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ABSTRACT

A method based on local spectral features and missing feature tech-
niques is proposed for recognition of harmonic sounds in mixture
signals. A mask estimation algorithm is proposed for identifying
spectral regions that contain reliable information for each sound
source and then bounded marginalization is employed to treat the
feature vector elements that are determined as unreliable. The pro-
posed method is tested on musical instrument sounds due to the
extensive availability of data but it can be applied on any harmonic
sound (i.e. animal sounds, environmental sounds). In simulations
the proposed method clearly outperformed a baseline method for
mixture signals.

1. INTRODUCTION

Computational auditory scene analysis (CASA) broadly speaking
refers to algorithms that aim to recognize sound sources or events
in auditory scenes [1]. Applications of CASA include for example
intelligent hearing aids, acoustic surveillance, and mobile devices
that adapt to the situational context.

In the case of a generic acoustic scene with various types of
audio events no system at present has results anywhere close to
the results a human listener can achieve as these were measured
in early studies [2, 3]. Existing approaches are based on low-level
signal features and k-means clustering [4], Hidden Markov Mod-
els (HMMS) [5], Probabilistic Latent Semantic Analysis (PLSA)
[6], Non-Negative Matrix factorization (NMF) with time-varying
bases [7], NMF with time-frequency activations [8], Shift-Invariant
Probabilistic Latent Component Analysis (SIPLCA) temporally-
constrained via on/off HMMs [9] or local time-frequency patterns
and AdaBoost [10]. Many approaches and techniques have been
tailored to specific scenes or types of audio signals such as music
and speech and the resulting performance of such systems is better
and closely comparable to that of humans although there is still
room for improvement [11, 12].

The performance of CASA algorithms is significantly affected
by the fact that they have to deal with low signal-to-noise ratios and
mixtures of multiple overlapping sources. The systems fail where
human listeners succeed perhaps because they are unable to imitate
the ability of the auditory system to ignore spectrotemporal regions
that are corrupted by noise or interfering sources, provided that there
is a sufficient amount of information in other regions to suggest the
presence of a sound source [13] [14].

Missing feature approaches provide a general framework for rec-
ognizing sound sources based on partial information [15, 14, 16].
These techniques attempt to identify spectrotemporal regions that
carry reliable information about a sound source, in contrast to re-
gions that are corrupted by interference from other sources or noise

and are therefore labeled as unreliable or “missing” [14]. Natural
sounds tend to be concentrated in small regions (sparse) in the time-
frequency domain and therefore parts of their spectrogram data is
often uncorrupted even in the presence of multiple sources.

Missing feature techniques have been applied by a number of
authors in environmentally-robust speech recognition (see [15, 16]
for reviews), but there has been very little work outside that applica-
tion domain. Arguably one of the main reasons for that is the diffi-
culty of estimating the “mask” that identifies reliable and unreliable
(noisy) spectrotemporal regions: in CASA hardly any assumptions
can be made about the target sounds or the interference (in contrast
to environmentally-robust speech recognition). In musical instru-
ment recognition, Eggink and Brown employed a missing feature
approach by using pitch information to predict harmonic partial col-
lisions and thereby estimate the mask [17].

In the following, we propose a missing feature algorithm for rec-
ognizing harmonic sounds in mixture signals. As acoustic features in
the proposed method, we use log-energy differences between spec-
tral subbands. For mask estimation, we use a novel technique based
on spectral smoothness. Unreliable feature vector elements are han-
dled using bounded marginalization. The recognition is currently
performed independently in each frame but it is possible to extend
the method to include temporal features and to integrate information
over time. In mixture signals, the proposed method clearly outper-
forms a reference Bayesian classifier based on Mel-cepstral features.

This report serves as an extended version for the ICASSP sub-
mission [18].

2. METHOD

Let us denote the observed audio signal at time frame t by vector
ot = [ot(n)]n=1,...,N . The observation is modelled as a mixture of
harmonic sounds and a residual:

ot =
∑
f∈Ft

sf,t + rt (1)

where f denotes the pitch of sound sf,t = [sf,t(n)]n=1,...,N , and
the set Ft contains all pitches of sounds that are active in frame t.
The residual signal rt represents all non-harmonic sounds such as
background noise. For convenience, we omit the frame index t in
the following and write (1) as o =

∑
f∈F sf + r.

