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We consider the problem of packet scheduling for the transmission of multiple video streams over a wireless local area network
(WLAN). A cross-layer optimization framework is proposed to minimize the wireless transceiver energy consumption while meet-
ing the user required visual quality constraints. The framework relies on the IEEE 802.11 standard and on the embedded bitstream
structure of the scalable video coding scheme. It integrates an application-level video quality metric as QoS constraint (instead of a
communication layer quality metric) with energy consumption optimization through link layer scaling and sleeping. Both energy
minimization and min-max energy optimization strategies are discussed. Simulation results demonstrate significant energy gains
compared to the state-of-the-art approaches.
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1. INTRODUCTION

The demand for multimedia transmission over wireless net-
works exhibits an ever growing trend. As a result, the trans-
mission of multiple video streams over a single wireless lo-
cal area network (WLAN) is becoming a key requirement. In
this context, quality of service (QoS) provisioning for real-
time applications among different users is becoming more
and more critical, as wireless networks are affected by ex-
tremely error-prone and time-varying conditions. Besides
this QoS challenge, low-power consumption is imperative to
enable the deployment of broadband wireless connectivity in
battery-operated portable devices.

Dynamically, adapting video packet selection and
scheduling to achieve appropriate visual quality and energy
efficiency for such varying wireless networks is a challenging
task. For simplicity, most of the WLAN transmission stud-
ies consider throughput as the most important performance
metric, while it is not the most appropriate choice for video
traffic. Some recent studies try however to improve the trans-
mission performance by exploring the specificities of video

traffic. For instance, considering scalable video coding tech-
niques [1–4], different retransmission limits were defined for
different MAC priority queues in [5, 6]. These approaches
rely on scalable video coding’s inherent prioritization in the
compressed domain to set MAC priorities. In [7], a solu-
tion for scheduling transmission opportunities (referred to
as TXOP in the remainder of the present paper) as a function
of the data type was proposed.

As far as energy efficiency is concerned, a substantial
body of prior work focuses on energy-efficient wireless trans-
mission from the viewpoints of medium access control
(MAC) or physical (PHY) layers [8–10]. For energy-efficient
wireless media systems, Goel et al. solved an image transmis-
sion energy optimization problem subject to distortion and
rate constraints [11]. He et al. in [12] developed a power-
rate-distortion analysis framework to extend the traditional
rate-distortion analysis by including power consumption as
a third dimension. Although hardware-specific impacts were
appropriately considered in [12], the analysis lacked a suffi-
cient consideration of channel coding and transmission with
respect to the time-varying characteristics of the wireless
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channel. Focusing on an uplink mobile-to-base station sce-
nario, Lu et al. solved in [13] a power optimization prob-
lem subject to an end-to-end distortion constraint relying on
H.263 source coding and RS channel coding in conjunction
with the Gilbert loss model. In [14], Chandra and Dey pre-
sented a technique for enabling real-time video compression
and transmission from wireless appliances based on run-
time video adaptation, and they estimated the energy con-
sumption based on CPU load. Yousefi’zadeh et al. formulated
a set of optimization problems in [15] aimed at minimizing
total power consumption of wireless media systems subject
to a given level of QoS and an available bitrate relying on
multiple antennas. None of the aforementioned power opti-
mization works considered the video scalability influence

on the power consumption of wireless multimedia sys-
tems.

In addition, to the best of our knowledge, there is no
prior work considering joint optimization of real video qual-
ity and energy efficiency for wireless media systems. This
optimization requires to take the whole protocol stack into
account. Furthermore, only few researches have provided
an analysis of the complexity of the proposed optimiza-
tion problems. To cope with the time-varying QoS, exist-
ing methodologies often rely on fixed or nonscalable flow-
based optimizations to allocate the available network re-
sources across the various multimedia users. Moreover, pre-
vious researches have seldom jointly exploited the adaptation
or protection techniques available at the medium access con-
trol (MAC) or physical (PHY) layers to enhance the perfor-
mance of video applications. On the one hand, we can only
fully benefit from new technologies if we can analyze the
behavior of adaptation processes acting over communica-
tion networks, taking into account the intrinsically stochastic
nature of communications and observations. On the other
hand, adaptation leads to nontrivial tradeoffs among many
parameters (i.e., delay, reliability, energy cost, etc.); thus re-
thinking of the entire communication systems and quality of
service must be provided.

The main contribution of this paper is to exploit the ap-
plication layer peak signal-to-noise ratio (PSNR) scalability
enabled by the rate-distortion properties of scalable video
bitstreams and to minimize the energy consumption among
different users. Instead of using conventional communica-
tion layer QoS metrics, such as throughput or packet loss
probability, a proper application-level video quality metric
is considered in the optimization. Compared to our former
work on energy-efficient video transmission over WLAN, the
resulting solution enables to further minimize the wireless
transceiver energy consumptions by a factor of 2 without
degrading the visual quality. The considered setup consists
of multiple independent users equipped with mobile termi-
nals (MTs) downloading video streams from the access point
(AP) of a WLAN (see Figure 1). The video data are encoded
using a scalable video coding scheme and stored on a video
server accessed through the AP. Therefore, no real-time en-
coding is performed. The users receive data over a shared
slowly fading wireless channel. It is assumed that different
users can require different video qualities. This is a very im-
portant and realistic test case. For instance, considering a dis-
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Figure 1: WLAN access point (AP) manages several mobile termi-
nals (MTs) in a centralized network.

tance learning system, when a student is studying in real time
using a wireless device and facing battery exhausting prob-
lems, he/she may be willing to scarify some visual quality to
finish the whole studying process.

