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Abstract

The subject of automatic indexing of multimedia has been a target of numerous discus-
sion and study. This interest is due to the exponential growth of multimedia content
and the subsequent need to create methods that automatically catalogue this data. To
fulfil this idea, several projects and areas of study have emerged. The most relevant
of these are the MPEG-7 standard, which defines a standardized system for the rep-
resentation and automatic extraction of information present in the content, and Music
Information Retrieval (MIR), which gathers several paradigms and areas of study re-
lating to music.

The main approach to this indexing problem relies on analysing data to obtain and
identify descriptors that can help define what we intend to recognize (as, for instance,
musical instruments, voice, facial expressions, and so on), this then provides us with
information we can use to index the data.

This dissertation will focus on audio indexing in music, specifically regarding the
recognition of musical instruments from recorded musical notes. Moreover, the devel-
oped system and techniques will also be tested for the recognition of ambient sounds
(such as the sound of running water, cars driving by, and so on).

Our approach will use non-negative matrix factorization to extract features from
various types of sounds, these will then be used to train a classification algorithm that
will be then capable of identifying new sounds.

Keywords: audio indexing, non-negative matrix factorization, instrument recogni-
tion, ambient sound recognition, machine learning.
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Resumo

A indexação automática de multimédia é um assunto que tem sido alvo de consistente
discussão e estudo. Este interesse deve-se ao crescimento exponencial de conteúdos
multimédia e à consequente necessidade de criar meios que permitam gerir esta infor-
mação. Para ser possível concretizar esta ideia, surgiram vários projectos e áreas de
estudo. Destes, os mais relevantes são a norma MPEG-7, que tem o intuito de definir
uma forma sistemática de representação e recolha automática da informação relativa
aos conteúdos multimédia, e Music Information Retrieval (MIR), que reúne vários para-
digmas e áreas de estudo relacionados com a música.

A principal forma de abordar este problema de indexação baseia-se na análise dos
dados, de modo a identificar e obter descritores que possam ajudar na caracterização
do que é pretendido reconhecer (como instrumentos musicais, voz, expressões faciais,
etc.), possibilitando a indexação dos dados consoante a informação obtida.

Este tema concentrar-se-á na indexação de áudio no contexto da música, propondo
como principal problema o reconhecimento automático de instrumentos musicais a
partir de notas musicais gravadas. Adicionalmente, o sistema será também adaptado
para o reconhecimento de sons ambiente (por exemplo, sons de água, carros, etc).

A nossa abordagem irá usar factorização de matrizes não negativas para possibilitar
a extracção de propriedades de som, estas serão depois usadas treinar um algoritmo
de classificação que possibilitará a identificação de novos sons.

Palavras-chave: indexação áudio, factorização de matrizes não negativas, reconheci-
mento de instrumentos, reconhecimento de sons ambiente, aprendizagem automática.
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1
Introduction

For the last three decades we have seen a continuous growth of multimedia contents
available to the general public. This trend is unlikely to diminish any time soon as new
digital distribution methods continue to appear and grow. This development presents
a problem that has yet to be conveniently solved: the indexing of these contents.

The principle of multimedia indexing is to gather knowledge from the data, be it
basic information (such as its title, author, and so on), or more complex concepts (for
instance, if a guitar is played on a piece of music or a movie has a scene on a beach). Its
main purpose is to provide a user with an easier access to data contents. However, we
still need to solve a variety of problems for it to be possible to transition the indexing
task from a manual process to a completely automated process. Due to the vastness
of the subjects, the study of these problems tends to be segmented through various
areas. Music, for instance, is studied by a cross discipline known as Music Information
Retrieval (MIR). It encompasses several other research topics, such as musical genre
classification [NSM06], musical structure detection [PK06], and many others [Fin04].
Its main goal is the development of methods that allow the automatic extraction and
organization of information from large collections of music (a task that is daunting
to perform manually [TKSW07]). Our topic of interest, automatic recognition of mu-
sical instruments, pertains to this area, and is still far from being solved [HBPD03].
Unsurprisingly, it is, in itself, an immense topic, with many different concepts and ap-
proaches. Even so, there is a clear line that divides the problem into two classes, when
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1. INTRODUCTION

considering the type of recordings from which the instruments will identified: mono-
phonic recordings, when only single notes are present in the sound; and polyphonic
recordings, when various notes are played simultaneously. This notion is crucial, as
most techniques developed for musical instrument recognition in monophonic record-
ings can not be directly applicable to polyphonic recordings.

The monophonic problem has been widely researched through the optimization of
the recognition process. This is accomplished by exploring more efficient and precise
combinations of features [ALP03, Ero03]. Polyphonic recordings tend to be more realis-
tic than their monophonic counterpart due to the notion that, in most cases, recordings
will contain more complex sound constructions (e.g. chords) as opposed to simple
single note compositions. Unfortunately, this notion of polyphony creates several dif-
ficulties for the recognition of specific instruments present in these recordings, such as
the overlapping of features due to various instruments being played simultaneously.

There are two distinct approaches that attempt to solve this problem. The first
focuses on developing methods of retrieving, directly from the mixed audio signal, in-
formation which will be used to identify the instruments present in the mix [JWR09,
ZR07]. The second attempts to separate the instruments in the signal using statis-
tical sound source separation algorithms, such as independent component analysis
and non-negative matrix factorization (NMF). As a side effect, this latter approach
also learns sound features that can characterize the instruments or notes in the sig-
nal [BKK06, LLT08, MBTL07, WP05]. From there the individual sounds can be treated
in ways similar to monophonic approaches.

Our work can be compared to this last approach, as it proposes a system based
on a NMF algorithm, however, the method we use to obtain the features needed to
train the k-NN classifier is distinct, as we use values obtained from individual notes
to create a reduced set of feature vectors. Not only does this allows us identify both
the instrument and the note itself, but has also proven to yield very high recognition
rates. Additionally, we adapted our system to be able to recognize ambient sounds (as
explored in [MMS06]), by using several types of sound features, for which we obtained
very positive results.
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2
Concepts Review

In this chapter we will approach several concepts such as sound representation, sound
features, classification algorithms and blind source separation algorithms. These con-
cepts are necessary to understand as they are intrinsic to the various stages of a musical
instrument recognition system.

2.1 Sound Representation

Sound results from the disturbance of air particles and it can be defined as a wave that
travels through the air. These disturbances are produced by sound sources (objects,
people, animals) and may be due to different events (speaking or plucking a string, for
instance). The way in which our auditory system handles these waves is what gives us
the perception of sound.

Sound waves are characterized by the generic properties of waves – frequency,
wavelength, period, amplitude, intensity, speed, and direction. Since our interest lies
in musical sounds, we turn to a specific type of wave: the sinusoidal wave. As most
musical instruments produce sounds that are nearly periodic, akin to a sine wave, we
can approximate the overall vibration of a musical instrument as the sum of sinusoids
of different frequencies using Fourier Analysis. These analyses of waveforms are com-
puted using discrete Fourier transforms (or fast Fourier transforms for a more efficient
computation), providing us with the spectrum and spectrogram of the sound produced
by the instrument [Coo99].

3



2. CONCEPTS REVIEW 2.1. Sound Representation

Figure 2.1: Piano note waveform

Figure 2.2: Piano note spectrum

To illustrate these concepts we will plot their graphical representations. For this,
we used a sound clip of a piano note in wav format (obtained from [Pro]) that we
converted from stereo to mono (by dividing the sum of the left/right audio compo-
nents by two). After reading the file as an array, we plotted the waveform of the sound
(figure 2.1, where the x axis represents time and the y axis represents amplitude), cal-
culated and plotted its spectrum using a fast Fourier transform (figure 2.2, where the
x axis represents frequency and the y axis represents amplitude), as well as its spectro-
gram (figure 2.3, where the x axis represents time, the y axis frequency and the colour
intensity represents the amplitude).

Concerning musical notes and instruments, there are two commonly used concepts
that need to be described, scientific pitch notation and musical instrument articulation.

The concept of scientific pitch notation is a form of uniquely identifying musical
notes of the standard Western chromatic scale by attributing a letter do identify the
note (from A to G, including accidentals) and a number identifying the octave, for
instance, the note A4 represents the middle A, which as a frequency of 440 Hz, A]4

4



2. CONCEPTS REVIEW 2.1. Sound Representation

Figure 2.3: Piano note spectrogram

represents the next semitone in the scale, which has 466.16 Hz, and so on [You39].

The concept of articulation in the context of music is used to identify different tech-
niques (such as “staccato”, “legato” and so on) of transitioning between notes, how-
ever, our usage of the term is slightly more limited, as it is used to distinguish between
different types of sounds that can be produced by a musical instrument. For instance,
we can quickly hammer a piano key to obtain only the attack of the sound, a almost
direct definition “staccato”, or we can let a note ring by keeping the key pressed, which
we consider “legato”, even though the definition implies a transition of various notes.

2.1.1 Sound Features

Sound features are abstract or compressed numerical representations of a wide range
of properties present in sound waveforms or spectrums. This multitude of information
allows for the selection of any number of features to be used as feature vectors in data
classifiers. These classifiers, as we will discuss later on, use these sound features to
create distinct groups that are used to identify different sounds. In essence, sound
features are the basic building blocks of a recognition system.

In the following paragraphs we will describe several methods of obtaining sound
features and the properties that each one represents.

One of the most direct is to use the pure waveform and compute relevant data. For
instance, by calculating the number of sign inversions it has, we obtain its zero-crossing
rate.

