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Abstract

In this thesis, a risk-aware motion control scheme is considered for autonomous

systems to avoid randomly moving obstacles when the true probability distribution of

uncertainty is unknown. We propose a novel model predictive control (MPC) method

for motion planning and decision-making that systematically adjusts the safety and

conservativeness in an environment with randomly moving obstacles. The key com-

ponent is the Conditional Value-at-Risk (CVaR), employed to limit the safety risk in

the MPC problem. Having the empirical distribution obtained using a limited amount

of sample data, Sample Average Approximation (SAA) is applied to compute the

safety risk. Furthermore, we propose a method, which limits the risk of unsafety even

when the true distribution of the obstacles’ movements deviates, within an ambiguity

set, from the empirical one. By choosing the ambiguity set as a statistical ball with

its radius measured by the Wasserstein metric, we achieve a probabilistic guarantee

of the out-of-sample risk, evaluated using new sample data generated independently

of the training data. A set of reformulations are applied on both SAA-based MPC

(SAA-MPC) and Wasserstein Distributionally Robust MPC (DR-MPC) to make them

tractable.

In addition, we combine the DR-MPC method with Gaussian Process (GP) to pre-

dict the future motion of the obstacles from past observations of the environment.

The performance of the proposed methods is demonstrated and analyzed through

simulation studies using a nonlinear vehicle model and a linearized quadrotor model.

keywords: Distributionally Robust Optimization, Optimal Control, Motion Control,

Collision Avoidance, Robot Safety

student number: 2018-26905
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Chapter 1

BACKGROUND AND OBJECTIVES

1.1 Motivation and Objectives

Safety is one of the most fundamental challenges in the operation of robots and au-

tonomous systems in practical environments, which are uncertain and dynamic. In

particular, the unpredicted motion of objects and agents often risks the collision-free

navigation of mobile robots, as for examples in Fig. 1.1. One of the simplest and most

popular ways to estimate the probability distribution of the obstacle’s motion is to use

data to construct an empirical distribution. Then, one might use well-known Sample

Average Approximation (SAA) to limit the risk of unsafety. However, even though

SAA is quite effective with asymptotic optimality, it does not ensure the satisfaction

of risk constraints, particularly with a small sample size.

The research question to be addressed in this work is as follows: Can a robot make

a safe decision using an unreliable distribution estimated from small samples?

To answer this question, we develop an optimization-based motion control method

that uses a limited amount of data for making a risk-aware decision and improving its

performance to ensure a finite-sample probabilistic guarantee of collision avoidance.
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Figure 1.1: A person with unknown motion, interfering the vehicle navigation

(Licensed under CC BY-NC).

1.2 Research Contributions

The contributions of this work can be summarized as follows. First, a novel model

predictive control (MPC) method is proposed to limit the risk of unsafety through

Conditional Value-at-Risk constraint by incorporating available data samples, as well

as taking advantage of the obstacles geometry. Second, we improve the method to

make sure that the safety constraint holds for any perturbation of the empirical dis-

tribution within the Wasserstein ambiguity set. Thus, the resulting control decision is

guaranteed to satisfy the risk constraints for avoiding randomly moving obstacles in

the presence of allowable distribution errors. Moreover, the proposed method provides

a finite-sample probabilistic guarantee of limiting out-of-sample risk, meaning that the

risk constraints are satisfied with probability no less than a certain threshold even when

evaluated with new sample data chosen independently of the training data. Second, for

computational tractability, we reformulate both the SAA-based MPC and the Wasser-

stein Distributionally Robust MPC (DR-MPC) problems into a finite-dimensional non-

convex optimization problem. The proposed reformulation procedures are developed

using geometry of the obstacles, as well as modern DRO techniques based on the Kan-
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Figure 1.2: The three methods proposed in this work use the available sample data for

risk-aware motion planning and control.

torovich duality principle [1]. Third, a Gaussian Process is used to predict obstacles’

motion in combination with DR-MPC in the previous stages.

The performance and utility of the proposed methods are demonstrated through

simulation studies. For the SAA-based risk-aware MPC, we used linearize quadrotor

model and investigated its performance under different parameters. For the Wasser-

stein DR-MPC we performed simulations on a nonlinear car-like vehicle model, as

well as the same linearized quadrotor model as in the first simulations. Finally, for

Learning-based Wasserstein DR-MPC we used a nonlinear on-road vehicle model to

demonstrate the utility of the method.

The results of numerical experiments confirm that, even when the sample size is

small, the proposed DR-MPC method can successfully avoid randomly moving obsta-

cles with a guarantee of limiting out-of-sample risk, while its SAA counterpart fails to

do so.

1.3 Thesis Organization

The rest of this thesis is organized as follows. In Chapter 2, a two-stage motion plan-

ning and control method based on CVaR-constrained optimization is introduced. In the

first stage a reference trajectory is planned using RRT*. In the second stage a novel

3



MPC method is introduced, where the risk of unsafety is measured using CVaR and

limited to some risk tolerance level. In Chapter 3 the Wasserstein DR-MPC problem

is formulated using CVaR constraint for collision avoidance and a set of reformulation

procedures is proposed to resolve the infinite-dimensionality issue inherent in the DR-

MPC problem. Besides, the probabilistic guarantee of limiting out-of-sample risk is

discussed using the measure concentration inequality for Wasserstein ambiguity sets.

In this chapter the advantage of the method over SAA, as well as its out-of-sample per-

formance are demonstrated and analyzed on two mobile robots: (i) nonlinear car-like

vehicle model and (ii) linearized quadrotor model. In Chapter 4, we apply Gaussian

Process Regression (GPR) for obstacle motion prediction and combine the DR-MPC

problem with GP. Here we also show the performance of the proposed method through

numerical experiments on an on-road vehicle model.
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Chapter 2

RISK-AWARE MOTION PLANNING AND CONTROL

USING CVAR-CONSTRAINED OPTIMIZATION

2.1 Introduction

The safe operation of robots and autonomous systems in uncertain and dynamic envi-

ronments, particularly those where humans are involved, has been regarded as a crit-

ical challenge. Moving objects and agents in robots’ paths pose a major safety issue

in practical environments. Unfortunately it is difficult to accurately predict an object’s

movement in many situations due to uncertainty in or incomplete knowledge about the

object motion. The focus of this work is to develop an algorithmic tool for safe motion

planning and decision-making in uncertain conditions by integrating prior knowledge

about preferred motions of obstacles in a risk-aware manner.

Safe motion planning and control approaches under uncertainty have been exten-

sively studied (see, for example, [2] and the references therein) and can be categorized

as deterministic or stochastic. Deterministic methods often assume a bounded set of

uncertainties and seek decision-making strategies that are robust with respect to this

set of uncertainties. To obtain such robust solutions, algorithms using model predic-

tive control [3], reachability [4], and safety funnels [5] have been developed, among

5



others. However, robust methods often lead to unnecessarily conservative solutions,

particularly when the set of uncertainties is overestimated. This conservativeness may

be alleviated by using adaptive online planning [6]. Stochastic methods can be used

to systematically adjust the safety and conservativeness by incorporating probabilistic

information about environments into decision making. Chance constraint-based meth-

ods have been one of the most popular stochastic tools in motion planning and control

as chance constraints have the intuitive and practical role of limiting the probability of

unsafe events. In particular, chance constraints have been widely used in conjunction

with model predictive control [7, 8], optimal control [9], and sampling-based plan-

ning [10, 11]. Due to the nonconvexity of chance-constraints, however, these methods

often use an approximation technique or a limited class of probability distributions and

system dynamics to obtain a computationally tractable solution.1

Departing from chance constraint-based methods, we propose a safe motion plan-

ning and control approach using conditional value-at-risk (CVaR) constraints. The

CVaR of a random loss is equal to the conditional expectation of the loss within the

(1 − α) worst-case quantile of the loss distribution [16, 17]. On the other hand, the

value-at-risk (VaR) of a loss represents this quantile of the loss distribution, and thus

it is closely related to chance constraints. The CVaR and VaR of a random variable

X , the distribution of which has no probability atoms, have the following relationship:

CVaRα(X) = E[X | X ≥ VaRα(X)]. CVaR constraints have several advantages

over VaR or chance constraints, including the following: First, CVaR is a coherent risk

measure, unlike VaR. According to Artzner et al. [18], a risk measure is said to be

coherent if it satisfies the four axioms of translation invariance, subadditivity, posi-

tive homogeneity, and monotonicity. Majumdar and Pavone [19] claim that these four

axioms should be satisfied for rational assessments of risk in robotics applications.
1There have been a few attempts to resolve the nonconvexity issue in using chance constraints for ar-

bitrary probability distributions. In [12,13], nonconvexity is handled by looking at higher order moments,

while [14] considers moment-based ambiguity sets of distributions with given mean and covariance. [15]

uses a sampling-based method for approximating arbitrary distribution by finite number of particles.
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Second, CVaR constraints can distinguish tail events where losses exceed VaR, while

chance constraints cannot [17]. Third, CVaR constraints are convex unlike most of the

chance constraints [16].

To implement CVaR in a robot’s risk assessment for safe motion planning, we

propose a safety risk measure by extending our previous work [20] to the case of model

predictive control (MPC) with randomly moving obstacles.2 Specifically, the proposed

safety risk measure represents the conditional expectation of the deviation within the

(1 − α) worst-case quantile of an associated safety loss distribution. With this safety

risk measure, we develop a two-stage method for safe motion planning and control. In

the first stage, a reference trajectory is generated by a fast sampling algorithm, such

as RRT*, given the initial configuration of obstacles. However, as obstacles start to

move randomly, this reference trajectory may no longer be safe to follow. Thus, in the

second stage, a receding horizon controller is used to limit the risk of unsafety. This

MPC problem is a CVaR-constrained stochastic program. Despite the convexity of

CVaR constraints, this problem is nontrivial to solve because (i) each CVaR constraint

involves bilevel optimization problems (one for CVaR and another for set distance),

and (ii) the safe region is nonconvex in many practical cases. To overcome the first

challenge, we reformulate the CVaR constraints without sacrificing optimality as more

tractable expectation constraints. We then employ the sample average approximation

(SAA) of the expectation constraints to further remove the minimization problem for

computing a set distance. We show that the optimal value and solution obtained by

the proposed SAA converge their original counterpart. The second issue, caused by

nonconvex safe regions, can be addressed by recasting the MPC problem as a linearly

constrained mixed integer convex program.

The remainder of this chapter is organized as follows: In Section 2.2, the problem
2As opposed to the dynamic programming approach in [20], we propose an MPC-based method and

a different set of new reformulation procedures to obtain a linearly constrained mixed integer convex

program, even in the presence of randomly moving obstacles.
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setup is presented including stochastic obstacle movements. In Section 2.3, we de-

scribe the proposed motion planning and control method using CVaR-constrained op-

timization. In Section 2.4, we demonstrate the performance and utility of our method

through simulations using a 12D quadrotor model in a 3D environment.

2.2 System and Obstacle Models

Consider a robotic vehicle, with dynamics that can be modeled as a discrete-time linear

system of the form3

ξ(t+ 1) = Aξ(t) +Bu(t),

y(t) = Cξ(t) +Du(t),

where ξ(t) ∈ Rnξ and y(t) ∈ Rny are the system state and system output, respectively,

and u(t) ∈ Rnu is the control input at stage t. We assume that the output vector cor-

responds to the robotic vehicle’s position in the ny-dimensional configuration space.

It is typical that a robotic system is subject to constraints on the system state and the

control input:

ξ(t) ∈ Ξ, u(t) ∈ U ∀t ≥ 0. (2.2.1)

We assume that Ξ ⊆ Rnξ and U ⊆ Rnu are convex sets.

The robot must navigate the space while avoiding L randomly moving rigid body

obstacles. The region occupied by obstacle ` at stage t is represented by subset O`(t)

of Rny . If an obstacle is not a convex polytope, we over-approximate it as a polytope

and form its convex hull as shown in Fig. 2.1 [21].4 After such approximation, we

model the initial location of each obstacle as a convex polytope, i.e.,

O`(0) = {x | c>j,`x ≤ dj,`, j = 1, . . . ,m`}, (2.2.2)

where m` is the number of half-spaces defining the obstacle.
3The reformulation results in Section 2.3 are also valid for nonlinear systems. However, we focus on

linear systems because the computational costs of nonlinear MPC are often prohibitive.
4This over-approximation is reasonable to plan safe paths.
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Figure 2.1: Robot configuration space with moving obstacles: O1(t) is a convex ob-

stacle, while O2(t) is a nonconvex obstacle, approximated as its convex hull.

To formalize obstacle avoidance problems, we define the safe region as the com-

plement to the region occupied by the obstacles. Specifically, let

Y`(t) := Rny \ Oo` (t) ∀t ≥ 0,

where Oo` (t) denotes the interior of O`. Note that Y`(t) is a closed set. For safety, the

output is subject to the following constraint:

y(t) ∈ Y`(t) ∀t ≥ 0 ∀`.

The safe region also changes over time because the obstacle is moving randomly. The

obstacle’s movement between two stages is assumed to be represented by a linear

transform, which includes the composition of rotations and translations, i.e.,

O`(t+ k) = R`,t,kO`(t) + w`,t,k,

where the nonsingular matrix R`,t,k is the product of random rotation matrices and

w`,t,k is a random translation vector. Here, adding a vector w to a set A is defined

by A + w := {a + w | a ∈ A}, multiplying a matrix R to a set A is defined by

RA := {R · (a − cA) + cA | a ∈ A}, where cA is the centroid of A. Accordingly,

9



Y`(t) is shifted to Y`(t+ k) = Rny \ Oo` (t+ k). It is straightforward to check

Y`(t+ k) = R`,t,kY`(t) + w`,t,k.

We assume that the region O`(0) occupied by obstacle ` is known in advance.

2.3 CVaR-constrained Motion Planning and Control

The proposed risk-aware motion planning and control method consists of two stages:

1. fast reference trajectory planning, and

2. risk-constrained MPC.

In the first stage, a reference trajectory, which avoids O`(0) ∀`, is generated by us-

ing path-planning tools, such as RRT*. However, even if the robotic vehicle follows

this reference trajectory, its safety is not guaranteed, due to the interference of ran-

domly moving obstacles. To systematically limit the risk of collision, a risk-aware

model predictive controller is employed in the second stage. The risk awareness is

incorporated into the receding horizon optimization or MPC problem by using CVaR

constraints. We develop a computationally tractable solution approach to the MPC

problem through three reformulation procedures.

2.3.1 Reference Trajectory Planning

The first step is computing a collision-free path given the initial configuration of ob-

stacles. For this work, we employ RRT* [22]. This particular tool efficiently searches

nonconvex, high-dimensional spaces by randomly building a space-filling tree. The

tree is constructed incrementally in a way that quickly reduces the expected distance

between a randomly-chosen point and the tree. It provides an asymptotically optimal

solution using tree rewiring and near neighbor search to improve the path quality. The

tree starts from an initial state yinit and expands to find a path towards the goal state

10



ygoal, by randomly sampling the configuration space of obstacles in their initial posi-

tions and steering towards the random sample. However, the path generated by RRT*

might not be possible to trace, given the dynamics of a robotic vehicle. In order to

generate a traceable trajectory that takes into account robot dynamics, we perform

kinodynamic motion planning based on RRT* [23]. The major difference from the

baseline RRT* algorithm is that the vehicle dynamics is used for local steering to re-

turn a trajectory connecting two states while minimizing the distance between them.