The remainder of this paper is organized as follows.
Section 2 provides the background for understanding the
contributions of this paper. Section 3 briefly reviews the
IEEE 802.11 WLAN standards and the deployed 3D wavelet
motion-compensated temporal filtering (MCTF) scalable
video coding scheme. Section 4 formulates the consid-
ered problem statement for energy-efficient video scheduling
with rate-distortion awareness. Total energy minimization
and fairness optimization are formulated separately. Next,
lightweight algorithms are designed to solve the run-time
optimization problems for practical use. Appropriate system
models are used to instantiate the proposed cross-layer opti-
mization framework given the aforementioned standards. In
Section 5, we examine the performance of our framework
through simulations. Finally, concluding remarks are pro-
vided in Section 6.

2. BACKGROUD AND PRELIMINARY WORK

Compared to the capacity improvements of wireless trans-
mission techniques, there are limited advances in battery ca-
pacity. Since more powerful transmission schemes cost more
energy, there is an increasing energy gap between the energy
requirements of new applications and radio technologies and
the energy awareness in the battery. Thus, it is critical to re-
duce the power consumption or, equivalently, to enhance the
energy efficiency of the mobile devices.

The goal of improving the energy efficiency of wireless
communication devices has already triggered a lot of re-
searches at various levels, from circuit to communication
theories and networking protocols. The energy management
problem, in its most general formulation, consists in dynam-
ically controlling the system to minimize the average energy
consumption under a performance constraint. Existing re-
searches can be classified into two categories.
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Figure 2: Directed acyclic graph of embedded bitstream.

(i) Top-down approaches: approaches that are intrinsi-
cally utilization- and hardware-aware but communi-
cation-unaware are categorized as top-down. The
communicating device is treated as any electronic cir-
cuit, and general-purpose techniques like dynamic
power management and energy-aware design are ap-
plied. The first technique is defined as dynamically
reconfiguring an electronic system to provide the re-
quested performance levels with a minimum number
of active components and minimum loads on those
components [16, 17]. The second technique can be
defined as designing systems that present a desirable
energy-performance behavior for energy management
[8, 18, 19].

(ii) Bottom-up approaches: approaches that are in-
trinsically communication-aware but hardware- and
utilization-unaware are categorized as bottom-up.
They rely on the fundamentals of information and
communication theories to derive energy-aware trans-
mission techniques and communication protocols. We
find here, for instance, the transmission scaling tech-
niques which exploit the fundamental tradeoff that
exists between transmission rate/power and energy
[20, 21]. Network power management techniques also
fall in this category, targeting the minimization of the
transmission power under QoS constraints [22].

(iii) Top-down and bottom-up approaches can easily re-
sult in a fundamental contradiction. A good example is
the conflict between transmission scaling at the phys-
ical (PHY) layer (bottom-up) and sleeping schemes at
the MAC layer [23] (top-down). Scaling tends to min-
imize transmission energy consumption by transmit-
ting with the lowest power over the longest feasible
duration, whereas sleeping tends to minimize the duty
cycle of the radio circuitry by transmitting as fast as
possible. Clearly, the two techniques are contradictory
when it comes to defining the optimal transmit rate
and power allocation.

In [24, 25], we showed that a cross-layer combination of
both approaches can significantly decrease the energy con-
sumption in a multiuser scenario. A framework was pro-
posed for allocating the network resources energy efficiently.
The framework is subdivided into two steps and it focuses
on the PHY and MAC layers for which the energy, packet er-
ror rate (PER), and transmission time are considered. First,
during the design-time phase, the performance-energy scala-
bility resulting from the available controllable parameters of
the system is analyzed. Cost-resource-quality tradeoffs, tak-
ing into account energy cost, PER quality, and transmission
time resource requirements of each user, are fully character-
ized for each possible system state (i.e., a finite set of possi-
ble realizations of external variables tracking system dynam-
ics). Second, during the run-time phase, knowing the current

system state and relying on the tradeoff characterized in the
design-time phase, the server/access point searches the trade-
off curves of the different users in order to minimize the total
energy cost subject to a fixed and bounded transmission time
delay. It then allocates the corresponding configuration to the
different user devices.

In this paper, we introduce the rate-distortion property
of the video bitstreams into the proposed cross-layer frame-
work and show that significant energy gains can be achieved
by exploiting this property. Besides all the scalability existing
in the PHY and MAC layers, a significant amount of scala-
bility is available in the video bitstream. A directed acyclic
graph is often used to express the interdependencies between
the different data units. A typical dependence graph of an
embedded coded bitstream is sequential, as shown in Fig-
ure 2 [26]. The arrow directions show that a data unit can
be correctly decoded only when the dependent data units are
also correctly decoded. From the graph, we know that the
loss of different data units can result in varying decoded vi-
sual qualities. Many unequal error protection schemes have
been developed based on this observation. By introducing
this property into the proposed cross-layer framework, we
show that significant energy gains can be achieved. The pro-
posed scheme is practical and can be integrated within exist-
ing wireless and multimedia standards.

3. WLAN VIDEO STREAMING SYSTEM OVERVIEW AND
ENERGY-PERFORMANCE MODELING

The use of IEEE 802.11 WLANs is growing at a rapid
pace. With the substantial increase in the available bitrates,
the transmission of real-time audio/video applications over
WLANs becomes a reality. In this section, we first briefly in-
troduce the IEEE 802.11 standard and the scalable video cod-
ing scheme that are considered in the present work. It is how-
ever important to emphasize that the cross-layer algorithms
proposed in this paper can be deployed with any video cod-
ing scheme where the bitstream can be organized into data
units with embedded structure (see Section 3.3). Based on
this description, we show how to calculate the energy con-
sumption, the transmission delay, the error probability of the
data, and the expected quality of the received decoded video.

3.1. PHY modes of 802.11a OFDM and channel model

The IEEE 802.11a [27] PHY layer is based on orthogonal
frequency division multiplexing (OFDM), and it provides
eight different modes with different modulation schemes and
code rates resulting in data transmission rates ranging from
6 to 54 Mbps. The corresponding data rate and the associ-
ated power level requirements are provided in Table 1, where
NDBPS denotes the number of data bits per symbol.