Several types of spectral features can also be obtained from the sound’s spectrum.
Some of these are used in MPEG7 [MSS02], such as audio spectrum flatness, which sig-
nals the presence of tonal components if a high deviation from a flat spectral shape
for a given frequency band exists; audio spectrum centroid, which computes the gravity
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2. CONCEPTS REVIEW 2.1. Sound Representation

centre of a log-frequency power spectrum; the audio spectrum spread, that gives the root
mean square value of the deviation of the power spectrum in log frequency scale, with
respect to the gravity centre in a frame; while others, even though being commonly
used, do not belong to a specific standard, such as the spectrum’s roll off, which cal-
culates the averaged frequency, over all frames, below which an experimentally cho-
sen percentage of the accumulated magnitudes of the spectrum is concentrated; the
spectrum’s flux, which gives the difference between the magnitude of the amplitude
spectrum points in a given and successive frame, averaged through the entire sound;
or the energy of the spectrum.

Temporal features, as the name implies, are based on time specific properties of the
sound. Some examples that illustrate this concept are: the temporal centroid, the time
instant where the energy of the sound is focused; or the log attack time, the decimal
logarithm of the sound duration from the time instant when the signal starts, to the
time when it reaches its maximum value, or to when it reaches its sustained part.

Finally, a commonly used feature is Mel-frequency cepstral coefficients (MFCC).
While originating from speech recognition, as its design was to closely approximate
the human auditory system by equally spacing the frequency bands on the mel scale,
it was shown that it can be used to quite effectively in other contexts (namely, musical
instrument recognition [Ero03] or even ambient sounds recognition [MMS06]).

There is continued research based on combining different numbers of these and
many other features, as well as developing new kinds of features, with the purpose of
improving recognition rates of sounds [HABS00, HBPD03, JWR09].

2.1.1.1 MPEG-7

This standard was an important step to centralize and uniformize a great number of
multimedia features. Unlike other standards developed by the Moving Picture Experts
Group (MPEG), more focused on defining digital audiovisual compression standards,
MPEG-7 was designed as a standard for the representation and automatic extraction
of information (descriptors) present in audiovisual content. This notion is invaluable,
as it defines a framework that allows us to continue a methodical approach to audio
indexing.

The MPEG-7 standard aims to: provide a wide application base; support a wide
array of data types; maintain a clear relation with the content; maintain media and
format independence; be Object-based; allow different levels of abstraction; and per-
mit extensibility. These principles are achieved by relying on a number of different
tools: descriptors representing features (a feature is a distinctive characteristic of the
data); description schemes that specify the structure and semantics of the relationships

6



2. CONCEPTS REVIEW 2.2. Classification Algorithms

between its components; a description definition language (DDL) that allows the cre-
ation of new description schemes and descriptors; and several system tools needed for
the binarization, synchronization, transport and storage of descriptors.

The creation of this standard took in consideration several aspects (such as visual,
colour, texture, shape and motion descriptors, spoken content, as well as its applica-
tions for search, browsing and mobile environments) that, while very important to the
applicable areas, will not be described here. For a more detailed review of the MPEG-7
standard, refer to [MSS02].

2.2 Classification Algorithms

Classification algorithms, being data driven, have the capability of being adapted to
whatever data is in hand, giving us the possibility to fine tune class definition and the
classification process. To explain these concepts, let us consider the subject of auto-
matic musical instruments recognition.

Firstly, we need to understand what are classes. In general, classes are intended
to define any kind of group, in this case, classes represent musical instruments. The
algorithms learn how to classify the data into different classes through training sam-
ples, these features will serve as the comparison basis. The samples are represented
through features that should be able to represent inherent characteristics of an instru-
ment. These features are obtained by analysing various aspects of the sound wave -
either directly, or through a transformation of the sound such as the sound’s spectrum
using a Fourier Transform, which allows to obtain other various properties.

Finally, we can input test samples to the trained algorithm so it can determine the
class to which it belongs. The quality of the results, however, will depend both on the
training data used and the algorithm itself.

In the following subsections, we will describe several classification algorithms that
have been used in the area of musical instrument recognition.

2.2.1 k-Nearest Neighbours

Given a set of training samples and a test sample, this algorithm determines the k
nearest training samples in the set, assigning the test sample to the class with the most
samples.

The “nearest neighbours” concept stems from the idea of having a multidimen-
sional graph where the features are used as its variables. The training samples are
then mapped as points in the graph, creating clusters that represent classes. When

7



2. CONCEPTS REVIEW 2.2. Classification Algorithms

presented with a test sample, the algorithm calculates its distance between the exist-
ing samples using a function (generally, the Euclidean distance), allowing the closest
samples to be determined. The sample is then considered to be the same class as the
majority of the testing samples.

This algorithm has some drawbacks: all the training instances are required to be
in memory; each new query may need significant computation time; and irrelevant
features may have a disproportionate impact on class definition and/or classification.
Nevertheless, its advantages are considerable: since no training exists, setting up the
algorithm is just a matter of storing the data; and the results obtained are generally
above average. See [Mit97] for a more detailed view of the matter.

It is widely used in musical instrument recognition (see [ALP03, EK00, JWR09,
JZRC09]), providing consistent good results.

2.2.2 Hidden Markov Models

Hidden Markov Models (HMM) are represented as an automata, in which the tran-
sitions between states can be probabilistic. It can be used to model a wide variety of
time related data. In addition to what defines an automata, HMM contain two more
components: a set of hidden variables that cannot be observed directly from the data;
and a Markov property that is usually related to some sort of dynamic behaviour of
the hidden variables.

The paradigm is used to solve three main tasks: classification, segmentation and
learning. Learning is the first problem that needs to be solved in order to use this
model, unless the parameters of the model are externally specified. This means esti-
mating the parameters of the models. The tasks of segmentation and classification are
accomplished via forward-backward recursions, which propagate information across
the Markov state transition graph. For instance, using several candidate HMM models
that represent different acoustic sources (musical instruments in our case), the classifi-
cation problem computes the probability that the observations came from these mod-
els. Whichever model gives the highest probability is chosen as the likely source of the
observation. See [Blu04] for a more formal definition of HMMs.

An example of HMMs in instrument recognition is [Ero03]. Eronen used a HMM
to model temporal features with good results.
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2.2.3 Artificial Neural Networks

An Artificial Neural Network (ANN) is a learning method that provides a way of ap-
proximating functions. The concept is loosely motivated by biological learning sys-
tems, as it tries to mimic the architecture of the brain. This is accomplished with the
grouping of simple units, called neurons, into layers (input, output, and hidden) that
can be interconnected through different connectivity patterns. For instance, a neuron
may have several inputs and produce an output that can be used as an input to an-
other neuron, present in another layer. These connections between neurons also have
weights, that are learned during the training of the algorithm. These changes may
proceed either supervised or unsupervised. In the former case, a teaching instance is
presented to the ANN, it is asked to generate an output which is then compared with
an expected “correct” output. The weights are consequently changed in order to mini-
mize future errors. In the latter case, the weights “settle” into a pattern that represents
the collection of input stimulus.

The drawbacks of the ANN are as follows: the computation time for the learning
phase is very long; determining the correct parameters (the architecture of the network,
the number of hidden layers, etc) is a non-trivial task; and possibility of over-fitting (an
excessive number of bad selected examples) can degrade their generalization capabili-
ties. On the other hand, ANN have the advantage of being highly robust when trained
correctly, as well as very fast at computing the classification of test samples.

Even though ANN are not widely used in the recognition of musical instruments,
there are a few studies that explore its use, providing mixed results. The results ob-
tained by Zhang using a type of unsupervised ANN (Kohonen’s self-organizing map)
were very good [Zha01]; and Jiang et al stated that, given the high number of attributes
needed by the proposed approach, the algorithm would not perform well, even though
no results were published [JWR09].

2.2.4 Support Vector Machines

Support Vector Machines (SVM) are a decision-based prediction algorithm, directed
at data classification. SVM perform classification by constructing an n-dimensional
hyperplane that optimally separates the data into two categories.

The concept of this algorithm is similar to other classification algorithms. Given
a test sample along with set of training samples, whose the values are defined as be-
longing to one of two categories, the SVM training algorithm constructs a model that
predicts the category of the test sample. This model represents the samples as points
in space, mapped to create the largest possible gap separating the categories. When
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test samples are given, the algorithm will map them on the same space, allowing it to
predict its category based on the side of the gap that it is located.

In the event that the target variable has more than two categories, two common ap-
proaches exist: “one against many”, where each category is split out and all of the other
categories are merged; and “one against one”, where k(k-1)/2 models are constructed
(with k being the number of categories).

SVMs can provide high recognition rates when used for distinguishing musical
instruments[ALP03].

2.2.5 Decision Trees

Decision trees (DT) are a method of approximating discrete-valued target functions.
DT are constructed top-down, starting with the most informative feature. This is de-
cided by evaluating each instance attribute using a statistical test that determines how
well the single feature can classify test samples. Afterwards, branches are created from
each one of the different values of this feature, as training samples are sorted to the
appropriate descendant node. Finally, the entire process is repeated recursively using
the training samples for each of the descendant nodes. Once the tree has been built, it
can be pruned to avoid over-fitting and to remove any secondary features.

Some disadvantages of DT are: how to determine the depth allowed for the growth
of the tree; the handling of continuous attributes; choosing appropriate attribute selec-
tion measures; and the improvement of computational efficiency. However, the gener-
ated tree is simple to interpret, the algorithm is robust (the training data may contain
errors) and the target function has discrete output values.

Two examples of use of this classifier can be seen in [LW07, JWR09]. The results
obtained in both works were mediocre, as it was consistently the worst performing
classifier.