Compared to RRT [24], the main advantage of RRT* is that it provides an asymptoti-

cally optimal solution. Furthermore, in RRT* two major features are introduced: tree

rewiring and near neighbor search, thus improving the path quality. Note, however,

that any fast algorithms that generate a safe reference trajectory can be used in the

first stage as a more sophisticated decision-making is performed in the second stage to

limit the safety risk that a robot faces during its operation.

2.3.2 Safety Risk

As previously mentioned, the reference trajectory may no longer be safe once the

obstacles start to move. To account for the randomness of obstacles’ movement and

develop a risk-aware decision-making tool, we mathematically define a notion of safety

risk by combining set distance and CVaR.

Regarding the obstacle Oo` (t), we measure the loss of safety at stage t as the dis-

tance between the robot’s position y(t) and the safe region Y`(t) = Rny \ Oo` (t):

dist(y(t),Y`(t)) := min
a∈Y`(t)

‖y(t)− a‖. (2.3.1)

Obviously, it is desirable to drive the robot so that dist(y(t),Y`(t)) = 0 for safety.

However, due to the randomness of an obstacle’s motion, imposing a hard constraint

may lead to a very conservative decision. Instead of making such a deterministic guar-

antee, we systematically take into account the risk of unsafety to make the correspond-

ing risk-aware decision depending upon the degree of risk that the robot can take.

11



Figure 2.2: Conditional Value-at-Risk of a random loss.

Specifically, we evaluate the risk of system unsafety using the CVaR defined by

CVaRα(X) := min
z∈R

E
[
z +

(X − z)+

1− α

]
, (2.3.2)

where (x)+ = x if x ≥ 0 and (x)+ = 0 otherwise [17].

We quantify the safety risk of the robot at stage t as CVaRα[dist(y(t),Y`(t))] con-

cerned with random obstacle `. This safety risk measures the conditional expectation

of the distance between the robot position y(t) and the safe region Y`(t) = Rny \Oo` (t)

within the (1 − α) worst-case quantile of the safety loss distribution as illustrated in

Fig. 2.2. In the following subsection, we formulate an MPC problem with constraints

on the safety risk regarding all the obstacles:

CVaRα[dist(y(t),Y`(t))] ≤ δ` ∀`, (2.3.3)

where δ` ≥ 0 is a user-specified risk tolerance parameter for obstacle `. In practice,

δ` can be chosen as the maximum allowable expected deviation of a robot’s position

from the safe region Y`. On the other hand, another parameter α must be chosen by

assessing the risk aversion of the user or the robot. For example, our Monte Carlo

simulation results in Section 2.4 indicate that α = 0.95 induces extremely risk-averse

decisions that cause all sample trajectories to be safe, among 10,000 samples. Another

way to determine δ` and α is to use the mean-CVaR efficient frontier, which represents

12



the possible tradeoff between minimizing the expected cost of motion planning and

minimizing the safety risk (e.g., [25]).

2.3.3 Risk-Constrained Model Predictive Control

The main part of our risk-aware method is the following CVaR-constrained MPC prob-

lem (for stage t):5

min
u,ξ,y

J(ξ(t),u) :=

K−1∑
k=0

r(ξk, uk) + q(ξK) (2.3.4a)

s.t. ξk+1 = Aξk +Buk (2.3.4b)

yk = Cξk +Duk (2.3.4c)

ξ0 = ξ(t) (2.3.4d)

ξk ∈ Ξ, uk ∈ U (2.3.4e)

CVaRα[dist(yk,Y`(t+ k))] ≤ δ` ∀`, (2.3.4f)

where u := (u0, . . . , uK−1), ξ := (ξ0, . . . , ξK), y := (y0, . . . , yK−1) and all the

constraints must hold for k = 0, . . . ,K − 1 except for ξk ∈ Ξ in (2.3.4e) and (2.3.4c)

which must hold for k = 0, . . . ,K. After computing an optimal u?, only the first

component u?0 is chosen to be the control input at stage t, i.e., u(t) := u?0. For the next

stage, the MPC problem is defined in a receding horizon fashion and solved to obtain

u(t + 1) given ξ(t + 1). Here, the constraints (2.3.4b) and (2.3.4c) account for the

system state and output predicted in the MPC horizon by initializing ξ0 as the current

state ξ(t). The state and input constraints (2.2.1) are specified in (2.3.4e). The stage-

wise and terminal cost functions r : Rnξ × Rnu → R and q : Rnξ → R are chosen to

evaluate the control performance. For example, given a reference trajectory, ξref (t),

5Our problem formulation and solution method is different from the one investigated by Singh et

al. [26] as they consider uncertainties in model parameters (matrices A and B), whereas we consider

uncertainties in obstacles’ movement.
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obtained by RRT*, the stage-wise cost function may be selected as follows:

r(ξk, uk) :=
∥∥∥ξk − ξref (t+ k)

∥∥∥2
Q

+ ‖uk‖2R (2.3.5)

q(ξK) :=
∥∥∥ξK − ξref (t+K)

∥∥∥2
P

(2.3.6)

where Q � 0, P � 0, R � 0 are the penalty weighing matrices, which penalize the

running trajectory deviations and large input values, respectively.

Even when the cost function r is convex, it is nontrivial to solve the optimization

problem (2.3.4) due to the CVaR constraint (2.3.4f). This constraint involves bilevel

minimization, where the inner problem involves computing the distance dist(y(t),Y`(t))

using (2.3.1) and the outer problem involves evaluating CVaR via (2.3.2). To develop

a computationally tractable method, we first reformulate the MPC problem as the fol-

lowing stochastic program without loss of optimality:

Theorem 1. Suppose that the stage-wise cost function r is continuous and the ob-

stacles are convex polytopes as in (2.2.2). Then, the set of optimal u’s of the CVaR-

constrained MPC problem (2.3.4) is equal to that of the following problem:

min
u,ξ,y,z,h

J(ξ(t),u) :=
K−1∑
k=0

r(ξk, uk) + q(ξK) (2.3.7a)

s.t. E
[
z`,k +

(h`,k − z`,k)+

1− α

]
≤ δ` (2.3.7b)

yk +R`,t,k
c`,t,j
‖c`,t,j‖

h`,k ∈ Y`(t+ k) (2.3.7c)

h`,k ≥ 0 (2.3.7d)

z`,k ∈ R (2.3.7e)

(2.3.4b)–(2.3.4e), (2.3.7f)

where the constraint (2.3.7c) must hold for at least one j ∈ {1, . . . ,m`}. All the

remaining constraints must hold for all ` = 1, . . . , L, and k = 0, . . . ,K − 1 except

for (2.3.4c) and ξk ∈ Ξ in (2.3.7f) which must hold for k = 0, . . . ,K.
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Proof. Let J? and J ′ be the optimal value of the original and reformulated MPC prob-

lems, respectively. We first show that J? = J ′. Let (u?, ξ?,y?) be an optimal solution

of the original MPC problem (2.3.4). By the definition of CVaR, CVaRα[dist(y?k,Y`(t+

k))] = minz`,k∈R E[z`,k +
(dist(yk,Y`(t+k))−z`,k)+

1−α ] for each ` and k. Let z?`,k ∈ R

be an optimal solution of the minimization problem on the right-hand side. Due to

the constraint (2.3.4f), we have E[z?`,k +
(dist(y?k,Y`(t+k))−z

?
`,k)

+

1−α ] ≤ δ`. By setting

h?`,k = dist(y?k,Y`(t + k)), we see that (y?k, z
?
`,k) satisfies the constraints (2.3.7b) and

(2.3.7e) in the reformulated problem, since h?`,k satisfies the condition in (2.3.7c) and

(2.3.7d). All the other constraints in the reformulated problem also appear in the orig-

inal one. Thus, (u?, ξ?,y?, z?,h?) satisfies all the constraints (2.3.7b)–(2.3.7f). This

implies that J ′ ≤ J(ξ(t),u?) = J?.

We now show that J ′ ≥ J?. Let (u′, ξ′,y′, z′,h′) be an optimal solution of the

reformulated stochastic program. We first observe that

CVaRα[dist(y′k,Y`(t+ k))]

= min
z∈R

E
[
z`,k +

(dist(y′k,Y`(t+ k))− z`,k)+

1− α

]
≤ E

[
z′`,k +

(h′`,k − z′`,k)+

1− α

]
≤ δ`,

where the first inequality is valid due to the constraint (2.3.7c) and (2.3.7d) and last

inequality is valid due to the constraint (2.3.7b). Therefore, y′k satisfies the CVaR con-

straint (2.3.4f) in the original problem. All the other constraints in (2.3.4) clearly hold

with (u′, ξ′,y′). Thus, we have J? ≤ J(ξ(t),u′) = J ′.

We conclude that J? = J(ξ(t),u?) = J(ξ(t),u′) = J ′. Therefore, any optimal

u? of the original MPC problem is optimal to the reformulated one, and conversely any

optimal u′ of the reformulated problem is optimal to the original one, as desired.

To numerically solve the reformulated MPC problem (2.3.7), we need to compute

the expected value in the constraint (2.3.7b). The constraint (2.3.7c) is equivalent to

yk +R`,t,k
c`,t,j
‖c`,t,j‖h`,k ∈ R`,t,kY`(t) +w`,t,k because Y`(t+ k) = R`,t,kY`(t) +w`,t,k.

15



One can rewrite the expectation as an integral with respect to a probability mea-

sure, then discretize a probability density to compute the integral. However, this ap-

proach involves a multi-dimensional integral, which is computationally demanding.

In stochastic programming, a typical way to alleviate this issue is to employ sample

average approximation (SAA). This approach approximates an expected constraint

function or objective function using a sample average estimate, where the sample data

are generated according to the underlying distribution. Specifically, given the sam-

ple {(R̂(1)
`,t,k, ŵ

(1)
`,t,k), . . . , (R̂

(Nk)
`,t,k , ŵ

(Nk)
`,t,k )} of (R`,t,k, w`,t,k), we approximate the con-

straint (2.3.7b) as

1

Nk

Nk∑
i=1

[
z`,k +

(h
(i)
`,k − z`,k)

+

1− α

]
≤ δ`. (2.3.8)

Based on the SAA, we propose the following SAA-MPC problem:

min
u,ξ,y,z,h,η

J(ξ(t),u) :=
K−1∑
k=0

r(ξk, uk) + q(ξK) (2.3.9a)

s.t.
1

Nk

Nk∑
i=1

[
z`,k +

η
(i)
`,k

1− α

]
≤ δ` (2.3.9b)

yk + R̂
(i)
`,t,k

c`,t,j
‖c`,t,j‖

h
(i)
`,k ∈ R̂

(i)
`,t,kY`(t) + ŵ

(i)
`,t,k ∀i (2.3.9c)

η
(i)
`,k ≥ h

(i)
`,k − z`,k, η

(i)
`,k ≥ 0, h

(i)
`,k ≥ 0 ∀i (2.3.9d)

z`,k ∈ R (2.3.9e)

(2.3.4b)–(2.3.4e), (2.3.9f)

where the constraint (2.3.9c) must hold for at least one j ∈ {1, . . . ,m`}. All the

constraints must hold for all ` = 1, . . . , L and k = 0, . . . ,K − 1 except for (2.3.4c)

and ξk ∈ Ξ in (2.3.9f) which must hold for k = 0, . . . ,K. Here an auxiliary real

variable η is introduced to tackle the nonlinearity of (2.3.8).

To establish convergence properties of the proposed approximation method, we

assume the following:

Assumption 1. Suppose that
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1. the stage-wise cost function r is continuous;

2. the set U is compact; and

3. for any optimal u? of the original problem, there exists a sequence uN ∈ UN

such that uN → u? with probability 1 as N → ∞, where UN is the set of

feasible u’s in (2.3.9).

We then have the following convergence results regarding the optimal value and

optimal solutions of the approximate problem (2.3.9):

Theorem 2. Let J? and U? be the optimal value and the set of optimal u’s of the

original problem (2.3.4). Similarly, let JN and UN be the optimal value and the set

of optimal u’s of the approximate problem (2.3.9), where N := mink∈{0,...,K−1}Nk.

Then, under Assumption 1, we have

JN → J? and D(UN ,U?)→ 0 as N →∞,

where D(A,B) := supx∈A dist(x, B) denotes the deviation of the set A from the set

B.

Proof. We call the sample average approximation of (2.3.7) as SAA-MPC. Applying

SAA to (2.3.7) replaces the constraint (2.3.7b) with (2.3.8). Let J SAA
N and USAA

N denote

the optimal value and the set of optimal u of the SAA-MPC problem. It is trivial that

J SAA
N = JN and USAA

N = UN , thus (2.3.7) is equivalent to (2.3.9).

It now suffices to show that

J SAA
N → J? and D(USAA

N ,U?)→ 0 as N →∞.

Due to the continuity of the function f and Assumption 1, all the conditions of Theo-

rems 5.3 and 5.5 in Shapiro et al. [27] are satisfied. Therefore, the result follows.

Note that the proposed SAA method provides a provable asymptotic guarantee of

satisfying the original CVaR constraints. Although our numerical simulation results in
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Section 2.4 indicate that the SAA method always satisfies the risk constraints for all

time steps even with a relatively small sample size (Nk = 20), the proposed method

has no provable finite-sample guarantee of the risk constraints. If such a finite-sample

guarantee is required, then the following advanced techniques can be used in conjunc-

tion with the proposed method. First, a robust version of SAA, which combines distri-

butionally robust optimization and hypothesis testing of goodness-of-fit, can be used to

obtain finite-sample guarantees in addition to retaining SAA’s tractability and asymp-

totic properties [28]. Second, out-of-sample performance guarantees can be achieved

in a probabilistic manner with a finite sample size by using a data-driven distribution-

ally robust optimization framework [1, 29]. It is worth mentioning that the proposed

reformulation procedures can also be used to enhance the computational tractability of

the aforementioned techniques applied to motion planning. Specifically, an important

feature of the approximate problem (2.3.9) is that it does not involve multiple-level

optimization, unlike the original MPC problem (2.3.4). We can further reformulate

(2.3.9) as a linearly constrained mixed integer convex program, when the cost func-

tion is convex, as proposed in the following subsection. A similar benefit may be ob-

tained by using the proposed reformulation methods in conjunction with the advanced

techniques for finite-sample guarantees.

2.3.4 Linearly Constrained Mixed Integer Convex Program

Due to the nonconvexity of the safe region Y`(t), it is nontrivial to find an optimal

solution to the problem (2.3.9). We now use the polyhedral characterization (2.2.2) of

obstacles to reformulate the nonconvex constraints (2.3.9c) and recast the MPC prob-

lem as a linearly constrained mixed integer convex program (MICP). The proposed

approach allows us to solve the MPC problem while retaining the full nonconvex con-

straints by using commercial MICP solvers. By continuous relaxation, we can also

obtain a posteriori bounds on the gap between the optimal and approximate solution.

