39 research outputs found

    Muon simulation codes MUSIC and MUSUN for underground physics

    Full text link
    The paper describes two Monte Carlo codes dedicated to muon simulations: MUSIC (MUon SImulation Code) and MUSUN (MUon Simulations UNderground). MUSIC is a package for muon transport through matter. It is particularly useful for propagating muons through large thickness of rock or water, for instance from the surface down to underground/underwater laboratory. MUSUN is designed to use the results of muon transport through rock/water to generate muons in or around underground laboratory taking into account their energy spectrum and angular distribution.Comment: 22 pages, 9 figures, 1 table, to be published in Computer Physics Communication

    Supernova burst and relic neutrino sensitivity studies in the Hyper-Kamiokande Korean sites

    Get PDF
    Hyper-Kamiokande is a next-generation water Cherencov detector for neutrino physics. Its large volume (260 kton × 2) allows Supernova burst (SN) neutrino and Supernova Relic Neutrino (SRN) search much more promising than current Super-Kamiokande detector (50 kton). With an alternative plan of locating one of the two identical detectors to Korea, better physics sensitivities are expected because of less muon flux and its spallation isotopes due to more overburden in Korean candidate sites than Japanese Hyper-Kamiokande site (Tochibora). According to our study using simple MC 102 SRN events (5.2 sigma) in a Korean site and 71 SRN events (4.2 sigma) in the Japanese site are expected for 10 years of operation for one detector. Sensitivity studies using a full MC will be performed in the near future

    Virtual depth by active background suppression: Revisiting the cosmic muon induced background of GERDA Phase II

    Full text link
    In-situ production of long-lived isotopes by cosmic muon interactions may generate a non-negligible background for deep underground rare event searches. Previous Monte Carlo studies for the GERDA experiment at LNGS identified the delayed decays of 77^{77}Ge and its metastable state 77m^{77m}Ge as dominant cosmogenic background in the search for neutrinoless double beta decay of 76^{76}Ge. This might limit the sensitivity of next generation experiments aiming for increased 76^{76}Ge mass at background-free conditions and thereby define a minimum depth requirement. A re-evaluation of the 77(m)^{77(m)}Ge background for the GERDA experiment has been carried out by a set of Monte Carlo simulations. The obtained 77(m)^{77(m)}Ge production rate is (0.21±\pm0.01) nuclei/(kg\cdotyr). After application of state-of-the-art active background suppression techniques and simple delayed coincidence cuts this corresponds to a background contribution of (2.7±\pm0.3)106\cdot10^{-6} cts/(keV\cdotkg\cdotyr). The suppression achieved by this strategy equals an effective muon flux reduction of more than one order of magnitude. This virtual depth increase opens the way for next generation rare event searches.Comment: 9 pages, 5 figure

    Simulación de los fenómenos ópticos de propagación de las partículas dentro de un prototipo de detector de muones atmosféricos

    Get PDF
    El paso de radiación a través de la materia donde ocurren distintos procesos producto de dicha interacción, nos proporciona un panorama importante a la hora de estudiar los procesos fı́sicos que se desarrollan dentro de la materia. La interacción de muones atmosféricos, los cuales son producto de las lluvias atmosféricas extendidas, con un prototipo de detector construido con barras plásticas que sera simulado usando la herramienta computacional GEANT4, con esto se pretende tener una propuesta del diseño final del detector de muones. Este proyecto tiene como objetivo estudiar los procesos ópticos que se desarrollan dentro de una barra plástica de centelleo durante el paso de muones atmosféricos. Las simulaciones realizadas y el respectivo análisis de datos, podrı́an servir como una guı́a importante para el diseño de un sistema tomográfico basado en muones atmosféricos generados por rayos cósmicos en el área de muongrafı́a

    Sensitivity of a tonne-scale NEXT detector for neutrinoless double beta decay searches

    Full text link
    The Neutrino Experiment with a Xenon TPC (NEXT) searches for the neutrinoless double-beta decay of Xe-136 using high-pressure xenon gas TPCs with electroluminescent amplification. A scaled-up version of this technology with about 1 tonne of enriched xenon could reach in less than 5 years of operation a sensitivity to the half-life of neutrinoless double-beta decay decay better than 1E27 years, improving the current limits by at least one order of magnitude. This prediction is based on a well-understood background model dominated by radiogenic sources. The detector concept presented here represents a first step on a compelling path towards sensitivity to the parameter space defined by the inverted ordering of neutrino masses, and beyond.Comment: 22 pages, 11 figure