2.2.6 Naive Bayesian Classifiers

A Naive Bayes Classifier (NBC) is a probabilistic classifier based on the application
of Bayes’ theorem using strong independence assumptions. Basically, this allows us
to construct the posterior probability for a event among a set of possible outcomes or
categories given a set of variables or predictors.

The assumption that the predictor variables are independent, while not always ac-
curate, greatly simplifies the classification task, as it allows the class conditional densi-
ties to be calculated separately for each variable, reducing a multidimensional task to
a number of one-dimensional ones.
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The main advantage of NBC is that it requires only a small amount of training
data to estimate the parameters necessary for classification. However, one difficulty
of applying the method is the significant computational cost required to determine, in
some cases, the Bayes optimal hypothesis.

Naive Bayesian classifiers were employed in [LW07] obtaining good results, similar
to those of rough sets.

2.2.7 Rough Sets

Rough sets are used to evaluate the relevance of the features used for description and
classification. While vague concepts cannot be characterized in terms of information
about their elements, they may be replaced by two precise concepts: lower and upper
approximation. The former consists of all the objects that are guaranteed to belong
to the concept, while the latter contains all the objects that can possibly belong to the
concept.

The assignment of an object to a set is made through a probabilistic membership
function. Once information is organized into information tables this technique is used
to assess the degree of vagueness of the concepts, the interdependency of attributes
and therefore the alternatives for reducing complexity in the table without reducing
the information it provides. Information tables regarding cases and features can be
interpreted as conditional decision rules of the form IF (feature x) is observed, THEN
(isan Y object).

While not widely used, Lewis and Wieczorkowska obtained very good results with
this technique, surpassing all the other classification algorithms they tested [LW07].

2.2.8 Discriminant Analysis

Discriminant analysis (DA) is a statistical technique that allows the study of two or
more object classes while considering several variables. Considering a classification
involving two target categories and two predictor variables, DA finds a transformation
(“discriminant function”) of the two predictors that yields a new set of transformed
values that provides a more accurate discrimination than either predictor could by
itself.

Two variants of this technique are used in [ALP03]: Quadratic Discriminant Anal-
ysis; and Canonical Discriminant Analysis. While the former gave positive results all
around, the latter performed the worst in all the test conditions.
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2.3 Audio Source Separation

The principle of audio source separation stems from the interest in emulating an abil-
ity common to most human beings: the capacity to distinguish and focus on particular
sounds when various sounds sources are present. This so called “cocktail party effect”
[Aro92] while easy to understand, is not as easy to reproduce. While several algorithms
implement this idea, such as Principal Component Analysis (PCA), Independent Com-
ponent Analysis (ICA) and Non-Negative Matrix Factorization (NMF), the problem is
not yet solved.

The focus of our study was directed to NMF, as preliminary tests using both ICA
and NMF indicated that better results could be obtained using the latter. In the follow-
ing subsection we present a small introduction to the principles of NMF.

2.3.1 Non-Negative Matrix Factorization

NMF was developed to take advantage of the non-negativity constraint for matrix fac-
torization [LS00]. NMF does this by taking a non-negative matrix S and decomposing
it into two, also non-negative, matrices ΘΘΘ and P, such that

S = ΘΘΘ∗P . (2.1)

In the context of sounds, these matrices represent two tangible concepts: ΘΘΘ, the
mixing matrix, contains the spectra of the sounds; while P, the source matrix, contains
the temporal envelopes of the sounds.

The algorithm produces these matrices by calculating the spectral basis functions,
ΘΘΘ, that describe the spectral regularities in the frames of the data set (that is, in (S1, . . . ,SN),
where N is the number of sound samples). This transposes the data to a new referential
in which its axes are the spectral basis functions.

With this transformation, each frame is now represented by a new set of coeffi-
cients, one for each basis function. By taking, for each of the basis functions, all of the
coefficients that represent the frames of one spectrogram, a vector is created. Each of
these vectors represent source signals that range over time (temporal source signals).
These vectors, associated to a spectrogram Sn (with 1 6 n 6 N), can then be represented
by a matrix Pn whose rows contain the source signals. Therefore, the spectrograms
(S1, . . . ,SN) can then be expressed as

(S1, . . . ,SN) = ΘΘΘ(P1, . . . ,PN) , (2.2)

where ΘΘΘ is a matrix with one spectral basis function per column. The ith row of
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every matrix Pn is associated to the ith basis function in ΘΘΘ, that is, its ith column.
These matrices calculated by NMF, in essence, isolate characteristics of specific

sounds. This will allow us to create training sets for our classifier, as well as the data
necessary to test new sounds.
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3
State of the Art

The recognition of musical instruments is a vast topic, with many different concepts
and approaches. Even so, when we consider the type of recordings from which the
instrument will identified, there is a clear line that divides the problem into two classes:
monophonic recordings, when only one sound is played at any time (section 3.1); and
polyphonic recordings, when various sounds can be played at once (section 3.2). This
notion is crucial, as most techniques developed for musical instrument recognition in
monophonic recordings are not directly applicable to polyphonic recordings.

There are two concepts, however, that are independent of these classes due to their
applicability in both monophonic and polyphonic recordings, instrument families and
musical instrument hierarchization. The notion of instrument families is used as a
form of grouping similar sounding instruments in classes (for instance, violin and vi-
oloncello both belong to the “strings” family). Generally, identifying the family of an
instrument is a much simpler task than identifying the specific instrument, due to a
necessarily lax definition of the class in terms of features. On the other hand, musical
instrument hierarchization is a much more formal concept, as it tries to systematize
the classification of instruments. An example of this is the Hornbostel-Sachs system,
widely used by ethnomusicologists and organologists. It divides musical instruments
into five main categories (idiophones, membranophones, chordophones, aerophones
and electrophones), which then contain numerous other subcategories, defined accord-
ing to many physical characteristics of the instruments. Therefore, hierarchization is
usually used as form of improving recognition rates.
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In the following sections we describe several works that are relevant to the compre-
hension of this problem and the techniques devised to solve it.

3.1 Monophonic sounds

The recognition of musical instruments in monophonic recordings has been widely
researched, having the main motivation of optimizing the recognition process. This
is accomplished by exploring more efficient and precise features, or combinations of
features, as we will see in the following works.

3.1.1 Musical Instrument Identification: A Pattern-Recognition Ap-

proach

Martin and Kim proposed a set of acoustic features to define physical properties of
musical instruments [MK98]. The features proposed are: pitch; frequency modulation;
spectral envelope; spectral centroid; intensity; amplitude envelope; amplitude mod-
ulation; onset asynchrony; and inharmonicity. The choice of these features is based
on the research that the authors compiled about the subject. As this work was purely
theoretical, no classification algorithms were used. They demonstrate manually the
validity of the features by using the examples of the correlograms obtained from vio-
lin, trumpet, and flute tones, and analysing the values of the features. Several of these
features are also used in MPEG-7, which is contemporary to this work.

3.1.2 Comparison of Features for Musical Instrument Recognition

Eronen presented an analysis of several sound features based on their success rates for
classification of musical instruments [Ero01]. He explored cepstral, temporal and spec-
tral sound features on families of musical instrument (wind, brass, strings) combined
with a k-Nearest Neighbours (k-NN) algorithm.

The results for individual features showed that the mel-frequency cepstral coeffi-
cient (MFCC) provided the best accuracy for single and families of instruments (re-
spectively, 30% and 60%). Furthermore, combining MFCC with features that describe
the type of excitation, brightness, modulations, synchronicity and fundamental fre-
quency of tones, as well as longer note sequences, improved the overall recognition of
instruments in both cases.
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3.1.3 Feature Selection for Automatic Classification of Musical In-

strument Sounds

Liu and Wan presented an approach where a small set of features is used to classify
musical instruments into the correct instruments families [LW01]. They agree that us-
ing a great number of features does not only lead to worst computational performance,
as well as some features can lead to the degradation of the classification accuracy. The
reduced feature set is selected by a sequential forward feature selection method. They
used several classifiers: nearest neighbours (NN); k-NN; and gaussian mixture models
(GMM). The results show that for a feature dimension of more than 20, the accuracy
of GMM starts to decline, while for NN and k-NN an accuracy of 90% can be achieved
with as few as 15.

3.1.4 Musical Instrument Timbres Classification with Spectral Fea-

tures

Agostini et al focused on using a limited number of sound features for musical instru-
ment recognition [ALP03]. This is achieved by focusing on spectral features and using
eighteen descriptors for each tone, computed from the mean and standard deviation
of nine features (zero-crossing rate, spectral centroid, spectral bandwidth, inharmonic-
ity, harmonic energy skewness and the percentage of energy contained in each one of
the first four partials). These are then used as training samples for the classification
algorithms. To evaluate the recognition rates between algorithms, several are tested:
discriminant analysis (DA); quadratic discriminant analysis (QDA); canonical discrim-
inant analysis (CDA); k-NN and support vector machines (SVM).

The results are presented in a thorough manner, simplifying the analysis of the nu-
merous data. They concluded that the best classifier for the recognition of individual
instruments was the SVM (with a success rate of 69.7%, 78.6%, and 80.2% for, respec-
tively, 27, 20, and 17 instruments). QDA achieved the second best score, with success
rates similar to SVM, while overcoming all the other classifiers in family recognition
and sustain/pizzicato (with a sucess rate of 81%). k-NN performed closely to QDA,
obtaining best results with k = 1 (with a sucess rate of 74.5% for 20 instruments). CDA
had the worst performance (71.2% with 17 instruments to 60.3% with 27 instruments).
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3.1.5 A Categorization of Musical Instrument Sounds based on Nu-

merical Parameters

Lewis and Wieczorkowska presented a hierarchical categorization methodology of
musical instruments sounds that differs from the Hornbostel-Sachs system due to be-
ing based on the acoustic properties of the sound (temporal and spectral features),
instead of the physical properties of the instrument [LW07].