Let us use p(c|o) to denote the probability that class c is present
in frame o and p(cfo) to denote the probability that sound sf be-
longs to class c. Using the complements p(c|o) = 1 − p̄(c|o) and
p(cf |o) = 1− p̄(cf |o) and assuming all sounds are independent we
can write

p̄(c|o) =
∏
f∈F

p̄(cf |o) (2)



The above equation says that one sound from class c suffices to con-
clude that class c is present. We are further making the assumption
that the set of active pitches F is estimated reliably, that the set F is
“given.” We then model p(cf |o) by

p(cf |o) = p(cf |yf , f) (3)

where the observation o has been replaced by feature vector yf that
is extracted from the mixture signal to represent the sound with pitch
f based on the assumption that yf sufficiently describess all the
information of the sound sf . The probabilities p(f |o) of differ-
ent pitches f to be present are obtained using a multipitch estima-
tion method such as the one described in [19]. For simplicity, as
explained above, we assume that the probabilities p(f |o) of those
pitches are 1, that is, that we are certain those are the set of active
pitches in the frame, that is, the set F is “given”

The focus of this paper is on calculating p(cf |yf , f), that is, the
probability that a candidate sound belongs to class c when given its
pitch f and the feature vector yf extracetd from the mixture signal o
(as will be explained below). The problem becomes non-trivial and
thus interesting in polyphonic scenarios where the feature vector yf
is usually partly obscured by other co-occurring sounds that over-
lap in the time-frequency domain. Probabilistic models representing
instrument c are trained using clean feature vectors extracted from
isolated signals representing instrument c. This is because the inter-
ference caused by other, co-occurring sounds in polyphonic audio is
highly varying and unpredictable and therefore any interference in-
troduced at the training stage would hardly be representative of the
test stage.

The problem can then be re-stated as calculating the probabil-
ity p(cf |yf , f) when some elements of the feature vector yf are
reliable (clean) and some are obscured. The reliability information
(“mask”) is generally not available for mixture signals but has to be
estimated too.

2.1. Feature representation and Binary mask

A variety of acoustic features have been proposed for audio clas-
sification, including spectral, cepstral, temporal, and modulation-
spectral features [20]. In the missing feature framework, the features
should be local in time-frequency in order to be able to avoid inter-
fering sounds that tend to have a sparse energy distribution in that
domain and therefore only a local effect on the features. We use log-
energy differences between spectral subbands, which removes the
need for level normalization and ensures that interference remains
local to specific spectrum areas as opposed to cepstral features where
it would spread all over the feature vector. The feature vector yf
is calculated by first picking the harmonic partials of a sound with
pitch f from the mixture spectrum by assuming that the frequencies
of the partials are exact integer multiples of the estimated pitch. We
have found that extracting spectral energy only at the positions of
the partials considerably improves the signal-to-noise ratio from the
viewpoint of the candidate sound with pitch f .

Let vector xf = [xf (h)]h=1,2,...,H denote the powers of har-
monic partials h in the observed mixture spectrum at frequencies
hf . The actual feature vector is then obtained from

yf = 10 log10(Bxf ) (4)

where the transform matrix B maps from a linear to log-frequency
resolution in order to reduce the dimensionality and also improves
the statistical properties of the features. The matrix is given by

[B]k,h = g

(
π

γ
log2

(
ωk
hf

))
(5)

Fig. 1. Illustration of the transformation matrix [B]k,h for γ = 1
3

.

where the window function g(a) = 0.5+0.5 cos(a) for a ∈ [−π, π]
and zero elsewhere. k denotes the elements of the feature vector yf
refered to as subbands in the following. Parameter γ determines the
log-frequency resolution of the features, for example γ = 1

3
leads to

a third-octave resolution. For small γ, B becomes an identity matrix.
Center frequencies ωk of the subbands depend on pitch f are de-

fined recursively by settingω1 = f andωk = max(2γωk−1, ωk−1+
f). This ensures that all elements of yf (k) are informative. Figure 1
illustrates matrix B for γ = 1

3
.

