65 research outputs found

    Applications of error-control coding

    Full text link

    Architectures multi-Asip pour turbo récepteur flexible

    Get PDF
    Rapidly evolving wireless standards use modern techniques such as turbo codes, Bit Interleaved coded Modulation (BICM), high order QAM constellation, Signal Space Diversity (SSD), Multi-Input Multi-Output (MIMO) Spatial Multiplexing (SM) and Space Time Codes (STC) with different parameters for reliable high rate data transmissions. Adoption of such techniques in the transmitter can impact the receiver architecture in three ways: (1) the complex processing related to advanced techniques such as turbo codes, encourage to perform iterative processing in the receiver to improve error rate performance (2) to satisfy high throughput requirement for an iterative receiver, parallel processing is mandatory and finally (3) to allow the support of different techniques and parameters imposed, programmable yet high throughput hardware processing elements are required. In this thesis, to address the high throughput requirement with turbo processing, first of all a study of parallelism on turbo decoding is extended for turbo demodulation and turbo equalization. Based on the results acquired from the parallelism study a flexible high throughput heterogeneous multi-ASIP NoC based unified turbo receiver is proposed. The proposed architecture fulfils the target requirements in a way that: (a) Application Specific Instruction-set Processor (ASIP) exploits metric generation level parallelism and implements the required flexibility, (b) throughputs beyond the capacity of single ASIP in a turbo process are achieved through multiple ASIP elements implementing sub-block parallelism and shuffled processing and finally (c) Network on Chip is used to handle communication conflicts during parallel processing of multiple ASIPs. In pursuit to achieve a hardware model of the proposed architecture two ASIPs are conceived where the first one, namely EquASIP, is dedicated for MMSE-IC equalization and provides a flexible solution for multiple MIMO techniques adopted in multiple wireless standards with a capability to work in turbo equalization context. The second ASIP, named as DemASIP, is a flexible demapper which can be used in MIMO or single antenna environment for any modulation till 256-QAM with or without iterative demodulation. Using available TurbASIP and NoC components, the thesis concludes on an FPGA prototype of heterogeneous multi-ASIP NoC based unified turbo receiver which integrates 9 instances of 3 different ASIPs with 2 NoCs.Les normes de communication sans fil, sans cesse en évolution, imposent l'utilisation de techniques modernes telles que les turbocodes, modulation codée à entrelacement bit (BICM), constellation MAQ d'ordre élevé, diversité de constellation (SSD), multiplexage spatial et codage espace-temps multi-antennes (MIMO) avec des paramètres différents pour des transmissions fiables et de haut débit. L'adoption de ces techniques dans l'émetteur peut influencer l'architecture du récepteur de trois façons: (1) les traitement complexes relatifs aux techniques avancées comme les turbocodes, encourage à effectuer un traitement itératif dans le récepteur pour améliorer la performance en termes de taux d'erreur (2) pour satisfaire l'exigence de haut débit avec un récepteur itératif, le recours au parallélisme est obligatoire et enfin (3) pour assurer le support des différentes techniques et paramètres imposées, des processeurs de traitement matériel flexibles, mais aussi de haute performance, sont nécessaires. Dans cette thèse, pour répondre aux besoins de haut débit dans un contexte de traitement itératif, tout d'abord une étude de parallélisme sur le turbo décodage a été étendue aux applications de turbo démodulation et turbo égalisation. Partant des résultats obtenus à partir de l'étude du parallélisme, un récepteur itératif unifié basé sur un modèle d'architecture multi-ASIP hétérogène intégrant un réseau sur puce (NoC) a été proposé. L'architecture proposée répond aux exigences visées d'une manière où: (a) le concept de processeur à jeu d'instruction dédié à l'application (ASIP) exploite le parallélisme du niveau de génération de métriques et met en oeuvre la flexibilité nécessaire, (b) les débits au-delà de la capacité d'un seul ASIP dans un processus itératif sont obtenus au moyen de multiples ASIP implémentant le parallélisme de sous-blocs et le traitement combiné et enfin (c) le concept de réseau sur puce (NoC) est utilisé pour gérer les conflits de communication au cours du traitement parallèle itératif multi-ASIP. Dans le but de parvenir à un modèle matériel de l'architecture proposée, deux ASIP ont été conçus où le premier, nommé EquASIP, est dédié à l'égalisation MMSE-IC et fournit une solution flexible pour de multiples techniques multi-antennes adoptés dans plusieurs normes sans fil avec la capacité de travailler dans un contexte de turbo égalisation. Le deuxième ASIP, nommé DemASIP, est un démappeur flexible qui peut être utilisé dans un environnement multi-antennes et pour tout type de modulation jusqu'à MAQ-256 avec ou sans démodulation itérative. En intégrant ces ASIP, en plus des NoC et TurbASIP disponibles à Télécom Bretagne, la thèse conclut sur un prototype FPGA d'un récepteur itératif unifié multi-ASIP qui intègre 9 coeurs de 3 différents types d'ASIP avec 2 NoC