3.1.1. PHY layer performance model

We consider a direct-conversion radio transceiver architec-
ture [28]. Four control dimensions have significant impact
on energy and performance for these OFDM transceivers:
the modulation order (Nmod), the code rate (Bc), the power
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Table 1: Multiple PHY modes for IEEE 802.11a.

Mode Data rate (Mbps) Min (dBm) Modulation Code rate (R) NDBPS

1 6 −82 BPSK 1/2 24

2 9 −81 BPSK 3/4 36

3 12 −79 QPSK 1/2 48

4 18 −77 QPSK 3/4 72

5 24 −74 16-QAM 1/2 96

6 36 −70 16-QAM 3/4 144

7 48 −66 64-QAM 1/2 192

8 54 −65 64-QAM 3/4 216

amplifier transmit power (PTX), and its linearity specified by
the backoff (b). For a given data rate, communication per-
formance is determined by the bit error rate (BER) at the re-
ceiver. Adding nonlinearity distortion to the received signal
power, the BER can be expressed as a function of the received
signal-to-noise and distortion ratio (SINAD) which can be
expressed as

SINAD = PTX × A

A×D(b) + kT ×W ×Nf
, (1)

where A denotes the channel attenuation, the constants k, T ,
W , and Nf are the Boltzman constant, working temperature,
channel bandwidth, and noise figure of the receiver, respec-
tively, and the relation between the power amplifier back-
off b and the distortion D(b) has been characterized empir-
ically for the Microsemi LX 5506 [29] 802.11a PA. The con-
sidered BER-SINAD relation follows the model provided in
[30]. The BER-SINAD curves for different channel states for
all the considered PHY modes have been shown in Figure 3.

3.1.2. PHY layer energy model

Our energy model assumes the implementation detailed in
[31]. The corresponding parameters are provided in Table 2.
The time needed to wake up the system is assumed to be 100
microseconds. Denoting PPA as the power consumption of
the power amplifier, PFE as the power consumption of the
front end (FE), PBB as the power consumption of the base-
band, and ER

DSP as the digital signal processor energy con-
sumption for decoding a single bit of a turbo-coded packet,
we obtain the following expressions for the energy needed to
send or receive a MAC service data unit (MSDU) of length
LMSDU under bit rate Bbit:

ETX =
(
PT

PA + PT
FE + PT

BB

Bbit

)
× LMSDU,

ERX =
(
PR

FE + PR
BB

Bbit
+ ER

DSP

)
× LMSDU.

(2)

3.2. Error probability, energy consumption,
and transmission delay of the IEEE 802.11 MAC

Considering a possible transmission configuration vector
K (each specific control dimension listed in Table 2 cor-
responds to an entry in this vector), the energy and time

needed to send an MSDU can be, respectively, expressed as
EMSDU(K) and TXOPMSDU(K) [24, 25]. The energy cost and
time of transmitting an application layer packet p are then,
respectively, defined as Ep(K) and TXOPp(K), and these val-
ues depend on the number of fragmented data units that
need to be transmitted or retransmitted for successful packet
transmission. The retransmission scheme details of 802.11
MAC can be found in [32]. As the total energy and time
needed to transmit a packet p are the sum of the energy and
time needed to transmit its fragments, Ep(K) and TXOPp(K)
can be, respectively, expressed as

Ep(K) = (m + y)EMSDU(K),

TXOPp(K) = (m + y)TXOPMSDU(K),
(3)

where m denotes the number of MSDU fragments for the
considered packet p, and y denotes the allowed number of
MSDUs that can be retransmitted for the given packet p.

Similarly, the loss probability of a single MSDU is de-
noted as PMSDU(K), and it is computed based on the PHY
performance model introduced before. Since the probabil-
ity that a given packet p is received correctly depends on the
probabilities that each of its fragments is received correctly,
We compute the packet error rate PERm

y (K) at application
layer according to

PERm
y (K) = 1−

y∑
j=0

Pm
e j(K),

Pm
ey(K) =

∑
Cm
i (PMSDU)i(1− PMSDU)(m−i)Pi

y−i(K),

Pm
e0(K) = (1− PMSDU)m.

(4)

We refer to [24, 25] for more details on the wireless chan-
nel model and the link layer scaling (adapting the modu-
lation order and code rate to spread the transmission over
time) and sleeping (introducing as much as possible trans-
mission idle period) optimization schemes.

3.3. Distortion, energy, and delay of
scalable video bitstream

Embedded scalable video coding has been an active research
topic in recent years. It has the attractive capability of re-
constructing lower resolution or lower quality videos from
a single bitstream, hence providing simple and flexible so-
lutions for transmission over heterogeneous network condi-
tions and easier adaptation to a variety of storage devices and
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Figure 3: BER-SINAD relations.

Table 2: Parameters of the energy model.

Performance model Energy model MAC model Control dimensions

W = 20 MHz PT
FE = 200 mW LMSDU = 1500 B Backoff (dB) 6 to 6

B = 250 kBaud PR
FE = 200 mW TACK = 52 μs Pout (dBm) 0 to 20

Nc = 48 PT
BB = 50 mW TPLCP = 20 μs Modulation BPSK, QPSK, 16-QAM, 64-QAM

T = 198 K PR
BB = 50 mW TSIFS = 16 μs Code rates 1/2, 2/3, 3/4

Nf = 10 dB ER
DSP = 8.7 nJ/b Block = 288 PSNR

terminals. Accordingly, many recent video codecs, such as the
Scalable Video Coding (SVC) extensions of H.264/AVC [3],
MPEG-4 FGS [4], and so forth, enable embedded scalable
coding.

