions of the map (Fig. 7.1b), but are computationally expensive

and may produce coarse paths that result in jagged robot motion [114].

We address all of these issues by extending the approach developed in Ch. 6. The primary

contribution of this chapter is a two stage approach for generating and refining trajectories

that substantially improves a robot’s ability to quickly reduce the map’s uncertainty. First,

we generate trajectories using a combination of global planning and local motion primitives,

enabling a robot to escape local minima and replan quickly as the map changes. Second,

we contribute a method for improving both local motion primitives and global paths using

gradient-based trajectory optimization that maximizes the CSQMI objective while satisfy-

ing the robot’s motion constraints (Fig. 7.1c). This improvement is particularly important

when mapping 3D environments with robots that have high-dimensional state spaces and

non-trivial motion models.

We evaluated our approach through a series of simulations and experiments on a ground

robot and an aerial robot mapping unknown 3D environments. In real-world experiments we

show that by including global plans, local motion primitives, and trajectory optimization,

a ground robot was able to construct a complete 3D map 3.3× faster than a strategy that
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(a) Mapping an indoor environment with a ground robot

(b) Mapping a stairwell environment with an aerial robot

Figure 7.2: Results with ground and air robots. (a) Mapping an indoor environment with
a ground robot equipped with a RGB-D sensor. (b) Mapping a stairwell environment with
a quadrotor equipped with a RGB-D sensor. We contribute a two stage planning approach:
1) using a global planner and local motion primitives to choose trajectories that maximize
an information-theoretic objective based on Cauchy-Schwarz quadratic mutual information
(CSQMI) and 2) using trajectory optimization to further maximize the CSQMI objective.

drives to the closest frontier [142] and 2.3× faster than the information-based strategy in

Ch. 6 that only considers global plans.

This chapter will appear in [19].

7.1 Problem Definition

Our basic problem formulation of the active mapping problem remains the same as in Ch. 6.

To represent the map and measurements, we continue to use occupancy grids (Sect. 6.1)

and a beam based model with Gaussian noise (Sect. 6.3.1).

The only difference in our problem definition for this chapter is the formulation of the

control policy. Instead of only seeking a set of states for the robot to follow, we explicitly
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include its control inputs and motion model. Specifically, given a map m at time t, we

seek a set of control inputs for the robot so that it gathers measurements which reduce the

uncertainty of the map as quickly as possible. To achieve this, we formulate an optimization

problem over the time interval τ
4
= t+ 1 : t+ T to find controls uτ = [ut, . . . ,ut+T−1]

that move the robot to states xτ = [xt+1, . . . ,xt+T ] where it will obtain measurements

zτ = [zt+1, . . . , zt+T ] that reduce the map’s uncertainty. The future states of the robot are

determined by the deterministic dynamics of the robot, xi+1 = f(xi,ui). Our objective is

to find controls that maximize the rate of some measure of information gain between the

map, m and future measurements the robot will make, zτ :

max
xτ , uτ

ICS[m; zτ | xτ ]

D(uτ )

s. t.
∀t<i<t+T−1

xi+1 = f(xi,ui), (7.1)

xi ∈ Xfeasible,ui ∈ Ufeasible,

where ICS[m; zτ | xτ ] is CSQMI as defined in Ch. 6, Ufeasible is the set of valid controls,

Xfeasible is the set states the robot can be in, and D(uτ ) is how long it takes to execute

all of the controls. As before, maximizing the rate of information gain is preferable to

purely maximizing information, as it enables the robot to compare the value of actions over

different time and length scales.

7.2 Approach

We propose a two stage planning approach. We construct a candidate set of trajectories

by supplementing global plans with local motion primitives generated by control sampling.

We then choose a trajectory that maximizes the objective given by (7.1). In doing so, we

combine the benefits of both global planning and local exploration using primitives, as shown

in Fig. 7.1. In the second stage, we optimize the chosen trajectory using gradient-based

trajectory optimization over multiple time steps to maximize the CSQMI objective while

satisfying the robot’s motion model. The controls generated by the trajectory optimization

routine are fed to the low level motion controller.
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Figure 7.3: System architecture. We generate a candidate set of trajectories by combin-
ing global planning and local motion primitives and then select the one that maximizes
the CSQMI objective. This selection is improved using trajectory optimization and then
executed by the robot. Different system components run asynchronously at different fre-
quencies.

A schematic of our system architecture is shown in Fig. 7.3.

7.2.1 Combining Global Planning and Local Motion Primitives

Global Planning: The global planner’s task is to generate a set of paths from the robot’s

current location whose rate of information gain is high. These paths should extend to every

portion of the known map, so that the robot can consider the utility of traveling far away

from its current location. To generate these paths, we use the same algorithm for planning

shortest paths to destinations where frontiers can be observed (Sect. 6.4), as illustrated in

Fig. 7.4.

While the global planner is useful, it has the following shortcomings: 1) generating

paths throughout the environment takes a long time; 2) the paths it generates are coarse

and may not satisfy the robot’s dynamics; and 3) even when paths can be followed, they

are frequently not smooth, resulting in jagged robot motion [114].

Local motion primitives: The goal of local motion primitives is to quickly generate

short trajectories. This is primarily useful when the robot is near an uncertain part of the

map and constantly getting new information that affects where it should go (Fig. 7.1a).

As it plans throughout the entire environment, in these cases, the global planner generates

paths too slowly.

We evaluated the benefits of two types of control sampling methods: 1) lattice plan-

ners [78] that generate dynamically feasible trajectories using a fixed library of motion
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Figure 7.4: Global Planning. We generate global plans by 1) clustering frontier voxels and
2) planning paths to destinations that can view them. When a robot can view a cluster
from multiple places, we select the one that can be reached the fastest.

primitives that are chained together to plan over multiple timesteps; and 2) randomized

planners that generates trajectories by randomly sampling from the robot’s control space

over the local time horizon. In both cases, if the motion model predicts that the robot might

enter an obstacle or unknown space in the environment, the set of controls is rejected. To

specify “local,” we heuristically generate motions whose total length is comparable to the

maximum range of the sensor.

7.2.2 Trajectory Optimization for Refinement

Neither the global plans nor local motion primitives are locally optimal with respect to the

rate of information gain as they do not consider the full control input space of the robot. To

address this issue, we use gradient-based trajectory optimization that can refine a trajectory

in the continuous control space. Ideally, we would like to optimize all the trajectories within

the candidate set and select the one that maximizes the objective. However, optimizing

all the candidate trajectories would be computationally expensive due to all the gradient

computations involved. Instead, we first select the best trajectory that maximizes the

CSQMI objective (7.1) and use that to initialize the optimization.

Gradient of Information: We consider gradient-based trajectory optimization meth-

ods. Because our underlying occupancy grid map representation and beam model for the

RGB-D sensor are discrete, it is not immediately obvious that a meaningful gradient exists.

Prior work [63] showed that the gradient of information of a single measurement can be

calculated for a 2D mapping scenario if one assumes that individual beams are independent
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and the sensor has a wide field of view. One important observation is that the reward

surface is smoother if the position of the robot is restricted to the center of the grid cells.

We extend this work by considering the gradient of information of multiple measurements

with respect to the robot’s full state and control inputs, even when beams are modeled as

dependent.

To evaluate gradients, we view the information reward surface as a function of discrete

robot positions along the occupancy grid and numerically evaluate gradients using finite

differences. Note that the grid cell resolution is often small (e.g., 0.1 m) and that the

robot’s orientation and control inputs are not restricted to a discrete set.

