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Abstract 

Abstract 

Broadcast communications are widely proposed for safety messaging.  In the case of highway vehicular 

networks and constantly communicating safety messages inevitably cause the well-known hidden terminal 

problem.  Three existing leading repetition-based broadcasting protocols have shown to meet the reliability 

and delay requirements for Dedicated Short Range Communications (DSRC) safety systems.  We propose a 

quantitative model to evaluate the quality of service (QoS) of DSRC systems using these three leading 

repetition-based protocols under hidden terminals and highway scenarios.  The performance of our model is 

analyzed by means of probability of success and delay performances. 

We also present three new Medium Access Control (MAC) layer design protocols for safety messaging 

applications.  The main protocol we introduce is known as Passive Cooperative Collision Warning (PCCW) 

protocol for repetition based vehicular safety message reception reliability improvement in DSRC.  The 

PCCW protocol and jointly proposed Enhanced-PCCW (EPCCW) and emergency-PCCW (ePCCW) 

protocols variants can work on top of existing repetition protocols for serving as a passive collision 

warning mechanism in the MAC Layer.  A full analytical derivation of the relative reliability and delay 

performances for all three PCCW, EPCCW and ePCCW protocols are provided, serving as intuitive 

performance evaluators.  EPCCW employs the physical (PHY) layer to create sub-slots for the purpose of 

further increasing reliability by both avoiding and minimizing probability of collision at slots that would 

nominally fail. Analytical and simulation results of PCCW and EPCCW agree, and show a significant 

reduction in message failure rate versus the leading repetition protocols, especially under high collision 

scenarios up to 40% at optimal, and 80% at higher repetitions.  Additionally, an improvement in average 

timeslots delay is observed, which facilitates improved vehicular safety messaging.  ePCCW is particularly 

useful for emergency vehicle (EV) communications.  This enhancement makes meeting stringent quality of 

service (QoS) requirements particularly prevalent in safety applications of DSRC systems. ePCCW show 

up to 77% reliability improvement relative to a leading alternative is realized.  Additionally, the proposed 

system is shown to have a decreased average timeslots delay that is well within acceptable delay threshold, 

and provides the best reliability in its class, which is key to safety messaging. 

In all our simulation results, we use our accurate Orthogonal Frequency Division (OFDM) MAC and 

physical (PHY) layer designs.  The PHY layer simulator is a new object-oriented simulation environment, 

and is achieved using high-level design, parallelism and usability for the simulation environment. A high-

level design and GUI layouts of the proposed simulator is shown in details. This can serve as a 

learning/research tool for students or practiced professionals to investigate particular designs.  In addition, 

we provide a simple technique to implement simulation partitioning for increased parallel performance of 



  vii 

reconfigurable object-oriented OFDM simulators. This simple technique applies to scenarios where there is 

disproportionate simulation duration between different OFDM configurations. It is shown to decrease total 

simulation time considerably. 

Additionally, we present a study on different demapping schemes at the PHY level.  We propose the use 

of a linear demapper over a recently proposed non-linear demapper.  The study is also presented under 

different decoding schemes of DSRC receivers. We also propose the use of equalization concepts in 

frequency domain that exploit the frequency domain channel matrix to combat inter-carrier interference 

(ICI) instead of inter-symbol interference (ISI) in DSRC systems. It is shown that the DSRC system with 

the frequency-domain equalization scheme achieves a considerable performance enhancement compared to 

both the conventional and the Viterbi-aided channel estimation schemes that try to combat ISI in terms of 

both Packet Error Rate (PER) and Bit Error Rate (BER) at relatively high and low velocities.  
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Chapter 1 Introduction 

Chapter 1 

Introduction 

Vehicular safety communications is a developing technology meant to aid in making everyday travel safer 

by facilitating information exchange between vehicles in use of vehicular safety applications.  Vehicles 

using this technology could be made aware of surrounding vehicle’s position and status without relying on 

the use of radar, vision processing or sensor systems.  Additionally, vehicular safety communications can 

be used in conjunction with other safety systems for improved vehicle safety.  Its development started with 

the introduction of Dedicated Short Range Communications (DSRC), which was proposed with the main 

goal of reducing the number of motor vehicle accidents.  In 1999 the Federal Communication Commission 

(FCC) in the United States approved spectrum licence of 75 MHz at the 5.9 GHz frequency band [1].  

