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Abstract 
The central nervous system needs to coordinate multiple muscles during postural 

control. Functional coordination is established through the neural circuitry that 

interconnects different muscles. Here we used multivariate information decomposition of 

multichannel EMG acquired from 14 healthy participants during postural tasks to 

investigate the neural interactions between muscles. A set of information measures 

were estimated from an instantaneous linear regression model and a time-lagged VAR 

model fitted to the EMG envelopes of 36 muscles. We used network analysis to quantify 

the structure of functional interactions between muscles and compared them across 

experimental conditions. Conditional mutual information and transfer entropy revealed 

sparse networks dominated by local connections between muscles. We observed 

significant changes in muscle networks across postural tasks localized to the muscles 

involved in performing those tasks. Information decomposition revealed distinct patterns 

in task-related changes: unimanual and bimanual pointing were associated with 

reduced transfer to the pectoralis major muscles, but an increase in total information 

compared to no pointing, while postural instability resulted in increased information, 

information transfer and information storage in the abductor longus muscles compared 

to normal stability. These findings show robust patterns of directed interactions between 

muscles that are task-dependent and can be assessed from surface EMG recorded 

during static postural tasks. We discuss directed muscle networks in terms of the neural 

circuitry involved in generating muscle activity and suggest that task-related effects may 

reflect gain modulations of spinal reflex pathways. 

 
Key words: muscle networks, transfer entropy, postural control, spinal reflex, functional 
connectivity  

.CC-BY-NC-ND 4.0 International licenseIt is made available under a 
(which was not peer-reviewed) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity.

The copyright holder for this preprint. http://dx.doi.org/10.1101/587949doi: bioRxiv preprint first posted online Mar. 25, 2019; 

http://dx.doi.org/10.1101/587949
http://creativecommons.org/licenses/by-nc-nd/4.0/


 3 

1. Introduction 
Adaptive behavior emerges in the nervous system from the ongoing interactions among 

the body and the environment. Coordinated adaptations in the nervous system and 

periphery are essential for motor function and are established by integrating 

feedforward commands from the nervous system and sensory feedback from the body 

(Chiel and Beer, 1997). It is argued that a balance between functional segregation and 

integration in the nervous system is required for perception and behavior (Tononi et al., 

1994). These cognitive functions result from the dynamic interactions of distributed 

neural populations operating in large-scale networks that determine the flow of 

information through the central nervous system (Bressler and Menon, 2010; Sporns et 

al., 2004). While the functional implications of large-scale networks have mainly been 

investigated within the brain (Petersen and Sporns, 2015), we expected that similar 

principles apply to the entire nervous system and encompass interactions between 

brain and body.  

 

The brain and spinal cord are interwoven with the body and interact through the 

peripheral and autonomic nervous systems with other organ systems (Freund et al., 

2016). Through these neuronal pathways, dynamic interactions among subsystems are 

mediated to support physiological function and establish system-wide integration 

(Bashan et al., 2012). In the motor system, such functional integration involves the 

descending pathways that connect supraspinal motor areas to the spinal motor neurons 

generating the muscle activation patterns. The corticospinal tract originates from 

different cortical areas including primary motor cortex and terminates widely within the 

spinal gray matter, including direct monosynaptic projections to contralateral spinal 

motor neurons (Lemon, 2008). Other descending pathways such as the vestibulospinal 

and the reticulospinal tract originate from brainstem nuclei, project to bilateral regions of 

the spinal cord and are involved in controlling posture and locomotion (Kuypers, 1981). 

In addition to divergent projects from supraspinal regions, propriospinal pathways and 

spinal interneurons interconnect motor neuron pools innervating different muscles 

(Pierrot-Deseilligny and Burke, 2005). Finally, through the mechanical couplings within 

the musculoskeletal system, motor neurons receive afferent feedback from the activity 
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of other muscles (Kutch and Valero-Cuevas, 2012). Through all these pathways, focal 

motor activity is expected to generate a cascade of muscle activations that need to be 

controlled to ensure coordinated movements. The dynamic interplay between sensory 

feedback and motor output is essential for motor coordination and gain modulation is an 

important mechanism to control the flow of activity through the sensorimotor system 

(Azim and Seki, 2019; Krakauer, 2019; Pierrot-Deseilligny and Burke, 2005; Pruszynski 

and Scott, 2012). However, gain modulation in sensorimotor pathways is difficult to 

assess during natural movements.  