Due to the polyhedral characterization (2.2.2) of O`(t), the constraint (2.3.9c) can
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be written as the following disjunctive representation:

m∨̀
j=1

c>`,t,j

[
(R̂

(i)
`,t,k)

−1(yk − ŵ
(i)
`,t,k) +

c`,t,j
‖c`,t,j‖

h
(i)
`,k

]
≥ d`,t,j ,

wherem` is the number of half-spaces defining the obstacle, and
∨

denotes the logical

disjunction operation. In order to tackle the ‘OR’ operation, the Big-M reformulation

using binary variables is introduced as follows [30]:

c>`,t,j

[
(R̂

(i)
`,t,k)

−1(yk − ŵ
(i)
`,t,k) +

c`,t,j
‖c`,t,j‖

h
(i)
`,k

]
≥ d`,t,j −Mj,`ζj,` ∀j = 1, . . . ,m`, (2.3.10a)

ζj,` ∈ {0, 1} ∀j = 1, . . . ,m`, (2.3.10b)
m∑̀
j=1

ζj,` ≤ m` − 1, (2.3.10c)

where ` = 1, . . . , L and k = 0, . . . ,K − 1. Here, Mj,` is a constant greater than

any possible value that the left-hand side of the inequality (2.3.10a) can have. By this

inequality, when ζj,` = 0, we have c>`,t,j [(R̂
(i)
`,t,k)

−1(yk− ŵ
(i)
`,t,k) +

c`,t,j
‖c`,t,j‖h

(i)
`,k] ≥ d`,t,j .

The inequality (2.3.10c) ensures that at least one of the binary variables is zero, and

therefore (2.3.9c) holds at least for one j ∈ 1, ...,m`.

By using this Big-M reformulation, the optimization problem (2.3.9) can be refor-

mulated as follows:

min
u,ξ,y,z,η,ζ

J(ξ(t),u) :=

K−1∑
k=0

r(ξk, uk) + q(ξK) (2.3.11a)

s.t.
1

Nk

Nk∑
i=1

[
z`,k +

η
(i)
`,k

1− α

]
≤ δ` ∀i (2.3.11b)

η
(i)
`,k ≥ h

(i)
`,k − z`,k, η

(i)
`,k ≥ 0, h

(i)
`,k ≥ 0 ∀i (2.3.11c)

z`,k ∈ R, (2.3.11d)

(2.3.4b)–(2.3.4e), (2.3.10a)–(2.3.10c) (2.3.11e)

where all the constraints must hold for all ` = 1, . . . , L and k = 0, . . . ,K − 1 except
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for (2.3.4c) and ξk ∈ Ξ in (2.3.11e) which must hold for k = 0, . . . ,K. This problem

is a linearly constrained MICP when the cost function is convex.

Proposition 1. Suppose that r : Rnξ ×Rnu → R and q : Rnξ → R are convex. Then,

the reformulated MPC problem (2.3.11) is a linearly constrained mixed integer convex

program.

The linearly constrained MICP problem can be solved by using several methods,

such as branch-and-bound [31], outer approximation [32] and polyhedral approxima-

tion [33]. State-of-the-art solvers like Bonmin [34], SCIP [35], and Artelys Knitro [36]

support other techniques, such as cutting planes, that accelerate the solution-search

process.

2.4 Numerical Experiments

In this section, we present simulation results that demonstrate the performance of the

proposed approach. Consider a quadrotor that aims to travel from a starting point yinit

to a goal point ygoal in a 3D space. Dynamic obstacles interfere with the quadrotor’s

possible paths. The position of a 6 DOF quadrotor can be expressed in the space of (xr,

yr,zr,φr, θr, ψr). The first three variables—xr, yr, and zr—represent the distances

of the quadrotor’s center of mass along the X , Y and Z axes, respectively, from an

Earth-fixed frame, whereas φr, θr, and ψr are the three Euler angles that represent the

orientation of the quadrotor. Note that φr, θr, and ψr are the roll, pitch, and yaw angles

about the X , Y , and Z axes, respectively. The dynamics of the quadrotor can then be

modeled as
ẍr = −gθ, ÿr = gφr, z̈r = −

lQ
mQ

ur1,

φ̈r =
1

Ixx
ur2, θ̈r =

lQ
Iyy

ur3, ψ̈r =
lQ
Izz

ur4,

where mQ is the quadrotor’s mass, g is the gravitational acceleration, and Ixx, Iyy,

and Izz are the area moments of inertia about the principle axes in the body frame.

Accordingly, the state space model of the quadrotor has 12 states, including its position
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and orientation in 3D space, as well as the corresponding velocities and rates. The

output is chosen as the (xr, yr, zr) position of the quadrotor. The rotors can be operated

within a specific range of velocity. Thus, the input feasible set U := {u ∈ R4 | umin ≤

u ≤ umax} has been selected according to the chosen motor specifications. The set

Ξ := {ξ ∈ R12 | −π ≤ φr ≤ π , −π
2 ≤ θr ≤ π

2 , −π ≤ ψr ≤ π} has been

selected to limit the angles to avoid kinematic singularity. The following parameters

were employed throughout simulation [37]: m = 0.65 kg, l = 0.23 m, Ixx =

0.0075 kg ·m2, Iyy = 0.0075 kg ·m2, Izz = 0.013 kg ·m2, g = 9.81 ms2.

As the first step, RRT* is used to generate a safe reference trajectory given the ini-

tial configuration of the obstacles. The quadrotor starts tracking the reference trajectory

by using the receding horizon controller obtained by solving the MICP (2.3.11) using

Gurobi 8.1.0. The MPC horizon and the number of time steps are selected as K = 15

and T = 50, respectively, and the weights in the stage-wise cost function (2.3.5) are

chosen as Q = P = I and R = 0.01I .

2.4.1 Effect of Confidence Level

In the first scenario, two randomly translating obstacles are interfering with the quad-

copter’s initially feasible optimal path. To demonstrate the the effect of confidence

level, we consider three different cases with α = 0.1, 0.5, 0.95 and δ = 0.04. The

resulting trajectories are shown in Fig. 2.3. The simulations were performed with

Nk = 20 samples, where the random movement of each obstacle in each stage t + k

is uniformly distributed over [−0.4, 0.4]3 and summed up from 1 to k to form ŵ
(i)
`,t,k.

In early stages (before t = 9), for all α’s, the quadrotor deviates from its reference

trajectory, even if it is not close to any obstacles, as shown in Fig. 2.3 (a). This is

because the robot should always satisfy all the CVaR constraints within the prediction

horizon. Until t = 19, the quadrotor is close to the obstacles, as shown in Fig. 2.3

(b). With the α = 0.95, the robot makes sure that it is a safe margin away from the

obstacles, so as not to violate the CVaR constraints within the prediction horizon. Such
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Table 2.1: Computation time and operation cost for Scenario 1 with Nk = 20 and

δ` = 0.04

α 0.1 0.5 0.95

Cost 5228.0 1253.2 1323.3

Time (sec) 697.44 533.34 175.65

a deviation also occurs when α = 0.5, 0.1, but with less magnitude than in the previous

case. Fig. 2.3 (c) shows the quadrotor’s position after it passes the obstacles at t = 27.

The quadrotor starts to follow the reference trajectory without deviation. The complete

trajectories are shown in Fig. 2.3 (d).

To empirically demonstrate the safety guarantees in the proposed SAA method,

we test if the CVaR value estimated by SAA and Monte Carlo simulations satisfies

the original risk constraint. We first calculate SAA-CVaR by using (2.3.2) with the

trajectories generated by SAA-MPC with Nk = 20 samples. In addition, given the

risk-aware controller, we performed Monte Carlo simulations using 10,000 new sam-

ples generated at each time step to compute MC-CVaR. The results for the first obsta-

cle for different confidence levels at t = [10, 25] are summarized in Fig. 2.4. In other

stages, both of these values are 0, as the vehicle is far from the obstacle. These results

demonstrate the capability of this method in adjusting the safety and conservativeness.

It can be noticed that as the confidence level α increases, the robot’s risk aversion

increases and this encourages conservative decisions that induce high control costs∑T
t=0 J(ξ(t), u(t)) as shown in Table 2.1. For all confidence levels, the SAA-CVaR

and MC-CVaR are always strictly less than the risk tolerance level δ. This confirms

that the safety risk constraint (2.3.4f) is satisfied even when the proposed SAA method

uses small number of samples (Nk = 20). The computational time also depends on

the confidence level.

In order to compare the proposed method with existing chance-constrained ap-

proach, we also implemented MPC problem with sampling-based chance-constraints
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Table 2.2: Computation time and operation cost for Scenario 2 with α = 0.99 and

δ = 0.02

Nk 50 90 100

Cost 1589.57 1726.47 1737.16

Time (sec) 799.72 2167.33 2580.51

using the results from [38] and [15]. Specifically, the following chance constraint

is used: Pr[dist(yk,Y`,t,k) = 0] ≥ 0.95. For comparison, we use δ = 0 and α =

0.95 in the CVaR constraint.6 Fig. 2.5 shows the trajectories obtained by the chance-

constrained approach and our method. The result obtained by CVaR-constrained op-

timization is safer than the one obtained by chance-constrained approach. This is

explained by the fact that CVaR takes into account the tail events, while chance-

constraint performs decision making only for the (1 − α)-worst case quantile. In

fact, CVaRα(X) ≥ VaRα(X) by definition, and thus CVaR induces a safer decision-

making than VaR or chance-constraints.

2.4.2 Effect of Sample Size

In the second scenario, the rotational motion of the first obstacle is uniformly dis-

tributed over [−0.1, 0.1]3. In addition to the random rotation, a deterministic transla-

tion is considered so that the obstacle obstructs the nominal trajectory as time goes.

On the other hand, both of the obstacles present random translational motion, sampled

from a Gaussian distribution with mean µ = 0 and covariance σ = 0.01 in each stage.

Fig. 2.6 illustrates the simulation results for different numbers of samples to observe

their effect on decision making. In all cases, the risk tolerance and confidence levels

were chosen as δ = 0.02 and α = 0.95, respectively. It can be seen from Table 2.2

that the computation time increases with the number of samples, as expected. In addi-
6The risk tolerance level δ = 0 induces the CVaR constraint to become a hard (deterministic) con-

straint.
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tion, we examine the effect of Nk on the total cost and CVaR. As shown in Table 2.2,

the cost value converges as the number of sample data increases, which can also be

seen in Fig. 2.6, where the trajectories generated for Nk = 100 and Nk = 110 are

the same. This convergence is consistent with Theorem 2. Regarding SAA-CVaR and

MC-CVaR, both of them are equal to 0 for all Nk’s because that big α and small δ

are used. The second scenario requires more random samples than the first scenario

because of two factors: the obstacles configuration and the existence of additional ro-

tational uncertainties.

2.5 Conclusions

A risk-aware motion planning and control approach has been presented for robots op-

erating in uncertain and dynamic environments. Our strategy consists of two stages:

(i) generating a safe reference trajectory by using RRT*, and (ii) utilizing CVaR to

assess safety risks and design a CVaR constrained receding horizon controller to track

the reference trajectory. A computationally tractable solution to the MPC problem has

been developed using the following three procedures. First, we reformulated the CVaR

constraints without loss of optimality. Second, we proposed a convergent SAA method

to completely remove multi-level optimization. Third, the nonconvexity of safe regions

was addressed by recasting the MPC problem as a linearly constrained mixed integer

convex program. Simulations using a quadrotor in a 3D environment demonstrate this

method’s capability to systematically adjust the safety and conservativeness in mo-

tion planning and control, as well as the effect of sample size on risk-aware decision-

making.

24



(a) t = 9 (b) t = 19

(c) t = 27 (d) t = 50

Figure 2.3: Generated quadrotor trajectories at difference stages with confidence levels

α = 0.1, 0.5, 0.95.

25



Figure 2.4: Comparison of SAA-CVaR and MC-CVaR to the threshold δ for α =

0.1, 0.5, 0.95.

Figure 2.5: Comparison between the chance-constrained and CVaR-constrained mo-

tion control.
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(a) t = 13 (b) t = 21

(c) t = 40 (d) t = 50

Figure 2.6: Generated quadrotor trajectories for different number of samples Nk =

50, 90, 100, 110.

27



Chapter 3

WASSERSTEIN DISTRIBUTIONALLY ROBUST MPC

3.1 Introduction

Safety is one of the most fundamental challenges in the operation of mobile robots

and autonomous vehicles in practical environments, which are uncertain and dynamic.

In particular, the unexpected movement of objects and agents often jeopardizes the

collision-free navigation of mobile robots. Unfortunately, predicting an object’s mo-

tion is a challenging task in many circumstances due to the lack of knowledge about

the object’s possibly uncertain dynamics. To gather information about an obstacle’s

uncertain movement, it is typical to use (historical) sample data of its motion. The

main goal of this work is to develop an optimization-based method for risk-aware mo-

tion planning and control by incorporating data about moving obstacles into the robot’s

decision-making in a distributionally robust manner..

Several risk-sensitive decision-making methods have been proposed for robots to

avoid obstacles in uncertain environments. Chance-constrained methods are among

the most popular approaches, as they can be used to directly limit the probability of

collision. Because of their intuitive and practical role, chance constraints have been

extensively used in sampling-based planning [10, 11, 14] and model predictive control

(MPC) [7,8]. However, it is computationally challenging to handle a chance constraint
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due to its nonconvexity. This often limits the admissible class of probability distribu-

tions and system dynamics and/or requires an undesirable approximation. To resolve

the issue of nonconvexity, a few theoretical and algorithmic tools have been devel-

oped using a particle-based approximation [15] and semidefinite programming formu-

lation [39], among others. Another approach is to use a convex risk measure, which is

computationally tractable. In particular, conditional value-at-risk (CVaR) has recently

drawn a great deal of interest in motion planning and control [19,26,40,41]. The CVaR

of a random loss represents the conditional expectation of the loss within the (1 − α)

worst-case quantile of the loss distribution, where α ∈ (0, 1) [17]. As claimed in [19],

CVaR is suitable for rational risk assessments in robotic applications because of its co-

herence in the sense of Artzner et al. [18]. In addition to its computational tractability,

CVaR is capable of distinguishing the worst-case tail events, and thus it is effective to

take into account rare but unsafe events. To enjoy these advantages, we adopt CVaR to

measure the risk of unsafety.

The performance of such risk-aware motion control tools critically depends on the

quality of information about the probability distribution of underlying uncertainties,

such as an obstacle’s random motion. If a poorly estimated distribution is used, it

may cause unwanted behaviors of the robot, leading to a collision. One of the most

straightforward ways to estimate the probability distribution is to collect the sample

data of an obstacle’s movement and construct an empirical distribution. The use of an

empirical distribution is equivalent to a sample average approximation (SAA) of the

stochastic programs [27]. Although SAA is quite effective with asymptotic optimality,

it does not have a finite-sample guarantee of satisfying risk constraints. In our previous

work using SAA, it was empirically observed that risk constraints are likely to be

violated when the sample size is very small [41].

To account for this issue of limited distributional information, we seek an efficient

risk-aware motion control method that is robust against distribution errors. Our method

is based on distributionally robust optimization (DRO), which is employed to solve
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a stochastic program in the face of the worst-case distribution drawn from a given

set, called the ambiguity set [42–44]. In this work, we use the Wasserstein ambiguity

set, a statistical ball that contains all the probability distributions whose Wasserstein

distance from an empirical distribution is no greater than a certain radius [1, 45, 46].