The feature vector yf extracted from the mixture signal o is
likely to be partly obscured by other sounds that overlap the target
sounds in time and frequency.

Let us use zf to denote the unobserved, “clean,” feature vector
that we would obtain if the features were extracted from sound sf
in isolation. Let us define binary masks mf (k), where mf (k) = 1
indicates that the measured log-power yf (k) for subband k is domi-
nated by energy coming from the source with pitch f . More exactly,
we assume that the (unobserved) clean feature vector zf obeys

zf (k) = yf (k) if mf (k) = 1 (6)
zf (k) ≤ yf (k) if mf (k) = 0

The latter stems from the fact that the expected value of the power
spectrum of the mixture signal o is the sum of the power spectra of
sources sf , f ∈ F . This is valid only in the expectation sense, but
is a useful assumption for classification purposes as will be seen.

Estimating the masks mf of each sound from the observed mix-
ture signal will be discussed in Sec. 3.1. The clean “glimpses” of
the sources, when mf (k) = 1, form a basis for the recognition.
However also the subbands where mf (k) = 0 inform about sf : the
observed feature value yf (k) sets an upper bound for the unobserved
clean feature value zf (k). To keep the notation uncluttered, we omit
the subscript f in the following and write simply z, y, and m, with
the exception of cf to avoid confusion with c.

2.2. Marginalization of the missing data

The marginalization approach explained in this subsection is simi-
lar to the one proposed in [21], although the employed model and
features are different. The probability p(cf |y, f) that a candidate
sound sf belongs to class c, as required in (3), can be written as
p(cf |y, f) =

∑
m p(cf |m,y, f)p(m). In the case of a determinis-

tic mask estimation we can set its probability p(m) = 1, leading to
p(cf |y, f) = p(cf |m,y, f). That can be written as

p(cf |m,y, f) =

∫
p(cf , z|m,y, f)dz (7)

=

∫
p(cf |z,m,y, f)p(z|m,y, f)dz

where p(z|m,y, f) is given by (9) and the integral is used to
marginalize z. The factor p(cf |z,m,y, f) simplifies to p(cf |z, f)
since cf does not depend on m or y given z.



Using Bayes’ rule for p(cf |z, f), (7) becomes

p(cf |m,y, f) = p(cf |f)

∫
p(z|cf , f)

p(z|f)
p(z|m,y, f)dz (8)

where p(cf |f) is the prior probability of sound with class c at pitch
f and p(z|cf , f) is the likelihood of observing z for sound of class c
and pitch f . The latter can be estimated from training data represent-
ing isolated (clean) signals from class c. The pdf p(z|f) is estimated
similarly but using data from all classes.

The assumptions in (6) allow us to write the probability density
function (pdf) of the unobserved clean features z of sound sf :

p(z(k)|m,y, f) (9)

=


δ(z(k)− y(k)) if m(k) = 1

Up(z(k)|µ,υ, f) if m(k) = 0 and z(k) ≤ y(k)

0 if m(k) = 0 and z(k) > y(k)

where δ(·) is the Dirac delta function and U is a normalizing con-
stant to make the pdf sum to unity since the pdf is truncated to be
zero above y(k). p(z(k)|µ,υ, f) is the distribution of z(k) given
values of z at subbands where m(k) = 1. µ denotes a tuple of sub-
band indices k ordered from smallest to largest, where m(k) = 1,
so that m(k) = 1 if and only if k ∈ µ. The corresponding values
of y are stored in set υ so that υ(k) = y(µ(k)). The distribution
p(z(k)|µ,υ, f) is learned using isolated sounds from all different
classes.

The above-described approach for computing p(cf |y, f) is
theoretically satisfying but requires two problems to be solved in
order to be practically useful. Firstly, the statistical models for
p(z|m,y, f) should be invariant to the presentation level (scaling)
of sound sf , appearing as an additive constant in the log-power fea-
tures z. (Note that we cannot normalize the scale since some of the
feature vector elements are obscured and therefore not available.) To
achieve that, we consider only level differences between subbands
k. Let us use d`k ≡ z(k) − z(`) as a shorthand to denote the level
difference between subbands k and `.