The features used are based on MPEG-7 low level sound descriptors, which lead to
a set of seven descriptors: LogAttackTime, the logarithm of the time duration between
the point where the signal starts to the point it reaches its stable section; AudioHar-
monicityType, describes the degree of harmonicity of an audio signal; Sustainability, is
defined into 5 categories based on the degree of dampening or sustainability the instru-
ment can maintain over a maximum period of 7 seconds; SpectralCentroid, measures
the average frequency, weighted by amplitude, of a spectrum; TemporalCentroid, char-
acterizes the signal envelope, representing the time at which the energy of a signal is
focused (for example, it may distinguish a decaying piano note from a sustained organ
note, when the lengths and the attacks of the two notes are identical); and Articulation,
which represents the way how the sound is performed by a player.

To verify the applicability of this categorization system, several classification tests
are conducted using rough sets, naive bayesian classifiers and a c4.5 decision tree. The
results obtained were very positive for the two first classifiers (with an average of 80%
accuracy), while the third did not perform as well (with a 69% accuracy).

3.1.6 Application of Temporal Descriptors to Musical Instrument Sound

Recognition

In this study, Wieczorkowska et al presented an approach that considers the tempo-
ral evolution of MPEG-7 descriptors, as well as their combinations, with the goal of
optimizing sound representation in terms of musical instrument recognition purposes
[WWSS03]. This goal is accomplished by using a small number of sound descriptors,
as well as detecting “episodes”. collections of events that are periodic in time, from
the various descriptors. The descriptors used by the authors are: temporal descriptors
(composed by signal length, relative length of the attack, quasi-steady and decay time,
and moment when the maximal amplitude is reached); and spectral descriptors (com-
posed by selected groups of harmonics in spectrum, tristimulus parameters, bright-
ness, irregularity and fundamental frequency). To store this information, as well as
all the training samples, they used a relational database. The classification algorithms
they used were: k-NN; and RS-decision rules, an algorithm based on rough sets theory.
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The results are presented as the performance obtained by the classifiers when us-
ing the various combinations of feature sets. Overall, the accuracy of the RS-decision
rules classifier was quite low, underperforming k-NN in every instance, except for the
combination of spectral descriptors with temporal patterns. The highest accuracy was
obtained with k-NN using the following combination of descriptors: temporal and
spectral (with 68.4%); and temporal, spectral and relational (with 65%). Unfortunately,
as an in depth description of the results was not given, it is not possible to analyze the
recognition rates for specific instruments or instrument families.

3.1.7 Musical Instrument Recognition using Cepstral Coefficients and

Temporal Features

Eronen presented a musical instrument recognition system that is both pitch indepen-
dent and makes an effective use of spectral and temporal features simultaneous [EK00].
The pitch independence is achieved by estimating the fundamental frequency of the
test sample before classification, then comparing it to different instruments in similar
pitch ranges. The feature set used was extensive, 44 in total, combining two types of
features (cepstral coefficients and temporal features).

The classification method is based on a taxonomic representation of musical instru-
ments, composed by three levels. In the first, instruments were divided into pizzicato
and sustained, the second comprises instrument families, and the third, individual in-
struments. At each node either a Gaussian or a k-NN classifier were used to determine
the best fitting sub-class for a test sample. The classification results were obtained
through tests in three types of conditions, two different types of hierarchies and one
without a hierarchy. The results were positive, as the classification accuracy for instru-
ment families was over 93% and for individual instruments over 75%, but also showed
that the use of hierarchies brought no significant advantage.

3.1.8 Musical Instrument Recognition using ICA-based Transform of

Features and Discriminatively trained HMMs

Eronen proposed a system for the recognition of musical instruments from isolated
notes in [Ero03]. He used a Hidden Markov Model (HMM) as a classifier to obtain
a better representation of the spectral shape, due to its use in representing temporal
evolution. As most musical instruments have several stages that are temporal by def-
inition (a distinctive onset period, followed by a steady state, and finally a decay),
the HMM was better suited for this type of modelling. The sound features used are
mel-frequency cepstral coefficients (MFCC), since previous research has concluded it
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to be a well-performing feature set in musical instrument recognition, and delta cep-
strum coefficients (∆ MFCC). To enhance the recognition accuracy, the features used
are transformed using independent component analysis (ICA) (an optional technique
defined in the MPEG-7 standard), as well as employing discriminative training. For
the tests, the number of states and component densities per state for the HMM is mod-
ified using a heuristic segmentation scheme (each sound was segmented into as many
adjacent segments as there were states in the model). The results show that using the
ICA transform gives an almost consistent improvement in recognition accuracy across
the set of model orders tested. Using discriminative training improves the accuracy
mainly with models that have a low number of components in state densities.

3.2 Polyphonic Sounds

Polyphonic sound recordings are more realistic than monophonic recordings due to
the notion that, in most cases, recordings will contain a mixture of various sound
types. For example, while music exists in both types of recordings, a music piece
can be for a solo piano or a full orchestra, it is, in general, more likely to contain in-
stances of various musical instruments than just a single one. Unfortunately, this no-
tion of polyphony creates several difficulties for the recognition of specific instruments
present in these recordings, such as the overlapping of features due to various instru-
ments being played simultaneously. These problems can not be directly resolved by
the techniques developed for monophonic recordings.

There are two popular methods of accomplishing recognition of musical instru-
ments in polyphonic recordings. The most covered develops various forms of retriev-
ing data directly from the audio signal and then identifying the instruments from this
data, some applications of this concept are presented in section 3.2.1. The other, less
documented, method attempts to separate the instruments present in the audio, via
blind source separation techniques, and apply classification algorithms to each of the
generated tracks, some examples of this approach are described in section 3.2.2.

3.2.1 Audio analysis

3.2.1.1 Instrument Classification in Polyphonic Music Based on Timbre Analysis

Zhang proposed a system that allows the recognition of musical instruments in both
monophonic and polyphonic recordings by segmenting the music into notes [Zha01].
Its purpose is directed at the automatic categorization and retrieval of music pieces
based on instruments. The features used are the ones that had been found in previous
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research to be important in determining the timbre of a note. These features were cat-
egorized in three groups: temporal, spectral and partial. Specifically, these include the
temporal envelope and spectral power distribution of the note, locations and ampli-
tudes of the partials, as well as their degree of inharmonicity and the presence of high
frequencies at the moment of the attack.

The actual system is composed by several modules. First, the music piece is seg-
mented into notes by detecting note onsets. Then, for each note, harmonic partials were
detected, note features were computed, being normalized afterwards (to be indepen-
dent of the volume, the length and the pitch of one note) and finally the feature vector
is sent to the classifier. Having completed the process for all notes, the music piece
can then be classified. The method used for the note classification is twofold. Initially,
a Kohonen’s self-organizing map (a type of unsupervised artificial neural network) is
used to generate an optimal structure for the feature vector. The feature vectors of all
the training and testing samples were then rearranged according to this structure. The
training samples were used to train a multi-layer perceptron (MLP), which would be
able to classify the notes (represented by the testing samples).

The results produced were promising, as an accuracy of 80% was achieved for the
recognition of the main musical instruments (or 90%, when ignoring classification mis-
takes within the same instrument family). However, the music pieces used for the ex-
periments were not thoroughly described, as well as no comparative analysis of the
recognition accuracy between different instruments was shown. This leads to a diffi-
cult avaliation of the method, even if the basic ideas seem sound.

3.2.1.2 Sound Isolation by Harmonic Peak Partition for Music Instrument Recog-
nition

Zhang and Ra presented a system for the recognition of musical instruments in poly-
phonic sounds that uses harmonic peaks as a signature for instrument isolation [ZR07].
The sound isolation algorithm uses a clustering technique to separate the energy of
the fast Fourier transform (FFT) points in the power spectrum by taking each har-
monic peak as a cluster centroid. In other words, they implement sound separation
by clustering the energy around each harmonic peak. They used time-frequency fea-
tures based on MPEG-7 low-level descriptors, as well as several others, heavily based
on harmonic spectra, for the transient state, quasi-steady state and the whole segment.
Also, they used four different classifiers: bayesian networks (BN); logistic regression
model (LRM); local weighted learning (LWL); and tree 48 (t48).

The system is composed by numerous modules. Initially, the audio signal is divided
into a series of frames, with a short time Fourier transform (STFT) being applied to
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each. Afterwards, a harmonic peak estimator creates sets of data which is then passed
on to an energy clustering engine that creates a coefficients matrix by proportionally
calculating the energy of each FFT point between each pair of heterogeneous harmonic
peaks. Next, an inverse FFT engine multiplies the data obtained from the STFT in
the first step with the coefficients matrix transforming it back to the time domain in the
form of separate audio files. Finally, the feature values are extracted from the separated
sounds and are used as data for the classifiers.

A database containing musical sound recordings of seven instruments (violin, vi-
ola, cello, bass flute, flute, clarinet and alto flute) for two instrument families (string
and woodwind) was used for the experiments. The training data was composed of
all the database and the testing data was composed of twelve polyphonic sounds pro-
duced by mixing pairs of sounds from different instrument families. The results were
measured by the the classification correctness of each set of feature vectors over dif-
ferent classification algorithms, showing that the BN, LWL and t48 classifiers had very
similar overall performance (near 65%) while the LRM algorithm had a lower perfor-
mance (54%).