 

Information theory provides the foundation for investigating the processing and flow of 

information in distributed functional networks. In particular, information dynamics 

provide a versatile and unifying set of tools to dissect general information processing 

into basic elements of computation which quantify the new information produced in a 

network at each moment in time as well as the amounts of information stored and 

transferred within the network (Deco and Schürmann, 2012; Faes et al., 2017b; Lizier, 

2012). Temporal precedence is the key concept that allows to quantify directed 

interactions between individual components of a large-scale system. For example, 

Granger causality is a statistical method to determine whether one time series can be 

used to predict another (Granger, 1969). It has been widely used in neuroscience 

research to characterize functional brain circuits (Seth et al., 2015). Granger causality is 

closely linked to transfer entropy, an information-theoretic measure of time-directed 

information transfer (Barnett et al., 2009). Despite their widespread application, there 

are ongoing discussions regarding the interpretation of these methods in neuroscience 

research (Barnett et al., 2018; Faes et al., 2017c; Stokes and Purdon, 2017). An issue 

with Granger causality measures is that they are often estimated using a subset of 

variables, though being likely influenced by other variables, either available or 

exogenous (unrecorded). This issue can be partially circumvented by estimating 

conditional information transfer (Guo et al., 2008; Runge et al., 2012) and by 

investigating how multiple source variables interact with each other while they transfer 

information towards a target in the network (Stramaglia et al., 2014). Moreover, it has 

been argued that multiple information-theoretic measures, derived from tools such as 
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information decomposition (Faes et al., 2017b), should be combined to provide an 

exhaustive view of the underlying dynamics of brain and physiological networks. 

  

In this paper, we use information decomposition to map interactions in functional muscle 

networks involved in postural control. The musculoskeletal system consists of more 

than 300 skeletal muscles, which are controlled by the central nervous system through 

the spinal motor neurons. The activity of motor neurons can be noninvasively recorded 

using surface electromyography (EMG) and intermuscular (EMG-EMG) coherence is 

then used to investigate functional connectivity in the sensorimotor system (Farmer, 

1998). Intermuscular coherence is thought to reflect correlated inputs to spinal motor 

neurons that may have different origins (Boonstra et al., 2016). Using a formalism of 

information decomposition of target effects from multi-source interactions, we aim to 

disentangle the neural sources that contribute to correlated inputs to spinal motor 

neurons. We apply this approach to EMG activity recorded from multiple muscles 

distributed across the body while participants performed postural tasks. We previously 

used intermuscular coherence to map undirected functional muscle networks in this 

data (Kerkman et al., 2018). Here, we use conditional transfer entropy to map directed 

interactions between muscles and investigate their contribution in the coordination of 

the neuromuscular system during postural control. 

 

2. Material and Methods 
 

2.1 Experimental protocol and data acquisition 

We used multi-channel EMG data that was acquired from fourteen healthy participants 

(seven males and seven females; mean age, 25 ± 8 years; ten right-handed and four 

left-handed) while standing upright (Kerkman et al., 2018). The experiment was 

approved by the Ethics Committee Human Movement Sciences of the Vrije Universiteit 

Amsterdam (reference ECB 2014-78) and participants gave informed consent before 

participation.  
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The experiment consisted of nine experimental conditions in which postural stability and 

pointing behavior were varied using a full-factorial design. Postural stability was 

manipulated using a balance board (normal standing, instability in anterior-posterior 

direction and instability in medial-lateral direction) and participants held either their arms 

alongside their body (no pointing) or pointed a laser pointer on a target using either their 

dominant hand or both their hands. Each task was repeated in six trials of 30 s each 

and the experiment lasted about 1.5 hour including rests. 

 

Bipolar surface EMG was recorded using Porti systems (TMSi, the Netherlands) from 

36 muscles distributed across the body, i.e. eighteen bilateral muscles (Table 1). 

Electrode locations were based on SENIAM guidelines. Muscle that were not available 

in the SENIAM guidelines were localized based on palpation. EMG signals were online 

high-pass filtered at 5 Hz and sampled at 2 kHz. EMG data were offline band-pass 

filtered (1 - 400 Hz) before independent component analysis was used for 

electrocardiography removal (Willigenburg et al., 2012). Additionally, EMG signals were 

high pass filtered (20 Hz) and EMG envelopes were extracted using the Hilbert 

transform (Boonstra and Breakspear, 2012). 

