736,821 research outputs found

    Information decomposition of multichannel EMG to map functional interactions in the distributed motor system

    Get PDF
    The central nervous system needs to coordinate multiple muscles during postural control. Functional coordination is established through the neural circuitry that interconnects different muscles. Here we used multivariate information decomposition of multichannel EMG acquired from 14 healthy participants during postural tasks to investigate the neural interactions between muscles. A set of information measures were estimated from an instantaneous linear regression model and a time-lagged VAR model fitted to the EMG envelopes of 36 muscles. We used network analysis to quantify the structure of functional interactions between muscles and compared them across experimental conditions. Conditional mutual information and transfer entropy revealed sparse networks dominated by local connections between muscles. We observed significant changes in muscle networks across postural tasks localized to the muscles involved in performing those tasks. Information decomposition revealed distinct patterns in task-related changes: unimanual and bimanual pointing were associated with reduced transfer to the pectoralis major muscles, but an increase in total information compared to no pointing, while postural instability resulted in increased information, information transfer and information storage in the abductor longus muscles compared to normal stability. These findings show robust patterns of directed interactions between muscles that are task-dependent and can be assessed from surface EMG recorded during static postural tasks. We discuss directed muscle networks in terms of the neural circuitry involved in generating muscle activity and suggest that task-related effects may reflect gain modulations of spinal reflex pathways

    An autopsy study of a familial oculopharyngeal muscular dystrophy (OPMD) with distal spread and neurogenic involvement

    Get PDF
    An 81-year-old man from a family with a history of oculopharyngeal muscular dystrophy (OPMD) involving 6 members over 4 generations is described. The patient first noted drooping of his eyelids at the age of 65. Dysphagia and dysarthria occurred soon thereafter. At age 78, impairment of gait developed and progressive wasting occurred in the limbs with an initial distal distribution. Electromyography of several limb muscles displayed a mixed myopathic and neurogenic pattern with giant potentials. Examination at autopsy revealed slight loss of neurons in the anterior horns of the spinal cord, with scanty ghost cells, neuronophagia, and central chromatolysis. By light microscopy the limb muscles showed moderate small-group atrophy with severe myopathy and target fibers. The viscerocranial muscles, including the ocular, vocal, and tongue muscles, demonstrated only myopathic change with the typical features of progressive muscular dystrophy. Advanced replacement by fibrous connective tissue and fat had occurred in both the viscerocranial and the lower limb muscles. The significance of neurogenic involvement in OPMD is discussed

    Fatigue and Recovery from Dynamic Contractions in Men and Women Differ for Arm and Leg Muscles

    Get PDF
    Introduction: Whether there is a gender difference in fatigue and recovery from maximal velocity fatiguing contractions and across muscles is not understood. Methods: Sixteen men and 19 women performed 90 isotonic contractions at maximal voluntary shortening velocity (maximal velocity concentric contractions, MVCC) with the elbow flexor and knee extensor muscles (separate days) at a load equivalent to 20% maximal voluntary isometric contraction (MVIC). Results: Power (from MVCCs) decreased similarly for men and women for both muscles (P \u3e 0.05). Men and women had similar declines in MVIC of elbow flexors, but men had greater reductions in knee extensor MVIC force and MVIC electromyogram activity than women (P \u3c 0.05). The decline in MVIC and power was greater, and force recovery was slower for the elbow flexors compared with knee extensors. Conclusions: The gender difference in muscle fatigue often observed during isometric tasks was diminished during fast dynamic contractions for upper and lower limb muscles

    Mapping the cortical representation of the lumbar paravertebral muscles

    Get PDF
    Objective: The aim of this study was to map the cortical representation of the lumbar spine paravertebral (LP) muscles in healthy subjects. Methods: Transcranial magnetic stimulation (TMS) was employed to map the cortical representations of the LP muscles at two sites. Stimuli were applied to points on a grid representing scalp positions. The amplitude of motor evoked potentials (n = 6) was averaged for each position. Results: The optimal site for evoking responses in the contralateral LP muscles was situated 1 cm anterior and 4 cm lateral to the vertex. Ipsilateral responses were evoked from sites lateral to the optimal site for evoking contralateral responses. Contralateral responses were also obtained from areas anterior to the optimal site. Conclusions: Maps of these muscles can be produced. The results suggest discrete contra- and ipsilateral cortical projections. Anterior sites at which excitation can be evoked may indicate projections arising in the SMA are involved. Significance: This study provides normative data regarding the cortical representation of the paravertebral muscles and provides a technique for evaluating cortical motor plasticity in patients presenting with spinal pathologies

    In Vivo Time- Resolved Microtomography Reveals the Mechanics of the Blowfly Flight Motor

    Get PDF
    Dipteran flies are amongst the smallest and most agile of flying animals. Their wings are driven indirectly by large power muscles, which cause cyclical deformations of the thorax that are amplified through the intricate wing hinge. Asymmetric flight manoeuvres are controlled by 13 pairs of steering muscles acting directly on the wing articulations. Collectively the steering muscles account for <3% of total flight muscle mass, raising the question of how they can modulate the vastly greater output of the power muscles during manoeuvres. Here we present the results of a synchrotron-based study performing micrometre-resolution, time-resolved microtomography on the 145 Hz wingbeat of blowflies. These data represent the first four-dimensional visualizations of an organism's internal movements on sub-millisecond and micrometre scales. This technique allows us to visualize and measure the three-dimensional movements of five of the largest steering muscles, and to place these in the context of the deforming thoracic mechanism that the muscles actuate. Our visualizations show that the steering muscles operate through a diverse range of nonlinear mechanisms, revealing several unexpected features that could not have been identified using any other technique. The tendons of some steering muscles buckle on every wingbeat to accommodate high amplitude movements of the wing hinge. Other steering muscles absorb kinetic energy from an oscillating control linkage, which rotates at low wingbeat amplitude but translates at high wingbeat amplitude. Kinetic energy is distributed differently in these two modes of oscillation, which may play a role in asymmetric power management during flight control. Structural flexibility is known to be important to the aerodynamic efficiency of insect wings, and to the function of their indirect power muscles. We show that it is integral also to the operation of the steering muscles, and so to the functional flexibility of the insect flight motor

    The correlation between wing kinematics and steering muscle activity in the blowfly Calliphora vicina

    Get PDF
    Determining how the motor patterns of the nervous system are converted into the mechanical and behavioral output of the body is a central goal in the study of locomotion. In the case of dipteran flight, a population of small steering muscles controls many of the subtle changes in wing kinematics that allow flies to maneuver rapidly. We filmed the wing motion of tethered Calliphora vicina at high speed and simultaneously recorded multi-channel electromyographic signals from some of the prominent steering muscles in order to correlate kinematics with muscle activity. Using this analysis, we found that the timing of each spike in the basalare muscles was strongly correlated with changes in the deviation of the stroke plane during the downstroke. The relationship was non-linear such that the magnitude of the kinematic response to each muscle spike decreased with increasing levels of stroke deviation. This result suggests that downstroke deviation is controlled in part via the mechanical summation of basalare activity. We also found that interactions among the basalares and muscles III2–III4 determine the maximum forward amplitude of the wingstroke. In addition, activity in muscle I1 appears to participate in a wingbeat gearing mechanism, as previously proposed. Using these results, we have been able to correlate changes in wing kinematics with alteration in the spike rate, firing phase and combinatorial activity of identified steering muscles
    corecore