928 research outputs found

    Multi-label Ferns for Efficient Recognition of Musical Instruments in Recordings

    Full text link
    In this paper we introduce multi-label ferns, and apply this technique for automatic classification of musical instruments in audio recordings. We compare the performance of our proposed method to a set of binary random ferns, using jazz recordings as input data. Our main result is obtaining much faster classification and higher F-score. We also achieve substantial reduction of the model size

    Performance Following: Real-Time Prediction of Musical Sequences Without a Score

    Get PDF
    (c)2012 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other users, including reprinting/ republishing this material for advertising or promotional purposes, creating new collective works for resale or redistribution to servers or lists, or reuse of any copyrighted components of this work in other works

    Recognition of Harmonic Sounds in Polyphonic Audio using a Missing Feature Approach: Extended Report

    Get PDF
    A method based on local spectral features and missing feature techniques is proposed for the recognition of harmonic sounds in mixture signals. A mask estimation algorithm is proposed for identifying spectral regions that contain reliable information for each sound source and then bounded marginalization is employed to treat the feature vector elements that are determined as unreliable. The proposed method is tested on musical instrument sounds due to the extensive availability of data but it can be applied on other sounds (i.e. animal sounds, environmental sounds), whenever these are harmonic. In simulations the proposed method clearly outperformed a baseline method for mixture signals

    A computational framework for sound segregation in music signals

    Get PDF
    Tese de doutoramento. Engenharia Electrotécnica e de Computadores. Faculdade de Engenharia. Universidade do Porto. 200

    Features for the classification and clustering of music in symbolic format

    Get PDF
    Tese de mestrado, Engenharia Informática, Universidade de Lisboa, Faculdade de Ciências, 2008Este documento descreve o trabalho realizado no âmbito da disciplina de Projecto em Engenharia Informática do Mestrado em Engenharia Informática da Faculdade de Ciências da Universidade de Lisboa. Recuperação de Informação Musical é, hoje em dia, um ramo altamente activo de investigação e desenvolvimento na área de ciência da computação, e incide em diversos tópicos, incluindo a classificação musical por géneros. O trabalho apresentado centra-se na Classificação de Pistas e de Géneros de música armazenada usando o formato MIDI. Para resolver o problema da classificação de pistas MIDI, extraimos um conjunto de descritores que são usados para treinar um classificador implementado através de uma técnica de Máquinas de Aprendizagem, Redes Neuronais, com base nas notas, e durações destas, que descrevem cada faixa. As faixas são classificadas em seis categorias: Melody (Melodia), Harmony (Harmonia), Bass (Baixo) e Drums (Bateria). Para caracterizar o conteúdo musical de cada faixa, um vector de descritores numérico, normalmente conhecido como ”shallow structure description”, é extraído. Em seguida, eles são utilizados no classificador — Neural Network — que foi implementado no ambiente Matlab. Na Classificação por Géneros, duas propostas foram usadas: Modelação de Linguagem, na qual uma matriz de transição de probabilidades é criada para cada tipo de pista midi (Melodia, Harmonia, Baixo e Bateria) e também para cada género; e Redes Neuronais, em que um vector de descritores numéricos é extraído de cada pista, e é processado num Classificador baseado numa Rede Neuronal. Seis Colectâneas de Musica no formato Midi, de seis géneros diferentes, Blues, Country, Jazz, Metal, Punk e Rock, foram formadas para efectuar as experiências. Estes géneros foram escolhidos por partilharem os mesmos instrumentos, na sua maioria, como por exemplo, baixo, bateria, piano ou guitarra. Estes géneros também partilham algumas características entre si, para que a classificação não seja trivial, e para que a robustez dos classificadores seja testada. As experiências de Classificação de Pistas Midi, nas quais foram testados, numa primeira abordagem, todos os descritores, e numa segunda abordagem, os melhores descritores, mostrando que o uso de todos os descritores é uma abordagem errada, uma vez que existem descritores que confundem o classificador. Provou-se que a melhor maneira, neste contexto, de se classificar estas faixas MIDI é utilizar descritores cuidadosamente seleccionados. As experiências de Classificação por Géneros, mostraram que os Classificadores por Instrumentos (Single-Instrument) obtiveram os melhores resultados. Quatro géneros, Jazz, Country, Metal e Punk, obtiveram resultados de classificação com sucesso acima dos 80% O trabalho futuro inclui: algoritmos genéticos para a selecção de melhores descritores; estruturar pistas e musicas; fundir todos os classificadores desenvolvidos num único classificador.This document describes the work carried out under the discipline of Computing Engineering Project of the Computer Engineering Master, Sciences Faculty of the Lisbon University. Music Information Retrieval is, nowadays, a highly active branch of research and development in the computer science field, and focuses several topics, including music genre classification. The work presented in this paper focus on Track and Genre Classification of music stored using MIDI format, To address the problem of MIDI track classification, we extract a set of descriptors that are used to train a classifier implemented by a Neural Network, based on the pitch levels and durations that describe each track. Tracks are classified into four classes: Melody, Harmony, Bass and Drums. In order to characterize the musical content from each track, a vector of numeric descriptors, normally known as shallow structure description, is extracted. Then they are used as inputs for the classifier which was implemented in the Matlab environment. In the Genre Classification task, two approaches are used: Language Modeling, in which a transition probabilities matrix is created for each type of track (Melody, Harmony, Bass and Drums) and also for each genre; and an approach based on Neural Networks, where a vector of numeric descriptors is extracted from each track (Melody, Harmony, Bass and Drums) and fed to a Neural Network Classifier. Six MIDI Music Corpora were assembled for the experiments, from six different genres, Blues, Country, Jazz, Metal, Punk and Rock. These genres were selected because all of them have the same base instruments, such as bass, drums, piano or guitar. Also, the genres chosen share some characteristics between them, so that the classification isn’t trivial, and tests the classifiers robustness. Track Classification experiments using all descriptors and best descriptors were made, showing that using all descriptors is a wrong approach, as there are descriptors which confuse the classifier. Using carefully selected descriptors proved to be the best way to classify these MIDI tracks. Genre Classification experiments showed that the Single-Instrument Classifiers achieved the best results. Four genres achieved higher than 80% success rates: Jazz, Country, Metal and Punk. Future work includes: genetic algorithms; structurize tracks and songs; merge all presented classifiers into one full Automatic Genre Classification System