 
Table 1. List of muscles 
	 muscle abbreviation 
1	 tibialis anterior TA 
2	 gastrocnemius medialis  GM 
3	 soleus SOL 
4	 rectus femoris RF 
5	 biceps femoris BF 
6	 vastus lateralis VL 
7	 adductor longus AL 
8	 external oblique EO 
9	 pectoralis major PMA 
10	 sternocleidomastoideus SMA 
11	 longissimus LO 
12	 latissimus dorsi LD 
13	 trapezius (transverse part)  TZ 
14	 deltoid (acromial part)  D 
15	 biceps brachii BB 
16	 triceps brachii TRB 
17	 extensor digitorum ED 
18	 flexor digitorum superficialis FDS 
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Prior to information-theoretic analysis, the signals were down-sampled to 200 Hz, 

obtaining time series of length N=6000 points. Moreover, to further the fulfillment of 

stationarity criteria, the time series were detrended using a zero-phase autoregressive 

high-pass filter with cutoff frequency of 1.56 Hz (3 dB) (Nollo et al., 2000), and were 

then reduced to zero mean. 

 

2.2 Information-theoretic concepts 

The entropy measures used in this study to characterize muscle networks are based on 

basic information-theoretic concepts (Cover and Thomas, 2012), which are briefly 

recalled in the following. The information content of a scalar (one-dimensional) 

continuous random variable X, with probability density function fX(x), is quantified by its 

entropy, , where E is the expectation 

operator, DX is the domain of X and log is the natural logarithm so that entropy is 

measured in “nats”. If we consider a second k-dimensional vector variable Z=[Z1···Zk] 

with probability density fZ(z), the conditional information of X given Z, i.e. the information 

remaining in X when Z is known, is quantified by the conditional entropy 

, where fX|Z(x|z) denotes the conditional probability of x 

given z. The concepts of entropy and conditional entropy can be combined to measure 

the mutual information (MI) between X and Z, quantifying the information shared 

between the two variables, as I(X;Z)=H(X)–H(X|Z). Moreover, the conditional mutual 

information between X and Z given a third variable U, I(X;Z|U), quantifies the 

information shared between X and Z which is not shared with U, defined as 

I(X;Z|U)=H(X|U)−H(X|Z,U). 

 

A viable approach to quantify these information measures is based on linear regression 

models. It is indeed known that, when the random variables have a joint Gaussian 

distribution, entropy and conditional entropy can be formulated analytically as: 

 , (1) 
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where  is the variance of the variable X and  is the so-called partial variance, 

i.e. the variance of the residuals obtained performing a linear regression of X on all 

components of the vector variable Z (Barrett et al., 2010). Note that, since mutual 

information and conditional mutual information can be expressed as the sum of entropy 

and conditional entropy terms, Eq. (1) can be exploited to derive an analytical 

formulation for all information measures defined above. 

 

2.3 Network information measures 

The above information-theoretic preliminaries were exploited in this study to devise a 

signal processing framework for the description of how information is processed by 

muscle networks (Faes et al., 2017b). In such a framework, the EMG signals acquired 

from different muscles across the human body were interpreted as realizations of an M-

dimensional vector stochastic process Yn=[Y1,n ···YM,n]T, where n denotes the current 

time sample (M=36 in this study, Fig. 1). The total information contained in the generic 

process Yj at time n, as well as the information shared instantaneously (with zero lag) 

between two processes Yj and Yi (i,jÎ{1,...,M}) and the conditional information shared 

instantaneously by Yj and Yi given the other processes Yk (k=[{1,...,M}/{i,j}]), are defined 

by the entropy, mutual information and conditional mutual information measures defined 

as: 

 , (2) 

 , (3) 

 . (4) 

A Venn diagram representation of how the above measures are obtained in terms of 

shared information is reported in the middle panel of Figure 1D. Moreover, defining as 

 the (infinite dimensional) vector variable which represents the 

past history of the process Yj, the information stored in the j-th process is defined as the 

mutual information between its present and past variables: 

 . (5) 
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Consideration of past histories (Fig. 1D) also allows to quantify dynamic (time-lagged) 

causal interactions occurring from a source process Yi toward a target process Yj. 

Specifically, the total information transferred to the target from all other processes in the 

network is computed as the conditional mutual information between the present of Yj 

and the past of Yi and of Yk, given the past of Yj: 

 , (6) 

Then, with specific reference to one source process Yi, the bivariate information transfer 

from the source to the target, denoted as transfer entropy (TE), is measured as the 

conditional mutual information between the present of Yj and the past of Yi given the 

past of Yj: 

 , (7) 

while the conditional information transfer is measured by conditioning also on the past 

of all other processes in the network collected in Yk: 

 . (8) 

Note that, while each information measure is formulated accounting for the current time 

instant n in the right-hand side of its defining Eqs. (2-8), under the assumption of 

stationarity the measure is time-invariant so that the time index n can be omitted in the 

definition given in the left-hand side. 