3.3.1. Architecture of the considered scalable video encoder

We consider a scalable video codec based on motion-
compensated temporal filtering (MCTF) and a wavelet trans-
form [2]. MCTF aims at removing the temporal redundan-
cies of video sequences. Unlike predictive coding schemes, it
does not employ a closed-loop prediction scheme. Instead, it
uses an open-loop pyramidal decomposition to remove both
long-term and short-term temporal dependencies in an ef-

ficient manner [33]. After the removal of the temporal re-
dundancies, the produced low-pass and high-pass frames are
decomposed spatially by discrete wavelet transform (DWT).
In a typical MCTF-based video compression, the rate allo-
cation of the scalable bitstream is possible for a maximum
granularity of one group of pictures (GOP). Encoder and de-
coder thus process the video sequence on a GOP-by-GOP ba-
sis, which creates naturally independent data units group.

An important feature of wavelet transforms is the inher-
ent support of scalability in the compressed domain. Cou-
pled with the embedded coding techniques, wavelet video
coding achieves continuous rate scalability. After applying
the wavelet transform, the resulting subband coefficients are
coded using bitplane coding and a global rate-distortion
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optimization. As a result, the final bitstream is constructed
to satisfy the bitrate constraint and minimize the overall dis-
tortion [2].

To achieve quality scalability, a multilayer bitstream is
formed where each layer represents a quality-level improve-
ment. The fractional bitplane coding ensures that the bit-
stream is embedded with fine granularity. In this work, we
distribute the rate of the layers inside a GOP in a way that
every enhancement quality layer contributes to a similar dis-
tortion decrease. The resulting embedded bitstream has a se-
quential dependency; each layer can only be decoded under
the condition that all the previous layers have been received.
Note that in our simulations, no error concealment is used.
In the next section, we will explain in detail how to estimate
the distortion in the case of packet losses for these coding as-
sumptions.

3.3.2. Distortion, energy, and delay calibrations of
video bitstream

Commonly used quality measurements of reconstructed im-
ages and videos are mean squared error (MSE) and peak
signal-to-noise ratio (PSNR). Typical PSNR values should
range from 30 to 40 dB. Taking only quality scalability into
account and assuming a stable channel during one GOP time
period, it is possible to calculate the expected distortion con-
tribution of each quality layer on a GOP-per-GOP basis. We
focused on a GOP-based approach instead of the more fine
granular ones to limit overhead and complexity.

Let us assume that each GOP is encoded into L quality
layers and that a quality layer is the smallest application layer
data unit. Let Dl denote the distortion corresponding to the
reception of layers 1 to l (1 < l < L), and let D0 denote the
distortion associated with losing the first layer. Denoting the
error probability of layer l under transmission configuration
Kl as PERKl , the probability of correctly receiving the qual-
ity layers until layer l is

∏ l
j=1(1 − PERKj ). Relying on the

sequential dependency of the embedded bitstream structure,
the expected average distortion De over one GOP can then be
calculated as

De = PERKl ×D0 +
L−1∑
i=1

[ i∏
j=1

(
1− PERKj

)]

× PERKi+1 ×Di +

[ L∏
i=1

(
1− PERKi

)]×DL.

(5)

The energy EGOP of the whole GOP can be expressed as
the sum of its layers:

EGOP =
L∑
i=1

Epi

(
Ki
)
, (6)

where Epl (Kl) denotes the associated energy cost under con-
figuration Kl.

Similarly, the transmission time TXOPGOP of the whole
GOP is

TXOPGOP =
L∑
i=1

TXOPpi

(
Ki
)
, (7)

where TXOPpi(Ki) denotes the transmission time under con-
figuration Kl.

4. ENERGY-EFFICIENT MULTIUSER CROSS-LAYER
OPTIMIZATION

4.1. Problem formulation

In this paper, we focus on techniques that efficiently
adapt the transmission strategy in order to minimize the
transceiver energy cost while meeting the required end-to-
end distortion and delay. Most of the existing solutions do
not take into account the rate-distortion properties of video
bitstreams, and therefore they often lead to inferior network
efficiency and suboptimal qualities for the video users.

As we operate in a very dynamic environment, the sys-
tem behavior will vary over time. Both the energy cost func-
tion and the resources required for transmission will depend
on this run-time behavior. In the considered wireless video
streaming environment, the system state is determined by the
current channel state and the rate-distortion property of the
video bitstream. Each GOP can then be associated with a set
of possible system states S, which determines the mapping of
the transmission strategies K to the energy cost (K→EGOP,S)
and the required bandwidth resource (K→TXOPGOP,S). Each
user experiences different channel and rate-distortion dy-
namics, resulting in different system states over time, which
may or may not be correlated with other users. It is this im-
portant characteristic which makes it possible to exploit mul-
tiuser diversity for energy efficiency.

From the former analysis, and under the assumption that
all video users can require their own end-to-end quality, the
optimization problem is formulated with video quality as
one of the constraints. We consider two different objectives:
minimizing the total energy cost of all users, and the max-
imum energy cost among all users (fairness rule). For both
objectives, we provide a low-complexity run-time optimiza-
tion algorithm. The advantage of the proposed solutions will
be analyzed and discussed in Section 5.