Secondly, the multi-dimensional integral over z in (8) is not
computationally feasible in a direct form. The following addresses
the computational complexity of the integral in (8) by deriving a fac-
torial form instead.

3. FACTORIAL FORM FOR THE MULTIDIMENSIONAL
DENSITY

The factor in the brackets in (8) is assumed to take the following
factorial form∫

p(z|cf , f)

p(z|f)
p(z|m,y, f)dz (10)

=

∫
p(zµ|cf , f)

p(zµ|f)
p(zµ|m,y, f)

×
∏
k/∈µ

p(z(k)|zµ, cf , f)

p(z(k)|zµ, f)
p(z(k)|m,y, f)dz

where we have used zµ to denote a shorter feature vector containing
only the elements at clean subbands, k ∈ µ. For the other elements,
the above equation assumes that z(k) for k /∈ µ are independent of
each other given f and the values at the clean subbands.

The above assumption allows us to put the integral inside the
product in (10), writing it as

p(υ|cf , f)

p(υ|f)︸ ︷︷ ︸
clean subbands

∏
k/∈µ

∫
p(z(k)|υ, cf , f)

p(z(k)|υ, f)
p(z(k)|m,y, f)dz(k)

︸ ︷︷ ︸
noisy subbands

(11)

where for the clean bands we have used p(zµ|m,y, f) = δ(zµ−υ)
from the probability density function (pdf) of the unobserved clean
features z of sound sf in (9).

The integral in (11) is over each element of z(k) separately and
this makes the (originally multidimensional) integral tractable.

Another important requirement is that p(z|m,y, f) should be
invariant to the presentation level (scaling) of sound sf , appearing
as an additive constant in the log-power features z. (Note that we
cannot normalize the scale since some of feature vector elements
are obscured and therefore not available.) To achieve that, we only
consider level differences between subbands k. Let us use d`k ≡
z(k) − z(`) as a shorthand to denote the level difference between
subbands k and `.

We assume that the level difference d
µ(i+1)

µ(i) of each neighbour-
ing pair of clean subbands depends only on f and the level differ-
ences on both sides, d

µ(i)

µ(i−1) and d
µ(i+2)

µ(i+1), but not on other sub-
bands. This assumption is made for computational tractability. Re-
taining the dependency on the differences on both sides is important
since the mentioned differences share one subband and are therefore
strongly correlated. We can then write the part indicated as “clean
subbands” in (11) as

p(υ|cf , f)

p(υ|f)
=

p
(

d
µ(2)

µ(1)

∣∣cf , f)
p
(

d
µ(2)

µ(1)

∣∣f)
|µ|−1∏
i=2

p
(

d
µ(i+1)

µ(i)

∣∣dµ(i)µ(i−1), cf , f
)

p
(

d
µ(i+1)

µ(i)

∣∣dµ(i)µ(i−1), f
)

def.
= P

cf ,f

µ(1),µ(2)

|µ|−1∏
i=2

P
cf ,f

µ(i),µ(i+1) (12)

where on the last row we have introduced the shorthand notation
P
cf ,f

k,` for convenience in the following. In the special case where all
subbands are clean (i.e., the mask is all-one), (11) would reduce to
P
cf ,f

1,2

∏K−1
i=2 P

cf ,f

i,i+1.
For the noisy bands, k /∈ µ, we calculate the level difference

d
α(k)
k between band k and its nearest clean subband α(k). More

precisely, α(k) = arg min`∈µ(k− `) denotes member in set µ that
is nearest to k. The subband α(k) is used as a “point of reference”
for band k for which m(k) = 0. Similarly, β(k) is used to denote
the second-nearest member of µ to k.