Sequential Quadratic Programming (SQP): We use SQP [89] to locally optimize

the non-convex, constrained optimization problem to find a set of controls over a finite

horizon. Strictly speaking, SQP requires that the objective has a Lipschitz continuous

second derivative to guarantee a quadratic convergence rate to a local optimum. We cannot

formally do this due to nature of the discrete occupancy grid and the sensor model. However,

prior work [1, 112, 66] has shown that it is possible to perform gradient ascent on such

objectives even in the absence of theoretical guarantees.

To optimize a trajectory, we adapt (7.1) to a form that can be solved using SQP. In

particular, we assume a discrete-time robot motion model with a fixed number of time steps,

making the duration penalty a constant that can be removed from the objective. We also

encourage the robot’s states to be feasible by rewarding being sufficiently far away from

obstacles:

max
xτ , uτ

ICS[m; zτ | xτ ] + α
t+T∑
i=t+1

min (dmax, dist(xi,m))

s. t.
∀t<i<t+T−1

xi+1 = f(xi,ui), (7.2)

xi ∈ Xfeasible,ui ∈ Ufeasible,

where dist(x,m) ≥ 0 is the minimum unsigned distance from x to any obstacle in the map,

dmax is a parameter that limits the distance reward, and α ≥ 0 is a weighting parameter
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that balances the objective. After a parameter search with logged data, we obtained good

results with α = 20 and dmax = 0.5 m. To support constant time distance queries, before

the optimization starts, we construct the Euclidean Distance Transform [37] for the entire

3D map. Note that the time horizon can also be included as an optimization variable.

In our implementation, the innermost QP solver was generated by a numerical optimiza-

tion code framework that generates QPs specialized for convex multistage problems such

as trajectory optimization [34]. Even though it is possible to compute the entire Hessian,

it is computationally very expensive to do. We used the symmetric rank 1 (SR1) update

method to update the Hessian using the computed gradients [89].

Caching Information: Numerically calculating the objective’s gradient is computa-

tionally expensive as each evaluation requires calculating the information gain resulting

from all poses. The complexity of calculating information scales linearly in the number of

poses in the trajectory, while the complexity of calculating information from all beams in

a pose is determined by the time it takes to evaluate the information of individual beams,

tInfo, and the time it takes to find a subset of beams that are independent tIndep [21]. With T

poses per trajectory, evaluating the gradient via central differences takes O(T 2(tInfo+tIndep))

time.

Fortunately, we can calculate the gradient faster by caching redundant computations.

Calculating each partial derivative of the gradient via central differences involves perturbing

an individual optimization variable. Because we include the poses in the optimization, each

perturbation of x or u only affects a pose at a single time step. Consequently, many

of the information calculations across different perturbations are redundant and can be

cached. Although this process is complicated by the fact that measurements are dependent

– meaning information does not decompose into a sum over the information at each pose

– we can cache the information gain from individual beams and the cells that the beams

pass through using raycasting. This reduces the complexity of evaluating the gradient

to O(TtInfo + T 2tIndep) which is a substantial speedup as tInfo � tIndep. In experiments

optimizing over 5 time steps, produces a 4.0× speedup.
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7.3 Experiments

There are four primary questions that we seek to answer with our experiments— Q1: How

much information gain is obtained by optimizing local motion primitives? Q2: Which sce-

narios do local motion primitives provide the most benefit in? Q3: How does our approach

compare to previous work and a human teleoperator with respect to speed, distance traveled,

and map completion? Q4: How well does trajectory optimization scale to high-dimensional

systems?

We designed simulation and real-world experiments with a ground robot and simulations

with an aerial robot to answer these questions.

7.3.1 Platforms and System Details

Ground Robot: We conducted experiments using a differential drive ground robot equipped

with a 2D Hokuyo UTM-30LX laser range finder and an Asus Xtion Pro RGB-D camera.

The robot’s computer was an Intel i5 processor with 8 GB of RAM, enabling it to run our

entire approach on-board.

We parameterized the robot’s state x as a 3D vector that consists of the robot’s 2D

position and orientation. The control input u is a 2D vector of its left and right wheel

speeds:

x =

[
x, y, θ

]ᵀ
, u =

[
vl, vr

]ᵀ

xi+1

yi+1

θi+1

 =


xi

yi

θi

+


1
2(vli + vri ) cos(θi)

1
2(vli + vri ) sin(θi)

(vri − vli)/`

 , (7.3)

where ` is the wheel separation. For trajectory optimization, we limited the wheel speeds

to be at most 0.5 m/s and imposed the motion model’s nonlinear equality constraints.

Aerial Robot: We simulated a quadrotor as an AscTec Pelican that is equipped with

a UTM-30LX laser range finder and an Asus Xtion Pro RGB-D camera using Gazebo [70].
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(a) Ground Robot (b) Aerial Robot

Figure 7.5: Information gain performance on recorded data. Over 157 situations for the
ground robot and 63 situations for the aerial robot, we evaluate the optimality of the initial
trajectory input into the trajectory optimization for various initializing methods (left col-
umn). We then evaluate the optimality of the trajectory output by trajectory optimization
(right column). We see dominant modes shift towards 100% optimality when incorporating
trajectory optimization, showing trajectory optimization improves overall information gain.

We parameterized the quadrotor’s state x as an 8D vector consisting of its 3D position,

3D velocity, yaw, and yaw velocity. The control input u is a 4D vector of the linear

accelerations and yaw acceleration. We assumed the quadrotor does not fly aggressively

and that its state evolved with a constant acceleration model:

x =

[
x, y, z, θ, ẋ, ẏ, ż, θ̇

]ᵀ
u =

[
ẍ, ÿ, z̈, θ̈

]ᵀ

xi+1 =

I4 ∆t · I4

0 I4

xi +

1
2∆t2 · I4

∆t · I4

ui

where ∆t is a user-defined time discretization value. For trajectory optimization, we

bounded the linear acceleration between [-0.5,0.5] m/s2, yaw acceleration between [-π/2,π/2]

rad/s2, the velocity in each dimension between [-1,1] m/s, and the yaw between [-π/2,π/2]

rad/s2. We also imposed linear constraints on the robot’s motion model.

RGB-D Sensor: Both the ground and the aerial robot were equipped with a RGB-D

sensor that was modeled after the Asus Xtion Pro sensor. We assume it has a minimum

range of zmin = 0.5 m, maximum range of zmax = 4.0 m, and its noise is σ = 0.03 m. To

predict future measurements and evaluate CSQMI, we discretized the 58◦ horizontal field

of view and 48◦ vertical field of view into 20 separate values each, resulting in 400 separate
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beams.

Occupancy Grid: For both platforms, the 3D occupancy grid was constructed with a

resolution of 0.1 m using data from the RGB-D sensor. In experiments, the ground robot

obtained position estimates from a 2D laser based SLAM system, while in simulation the

quadrotor obtained a noisy pose estimate from the simulator.

7.3.2 Evaluating Trajectory Optimization

To quantify how much trajectory optimization can improve the information gain of local

motion primitives (Q1), we looked at its performance in a variety of situations. To create

these different situations, we sampled different maps and poses for the robots from our

previous real-world experimental data in Ch. 6. For each situation, we generated a fixed

number of motion primitives using a lattice planner or random sampling (Sect. 7.2.1). The

motion primitive with the highest information was then optimized. Because information

gain can vary substantially across different maps and poses, we normalize the information

gain of each approach by the maximum information gain achieved by any approach with

the same initial conditions. Results for the ground air and robot are shown in Fig. 7.5a

and Fig. 7.5b. As expected, using larger number of motion primitives improves the per-

formance of the unoptimized trajectories. However, regardless of the number of motion

primitives used to find an initialization, trajectory optimization consistently produces tra-

jectories whose information gain is close to the maximum achieved, demonstrating that it

can substantially improve upon the search based strategies. Comparing the trajectory opti-

mization information gain for the ground robot (Fig. 7.5a) with the aerial robot (Fig. 7.5b),

we see the benefit of using trajectory optimization is greater in higher-dimensional systems

(Q4).