    A Mobile Detector for Muon Measurements Based on Two Different Techniques

    Get PDF
    Precise measurements of the muon flux are important for different practical applications, both in environmental studies and for the estimation of the water equivalent depths of underground sites. A mobile detector for cosmic muon flux measurements has been set up at IFIN-HH, Romania. The device is used to measure the muon flux on different locations at the surface and underground. Its first configuration, not used in the present, has been composed of two 1 m2 scintillator plates, each viewed by wave length shifters and read out by two Photomultiplier Tubes (PMTs). A more recent configuration, consists of two 1 m2 detection layers, each one including four 1 · 0,25 m2 large scintillator plates. The light output in each plate is collected by twelve optical fibers and then read out by one PMT. Comparative results were obtained with both configurations

    Mitigation of backgrounds from cosmogenic Xe-137 in xenon gas experiments using He-3 neutron capture

    Full text link
    [EN] Xe-136 is used as the target medium for many experiments searching for 0 nu beta beta. Despite underground operation, cosmic muons that reach the laboratory can produce spallation neutrons causing activation of detector materials. A potential background that is difficult to veto using muon tagging comes in the form of Xe-137 created by the capture of neutrons on Xe-136. This isotope decays via beta decay with a half-life of 3.8 min and a Q(beta) of similar to 4.16 MeV. This work proposes and explores the concept of adding a small percentage of He-3 to xenon as a means to capture thermal neutrons and reduce the number of activations in the detector volume. When using this technique we find the contamination from Xe-137 activation can be reduced to negligible levels in tonne and multi-tonne scale high pressure gas xenon neutrinoless double beta decay experiments running at any depth in an underground laboratory.The work described was supported by the Department of Energy under Award numbers DE-SC0019054 and DE-SC0019223. The NEXT Collaboration acknowledges support from the following agencies and institutions: the European Research Council (ERC) under the Advanced Grant 339787-NEXT; the European Union's Framework Program for Research and Innovation Horizon 2020 (2014-2020) under the Marie Skodowska-Curie Grant Agreements No. 674896, 690575 and 740055; the Ministerio de Economia y Competitividad of Spain under grants FIS2014-53371-C04, the Severo Ochoa Program SEV-2014-0398 and the Maria de Maetzu Program MDM-2016-0692; the GVA of Spain under grants PROMETEO/2016/120 and SEJI/2017/011; the Portuguese FCT under project PTDC/FIS-NUC/2525/2014, under project UID/FIS/04559/2013 to fund the activities of LIBPhys, and under grants PD/BD/105921/2014, SFRH/BPD/109180/2015 and SFRH/BPD/76842/2011. Finally, we are grateful to the Laboratorio Subterraneo de Canfranc for hosting and supporting the NEXT experiment.Rogers, L.; Jones, BJP.; Laing, A.; Pingulkar, S.; Smithers, B.; Woodruff, K.; Adams, C.... (2020). Mitigation of backgrounds from cosmogenic Xe-137 in xenon gas experiments using He-3 neutron capture. Journal of Physics G Nuclear and Particle Physics. 47(7):1-17. https://doi.org/10.1088/1361-6471/ab8915S117477Nygren, D. (2009). High-pressure xenon gas electroluminescent TPC for 0-ν ββ-decay search. Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 603(3), 337-348. doi:10.1016/j.nima.2009.01.222Ferrario, P., Laing, A., López-March, N., Gómez-Cadenas, J. J., Álvarez, V., … Cebrián, S. (2016). First proof of topological signature in the high pressure xenon gas TPC with electroluminescence amplification for the NEXT experiment. Journal of High Energy Physics, 2016(1). doi:10.1007/jhep01(2016)104Monrabal, F., Gómez-Cadenas, J. J., Toledo, J. F., Laing, A., Álvarez, V., Benlloch-Rodríguez, J. M., … Felkai, R. (2018). The NEXT White (NEW) detector. Journal of Instrumentation, 13(12), P12010-P12010. doi:10.1088/1748-0221/13/12/p12010Martín-Albo, J., Muñoz Vidal, J., Ferrario, P., Nebot-Guinot, M., Gómez-Cadenas, J. J., … Cárcel, S. (2016). Sensitivity of NEXT-100 to neutrinoless double beta decay. Journal of High Energy Physics, 2016(5). doi:10.1007/jhep05(2016)159Felkai, R., Monrabal, F., González-Díaz, D., Sorel, M., López-March, N., Gómez-Cadenas, J. J., … Azevedo, C. D. R. (2018). Helium–Xenon mixtures to improve the topological signature in high pressure gas xenon TPCs. Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 905, 82-90. doi:10.1016/j.nima.2018.07.013McDonald, A. D., Woodruff, K., Atoum, B. A., González-Díaz, D., Jones, B. J. P., Adams, C., … Azevedo, C. D. . (2019). Electron drift and longitudinal diffusion in high pressure xenon-helium gas mixtures. Journal of Instrumentation, 14(08), P08009-P08009. doi:10.1088/1748-0221/14/08/p08009Anton, G., Badhrees, I., Barbeau, P. S., Beck, D., Belov, V., Bhatta, T., … Cen, W. R. (2019). Search for Neutrinoless Double- β Decay with the Complete EXO-200 Dataset. Physical Review Letters, 123(16). doi:10.1103/physrevlett.123.161802Albert, J. B., Anton, G., Arnquist, I. J., Badhrees, I., Barbeau, P., Beck, D., … Brown, E. (2018). Sensitivity and discovery potential of the proposed nEXO experiment to neutrinoless double- β decay. Physical Review C, 97(6). doi:10.1103/physrevc.97.065503Gando, A., Gando, Y., Hachiya, T., Hayashi, A., Hayashida, S., … Ikeda, H. (2016). Publisher’s Note: Search for Majorana Neutrinos Near the Inverted Mass Hierarchy Region with KamLAND-Zen [Phys. Rev. Lett.117, 082503 (2016)]. Physical Review Letters, 117(10). doi:10.1103/physrevlett.117.109903Jones, B. J. P., McDonald, A. D., & Nygren, D. R. (2016). Single molecule fluorescence imaging as a technique for barium tagging in neutrinoless double beta decay. Journal of Instrumentation, 11(12), P12011-P12011. doi:10.1088/1748-0221/11/12/p12011McDonald, A. D., Jones, B. J. P., Nygren, D. R., Adams, C., Álvarez, V., Azevedo, C. D. R., … Cárcel, S. (2018). Demonstration of Single-Barium-Ion Sensitivity for Neutrinoless Double-Beta Decay Using Single-Molecule Fluorescence Imaging. Physical Review Letters, 120(13). doi:10.1103/physrevlett.120.132504Thapa, P., Arnquist, I., Byrnes, N., Denisenko, A. A., Foss, F. W., Jones, B. J. P., … Woodruff, K. (2019). Barium Chemosensors with Dry-Phase Fluorescence for Neutrinoless Double Beta Decay. Scientific Reports, 9(1). doi:10.1038/s41598-019-49283-xChadwick, M. B., Herman, M., Obložinský, P., Dunn, M. E., Danon, Y., Kahler, A. C., … Arcilla, R. (2011). ENDF/B-VII.1 Nuclear Data for Science and Technology: Cross Sections, Covariances, Fission Product Yields and Decay Data. Nuclear Data Sheets, 112(12), 2887-2996. doi:10.1016/j.nds.2011.11.002Brown, D. A., Chadwick, M. B., Capote, R., Kahler, A. C., Trkov, A., Herman, M. W., … Dunn, M. (2018). ENDF/B-VIII.0: The 8 th Major Release of the Nuclear Reaction Data Library with CIELO-project Cross Sections, New Standards and Thermal Scattering Data. Nuclear Data Sheets, 148, 1-142. doi:10.1016/j.nds.2018.02.001Martínez-Lema, G., Morata, J. A. H., Palmeiro, B., Botas, A., Ferrario, P., Monrabal, F., … Para, A. (2018). Calibration of the NEXT-White detector using 83mKr decays. Journal of Instrumentation, 13(10), P10014-P10014. doi:10.1088/1748-0221/13/10/p10014Agostinelli, S., Allison, J., Amako, K., Apostolakis, J., Araujo, H., Arce, P., … Barrand, G. (2003). Geant4—a simulation toolkit. Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 506(3), 250-303. doi:10.1016/s0168-9002(03)01368-8Albert, J. B., Daugherty, S. J., Johnson, T. N., O’Conner, T., Kaufman, L. J., Couture, A., … Krtička, M. (2016). Measurement of neutron capture onXe136. Physical Review C, 94(3). doi:10.1103/physrevc.94.034617Batchelor, R., Aves, R., & Skyrme, T. H. R. (1955). Helium‐3 Filled Proportional Counter for Neutron Spectroscopy. Review of Scientific Instruments, 26(11), 1037-1047. doi:10.1063/1.1715182Gibbons, J. H., & Macklin, R. L. (1959). Total Neutron Yields from Light Elements under Proton and Alpha Bombardment. Physical Review, 114(2), 571-580. doi:10.1103/physrev.114.571Haesner, B., Heeringa, W., Klages, H. O., Dobiasch, H., Schmalz, G., Schwarz, P., … Käppeler, F. (1983). Measurement of theHe3andHe4total neutron cross sections up to 40 MeV. Physical Review C, 28(3), 995-999. doi:10.1103/physrevc.28.995Antolković, B., Paić, G., Tomaš, P., & Rendić, D. (1967). Study