There are two criticisms to this research. First, as the classification was only focused
on determining instrument family, we do not know its performance when applied to
individual instruments. Second, as no tests were done for polyphonic recordings with
more than two instruments, we cannot conclude how well the system can scale or if
this solution is contained to only this scope.

3.2.1.3 Music Instrument Estimation in Polyphonic Sound Based on Short-Term
Spectrum Match

Jiang et al propose a method that minimizes the information loss of non-dominant
musical instruments due to the sound separation process by detecting sub-patterns
directly from the short term power spectrum of the sound [JWR09]. This is an inter-
esting approach, as sound features helpful to the identification of instruments can be
obscured by their overlapping on polyphonic recordings.

The training is done by extracting the power spectrum from frames of single instru-
ment sounds and saving these in a database. The frames have 8192 numeric samples
and a duration of 0,04 seconds. Due to the high number of attributes, they use a k-NN
classifier, as other algorithms (such as artificial neural networks) would not perform
well.

The estimation process is possible by extracting the power spectrum from the frames
of a test sample and using the k-NN classifier to determine the most similar frame in
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the database. However, contrary to traditional pattern matching or classification pro-
cesses, when multiple matches are obtained all the candidates are recorded, with a
confidence value attributed by the classifier to each one. This is due to the notion that
it is possible for several different sub-patterns to exist in a spectrum. Therefore, to ob-
tain a higher recognition rate, an algorithm (top-n winners) was developed where the
instruments are determined by a vote. First, the instruments (candidates) detected for
each frame are saved along with their confidence level in candidate pool. After evalu-
ating all the frames of the test sample, the weights for all the candidates from the pool
are calculated by adding up their confidences, and the final voting proceeds according
to the weights of each instrument.

They performed a total of five experiments to evaluate the accuracy of the system.
The testing samples were 52 polyphonic audio files created by mixing two of a set of
26 different instruments. The first two experiments were performed using a feature
based classification strategy (that used a collection of five groups of both temporal and
spectral features mainly originating from the MPEG-7 standard and a decision tree as
a classifier), while the last three used the new system. The results showed that the
recognition rate of the new system was far superior to the featured based classification
strategy (in over 30%). Moreover, the highest accuracy was achieved by a combina-
tion of a higher number of neighbours (the parameter k in the k-NN algorithm), two
top n candidates and disregarding percussion instruments. However, no mention was
done of the system’s performance on polyphonic recordings with more than two in-
struments, leading to the same criticism we noted in [ZR07].

3.2.2 Audio separation

Regarding these approaches, there are two common problems that severely encumbers
their usage in real-life applications. First, it is necessary to have a priori knowledge of
the number of sources (for instance, the number of musical instruments) present in
the recording. Second, all the experiments used polyphonic recordings with only two
instruments.

3.2.2.1 Musical Audio Stream Separation by Non-Negative Matrix Factorization

Wang and Plumbley developed a methodology for separating musical audio into streams
of individual sound sources [WP05]. They first decompose the input signal into a
time-frequency domain by using the non-negative matrix factorization (NMF) algo-
rithm. Afterwards, they generate time frequency masks by comparing the energies of
decomposed bases and applying those masks to the spectrogram. Finally, the bases are
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grouped in the time domain to produce separated audio streams.

They performed two types of experiments. First, they tested the system on an arti-
ficial mixture of two instruments (piano and flute). Listening to the results, they found
that separated flute sound had better quality, while the piano sound suffered some in-
terference towards the end. The measured signal to noise ratio (SNR) of the experiment
showed that the flute sound had an higher SNR than the piano sound. The second test
recording is a real music clip played by flute and guitar, as the original individual
sources are not available, only subjective analysis was given. Their opinion stated that
the result sounded acceptable on the whole and the rhythm was extracted, but some
guitar sound leaked to the flute channel. Overall, the results were positive.

3.2.2.2 Estimation of Musical Sound Separation Algorithm Effectiveness Employ-
ing Neural Networks

Dziubinski et al presented a study that, while mainly focused on the separation of
musical instruments using blind source separation techniques, employed a ANN clas-
sifier with purpose of evaluating the accuracy of the various separation algorithms and
procedures that were used [DDK05]. They used four different algorithms for the sepa-
ration of sounds, each using a different approach based on the harmonic signals of the
sounds. The features were mostly based on MPEG-7 descriptors (audio spectrum enve-
lope, audio spectrum centroid, audio spectrum spread, audio spectrum flatness, log at-
tack time, harmonic spectral centroid, harmonic spectral deviation and harmonic spec-
tral spread), however, harmonic content descriptors were also used (KeyNum, modified
tristimulus parameters, and descriptors related to the behaviour of harmonic compo-
nents in the time-frequency domain). For the classification task only an ANN classifier
was used.

The experiments were conducted very thoroughly, as each of the four separation
algorithms was combined with each of the four separation procedures, while the clas-
sifier was trained with six different feature sets (each using a different combination of
features). The procedures focused on diversifying the separation process by using dif-
ferent orders in which the instruments were separated, based on their pitch or expected
residual signals. The training samples used were based on the set of five musical in-
strument sounds of the same musical articulation, for a total of 361 sound samples.
Each test sample contained from two up to four sounds, randomly chosen, each be-
longing to a different class. Only different pitched sounds were considered, that is
there were no sounds of the same pitch within one mix, in all cases transients of the
mixed sounds were overlapping.

In general, the results were very positive, achieving recognition rates of over 90%

24



3. STATE OF THE ART 3.2. Polyphonic Sounds

in several cases. However, the authors give two recomendations: different descriptors
might be necessary in more extensive tests (for mixes containing more than four in-
struments); and that the perfomance of these techniques should be analysed by using
real polyphonic sounds (as opposed to the artificially mixed isolated signals that were
used), with the the purpose of obtaining more complete results.

3.2.2.3 Musical Instrument Category Discrimination Using Wavelet-Based Source
Separation

Lampropoulou et al propose a system based on blind source separation (BSS) for the
recognition of musical instrument categories [LLT08]. The system is composed by two
phases. First, the sources (or instruments) are separated using a BSS technique called
Convolutive Sparse Coding. Afterwards, a Gaussian Mixture Models is used to classify
the musical category of each of the separated instruments. Three categories are used:
wind; brass; and strings. They extract, from each sound signal, a set of 30 features that
not only provide a low level representation of the statistical properties of the music
signal but also include high level information, extracted by psychoacoustic algorithms
in order to represent rhythmic content (rhythm, beat and tempo information) and pitch
content describing melody and harmony of a music signal.

The sound samples used in the experiments were obtained from a musical instru-
ment database that contains numerous instruments belonging to the referred cate-
gories. To create the audio signal for separation, sound samples of different instru-
ments were selected and mixed in a program for the effect. The results were measured
by analysing the predicted instrument category rate in relation to the actual instrument
category. The most successful classification rate was of the wind category, also having
the lowest mismatch rates. The overall accuracy was 70,66%, with an overall mismatch
rate of 22%.
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4
Implemented System

4.1 System overview

This section presents a simple and abstract view of the system, see figure 4.1, allow-
ing to clearly distinguish its four main modules and how they are interconnected. As
the architecture of our system follows previous works in this research area, its mod-
ules/stages are named in accordance to what is the commonly used: training, testing,
classifier and data analysis. This system was implemented in MATLAB, using a NMF
software package provided by Virtanen [Vir07].

In the following section we will describe in detail each of these modules by follow-
ing their inner processes and explaining the important concepts behind each, as well
as how they are relevant for the system in its entirety.

Figure 4.1: Overview of the recognition system

27



4. IMPLEMENTED SYSTEM 4.2. System details

Figure 4.2: Inner processes of the training module

Figure 4.3: Sound processing

4.2 System details

4.2.1 Training Module

In this section we will cover the three main processes that, as depicted in figure 4.2,
compose the training module of the system. It’s important to note that this module is
the basis of the system, as without a proper training feature set the results that can be
obtained suffer greatly.

4.2.1.1 Training Samples

An important step is the definition of the conceptual classes that we want to represent,
that is, which types of sounds we want to identify. From there, we can start to construct
a database of sounds that define these concepts, for instance, single notes from musical
instruments or ambient sounds, such as birds, cars, water, and so on. Each sound needs
to be processed, figure 4.3, for the system to be able to use the data.

Each sound is read to memory and converted to mono (one audio channel) if it
was recorded in stereo (two audio channels), this conversion is done by calculating the
sum of the values on both channels and dividing by two, an important step as we only
need to handle one audio channel in terms of the calculations that will be done (from
a practical viewpoint, this only transforms the spatialization of the sound, which may
be distributed along the stereo panorama, to a centred hearing point). The sound is
then normalized to uniformise the amplitude of the audio signal – this guarantees that
all the sounds have a similar volume level, reducing the possibility of discrepancies in
terms of spectral properties.

We then calculate the magnitude spectrogram of the normalized mono sound using
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the value of its frequency rate∗x for both the segment size, and the number of frequency
points used to calculate the discrete Fourier transforms, the overlap between segments
is given by (frequency rate ∗ x)− (frequency rate ∗ x)/2, where x is 0.04. The value of x is
used to determine the segment sizes according to a percentage of the frequency rate,
simplifying any adjustments that may be necessary when using very small sound files.

After we apply this process to all the sounds, we create a matrix S by horizontally
concatenating each of the computed magnitude spectrograms. Additionally, we con-
struct a matrix C that stores the time length of each spectrogram – an aid in the feature
extraction process later on, as it basically gives us the indexes that identify each of the
training sounds in the matrix S.