 

The Venn diagram in the right panel of Figure 1D shows a graphical representation of 

how the information shared by the present of the target and the past of the various 

processes in the motor system is combined to obtain the information storage as well as 

the total, bivariate and conditional information transfer. 
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Figure 1. Overview of data acquisition and analysis steps. A) Motor units consist of alpha 
motor neurons located in the spinal cord that innervate muscle fibers. While EMG is recorded 
from the skin over the muscle, the EMG signals reflect neuronal activity generated in the spinal 
cord. B) Surface EMG is recorded from 36 muscles distributed across the body while 
participants performed postural control tasks. C) EMG data from eighteen muscles on the 
dominant side of the body during the bimanual pointing task from a single participant. D) 
Variables used to compute information measures: present (red) and past values (light red) of 
the target; present (blue) and past values (light blue) of the source; present (green) and past 
values (light green) of the remaining processes. The Venn diagram in the middle depicts 
instantaneous information metrics: mutual information between the target and the source is 
depicted in pink and the labeled part gives the conditional mutual information through which 
common effects from other processes are conditioned out. The Venn diagram on the right 
depicts time-lagged information metrics: information storage is depicted in yellow, transfer 
entropy is depicted in pink, conditional transfer entropy is the labeled part of the pink area, and 
total transfer entropy is the sum of the pink and orange areas. 
 

2.4 Estimation of information measures 
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In this study, we computed information measures within a model-based linear 

processing frame, according to the block diagram depicted in Figure 2. Within this 

frame, all measures defined in Eqs. (2-8) were first expressed as sums of entropy and 

conditional entropy terms according to the definitions given in Sect. 2.2, and then 

computed using the formulations given in Eq. (1). To estimate entropy, the variance of 

each scalar process Yj associated with the j-th EMG channel, ,was estimated from 

the corresponding EMG recording. To estimate conditional entropy, the partial variances 

to be used in Eq. (1) were estimated from linear regression models. 

 

Specifically, starting from a set of M time series (EMG signals) each composed of N 

observations (Fig. 2A), instantaneous information measures were computed as depicted 

in Figure 2B. The information content of the target time series Yj, was obtained simply 

as a function of its variance .To estimate instantaneous mutual information, the 

partial variance of Yj given Yi, , was estimated as the variance of the prediction error 

obtained regressing the j-th EMG channel on the i-th channel, and was used in 

conjunction with the variance of the j-th channel  to compute the mutual information 

of Eq. (3). To estimate instantaneous conditional mutual information, the partial 

variances of Yj given Yk, , and of Yj given both Yi and Yk, , were estimated as 

the variance of the prediction errors obtained regressing the j-th EMG signals 

respectively on all other signals except the i-th, and on all other signals including the i-

th, and used to compute the conditional mutual information of Eq. (4).  

 

The time-lagged measures of Eqs. (5-8) were computed implementing the concept of 

Granger causality in a state space formulation (Barnett and Seth, 2015; Faes et al., 

2017a) following the steps depicted in Figure 2C. Specifically, first linear regression was 

performed jointly for all processes to identify a vector autoregressive (VAR) model from 

the available multivariate EMG signals. The VAR model order, corresponding to the 

number of samples used to cover the past of the processes, was set according to the 

Bayesian Information Criterion (BIC) (Schwarz, 1978). The variance of the prediction 
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error, associated to the VAR description of the j-th EMG signal, was taken as an 

estimate of the partial variance of Yj given the past of all processes, . This 

estimated partial variance was used in conjunction with the variance of the target time 

series to estimate the total information transferred towards the target. We then used a 

state-space modeling approach (Barnett and Seth, 2015) to compute the remaining 

partial variances necessary to estimate the time-lagged information measures, i.e. the 

partial variance of Yj given its own past, , given its past and the past of Yi, 

,and given its past and the past of Yk, . This method converts the VAR model 

into a state-space model and then rearranges the parameters such that submodels can 

be formed which contain only some of the processes. The partial variances relevant to 

these submodels can be computed analytically. With this approach it is possible to 

obtain computationally reliable estimates of all partial variances, which can then be 

used to compute the measures of information storage, and bivariate and conditional 

information transfer. We refer to Faes et al. (2017a) for the mathematical details about 

the state-space computation of the measures of information dynamics. 
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Figure 2. Block diagrams of the computational steps for estimating information 

measures. A) The target and source processes in a set of M time series (EMG signals) 

each composed of N observations. B) Estimation of instantaneous information measures. 