The Wasserstein ambiguity set has several salient features, such as providing a non-

asymptotic performance guarantee and addressing the closeness between two points

in the support, unlike other statistical distance-based ambiguity sets (e.g., using phi-

divergence) [46–48]. The proposed motion control method is robust against obstacle

movement distribution errors characterized by the Wasserstein ambiguity set.

The contributions of this work can be summarized as follows. First, a novel model

predictive control (MPC) method is proposed to limit the risk of unsafety through

CVaR constraints that must hold for any perturbation of the empirical distribution

within the Wasserstein ambiguity set. Thus, the resulting control decision is guar-

anteed to satisfy the risk constraints for avoiding randomly moving obstacles in the

presence of allowable distribution errors. Moreover, the proposed method provides a

finite-sample probabilistic guarantee of limiting out-of-sample risk, meaning that the

risk constraints are satisfied with probability no less than a certain threshold even when

evaluated with new sample data chosen independently of the training data. Second, for

computational tractability, we reformulate the distributionally robust MPC (DR-MPC)

problem, which is infinite-dimensional, into a finite-dimensional nonconvex optimiza-

tion problem. The proposed reformulation procedure is developed using modern DRO

techniques based on the Kantorovich duality principle [1]. Third, a spatial branch-and-

bound (sBB) algorithm is designed with McCormick relaxation to address the issue

of nonconvexity. The proposed algorithm finds a globally optimal control action in

the case of affine system dynamics and output equations. The performance and utility

of the proposed method are demonstrated through two simulation studies, one with a

nonlinear car-like vehicle model and another with a linearized quadrotor model. The

results of numerical experiments confirm that, even when the sample size is small, the
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proposed DR-MPC method can successfully avoid randomly moving obstacles with a

guarantee of limiting out-of-sample risk, while its SAA counterpart fails to do so.

The rest of this chapter is organized as follows. In Section 3.2, the problem setup

and the obstacles’ model are introduced. In Section 3.3, Wasserstein DR-MPC prob-

lem is formulated using CVaR constraints for collision avoidance. Also, a set of refor-

mulation procedures is proposed to resolve the infinite-dimensionality issue inherent

in the DR-MPC problem. In Section 3.4, the probabilistic guarantee of limiting out-

of-sample risk is discussed using the measure concentration inequality for Wasser-

stein ambiguity sets. Finally, the simulation results are presented and analyzed in Sec-

tion 3.5.

3.2 System and Obstacle Models

In this chapter, we consider a mobile robot, which can be modeled by the following

discrete-time dynamical system:

ξ(t+ 1) = f(ξ(t), u(t)),

y(t) = h(ξ(t), u(t)),

where ξ(t) ∈ Rnξ , u(t) ∈ Rnu and y(t) ∈ Rny are the system state, the control

input, and the system output, respectively. In general, f : Rnξ × Rnu → Rnξ and

h : Rnξ ×Rnu → Rny are nonlinear functions, representing the system dynamics and

the output mapping, respectively. We regard the output as the robot’s current position in

the ny-dimensional configuration space. Typical robotic systems operate under some

state and control constraints:

ξ(t) ∈ Ξ, u(t) ∈ U .

We assume that Ξ ⊆ Rnξ and U ⊆ Rnu are convex sets.

To formulate a collision avoidance problem, we consider L randomly moving rigid

body obstacles that the robotic vehicle has to avoid while navigating the configuration
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Figure 3.1: Robot configuration space with randomly moving obstacles.

space. Let the region occupied by the obstacle ` at stage t be denoted byO`(t) ⊂ Rny .

If O`(t) is not a convex polytope, we over-approximate it as a polytope and choose its

convex hull as illustrated in the second obstacle in Fig. 3.1 in a similar way to 2.2.

In this chapter we consider obstacles with random translational motion between

two stages:

O`(t+ k) = O`(t) + w`,t,k.

An example of obstacles’ movements is illustrated in Fig. 3.1. Here, the sum of

a set A and a vector w is defined by adding w to all elements of A, i.e. A + w :=

{a+ w | a ∈ A}.

It is straightforward to see that the safe region has the same translational motion

Y`(t+ k) = Rny \ Oo` (t+ k)

= {x ∈ Rny | x /∈ Oo` (t+ k)}

= {x+ w`,t,k ∈ Rny | x /∈ Oo` (t)}

= Y`(t) + w`,t,k.

where w`,t,k is a random translation vector in Rny .
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3.3 Wasserstein Distributionally Robust MPC

Computing safety risk in (2.3.3) requires information about the probability distribu-

tion of w`,t,k. However, the exact probability distribution is unknown in practice, and

obtaining a reliable distribution is a challenging task. In most cases, we only have a

limited amount of sample data generated from the underlying distribution. Probably

the simplest way to incorporate the available data into the motion control problem is to

employ an empirical distribution as in SAA of stochastic programs [27]. Specifically,

given sample data {ŵ(1)
`,t,k, . . . , ŵ

(Nk)
`,t,k } of w`,t,k, the empirical distribution is defined as

ν`,t,k :=
1

Nk

Nk∑
i=1

δ
ŵ

(i)
`,t,k

, (3.3.1)

where δw is the Dirac delta measure concentrated at w. However, this empirical distri-

bution is not capable of reliably estimating the safety risk, particularly when the sam-

ple size Nk is small. This fundamental limitation results in unsafe decision-making

without respecting the original risk constraint. Thus, the approach of using empirical

distributions may lead to damaging collisions as the safety risk is poorly assessed.

To resolve the issue of unreliable distribution information, we take a DRO ap-

proach. Instead of using the risk constraint (2.3.3), we limit the safety risk evaluated

under the worst-case distribution of w`,t,k lying in a given set D`,t,k, called an ambigu-

ity set. More precisely, we impose the following distributionally robust risk constraint:

sup
µ`,t,k∈D`,t,k

CVaR
µ`,t,k
α [dist(yk,Y`(t+ k))] ≤ δ` ∀`.

By limiting the worst-case risk value that the robot can bear, the resulting con-

trol action is robust against distribution errors characterized by the ambiguity set. In

this work, the ambiguity set is chosen as the following statistical ball centered at the

empirical distribution (3.3.1) with radius θ > 0:

D`,t,k := {µ ∈ P(W) |W (µ, ν`,t,k) ≤ θ}, (3.3.2)

where P(W) denotes the set of Borel probability measures on the support W ⊆ Rny .

Here, the Wasserstein distance (of order 1) W (µ, ν) between µ and ν represents the
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minimum cost of redistributing mass from one measure to another using a small non-

uniform perturbation, and is defined by

W (µ, ν) := min
κ∈P(W2)

{∫
W2

‖w − w′‖ dκ(w,w′) | Π1κ = µ,Π2κ = ν
}
,

where Πiκ denotes the ith marginal of the transportation plan κ for i = 1, 2, and ‖ · ‖

is an arbitrary norm on Rny .

From (3.3.2) it is straightforward to see that by adjusting the radius θ, one can

control the degree of conservatism of the underlying optimization problem. If the ra-

dius drops to zero, then the ambiguity set shrinks to a singleton that contains only the

nominal distribution, in which case the distributionally robust problem reduces to an

ambiguity-free stochastic program.

It is worth mentioning that other types of ambiguity sets can be chosen in the

proposed DR-MPC formulation. A popular choice in the literature of DRO is moment-

based ambiguity sets [42–44]. However, such ambiguity sets are often overly conser-

vative and require a large sample size to reliably estimate moment information. Statis-

tical distance-based ambiguity sets have also received considerable interest, by using

phi-divergence [47] and Wasserstein distance [1, 45, 46, 49], among others. However,

unlike other statistical distance-based ones, the Wasserstein ambiguity set contains a

richer set of relevant distributions, and the corresponding Wasserstein DRO provides

a superior finite-sample performance guarantee [1]. These desirable features play an

important role in the proposed motion control tool.

Model Predictive Control (MPC) is one of the advanced techniques for mobile

robot control. One of the advantages of using MPC is that it gives an opportunity to

add constraints and make decision within the allowable set. Thus, it is reasonable to

consider an MPC with given robot vehicle dynamics and a set of constraints and for-

mulate formulate the risk-aware motion control problem as the following Wasserstein
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distributionally robust MPC (DR-MPC) problem:1

inf
u,ξ,y

J(ξ(t),u) :=

K−1∑
k=0

r(ξk, uk) + q(ξK) (3.3.3a)

s.t. ξk+1 = f(ξk, uk) (3.3.3b)

yk = h(ξk, uk) (3.3.3c)

ξ0 = ξ(t) (3.3.3d)

ξk ∈ Ξ (3.3.3e)

uk ∈ U (3.3.3f)

sup
µ`,t,k∈D`,t,k

CVaR
µ`,t,k
α [dist(yk,Y`(t+ k))] ≤ δ`, (3.3.3g)

where u := (u0, . . . , uK−1), ξ := (ξ0, . . . , ξK), y := (y0, . . . , yK). The constraints

(3.3.3b) and (3.3.3f) should be satisfied for k = 0, . . . ,K − 1, the constraints (3.3.3c)

and (3.3.3e) should hold for k = 0, . . . ,K, and the constraint (3.3.3g) is imposed for

k = 1, . . . ,K and ` = 1, . . . , L. Here, the stage-wise cost function r : Rnξ×Rnu → R

and the terminal cost function q : Rnξ → R are chosen to penalize the deviation from

the reference trajectory ξref (t) generated in Section 2.3.1 and to minimize the control

effort. Specifically, we set

J(ξ(t),u) := ‖ξK − ξref (t+K)‖2P +
K−1∑
k=0

‖ξk − ξref (t+ k)‖2Q + ‖uk‖2R,

where Q � 0, R � 0 are the weight matrices for state and input, respectively, and

P � 0 is chosen in a way to ensure stability. The constraints (3.3.3b) and (3.3.3c)

account for the system state and output predicted in the MPC horizon when ξ0 is

initialized as the current state ξ(t), and (3.3.3e) and (3.3.3f) are the constraints on

system state and control input, respectively. The distributionally robust risk constraint
1Our problem formulation and solution method is different from the one studied by Coulson et al. [50]

as they consider uncertainties in systems, whereas we consider uncertainties in obstacles’ motions. Dy-

namic programming approaches to distributionally robust optimal control problems have also been stud-

ied in [51–54].
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is specified in (3.3.3g), which is the most important part in this problem for safe motion

control with limited distribution information.

The Wasserstein DR-MPC problem is defined and solved in a receding horizon

manner. Once an optimal solution u? is obtained given the current state ξ(t), the first

component u?0 of u? is selected as the control input at stage t, i.e., u(t) := u?0. Un-

fortunately, it is challenging to solve the Wasserstein DR-MPC problem due to the

distributionally robust risk constraint (3.3.3g). This risk itself involves an optimiza-

tion problem, which is infinite-dimensional. To alleviate the computational difficulty,

we reformulate the Wasserstein DR-MPC problem in a tractable form and propose

efficient algorithms for solving the reformulated problem in the following sections.

To develop a computationally tractable approach to solving the Wasserstein DR-

MPC problem, we propose a set of reformulation procedures. For ease of exposition,

we suppress the subscripts in the DR-risk constraint (3.3.3g) and consider

sup
µ∈D

CVaRµ
α[dist(y,Y + w)] ≤ δ. (3.3.4)

3.3.1 Distance to the Safe Region

The first step is to derive a simple expression for the loss of safety, dist(y,Y + w).

Recall that the region occupied by an obstacle is represented as a convex polytope (via

over-approximation if needed), i.e.,

O = {y | c>j y ≤ dj , j = 1, . . . ,m}

for some cj ∈ Rny and dj ∈ R. Since Y = Rny \ Oo, the corresponding safe region

can be expressed as the union of half spaces, i.e.,

Y :=

m⋃
j=1

{y | c>j y ≥ dj}. (3.3.5)

From (3.3.5) we see that the safe region is a union of halfspaces, resulting in the

next lemma.
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Figure 3.2: Illustration of the distance to the union of halfspaces.

Lemma 1. Suppose that the safe region is given by (3.3.5). Then, the loss of safety

(2.3.1) can be expressed as

dist(y,Y + w) =

[
min

j=1,...,m

dj − c>j (y − w)

‖cj‖2

]+
.

Proof. First, we let

Yj := {y | c>j y ≥ dj}.

Then, using the property that Yj + w = {y | c>j (y − w) ≥ dj}, the distance between

y and each halfspace can be represented by

dist(y,Yj + w) = inf
t
{‖t‖2 | c>j (y − t− w) ≥ dj}. (3.3.6)

This equality is illustrated in Fig. 3.2. To derive the dual of the optimization problem

in (3.3.6), we first find the Lagrangian as

L(t, λ) = ‖t‖2 + λ
[
dj − c>j (y − t− w)

]
.

The corresponding dual function is obtained by

g(λ) = min
t

{
‖t‖2 + λ

[
dj − c>j (y − t− w)

]}
= min

t

{
‖t‖2 + λc>j t

}
+ λ

[
dj − c>j (y − w)

]
.
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Note that

min
t
{‖t‖2 + λc>j t} =


0 if λ‖cj‖2 ≤ 1

−∞ otherwise.

Therefore, the dual problem of (3.3.6) can be derived as
maxλ λ

[
dj − c>j (y − w)]

]
s.t. λ‖cj‖2 ≤ 1

λ ≥ 0

=


maxλ λ

[
dj − c>j (y − w)

]
s.t. λ ≤ 1

‖cj‖2

λ ≥ 0

=

[
dj − c>j (y − w)

‖cj‖2

]+
. (3.3.7)

The primal problem satisfies the refined Slater’s conditions, as the inequality constraint

is linear and the primal problem is feasible [55, Section 5.2.3]. Therefore, we conclude

that strong duality holds.

Now that we have the distance from a single halfspace, the distance from the safe

region can be written as

dist(y,Y + w) = min
j=1,...,m

{dist(y,Yj + w)}

= min
j=1,...,m

{[
dj − c>j (y − w)

]+
‖cj‖2

}
,

where the second equality follows directly from (3.3.7). This concludes the proof be-

cause minimum and (·)+ are interchangeable.

3.3.2 Reformulation of Distributionally Robust Risk Constraint

The next step is to reformulate the distributionally robust risk constraint (3.3.4) in

a conservative manner. This reformulation will then be suitable for our purpose of

limiting safety risk.

Lemma 2. Suppose that the safe region is given by (3.3.5). Then, the distributionally

robust safety risk is upper-bounded as follows:
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sup
µ∈D

CVaRµ
α[dist(y,Y+w)] ≤ inf

z∈R
z+

1

1− α
sup
µ∈D

Eµ
[

max
{

min
j
pj(y, w)−z,−z, 0

}]
,

where pj(y, w) =
dj−c>j (y−w)
‖cj‖2 .

Proof. By the definition of CVaR and Lemma 1, we have

CVaRµ
α[dist(y,Y + w)] = inf

z∈R
Eµ
[
z +

(
dist(y,Y + w)− z

)+
1− α

]
= inf

z∈R
Eµ
[
z +

1

1− α

([
min
j
pj(y, w)

]+ − z)+].
By the minimax inequality, we obtain that

sup
µ∈D

CVaRµ
α[dist(y,Y + w)]

≤ inf
z∈R

sup
µ∈D

Eµ
[
z +

1

1− α

([
min
j
pj(y, w)

]+ − z)+]
= inf

z∈R
sup
µ∈D

Eµ
[
z +

1

1− α
max

{
min
j
pj(y, w)− z,−z, 0

}]
,

and therefore the result follows.