We also examined the average computation time over all situations for each approach.

Results are shown in Fig. 7.7a for the ground robot and Fig. 7.7b for the aerial robot. While

evaluating a small number of motion primitives is fast, these trajectories tend to have small

gains in information. However, using these trajectories to initialize optimization yields finds

trajectories that are higher in information, with less time than searching over large numbers
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Local Primitives Global Plan
Traj. Opt. Initialization

(% of times)
66% 34%

(a) Final map (2D projection), exploration path,
and poses where trajectory optimization per-
formed best: The green triangle is the robot’s start
position. The colored path is its exploration path. The
red arrows show the 25 poses where trajectory optimiza-
tion provided the largest gain in information over the
initializing trajectory.

Averages when entropy reduced to human level
Time (min) Distance (m) Speed (m/s)

Human 6:36 (24.0%) 153 (86%) 0.41 (3.2×)
Our Approach 8:15 (29.9%) 156 (88%) 0.34 (2.6×)

Global 19:19 (71.2%) 156 (88%) 0.15 (1.2×)
Closest Frontiers 27:37 (100.0%) 178 (100%) 0.13 (1×)

(b) Comparisons to previous work: Comparing
our approach with 1) Human teleoperator who knows
the map apriori, 2) Information based planner that only
plans globally [20], and 3) Closest frontiers [142].

Figure 7.6: Ground robot experiments. Mapping a real-world office environment. Our
approach reduces the map’s uncertainty faster than previous approaches and only does
slightly worse than a human operator with a priori knowledge of the environment.

of motion primitives.

7.3.3 Mapping Experiments With a Ground Robot

We tested our approach by using a ground robot to map a 40 m × 35 m × 2 m portion

of an office environment over two trials. For the local motion primitives, we sampled 32

random trajectories. Results and comparisons are in Fig. 7.6. The final 3D map from one

trial is shown in Fig. 7.2a.

To assess the overall performance of our system (Q3), we compare it to three other

approaches. The first is “Global”, a strategy that evaluates information along paths to

frontiers and does not use local motion primitives or trajectory optimization, while the

second is a closest frontiers planner [142]. In order to obtain an approximate lower bound

on achievable performance, we also compare to a human teleoperator who knows the entire
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Random 1 Random 8 Random 16 Random 32 Random 64 Random 128 Random 256 Lattice

Avg. Initial Time (s) 0.00 ± 0.0 0.04 ± 0.0 0.07 ± 0.1 0.15 ± 0.1 0.29 ± 0.3 0.58 ± 0.6 1.17 ± 1.2 0.26 ± 0.3

Avg. SQP Time (s) 0.78 ± 0.8 0.55 ± 0.6 0.43 ± 0.4 0.42 ± 0.4 0.40 ± 0.4 0.37 ± 0.4 0.34 ± 0.3 0.42 ± 0.4

Avg. Total Time (s) 0.79 ± 0.8 0.59 ± 0.6 0.51 ± 0.5 0.56 ± 0.6 0.69 ± 0.7 0.95 ± 1.0 1.51 ± 1.5 0.69 ± 0.7

(a) Ground Robot

Random 1 Random 8 Random 16 Random 32 Random 64 Random 128 Random 256

Avg. Initial Time (s) 0.00 ± 0.0 0.02 ± 0.0 0.05 ± 0.0 0.09 ± 0.1 0.18 ± 0.2 0.37 ± 0.4 0.75 ± 0.7

Avg. SQP Time (s) 0.84 ± 0.8 0.61 ± 0.6 0.62 ± 0.6 0.60 ± 0.6 0.54 ± 0.5 0.56 ± 0.6 0.62 ± 0.6

Avg. Total Time (s) 0.84 ± 0.8 0.64 ± 0.6 0.67 ± 0.7 0.69 ± 0.7 0.73 ± 0.7 0.93 ± 0.9 1.37 ± 1.4

(b) Aerial Robot

Figure 7.7: Planning times on recorded data. Comparing the initialization, trajectory
optimization, and total times for different initialization methods using the same data as
in Fig. 7.5. The double line show when sampling controls becomes more computationally
expensive than trajectory optimization.

environment a priori and manually drives the robot to gather measurements. For compar-

isons with the first two approaches, we use data from our previous experiments in Ch. 6,

which were obtained using the same robot.

To measure the speed of each approach, we look at the time it takes to obtain a low

uncertainty map measured using Shannon’s entropy. The entropy of a map with |m| cells

is
∑|m|

i=1−fi log2 fi − (1 − fi) log2(1 − fi) bits where fi is the probability that the ith cell

is free [27]. Fig. 7.6b shows the map’s entropy over time for each approach. The human

operator decreased the uncertainty of the map the fastest. However, our approach did not

take substantially longer to achieve a similarly certain map, despite the robot’s absence

of prior knowledge about the environment. Our approach was also substantially faster

than the other autonomous approaches. Note that the strategies that use information and

the human all travel essentially the same distance. This suggests the difference in time

is primarily due to how quickly each approach can determine an informative trajectory to

follow.

It is interesting that the human operator stopped once they believed they had obtained

a low uncertainty map and that all autonomous approaches continue reducing the map’s

entropy beyond this point, as they continue until no frontiers are left. However, the final

maps are qualitatively hard to differentiate, suggesting a better termination condition is

needed.
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(a) Stairwell with walls removed

Averages when entropy reduced by 90%
Time (min) Distance (m) Speed (m/s)

Random 32 2:32 (87%) 36.2 (88%) 0.21
Random 256 2:14 (77%) 30.4 (73%) 0.20
Lattice 30 2:54 (100%) 41.4 (100%) 0.18
Lattice 256 2:38 (90%) 37.5 (91%) 0.18
Random 32 + SQP 2:11 (74%) 27.0 (65%) 0.19
Random 256 + SQP 2:09 (74%) 26.9 (65%) 0.19
Lattice 30 + SQP 1:57 (67%) 26.5 (64%) 0.19
Lattice 256 + SQP 1:53 (66%) 26.4 (64%) 0.20

(b) Comparison of distance traveled and time to reduce
entropy

(c) Map entropy over time using random (left) and lattice (right) local motions with and without
trajectory optimization

Figure 7.8: Aerial robot stairwell simulations. Trajectory optimization enables the quadro-
tor to map the environment more efficiently.

Fig. 7.6a shows a 2D projection of the final map, the path the robot followed, and

poses where trajectory optimization provided the most improvement in information. These

poses are predominantly in open spaces, junctions, approaching corners, and dead-ends

(Q2). This agrees with intuition as these areas are more complicated than straight narrow

hallways where finding an informative trajectory is simpler.

7.3.4 Mapping With an Aerial Robot

To further study the impact of trajectory optimization on the information of local primitives

(Q1) and study how well our approach scales to robots with higher dimensional state (Q4),

we evaluated it by having a quadrotor map a 10 m × 5 m × 7.5 m 3-story stairwell in

simulation Fig. 7.8a. The final 3D map from one trial is shown in Fig. 7.2b.