C) Estimation of time-lagged information measures. 

   

2.5 Statistical analysis 

We mirrored the data of the left-handers to create a dominant and nondominant side of 

the body. We used network analysis to assess patterns of functional interactions 

between muscles and compared information measures across conditions. Mutual 

information and transfer entropy were estimated between all muscle pairs and provided 

the edge weights of the muscle networks. We used the weighted degree and in-degree 

to quantify the information that is shared with each target. We hence obtained 36 

network metrics for each condition, trial and participant.  

 

For statistical comparison across experimental conditions, we averaged the network 

metrics across the six trials per condition. In three participants, one trial was discarded 
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due to bad electrode contact and for those participants network metrics were averaged 

across the remaining five trials. We then used a two-way ANOVA, with pointing 

behavior (no pointing, pointing with dominant hand, and pointing with both hands) and 

postural stability (normal standing, anterior-posterior instability, and medial-lateral 

instability) as independent factors, to statistically compare conditional transfer entropy 

across experimental conditions. We used Bonferroni-Holm correction to control the 

family-wise error rate. Alpha was set at 0.05. 

 

We binarized the muscle networks for visualization purposes. The presence of binary 

edges was determined based on the statistical significance. As each of these measures 

was obtained comparing two nested linear regression models for any pair of channels, 

the statistical significance of the measure was tested using the Fisher F test comparing 

the residual sum of squares (Chow test; Chow, 1960). For every participant, we 

considered an edge as significant if the measure was significant in at least half of the 

trials (three of the five or six trials). At group-level, edges were considered significant if 

present in at least half of the participants (seven of the fourteen participants). The binary 

networks were then displayed on a model of the human body (Makarov et al., 2015) and 

the F-statistic defined at each node of the network were depicted as color-coded values 

interpolated on the body surface mesh (Jacobson, 2018). 

 
3. Results 
We used information decomposition of EMG activity measured from multiple muscles 

during postural control tasks and assessed mutual information to investigate functional 

dependencies at zero lag and transfer entropy to map the directed interactions between 

muscles accounting for the temporal flow of information. Furthermore, we estimated the 

conditional information metrics to account for common drive or cascade effects from 

other processes in the system. By comparing these information metrics across 

conditions, we investigated how these measures can be used to map changes in 

functional interactions in the sensorimotor system. 
 

3.1 Mutual information 
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We first estimated mutual information between all muscle pairs in the bimanual pointing 

condition during normal stability, resulting in an adjacency matrix for every participant 

that was thresholded based on statistical significance to obtain undirected binary 

networks. To check these results, we also computed the adjacency matrices based on 

the correlation coefficient estimated directly from the EMG envelopes. After a 

transformation (-0.5*log(1-CC2)), the grand-average adjacency matrices are very similar 

(Mantel test, rho = 0.67, p = 1.6 * 10-7). The adjacency matrix showed high weights 

along the diagonal indicating edging between neighboring muscles (Fig. 3A, top panel). 

The strongest mutual information was observed between the D and TRB in both arms. 

Indeed, after thresholding, a sparse disconnected network (density = 0.13) was 

obtained showing primary connectivity between upper arm muscles but also separate 

cliques for the leg muscles (Fig. 3A, bottom panel). The nodes within each clique were 

densely connected, which may reflect the confounding influence of other processes. We 

therefore assessed conditional mutual information, which estimates the mutual 

information between two variables given all other variables and hence provides a better 

estimate of the true association between muscle pairs. The adjacency matrix showed 

reduced values for the conditional mutual information and the corresponding binary 

network was sparser (density = 0.09). However, the network structure remained largely 

unchanged (Mantel test, rho = 0.79, p = 1.0 * 10-7). 

 

.CC-BY-NC-ND 4.0 International licenseIt is made available under a 
(which was not peer-reviewed) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity.

