162 research outputs found

    Feature space analysis for human activity recognition in smart environments

    Get PDF
    Activity classification from smart environment data is typically done employing ad hoc solutions customised to the particular dataset at hand. In this work we introduce a general purpose collection of features for recognising human activities across datasets of different type, size and nature. The first experimental test of our feature collection achieves state of the art results on well known datasets, and we provide a feature importance analysis in order to compare the potential relevance of features for activity classification in different datasets

    Feature space analysis for human activity recognition in smart environments

    Get PDF
    Activity classification from smart environment data is typically done employing ad hoc solutions customised to the particular dataset at hand. In this work we introduce a general purpose collection of features for recognising human activities across datasets of different type, size and nature. The first experimental test of our feature collection achieves state of the art results on well known datasets, and we provide a feature importance analysis in order to compare the potential relevance of features for activity classification in different datasets

    Real-time action recognition using a multilayer descriptor with variable size

    Get PDF
    Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)Video analysis technology has become less expensive and more powerful in terms of storage resources and resolution capacity, promoting progress in a wide range of applications. Video-based human action detection has been used for several tasks in surveillance environments, such as forensic investigation, patient monitoring, medical training, accident prevention, and traffic monitoring, among others. We present a method for action identification based on adaptive training of a multilayer descriptor applied to a single classifier. Cumulative motion shapes (CMSs) are extracted according to the number of frames present in the video. Each CMS is employed as a self-sufficient layer in the training stage but belongs to the same descriptor. A robust classification is achieved through individual responses of classifiers for each layer, and the dominant result is used as a final outcome. Experiments are conducted on five public datasets (Weizmann, KTH, MuHAVi, IXMAS, and URADL) to demonstrate the effectiveness of the method in terms of accuracy in real time. (C) 2016 SPIE and IS&TVideo analysis technology has become less expensive and more powerful in terms of storage resources and resolution capacity, promoting progress in a wide range of applications. Video-based human action detection has been used for several tasks in surveill2501FAPESP - FUNDAÇÃO DE AMPARO À PESQUISA DO ESTADO DE SÃO PAULOCNPQ - CONSELHO NACIONAL DE DESENVOLVIMENTO CIENTÍFICO E TECNOLÓGICOFundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)SEM INFORMAÇÃOSEM INFORMAÇÃ

    An Unsupervised Approach for Automatic Activity Recognition based on Hidden Markov Model Regression

    Full text link
    Using supervised machine learning approaches to recognize human activities from on-body wearable accelerometers generally requires a large amount of labelled data. When ground truth information is not available, too expensive, time consuming or difficult to collect, one has to rely on unsupervised approaches. This paper presents a new unsupervised approach for human activity recognition from raw acceleration data measured using inertial wearable sensors. The proposed method is based upon joint segmentation of multidimensional time series using a Hidden Markov Model (HMM) in a multiple regression context. The model is learned in an unsupervised framework using the Expectation-Maximization (EM) algorithm where no activity labels are needed. The proposed method takes into account the sequential appearance of the data. It is therefore adapted for the temporal acceleration data to accurately detect the activities. It allows both segmentation and classification of the human activities. Experimental results are provided to demonstrate the efficiency of the proposed approach with respect to standard supervised and unsupervised classification approache

    A Data Fusion Perspective on Human Motion Analysis Including Multiple Camera Applications

    Get PDF
    Proceedings of: 5th International Work-Conference on the Interplay Between Natural and Artificial Computation, (IWINAC 2013). Mallorca, Spain, June 10-14.Human motion analysis methods have received increasing attention during the last two decades. In parallel, data fusion technologies have emerged as a powerful tool for the estimation of properties of objects in the real world. This papers presents a view of human motion analysis from the viewpoint of data fusion. JDL process model and Dasarathy's input-output hierarchy are employed to categorize the works in the area. A survey of the literature in human motion analysis from multiple cameras is included. Future research directions in the area are identified after this review.Publicad

    Human Action Recognition with RGB-D Sensors

    Get PDF
    none3noHuman action recognition, also known as HAR, is at the foundation of many different applications related to behavioral analysis, surveillance, and safety, thus it has been a very active research area in the last years. The release of inexpensive RGB-D sensors fostered researchers working in this field because depth data simplify the processing of visual data that could be otherwise difficult using classic RGB devices. Furthermore, the availability of depth data allows to implement solutions that are unobtrusive and privacy preserving with respect to classic video-based analysis. In this scenario, the aim of this chapter is to review the most salient techniques for HAR based on depth signal processing, providing some details on a specific method based on temporal pyramid of key poses, evaluated on the well-known MSR Action3D dataset.Cippitelli, Enea; Gambi, Ennio; Spinsante, SusannaCippitelli, Enea; Gambi, Ennio; Spinsante, Susann
    corecore