181 research outputs found

    Media motion-based resource distribution for mobile video networking

    Get PDF
    Wireless video communication is challenging due to vulnerability of media bitstreams to channel distortions. Investigation has been carried out on wireless video channel under tight networking resource budget. One of the challenges is the impact of channel errors on the quality of media streams with high motion activity. Motion activity in this context defines the magnitude of activity displacement in video sequence. Based on the analysis, Media Motion-based Resource Distribution (MRD) is proposed to maximize the average received video quality over wireless system, by regulating the resource distribution of the media streams based on their motion activity characteristics. Experimental results demonstrate that the proposed scheme can improve the average received video quality performance under tight resource constraints budget. Keywords: Wireless video communication, resource constraints, received video performance, media motio

    Non-linear echo cancellation - a Bayesian approach

    Get PDF
    Echo cancellation literature is reviewed, then a Bayesian model is introduced and it is shown how how it can be used to model and fit nonlinear channels. An algorithm for cancellation of echo over a nonlinear channel is developed and tested. It is shown that this nonlinear algorithm converges for both linear and nonlinear channels and is superior to linear echo cancellation for canceling an echo through a nonlinear echo-path channel

    Energy-efficient bandwidth allocation for multiuser scalable video streaming over WLAN

    Get PDF
    We consider the problem of packet scheduling for the transmission of multiple video streams over a wireless local area network (WLAN). A cross-layer optimization framework is proposed to minimize the wireless transceiver energy consumption while meeting the user required visual quality constraints. The framework relies on the IEEE 802.11 standard and on the embedded bitstream structure of the scalable video coding scheme. It integrates an application-level video quality metric as QoS constraint (instead of a communication layer quality metric) with energy consumption optimization through link layer scaling and sleeping. Both energy minimization and min-max energy optimization strategies are discussed. Simulation results demonstrate significant energy gains compared to the state-of-the-art approaches

    Uplink Resource Management for Multiuser OFDM Video Transmission Systems: Analysis and Algorithm Design

    Get PDF
    We consider a multiuser OFDM system in which users want to transmit videos via a base station. The base station knows the channel state information (CSI) as well as the rate distortion (RD) information of the video streams and tries to allocate power and spectrum resources to the users according to both physical layer CSI and application layer RD information. We derive and analyze a condition for the optimal resource allocation solution in a continuous frequency response setting. The optimality condition for this cross layer optimization scenario is similar to the equal slope condition for conventional video multiplexing resource allocation. Based on our analysis, we design an iterative subcarrier assignment and power allocation algorithm for an uplink system, and provide numerical performance analysis with different numbers of users. Comparing to systems with either only physical layer or only application layer information available at the base station, our results show that the user capacity and the video PSNR performance can be increased significantly by using cross layer design. Bit-level simulations which take into account the imperfection of the video coding rate control, the variation of RD curve fitting, as well as channel errors, are presented

    Optimal 4G OFDMA Dynamic Subcarrier and Power Auction-based Allocation towards H.264 Scalable Video Transmission

    Get PDF
    In this paper, authors presented a price maximization scheme for optimal orthogonal frequency division for multiple access (OFDMA) subcarrier allocation for wireless video unicast/multicast scenarios. They formulate a pricing based video utility function for H.264 based wireless scalable video streaming, thereby achieving a trade-off between price and QoS fairness. These parametric models for scalable video rate and quality characterization arederived from the standard JSVM reference codec for the SVC extension of the H.264/AVC, and hence are directly applicable in practical wireless scenarios. With the aid of these models, they proposed auction based framework for revenue maximization of the transmitted video streams in the unicast and multicast 4G scenario. A closedform expression is derived for the optimal scalable video quantization step-size subject to the constraints of theunicast/multicast users in 4G wireless systems. This yields the optimal OFDMA subcarrier allocation for multi-userscalable video multiplexing. The proposed scheme is cognizant of the user modulation and code rate, and is henceamenable to adaptive modulation and coding (AMC) feature of 4G wireless networks. Further, they also consider aframework for optimal power allocation based on a novel revenue maximization scheme in OFDMA based wireless broadband 4G systems employing auction bidding models. This is formulated as a constrained convex optimization problem towards sum video utility maximization. We observe that as the demand for a video stream increases inbroadcast/multicast scenarios, higher power is allocated to the corresponding video stream leading to a gain in the overall revenue/utility. We simulate a standard WiMAX based 4G video transmission scenario to validate the performance of the proposed optimal 4G scalable video resource allocation schemes. Simulations illustrate that the proposed optimal band width and power allocation schemes result in a significant performance improvement over the suboptimal equal resource allocation schemes for scalable video transmission.Defence Science Journal, 2013, 63(1), pp.15-24, DOI:http://dx.doi.org/10.14429/dsj.63.375
    corecore