4.2.1.2 Non-negative Matrix Factorization

As mentioned before, given a non-negative matrix S, NMF calculates two, also non-
negative, matrices ΘΘΘ and P, as defined in equation 2.1. In this case, the matrix S is
the magnitude spectrogram of one or more sound signals (be it the series of concate-
nated spectrograms, as calculated in section 4.2.1.1, or a single spectrogram, such as in
section 4.2.2.1). The two matrices ΘΘΘ and P represent, respectively, the mixing matrix
(containing the spectra of the sounds) and the source matrix (containing the temporal
envelopes of the sounds). Each matrix has a specific use: P will be processed in the
following feature extraction phase (section 4.2.1.3), and ΘΘΘ will later be crucial for the
testing phase (section 4.2.2.2).

Regarding its application, the NMF algorithm requires the definition of two param-
eters: the cost function, for which we use a divergence function, and the update rule,
for which we use a multiplicative update. Additionally, it takes as its input the number
of sounds that were used to create these spectrograms.

4.2.1.3 Training Feature Extraction

To obtain the feature’s values, we use matrix C, calculated during the training sample
processing, and matrix P, calculated in the previous step.

Essentially, each pair of indexes stored in matrix C defines the section of matrix P
that represent a training sound. That is, throughout all the dimensions of P, in that
interval, are contained the values of the spectral properties that define the sound.

So, to characterize each sound, we first determine the submatrix of matrix P that
represents it. As said above, this subset can be found using the indexes in matrix C,
which indicate the interval of columns in P where there values are present. In each of

29



4. IMPLEMENTED SYSTEM 4.2. System details

Figure 4.4: Inner processes of the testing module

these segments we have the values of the spectral properties of a given sound through-
out the dimensions of the matrix. We create the feature vector of that sound by obtain-
ing the highest peak value from all its lines/dimensions, and then the values of the
peaks found in each of the other dimensions that are in close proximity to this main
peak. We define this interval by determining the columns within a lower and upper
bound of 5% of the total number of columns in the subset matrix.

This process creates a training matrix composed of the feature vectors of the indi-
vidual sounds which will later be used as the feature space of the classifier.

4.2.2 Testing Module

With the training complete, we can proceed to classify new test sounds. The testing
module is, akin to the training module, composed by three processes, as can be seen in
figure 4.4, which will be described in this section.

4.2.2.1 Testing Samples

The samples that we want to classify can be either individual sounds or sequences
of sounds. The audio processing of these sounds is equal to what we employ in the
training of the system, as shown in figure 4.3, that is, the sound is read, if it is in
stereo we convert it to mono, next it is normalized, its spectrogram is calculated (using
the same parameters as those described in section 4.2.1.1) and finally we compute the
modulus of the spectrogram.

The main difference to what we did in section 4.2.1.1 is that this process always
produces a single spectrogram, be the testing sample a single sound or a sequence of
sounds. The spectrogram is then passed to the next stage, where it will be used as
input for the following process.

4.2.2.2 Computing the test matrix PT

Logically, the testing features values are extracted from matrix PT that we obtain from
a test sample. However, differently from the training process, we do not use the NMF
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algorithm to produce this matrix. Instead, we rely on the mathematical manipulation
of equation 2.1 to obtain

PT = ΘΘΘ
−1ST , (4.1)

where ΘΘΘ
−1 is the pseudoinverse of ΘΘΘ.

This allows us to use the ΘΘΘ calculated in section 4.2.1.2 to project the spectral prop-
erties contained in ST , the magnitude spectrogram from the test sound, to the same
functions that define the training data. By doing so, we create a test PT matrix that
is comparable to the one we obtained in the training process, allowing us to extract
feature vectors that can be used to classify the sound via the feature space created in
section 4.2.1.3.

4.2.2.3 Testing Features Extraction

Given a test matrix PT , calculated in the previous step for the testing samples, we can
proceed to obtain the features of the test sounds. While the concept is the same as
described in section 4.2.1.3, that is, we want to obtain a feature vector for each of the
sounds with values from every dimension of matrix P that can be used to define it.

The main difference in this case is that we do not have a way of knowing beforehand
the timeframes of each sound (as we had with matrix C in section 4.2.1.3), since the
test samples try to mirror a real world scenario. So, to determine when a sound is
produced, we detect the highest peaks in each dimension of matrix P, and create a
feature vector (using the same process described in section 4.2.1.3) for each of the peaks
detected in this manner. The peak detection algorithm is very simple, it considers a
point as a maximum peak if it has the maximal value and was preceded (to the left) by
a value lower than a given ∆.

With the feature vectors calculated for all the sounds detected, we proceed to use
the vector as input for the classifier.

4.2.3 Classifier

We decided to use a k-NN classifier with a Euclidean distance metric, as the studies we
have seen show that it provides the all-around best results – even though it is one of
the simplest and most direct of the many classification algorithms.

The usage of the classifier is totally standard. We use the training matrix obtained
in section 4.2.1.3 as the feature space, which we then use to classify the features of
the testing samples we processed in section 4.2.2.3. This produces a matrix with the k
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number of nearest neighbours for each test sound, which we then use to classify the
tests sounds by assigning them to the class of their most occurring neighbours.

4.2.4 Data Analysis

While not functionally relevant to the system in itself, this final module is important
as it automatically compiles the results in a form that is much easier to interpret and
analyse. The system creates a series of spreadsheets, one for each test set, that give
information about each sound that was tested. This information consists of the neigh-
bours calculated by the classifier for the sound, the percentage of these neighbours that
are effectively correct, the class that was assigned to the sound and its correctness, as
well as general percentage of the classification correctness for the given data set.

4.3 Example

In this section we provide a walk-through of the system by detailing a very simple
use case. This use case will consist of using as training data a reduced dataset of three
different notes from three different instruments. We then use the recognition system
on another three notes from other recordings.

4.3.1 Data Input

The necessary input data for the system consists of two types of audio samples in wave
format, training and test data. The following subsections will describe how they differ
and how the system handles the data.

4.3.1.1 Training Data

The raw data necessary for training must be composed of individually recorded mu-
sical notes played by any number of distinct instruments types. In a general sense,
these recordings should be made with both various instruments of the same type (for
instance, from different manufacturers) and a varied number of playing articulations.
This heuristic is due to the knowledge that a wider range of data leads to a more accu-
rate representation of the instruments properties, leading to better recognition results.

In this example, three single notes are used to train the system – A5, F3 and C4 from
flute, guitar and piano, respectively, played using different articulations.
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Figure 4.5: Example of a ΘΘΘ matrix computed with NMF of the spectrograms of three
different notes (from top to bottom: piano – C4, guitar – F3 and flute – A5)

4.3.1.2 Test Data

Similarly to the training data, the test data is composed by audio samples than can
contain both several or individual musical notes from different instruments.

The testing data for our example will consist of the same three notes used to train
the system, with the distinction of being from different recordings and being presented
as a single audio file.

4.3.2 Feature Extraction

The features used by the system are obtained through two steps: the data is first pre-
pared for feature extraction and afterwards the actual features are calculated. The
methods used to complete these steps are different for the two types of input data
(training and test).

4.3.2.1 For Training Data

After the sound is processed, as detailed in section 4.2.1.1, we apply the NMF algo-
rithm to create the matrices ΘΘΘ and P. The matrix ΘΘΘ contains the spectral basis func-
tions learned by NMF of the spectrograms of the three different notes, figure 4.5, we
call these spectra (or features) ΘΘΘC4,piano (top row), ΘΘΘF3,guitar (middle row), and ΘΘΘA5, f lute

(bottom row). Using P, we calculate the training features as explained in section 4.2.1.3.
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Figure 4.6: The temporal envelopes in P obtained by NMF of the spectrograms of three
different notes (from top to bottom: piano – C4, guitar – F3 and flute – A5)

Data Features
Instrument Note ΘΘΘA5, f lute ΘΘΘF3,guitar ΘΘΘC4,piano

Piano C4 0,0184 0,0000 4,3936
Guitar F3 0,3636 3,6361 0,1087
Flute A5 3,2725 0,4984 0,01562

Table 4.1: Training feature vectors for the training samples: piano – C4, guitar – F3 and
flute – A5
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Data Features
Instrument Note ΘΘΘA5, f lute ΘΘΘF3,guitar ΘΘΘC4,piano

Piano C4 0,0232 0,0121 4,8865
Guitar F3 0,2387 3,9605 0,0693
Flute A5 2,7487 0,3833 0,0618

Table 4.2: Test feature vectors for the test samples: piano – C4, guitar – F3 and flute – A5

The idea behind this process can be observed in figure 4.6 – each line represents a di-
mension of the P matrix and each grey rectangle, determined by the largest peak of
each dimension, represents the segment of the matrix from where the remaining peaks
will be determined. Each feature vector consists of three coefficients, one for each of the
features: ΘΘΘA5, f lute, ΘΘΘF3,guitar, and ΘΘΘC4,piano. This process produces the values presented
in table 4.1, which will be used as the feature space for the classifier.

4.3.2.2 For Test Data

Similarly to the training process, the sound is first processed, as explained in section
4.2.2.1. This allows us to obtain the test P matrix by the method covered in section
4.2.2.2. Next, the feature vectors of each note can be determined as detailed in section
4.2.2.3, This process produces the values shown in table 4.2 that are used to represent
the test sound.