The upper-bound of the worst-case CVaR in Lemma 2 is still difficult to evaluate

because its inner maximization problem involves optimization over a set of distribu-

tions. To resolve this issue, we use Wasserstein DRO based on Kantorovich duality to

transform it into a finite-dimensional optimization problem as follows.

Proposition 2. Suppose that the uncertainty set is a compact convex polytope, i.e.

W := {w ∈ Rny | Hw ≤ h}, where H ∈ Rq×ny and h ∈ Rq. Then, the following
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equality holds:

sup
µ∈D

Eµ
[

max
{

min
j=1,...,m

pj(y, w)− z,−z, 0
}]

=

inf
λ,s,ρ,γ,η,ζ

λθ +
N∑
i=1

si

s.t. 〈ρi, G(y − ŵ(i)) + g〉+ 〈γi, h−Hŵ(i)〉 ≤ si + z

〈ηi, h−Hŵ(i)〉 ≤ si + z

〈ζi, h−Hŵ(i)〉 ≤ si

‖H>γi −G>ρi‖∗ ≤ λ

‖H>ηi‖∗ ≤ λ

‖H>ζi‖∗ ≤ λ

〈ρi, em〉 = 1

γi ≥ 0, ρi ≥ 0, ηi ≥ 0, ζi ≥ 0,

where all the constraints hold for i = 1, . . . , N , and the dual norm ‖ · ‖∗ is defined

by ‖z‖∗ := sup‖ξ‖≤1〈z, ξ〉. Here, G ∈ Rm×ny is a matrix with rows − c>j
‖cj‖2 , j =

1, . . . ,m, g ∈ Rm is a column vector with entries dj
‖cj‖2 , j = 1, . . . ,m, and em ∈ Rm

is a vector of all ones.

Proof. By the Kantorovich duality principle, we can rewrite the upper-bound of the

worst-case CVaR in Lemma 2 in the following dual form:

sup
µ∈D

Eµ
[

max
{

min
j=1,...,m

pj(y, w)− z,−z, 0
}]

=

inf
λ≥0

[
λθ +

1

N

N∑
i=1

sup
w∈W

[
max

{
min

j=1,...,m
pj(y, w)− z,−z, 0

}
− λ‖w − ŵ(i)‖

]]
.

It is proved in [46, Theorem 1] that strong duality holds. Introducing new auxiliary

variable s and following the procedure in [1], the dual problem above can be expressed
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as 
infλ,s λθ + 1

N

∑N
i=1 si

s.t. supw∈W

[
max

{
minj pj(y, w)− z,−z, 0

}
− λ‖w − ŵ(i)‖

]
≤ si

λ ≥ 0

=



infλ,s λθ + 1
N

∑N
i=1 si

s.t. supw∈W[−max‖ξi,1‖∗≤λ〈ξi,1, w − ŵ(i)〉+ minj pj(y, w)]− z ≤ si

supw∈W[−max‖ξi,2‖∗≤λ〈ξi,2, w − ŵ(i)〉]− z ≤ si

supw∈W[−max‖ξi,3‖∗≤λ〈ξi,3, w − ŵ(i)〉] ≤ si

λ ≥ 0,

where the constraints hold for all i. In the second problem, we decompose the expres-

sion inside maximum and employ the definition of dual norm. Thereafter, since the set

{ξi,k | ‖ξi,k‖∗ ≤ λ} is compact for any λ ≥ 0, the minimax theorem can be used to

rewrite the problem as

infλ,s λθ + 1
N

∑N
i=1 si

s.t. min‖ξi,1‖∗≤λ supw∈W[−〈ξi,1, w − ŵ(i)〉+ minj pj(y, w)]− z ≤ si

min‖ξi,2‖∗≤λ supw∈W[−〈ξi,2, w − ŵ(i)〉]− z ≤ si

min‖ξi,3‖∗≤λ supw∈W[−〈ξi,3, w − ŵ(i)〉] ≤ si

λ ≥ 0

=



infλ,s,ξ λθ + 1
N

∑N
i=1 si

s.t. supw∈W[〈ξi,1, w〉+ minj pj(y, w)]− 〈ξi,1, ŵ(i)〉 − z ≤ si

supw∈W〈ξi,2, w〉 − 〈ξi,1, ŵ(i)〉 − z ≤ si

supw∈W〈ξi,3, w〉 − 〈ξi,1, ŵ(i)〉 ≤ si

‖ξi,k‖∗ ≤ λ, k = 1, 2, 3,

where the constraints hold for all i. The first constraint can be written as sum of a con-

jugate function and the support function σW(νi) := supw∈W〈νi, w〉 since −pj(y, w)

is proper, convex and lower semicontinuous. Likewise, the next two constraints can be
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represented using σW(ξi,2) and σW(ξi,3) as follows:

infλ,s,ξ,ν λθ +
∑N

i=1 si

s.t. supw[〈ξi,1 − νi, w〉+ minj pj(y, w)] + σW(νi)− 〈ξi,1, ŵ(i)〉 − z ≤ si

σW(ξi,2)− 〈ξi,2, ŵ(i)〉 − z ≤ si

σW(ξi,3)− 〈ξi,3, ŵ(i)〉 ≤ si

‖ξi,k‖∗ ≤ λ, k = 1, 2, 3,

(3.3.8)

where the constraints hold for all i.

On the other hand, we note that

sup
w

[
〈ξi,1 − νi, w〉+ min

j=1,...,m
pj(y, w)

]
=

supw,τ 〈ξi,1 − νi, w〉+ τ

s.t. G(y − w) + g ≥ τe

=



infρi 〈ρi, g +Gy〉

s.t. G>ρi = νi − ξi,1

〈ρi, em〉 = 1

ρi ≥ 0,

where the last equality follows from strong duality of linear programming, which holds

because the primal maximization problem is feasible. By the definition of support

functions, we also have

σW(νi) =

supw 〈νi, w〉

s.t. Hw ≤ h
=


infγi 〈γi, h〉

s.t. H>γi = νi

γi ≥ 0,

where the last equality follows from strong duality of linear programming, which holds

since the uncertainty set is nonempty. Similar expressions are derived for σW(ξi,2) and

σW(ξi,3) with Lagrangian multipliers ηi and ζi, respectively. By substituting the results

above into (3.3.8), we conclude that the proposed reformulation is exact.
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3.3.3 Reformulation of the Wasserstein DR-MPC Problem

We are now ready to reformulate the Wasserstein DR-MPC problem (3.3.3) as a finite-

dimensional optimization problem by using Lemma 2 and Proposition 2. Putting all

the pieces in Lemma 2 and Proposition 2 together into (3.3.3), we have

inf
u,ξ,y,z,λ,
s,ρ,γ,η,ζ

J(ξ(t),u) :=
K−1∑
k=0

r(ξk, uk) + q(ξK) (3.3.9a)

s.t. ξk+1 = f(ξk, uk) (3.3.9b)

yk = h(ξk, uk) (3.3.9c)

ξ0 = ξ(t) (3.3.9d)

z`,k +
1

1− α

[
λ`,kθ +

1

Nk

Nk∑
i=1

s`,k,i

]
≤ δ` (3.3.9e)

〈ρ`,k,i, G`,t(yk − ŵ
(i)
`,t,k) + g`,t〉+ 〈γ`,k,i, h` −H`ŵ

(i)
`,t,k〉 ≤ s`,k,i + z`,k

(3.3.9f)

〈η`,k,i, h` −H`ŵ
(i)
`,t,k〉 ≤ s`,k,i + z`,k (3.3.9g)

〈ζ`,k,i, h` −H`ŵ
(i)
`,t,k〉 ≤ s`,k,i (3.3.9h)

‖H>` γ`,k,i −G>`,tρ`,k,i‖∗ ≤ λ`,k (3.3.9i)

‖H>` η`,k,i‖∗ ≤ λ`,k (3.3.9j)

‖H>` ζ`,k,i‖∗ ≤ λ`,k (3.3.9k)

〈ρ`,k,i, em〉 = 1 (3.3.9l)

γ`,k,i, ρ`,k,i, η`,k,i, ζ`,k,i ≥ 0 (3.3.9m)

ξk ∈ Ξ, uk ∈ U , z`,k ∈ R, (3.3.9n)

where all the constraints hold for k = 1, . . . ,K, ` = 1, . . . , L and i = 1, . . . , Nk,

except for the first constraint and uk ∈ U , which should hold for k = 0, . . . ,K − 1,

and the second constraint and ξk ∈ Ξ, which should hold for k = 0, . . . ,K.

The overall motion control process is as follows. First, at stage t the initial state ξ0

in MPC is set to be the current state ξ(t). Also, the current safe regionY`(t) is observed

43



to return G`,t and g`,t. Second, the Wasserstein DR-MPC problem (3.3.9) is solved

to find a solution u? satisfying the risk constraint even when the actual distribution

deviates from the empirical distribution (3.3.1) within the Wasserstein ball (3.3.2).

Then, the first component of the optimal control input sequence u?0 is selected as the

control input at stage t and applied to the robotic vehicle. These two steps are repeated

for all time stages until the desired position in the configuration space is reached.

As a consistency check, we ascertain that in ambiguity-free case the above problem

reduces to a risk-constrained MPC problem evaluated under the empirical distribution,

equivalent to the SAA-MPC introduced in our previous paper [41]. By replacing θ = 0,

we get that

inf
u,ξ,y
z,s,ρ

J(ξ(t),u) :=
K−1∑
k=0

r(ξk, uk) + q(ξK) (3.3.10a)

s.t. ξk+1 = f(ξk, uk) (3.3.10b)

yk = h(ξk, uk) (3.3.10c)

ξ0 = ξ(t) (3.3.10d)

z`,k +
1

(1− α)Nk

Nk∑
i=1

s`,k,i ≤ δ` (3.3.10e)

〈ρ`,k,i, G`,t(yk − ŵ
(i)
`,t,k) + g`,t〉 ≤ s`,k,i + z`,k (3.3.10f)

0 ≤ s`,k,i + z`,k (3.3.10g)

0 ≤ s`,k,i (3.3.10h)

〈ρ`,k,i, em〉 = 1 (3.3.10i)

ρ`,k,i ≥ 0 (3.3.10j)

ξk ∈ Ξ, uk ∈ U , z`,k ∈ R, (3.3.10k)

The proposed reformulation resolves the infinite-dimensionality issue in the origi-

nal Wasserstein DR-MPC problem. Thus, the reformulated problem is easier to solve

than the original one. However, it is still nonconvex due to the nonlinear system dy-

namics and output equations, as well as the bilinearity of the fifth constraint (3.3.9f);
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all the other constraints and the objective function are convex. Thus, a locally opti-

mal solution can be found by using efficient nonlinear programming (NLP) algorithms

such as interior-point methods, sequential quadratic programming, etc [56]. However,

in some specific cases, e.g., when the system dynamics and the output equations are

affine, we can use relaxation techniques to find a globally optimal solution. One such

relaxation method is the Spatial Branch-and-Bound, the detailed application of which

on our problem can be found in [57].

3.4 Out-of-Sample Performance Guarantee

As mentioned previously, the distribution µ is never observable but must be inferred

from data. However, if we calibrate a stochastic program to a given training dataset

and evaluate its optimal decision on a different testing dataset, then the resulting out-

of-sample performance is often disappointing, even when the two datasets are gener-

ated from the same underlying distribution µ. Such defect exists in case of SAA-based

methods. However, the advantage of the Wasserstein DR-MPC method is that it as-

sures a probabilistic out-of-sample performance guarantee, meaning that the safety

risk constraint is satisfied with probability no less than a certain threshold, even when

evaluated under a set of new samples chosen independently of the training data. This is

a finite-sample (non-asymptotic) guarantee, which cannot be attained in many popular

methods such as SAA.

Let (u?, ξ?,y?) denote an optimal solution to the Wasserstein DR-MPC prob-

lem (3.3.3) at stage t, obtained by using the training dataset {ŵ(1)
`,t,k, . . . , ŵ

(Nk)
`,t,k }. Then,

the out-of-sample risk at stage t is defined by

CVaRµ
α[dist(y?(t+ 1),Y(t) + w`,t,1)], (3.4.1)

which represents the risk of unsafety evaluated under the (unknown) true loss distri-

bution µ. However, as µ is unknown in practice, it is impossible to exactly evaluate

the out-of-sample risk. Instead, we seek a motion control solution that provides the
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following probabilistic performance guarantee:

µN1

{
CVaRµ

α[dist(y?(t+ 1),Y(t) + w`,t,1)] ≤ δ`
}
≥ 1− β ∀t, (3.4.2)

where β ∈ (0, 1). This inequality represents that the risk of unsafety is no greater than

the risk-tolerance parameter δ with (1−β) confidence level. We refer to the probability

on the left-hand side of (3.4.2) as the reliability of the motion control. The reliability

increases with the Wasserstein ball radius θ. Thus, θ needs to be carefully determined

to establish the probabilistic out-of-sample performance guarantee with desired β.

The required radius can be found from the following measure concentration in-

equality for Wasserstein ambiguity sets [58, Theorem 2]:2

µN1
{
ŵ |W (µ, ν) ≥ θ

}
≤ c1

[
b1(N1, θ)1{θ≤1} + b2(N1, θ)1{θ>1}

]
, (3.4.3)

where

b1(N, θ) :=


exp(−c2Nθ2) if ny < 2

exp(−c2N( θ
log(2+1/θ))

2) if ny = 2

exp(−c2Nθny) otherwise

b2(N, θ) := exp(−c2Nθc)

for some constants c1, c2 > 0. Suppose that the radius is chosen as

θ :=



[
log(c1/β)
c2N1

]1/c
if N1 <

1
c2

log(c1/β)[
log(c1/β)
c2N1

]1/ny
if N1 ≥ 1

c2
log(c1/β), ny < 2[

log(c1/β)
c2N1

]1/2
if N1 ≥ 1

c2
log(c1/β), ny > 2

θ̄ if N1 ≥ (log 3)2

2 log(c1/β), ny = 2

for θ̄ satisfying the condition

θ̄

log(2 + 1/θ̄)
=

[
log(c1/β)

c2N1

]1/2
.

2The measure concentration inequality assumes that Eµ[exp(‖w‖c)] ≤ B for c > 1 and B > 0,

i.e. light-tailed distribution. In our problem formulation, this condition holds trivially for any compact

uncertainty set W.
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Then, by the measure concentration inequality (3.4.3), we have

µN1
{
ŵ |W (µ, ν) ≤ θ

}
≥ 1− β.

It follows that for each t

µN1

{
CVaRµ

α[dist(y?(t+ 1),Y(t) + w`,t,1)]

≤ sup
µ′∈D

CVaRµ′
α [dist(y?(t+ 1),Y(t) + w`,t,1)]

}
≥ 1− β.

Since supµ′∈D CVaRµ′
α [dist(y?(t+ 1),Y(t) +w`,t,1)] ≤ δ` by the definition of y?, we

conclude that the probabilistic performance guarantee (3.4.2) holds with the choice of

θ above. Similar results are also derived in [1, Theorem 3.5] and [29, Theorem 3].