4.1.1. Optimization towards total energy minimization

The optimization consists in finding for each user u, u ∈
(1, . . . ,N), the configuration K∗u that minimizes the overall
energy cost, subject to radio resource and video distortion
constraints. Such configuration is applied at the beginning
of every GOP transmission interval, considering the current
channel conditions and video rate-distortion properties:

K∗u = min

( N∑
u=1

EGOPu

(
Ku
))

, (8)

subject to

Deu ≤ Dr
u, u ∈ (1, . . . ,N),

N∑
u=1

TXOPGOPu ≤ Tr ,
(9)

where Dr
u and Tr denote the distortion and time constraints,

respectively.
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4.1.2. Optimization towards fairness

In this approach, we consider how to allocate the bandwidth
and transmission strategies to achieve more fair energy cost
among all the users and formulate this problem as a min-max
problem. For N users inside the network, the optimization
problem is formulated as a min-max problem to find for each
of the users u the configuration K∗u such that

K∗u = argmin
(
maxEGOPu

(
Ku
))

, u = 1, . . . ,N , (10)

subject to

Deu ≤ Dr
u, u ∈ (1, . . . ,N),

N∑
u=1

TXOPGOPu ≤ Tr ,
(11)

where Dr
u and Tr denote the distortion and time constraint,

respectively.

4.2. Two-phase solution approach

Each of the above formulated problems is a multidimen-
sional assignment problem, which is known to be non-
polynomial (NP) time hard problem. To obtain a tractable
run-time complexity, we proposed a two-phase solution ap-
proach; at design time, for each possible system state, the op-
timal operating points (namely, Pareto sets) are determined
according to their minimal energy cost and resource (TXOP)
consumption. At run time, a low-complexity algorithm is
provided for the formulation of each of the problems rely-
ing on the design time calibration.

To solve the optimization towards total energy minimiza-
tion, we convert the problem into a Lagrangian relaxation
problem. The main steps are as follows.

(i) At the design time, the optimal operational points are
determined for each possible system state according to
their minimal energy cost, resource (TXOP) consump-
tion, and distortion. The operational points are gener-
ated to reduce the search space from the initial prob-
lem.

(ii) At the run time, the bisection algorithm is used to solve
the optimization problem.

To solve the min-max problem, the main steps are as fol-
lows.

(i) At the design time, the derivation of the optimal oper-
ational points is performed for the original Min-Max
problem after the system states of all users are known.

(ii) At run time, a lightweight water-filling scheme is pro-
posed to assign the optimal system configuration to
each user.

In the Sections 4.2.1–4.2.4, the design-time and run-time ap-
proaches will be introduced, respectively. The two proposed
algorithms will be detailed in the following.

4.2.1. Design-time phase

The goal of the design-time phase is to determine, for each
possible system state, the optimal operating points accord-
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Figure 4: Energy versus TXOP Pareto curve example.

ing to their minimal cost and resource consumption. In this
paper, the system states are denoted by different channel sta-
tuses and the dynamic rate-distortion properties of video
traffic loads. To that end, we consider the Pareto concept for
multi-objective optimization [34].

Let us consider the following multi-objective program-
ming problem:

MIN
X∈Ω

f1(X), f2(X), . . . , fM(X) (12)

fi
(
X1
) ≤ fi

(
X2
)
, ∀ i ∈ 1, 2, . . . ,M,

f j
(
X1
)
< fj

(
X2
)
, ∀ j ∈ 1, 2, . . . ,M,

(13)

A solution X1 is strictly better than a solution X2 if X1

is at least as good as X2 with respect to all the M objectives
(the first condition of (13)), and X1 is strictly better than X2

with respect to at least one objective (the second condition
of (13)). A Pareto optimal solution is defined as if there is
no other solution strictly better than X1. A multi-objective
optimization problem may have multiple Pareto optimal so-
lutions, and different decision makers with different prefer-
ences may select different Pareto optimal solutions. The set of
all possible Pareto optimal solutions constitutes a Pareto fron-
tier in the objective space. A two-dimensional Pareto fron-
tier is also called a Pareto curve. Figure 4 shows an example
of Pareto curve considering energy and network resources as
objectives.

At design time, for each possible system state, we com-
pute the three-dimensional Pareto frontier, considering the
optimization objectives of the distortion D, the network re-
source TXOP, and the energy E. The Pareto frontier can be
found by any global optimal algorithm since complexity is
not the concern at the design-time step.

From the video side, the design-time calibration can be
provided for different GOP sizes. This enables adaptation to
channel violations by choosing a smaller GOP size for the
next coherence period. Depending on the channel state (how
long it is stable), we may adapt the number of frames with-
out influencing the later part of the video bitstream—thanks



8 EURASIP Journal on Wireless Communications and Networking

(1) Initialization:
(a) allocate to each of the u users the lowest cost possible for the given state Emin

GOPu .
(2) If

∑ N
u=1TXOP0

u > Tr ,
initialize λmax, λmin, and λtrying.
Do

restore previous λtrying :
λtrying = (λmax + λmin)/2.
For each user,

if λtrying is higher than the highest or lower than the lowest,
jump out of the loop

or else find λ > λtrying > λnext.
If the total delay is lower than the constraint
λmax = λtrying,
restore the difference between the total delay and the constraint

or else λmin = λtrying.
While (the difference between total delay and constraint converges to the same point),
(3) for each of the users,
the Pareto energy TXOP set will be searched
till finding the configurations which have a λ just lower or equal to the resulting λ,
and these configurations are the optimal output settings.

Algorithm 1: Run-time bisection search algorithm to find the Lagrange multiplier and the optimal configuration.

to the open-loop temporal decomposition of the MCTF
scheme.

4.2.2. Run-time phase

Once the system states of all users have been known at run
time, lightweight schemes are proposed to assign the best sys-
tem configuration to each user.

The 3D Pareto frontier is firstly converted to a 2D Pareto
curve according to the QoS constraint. This step can also
be incorporated in the design-time phase by providing sev-
eral QoS constraint levels (2D Pareto curve) for the run-time
choice. The Pareto frontier is first pruned by deleting those
settings that cannot satisfy the QoS constraint. The remain-
ing cost-resource tradeoffs are further explored to extract a
Pareto curve.

After the Pareto pruning, n Pareto cost-resource sets are
available for each user. The run-time algorithms for both
problem formulations are discussed in the next sections.