We are interested in the effect of different motion primitives and whether the improve-

ment in trajectory optimization results in different overall performance compared to control
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policies that use motion primitives and global plans. For these simulations, we generate

local plans over 5 time steps and again use a random or lattice planner to generate motion

primitives. The random planner repeatedly sampled from the robot’s 4D control space

to generate trajectories. The lattice planner generated straightline constant velocity tra-

jectories whose directions were determined by discretizing polar and azimuthal angles in

spherical coordinates. We chose this as even coarse discretizations of the control space

result in thousands of trajectories, resulting in slow overall performance.

Fig. 7.8c shows the map’s entropy over time using different numbers of initial trajectories

averaged over 5 trials for each approach. The lattice planner generated 30 trajectories

using 6 evenly spaced polar angles and 5 evenly spaced azimuthal angles. To generate

256 primitives, it discretized both angles into 16 distinct values. Overall, using trajectory

optimization resulted in the entropy of the map decreasing faster (note that the simulator is

asynchronous, so the reported difference in time includes computation time). This difference

is particularly noticeable for the lattice planner, which had difficulty rounding corners due

the limited number of directions it could travel.

Fig. 7.8b contains additional statistics about distance traveled and time to reduce en-

tropy. We see that by using trajectory optimization – regardless of initialization strategy –

the robot reduced most of the map’s entropy faster, while traveling a shorter distance. This

is due to the trajectory optimization’s ability to find feasible trajectories that exploit the

mobility of the quadrotor and execute informative turning actions (see the video submission

for additional details).

7.4 Limitations and Discussion

Our work has three limitations that we briefly discuss. First, we assume that the robot

is capable of localizing itself reliably using a SLAM system. Fig. 7.9 illustrates this issue.

Fig. 7.9a shows a 2D occupancy grid which we created by artificially lowering the maxi-

mum range of the ground robot’s UTM-30LX to 4.0 m and manually driving it along a

trajectory (solid blue line). The most recent laser scan (red dots) is not aligned with the
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(a)
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A 

(b)

Figure 7.9: Limitations. In (a) and (b) executing action A is preferable over action B as the
robot’s uncertainty will be much lower. However, our approach only considers the map’s
uncertainty and selects action B in both cases.

map, showing accumulated position error. The robot should follow action A and close the

loop to improve its state estimate and the map’s consistency. However, our approach only

considers the map’s uncertainty and would select action B as the bottom of the map is more

uncertain. Fig. 7.9b shows a different scenario where a robot is equipped with a short-range

omnidirectional sensor. Our approach would select action B, as the robot will observe more

of the map. However, during parts of this trajectory, all features will be outside the robot’s

FOV (red circle), precluding accurate localization; consequently action A is preferable. One

avenue for future work is to extend our approach to active SLAM by accounting for robot

state uncertainty [10, 129, 136, 69, 60, 98].

While modeling the robot’s uncertainty in the control policy can be important, it is not

always necessary to ensure good performance. For example, in our ground robot experi-

ments, the accumulated state error was small. Although ground truth is not available, the

final maps were consistent, meaning the corrections from the SLAM system provide insight

into the robot’s accumulated error. Over 8 experiments, the mean correction to the robot’s

2D position and orientation was 0.28 m and 1.35◦. These small corrections are due to the

robot’s accurate laser odometry [94], and demonstrate that it is possible to build good maps

even when a robot does not explicitly take actions to reduce its own uncertainty.

Our work’s second limitation is that we do not employ a principled termination condi-
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tion, as is evident from the long flat tails of the entropy curves (Fig. 7.6b and Fig. 7.8c). Our

experiments with the human operator provide insight into this process. It may be possible

to take inspiration from prior work that uses reinforcement learning for active mapping [71]

to determine appropriate termination conditions.

Finally, we use trajectory optimization for maximizing the CSQMI objective over a

discrete occupancy grid. Apart from the lack of theoretical optimality guarantees, the

optimization’s performance also heavily depends on the initial trajectory [97].

The quality of paths produced by trajectory optimization using SQP also depends heav-

ily on user-chosen parameters. To choose these SQP parameters, we used experiment data

from prior work and evaluated the information gain using SQP over a grid of parameter

values. We defined the quality of a parameter set as the mean information gain improve-

ment using SQP. We then chose the parameter set with the highest improvement and used

these parameters for real-world experiments.

7.5 Conclusion

In this work, we present an information-theoretic planning approach for dense 3D mapping

of unknown environments with mobile robots. In contrast to prior work that either use

only global plans or local motion primitives, our approach combines the benefits of the two

by considering a candidate set of trajectories consisting of global plans and local motion

primitives. We select the most promising trajectory from this candidate set and further

optimize it to increase information gain while satisfying the robot’s motion model. Through

a series of simulations and real world experiments, we study the benefits and drawbacks of

our system and compare its end to end performance with several other approaches. Our

results indicate that the proposed approach has the potential to increase the efficiency of

3D mapping, particularly for robots with limited battery life that are equipped with noisy

sensors that have short sensing ranges and limited fields of view.
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Chapter 8

Heterogeneous Robot Routing for

Cooperative Mapping

In Ch. 6 and Ch. 7 we developed a CSQMI based control policy that enables individual

robots to build dense 3D maps. In this chapter, we extend this work to situations where

air and ground robots must cooperatively map an environment.

While the information-theoretic policies in the preceding chapters perform well, they

have some shortcomings. In particular, they can only be computed in a reasonable amount

of time when they are restricted to a finite time horizon. This prevents the robots from

determining long-term plans, which can lead to poor performance as illustrated in Fig. 8.1.

The fundamental issue is that by planning over a finite time horizon the robot does not

consider that it must eventually observe all areas of the map, biasing it towards actions

that maximally reduce uncertainty over the time horizon which it is planning. This can

result in the robot traveling far away from its current location even when the local area is

not fully mapped, necessitating a long trip back later in the mapping process. This issue

is partially addressed by maximizing the rate of information gain (Ch. 6 and Ch. 7), as

it causes robots to prefer efficient actions, but this does not fully solve the problem. This

issue is amplified when considering teams of heterogeneous robots (e.g., aerial and ground

robots), as some areas may only be observable by one robot, while others can be visited by

134



A B 3 1 

2 

Figure 8.1: Limitations of planning over a finite time horizon. If a robot doesn’t account for
the fact that it must eventually view areas 1, 2, and 3, it may not plan time efficient paths.
In this map, the fastest way to view all areas is to view area 3, followed by areas 2 and
1. However, when maximizing information over a finite time horizon and deciding between
actions A and B, the robot may select A, as it will likely reduce the map’s uncertainty more.

both. For example, if an area can only be observed by one robot, it may be beneficial to

have it travel there immediately, even if it can reduce the uncertainty of the map more in

other places.

While planning over long time horizons can improve the time to build a complete map,

there is another issue facing our approach: the environment is only partially known. As

soon as the team starts moving they might discover new areas that need to be observed,

potentially invalidating previously generated paths. Unless the robots are capable of having

some type of prior knowledge about the environment, or are able to accurately predict what

unobserved parts of the environment will contain, this issue is unavoidable.