The constants c1 and c2 can be explicitly found using the proof of [58, Theorem 2].

However, this choice often leads to an overly conservative radius θ. One can obtain

a less conservative θ by using bootstrapping or cross-validation methods [1]. In the

following section, we show how θ can be selected based on numerical experiments,

depending on the choice of sample size.

3.5 Numerical Experiments

In this section, we present simulation results that demonstrate the performance and the

utility of the Wasserstein Distributionally Robust motion control method.

In our simulations we consider randomly translating obstacles and analyze the

behavior of two mobile robots, (i) a 5-dimensional nonlinear car-like vehicle model,

and (ii) a 12-dimensional linearized quadrotor model when controlled by WDR-MPC

problem (3.3.9) to follow the reference trajectory generated by RRT*. Here we also

investigate the out-of-sample performance of our method, by computing the worst-

case reliability and the worst-case and average risks for different Wasserstein radii and

sample sizes.

In our experimental results we demonstrate the advantage of using DR-MPC over

the SAA-based risk-aware MPC method. The parameters of the robot models in Ta-
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Table 3.1: Robotic vehicle parameters

Car-like model Quadrotor model

mV 1700 kg mQ 0.65 kg

Cf 50 kN/rad g 9.81 ms2

Cr 50 kN/rad lQ 0.23 m

Iz 6000 kg ·m2 Ixx 0.0075 kg ·m2

Lf 1.2 m Iyy 0.0075 kg ·m2

Lr 1.3 m Izz 0.013 kg ·m2

vrx 5 m/s

ble 3.1 were used throughout the simulations. All the simulations were conducted on a

PC with 3.70 GHz Intel Core i7-8700K processor and 32 GB RAM. The optimization

problem was modeled in AMPL [59] and solved using interior-point method-based

solver IPOPT [60]. For the quadrotor model, we also applied an algorithm called Spa-

tial Branch-and-Bound (sBB) to find the globally optimal solution, which in general

cannot be obtained by nonlinear program solvers.

3.5.1 Nonlinear Car-Like Vehicle Model

Consider a car-like vehicle navigating in a 2D environment with the following nonlin-

ear model [61]:

Ẋr = vrx cos θr − vry sin θr

Ẏ r = vrx sin θr + vry cos θr

θ̇r = ωr

v̇ry =
−2(Cf + Cr)

mV vrx
vry −

(2lfCf − 2lrCr
mV vrx

+ vrx

)
ωr +

2Cf
mV

δrf

ω̇r =
−2(lfCf + lrCr)

Izvrx
vry −

2l2fCf − 2l2rCr

Izvrx
ωr +

2lfCf
Iz

δrf ,
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Table 3.2: Computation time and operation cost for the nonlinear car-like vehicle mo-

tion control with Nk = 10, δ` = 0.02, and α = 0.95

SAA-MPC DR-MPC (θ)

0.0005 0.001 0.0015 0.002

Cost +∞ 642.31 788.52 885.69 942.97

Time (sec) - 113.64 131.19 221.66 226.66

where the state variables Xr, Y r, θr, vry, and ωr correspond to the vehicle’s center of

gravity in the inertial frame, lateral velocity, orientation and yaw rate, respectively. In

addition, vrx is the constant longitudinal velocity, mV is the mass of the vehicle, Iz is

the moment of inertia around the z axis, Cf and Cr are the cornering stiffness coeffi-

cients for the respective front and rear tires, and finally, Lf and Lr are the distances

from the center of gravity to the front and rear wheels. The output variables are chosen

as the Xr and Y r coordinates of the vehicle.

The task is to design a controller that steers the vehicle to its goal position while

avoiding the two randomly perturbing rectangular obstacles that are shown in Fig. 3.3.

The random movement of each obstacle in each direction is sampled from a uniform

distribution in [−0.2, 0.2]. Therefore, the support is W` = {w ∈ R2 | w ≤ 0.2, w ≥

−0.2}, ` = 1, 2. Also, we used `2-norm to measure distance in the uncertainty space.

The MPC horizon is set to K = 20. The weight matrix Q is chosen as a 5×5 diagonal

matrix with diagonal entries (1, 1, 0, 0, 0). Let P = 1.2Q and R = 0.01. The MPC

problem is solved for T = 80 iterations using the discretized vehicle model with

sample time Ts = 0.05 sec. The interior-point method-based solver IPOPT was used

to numerically solve the optimization problem (3.3.9) at each MPC iteration.

We first examine the effect of the Wasserstein ball radius θ and compare DR-

MPC with SAA-MPC [41]. Fig. 3.3 shows the controlled trajectories for different θ’s

computed with δ` = 0.02, α = 0.95 and Nk = 10 sample data. As shown in Fig. 3.3
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Table 3.3: The worst-case reliability for the car-like vehicle motion control

Nk \θ 0.0005 0.00075 0.001 0.00125

10 0.26 0.26 0.49 1.00

20 0.31 0.66 0.66 1.00

50 0.55 0.65 0.74 1.00

100 0.60 0.65 1.00 1.00

(a), in the early stages the vehicle follows the reference trajectory in the case of SAA-

MPC and DR-MPC with small θ, even though the robot gets closer to the first obstacle.

However, in the case of DR-MPC with θ = 0.0015, the robot proactively takes into

account the obstacle’s uncertainty for collision avoidance. The same behavior occurs

for θ = 0.002 with a bigger safety margin. Thus, the robot further deviates from

the reference trajectory. At t = 24, the robot controlled by SAA-MPC violates the

safety constraint and thus its operation is terminated. When DR-MPC is used, the robot

passes the obstacle at t = 26 without any collision. The trajectory generated with

θ = 0.0005 barely avoids the obstacle because the control action is not sufficiently

robust. However, when a bigger radius is used, the robot avoids the obstacle with a

wide enough safety margin. At t = 56, the vehicle reaches the second obstacle. All

four trajectories generated by DR-MPC are collision-free as desired. At t = 80, the

vehicle reaches the goal position and the MPC iterations terminate.

Overall, we conclude that, with a small sample size of Nk = 10, the SAA ap-

proach gives an infeasible result due to a violation of safety constraints, while the DR

approach successfully avoids obstacles. Table 3.2 shows the total computation time

and the total cost
∑T

t=0 r(ξ
?(t), u?(t)) for SAA-MPC and DR-MPC with different

θ’s. The total cost increases with θ because a larger θ induces a more cautious control

action that causes further deviations from the reference path. Thus, there is a funda-

mental tradeoff between risk and cost.
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(a) t = 15 (b) t = 26

(c) t = 56 (d) t = 80

Figure 3.3: Trajectories of the nonlinear car-like vehicle model controlled by SAA-

MPC and DR-MPC with multiple θ’s.
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Figure 3.4: (a) Worst-case and (b) the average out-of-sample risk for the car-like vehi-

cle.

We now investigate the out-of-sample safety risk by varying radius θ and sample

size Nk. Specifically, for the `th obstacle we evaluate the worst-case out-of-sample

risk

max
t=0,...,T−1

CVaRµ
α

[
dist(y?(t+ 1),Y(t) + w`,t,1)

]
,

and the average out-of-sample risk

1

T

T−1∑
t=0

CVaRµ
α

[
dist(y?(t+ 1),Y(t) + w`,t,1)

]
.

We estimated the CVaR using 20,000 independent samples generated from the true

distribution µ. The worst-case and average out-of-sample risks for different sample

sizes and radii are shown in Fig. 3.4a and 3.4b, respectively. The worst-case out-of-

sample risk is approximately 70 times larger than its average counterpart. Both out-of-

sample risks monotonically decrease with radius θ and sample size Nk. Recall that the

risk tolerance is chosen as δ` = 0.02. In the case of Nk = 10, the risk constraints for

all stages are satisfied if θ ≥ 0.0015. In all the other cases, the constraints are met for

θ ≥ 0.00125.
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For the probabilistic out-of-sample performance guarantee (3.4.2), we compute the

worst-case reliability

min
t=0,...,T−1

µN1

{
CVaRµ

α[dist(y?(t+ 1),Y(t) + w`,t,1)] ≤ δ`
}

with 200 independent simulations with 1,000 samples in each. Table 3.3 shows the es-

timated reliability depending on radius θ and sample size Nk. The reliability increases

with θ and Nk as expected. When Nk = 10, the probability of meeting all the risk

constraints for all stages is as low as 0.26 (with a very small radius, θ = 0.0005).

However, there is a sharp transition between θ = 0.001 and θ = 0.00125, and the

reliability reaches its maximal value 1 when θ = 0.00125. In the case of larger sample

sizes, e.g., Nk = 100, the reliability is relatively high even with a very small radius

and reaches 1 when θ = 0.001.

3.5.2 Linearized Quadrotor Model

Consider a quadrotor navigating in a 3D environment with the following linear dy-

namics:
ẍr = −gθ, ÿr = gφr, z̈r = −

lQ
mQ

ur1,

φ̈r =
1

Ixx
ur2, θ̈r =

lQ
Iyy

ur3, ψ̈r =
lQ
Izz

ur4,

where mQ is the quadrotor’s mass, g is the gravitational acceleration, and Ixx, Iyy and

Izz are the area moments of inertia about the principle axes in the body frame, and

lQ represents the distance between the rotor and the center of mass of the quadrotor.

The state of the quadrotor can be represented by its position and orientation with the

corresponding velocities and rates in a 3D space — (xr, ẋr, yr, ẏr, zr, żr, φr, φ̇r,

θr, θ̇r, ψr, ψ̇r) ∈ R12. The outputs are taken as the X , Y and Z coordinates of the

quadrotor’s center of mass.

The quadrotor is controlled to reach the desired goal position while avoiding three

randomly perturbing obstacles. The random motions of the obstacles in each direction

are drawn from the normal distributions N (0.2, 0.1), N (−0.8, 0.3) and N (0.3, 0.2),
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(a) t = 15 (b) t = 22

(c) t = 30 (d) t = 50

Figure 3.5: Trajectories of the quadrotor model controlled by SAA-MPC and DR-MPC

with multiple θ’s.

respectively. Therefore, the support for all the obstacles is W` = R3, ` = 1, 2, 3. Also,

we used `2-norm to measure distance in the uncertainty space. The MPC horizon is set

toK = 10. The weight matrixQ is selected as a 12×12 diagonal matrix with diagonal

entries (1, 0, 1, 0, 1, 0, 0, . . . , 0). We let P = Q and R = 0.02I . The MPC problem

is solved for T = 50 iterations by discretizing the quadrotor model with sample time

Ts = 0.1 sec.

The Wasserstein DR-MPC problem for the quadrotor model was solved using the

sBB method with McCormick relaxation as proposed in [57], as all the constraints are
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Table 3.4: Computation time and operation cost for the quadrotor motion control with

Nk = 10, δ` = 0.02, and α = 0.95

Method SAA θ = 0.001 θ = 0.002 θ = 0.003

Cost
NLP +∞ 14.02 29.93 86.34

sBB +∞ 13.49 28.86 80.31

Time (sec)
NLP − 47.69 77.08 136.02

sBB − 892.46 6093.33 9959.93

convex except the constraint (3.3.9f). The relaxed problem in the algorithm was solved

using the solver Gurobi, while the original one was solved using the solver IPOPT.

The bound on the control input was chosen based on the range of angular velocity

of the rotors. Thus, the control input is restricted to the set U := {u ∈ R4 | umin ≤

u ≤ umax} selected according to the motor specifications. In the simulation, we used

umin = (0,−22.52,−22.52,−1.08) and umax = (90, 22.52, 22.52, 1.08). The state

feasibility set Ξ := {x ∈ R12 | −π ≤ φr ≤ π , −π
2 ≤ θr ≤ π

2 , −π ≤ ψr ≤ π} has

been selected to limit the angles to avoid kinematic singularity.

The trajectories generated using Nk = 10 samples with δ` = 0.02 and α = 0.95

are shown in Fig. 3.5. We observe that for t < 15 no collision occurs with the first

obstacle. The trajectory with θ = 0.003 is the safest as its deviation from the reference

trajectory is the largest. At t = 22, the robot controlled by DR-MPC has passed the

second moving obstacle while avoiding it. However, in the case of SAA-MPC the

safety constraint at t = 20 is not satisfied, thereby resulting in a collision. At t = 30,

the quadrotor controlled by DR-MPC is near the third obstacle. Similar to the previous

stages, trajectories with bigger θ’s continue to deviate further from the risky reference

trajectory with a larger operation cost as shown in Table 3.4. At t = 50, the robot

completes the task and reaches the desired goal position.

Table 3.4 shows the computation time and the total cost
∑T

t=0 r(ξ
?(t), u?(t)) for
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Figure 3.6: (a) Worst-case and (b) the average out-of-sample risk for the quadrotor.

SAA-MPC and DR-MPC with different θ’s. The Wasserstein DR-MPC problem is

computed by two different methods: the sBB method with McCormick relaxation and

the interior-point method implemented in IPOPT. Compared to SAA-MPC, Wasser-

stein DR-MPC shows a better performance in terms of the total cost and safety risk,

while the computation time for SAA-MPC is lower than that for DR-MPC. From Ta-

ble 3.4, we observe that the cost obtained by sBB is less than that obtained by the

interior-point method. This is consistent with the fact that sBB finds a globally opti-

mal solution while the interior-point method converges to a local optimum. However,

the interior-point method is faster than sBB as expected.

The selection of θ meeting the desired out-of-sample performance guarantee can

be achieved by the same method as in the previous scenario. Figures 3.6a and 3.6b

show the worst-case and average out-of-sample risks estimated using 20,000 inde-

pendent samples from the true distribution. As expected, the out-of-sample risk de-

creases with the sample size and the ambiguity set size. Table 3.5 shows the reliability

mint=0,...,T−1 µ
N1{CVaR[dist(y1,Y(t) +w`,t,1)] ≤ δ`}. The reliability does not sig-

nificantly improve until θ = 0.001. Instead, it remains almost constant for all sample

sizes when θ ≤ 0.001, and then rapidly increases. A probabilistic guarantee of 0.92
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Table 3.5: The worst-case reliability for the quadrotor motion control

Nk \θ 0.0005 0.00075 0.001 0.00125 0.0015

10 0.54 0.54 0.64 0.72 1.00

20 0.64 0.64 0.65 0.92 1.00

50 0.65 0.65 0.69 1.00 1.00

100 0.69 0.69 0.69 1.00 1.00

can be achieved on out-of-sample with only 20 sample data and θ = 0.00125. Thus, we

can conclude that 0.00125 is a reasonable choice for θ when only 20 sample data are

available, with which we achieve an acceptable out-of-sample performance guarantee.