4.3.3 Classifier

For this example we used a k of one, as it the maximum number of correct neighbours
a test sample can have. By using the values of table 4.1 as the feature space for the k-
NN classifier, we can test the values of table 4.2. Unsurprisingly, the classifier correctly
classifies the three tests notes, a trivial task in this example, as it can easily be observed
that the test features are extremely close to those of the training feature space.
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5
Results

5.1 Sample description

Several types of samples were used to test the system. For our main focus, we com-
pleted several recordings of three different instruments. Additionally, we adapted our
system for the recognition of ambient sounds by making minor adjustments to the
feature extraction process, for which we used real world audio extracts to test its effi-
ciency.

5.1.1 Musical Instrument Samples

We recorded individual notes spanning over several octaves using three different in-
struments and various recording conditions: guitar (a Fender Stratocaster Electric Gui-
tar), piano (a Yamaha Grand Piano) and flute (a Hohner Recorder/English Flute).

Two recording methods were employed to obtain these samples. Piano and flute
were recorded via a microphone (AKG C1000S) connected to an USB Audio Interface
(Edirol UA-25). The guitar was initially recorded by connecting it directly to the audio
input of a PC (this option, while extremely simple, provided the necessary data to
successfully complete initial viability tests, even though most samples have a very low
volume and a considerable amount of static noise, due to the absence of a pre-amplifier
and a specialized analog-to-digital converter in the PC’s sound card) and afterwards by
connecting it to the Audio Interface (which, of course, provided a much more reliable
sound recordings). In all cases, Audacity was used to capture and edit the audio. The
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Group Flute Guitar Piano
1 Long1 Bridge1 Normal1
2 Short1 Bridge + Middle Attack1
3 Long2 Middle Soft1
4 Short2 Middle + Neck Normal2
5 Long3 Neck Attack2
6 Short3 Bridge2 Soft2

Table 5.1: Composition of the test sound groups.

editing of the audio consisted solely in removing any detected audio silence at the
beginning and/or end of the recordings.

In all, sixty six notes (spanning four octaves) were recorded, of which thirty (E2 to
A4 for the first recording and C3 to B3 were rerecorded in the second) are guitar, twenty
four (F]3 to F5) are piano and twelve (C5 to B5) are flute. Different recordings sets were
made for each note: eleven for guitar (one for each guitar pickup and an additional
recording for the bridge pickup with different guitar strings), six for flute (three sets
of two different playing techniques - sustain and staccato) and piano (two sets of three
different playing techniques - strong sustain, soft sustain and staccato).

5.1.2 Ambient Sound Samples

These sounds consist of several recordings that represent four different concepts, “wa-
ter”, “car”, “train” and “people”. A total of twenty recordings were extracted, seven
for “water” for a total of one minute and ten seconds, six for “car” for a total of one
minute and forty two seconds, five for “train” for a total of eight minutes and seven-
teen seconds and two for “people” for a total of two minutes and twenty six seconds.
These clips where extracted from select intervals of audio obtained from video footage
by matching the visual concepts with sounds that can unambiguously identify this
concepts. Unfortunately, we could not determine the recording equipment that was
used, nor the exact recording conditions, for any of the sound clips.

5.2 Musical Instrument Recognition

The main focus of our tests lies in this section, with the recognition of musical instru-
ments and musical notes.

We use six different data sets for our tests. This data sets were created by using
a leave-one-out cross-validation scheme. In other words, we rotate through several
sound groups to create our training set and our testing set. Table 5.1 presents the
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Tests
Note Set 1 Set 2 Set 3 Set 4 Set 5 Set 6

C5 Correct Correct Correct Correct Correct Correct
C]5 Correct Correct Correct Correct Correct Correct
D5 Correct Correct Correct Correct Correct Correct
D]5 Correct Correct Correct E5 Correct E5
E5 Correct Correct Correct Correct Correct Correct
F5 Correct Correct Correct Correct Correct Correct
F]5 Correct Correct Correct Correct Correct Correct
G5 Correct Correct F]5 Correct Correct Correct
G]5 Correct Correct Correct Correct Correct Correct
A5 Correct Correct Correct Correct Correct Correct
A]5 Correct Correct Correct Correct Correct Correct
B5 Correct Correct Correct Correct Correct Correct

Totals 100% 100% 92% 92% 100% 92%

Table 5.2: Flute notes recognition results

groups of sounds that we used with their different articulations and recordings (dif-
ferent subscripts indicate different recording takes). The training sets are always com-
posed of five different groups, leaving the remaining group as the testing set, for a
total of six different scenarios to gather results. This allowed us to thoroughly test
our system with distinct types of sounds, giving the possibility of obtaining results in
scenarios that try to mirror real world conditions.

As the maximum number of correct neighbours a test sound can have is five, due
to our definition of five groups for the training set, we use this value as the k used in
the k-NN classifier.

Finally, for each type of tests, the results are presented in table form with a series of
commentaries on any significant details. When applicable, the tables will detail which
notes were correctly identified and present which notes were incorrectly identified,
and which note the system obtained.

5.2.1 Individual Instrument Recognition

Each of these test results were compiled using only one type of musical instrument
sounds to verify the efficiency of the recognition of individual musical notes.

The tables for this section present the notes correctly and incorrectly recognized for
each of the test sets. Incorrect notes are displayed with the (erroneous) note that was
recognized by the system.

For flute, a total of twelve notes were tested, spanning over one octave, from C5 to
B5. Of the six test sets, three had a success rate of 100%, while other three had 92%.
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Tests
Note Test 1 Test 2 Test 3 Test 4 Test 5 Test 6

E2 Correct Correct Correct Correct Correct Correct
F2 Correct Correct Correct Correct Correct Correct
F]2 Correct Correct Correct Correct Correct Correct
G2 Correct Correct Correct Correct Correct Correct
G]2 Correct Correct Correct Correct Correct Correct
A2 Correct Correct Correct Correct Correct Correct
A]2 Correct Correct Correct Correct Correct Correct
B2 Correct Correct Correct Correct Correct Correct
C3 Correct Correct C]3 Correct Correct Correct
C]3 Correct Correct Correct Correct Correct Correct
D3 Correct Correct Correct Correct Correct Correct
D]3 Correct Correct Correct Correct Correct Correct
E3 Correct Correct Correct Correct Correct Correct
F3 Correct Correct Correct Correct Correct Correct
F]3 Correct Correct Correct Correct Correct Correct
G3 Correct Correct Correct Correct Correct Correct
G]3 Correct Correct Correct Correct Correct Correct
A3 Correct Correct Correct Correct Correct Correct
A]3 Correct Correct Correct Correct Correct Correct
B3 Correct Correct Correct Correct Correct Correct
C4 Correct Correct Correct Correct Correct Correct
C]4 Correct Correct Correct Correct Correct Correct
D4 Correct Correct Correct Correct Correct Correct
D]4 Correct Correct Correct Correct Correct Correct
E4 Correct Correct Correct Correct Correct Correct
F4 Correct Correct Correct Correct Correct Correct
F]4 Correct Correct Correct Correct Correct Correct
G4 Correct Correct Correct Correct Correct Correct
G]4 Correct Correct Correct Correct Correct Correct
A4 Correct Correct Correct Correct Correct Correct

Totals 100% 100% 97% 100% 100% 100%

Table 5.3: Guitar notes recognition results
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Tests
Note Set 1 Set 2 Set 3 Set 4 Set 5 Set 6
F]3 Correct Correct Correct Correct Correct Correct
G3 Correct Correct Correct Correct Correct Correct
G]3 Correct Correct Correct Correct Correct Correct
A3 Correct Correct Correct Correct Correct Correct
A]3 Correct Correct Correct Correct Correct Correct
B3 Correct Correct Correct Correct Correct Correct
C4 Correct Correct Correct Correct Correct Correct
C]4 Correct Correct Correct Correct Correct Correct
D4 Correct Correct Correct D5 Correct Correct
D]4 Correct Correct Correct Correct Correct Correct
E4 Correct Correct Correct Correct Correct Correct
F4 Correct Correct Correct Correct Correct Correct
F]4 Correct Correct Correct Correct Correct Correct
G4 Correct Correct Correct Correct Correct Correct
G]4 Correct Correct A]4 Correct Correct Correct
A4 Correct Correct Correct Correct Correct Correct
A]4 Correct Correct Correct Correct Correct Correct
B4 Correct Correct Correct Correct Correct Correct
C5 Correct Correct Correct Correct Correct Correct
C]5 Correct Correct Correct Correct C]4 Correct
D5 D4 Correct Correct D4 D4 D4
D]5 Correct Correct Correct Correct Correct Correct
E5 Correct Correct Correct Correct Correct Correct
F5 Correct Correct Correct Correct Correct F4

Totals 96% 100% 96% 92% 88% 92%

Table 5.4: Piano notes recognition results
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Tests
Set 1 Set 2 Set 3 Set 4 Set 5 Set 6

Inst. Class Note Class Note Class Note Class Note Class Note Class Note
Flute 100% 75% 100% 83% 92% 83% 100% 92% 92% 92% 100% 92%

Guitar 100% 100% 100% 100% 100% 100% 100% 100% 100% 100% 100% 100%
Piano 96% 100% 100% 100% 92% 100% 96% 100% 100% 100% 88% 96%

Table 5.5: Recognition results for all the instruments

Flute Guitar Piano Total
Flute 70 0 2 72

Guitar 0 72 0 72
Piano 6 1 137 144

Table 5.6: Confusion matrix for the instrument recognition

In total, only three notes in seventy two where identified incorrectly, each one in a
different test (table 5.2).

For guitar, a total of thirty notes were tested, spanning over three octaves, from E2

to A4. Of the six test sets, five had a success rate of 100%, while the other had 97%.
Only one note in one hundred and fifty was identified incorrectly (table 5.3).