The copyright holder for this preprint. http://dx.doi.org/10.1101/587949doi: bioRxiv preprint first posted online Mar. 25, 2019; 

http://dx.doi.org/10.1101/587949
http://creativecommons.org/licenses/by-nc-nd/4.0/


 16 

 
Figure 3. Undirected and directed muscle networks in bimanual pointing condition 
averaged across participants. A) Top panels show the grand-average adjacency matrices 
based on the mutual information (left) and the conditional mutual information (right). The order 
of the muscles in shown in Table 1 (first 16 muscles are on the right side and the last 16 
muscles on the left). Bottom panels show the spatial topology of the binary networks displayed 
on the human body (Makarov et al., 2015). Lines represent significant edges between nodes 
(muscles), i.e. at least half of the participants showed significant mutual information. Node size 
represents the node degree. B) Top panels show the grand-average adjacency matrix based on 
the transfer entropy (left) and the conditional transfer entropy (right). Bottom panels show the 
spatial topology of binary networks. Arrows represent significant directed edges between nodes, 
i.e. at least half of the participants showed significant transfer entropy. 
 

3.2 Transfer entropy 

Next, we investigated information transfer to map directed interactions between 

muscles. Again, transfer entropy revealed mostly short-range connections as reflected 

by the high values of transfer entropy along the diagonal (Fig. 3B, top panel). After 

thresholding, a directed network was obtained showing mainly short-range connections 

but also some long-range connections between bilateral forearm muscles and between 

upper and lower body muscles (Fig. 3B, bottom panel; density = 0.14). We then 
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assessed conditional transfer entropy to account for the influence of potential 

confounding influences. While the overall connectivity structure is similar to 

unconditioned transfer entropy, the network is much sparser (density = 0.05). 

Information transfer is mainly observed between upper arm and shoulder muscles, 

between bilateral leg and between lower arm muscles, but also a few edges 

interconnecting these cliques. 

 

 
Figure 4. Directed muscle networks across conditions estimated using conditional 
transfer entropy. Arrows indicate significant interactions and node size represents the in-
degree of the significant edges. The in-degree is estimated in group-level networks. 
 

3.3 Experimental effects 
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We then compared the conditional transfer entropy across conditions. The directed 

networks showed a clear effect of the experimental manipulations. In the no pointing 

condition, only a few edges were observed between arm muscles (Fig. 4, left column), 

which is expected given the minimal EMG activity of those muscles in this condition. In 

contrast, when pointing with one arm, multiple edges could be observed in the arm used 

for pointing (the dominant right arm) but not in the contralateral arm (Fig. 4, middle 

column). In the bimanual pointing condition multiple edges could be observed in both 

arms (Fig. 4, right column). Similar effects could be observed between leg muscles in 

the postural conditions. In the normal standing condition, a few short-range connections 

were present between the leg muscles (Fig. 4, top row). When posture was destabilized 

in the anterior-posterior direction, the number of connections between leg muscles was 

greatly enhanced showing multiple edges between bilateral lower leg muscles and 

between upper and lower leg muscles (Fig. 4, middle row). Finally, when posture was 

destabilized in the medial-lateral direction, multiple connections were observed between 

the leg muscles, but now also many connections between leg muscles and muscles in 

the torso could be observed (Fig. 4, bottom row). We hence observed systematic 

changes in conditional transfer entropy across conditions. 

 

To test whether these changes were statistically significant, we compared the in-degree 

of each node across conditions using repeated-measures ANOVA with Bonferroni-Holm 

correction for multiple comparisons. We found a significant main effect of pointing 

behavior in three muscles in the upper body (right and left PMA and left LD) and a 

significant main effect of postural instability in thirteen muscles mainly located in the 

lower body (right and left TA, SOL, RF, VL, AL, the left BF and the right EO and LO, Fig. 

5A). We selected the muscles showing the largest main effects to investigate the 

experimental effects in more detail. The PMA situated at the chest of the body revealed 

the largest effect of pointing behavior on the in-degree of transfer entropy (right: 

F(2,117)=18.8, Pcorr<0.0001; left: F(2,117)=10.8, Pcorr=0.005). Conditional transfer entropy 

was largest in the no pointing condition and reduced in unimanual and bimanual 

pointing conditions (Fig. 5B). This pattern was also mirrored in the total transfer, i.e. the 

global directed effects from all muscles towards the target. Information storage, i.e. the 
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presence of predictable/repeatable temporal patterns in the EMG envelopes, did not 

show a clear effect of pointing condition. Finally, total information, which is closely 

related to the variance of the EMG envelopes, was strongly enhanced when the 

corresponding arm was involved in the pointing task, i.e. during unimanual and 

bimanual pointing for the right PMA and only during bimanual pointing for the left PMA. 

For postural instability, we observed the largest effect in the AL muscle located on the 

medial side of the thigh (right: F(2,117)=61.9, Pcorr<0.0001; left: F(2,117)=27.0, Pcorr<0.0001). 