3.6 Conclusions

In this work, we developed a risk-aware distributionally robust motion control method

for avoiding collisions with randomly moving obstacles. By limiting the safety risk in

the presence of distribution errors within a Wasserstein ball, the proposed approach

resolves the issue related to the inexact empirical distribution obtained from a small

amount of available data and provides a probabilistic out-of-sample performance guar-

antee. The computational tractability of the resulting DR-MPC problem was achieved

via a set of reformulations. Finally, the performance of Wasserstein DR-MPC was

demonstrated through numerical experiments on a nonlinear car-like vehicle model

and a linearized quadrotor model. According to the simulation studies, even with a

very small sample size (Nk = 10), Wasserstein DR-MPC successfully avoids ran-

domly moving obstacles and limits the out-of-sample safety risk (in a probabilistic

manner), unlike the popular SAA method.
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Chapter 4

LEARNING-BASED DISTRIBUTIONALLY

ROBUST MPC

4.1 Introduction

The adoption of learning-based decision-making tools for the intelligent operation of

mobile robots and autonomous systems is rapidly growing because of advances in ma-

chine learning, sensing, and computing technologies. By learning its uncertain and

dynamic environment, a robot can use additional information to improve the control

performance. However, the accuracy of inference is often poor, as it is subject to the

quality of the observations, statistical models, and learning methods. Employing in-

accurately learned information in the robot’s decision making may cause catastrophic

system behaviors, in particular, leading to collision. The focus of this work is to de-

velop an optimization-based method for safe motion control that is robust against er-

rors in learned information about obstacles moving with unknown dynamics.

Learning-based control methods for mobile robots and autonomous systems can

be categorized into two classes. The first class learns unknown system models, while

the second class learns unknown environments. Control methods that learn unknown

system dynamics typically use model predictive control (MPC) [62–66] and model-
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based reinforcement learning (RL) [67–69]. These tools employ various learning or

inference techniques to update unknown system model parameters that are, in turn,

used to improve control actions or policies. On the other hand, the methods in the

second class put more emphasis on “learning the environment” rather than “controlling

the robot”. In particular, for learning the behavior (or intention) of obstacles or other

vehicles, several methods have been proposed that use inverse RL [70–72], imitation

learning [73, 74], and Gaussian mixture models [75, 76], among others.

Our method is classified as the second since it learns the movement of obstacles.

However, departing from the previous approaches, we emphasize the importance of

“control” in correcting potential errors in “learning”. The key idea is to determine the

motion control action that is robust against errors in learned information about the ob-

stacles’ motion. Specifically, our method uses Gaussian process (GP) regression [77]

to estimate the probability distribution of the obstacles’ locations for future stages

based on the current and past observations. To actively take into account the possi-

bility that the learned distribution information may be inaccurate, we propose a novel

MPC method that optimizes the motion control action subject to constraints on the

risk of unsafety evaluated under the worst-case distribution in a so-called ambiguity

set. Thus, the resulting control action will satisfy the risk constraints for safety even

when the true distribution deviates from the learned one within the ambiguity set.

Unfortunately, the distributionally robust MPC (DR-MPC) problem is challeng-

ing to solve since the worst-case risk constraint involves an infinite-dimensional opti-

mization problem over the ambiguity set of probability distributions. To resolve this

issue, we propose a reformulation approach using (i) modern distributionally robust

optimization techniques based on Kantorovich duality [1], (ii) the extremal represen-

tation of conditional value-at-risk, and (iii) a geometric expression of the distance

to the union of half-spaces. The reformulated DR-MPC problem is finite-dimensional

and can be efficiently solved by using existing nonlinear programming algorithms.

Through simulations using a nonlinear car-like vehicle model for collision-avoidance
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racing, we empirically show that, unlike the standard non-robust version, our method

preserves safety even with moderate errors in the results of GP regression.

The remainder of the chapter is organized as follows. In Section 4.2, we present a

GP regression approach to learning the motion of obstacles. In Section 4.3, we intro-

duce the learning-based Wasserstein DR-MPC method with a tractable reformulation

technique. The simulation results for collision-avoidance racing are presented in Sec-

tion 4.4.

4.2 Learning the Movement of Obstacles Using Gaussian Pro-

cesses

4.2.1 Obstacle Model

Unlike the previous chapter, here we consider a rigid body obstacle with some discrete-

time dynamics. The obstacle state xo(t) ∈ Rnx is defined as the position and orienta-

tion of an arbitrary point on the obstacle. Thus, the obstacle state evolves with

xo(t+ 1) = xo(t) + Tovo(xo(t)), (4.2.1)

where vo(xo(t)) ∈ Rnx is the vector of the obstacle’s velocity, and To is the sample

time. For ease of exposition, we describe the case of a single obstacle, but our method

is valid in multi-obstacle case as well.

Having the obstacle’s state vector, as well as its geometric parameters, the region

occupied by the obstacle at stage t can be modeled as a convex polytope defined by m

number of half-spaces:

O(t) := {x ∈ Rny | ctx ≤ dt}. (4.2.2)

Here, ct ∈ Rm×ny and dt ∈ Rm are found from the geometry of the obstacle and the

current state by ct = c(xo(t)) and dt = d(xo(t)).

For example, for a car-like obstacle in a 2D environment, the state can be chosen as

the coordinate and angle of an arbitrary point on the obstacle. However, by symmetry,
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Figure 4.1: Car-like obstacle in 2D environment. By symmetry, the simplest mo-

tion pattern will be obtained for the following three candidates of state: [xr, yr, θ]
>,

[xf , yf , θ]
> and [xc, yc, θ]

>, where (xr, yr), (xf , yf ) and (xc, yc) are the coordinates

of the center of the rear axle, front axle, and center of mass, respectively, with θ as the

heading angle. The region occupied by the vehicle is over-approximated by the blue

rectangle.

the simplest motion pattern will be obtained for the three candidate states that are

shown in Fig. 4.1. The region occupied by the obstacle is over-approximated as a

rectangle, the parameters of which can be found using the geometry of the vehicle and

any of the three states. To find the ct and dt, we need to know the exact expression

of vo. However, in practice it is impossible for a robot to have full knowledge of its

environment, in particular, the behavior of the obstacle. For predicting the obstacle’s

motion, we use the GP regression approach introduced in the following subsection.

4.2.2 Gaussian Process Regression

GP regression is a nonparametric Bayesian approach to regression and infers a proba-

bility distribution over all possible values of a function given some training data [77].

A GP is a collection of random variables, any finite number of which have a joint Gaus-
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sian distribution. In this work, GP regression is used for predicting the noisy velocity

function vo(xo(t)) from previous observations of the obstacle’s behavior.

We choose the training input data as x̂ = {xo(t − 1), xo(t − 2), . . . , x(t −M)},

consisting of the obstacle’s state for M previous stages. The corresponding measured

velocities v̂ are selected as the training output data. In reality, we do not have access

to function values; instead, the following noisy observations are available: for the ith

observation

v̂(i) = vo(x̂
(i)) + ε, i = 1, . . . ,M,

where x̂(i) := xo(t − i), and ε is an i.i.d. zero-mean Gaussian noise with covariance

Σε = diag([σ2ε,1 σ
2
ε,2, . . . , σ

2
ε,nx

]).

Since the velocities in different dimensions are assumed to be independent, each of

them can be learned individually. The dataset for the jth dimension is thus constructed

as

Dj =
{(

x̂(i), v̂
(i)
j

)
, i = 1, . . . ,M

}
.

For each dimension of output vo(·), we specify a GP prior with mean function

mj(x) and kernel function kj(x, x′). In this thesis, we use an RBF kernel that is defined

by

kj(x, x
′) = σ2f,j exp

[
− 1

2
(x− x′)>L−1j (x− x′)

]
,

where Lj is a diagonal length scale matrix and σ2f,j is the signal variance. The prior on

the noisy observations is a normal distribution with mean function mj(x̂
(i)) and co-

variance function Kj(x̂, x̂) + σ2ε,jI , where Kj(x̂, x̂) ∈ RM×M denotes the covariance

matrix of training input data, i.e., K(l,k)
j (x̂, x̂) = kj(x̂

(l), x̂(k)).

It follows that the joint distribution of the training output data v̂j and the output vj

at an arbitrary test point x is given by[
v̂j

vj

]
∼ N

([
mj(x̂)

mj(x)

]
,

[
Kj(x̂, x̂) + σ2ε,jI Kj(x̂,x)

Kj(x, x̂) kj(x,x)

])
,
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(a) t = 5 (b) t = 16 (c) t = 30

Figure 4.2: Means of predicted trajectories for 10 steps at different time stages. In (a)

the GP dataset is small and contains only 4 elements, so the prediction is not accurate.

In (b) and (c) there is enough data to learn the motion pattern, thus the predicted

trajectory is close to the actual one.

where K(l)
j (x̂,x) = kj(x̂

(l),x), and Kj(x, x̂) = Kj(x̂,x)>. As a result, the posterior

distribution of the output in the jth dimension at an arbitrary test point x conditioned

on the observed data is Gaussian, with the following mean and covariance:

µjv(x) := mj(x) +Kj(x, x̂)(Kj(x̂, x̂) + σ2ε,jI)−1(v̂j −mj(x̂)), (4.2.3)

Σj
v(x) = kj(x,x)−Kj(x, x̂)(Kj(x̂, x̂) + σ2ε,jI)−1Kj(x̂,x). (4.2.4)

The resulting GP approximation of vo is then given by

v(x) ∼ GP(µv(x),Σv(x)),

where µv(x) = [µ1
v(x), . . . ,µnx

v (x)]>, and Σv(x) = diag([Σ1
v(x), . . . ,Σnx

v (x)]).

4.2.3 Prediction of the Obstacle’s Motion

Assuming that xo(0) ∼ N (µx(0),0), it is straightforward to check that xo(t) is nor-

mally distributed at each stage t with mean µx(t) and covariance Σx(t) to be specified.

Having the posterior of the velocity vector, the state of the obstacle at the next stage
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can be predicted by considering the following joint distribution of the state and veloc-

ity vectors [66]: [
xo(t)

v(t)

]
∼ N

([
µx(t)

µv(t)

]
,

[
Σx(t) Σxv(t)

Σvx(t) Σv(t)

])
.

Following procedures in [78] and [79] and applying the first-order Taylor approx-

imation to (4.2.3) and (4.2.4) with Gaussian input xo(t) ∼ N (µx(t),Σx(t)) yields the

following approximate mean and covariance functions:

µ̃v(t) = µv(µx(t))

Σ̃v(t) = Σv(µx(t)) +∇µv(µx(t))Σx(t)∇µv(µx(t))>

Σ̃xv(t) = Σx(t)∇µv(µx(t))>.

(4.2.5)

Now, it follows from (4.2.1) that the obstacle’s state at the next stage is also nor-

mally distributed with the following mean and covariance:

µx(t+ 1) = µx(t) + Toµv(t)

Σx(t+ 1) = Σx(t) + T 2
o Σv + To(Σxv + Σvx).

(4.2.6)

Using (4.2.5) and (4.2.6), the approximate mean and variance of xo(t) can be updated.

Having the inferred or predicted obstacle state xo(t), it is straightforward to obtain

dt and ct in (4.2.2) as dt = d(xo(t)) and ct = c(xo(t)). An example of predicting

the motion of an obstacle is shown in Fig. 4.2, where a car-like vehicle is chosen as

the obstacle with unknown dynamics. GP regression is used to predict the trajectory

of the vehicle for the next 10 stages. As shown in Fig. 4.2a, the predicted mean in an

early stage (t = 5) deviates from the actual trajectory, as there were no observations

available. As more data are collected, the robot better learns the motion pattern of

the car-like obstacle. As a result, in Figures 4.2b the difference between the predicted

mean and the actual one is small.

However, in practice, the motion predicted by GP regression can be quite different

from the actual movement of an obstacle, for example, when it abruptly changes the
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heading angle, as in the case of Fig. 4.2c. To guarantee safety even when learning fails,

we propose a distributionally robust motion control tool in the following section.

4.3 Gaussian Process based Wasserstein DR-MPC

In this section we combine the Wasserstein Distributionally Robust MPC formulation

with the GP prediction derived in Section 4.2.3 and extend it to incorporate the rotation

motion.

As previously, we define the loss of safety as the deviation of the robot’s position

from the safe region Y(t) and apply Lemma 1 from Section 3.3.1 to get

dist(y(t),Y(t)) := min
a∈Y(t)

‖y(t)− a‖2 = min
j=1,...,m

{(
dt,j − ct,jy(t)

)+
‖ct,j‖2

}
. (4.3.1)

where dt,j is the jth element of dt, ct,j is the jth row of ct.

We now let

Gt,j := − ct,j
‖ct,j‖2

, gt,j :=
dt,j
‖ct,j‖2

. (4.3.2)

The safe region in (4.3.1) depends on dt and ct, which define the region occupied

by the obstacle at stage t. Unfortunately, the distribution of these two parameters is

unknown and challenging to directly identify in practice. However, having sample data

{x̃(1)
o (t), x̃

(2)
o (t), . . . , x̃

(N)
o (t)} generated according to the learned distribution of xo(t),

it is possible to obtain samples of gt and Gt using

d̃
(i)
t := d(x̃(i)

o (t)), c̃
(i)
t := c(x̃(i)

o (t)). (4.3.3)

Using the samples (4.3.3) of d̃(i)t and c̃(i)t , we can then generate samples {w̃}Ni=1 =

{(G̃(i)
t,j , g̃

(i)
t,j )}Ni=1 of (Gt,j , gt,j) according to the definition above. Let Qt be the joint

empirical distribution of (Gt, gt) ∈W ⊆ Rm(ny+1) constructed using the sample data,

i.e., Qt :=
∑N

i=1 δ(G̃(i)
t ,g̃

(i)
t )

, where δx denotes the Dirac delta measure concentrated

at x.
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We can then use the sample data to design an empirical distribution and impose

the same distributionally robust risk constraint as in previous chapter to limit the risk

of unsafety:

sup
Pt∈Dt

CVaRPt
α [dist(y(t),Y(t))] ≤ δ. (4.3.4)

Here, the left-hand side of the inequality represents the worst-case CVaR when

the joint distribution Pt of (Gt, gt) lies in a given ambiguity set Dt. Thus, any mo-

tion control action that satisfies (4.3.4) can meet the original risk constraint under any

distribution error characterized by Dt.

Next, the following proposition can be used to reformulate the distributionally

robust risk constraint (4.3.4) in a conservative manner.

Proposition 3. Suppose that the uncertainty set is a compact convex polytope, i.e.

W := {w ∈ Rm(ny+1) | Hw ≤ h}, where H ∈ Rq×m(ny+1) and h ∈ Rq. Then, the

following equality holds:

sup
Pt∈Dt

CVaRPt
α [dist(y(t),Y(t)]

≤ inf
z,λ,s,ρ

z +
1

1− α

[
λθ +

N∑
i=1

si

]

s.t 〈ρi, Qw̃(i)〉+ 〈γi, h−Hw̃(i)〉 ≤ si + z

〈ηi, h−Hw̃(i)〉 ≤ si + z

〈ζi, h−Hw̃(i)〉 ≤ si

‖H>γi −Q>ρi‖∗ ≤ λ

‖H>ηi‖∗ ≤ λ

‖H>ζi‖∗ ≤ λ

〈ρi, em〉 = 1

γi ≥ 0, ρi ≥ 0, ηi ≥ 0, ζi ≥ 0,

(4.3.5)

where all the constraints hold for i = 1, . . . , N , and e ∈ Rm is a vector of all ones.

ρi,j represents the jth element of ρi and yl is the lth element of y, Q ∈ Rm×m(ny+1) is
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a block diagonal matrix with vector [y>, 1] in the diagonal.