Consequently, instead of focusing on an algorithm that spends a large amount of time

constructing detailed plans for each robot (e.g., a multi-agent watchman route problem [23]),

we attempt to quickly plan coarse high-level paths. To do this, we formulate a problem

where, given a set of features to observe in the current map, the robots’ speed, and sensor

models, we must find paths for each robot such that every feature gets observed and the

maximum traversal time of any robot is minimized. While this is an NP-hard combinatorial

optimization problem, the primary contribution of this chapter is showing that problem

instances can be formulated and solved in a reasonable amount of time. To do this, we

decompose the problem into two parts. First, we develop an approximation algorithm for

finding shortest paths for multiple robots to visit a set of destinations. Second, we generate

destinations that effectively summarize where each robot can go. By appropriately creating
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Figure 8.2: System architecture for a 2 robot team. By generating long paths for both
robots that collectively observe all unobserved areas, the team can account for their mobility
differences and map environments faster. Using the techniques in Ch. 7, individual robots
locally refine and improve the informativeness of the paths they follow.

this set of destinations for each robot, we can find paths much faster.

While the paths generated by this approach will be coarse, they should enable the team

to jointly determine which robot should go where, and can later be refined online using

the information-theoretic policy from Ch. 7. While Ch. 7 focused on quickly generating

and optimizing informative trajectories over short time and length scales for an individual

robot, the focus of this chapter is on generating paths over long time and length scales to

coordinate multiple heterogeneous robots. Together, these components form a hierarchy of

planning and control systems for active mapping. Fig. 8.2 provides a centralized system

architecture for a heterogeneous team comprised of a ground and aerial robot.

Many of the algorithms in this chapter scale poorly with the size of the team. Although

we describe each algorithm in this chapter in terms of an arbitrary number of robots, our

intended application is for reasonably teams (e.g., 2 to 3 robots).

8.1 Heterogeneous Robot Routing in Minimal Time

In this section, we formally describe the Heterogeneous Robot Routing Problem (HRRP)

a method for solving it, and how to create an instance of the problem that is appropriate

for generating paths for active mapping. Informally, the HRRP is to find paths for a team
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of heterogeneous robots to a series of destinations such that each destination is visited at

most once by each robot and the time to execute all paths is minimized.

This problem is closely related to the Heterogeneous, Multiple Vehicle, Heterogeneous,

Multiple Depot, Multiple Traveling Salesman Problem (HMDMTSP) which Oberlin et al.

[91] studied. The only difference is that we want to minimize the maximum time any

robot spends traveling, while they minimize the sum of the time all robots spend traveling.

However, in Sect. 8.1.1, we show that their approach can be used as an approximation

algorithm for the problem we wish to solve. This is beneficial as Oberlin et al. developed an

efficient reduction from the HMDMTSP to the Asymmetric Traveling Salesman Problem

(ATSP) which can then be transformed to the Traveling Salesman Problem (TSP) [57].

Transforming a HRRP instance to a TSP instance may not sound like progress, as the

TSP is a well known NP-hard problem. However, this transformation is quite useful, as a

large amount of research and engineering effort has been devoted to solving TSPs. State

of the art TSP solvers, like Concorde [3], can obtain optimal solutions to graphs with a

few hundred vertices in seconds, even on a laptop computer. As we describe later, the

cost of the corresponding solutions in ATSP, TSP, and HRRP are all the same, meaning

that any approximation algorithm for ATSP or TSP, will yield an equivalent approximation

guarantee for HRRP.

8.1.1 HRRP Formulation and Assumptions

Suppose we are given m distinct robots R = {r1, . . . , rm} and a set of n vertices V =

{v1, v2, . . . , vn}, each of which must be visited by exactly one robot. Let S be the set of

locations that each robot starts at S = {s1, . . . , sm} and Vr ⊆ V be the subset of vertices

that robot r can travel to. We assume that each destination can be visited by at least

one robot, but the starting locations and visitable subsets need not be the same between

robots. Let Er = {(vi, vj) : vi, vj ∈ Vr ∪ {sr}} be the set of edges that robot r can traverse

and cr(vi, vj) be the non-negative cost of traversing that edge. The cost of traversing an

edge need not be symmetric (i.e., cr(vi, vj) 6= cr(vj , vi)) and does not have to be the same

across robots that can both visit it (i.e., crk(vi, vj) 6= cr`(vi, vj)). A path for robot r is an

137



ordered sequence of vertices that begins at the robot’s starting vertex, sr, and goes to other

vertices that the robot can visit (i.e., elements of Vr). We will denote a path for robot r

as Pr = [sr, vi, . . . , vj ] and define its cost, cr(Pr), as the sum of edge weights between its

constituent vertices.

The Heterogeneous Routing Robots Problem (HRRP) is to find a set of paths for each

robot such that the maximum cost of any path is minimized and every vertex in V is visited

by at most one robot:

min
P1,...,Pm

max
r
cr(Pr) (8.1)

subject to v is in exactly one of Pr ∀v ∈ V

Note that none of the robots are required to return to their starting position; the HRRP

is over paths and not closed walks. This problem is NP-hard as it contains the weighted

Hamiltonian path problem as a special instance. To see this, consider the situation where

there is exactly one robot. The objective in (8.1) is then exactly the same as finding the

minimum weight path that visits all vertices.

One major source of difficulty for this problem is that the objective is to minimize the

maximum time. Unfortunately, we are unaware of any direct reduction to a single agent

TSP. However, by relaxing the problem to minimizing the sum of the costs, we obtain the

HMDMTSP:

min
P1,...,Pm

m∑
r=1

cr(Pr) (8.2)

subject to v is in exactly one of Pr ∀v ∈ V

Technically, the HMDMTSP as defined by Oberlin et al. [91] is over tours for each robot

and not paths (i.e., in the HMDMTSP each robot must return to its starting location, but

in the HRRP they do not), but a small change that we describe in Sect. 8.1.2 resolves this

issue.

Minimizing the sum of costs is less appealing when the objective measures time, because
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robots can move simultaneously [135]. However, any approximate solution to HMDMTSP

approximates the HRRP:

Theorem 4. k-approximations of HMDMTSP (8.2) with m robots are km-approximations

of HRRP (8.1).

Proof. Only the objective differs between the two problems, so a solution is feasible for one

problem if and only if it is feasible for the other. Let P = [P1, . . . , Pm] be a k-approximate

solution for HMDMTSP and let P1 be the path with maximum cost, so that the cost of

P in HRRP is c1(P1). If the approximation guarantee does not hold, then there must be

a different set of feasible paths P ∗ = [P ∗1 , . . . , P
∗
m] such that kmmaxr cr(P

∗
r ) < c1(P1) (i.e.,

km times the optimal cost in HRRP is strictly lower than the cost of the HMDMTSP

solution). However, we know that
∑

r cr(Pr) ≤ k
∑

r cr(P
∗
r ) as P is a k-approximation to

HMDMTSP. Additionally, k
∑

r cr(P
∗
r ) ≤ kmmaxr cr(P

∗
r ) as each element of cr(P

∗
r ) is at

most the maximum element. Chaining these inequalities implies that
∑

r cr(Pr) < c1(P1)

which is a contradiction, establishing the approximation guarantee.

Thm. 4 is not a particularly strong guarantee as the number of robots grows. However,

we can often solve a HMDMTSP instance optimally, and this work is primarily focused on

coordinating smaller teams of robots.