Conditional transfer entropy and total transfer were lowest in the normal standing 

condition, increased during anterior-posterior instability and highest during medial-

lateral instability (Fig. 5B). A similar pattern was observed for total storage and 

information. These information metrics hence showed distinct effects in these two 

muscles across experimental conditions. 

 

 
Figure 5. Comparison of information metrics across experimental conditions. A) 
Statistical results of two-way ANOVA of the weighted in-degree of conditional transfer entropy. 
The F-statistic is depicted as color-coded values at the three-dimensional coordinates of the 
locations where the muscle activity was recorded and interpolated on the other points of the 
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body surface mesh (Makarov et al., 2015). The top panel shows the main effect of pointing 
behavior and the bottom panel the main effect of postural stability. White circles indicate nodes 
(muscles) with a significant effect after Bonferroni-Holm correction. B) Descriptive statistics of 
three information metrics (conditional transfer entropy, total information transfer and total 
information) for selected muscles (PMA left, right and AL left, right). Dots show values of 
individual participants, the black line the group averages, and the grey boxes the standard error. 
 

4.  Discussion 
We used information decomposition of multichannel EMG to investigate task-related 

changes in the functional coordination of muscles distributed across the body. 

Participants performed different postural tasks in which pointing behavior (no, 

unimanual and bimanual pointing) and postural stability (normal, anterior-posterior and 

medial-lateral instability) were experimentally manipulated. Undirected and directed 

muscle networks were assessed by estimating mutual information and information 

transfer between EMG envelopes. A sparse network was observed when defining the 

edges based on statistically significant interactions, in particular when conditioning for 

information from other muscles. We compared muscle networks across conditions using 

the weighted in-degree of conditional transfer entropy and observed that task-related 

effects were confined to the muscles that are involved in the task: pointing behavior 

affected upper body muscles and postural behavior mainly affected lower body 

muscles. Furthermore, information decomposition revealed distinct patterns underlying 

both effects. Manual and bimanual pointing were associated with reduced transfer to the 

PMA muscles, but an increase in total information compared to no pointing, while 

postural instability resulted in increased information transfer, storage and information in 

the AL muscles compared to normal stability. These findings show that information 

decomposition and network analysis of surface EMG can be used as a tool to map 

changes in functional interactions in the sensorimotor system during postural control 

tasks.  

 

We used predictive information measures to study the neural circuitry interconnecting 

motor neuron pools using the EMG activity of several muscles distributed across the 

body. Such measures allow quantifying how much of the uncertainty about the current 

state of a muscle is reduced by the knowledge of the past states visited by the whole 
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muscle network, and to distinguish between the sources of the predictive information 

relevant to a target muscle: whether it originates from the past of the target, from a 

source muscle, or from other muscles within the network (Fig. 1D). The decomposition 

of predictive information into information storage and transfer, and the distinction 

between bivariate and conditional information transfer, provide a more detailed picture 

of the activity of each node and the connectivity between nodes in a dynamic network 

(Lizier, 2012). This has been shown in brain networks (Wibral et al., 2015), physiological 

networks (Faes et al, 2017a), and networks of brain-body interactions (Zanetti et al., 

2019), and here it is documented for the first time in muscle networks estimated from 

surface EMG. In particular, we assessed conditional mutual information and transfer 

entropy to account for other variables that may influence the relationship between 

source and target. Differentiation between spurious, indirect, and causal associations in 

observational data has been a long-standing problem and requires to control for 

confounding variables (Greenland et al., 1999; Grimes and Schulz, 2002). Here, we 

used a fully multivariate approach where we examined the potential effect of one 

variable on another while simultaneously controlling for the effect of many other 

variables. The use of a linear VAR models puts the computed indexes in the well-

framed context of Granger causality (Seth et al., 2015) and greatly enhances 

computational reliability (Barnett and Seth, 2015). We observed a sparser network when 

estimating edges weights using conditional information metrics, which shows that the 

conventional unconditioned metrics indeed conflate direct and indirect associations 

between muscles, as well as the effects of common drivers. 