Communication between vehicles can be as simple as notification of presence, to including detailed 

positional and status information that can be used by safety applications in driving assistance, or even 

vehicle driving automation.  Although the full range of applications vehicle communications have not been 

defined completely at this stage of development, and when it comes to safety messaging for prospective 

collision avoidance applications, there is a clear need for low latency, high reliability communications 

between vehicles.  This 75 MHz capacity was subdivided into seven 10 MHz wide channels, with five 

1 MHz spacing in between each channel.  Of these 7 channels, two have been allocated specifically for 

safety messaging, one control channel, and the other four for other applications including potential 

multimedia and user defined applications.  Due to multipath fading channel in vehicular environments, 

inter-symbol interference (ISI) problem is present, hence an Orthogonal Frequency Division Multiplexing 

(OFDM) PHY was chosen as a base for the DSRC PHY development to mitigate the effect of ISI.  

However, the Doppler shift experienced by vehicles traveling at non-zero relative velocities are 

compensated by using a frequency domain equalizer as shown in [2][3].  Recently, DSRC’s physical layer 

(PHY) and lower medium access control layer (MAC), collectively known as IEEE 802.11p, has been 

approved. 

For emerging designs for safety messaging, messages would be transmitted from vehicle-to-vehicle 

over one or more of the 10 MHz safety channels.  These messages are of broadcast nature in the 

relationship of one transmitter to many receivers.  The messages contain information such as position, 

speed and heading, braking indication, or even deployed airbag indication.  The payload size of DSRC 

safety messages are relatively small, and have a variable transmission frequency.  Additionally, because the 
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information is used for ensuring safety, the messages should arrive with low delay and with a high 

reliability in order to meet Quality of Service (QoS) requirements for the safety applications.  Two 

important metrics for measuring quality of the safety message transmissions are reception reliability (also 

known as the probability of success), and average delay between transmission and successful reception of a 

broadcasted safety message.   

1.1 Problem Statement  

A problem with the MAC layer for safety messaging is controlling access to the channel in an efficient 

manner with minimal delay and high reliability.  The problem exists in reducing the number of collisions 

between broadcasts from simultaneously broadcasting interfering users.  The range of interference is 

dependent on three major factors namely: the intended range at which the safety message is intended to 

reach, the convolution coding rate (i.e. puncturing level of the convolution code), and modulation scheme 

[4] of the DSRC PHY.  Additionally, recall that the DSRC’s PHY must operate under multipath fading 

channel with Doppler shift being compensated by the PHY.  Hence the system depends on the velocities 

involved, the surrounding environment, the number of vehicles, distance between vehicles, modulation 

scheme, coding rate, and intended message distance.  These metrics affect the system’s performance 

significantly, hence are fully considered in this work.  These potential failures motivate the use of repetition 

codes that can increase reliability of safety messages through redundant repetitions (re-transmissions).  

Also average delay can be lowered if relatively few broadcast collisions occur, with sufficient number of 

repetitions.  The basic design of a repetition code involves defining a useful lifetime in which a safety 

message will be made available for re-transmission.  We’ll refer to the safety message itself as the packet, 

and the useful lifetime as	�, measured in milliseconds.  We define the frame of the message as � 

milliseconds long, and we subdivide the frame into slots in which packets can transmit into, where the 

duration of a slot is the same duration of one packet transmission.  The length of the safety message frame 

is said to be H slots long.  At a minimum the repetition protocol must define the number of repetitions (�), 

and represent which slots of the frame are being used for these repetitions.   

There are a number of protocols intended to increase reliability of broadcast messages by increasing 

redundancy in the transmission.  One of the possible breakdown points of repetition based broadcasting is 

as repetitions increase the reliability only increases while the number of incurred collisions remains 

relatively low.  During high load and with a small frame size, rapid reduction in reliability can happen with 

relatively few repetitions, due to high collision rates.  Repetition protocols behave optimally when 

reliability is at a maximum given specific conditions and certain number of repetitions.  Hence, the number 

of repetitions and corresponding collisions probability of those repetitions contribute to the probability of 

success of the respective repetition protocols.  Synchronous p-persistent repetition (SPR) is a protocol that 

has a mean number of repetitions  �̅ chosen by random selection on a per slot basis as in [5].  Synchronous 

fixed repetition (SFR) is another repetition protocol that randomly chooses exactly � number of repetitions 

in random slot positions [5].  Positive orthogonal code (POC) [6] uses a CDMA inspired allocation scheme 
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that attempts to limit collisions by allocating sets of codes on a geographic region segmentation basis that 

reduces collisions between codes in the same region.  In addition, POC can use a system known as adaptive 

elimination for voluntary omission of code selection.  The performance of SFR is generally superior to that 

of SPR, and POC performance is generally superior to SFR.   

As mentioned previously, IEEE 802.11p standard [7] also known as DSRC has recently been released.  