8.1.2 Transforming HRRP to TSP

We now describe how to transform an HRRP instance to a TSP instance. The first step is

to transform HRRP to HMDMTSP, which doesn’t actually require any work, as the only

difference between the two problems is the objective. Next, we use the approach developed

by Oberlin et al. [91] to transform the HMDMTSP instance to an instance of the Generalized

Traveling Salesman Problem (GTSP), which can be transformed to an ATSP [5], which

can be transformed into the symmetric TSP [61]. If an HRRP instance has n vertices

and m robots, after the full series of transformations, the corresponding TSP will have at

most 2m(n + 2) vertices. Although we did not develop this chain of transformations, we

briefly describe them here for completeness, primarily focusing on the transformation from
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Figure 8.3: HMDMTSP to GTSP. (a) An example instance of the HMDMTSP problem
with 2 robots at different start locations (s1 and s2) and 4 destinations. Red arrows show
directed edges for one robot and blue lines show edges for the other robot. The only vertex
that can be visited by both robots is v2. (b) The corresponding GTSP instance for a single
agent that starts at s1. Dashed line boxes show the disjoint sets, colors show where edges
came from in the HMDMTSP instance, and all solid black arrows are 0-weight edges. v2

can be visited by both robots in the HMDMTSP instance and it creates two vertices in the
GTSP instance with a set constraint.

HMDMTSP to GTSP.

HMDMTSP to GTSP: This transformation was created by Oberlin et al. [91]. The

GTSP is given a set of vertices V with a set of directed and non-negative weighted edges,

and a partitioning of these vertices into non-overlapping subsets, H = {H1, . . . ,Hm} such

that V =
⋃m
i=1Hi and Hi ∩Hj = ∅ when j 6= i, find a minimal weight tour that visits an

element of each element of H exactly once. The main idea behind the transformation from

HDMTSP to GTSP is to create a graph that a single agent can traverse, but that maps

back to paths that multiple robots can traverse in parallel in the original problem. Fig. 8.3

illustrates this process.

To create the GTSP instance, for each robot, we create a portion of the GTSP graph

that corresponds to vertices the robot can travel to. Specifically, for each robot r, create

2 vertices s′r and t′r, that represent its starting and terminating location. For every v ∈ Vr

(i.e., each vertex r can visit) in the original HMDMTSP, add a vertex v′ to the GTSP, with

a directed weighted edge from s′r to v′ and a 0-weight edge from v′ to t′r. In the solution to

the GTSP, the sequence of vertices between s′r and t′r forms the path that robot r should

140



follow in the HMDMTSP. Once vertices have been added for each robot, add a 0-weight

cycle between all of the start and termination vertices: [s1, t1, s2, t2, . . . , sr, tr, s1]

Having 0-weight edges from each vertex to the termination vertices is what causes us

to compute minimum cost paths. To compute minimum cost cycles (i.e., paths that return

to the starting destination), as Oberlin et al. [91] did, we would make the weight of the

returning edge equal to the cost between the current vertex and the robot’s starting vertex

in the HMDMTSP instance.

To complete the transformation, we need to specify H, the disjoint subsets of the vertices

in the GTSP. The goal in designing H is to guarantee that after solving the GTSP the

corresponding paths for each robot in the HMDMTSP collectively visit each destination

exactly once. To start, we add a disjoint subset around each of the starting and terminating

vertices. Next, if a vertex can be visited by multiple robots in the HMDMTSP, we add a

disjoint subset around the corresponding vertices that were created in the GTSP.

If there are n vertices and m robots in the original problem, there are at most m(n+ 2)

vertices in the GTSP. It is worth noting that this transformation relies heavily on the costs

in the HMDMTSP being additive across different robots. If this were not the case, as in

the original HRRP problem where the cost is a maximum over all robots, then it is unclear

how to reformulate the problem as a single agent GTSP.

GTSP to ATSP: This transformation is due to Behzad and Modarres [5] and the

resulting ATSP has the same number of vertices as the GTSP instance.

ATSP to TSP: This transformation is due to Jonker and Volgenant [61] and doubles

the number of vertices that the agent must visit. The primary reason for performing this

transformation is a pragmatic one: current generic solvers for symmetric TSPs are faster

than those for ATSPs [57].

8.1.3 Solution Methods

Given a TSP instance, there are a large number of ways to solve it. For a more thorough

discussion of these choices, we refer the interested reader to the summary given by Hornik

and Grün [57]. In experiments and simulations with two robots, we obtained optimal
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solutions in a reasonable amount of time using the Concorde solver [3]. For larger problem

instances, this approach becomes infeasible. However, it is also possible to obtain a 2-

approximation to solve the TSP using the Minimum Spanning Tree algorithm if we allow

an individual robot to revisit destinations that it has already visited. From Thm. 4, this

would result in a 2m-approximation algorithm for the HRRP.

8.2 Generating the HRRP

In this section, we describe a method for generating an HRRP instance whose solution

results in good paths for active mapping (Fig. 8.4). The basic approach is to identify

frontiers and poses that can observe them as in Ch. 6 and Ch. 7. These destinations

serve as a reasonable basis for the destinations for a robot in the HRRP. However, even in

relatively small office environments, there may be hundreds of destinations for each robot,

and after performing the series of transformation in Sect. 8.1, the resulting TSP could have

thousands of vertices, making it difficult to solve quickly. To address this issue, in Sect. 8.2.1

we describe a hierarchical agglomerative clustering approach for grouping destinations that

are similar for an individual robot. To determine how destinations across robots should

be grouped as a single goal in the HRRP problem, we describe a matching procedure in

Sect. 8.2.2 that determines which destinations are effectively viewing the same features.

8.2.1 Clustering Destinations for Individual Robots

We wish to generate a small set of destinations for a robot that accurately capture what

features it can observe. The input to this algorithm is a set F of features in the map:

F = {f1, f2, . . . , f|F |}. The output should consist of a set of destinations the robot can travel

to and which features it can observe from each one. Although the algorithms described in

this section do not require a specific type of feature, they do require a way of testing whether

or not a feature is visible from a specific pose. We define the binary function Visr(x, f)

which returns true if feature f is visible by robot r at pose x and false otherwise. For

features, our implementation uses groups of frontier voxels, similar to Ch. 6 and Ch. 7.

For each feature f ∈ F , we use the Dijkstra based search described in Sect. 6.4 to try
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f1

f2

q1

q2

s1

(a) Destinations that view frontiers

g1 = (f1, s1, q1) (f2, q2)

v1 v2

(b) Corresponding HRRP instance

Figure 8.4: Creating an HRRP instance. (a) Gray blobs are frontiers, black boxes show the
field of view for each robot, and blue and red dots show destinations where the robots can
observe a frontier. The quadrotor can observe both frontiers, while the ground robot can
only view frontier f1. (b) Planning paths that view all frontiers can be formulated as an
HRRP where each vertex corresponds to a frontier and the edge weights between vertices
are the travel times between the associated destinations.

to find a pose x such that Visr(x, f) is true. This process maps each visible feature to a

single pose that can view it (e.g., s1 and q1 viewing f1 in Fig. 8.4a). We define Dr as the

set of poses generated for robot r by this process. As discussed earlier, Dr could serve as

a basis for the HRRP, except that the number of features, |F |, is potentially large, making

the problem expensive to solve.

Fortunately, interesting features in an environment are often close to each other, and a

robot may be able to observe multiple features from a single pose. To see when this is the

case, we determine all features that are observable from each pose in Dr. This creates a map-

ping from reachable poses for the robot to sets of features that it can observe; we update Dr

with this information so that Dr = {(xi, F r(xi)} where F r(x) = {f : f ∈ F ∩Visr(x, f))}.

To make Dr smaller, we cluster destinations that observe similar sets of features and are

not too far from each other. More precisely, we use a greedy agglomerative (i.e., bottom-

up) algorithm that starts with a group of clusters and repeatedly merges the two that are

“closest” to each other [31]. There are several variations of this approach [51]. To measure

the distance between two clusters, we use the Jaccard distance between the sets of feature

IDs. Formally, if di = (xi, Fi) and dj = (xj , Fj) are destinations in Dr, with Fi, Fj ⊆ F , we
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define their similarity as:

ρ(di, dj) = 1− Fi ∩ Fj
Fi ∪ Fj

(8.3)

The Jaccard distance is a metric on finite sets [76] and measures their similarity on a scale

between 0 and 1. It is 0 if and only if the sets are identical, and 1 if and only if the two

sets have no elements in common.