We assume that d
α(k)
k depends only on f and the level difference

d
β(k)

α(k) between the two nearest clean subbands, but not on the other
bands. As a result, the part indicated as “noisy bands” in (11) can be
written as

∏
k/∈µ

∫ p
(

d
α(k)
k

∣∣dβ(k)α(k), cf , f
)

p
(

d
α(k)
k

∣∣dβ(k)α(k), f
) p(d

α(k)
k

∣∣dβ(k)α(k),m,y, f)dz(k)

def.
=
∏
k/∈µ

Q
cf ,f

k,α(k),β(k) (13)



Based on (9), we can write the pdf of d
α(k)
k as

p(d
α(k)
k

∣∣dβ(k)α(k),m,y, f) (14)

=

{
1
W

p
(

d
α(k)
k

∣∣dβ(k)α(k), f
)

for z(k) ≤ y(k)

0 for z(k) > y(k)

where recall that d`k is just a shorthand for z(k)− z(`). The normal-
izing constant W is required because the pdf is truncated. Its value
is

W =

∫ y(k)

−∞
p
(

d
α(k)
k

∣∣dβ(k)α(k), f
)

(15)

Substituting (14)–(15) into (13) we get

Q
cf ,f

k,α(k),β(k) =

∫ y(k)
−∞ p

(
d
α(k)
k

∣∣dβ(k)α(k), cf , f
)

dz(k)∫ y(k)
−∞ p

(
d
α(k)
k

∣∣dβ(k)α(k), f
)

dz(k)
(16)

Finally, substituting (11)–(13) into (8), we can write p(cf |m,y, f)
as

p(cf |m,y, f) = p(cf |f)︸ ︷︷ ︸
class prior

|µ|−1∏
i=1

P
cf ,f

µ(i),µ(i+1)


︸ ︷︷ ︸

clean subbands

∏
k/∈µ

Q
cf ,f

k,α(k),β(k)


︸ ︷︷ ︸

noisy subbands

(17)

Calculation of the terms P
cf ,f

k,` and Q
cf ,f

k,`,j requires estimating
the distributions p(d`k|dkj , cf , f) from training data. In practice,
the joint distributions p(d`k, d

k
j |cf , f) are estimated for all possible

triplets j, k, `, separately for all different classes c, and for the case
where the distributions are not conditioned on the class at all, that is,
from training material repesenting all classes.

We use a multivariate Gaussian distribution with full (2 × 2)
covariance matrices to model the densities p(d`k, d

k
j |cf , f). This

renders the conditional distribution p(d`k|dkj , cf , f) to be univariate
Gaussian by doing the following:

Let x = [x1, x2]T denote a multivariate normal random variable
with mean µ = [µ1, µ2]T and covariance matrix

Σ =

[
σ11 σ12

σ21 σ22

]
(18)

The conditional distribution p(x1|x2 = a) of x1 given x2 = a is
normally distributed with mean

µ̂ = µ1 +
σ12

σ22
(a− µ2) (19)

and variance
σ̂ = σ11 −

σ12σ21

σ22
. (20)

The value of the integral in (16) is then obtained from the Gaussian
cumulative distribution.

3.1. Mask estimation

Mask estimation is a central and arguably the most difficult part
of missing feature techniques. A number of methods have been
proposed in the field of environmentally robust speech recognition
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Fig. 2. The spectrum of a musical instrument sound (top), a Hum-
back whale call (middle) and a modern cordless phone ringing (bot-
tom). The smoothed harmonic partial magnitudes a(h) have been
highlighted with “◦” and are connected with line segments to pro-
duce the “smooth envelope” of the sound.

[16, 21, 22, 23]. However these approaches are less straightfor-
ward to apply in CASA where the interference is usually not slowly-
varying and does not represent a single source but instead both the
target and the interference often belong to the same broad class of
environmental sounds.

The mask estimation algorithm proposed in the following is
based on the assumption that the spectral envelopes of natural sounds
tend to be smooth: slowly-varying as a function of log-frequency,
in a specific sense [24]. The amplitude of an individual frequency
partial can deviate negatively from the smooth envelope, but is very
seldom much higher than those of its neighbours. In the latter case,
the partial it is more easily perceptually segregated and perceived
as a separate sound. This is particularly true for musical instrument
sounds, but also for many other natural or artificial sounds. Figure
2 shows examples of smooth spectra for various harmonic sounds.