    Automatic music transcription: challenges and future directions

    Get PDF
    Automatic music transcription is considered by many to be a key enabling technology in music signal processing. However, the performance of transcription systems is still significantly below that of a human expert, and accuracies reported in recent years seem to have reached a limit, although the field is still very active. In this paper we analyse limitations of current methods and identify promising directions for future research. Current transcription methods use general purpose models which are unable to capture the rich diversity found in music signals. One way to overcome the limited performance of transcription systems is to tailor algorithms to specific use-cases. Semi-automatic approaches are another way of achieving a more reliable transcription. Also, the wealth of musical scores and corresponding audio data now available are a rich potential source of training data, via forced alignment of audio to scores, but large scale utilisation of such data has yet to be attempted. Other promising approaches include the integration of information from multiple algorithms and different musical aspects

    Automatic Drum Transcription and Source Separation

    Get PDF
    While research has been carried out on automated polyphonic music transcription, to-date the problem of automated polyphonic percussion transcription has not received the same degree of attention. A related problem is that of sound source separation, which attempts to separate a mixture signal into its constituent sources. This thesis focuses on the task of polyphonic percussion transcription and sound source separation of a limited set of drum instruments, namely the drums found in the standard rock/pop drum kit. As there was little previous research on polyphonic percussion transcription a broad review of music information retrieval methods, including previous polyphonic percussion systems, was also carried out to determine if there were any methods which were of potential use in the area of polyphonic drum transcription. Following on from this a review was conducted of general source separation and redundancy reduction techniques, such as Independent Component Analysis and Independent Subspace Analysis, as these techniques have shown potential in separating mixtures of sources. Upon completion of the review it was decided that a combination of the blind separation approach, Independent Subspace Analysis (ISA), with the use of prior knowledge as used in music information retrieval methods, was the best approach to tackling the problem of polyphonic percussion transcription as well as that of sound source separation. A number of new algorithms which combine the use of prior knowledge with the source separation abilities of techniques such as ISA are presented. These include sub-band ISA, Prior Subspace Analysis (PSA), and an automatic modelling and grouping technique which is used in conjunction with PSA to perform polyphonic percussion transcription. These approaches are demonstrated to be effective in the task of polyphonic percussion transcription, and PSA is also demonstrated to be capable of transcribing drums in the presence of pitched instruments