For piano, a total of twenty four notes were tested, spanning over three octaves,
from F]3 to F5. Of the six test sets, only one had a success rate of 100%, while the others
ranged from 88% to 96%. Eight notes in one hundred and forty four were identified
incorrectly, however, seven of these were only wrong in terms the octave, the funda-
mental note was correctly identified (table 5.4).

The results we obtained for each individual instrument were nearly flawless, pro-
viding a strong basis for the testing scenario with multiple instruments.

5.2.2 Multiple Instrument Recognition

The results presented in this section are for tests conducted by training the system with
all three instruments.

5.2.2.1 Individual Instrument Tests

A total of forty eight notes spanning over three octaves were tested. Twelve for flute,
another twelve for guitar and twenty four for piano. The detailed results are presented
in table 5.5, the recognition rates for both classes and notes for all test sets, and table
5.6, a confusion matrix presenting the number of sounds that were misclassified.

From the three instruments, “flute” had the overall lowest recognition rate in terms
of identifying notes, while “piano “had the highest misclassification rate in terms of in-
strument class identification. “Guitar” had a 100% recognition rate on both accounts.
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Tests
1 2 3 4 5 6

Inst. Class Note Class Note Class Note Class Note Class Note Class Note
Flute 5/6 6/6 4/5 5/5 4/5 5/5 2/3 3/3 5/5 5/5 3/3 3/3

Guitar 5/5 5/5 5/5 5/5 5/5 5/5 5/5 5/5 3/3 3/3 4/4 4/4

Piano 9/9 9/9 10/10 10/10 10/10 10/10 12/12 12/12 12/12 12/12 12/13 12/13

Table 5.7: Recognition results for the random sound clips

The comparatively low values for the recognition of “flute” notes is due to the flute
sounds being almost purely sinusoidal (as can be seen by analysing their spectra, for
instance, the bottom line of Figure 4.5). This indicates that our use of peaks obtained
from the temporal characteristics of the sound are not optimal. Nevertheless, the recog-
nition rates we obtained were very high and consistent, showing the validity of this
approach.

5.2.2.2 Randomly Generated Sound Clips

The sounds clips were automatically generated by randomly choosing twenty notes
from the testing set and merging them in a single continuous file with some seconds
of silence between notes. The purpose of this test is twofold – firstly, it allowed us to
study the behaviour of the peak detection algorithm, and secondly, to observe how
NMF would handle a single spectrogram containing various notes (instead of a single
spectrogram per note, as was tested so far).

In table 5.7 we present, for each test, the fraction of notes and classes that were
correctly classified. We favoured this approach over presenting the percentages, due
to notion that the varying number of notes selected from each instrument would be
obscured, giving a skewed vision of the results.

By analysing the results, we can observe that the recognition rate is on par with
what was achieved in previous tests. From a total of 120 notes, only one note was
misclassified (piano in the last test group) and only four notes were misclassified in
terms of their instrument class.

5.3 Ambient Sounds Recognition

As previously mentioned, we required some adjustments to adapt the system for am-
bient sound recognition. Two of these changes affect both the training and testing
processes, while the third alters the way in which we determine the value of k used for
the k-NN classifier. All the other processes in the system were unchanged from what
was described in section 4.
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The first change modified the spectrogram creation; instead of calculating one for
each sound and concatenating all the spectrograms obtained in this manner, we cut
each sound in twenty segments of 0.2 seconds, taken uniformly throughout its length
(if the sound is shorter than 4 seconds, the segments will overlap) and concatenate all
these spectrograms. Our choice of 0.2 seconds for the sound segments is mainly due to
the limited number of sound samples we had available, however, we found that it also
produced better results than when using longer segments.

The second modification was to the feature extraction. We create a feature vector
for each of the 0.2 second segments by calculating three distinct features for each of the
matrix’ dimensions in that segment: the average value and median of the spectrum, as
well as the spectral energy (the sum of the values in a dimension).

Finally, the value of k used for the k-NN classifier is given by ceiling(
√

mean(sounds)),
where sounds is a vector with the number of training samples for each of the concepts
used. So, for instance, if we use three concepts where two of these have 15 samples and
the remaining one has 20 samples, we would have ceiling(

√
mean([15,15,20])), which

would give us a k of 8. This calculation stems from the necessity of a dynamic value for
k, due to the inconstant number of training samples for each group. We found, empiri-
cally, that this formula worked well for a variable number of samples, as it consistently
generated adequate values of k.

The following tests were completed using two data sets. The first set is composed
of sounds representing three different concepts, “water”, which consists of sound of
flowing water (rivers, fountains, etc.), “car”, sounds of cars driving through streets,
and “train”, sounds recorded inside a moving train. The training samples consist of
four sounds for “water”, for a total of 51.910 seconds, four sounds for “car”, for a total
of 1 minute and 17.380 seconds and four sounds for “train”, for a total of 3 minutes
and 37.484 seconds, and the testing samples of three sounds for “water”, for a total of
18.903 seconds and 96 segments, two sounds for “car”, for a total of 24.975 seconds and
125 segments, and one sound for “train”, for a total of 4 minutes and 40.204 seconds
and 1400 segments. The second set uses the same sounds as the previous one, but adds
the concept “people”, which consists of sounds of large gatherings of people (a soccer
stadium and a large meeting of people). We used only one sound with the length of
23.472 seconds for training, and another for testing, with 2 minutes and 2.984 seconds
and a total of 615 segments.

5.3.1 “Water”, “car” and “train” recognition

The results for this data set are presented in table 5.8, which shows the recognition
rates in terms of the whole audio samples, and table 5.9, that shows the recognition
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5. RESULTS 5.3. Ambient Sounds Recognition

Water Car Train Total
Water 2 1 0 67%

Car 0 2 0 100%
Train 0 0 1 100%

Table 5.8: Confusion matrix for the complete samples of data set 1

Water Car Train Total
Water 73 23 0 76%

Car 8 111 6 89%
Train 0 317 1083 77%

Table 5.9: Confusion matrix for the sound segments of data set 1

rates in terms of the total number of segments obtained from the audio files.
For this data set, only one of the complete samples belonging to the “water” class

was misclassified, lowering the recognition rate of the class to 67%. By observing the
results for each of the 0.2 second segments, it’s visible that most were correctly classi-
fied for this class. While the rates for the other classes were lower, the accuracy was
substantially high with over 75% for all the classes.

5.3.2 “Water”, “car”, “train” and “people” recognition

The recognition rates are presented in table 5.10 and table 5.11 in similar fashion to the
results of the first data set.

Even with the addition of a new class “people”, the system continued to produce
overall good results. Two complete samples were misclassified, one of the “car” class
and the same sample from the “water” class that misclassified in the first data set.
However, by analysing the recognition rates for the sound segments, we notice that
the “car” class was the only one that had a decrease in accuracy, due to a number of
segments being misclassified as “people” (an unexpected result, as the sounds do not
seem at all similar), both “water” and “train” maintained similar values and the new
“people” class attained a very high value (94%).

Water Car Train People Total
Water 2 1 0 0 67%

Car 0 1 0 1 50%
Train 0 0 1 0 100%

People 0 0 0 1 100%

Table 5.10: Confusion matrix for the complete samples of data set 2
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Water Car Train People Total
Water 75 20 0 1 78%

Car 7 61 6 51 49%
Train 0 342 1053 5 75%

People 0 35 0 580 94%

Table 5.11: Confusion matrix for the sound segments of data set 2
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Discussion and Future Work

Our approach allowed for a successful implementation of a system that obtains con-
sistently high recognition rates for a variety of scopes, such as musical instruments,
musical notes and ambient sounds. More so, the dual focus of this work, musical in-
strument recognition and partial transcription of musical notes, was shown to be an
uncommon approach to the problems.

The developed system has several advantages, namely the possibility of using a
reduced and easily computable feature set that is shown to provide extremely solid
results. Compared to other monophonic works, these results are always on par, but
generally better (as can be seen from the descriptions of the results in section 3). Addi-
tionally, our tests with ambient sounds also proved that the system not only can easily
be adapted to tackle new problems, but can do so by using very reduced sets of train-
ing data (as we use a maximum of four seconds from each sound). This can be easily
exemplified by the 94% accuracy obtained for the “people” concept in section 5.3: with
only one training sound, the system was able to correctly identify five hundred and
eighty segments of six hundred and fifteen.

The system, however, has some aspects that are disadvantageous. The computation
time to train the system, essentially the calculation needed by the non-negative matrix
factorization, is exponential to the data. While this is a problem inherent to most types
of machine learning systems, it can severely encumber a rapid training of new sounds.
Furthermore, the system does not handle correctly sounds that belong to concepts that
were not trained in system. In other words, if we tried to classify notes played by
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violin, using as training data the sounds we used to test our system, the probability
of the system correctly classifying the notes would be high, however, it would always
assign the sounds to one of the tree classes of instruments, when, optimally, it should
detect that it does not “know” that type of instrument.

As future work there are some ideas that should be considered. For one, improving
the peak detection algorithm to some other, more efficient, onset detection algorithm.
This would increase greatly the type of test sounds that could be used. The system
could be adapted to use ICA or PCA, allowing a study, in greater detail, of the re-
sults that can be obtained with these blind source separation algorithms. Finally, we
completed preliminary tests on polyphonic sounds that seem, from an empirical stand-
point, highly promising. This was unsurprising, considering what other works have
achieved (for example, in [SB03]), as well as the characteristics of non-negative ma-
trix factorization. Thoroughly testing in this conditions would be very interesting, as
polyphony is what better represents real world scenarios in audio analysis.
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