Proof. Its proof follows directly from Lemma 2, and Proposition 2 in Section 3.3.2

by setting pj(y, w) = Gjy + gj = Qjw, where Qj is the jth row of matrix Q, w ∈

Rm(ny+1) is a random vector consisting of all elements of G and g.

Note that this optimization problem on the right-hand side is finite-dimensional,

unlike the original one on the left-hand side. Specifically, according to Proposition 3,

the GP-based DR-MPC problem can be reformulated as follows:

inf
u,ξ,y,z,λ,
s,ρ,γ,η,ζ

J(ξ(t),u) :=
K−1∑
k=0

r(ξk, uk) + q(ξK) (4.3.6a)

s.t. ξk+1 = f(ξk, uk) (4.3.6b)

yk = h(ξk, uk) (4.3.6c)

ξ0 = ξ(t) (4.3.6d)

zk +
1

1− α

[
λkθ +

1

Nk

Nk∑
i=1

sk,i

]
≤ δ (4.3.6e)

〈ρk,i, Qkw̃
(i)
k 〉+ 〈γi, h−Hw̃(i)

k 〉 ≤ sk,i + zk (4.3.6f)

〈ηk,i, h−Hw̃
(i)
k 〉 ≤ sk,i + zk (4.3.6g)

〈ζk,i, h−Hw̃
(i)
k 〉 ≤ sk,i (4.3.6h)

‖H>γk,i −Q>k ρk,i‖∗ ≤ λk (4.3.6i)

‖H>ηk,i‖∗ ≤ λk (4.3.6j)

‖H>ζk,i‖∗ ≤ λk (4.3.6k)

〈ρk,i, em〉 = 1 (4.3.6l)

γi ≥ 0, ρi ≥ 0, ηi ≥ 0, ζi ≥ 0, (4.3.6m)

zk ∈ R, (4.3.6n)

ξk ∈ Ξ, uk ∈ U , (4.3.6o)
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where (4.3.6b) and uk ∈ U in (4.3.6o) should hold for k = 0, . . . ,K− 1, (4.3.6c) and

ξk ∈ Ξ in (4.3.6o) should hold for k = 0, . . . ,K, and all the other constraints should

be satisfied for k = 1, . . . ,K and i = 1, . . . , N .

Now, let’s suppose that W = Rm(ny+1) and use `2-norm to measure distances in

the uncertainty space. Then, the right-hand side problem (4.3.6) simplifies to

inf
u,ξ,y,z,
λ,s,ρ

J(ξ(t),u) :=

K−1∑
k=0

r(ξk, uk) + q(ξK) (4.3.7a)

s.t. ξk+1 = f(ξk, uk) (4.3.7b)

yk = h(ξk, uk) (4.3.7c)

ξ0 = ξ(t) (4.3.7d)

zk +
1

1− α

[
λkθ +

1

Nk

Nk∑
i=1

sk,i

]
≤ δ (4.3.7e)

〈ρk,i, G̃
(i)
k yk + g̃

(i)
k 〉 ≤ sk,i + zk (4.3.7f)

sk,i + zk ≥ 0 (4.3.7g)

sk,i ≥ 0 (4.3.7h)
m∑
j=1

ρ2k,i,j

( ny∑
l=1

y2k,l + 1
)
≤ λ2k (4.3.7i)

λk ≥ 0 (4.3.7j)

〈ρk,i, e〉 = 1 (4.3.7k)

ρk,i ≥ 0 (4.3.7l)

zk ∈ R, (4.3.7m)

ξk ∈ Ξ, uk ∈ U , (4.3.7n)

As desired, the reformulated problem is finite-dimensional. However, it is a non-

convex optimization problem due to the constraints (4.3.7f) and (4.3.7i) even when the
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Algorithm 1: Learning-based DR-MPC at stage t

1 Input: ξ(t), xo(t), x̂(i), v̂(i), i = 1, . . . ,M ;

2 Dj :=
{

(x̂(i), v̂
(i)
j ), i = 1, . . . ,M

}
, j = 1, . . . , nx;

3 Initialize µx(0) := xo(t), Σx(0) := 0;

4 for k = 0 : K − 1 do

5 Compute µ̃v(k), Σ̃v(k) and Σ̃xv from (4.2.5);

6 Update µx(k + 1) and Σx(k + 1) from (4.2.6);

7 Generate a sample {x̃(1)
o (k + 1), . . . , x̃

(N)
o (k + 1)} from

N (µx(k + 1),Σx(k + 1));

8 Compute G̃(i)
k+1 and g̃(i)k+1, i = 1, . . . , N using (4.3.3) and (4.3.2);

9 Solve (4.3.6) to obtain u∗;

10 return u(t) = u∗0;

system dynamics and the output equation are affine and the cost function is convex. A

locally optimal solution to this problem can be efficiently computed by using existing

nonlinear programming algorithms such as interior-point methods (e.g., [56]).

The overall learning-based DR-MPC at stage t is shown in Algorithm 1. At each

stage, the current states of the robot and the obstacle as well as M past observations

{(x̂(i), v̂(i))}Mi=1 of the obstacle’s position and velocity are taken as the input data.

Then, the obstacle’s movement for future stages is learned by GP regression, and is

used in the DR-MPC problem (4.3.6). The first element of locally optimal solution u∗

is taken as the motion control action for the robot at the current stage. Note that at stage

t = 0, the datasetD consists of all zeros. As time goes on, new observations are added

to the dataset for GP regression. During the update, old observations are removed so

that only M latest data are stored.

69



4.4 Numerical Experiments

In this section, we present simulation results to demonstrate the performance of our

motion control method. In our experiments we consider an on-road vehicle following

the centerline of the track, while avoiding another on-road vehicle, which future tra-

jectory is learned by GP. Then the GP-based WDR-MPC is applied to use the learned

trajectories in limiting the risk of unsafety.

As in the previous experiments, all the simulations were conducted on a PC with

3.70 GHz Intel Core i7-8700K processor and 32 GB RAM. The optimization problem

was modeled in AMPL and solved using interior-point method-based solver IPOPT.

The vehicle we control navigates in a 2D environment with the following dynam-

ics [80]:

ẋr(t) = vr(t) cos(θr(t) + βr(t))

ẏr(t) = Tsv
r(t) sin(θr(t) + βr(t))

θ̇r(t) = vr(t)
sin(βr(t))

lr

β̇r(t) = tan−1
( lr
lr + lf

tan δr(t)
)
,

(4.4.1)

where xr(t) and yr(t) are the coordinates of the vehicle’s center of gravity, θr(t) is the

heading angle, βr(t) is the current velocity angle. The control inputs are velocity vr(t)

and steering angle δr(t). The coefficients lf and lr represent the distances from the

center of gravity to the front and rear wheels, respectively. Throughout our simulations

we let lr = lf = 2. We also impose the following state and control constraints:

vr(k) ∈ [0, 30], ur(k) ∈ [−π/6, π/6] ∀k.

The vehicle is controlled to follow the centerline of the track, while avoiding two

dynamic obstacles. The centerline is thus taken as the reference trajectory yref in the

cost function. The two obstacles are rectangular car-like vehicles with size 2 × 1. It

is straightforward to check that for both obstacles gk and Gk are easily found from
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the state that consists of the vehicle’s center of mass and its heading angle. In our

experiments, we set Q = P = I and R = 0.01I . The sampling time Ts and To are set

to be 0.01, and the MPC horizon is chosen as K = 5. The risk tolerance level and the

confidence level were selected as δ = 0.01 and α = 0.95, respectively. As proposed

in the previous chapter, we use support of W = Rm(ny+1) and `2-norm to measure the

distance in the uncertainty space.

To evaluate the performance of learning-based DR-MPC, we compare it to its non-

robust counterpart obtained by sample average approximation (SAA).

Fig. 4.3 shows the resulting trajectories for different sizes of the Wasserstein am-

biguity set compared to the SAA version (SAA-MPC) with N = 50 samples. At each

stage, the dataset for GP regression is updated to keep only the latest M = 20 obser-

vations.

In the early stages, the robotic vehicle follows the centerline while predicting the

future motion of the obstacles. As shown in Fig. 4.3a, when reaching one obstacle

that abruptly changes its heading angle at t = 13, the vehicle tries to avoid it. In the

case of SAA-MPC, the vehicle collides with the obstacle because the distributional

information learned by GP regression is inaccurate. As a result, the risk constraint is

violated and the MPC problem becomes infeasible. Meanwhile, the vehicle controlled

by our method successfully bypasses the obstacle. The safety margin increases with

the radius θ of the Wasserstein ambiguity set.

Fig. 4.3b shows the situation at t = 38, where the vehicle controlled by our method

continues to follow the reference trajectory for all θ’s. Meanwhile, the GP is not well

enough to be able to predict the motion of the obstacles around the corners, although it

shows good performance when there is no sudden change in the obstacle’s movement.

As shown in Fig. 4.3c, at t = 67 the second obstacle interferes with the path of the

vehicle. Similar to the previous obstacle, the vehicle controlled by DR-MPC avoids

the obstacle for all θ’s. In the case of the smallest radius of θ = 4× 10−5, the vehicle

chooses to take aggressive action while satisfying the risk constraint. As the Wasser-
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(a) t = 13 (b) t = 38

(c) t = 67 (d) t = 114

Figure 4.3: Trajectories of the vehicle controlled by SAA-MPC and DR-MPC with

θ = 4 × 10−5, 5 × 10−5, and 5.5 × 10−5. The current vehicle position is marked

with a black dot. The green and blue rectangles represent the two obstacles, while the

transparent ones are the K steps-ahead prediction of the obstacles, obtained via GP

regression. The reference centerline for the vehicle is displayed with points, while the

thin grey curve is the actual trajectory of the obstacles.
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Table 4.1: Accumulated cost, lap time, and average computation time for the nonlinear

car-like vehicle motion control with N = 50, δ = 0.01, and α = 0.95

SAA
DR-MPC (θ)

4× 10−5 5× 10−5 5.5× 10−5

Accumulated Cost +∞ 491.79 594.68 703.59

Lap Time (sec) - 105.26 109.45 110.31

Avg. Run Time (sec) - 0.6572 0.6767 0.6942

stein ambiguity set increases, i.e., θ increases, the robot makes a more conservative

(i.e., safer) decision, inducing a bigger safety margin. Fig. 4.3d displays the trajecto-

ries for all cases after the vehicle completes one lap. Note that only the non-robust

SAA version failed to complete the lap due to collision, while our method succeeded

to do so for all θ’s.

In summary, we conclude that the proposed distributionally robust method suc-

cessfully preserves safety even with moderate errors in the learning results. In the case

of very small ambiguity sets (e.g., θ = 4× 10−5), the resulting control action may be

too aggressive to guarantee safety when the learning errors are significant. Whereas,

for θ = 5.5 × 10−5, the vehicle deviates too much from the reference trajectory, in-

ducing a large cost. Based on our experiments, θ = 5 × 10−5 may be selected for a

good tradeoff between safety and cost.

Table 4.1 shows the accumulated cost and the amount of time for completing one

lap on the track, and the average computation time required for solving a single DR-

MPC problem (4.3.6). As expected, both of the total cost and the lap time increase

with θ since the vehicle controlled by DR-MPC with larger θ is more conservative and

deviates further from the reference trajectory. Computation time is small in all cases al-

though a nonconvex optimization problem is solved in each iteration. This result shows

the potential of using our distributionally robust method in real-time applications.
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4.5 Conclusions

We have proposed a distributionally robust decision-making tool for safe motion con-

trol of robotic vehicles in an environment with dynamic obstacles. Our DR-MPC

method limits the risk of unsafety even with moderate errors in the obstacle’s motion

predicted by GP regression. For computational tractability, we have also developed a

reformulation approach exploiting modern distributionally robust optimization tech-

niques. The experimental results demonstrate the safety-preserving capability of our

method under moderate learning errors and the potential for real-time application.
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Chapter 5

CONCLUSIONS AND FUTURE WORK

In this thesis we developed a risk-aware motion planning and control approach for

learning-based autonomous systems. First, we discussed a Model Predictive Control

(MPC) method based on the Conditional Value-at-Risk (CVaR) for limiting the risk

of unsafety of the robot by incorporating samples of the uncertain environment via

Sample Average Approximation (SAA). The problem was then reformulated into a

linearly constrained mixed integer convex program. Second, a novel Wasserstein Dis-

tributionally Robust MPC (DR-MPC) method was developed for ensuring safety when

the empirical distribution obtained from a small amount of data deviates from the ac-

tual one within a Wasserstein ball. Then a computationally tractable form was de-

veloped by employing Kantorovich duality and the geometry. of the obstacles. The

resulting approach provides a theoretically justified probabilistic out-of-sample perfor-

mance guarantee, missing in the SAA-based method. Third, the Wasserstein DR-MPC

method was combined with Gaussian Processes (GP) for learning the future motion of

the obstacles.

The experimental results show that even for small sample size, Wasserstein DR-

MPC successfully avoids randomly moving obstacles, unlike the SAA-based method.

Also, we showed that for carefully chosen Wasserstein radius the out-of-sample risk is

limited even just using a few samples. The simulations for GP-based DR-MPC demon-
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strate the capability of our method to limit the risk of unsafety when the learning out-

come is uncertain.

In the future, an explicit MPC method can be employed to reduce the real-time

computations. In addition, the proposed method can be extended to enhance the capa-

bility of fast adaptive reactions, especially when considering sudden motion changes,

and to address partial observability. Such extension is possible by an Inverse Rein-

forcement Learning-based approach, which can learn the reward function maximized

for obtaining the observed trajectories subject to the unknown system dynamics, which

in turn, can be learned via Neural Networks.
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초록

본 연구에서 자율 시스템이 알려지지 않은 확률 분포로 랜덤하게 움직이는 장

애물을 피하기 위한 위험 인식을 고려하는 모션 제어 기법을 개발한다. 따라서 본

논문에서안전성과보수성을체계적으로조절하는새로운Model Predictive Control

(MPC) 방법을 제안한다. 본 방벙의 핵심 요소는 MPC 문제의 안전성 리스크를 제

한하는 Conditional Value-at-Risk (CVaR)라는리스크척도이다.안전성리스크를계

산하기 위해 제한된 양의 표본 데이터를 이용하여 얻어진 경험적 분포를 사용하는

Sample Average Approximation (SAA)을적용한다.

또한,경험적분포로부터실제분포가 Ambiguity Set라는집합내에서벗어나도

리스크를제한하는방법을제안한다. Ambiguity Set를Wasserstein거리로측정된반

지름을가진통계적공으로선택함으로써훈련데이터와독립적으로생성된새로운

샘플데이터를사용하여평가한 out-of-sample risk에대한확률적보장을달성한다.

본 논문에서 SAA기반 MPC (SAA-MPC)와 Wasserstein Distributionally Robust

MPC (DR-MPC)를여러과정을통하여다루기쉬운프로그램으로재편성한다.

또한, 환경의 과거 관측으로부터 장애물의 미래 움직임을 예측하기 위해 Dis-

tributionally Robust MPC 방법을 Gaussian Process (GP)와 결합한다. 본 연구에서

개발되는기법들의성능을비선형자동차모델과선형화된쿼드로터모델을이용한

시뮬레이션연구를통하여분석한다.

주요어:분포강인최적화,최적제어,모션컨트롤,충돌회피,로봇안전

학번: 2018-26905
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