 

Although we performed multivariate information decomposition of 36 EMG signals and 

thus accounted for a large number of confounding variables, a confounding bias may 

also arise from exogenous (unrecorded) variables. A key candidate would be 

supraspinal motor areas such as the motor cortex that has direct and indirect 

projections to the spinal motor neurons via descending pathways (Lemon, 2008). It has 

been well-established that activity from sensorimotor cortex and muscle activity are 

correlated, in particular in the beta band (15-30 Hz) (Conway et al., 1995; Mima and 

Hallett, 1999) but also at low frequencies (< 3 Hz) (Bourguignon et al., 2017), and that 
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corticospinal drive results in correlated activity of spinal motor neurons innervating 

functionally related muscles (Farmer et al., 1993). Hence, an obvious extension of the 

current approach would be to simultaneously record multichannel EMG and EEG and 

apply multivariate information decomposition to the combined dataset to distinguish 

between intermuscular and corticomuscular associations (Boonstra, 2013). Directed 

connectivity has been used to assess unidirectional connectivity between motor cortex 

and leg muscles during walking (Artoni et al., 2017). Multivariate information 

decomposition of combined EEG and EMG data would be a principled approach to 

study the brain-muscle networks involved in human motor coordination. 

 

Another possible limitation is that we assessed functional interactions in the time 

domain. Time domain analysis is widely used to study motor coordination, for example 

by extracting muscle synergies from the EMG envelopes (d'Avella et al., 2003; Tresch 

et al., 2006), but spectral analysis has shown that rhythmic activity in the human motor 

system can be observed at multiple distinct frequencies (McAuley and Marsden, 2000). 

We previously showed that intermuscular coherence between postural muscles at 

different frequencies revealed distinct network topologies, which indicate the functioning 

of a multiplex network organization (Kerkman et al., 2018). Multivariate frequency-

domain analysis of coupled processes can be used to assess frequency-dependent 

causal interactions in physiological time series (Faes and Nollo, 2011) and we have 

applied this to assess frequency-dependent directed muscle networks (Boonstra et al., 

2015). Nevertheless, network information measures have the advantage that they can 

be conveyed in a framework that identifies the basic components of information 

processing (i.e., storage, transfer and modification) into which network dynamics are 

dissected (Lizier, 2012), a perspective which is not available in the frequency domain. 

Moreover, information measures provide a compact description of the dynamics which 

subsumes oscillatory behaviors in different frequency bands. For instance, an increased 

information storage, such as observed in the AL muscles while perturbing postural 

stability, likely reflects the emergence of dominant oscillatory activity in specific 

frequency bands, which is also related to higher intermuscular coherence (Kerkman et 

al., 2018). Finally, electrical cross-talk may have affected the information metrics 
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estimated between EMGs (Farina et al., 2014), in particular as functional connectivity 

was mainly observed between neighboring muscles. However, in a previous study using 

the same data set (Kerkman et al., 2018), we did not find elevated coherence levels 

across frequencies indicative of cross-talk. As cross-talk results in instantaneous 

correlations between signals, the effect on time-lagged interactions will be reduced. In 

addition, we found interactions between bilateral muscles in the arms and legs, 

consistent with previous studies (Boonstra et al., 2015; de Vries et al., 2016), which 

cannot be caused by cross-talk. We therefore expect the effects of cross-talk to be 

minor.  

 

The current findings show that directed interactions between muscles are widespread 

and task-dependent. There is extensive evidence that motor neuron pools innervating 

muscles that are anatomically or functionally related receive correlated inputs (Bremner 

et al., 1991; Farmer et al., 1993; Gibbs et al., 1995; Laine et al., 2015). These correlated 

inputs are generally thought to originate from supraspinal areas through divergent 

pathways or from presynaptic synchronization, i.e. synchronization of the neuronal 

populations that project to the spinal motor neuron pool (Kirkwood, 2016). The results 

showing clear patterns of conditional transfer entropy between EMGs suggest the 

involvement of additional pathways that interconnect different motor neuron pools. A 

spinal network of interneurons interconnecting motor neuron pools within the spinal cord 

is involved in the coordination of muscle activity (Levine et al., 2014; Takei et al., 2017). 

Moreover, reflex pathways are a well-known mechanism whereby muscle activity from 

different muscles influences each other (Latash, 2007). While reflexes are largely 

automated, modern views suggest that gain modulation of reflex pathways are also 

involved in the control of voluntary movement (Azim and Seki, 2019; Krakauer, 2019). In 

particular, it is now thought that spinal interneurons control the input that spinal motor 

neurons receive from different primary afferents and descending tracts and that the 

brain modulates the activity of these spinal interneurons to control movement (Pierrot-

Deseilligny and Burke, 2012). According to the equilibrium point hypothesis, the central 

nervous system indeed controls movements by setting the threshold or gain of these 

spinal reflexes (Latash, 2008). An interesting hypothesis that can be tested in future 
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studies is that the task-related changes in functional interactions between muscles 

observed in this study reflects the change in gain of spinal reflex pathways.  
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