7 research outputs found

    학습 기반 자율시스템의 리스크를 고려하는 분포적 강인 최적화

    Get PDF
    학위논문 (석사) -- 서울대학교 대학원 : 공과대학 전기·정보공학부, 2020. 8. 양인순.In this thesis, a risk-aware motion control scheme is considered for autonomous systems to avoid randomly moving obstacles when the true probability distribution of uncertainty is unknown. We propose a novel model predictive control (MPC) method for motion planning and decision-making that systematically adjusts the safety and conservativeness in an environment with randomly moving obstacles. The key component is the Conditional Value-at-Risk (CVaR), employed to limit the safety risk in the MPC problem. Having the empirical distribution obtained using a limited amount of sample data, Sample Average Approximation (SAA) is applied to compute the safety risk. Furthermore, we propose a method, which limits the risk of unsafety even when the true distribution of the obstacles movements deviates, within an ambiguity set, from the empirical one. By choosing the ambiguity set as a statistical ball with its radius measured by the Wasserstein metric, we achieve a probabilistic guarantee of the out-of-sample risk, evaluated using new sample data generated independently of the training data. A set of reformulations are applied on both SAA-based MPC (SAA-MPC) and Wasserstein Distributionally Robust MPC (DR-MPC) to make them tractable. In addition, we combine the DR-MPC method with Gaussian Process (GP) to predict the future motion of the obstacles from past observations of the environment. The performance of the proposed methods is demonstrated and analyzed through simulation studies using a nonlinear vehicle model and a linearized quadrotor model.본 연구에서 자율 시스템이 알려지지 않은 확률 분포로 랜덤하게 움직이는 장애물을 피하기 위한 위험 인식을 고려하는 모션 제어 기법을 개발한다. 따라서 본 논문에서 안전성과 보수성을 체계적으로 조절하는 새로운 Model Predictive Control (MPC) 방법을 제안한다. 본 방벙의 핵심 요소는 MPC 문제의 안전성 리스크를 제한하는 Conditional Value-at-Risk (CVaR)라는 리스크 척도이다. 안전성 리스크를 계산하기 위해 제한된 양의 표본 데이터를 이용하여 얻어진 경험적 분포를 사용하는 Sample Average Approximation (SAA)을 적용한다. 또한, 경험적 분포로부터 실제 분포가 Ambiguity Set라는 집합 내에서 벗어나도 리스크를 제한하는 방법을 제안한다. Ambiguity Set를 Wasserstein 거리로 측정된 반지름을 가진 통계적 공으로 선택함으로써 훈련 데이터와 독립적으로 생성된 새로운 샘플 데이터를 사용하여 평가한 out-of-sample risk에 대한 확률적 보장을 달성한다. 본 논문에서 SAA기반 MPC (SAA-MPC)와 Wasserstein Distributionally Robust MPC (DR-MPC)를 여러 과정을 통하여 다루기 쉬운 프로그램으로 재편성한다. 또한, 환경의 과거 관측으로부터 장애물의 미래 움직임을 예측하기 위해 Distributionally Robust MPC 방법을 Gaussian Process (GP)와 결합한다. 본 연구에서 개발되는 기법들의 성능을 비선형 자동차 모델과 선형화된 쿼드로터 모델을 이용한 시뮬레이션 연구를 통하여 분석한다.1 BACKGROUND AND OBJECTIVES 1 1.1 Motivation and Objectives 1 1.2 Research Contributions 2 1.3 Thesis Organization 3 2 RISK-AWARE MOTION PLANNING AND CONTROL USING CVAR-CONSTRAINED OPTIMIZATION 5 2.1 Introduction 5 2.2 System and Obstacle Models 8 2.3 CVaR-constrained Motion Planning and Control 10 2.3.1 Reference Trajectory Planning 10 2.3.2 Safety Risk 11 2.3.3 Risk-Constrained Model Predictive Control 13 2.3.4 Linearly Constrained Mixed Integer Convex Program 18 2.4 Numerical Experiments 20 2.4.1 Effect of Confidence Level 21 2.4.2 Effect of Sample Size 23 2.5 Conclusions 24 3 WASSERSTEIN DISTRIBUTIONALLY ROBUST MPC 28 3.1 Introduction 28 3.2 System and Obstacle Models 31 3.3 Wasserstein Distributionally Robust MPC 33 3.3.1 Distance to the Safe Region 36 3.3.2 Reformulation of Distributionally Robust Risk Constraint 38 3.3.3 Reformulation of the Wasserstein DR-MPC Problem 43 3.4 Out-of-Sample Performance Guarantee 45 3.5 Numerical Experiments 47 3.5.1 Nonlinear Car-Like Vehicle Model 48 3.5.2 Linearized Quadrotor Model 53 3.6 Conclusions 57 4 LEARNING-BASED DISTRIBUTIONALLY ROBUST MPC 58 4.1 Introduction 58 4.2 Learning the Movement of Obstacles Using Gaussian Processes 60 4.2.1 Obstacle Model 60 4.2.2 Gaussian Process Regression 61 4.2.3 Prediction of the Obstacle's Motion 63 4.3 Gaussian Process based Wasserstein DR-MPC 65 4.4 Numerical Experiments 70 4.5 Conclusions 74 5 CONCLUSIONS AND FUTURE WORK 75 Abstract (In Korean) 87Maste