    Polyphonic music information retrieval based on multi-label cascade classification system

    Get PDF
    Recognition and separation of sounds played by various instruments is very useful in labeling audio files with semantic information. This is a non-trivial task requiring sound analysis, but the results can aid automatic indexing and browsing music data when searching for melodies played by user specified instruments. Melody match based on pitch detection technology has drawn much attention and a lot of MIR systems have been developed to fulfill this task. However, musical instrument recognition remains an unsolved problem in the domain. Numerous approaches on acoustic feature extraction have already been proposed for timbre recognition. Unfortunately, none of those monophonic timbre estimation algorithms can be successfully applied to polyphonic sounds, which are the more usual cases in the real music world. This has stimulated the research on multi-labeled instrument classification and new features development for content-based automatic music information retrieval. The original audio signals are the large volume of unstructured sequential values, which are not suitable for traditional data mining algorithms; while the acoustical features are sometime not sufficient for instrument recognition in polyphonic sounds because they are higher-level representatives of raw signal lacking details of original information. In order to capture the patterns which evolve on the time scale, new temporal features are introduced to supply more temporal information for the timbre recognition. We will introduce the multi-labeled classification system to estimate multiple timbre information from the polyphonic sound by classification based on acoustic features and short-term power spectrum matching. In order to achieve higher estimation rate, we introduced the hierarchically structured cascade classification system under the inspiration of the human perceptual process. This cascade classification system makes a first estimate on the higher level decision attribute, which stands for the musical instrument family. Then, the further estimation is done within that specific family range. Experiments showed better performance of a hierarchical system than the traditional flat classification method which directly estimates the instrument without higher level of family information analysis. Traditional hierarchical structures were constructed in human semantics, which are meaningful from human perspective but not appropriate for the cascade system. We introduce the new hierarchical instrument schema according to the clustering results of the acoustic features. This new schema better describes the similarity among different instruments or among different playing techniques of the same instrument. The classification results show the higher accuracy of cascade system with the new schema compared to the traditional schemas. The query answering system is built based on the cascade classifier

    Automatic musical instrument recognition for multimedia indexing

    Get PDF
    Trabalho apresentado no âmbito do Mestrado em Engenharia Informática, como requisito parcial para obtenção do grau de Mestre em Engenharia InformáticaThe subject of automatic indexing of multimedia has been a target of numerous discussion and study. This interest is due to the exponential growth of multimedia content and the subsequent need to create methods that automatically catalogue this data. To fulfil this idea, several projects and areas of study have emerged. The most relevant of these are the MPEG-7 standard, which defines a standardized system for the representation and automatic extraction of information present in the content, and Music Information Retrieval (MIR), which gathers several paradigms and areas of study relating to music. The main approach to this indexing problem relies on analysing data to obtain and identify descriptors that can help define what we intend to recognize (as, for instance,musical instruments, voice, facial expressions, and so on), this then provides us with information we can use to index the data. This dissertation will focus on audio indexing in music, specifically regarding the recognition of musical instruments from recorded musical notes. Moreover, the developed system and techniques will also be tested for the recognition of ambient sounds (such as the sound of running water, cars driving by, and so on). Our approach will use non-negative matrix factorization to extract features from various types of sounds, these will then be used to train a classification algorithm that will be then capable of identifying new sounds
    corecore