    Towards More Reliable MAC and PHY Layer Designs for High QoS Achievements for Safety Messaging in DSRC Systems

    Get PDF
    Broadcast communications are widely proposed for safety messaging. In the case of highway vehicular networks and constantly communicating safety messages inevitably cause the well-known hidden terminal problem. Three existing leading repetition-based broadcasting protocols have shown to meet the reliability and delay requirements for Dedicated Short Range Communications (DSRC) safety systems. We propose a quantitative model to evaluate the quality of service (QoS) of DSRC systems using these three leading repetition-based protocols under hidden terminals and highway scenarios. The performance of our model is analyzed by means of probability of success and delay performances. We also present three new Medium Access Control (MAC) layer design protocols for safety messaging applications. The main protocol we introduce is known as Passive Cooperative Collision Warning (PCCW) protocol for repetition based vehicular safety message reception reliability improvement in DSRC. The PCCW protocol and jointly proposed Enhanced-PCCW (EPCCW) and emergency-PCCW (ePCCW) protocols variants can work on top of existing repetition protocols for serving as a passive collision warning mechanism in the MAC Layer. A full analytical derivation of the relative reliability and delay performances for all three PCCW, EPCCW and ePCCW protocols are provided, serving as intuitive performance evaluators. EPCCW employs the physical (PHY) layer to create sub-slots for the purpose of further increasing reliability by both avoiding and minimizing probability of collision at slots that would nominally fail. Analytical and simulation results of PCCW and EPCCW agree, and show a significant reduction in message failure rate versus the leading repetition protocols, especially under high collision scenarios up to 40% at optimal, and 80% at higher repetitions. Additionally, an improvement in average timeslots delay is observed, which facilitates improved vehicular safety messaging. ePCCW is particularly useful for emergency vehicle (EV) communications. This enhancement makes meeting stringent quality of service (QoS) requirements particularly prevalent in safety applications of DSRC systems. ePCCW show up to 77% reliability improvement relative to a leading alternative is realized. Additionally, the proposed system is shown to have a decreased average timeslots delay that is well within acceptable delay threshold, and provides the best reliability in its class, which is key to safety messaging. In all our simulation results, we use our accurate Orthogonal Frequency Division (OFDM) MAC and physical (PHY) layer designs. The PHY layer simulator is a new object-oriented simulation environment, and is achieved using high-level design, parallelism and usability for the simulation environment. A high-level design and GUI layouts of the proposed simulator is shown in details. This can serve as a learning/research tool for students or practiced professionals to investigate particular designs. In addition, we provide a simple technique to implement simulation partitioning for increased parallel performance of reconfigurable object-oriented OFDM simulators. This simple technique applies to scenarios where there is disproportionate simulation duration between different OFDM configurations. It is shown to decrease total simulation time considerably. Additionally, we present a study on different demapping schemes at the PHY level. We propose the use of a linear demapper over a recently proposed non-linear demapper. The study is also presented under different decoding schemes of DSRC receivers. We also propose the use of equalization concepts in frequency domain that exploit the frequency domain channel matrix to combat inter-carrier interference (ICI) instead of inter-symbol interference (ISI) in DSRC systems. It is shown that the DSRC system with the frequency-domain equalization scheme achieves a considerable performance enhancement compared to both the conventional and the Viterbi-aided channel estimation schemes that try to combat ISI in terms of both Packet Error Rate (PER) and Bit Error Rate (BER) at relatively high and low velocities

    The Telecommunications and Data Acquisition Report

    Get PDF
    Deep Space Network advanced systems, very large scale integration architecture for decoders, radar interface and control units, microwave time delays, microwave antenna holography, and a radio frequency interference survey are among the topics discussed

    Architecture and Analysis for Next Generation Mobile Signal Processing.