4.2.3. Proposed algorithm for minimizing total energy

The optimization problem expressed in (9)–(10) is reformu-
lated so as to introduce a Lagrangian multiplier λ [35]:

minimize Jtot =
N∑
u=1

EGOPu

(
Ku
)

+ λ
N∑
u=1

TXOPGOPu , (14)

subject to

N∑
u=1

TXOPGOPu ≤ Tr. (15)

The conventional solution consists in constructing a con-
vex hull of the operational points first, and then searching

the slope (λ sets) of the convex hull. In contrast, we define
the λ sets to be the slope EGOPu /TXOPGOPu of each opera-
tional point, and we find the lowest λ∗ which satisfies the
constraint. From the definition of λ, we know that it repre-
sents the energy cost compared to the resource. And from the
Pareto property, for each specific user, the λ(Ku) is increas-
ing with EGOPu(Ku). The lower the λ is, the lower the EGOPi

will be. Thus, if all the users choose configurations with a λ
lower than λ∗, the constraint will not be satisfied. And if all
the users choose configurations with a λ larger than λ∗, the
energy cost will be more than the resulting one.

A bisection search is proposed to find the appropriate λ∗.
The first step of the initial solution is to include the lowest
cost point from each user (the highest resource requirement
according to Pareto property). The amount of the resources
used by this initial solution is TXOP0 = ∑ N

u=1TXOP0
u. In the

next step, if TXOP0 is higher than the resource constraint
Tr , we use the bisection search until finding the appropri-
ate λ satisfying the resource constraint. Without loss of gen-
erality, we assume that each of these u users maintains a U
cost-resource Pareto setting. In this case, the complexity of
this step is O(NU log (NU)). From the Pareto property, λ is
strictly increasing with the energy. After finding the appro-
priate λ for each user, the Pareto set will be searched. The
configurations which have a λ just lower or equal to the re-
sulting λ are the optimal output settings. The complexity
of this step is O(NU). The pseudocode of the algorithm is
shown in Algorithm 1.

4.2.4. Proposed algorithm for minimizing
the maximum energy

A greedy water-filling algorithm is proposed to solve the
run-time searching for this problem. The first step of the
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(1) Initialization:
allocate to each of the N users the lowest cost possible for the given state Emin

GOPu .
Construct an N-value energy level vector,
with each of these values corresponding to the energy cost of one of the users.
(2) If

∑ N
u=1TXOP0

u > Tr ,
for the user who requires the lowest energy cost in this step,
sort out its energy TXOP tradeoff curve,

until a setting whose energy cost exceeds the second lowest energy cost level
is found or the resource constraint is satisfied.
(3) If the resource constraint is not satisfied,

update the energy level vector and repeat step 2 until the resource constraint is satisfied.

Algorithm 2: Run-time greedy water-filling algorithm.

initial solution is also to include the lowest cost point from
each user (the highest resource requirement according to the
Pareto property). Suppose that there are N users and the re-
source requirement of each of these N users composes U
water-filling level vectors. The amount of the resources used
by this initial solution is TXOP0 =∑ N

u=1TXOP0
u.

In the next step, if TXOP0 is higher than the resource
constraint Tr , for the user which achieves the lowest energy
cost among others, we reallocate the setting until its energy
cost exceeds the second energy cost level or the resource con-
straint is satisfied. If the resource constraint is not satisfied
by this step, we update the water-filling level vector and re-
peat the last step until the resource constraint is satisfied.
The resulting outputs are the optimal settings for all users.
The complexity of the water-filling algorithm isO(NU2). The
pseudocode of the algorithm is shown in Algorithm 2.

If the step sizes of the Pareto curve axes are infinitesimally
small, the attentative reader might indeed observe that the
K∗u we find is the optimum configuration to achieve the min-
max energy cost among users.

Proof. For configuration set K∗u , for all u, E∗u ≤ maxE∗u .
If there exists a configuration set Ku, which results for all

u in maxEu < maxE∗u , then for all u, Ku < maxE∗u .
From the descending searching style of step 2, we have

for all u, Eu ≤ E∗u , and there exists at least one u′ such that
Eu′ < E∗u′ .

From the definition of Pareto property, we have
TXOPu ≥ TXOP∗u , and there exists at least one u′ such that
TXOPu′ > TXOP∗u′ . Hence,

∑
TXOPu >

∑
TXOP∗u .

From the water-filling searching of step 2, we know that
for all the resulting

∑
TXOP higher than the

∑
TXOP∗u , the

constraint cannot be satisfied. Thus, there is no configura-
tion set that can satisfy the constraint while achieving a max
energy cost lower than that of K∗u .

Due to the discrete step size of the possible configura-
tions that form the Pareto curve, there might exist other con-
figurations that achieve less max energy cost. This is espe-
cially likely to happen if the step sizes are very irregular. This
is a problem inherent to the discrete nature of the system,
and it is well known that for such problems finding the op-
timal solution can be very hard. This is similar to the known

Knapsack problem where the goal is to pack different dis-
crete items with different resource constraints and values to
the user. If an infinite set of items would be present, with in-
finitesimally small differences in terms of resource cost and
value, the problem would be easy to solve. The discrete na-
ture however makes it NP-hard. Many approximations how-
ever exist that allow to find a close-to optimal solution that
works well enough in practice.

The difference between the maximum energy cost
achieved by the algorithm and the optimum one lies how-
ever for sure between the maximum and minimum energy
cost achieved by the last adaptation. In theory, this differ-
ence is hence bounded by the largest step size found in the
Pareto curves that are the possible optimal configurations for
the system. Practically, the convergence of the algorithm pro-
vides a solution close to the optimal solutions with reason-
able complexity. The reason is that in practice, the step sizes
between the different points on the curve are small enough.

5. NUMERICAL RESULTS

Based on the proposed two-phase approaches and the con-
sidered transceiver system models, we now verify the energy
savings over a range of practical scenarios.