Overtone partials overlapping with a more dominant partial
(from another source) tend to have higher magnitudes than their
neighbours and rise above the smooth spectral envelope. That sug-
gests a heuristic that individual partials with amplitudes clearly
higher than their neighbours are more likely to have been corrupted
by partials from interfering sources, and the mask value at the cor-
responding position of the feature vector should be set to zero. That
is the basic idea of the mask estimation procedure in the following.

The algorithm first estimates the smooth spectral envelope by
calculating a local moving average over the series of observed har-
monic amplitudes [x(h)]1/2 of a sound (recall from Sec. 2.1 that
x(h) denotes the power of partial h). An octave-wide Hamming
window is centered at each harmonic partial h, and a weighted aver-
age a(h) of the partial magnitudes within the window is calculated.
The smoothed magnitude spectrum values a(h) are then squared and
[a(h)]2 are substituted for x(h) in (4) in order to get a feature vector
ysmo. We propose to estimate the mask directly based on the differ-
ence ∆(k) = y(k)− ysmo(k). The mask estimate is given by

m̂(k) =

{
1 if ∆(k) ≤ εsmo

0 if ∆(k) > εsmo
(21)

the threshold value εsmo = 3 dB was chosen based on preliminary
experiments.

In order to compare the performance of the estimated mask, we
utilize an “oracle” mask: an underlying ideal mask. The oracle mask
is available at the training stage by generating training sound mix-
tures for which we have the isolated (clean) sounds before mixing.
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Fig. 3. The spectrum of a mixture of 4 musical instrument sounds.
The observed partial magnitudes y(k) of a flute sound of the mixture
have been indicated with “∗” and the underlying clean magnitudes
z(k) with “◦”. The ideal (“oracle”) mask for the sound is indicated
with 1s and 0s above the spectrum and the subband boundaries are
shown with dotted horizontal lines.

We compute the feature vectors y from the mixture, and in addition
we compute the clean feature vectors z by applying the same fea-
ture extraction procedure on the isolated sounds before mixing. The
oracle mask is then defined as

mor(k) =

{
1 if |y(k)− z(k)| ≤ ε
0 if |y(k)− z(k)| > ε

(22)

where ε is an empirically found threshold value (in preliminary ex-
periments, values 3–6 [dB] were found suitable).

The top panel of Figure 3 shows an example spectrum consisting
of the polyphonic mixture of four instruments. The observed partial
magnitudes y(k) of a flute sound have been indicated with “∗” and
the underlying clean magnitudes z(k) with “◦”. The ideal (oracle)
mask for this sound is shown as a series of 1s and 0s above the spec-
trum. The subband boundaries are indicated with dotted horizontal
lines (note that subbands 1–4 contain a single partial only).

4. SIMULATION RESULTS

For practical purposes (mainly the availability of data), we use musi-
cal instrument sounds as the target classes but the method is not lim-
ited to musical sounds. Musical instruments provide a wide range
of well-defined sound source classes with a lot of acoustic variabil-
ity within each class. We used the RWC Musical Instrument Sound
database [25] for training the class models, and another database,
MGill University Master Samples [26] at the test stage. Ten dif-
ferent instruments, available in both, were chosen: bassoon, cello,
clarinet, flute, oboe, piano, piccolo, alto saxophone, tuba and violin.

As a baseline method, we employed a Bayesian classifier using
Gaussian mixture models (GMMs) to represent the class-conditional
likelihood densities (10 Gaussians per model and diagonal covari-
ance matrices). The feature vector was consisted of Mel-frequency
cepstral coefficients (MFCCs), which have been widely used for mu-
sical instrument recognition [27] and speech recognition [28]. The
zeroth coefficient was discarded and the following 12 coefficients
were used for classification. The features were element-wise mean
and variance normalized over all the training data.