    Full text link
    Mobile devices have proliferated at a spectacular rate, with more than 3.3 billion active cell phones in the world. With sales totaling hundreds of billions every year, the mobile phone has arguably become the dominant computing platform, replacing the personal computer. Soon, improvements to today’s smart phones, such as high-bandwidth internet access, high-definition video processing, and human-centric interfaces that integrate voice recognition and video-conferencing will be commonplace. Cost effective and power efficient support for these applications will be required. Looking forward to the next generation of mobile computing, computation requirements will increase by one to three orders of magnitude due to higher data rates, increased complexity algorithms, and greater computation diversity but the power requirements will be just as stringent to ensure reasonable battery lifetimes. The design of the next generation of mobile platforms must address three critical challenges: efficiency, programmability, and adaptivity. The computational efficiency of existing solutions is inadequate and straightforward scaling by increasing the number of cores or the amount of data-level parallelism will not suffice. Programmability provides the opportunity for a single platform to support multiple applications and even multiple standards within each application domain. Programmability also provides: faster time to market as hardware and software development can proceed in parallel; the ability to fix bugs and add features after manufacturing; and, higher chip volumes as a single platform can support a family of mobile devices. Lastly, hardware adaptivity is necessary to maintain efficiency as the computational characteristics of the applications change. Current solutions are tailored specifically for wireless signal processing algorithms, but lose their efficiency when other application domains like high definition video are processed. This thesis addresses these challenges by presenting analysis of next generation mobile signal processing applications and proposing an advanced signal processing architecture to deal with the stringent requirements. An application-centric design approach is taken to design our architecture. First, a next generation wireless protocol and high definition video is analyzed and algorithmic characterizations discussed. From these characterizations, key architectural implications are presented, which form the basis for the advanced signal processor architecture, AnySP.Ph.D.Electrical EngineeringUniversity of Michigan, Horace H. Rackham School of Graduate Studieshttp://deepblue.lib.umich.edu/bitstream/2027.42/86344/1/mwoh_1.pd

    Exploration of the scalability of SIMD processing for software defined radio

    Get PDF
    The idea of software defined radio (SDR) describes a signal processing system for wireless communications that allows performing major parts of the physical layer processing in software. SDR systems are more flexible and have lower development costs than traditional systems based on application-specific integrated circuits (ASICs). Yet, SDR requires programmable processor architectures that can meet the throughput and energy efficiency requirements of current third generation (3G) and future fourth generation (4G) wireless standards for mobile devices. Single instruction, multiple data (SIMD) processors operate on long data vectors in parallel data lanes and can achieve a good ratio of computing power to energy consumption. Hence, SIMD processors could be the basis of future SDR systems. Yet, SIMD processors only achieve a high efficiency if all parallel data lanes can be utilized. This thesis investigates the scalability of SIMD processing for algorithms required in 4G wireless systems; i. e. the scaling of performance and energy consumption with increasing SIMD vector lengths is explored. The basis of the exploration is a scalable SIMD processor architecture, which also supports long instruction word (LIW) execution and can be configured with four different permutation networks for vector element permutations. Radix-2 and mixed-radix fast Fourier transform (FFT) algorithms, sphere decoding for multiple input, multiple output (MIMO) systems, and the decoding of quasi-cyclic lowdensity parity check (LDPC) codes have been examined, as these are key algorithms for 4G wireless systems. The results show that the performance of all algorithms scales with the SIMD vector length, yet there are different constraints on the ratios between algorithm and architecture parameters. The radix-2 FFT algorithm allows close to linear speedups if the FFT size is at least twice the SIMD vector length, the mixed-radix FFT algorithm requires the FFT size to be a multiple of the squared SIMD width. The performance of the implemented sphere decoding algorithm scales linearly with the SIMD vector length. The scalability of LDPC decoding is determined by the expansion factor of the quasicyclic code. Wider SIMD processors offer better performance and also require less energy than processors with a shorter vector length for all considered algorithms. The results for different permutations networks show that a simple permutation network is sufficient for most applications

    Quality-of-Service-Adequate Wireless Receiver Design

    Get PDF
    corecore