5.1. Simulation setup

In the experiments, a GOP size of 16 is assumed. Four se-
quences (bus, city, foreman, mother and daughter) are con-
sidered here as examples of video with different levels of mo-
tion activities, thus resulting in different bitrate versus dis-
tortion. All the sequences have CIF (352 × 288, 4 : 2 : 0)
resolution and 30 frames per second. The number of qual-
ity layers is set to 5. Empirically, for an image/video of CIF
size, PSNR value of 25–35 dB corresponds to an acceptable
visual quality for most of the users. We therefore encoded ev-
ery sequence with a visual quality of approximately 35 dB for
the full-length bitstream and 25 dB for the base layer portion
of the bitstream. The intermediate bitstream rates of every
quality layer of each video sequence are shown in Table 3.

Since network congestion influence on the performance-
energy tradeoff is not the focus of the current paper, we limit
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Table 3: Bitrate settings of a different video sequence.

Sequence name Bus City Foreman Mother and daughter

Bitrate of the 1st layer 256 kbps 64 kbps 96 kbps 64 kbps

Bitrate of the 2nd layer 384 kbps 128 kbps 112 kbps 80 kbps

Bitrate of the 3rd layer 448 kbps 256 kbps 192 kbps 96 kbps

Bitrate of the 4th layer 512 kbps 384 kbps 288 kbps 112 kbps

Bitrate of the 5th layer 1028 kbps 448 kbps 384 kbps 128 kbps

Table 4: Different PER’s influence to received video quality.

PER BUS encoded at 32.4 dB Mobile encoded at 32.7 dB Foreman encoded at 34.3 dB

0.05 31.0406 31.8462 32.8051

0.01 32.1733 32.3564 34.1034

0.005 32.1845 32.695 34.1606

0.001 32.3422 32.7484 34.2982

the number of users in the network so that their require-
ment can be satisfied. In the real-time variant channel simu-
lation, we use the best possible quality transmission config-
uration when the channel state is very bad and therefore the
quality requirement can almost never be reached. The aver-
age quality results turn out to always match the requirement
well.

Each quality layer of the bitstream is encapsulated into
a separate network packet. Thus, if one network packet is
dropped, the corresponding quality layer is lost. Every net-
work packet is further fragmented in MAC Service Data
Units (MSDU) of 1500 Bytes at link level. The maximal num-
ber of retransmission is limited to 10 times.

An indoor channel model for the 5 GHz band [36] was
used assuming a terminal moving uniformly at a speed be-
tween 0 to 5.2 km/h (walking speed). A set of 1000 time-
varying frequency channel response realizations (sampled
every 2 ms over one minute) were generated and normalized
in power. The bitstream was modulated using a turbo-coded
802.11a OFDM PHY. The resulting PHY dynamics were then
mapped to an 8-state Markov model, as detailed in [28].

In Table 4, we show the network packet error rate (PER)’s
influence to the received video quality. From the comparison
of values in this table, we reach the conclusion that with PER
lower than 1e-2, the video can be regarded as correctly re-
ceived. When calculating the configuration at design-time,
to further assure the stable visual quality, the first quality
layer is always given as a configuration with error probability
lower than 1e-2. The sequence has been iteratively transmit-
ted more than 10 times to get relevant statistics.

We consider in the sequel the following three transmis-
sion strategies.

(i) SoA reference point: the server uses the highest feasi-
ble modulation in addition to code rate that enables to
transmit the packets with a loss probability lower than
1e-2 (transmit as fast as possible). After successfully re-
ceiving and decoding the required video bitstream, the
mobile devices are switched to sleep mode. This ap-
proach aims at maximizing sleep duration. It is pro-
posed in commercial 802.11 interfaces [37].
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Figure 5: Impact of video content.

(ii) Design-time + run-time approach 1: “constant PER”:
this is the approach introduced in [24, 25]. With this
strategy, every video packet is transmitted with a con-
figuration resulting in a PER lower than 1e-2 until the
transmitted bitstream reaches the quality required by
the users. Instead of always transmitting the packets
with the highest possible data rate, an optimal sched-
ule exploring the tradeoff brought by link layer scaling
and sleeping is introduced.

(iii) Design-time + run-time approach 2: “expected PSNR”:
this is the approach introduced in this paper. In this
transmission strategy, we introduce the expected vi-
sual distortion into the design-time Pareto frontier cal-
culation. By emphasizing differently the total energy
minimization and fairness improvement for the run-
time algorithm, this transmission strategy can be fur-
ther differentiated into the following two schemes.

(a) Min total energy: the total energy consumption
of the users’ terminal transceivers is minimized.

(b) Min-max energy: the maximum energy con-
sumption among the users’ terminal transceivers
is minimized.
The detailed results for the two proposed run-
time schemes are discussed in Section 5.2.4.
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Figure 6: Impact of channel status.
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Figure 7: Impact of a time variant channel and multiple user to the
transceiver energy of different schedulers.

5.2. Results analysis

The simulation results show that a significant energy de-
crease can already be achieved with the “constant PER” ap-
proach compared to the state-of-the-art approach. When the
“expected PSNR” approach is used, simulation proves that
energy savings up to a factor of 2 can be achieved while main-
taining a uniform visual quality, thus significantly improving
QoS. In Sections 5.2.1–5.2.4, we show the detail results from
the aspects of different video content, channel status, user re-
quirements together with the fairness discussion.

5.2.1. Impact of the video content

Figure 5 shows the influence of the video content on the en-
ergy cost for the different approaches listed above. The PER
constraint is fixed to 1e-2 for the “constant PER” approach.
The QoS constraint is fixed to 35 dB for the “expected PSNR”
approach. As expected, the higher the bitrate of a sequence
is, the higher the transceiver energy cost will be. Those re-
sults are provided by delivering video on a fixed channel state
(channel state 2, with 40% occurrence probability).