At the test stage, single instrument sounds were mixed with
background noise from four different auditory scenes: rain and rum-
ble, crowded bar, dishwashing, and shower. Audio data for these
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Fig. 4. Performance of the different systems under varied SNR con-
ditions. Mean values and standard deviations out of 12 randomly
sampled datasets using the four acoustic scenes.

were obtained from Freesound.org [29]. Recognition was carried
out in an individual 93 ms analysis frame. Figure 4 shows results for
the proposed method and the baseline method for varying signal-to-
noise ratios. To analyze the effect of mask estimation errors, results
are also shown for the proposed method with the “oracle” mask, that
is obtained by utilizing signal information before mixing as desribed
in 3.1. The proposed method outperforms the reference method by a
wide margin in low SNR. The full potential of the proposed method
can be appreciated by seeing the robustness with the oracle mask.

Table 1 shows results for mixtures of musical instrument sounds
without background noise. In this case, the interference is due to
the other co-occurring sources. Random notes from random instru-
ments were chosen to generate 10000 one-, two-, and four-sounds
mixtures. We had to constrain the test mixtures so that each instru-
ment appears only once in a given mixture. This information, along
with the number of sounds in the mixture (“polyphony”), was given
as side-information to the classifiers. This was unavoidable since
the baseline classifier operates by simply choosing P most probable
classes to the output. As a consequence, the random guess rate for
isolated sounds is 10% but 40% for four-sound mixtures (guessing 4
out of 10 instruments). The baseline method was trained using mix-
ture signals of the same polyphony as the test material in each case
as this led to much better results than training from isolated samples.

The proposed method (last row) outperforms the baseline (row
2) by a wide margin for polyphonies 2 and 4. For clean isolated
samples, however, the proposed method performs clearly worse than
the GMM+MFCC baseline. The main reason is that the proposed
features are based on the amplitudes of harmonic partials only, dis-
carding the spectrum between the partials and also being subject to
pitch estimation errors. This conclusion was verified by computing
MFCCs using only the harmonic partials of the sound only, setting

Table 1. Recognition accuracy (%) of different methods.

Method Polyphony

Model & Features Mask 1 2 4

1. Random guess – 10.0 20.0 40.0
2. GMM & MFCC – 74.6 50.7 53.1
3. GMM MFCC-H 62.3 46.5 51.8
4. Proposed Oracle 64.1 62.8 67.5
5. Proposed Oracle(full m.) 64.1 60.3 64.6
6. Proposed All-one 64.1 51.8 56.4
7. Proposed Estimated 61.5 56.9 60.2



the spectrum between the partials to zero (“MFCC-H” on row 3).
Rows 4–7 of Table 1 show results for the proposed method.

Three different types of masks were tested: the “oracle” mask (row
4), the estimated mask (bottom row), and an all-one mask that as-
sumes all subbands are clean (row 6). The performance difference
between the oracle and all-one mask is quite drastic for polyphonies
2 and 4, highlighting the importance of handling unreliable data ap-
propriately in the classification process. Results for the estimated
mask are approximately half-way between the oracle mask and the
all-one mask, indicating that the spectral smoothness-based mask es-
timation is able to make an important step towards the ideal mask.

Finally, we calculated results for the oracle mask using the pro-
posed bounded integration (row 4) but also full marginalization (row
5), where the integral over z(k) is calculated from −∞ to ∞ in-
stead of −∞ to y(k), which has the consequence that the noise
terms Q

cf ,f

j,k,` become one and need not be computed at all. Bounded
marginalization works consistently better than full marginalization.

5. CONCLUSION

In this paper we proposed a novel method for identification of har-
monic sounds in polyphonic mixtures. The method is based on the
missing feature approach and local spectral features, using bounded
marginalization to treat the unreliable feature vector elements. A
mask estimation technique was proposed that is based on the as-
sumption that the spectral envelopes of musical sounds tend to be
slowly-varying as a function of log-frequency.

The proposed method outperformed the reference method
(GMM+MFCC) clearly in mixture signals. For isolated samples,
the proposed method performed somewhat worse than the reference
method, which seems to be due to the fact that only information at
the positions of the harmonic partials is utilized and the rest of the
spectrum is discarded.
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[10] A. Härmä, “Detection of audio events by boosted learning of
local time-frequency patterns,” Watermark, vol. 1, 2012.