    Determining optimal flight paths for cellular network connectivity for the transmission of real-time physiological data in support of big data analytics during airborne critical care transport

    Get PDF
    This thesis presents a methodology for determining the optimal flight paths between two geographical points based on distance and cellular reception over the path. This methodology consists of two main concepts: coverage map generation, and path planning. Coverage map generation creates a grid map of the total planning space that contains coverage information for each grid point. Coverage is calculated based on geographical and technical information regarding each cell tower in the planning area. The planning step utilises the coverage map to plan a route based on minimum distance and maximum coverage, which is then smoothed into a feasible route for an aircraft to follow. This methodology is demonstrated in an airborne critical care transport within the Province of Ontario in Canada context. Leveraging available cellular information, this methodology is used to determine optimal paths between various care centres or their closest airport. Evaluation reveals that optimal routes can be found through this methodology

    Commande sous contraintes de systèmes dynamiques multi-agents

    No full text
    The goal of this thesis is to propose solutions for the optimal control of multi-agent dynamical systems under constraints. Elements from control theory and optimization are merged together in order to provide useful tools which are further applied to different problems involving multi-agent formations. The thesis considers the challenging case of agents subject to dynamical constraints. To deal with these issues, well established concepts like set-theory, differential flatness, Model Predictive Control (MPC), Mixed-Integer Programming (MIP) are adapted and enhanced. Using these theoretical notions, the thesis concentrates on understanding the geometrical properties of the multi-agent group formation and on providing a novel synthesis framework which exploits the group structure. In particular, the formation design and the collision avoidance conditions are casted as geometrical problems and optimization-based procedures are developed to solve them. Moreover, considerable advances in this direction are obtained by efficiently using MIP techniques (in order to derive an efficient description of the non-convex, non-connected feasible region which results from multi-agent collision and obstacle avoidance constraints) and stability properties (in order to analyze the uniqueness and existence of formation configurations). Lastly, some of the obtained theoretical results are applied on a challenging practical application. A novel combination of MPC and differential flatness (for reference generation) is used for the flight control of Unmanned Aerial Vehicles (UAVs).L'objectif de cette thèse est de proposer des solutions aux problèmes liés à la commande optimale de systèmes dynamiques multi-agents en présence de contraintes. Des éléments de la théorie de commande et d'optimisation sont appliqués à différents problèmes impliquant des formations de systèmes multi-agents. La thèse examine le cas d'agents soumis à des contraintes dynamiques. Pour faire face à ces problèmes, les concepts bien établis tels que la théorie des ensembles, la platitude différentielle, la commande prédictive (Model Predictive Control - MPC), la programmation mixte en nombres entiers (Mixed-Integer Programming - MIP) sont adaptés et améliorés. En utilisant ces notions théoriques, ce travail de thèse a porté sur les propriétés géométriques de la formation d'un groupe multi-agents et propose un cadre de synthèse original qui exploite cette structure. En particulier, le problème de conception de formation et les conditions d'évitement des collisions sont formulés comme des problèmes géométriques et d'optimisation pour lesquels il existe des procédures de résolution. En outre, des progrès considérables dans ce sens ont été obtenus en utilisant de façon efficace les techniques MIP (dans le but d'en déduire une description efficace des propriétés de non convexité et de non connexion d'une région de faisabilité résultant d'une collision de type multi-agents avec des contraintes d'évitement d'obstacles) et des propriétés de stabilité (afin d'analyser l'unicité et l'existence de configurations de formation de systèmes multi-agents). Enfin, certains résultats théoriques obtenus ont été appliqués dans un cas pratique très intéressant. On utilise une nouvelle combinaison de la commande prédictive et de platitude différentielle (pour la génération de référence) dans la commande et la navigation de véhicules aériens sans pilote (UAVs)

    Time Localization of Abrupt Changes in Cutting Process using Hilbert Huang Transform

    Get PDF
    Cutting process is extremely dynamical process influenced by different phenomena such as chip formation, dynamical responses and condition of machining system elements. Different phenomena in cutting zone have signatures in different frequency bands in signal acquired during process monitoring. The time localization of signal’s frequency content is very important. An emerging technique for simultaneous analysis of the signal in time and frequency domain that can be used for time localization of frequency is Hilbert Huang Transform (HHT). It is based on empirical mode decomposition (EMD) of the signal into intrinsic mode functions (IMFs) as simple oscillatory modes. IMFs obtained using EMD can be processed using Hilbert Transform and instantaneous frequency of the signal can be computed. This paper gives a methodology for time localization of cutting process stop during intermittent turning. Cutting process stop leads to abrupt changes in acquired signal correlated to certain frequency band. The frequency band related to abrupt changes is localized in time using HHT. The potentials and limitations of HHT application in machining process monitoring are shown
    corecore