We use the single-linkage criterion to measure the distance between clusters. Given two

clustersDk, D` ⊆ Dr we define the distance between them as min{ρ(di, dj) : di ∈ Dk, dj ∈ D`}.

A well known problem with the single-linkage criterion is that it tends to “chain” several

points together into a single cluster, even when most of them are far apart from each other.

To mitigate this issue, we do not merge clusters when the maximum distance (or similarly

time) the robot must travel between any two destinations exceeds a user-specified threshold.

The agglomerative clustering algorithm produces several clusters each comprised of des-

tinations with their associated features. To reduce the complexity of this data, we summa-

rize each cluster with a single representative destination for the robot along with all features

that are viewed at any destination in the cluster. The time to travel between clusters can

then be determined by the time to travel between the representative destinations. This

time serves as an approximation of the time to view all features in the two clusters, since

within a cluster a robot can travel to all of the destinations – and truly observe all of the

features – in a bounded amount of time. In our implementation, we selected a cluster’s

representative destination by finding the destination that was closest to the average of all

destinations in the cluster.

8.2.2 Matching Destinations Between Robots

At this point, for each robot, we have a set of destinations with their associated features. By

construction, each robot can travel between all of the destinations. However, in order to fully

specify the HRRP, we need to determine which destinations between different robots are

viewing equivalent features. For example, in Fig. 8.4a, both robots can observe feature f1,
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Algorithm 4: Construct an HRRP instance

Input: Destinations Dr = {(xri , F ri )} for each robot r.
Output: An HRRP instance.

1: Construct a undirected unweighted graph G whose vertices correspond to a single des-
tination for one robot. Add an edge between vertices if they correspond to destinations
from different robots and their overlap coefficient is sufficiently large.

2: Find all maximal cliques in G and add each one as a destination in the HRRP.
3: For each pair of destinations in the HRRP instance that robot r belongs to, add an

edge whose weight is the travel time between r’s corresponding destinations.
4: For each robot, add a vertex to the HRRP for its starting pose. The weight from the

start to each vertex the robot can visit is the travel time between the robot’s current
pose and the vertex’s corresponding destination.

but from different poses. Determining that the robot’s destinations – s1 and q1 – that should

correspond to the same destination in the HRRP is easy in this case, but more difficult in

general as the sets of features robots observe may only partially overlap. To address this

issue, we define a concrete measure of when two robot destinations are equivalent, and

describe an algorithm for finding matching destinations between multiple robots.

Intuitively, if one robot observes features at a destination that are a strict subset of

features another robot observes at a different destination, then there is little benefit in both

robots visiting their destinations. To formalize this idea, let dr1i = (xr1i , F
r1
i ) ∈ Dr1 and

dr2i = (xr2i , F
r2
i ) ∈ Dr2 be destinations with features for robots r1 and r2. We measure the

similarity between these destinations as the overlap coefficient between the feature sets:

S(dr1i , d
r2
j ) =

|F r1i ∩ F
r2
j |

min{|F r1i |, |F
r2
j |}

(8.4)

This value is 1 if and only if F r1i ⊆ F r2j or vice-versa, and is 0 when the two sets have no

elements in common. We say that two sets are equivalent when the overlap coefficient is

above a user-specified threshold. High values of this threshold ensure that every feature

in the environment will be observed, with the potential downside that multiple robots

may travel to similar places. Conversely, lower values will cause more destinations to be

considered equivalent, with the potential that some features may not be observed.
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The overlap coefficient, (8.4), only determines when pairs of destinations are equivalent.

However, with larger teams, it is possible that destinations for 3 or more robots should all

be considered equivalent. Consequently, we extend our notion of equivalence by saying that

sets of destinations are equivalent if every pair of those destinations satisfies the overlap

criterion.

Given this notion of similarity, we can define an instance of the HRRP by finding sets

of destinations across robots that are equivalent. To do this, we define a graph G in such

a way that maximal cliques in the graph represent destinations for the HRRP. Specifically,

vertices in G are destinations from all of the robots and we add edges between vertices if the

overlap criterion is satisfied. This makes sets of equivalent destinations the same as cliques

in G (i.e., sets of vertices where each pair is connected), which can then be used to create

vertices in the HRRP. We add weighted edges weights between vertices in the HRRP, when

a robot is present in both of the corresponding cliques in G. An edge’s weight is the time

it takes the corresponding robot to travel between the destinations within the associated

cliques. Alg. 4 describes this process in detail. Finding all maximal cliques in a graph is

exponential in the number of vertices in the graph [141], limiting the practicality of this

approach to small teams of robots.

8.3 Results

To assess the performance of the algorithms developed in this chapter, we design a simulation

in which a ground robot and quadrotor must map two floors of a building that is similar

to Skirkanich Hall at the University of Pennsylvania (Fig. 8.5). The simulation setup and

parameters are the same as the simulations in Ch. 6 and Ch. 7. A single global planner

creates and solves an instance of the HRRP every 15 seconds. To cluster destinations for

a single robot, we require a minimal Jaccard index of 0.5, and that every destination in

the set is within 3.0 m of each other (Sect. 8.2.1). To match goals between the robots, we

use a cutoff of 0.6 for the overlap coefficient (Sect. 8.2.2). Upon receiving a new path, each

robot travels to the first destination and uses the CSQMI based trajectory optimization
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(a) 1st floor (b) 2nd floor

Figure 8.5: Simulated Skirkanich Hall. The quadrotor can travel to both floors, but cannot
fit through the doors on the first floor. The ground robot can travel to any part of the first
floor.

from Ch. 7 to make the path locally optimal with respect to information. If another path is

not generated by the time a robot reaches its first destination, they use the same strategy

as Ch. 7, and compare local motion primitives to the remainder of the global path, selecting

whichever maximize the rate of information gain.

We ran three trials with the quadrotor and ground robot both starting in the middle of

the first floor. Fig. 8.7 shows the decrease in entropy of the map. As in previous chapters,

the robots took actions that effectively reduce the map’s uncertainty. Fig. 8.6 illustrates

Trial 2, showing the generated paths at various points in time. Overall, the paths effectively

coordinated the robots, leading them to map separate parts of the environment.

A major concern for this cooperative mapping approach was formulating a problem that

can be solved sufficiently quickly. Fig. 8.8a shows the total time it took to generate a full

plan for both robots throughout Trial 2 and Fig. 8.8a gives a breakdown of this for each

of these plans. By clustering destinations for each robot, the resulting HRRP instance

was small enough that the corresponding TSP could be solved optimally and quickly using

Concorde [3]. Over all trials, the total planning time never exceeded 5.0 seconds. The

single largest contributor to the overall planning time was the time to plan shortest paths

between destinations for the quadrotor. This is not entirely surprising as planning in 3D is

relatively expensive, and generating the HRRP instance requires a large number of paths
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(a) (b)

(c) (d)

(e) (f)

Figure 8.6: Cooperative mapping. The red line shows the quadrotor’s path, while the blue
line shows the ground robot’s path. (a) Both robots start exploring. (b) The quadrotor
begins flying up, while the ground robot enters the room the quadrotor cannot. (c) The
ground robot completely maps the room and can no longer reduce the map’s uncertainty.
(d) and (e) the quadrotor maps the second floor. (f) The final 3D map.
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Figure 8.7: Entropy Reduction. By coordinating their actions, the robots consistently built
a low uncertainty map.
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Figure 8.8: Time to solve HRRP. (a) Total time to generate and solve the HRRP; a new
problem was formulated and solved every 15 seconds. (b) Breakdown of time by process.
The time it takes to plan paths between destinations for the quadrotor tends to dominate
the time to generate and solve the HRRP instance.

to be planned.