[11] R. Stiefelhagen, R. Bowers, and J. Fiscus, Eds., Multimodal
Technologies for Perception of Humans: International Evalu-
ation Workshops CLEAR 2007 and RT 2007, Springer-Verlag,
Berlin, Heidelberg, 2008.

[12] J. Barker, E. Vincent, N. Ma, H. Christensen, and P. Green,
“The pascal chime speech separation and recognition chal-
lenge,” Computer Speech & Language, 2012.

[13] A.S. Bregman, Auditory scene analysis, MITpress, Cam-
bridge, USA, 1990.

[14] M. Cooke, P. Green, and M. Crawford, “Handling missing data
in speech recognition,” in Third International Conference on
Spoken Language Processing, 1994.

[15] J. Barker, “Missing data techniques: Recognition with incom-
plete spectrograms,” in Techniques for Noise Robustness in Au-
tomatic Speech Recognition, T. Virtanen, R. Singh, and Bhik-
sha Raj, Eds. Wiley, 2012.

[16] R. Bhiksha and R. M. Stern, “Missing-feature approaches in
speech recognition,” IEEE Signal Processing Magazine, vol.
22, no. 5, pp. 101–116, 2005.

[17] J. Eggink and G. J. Brown, “A missing feature approach to
instrument identification in polyphonic music,” in IEEE In-
ternational Conference on Acoustics, Speech, and Signal Pro-
cessing, Hong Kong, China, 2003, pp. 553–556.

[18] D. Giannoulis, A. Klapuri, and M. D. Plumbley, “Recogni-
tion of harmonic sounds in polyphonic audio using a missing
feature approach,” in submitted to the 38th International Con-
ference on Acoustics, Speech, and Signal Processing, 2013.

[19] A. Klapuri, “Multiple fundamental frequency estimation by
summing harmonic amplitudes,” in Proc. of the International
Society for Music Information Retrieval (ISMIR), 2006, vol. 6,
pp. 216–221.

[20] G. Peeters, “A large set of audio features for sound description
(similarity and classification) in the CUIDADO project,” Tech.
Rep., IRCAM, Paris, France, Apr. 2004.

[21] J. Barker, M. Cooke, and D. Ellis, “Decoding speech in the
presence of other sources,” Speech Communication, vol. 45,
no. 1, pp. 5–25, 2005.

[22] T. Virtanen, R. Singh, and Bhiksha Raj, Eds., Techniques for
Noise Robustness in Automatic Speech Recognition, Wiley,
2012.

[23] M.L. Seltzer, B. Raj, and R.M. Stern, “A bayesian classifier
for spectrographic mask estimation for missing feature speech
recognition,” Speech Communication, vol. 43, no. 4, pp. 379–
393, 2004.

[24] A. Klapuri, “Multipitch estimation and sound separation by
the spectral smoothness principle,” in Proc. IEEE Interna-
tional Conference on Acoustics, Speech, and Signal Process-
ing, 2001, pp. 3381–3384.

[25] M. Goto, H. Hashiguchi, T. Nishimura, and R. Oka, “RWC
music database: Music genre database and musical instrument
sound database,” in International Conference on Music Infor-
mation Retrieval, Baltimore, USA, 2003, pp. 229–230.

[26] F. Opolko and J. Wapnick, MUMS: McGill University Master
Samples, Montreal, Canada, 1987.

[27] P. Herrera-Boyer, A. Klapuri, and M. Davy, “Automatic clas-
sification of pitched musical instrument sounds,” in Signal
Processing Methods for Music Transcription, A. Klapuri and
M. Davy, Eds., pp. 163–200. Springer, New York, 2006.

[28] X. Huang, A. Acero, and H.-W. Hon, Spoken Language Pro-
cessing: A Guide to Theory, Algorithm, and System Develop-
ment, Prentice Hall PTR, Upper Saddle River, NJ, USA, 1st
edition, 2001.

[29] “freesound.org,” Sample numbers (names): 31381 (stall
shower), 31487 (bar crowd), 32908 (doing dishes) and 58858
(raindandrumble), (Last accessed: 10/11/2012).