of Neutron-Induced Reactions onHe3atEn=14.4MeV. Physical Review, 159(4), 777-781. doi:10.1103/physrev.159.777Seagrave, J. D., Cranberg, L., & Simmons, J. E. (1960). Elastic Scattering of Fast Neutrons by Tritium andHe3. Physical Review, 119(6), 1981-1991. doi:10.1103/physrev.119.1981Sayres, A. R., Jones, K. W., & Wu, C. S. (1961). Interaction of Neutrons withHe3. Physical Review, 122(6), 1853-1863. doi:10.1103/physrev.122.1853Als-Nielsen, J., & Dietrich, O. (1964). Slow Neutron Cross Sections forHe3, B, and Au. Physical Review, 133(4B), B925-B929. doi:10.1103/physrev.133.b925Bertini, H. W. (1963). Low-Energy Intranuclear Cascade Calculation. Physical Review, 131(4), 1801-1821. doi:10.1103/physrev.131.1801Barashenkov, V. S., Bertini, H. W., Chen, K., Friedlander, G., Harp, G. D., Iljinov, A. S., … Toneev, V. D. (1972). Medium energy intranuclear cascade calculations: a comparative study. Nuclear Physics A, 187(3), 531-544. doi:10.1016/0375-9474(72)90678-1BERTINI, H. W. (1969). Intranuclear-Cascade Calculation of the Secondary Nucleon Spectra from Nucleon-Nucleus Interactions in the Energy Range 340 to 2900 MeV and Comparisons with Experiment. Physical Review, 188(4), 1711-1730. doi:10.1103/physrev.188.1711Wright, D. H., & Kelsey, M. H. (2015). The Geant4 Bertini Cascade. Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 804, 175-188. doi:10.1016/j.nima.2015.09.058Kudryavtsev, V. A. (2009). Muon simulation codes MUSIC and MUSUN for underground physics. Computer Physics Communications, 180(3), 339-346. doi:10.1016/j.cpc.2008.10.013Aharmim, B., Ahmed, S. N., Andersen, T. C., Anthony, A. E., Barros, N., Beier, E. W., … Biller, S. D. (2009). Measurement of the cosmic ray and neutrino-induced muon flux at the Sudbury neutrino observatory. Physical Review D, 80(1). doi:10.1103/physrevd.80.012001Wittenberg, L. J., Santarius, J. F., & Kulcinski, G. L. (1986). Lunar Source of3He for Commercial Fusion Power. Fusion Technology, 10(2), 167-178. doi:10.13182/fst86-a24972Ahmad, Q. R., Allen, R. C., Andersen, T. C., D.Anglin, J., Barton, J. C., Beier, E. W., … Black, R. A. (2002). Direct Evidence for Neutrino Flavor Transformation from Neutral-Current Interactions in the Sudbury Neutrino Observatory. Physical Review Letters, 89(1). doi:10.1103/physrevlett.89.011301Amsbaugh, J. F., Anaya, J. M., Banar, J., Bowles, T. J., Browne, M. C., Bullard, T. V., … Deng, H. (2007). An array of low-background 3He proportional counters for the Sudbury Neutrino Observatory. Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 579(3), 1054-1080. doi:10.1016/j.nima.2007.05.321Tastevin, G. (2000). Optically Polarized Helium-3 for N.M.R. Imaging in Medicine. Physica Scripta, T86(1), 46. doi:10.1238/physica.topical.086a00046Fain, S., Schiebler, M. L., McCormack, D. G., & Parraga, G. (2010). Imaging of lung function using hyperpolarized helium-3 magnetic resonance imaging: Review of current and emerging translational methods and applications. Journal of Magnetic Resonance Imaging, 32(6), 1398-1408. doi:10.1002/jmri.22375Korff, S. A., & Danforth, W. E. (1939). Neutron Measurements with Boron-Trifluoride Counters. Physical Review, 55(10), 980-980. doi:10.1103/physrev.55.980Lintereur, A., Conlin, K., Ely, J., Erikson, L., Kouzes, R., Siciliano, E., … Woodring, M. (2011). 3He and BF3 neutron detector pressure effect and model comparison. Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 652(1), 347-350. doi:10.1016/j.nima.2010.10.040Fowler, I. L., & Tunnicliffe, P. R. (1950). Boron Trifluoride Proportional Counters. Review of Scientific Instruments, 21(8), 734-740. doi:10.1063/1.1745700Segrè, E., & Wiegand, C. (1947). Boron Trifluoride Neutron Detector for Low Neutron Intensities. Review of Scientific Instruments, 18(2), 86-89. doi:10.1063/1.1740909Böhlen, T. T., Cerutti, F., Chin, M. P. W., Fassò, A., Ferrari, A., Ortega, P. G., … Vlachoudis, V. (2014). The FLUKA Code: Developments and Challenges for High Energy and Medical Applications. Nuclear Data Sheets, 120, 211-214. doi:10.1016/j.nds.2014.07.049Ferrari, A., Sala, P. R., Fasso, A., & Ranft, J. (2005). FLUKA: A Multi-Particle Transport Code. doi:10.2172/87750
    corecore