8.4 Conclusion

In this chapter we presented a method for coordinating heterogeneous robots for active

mapping. The primary contribution was the formulation of a combinatorial optimization

problem that attempts to find paths for robots that minimizes the time it takes for them to

collectively view all frontiers. These paths can serve as the global plan for the information-

theoretic control policies developed in Ch. 6 and Ch. 7. We demonstrated the viability of

this approach by showing simulation results in which a single ground robot and quadrotor

cooperatively mapped a two-story building.
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Chapter 9

Conclusion and Future Work

9.1 Contributions

Designing active perception policies for multi-robot teams is difficult. The key challenges

are: (1) Choosing an objective function that can quantify the impact of multiple nonlinear

measurements on non-Gaussian belief distributions, (2) appropriately designing the set of

actions the team can execute, and (3) developing approximate representations so that the

control policy can be computed in a reasonable amount of time.

This thesis has made a number of contributions in each of these areas and substantially

extends our ability to quickly compute control policies that cause robots to gather informa-

tion and reduce uncertainty. Towards (1), we argued for the use of holistic measures like

mutual information that account for the complete evolution of the belief distribution and

showed that new measures like Cauchy-Schwarz quadratic mutual information offer many of

the same benefits and are faster to compute. We also developed a new method for calculat-

ing the information from multiple measurements, without relying on a strong independence

assumption. To aid in the design of control actions, (2), we proved error bounds show-

ing that for noisy low-information sensors, nearby actions must have similar information

gain, but that in applications like active mapping, locally refining trajectories can substan-

tially increase performance. We also demonstrated the benefit of a hierarchy of planning

approaches over multiple time and length scales, particularly when coordinating hetero-
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geneous robots. To compute these policies online and quickly, (3), we developed several

new methods, including approximations for the belief, approximations for the information-

theoretic objectives, and caching for numerical gradient evaluation. In several cases, we

were able to develop analytic error bounds for these approximations.

In addition to the theoretical contributions of this thesis, we demonstrated the efficacy

of our proposed control policies through experiments and simulations. For range-only local-

ization, we showed how our approach enables small teams of robots to track a mobile target

in real time and how larger teams can localize an unknown number of static targets. For

active mapping, we designed a control policy that lets air and ground robots build dense

3D maps of indoor environments, outperforming several baseline approaches, and nearly

achieving the performance of a knowledgeable human operator. We also extended these

results to scenarios where air and ground robots must cooperatively map an environment

and account for their differences in mobility.

9.2 Future Work

There are a number of interesting directions for future work. One immediate question is to

what extent the methods developed in this thesis are sufficient to enable rapid information

gathering with highly dynamic vehicles. For example, commercially available quadrotors

can fly at 10 m/s while carrying informative sensors like stereo cameras. However, doing

this autonomously in cluttered environments remains a significant challenge. By creating

an objective that constrains how much information a robot can make in terms of its motion

model, the work on trajectory optimization in Ch. 7 makes progress on this problem, but

it is unclear whether additional improvements are necessary to travel at these high speeds.

Concerning heterogeneity, the work in Ch. 8 represents a good high-level approach for

coordinating a small number of robots, but it scales poorly in the size of the team. In

the scenarios we examined, both robots were equipped with similar sensor packages. One

question is what kinds of control policies could enable hundreds or thousands of different

types of robots to cooperatively gather information. These types of questions will likely
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become more relevant for large numbers of small robots that exist on micro- or nano-scales.

As the size of the team grows, the assumptions we made about communication and

the centralized nature of the control policies in this thesis are more likely to fail. One

way to address this issue would be to directly incorporate models of communication into

the control policy. Doing is difficult, as RF signals can change suddenly depending on the

environment the robots are in (Ch. 3), but the potential gain in robustness would be large.

A particularly interesting outcome would be a policy that let the team take actions that

temporarily broke communication between all robots, so that some of them could gather

information and then rejoin the rest of the team. Other researchers have made progress on

these types of problems [29, 68, 39, 130], but significant challenges still remain.

Another avenue for future research is to apply information gathering to different sensing

modalities. While the laser range finders, structured light cameras and range-sensors used

in this thesis are different, we modeled all of them in terms of the geometric information

they provide (e.g., distance to target or bearing and distance to an occupied part of the

environment). Other types of sensors like microphones (sound) or vibration sensors (touch),

provide an interesting alternative source of information about environments that could be

relevant in security or medical applications.

Finally, the information based control policies in this thesis are all designed to select

actions that reduce the uncertainty of a belief distribution. This is a sensible choice when

the robots’ task is finding a target or mapping its environment, but what if their goal is

something else like moving an object? One challenging direction for future research would be

to develop a notion of “actionable” information that enables robots to reason about what

they need to know in order to achieve a particular goal. Recent work by Kaelbling and

Lozano-Pérez [67] studies this problem, but properly formulating it is still quite difficult.
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Appendix A

Platforms

A.1 Scarabs

Over the past 7 years, MRSL has been designing and building the Scarab mobile robot,

a simple and relatively cheap robotic platform that is useful for conducting multi-robot

experiments. The Scarabs are simple differential drive robots that are equipped with laser

scanners for localization and 802.11s wireless mesh cards for communication. The overall

motivation for their development as well as the first three generations are described by

Michael et al. [82].

For results described in this thesis, we used the 3rd generation of the Scarabs (Ch. 3 and

Ch. 4) and the 4th (Ch. 6 and Ch. 7).

The 3rd generation Scarabs are equipped with a Hokuyo-URG04LX laser range finder,

wheel encoders for odometry estimates, and a 2GHz computer with 512 MB RAM. Despite

the high accuracy of the URG04LX, it has a relatively short maximum range of 4 − 6 m,

occasionally making it difficult for the Scarabs to reliably and accurately estimate their

position in environments containing large open spaces (e.g., long hallways). The maximum

speed of these Scarabs is 0.5 m/s.

The 4th generation Scarabs are more powerful than the third, and designed to travel

outside of the lab more easily. They are equipped with a UTM-30LX laser range finder,

wheel encoders, and an Intel Core i5 3.4 GHz CPU processor with 8 GB RAM. The larger
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(a) Generation 3 (b) Generation 4

Figure A.1: Scarab mobile robot.

maximum range of the laser, 28−30 m, enables highly accurate odometry estimates using a

correlative scan matching algorithm [94]. The faster computer also enables this generation

to run all of the algorithms presented in this thesis on board. The 4th generation is also more

modular than previous generations as they have a generic sensor plane for easily adding and

removing sensors. Their maximum speed is 0.9 m/s with a maximum payload of 4 kg.

Both the 3rd and 4th generation Scarabs are powered by lithium-ion batteries. When

constantly driving and fully utilizing the available CPUs, they can drive for about 1.5 hours

without needing to replace the batteries.

A.2 Quadrotors

The quadrotor used in Ch. 6 of this thesis was an AscTec Pelican equipped with a UTM-

30LX and Asus Xtion Pro. It performs laser-based localization onboard using the system

by Shen et al. [116]. Its computer is an Intel NUC, which has an i5 1.8GHZ processor with

8 GB RAM.
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