5.2.2. Impact of the channel status

The impact of the channel state is shown in Figure 6. The
channel state is again assumed to be constant during the
whole transmission. The foreman sequence is considered
here. The PER constraint is fixed to 1e-2 for the “constant
PER” approach. The QoS constraint is fixed to 35 dB for the
“expected PSNR” approach. Seven channels are used in this
test, where channel 1 is the best and 7 is the worst. From the
results, it is clear that the “constant PER” approach outper-
forms the SoA approach for all the channel states. The “ex-
pected PSNR” approach enables further energy savings, be-
cause video packets are treated differently based on their vi-
sual relevance.

For bad channel states, the energy cost of the “con-
stant PER” approach tends to be similar to that of the SoA
scheme. But for bad channel states, the “expected PSNR” ap-
proach provides the biggest savings. This is because the “ex-
pected PSNR” approach relaxes the PER requirement of low-
importance video packets.

In Figure 7, we consider a time-varying channel and eval-
uate the energy cost of several video sequences (with differ-
ent rate-distortion properties) transmitted simultaneously.
The channel varies independently over all the users on a
GOP-by-GOP basis. For the “constant PER” approach, the
PER constraint is 1e-2. For the “expected PSNR” approach,
the QoS requirement used is 35 dB. Total energy consump-
tion after transmission is shown in Figure 7. Compared to
the static channels (see Figure 6), the time-varying channels
cause a further increase in energy cost. In addition, the en-
ergy cost further increases because of the multiuser scenario.
Each packet has to be transmitted with lower TXOP to share
the bandwidth with other users, thus increasing the energy
consumption to maintain the QoS requirement. Neverthe-
less, even under these conditions, the energy cost for each
user has been reduced approximately by a factor 2, compared
to the SoA approach. The “Expected PSNR” outperforms the
“Constant PER” approach by another factor of 2.

5.2.3. Impact of the different user requirements.

In this section, we present the impact of the different user
QoS requirements on the energy cost. The four different se-
quences with QoS requirements of 35 dB, 33 dB, and 31 dB
are tested simultaneously on the time-varying channel. The
energy cost of all these sequences after transmission is pre-
sented in Figure 8. It is clear that the lower the QoS require-
ment is, the lower the energy consumption will be. The rea-
son is straightforward; the lower the quality is, the smaller
the bitrate will be, and hence the lower the energy cost.
This shows once again that by taking into account the rate-
distortion properties into the optimization system, we can
obtain more energy gains.

5.2.4. Fairness discussion

So far we have considered only one of the two proposed so-
lutions, that is, the total energy minimization. In this final
section we present the performance of the second proposed
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Figure 8: Impact of a time variant channel and multiple user with
different quality requirements to the transceiver energy.
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Figure 9: Energy comparison for 8 users requiring video bitstreams
simultaneously.
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Figure 10: Energy comparison for 16 users requiring video bit-
streams simultaneously.

solution, that is, the fairness solution. In particular, we com-
pare the impacts of the two run-time algorithms on the en-
ergy consumption.

In Figure 9, we consider 8 users simultaneously requiring
video streams with an expected PSNR of 35 dB. Each of the
4 videos is required by 2 users. No significant difference is
measured in terms of energy cost.

Figure 10 shows 16 users receiving video bitstreams si-
multaneously with an expected PSNR equal to 35 dB. Each
of the 4 videos is required by 4 users. Under this setup, band-
width requirements are much more stringent than those in
the former setup, and the difference between the two run-
time approaches becomes significant. The results show that
the energy consumption of those users who require the max-
imum energy cost decreases by about 3.5%, with the energy
consumption of other users increasing by more than 30%.

From the results presented in the previous sections, we
conclude that in general the minimal total energy approach
reduces the energy cost by a factor of 2. Based on the results
presented in this section, we, therefore, recommend the min-
max energy approach unless the users are facing energy ex-
hausting issues.

6. CONCLUSIONS AND FUTURE WORK

We have introduced a cross-layer optimization framework to
minimize the wireless transceiver energy consumption for
downloading multiple video streams over a WLAN. Rely-
ing on the IEEE 802.11 standard and scalable video coding,
the proposed solutions schedule the packets transmission by
both exploiting link layer scaling and sleeping trade-offs, and
integrating rate-distortion properties of the video sequences
into the optimization scheme. Results have shown that in
comparison with state-of-the-art approaches, the proposed
expected PSNR approach achieves stable visual quality ac-
cording to the user QoS requirements, while largely decreas-
ing the energy cost. Compared to link layer optimization,
the proposed expected PSNR approach achieves energy gains
by a factor of 2. Fairness and total energy minimization ap-
proaches have also been discussed in this paper.

The work presented in this paper offers an insight view of
cross-layer optimization for energy-efficient bandwidth al-
location using scalable video coding. Our future work will
concentrate on the scalability provided by the different video
coding schemes. In particular, future work will focus on the
scalable video coding (SVC) extension of H.264/AVC, the
upcoming state-of-the-art scalable video coding, which uses
different temporal and spatial decomposition schemes com-
pared to the one used in this paper. Also, in this paper, the
distortion calculation was GOP-based. Though calculating
the distortion based on packets will increase overhead and
complexity, it would be interesting to see how the proposed
approaches perform under these conditions, despite the fact
that we expect that the general trends presented here will be
maintained. Additionally, we plan to investigate the perfor-
mance of the proposed approaches in uplink streaming, P2P
video transmission, and so forth. These scenarios have very
different timing constraints, hence requiring more interest-
ing optimization schemes and solutions. Finally, it would be
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interesting to investigate multimedia applications over ad-
hoc networks and identify the energy and congestion con-
trols needed to optimize the performance of these systems.
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