It is important to note that this release improves broadcast efficiency by enabling of the wildcard basic 

service set identification (BSSID) for broadcast communications.  This enhancement directly impacts the 

performance on safety related communications because the nature of most safety communication systems is 

of broadcast type [8].  Broadcast type messages enable communication without setup handshaking.  In 

802.11-2007 standard, request-to-send (RTS) and clear-to-send (CTS) control messages are used for carrier 

sense multiple access with collision avoidance (CSMA/CA) to reduce frame collisions.  The use of RTS 

and CTS control messages is not feasible in broadcast scenario due to flooding of CTS packets [8].  Also 

for safety messaging, the RTS and CTS packets approach the size of the actual safety messages themselves 

[9].  Hence broadcast safety communications cannot rely on RTS/CTS transmissions for reducing 

collisions.   Additionally, the DSRC channel structure includes two channels intended for safety 

communications [5].  These channels can be separated into long-range and short range communications, or 

emergency vs. non-emergency communication depending on the application. 

Additionally, we previously mentioned that OFDM systems are able to mitigate inter-symbol 

interference (ISI).  However, the presence of vehicular mobility renders the orthogonality principle found 

in OFDM invalid causing ICI.  ICI factor increases with increased vehicular speed.  ISI and ICI exist due to 

two physical phenomena known as the multipath fading and the Doppler shift, respectively.  Therefore, the 

research is ongoing and requires new and improved designs to mitigate the effect of these two physical 

phenomena.   

1.2 Main Contribution 

Authors in [6], proposed a quantitative approach to evaluate the broadcast performance of the conventional 

IEEE 802.11 MAC DSRC system in a highway scenario. The authors conclude that the designers of DSRC 

broadcast-based highway safety systems can shift their main focus to improving the probability of success 

performance as opposed to being too concerned with the delay study.  This is one of the main key 

motivations of our study, which is improving the probability of success within acceptable delay threshold 

for safety messaging.  Since we are also working on the PHY layer of DSRC, this dissertation also studies 

different PHY layer receiver designs and compare their relative bit error rate (BER) and packet error rate 

(PER) performance.  This allows us to propose which receiver is best suited for its environment.  In this 

context, the environment means the channel behaviour.  
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1.2.1 MAC Layer Designs 

We first start by analysing the effect of the well-known hidden terminal problem in safety messaging 

applications.  The three existing repetition-based broadcasting protocols mentioned earlier have shown to 

meet the reliability and delay requirements for DSRC safety systems.  However, when compared with one 

another, all of these protocols have not been tested under hidden terminals scenario.  Hence, this 

dissertation proposes a quantitative model to evaluate the quality of service (QoS) of DSRC systems using 

these three leading repetition-based protocols under hidden terminals and highway scenarios.   

More precisely and when it comes to MAC layer designs and improving the probability of success 

performance, this dissertation introduces the design background and concepts of a new MAC layer protocol 

we called Passive Cooperative Collision Warning (PCCW).  We have shown that PCCW considerably 

improves repetition based vehicular broadcast safety MAC reliability performance.  The PCCW protocol’s 

purpose is to inform other user nodes of potential collisions of repetitions. The protocol is passive as it does 

not incur additional transmissions to send this information, and instead appends a small header payload to 

packets that have been pre-determined by an underlying repetition protocol.  This header payload incurs a 

slightly increased latency per slot, but as we will show, is not detrimental.  In addition an improved form of 

PCCW is also proposed and analysed for further improvement, named enhanced PCCW (EPCCW), which 

uses the ability of the DSRC PHY in reducing the chance of collision in certain scenarios.  It is important 

for the protocols not to incur additional data packet transmission to achieve an overall reduction of 

collisions.  Importantly, we chose to design PCCW to make most of its decisions in each node, with error 

tolerance allowed so that node decisions will not adversely affect the other users.  For this work, we 

consider only one channel usage, but can be expanded to be used over both channels by using PCCW on 

two separate MACs.   

A third MAC protocol is also designed in this work to further increase reliability performance required 

by the emergency vehicles.  This new emergency-PCCW (ePCCW) protocol makes meeting stringent 

quality of service (QoS) requirements particularly prevalent in safety applications of DSRC.  ePCCW has 

shown to achieve a near 100% success performance. 

In order to reduce collisions due to overlapping time slots it is recommended that global time 

synchronization be employed. The precise time synchronization can be achieved practically using a number 

of techniques including Global Positioning System (GPS), or through city wide time pulse [10].  Both 

analytical and simulation results that follow in this dissertation assume synchronized time slots between 

users in the same region.   

1.2.2 MAC Layer Simulator Design 

It is well known that the effect of mobility of vehicles cannot be ignored in DSRC, and a lot of work has 

been done to mitigate the effect of the channel, such as in [2].  Hence this is the reason why we have to use 

a precise physical layer (PHY) simulator, such as our PHY simulator proposed in [11], in our analysis and 

our simulator design in this proposal.  Other network simulators commonly omit PHY simulation, and or 



1. Introduction 

  5 

include less precise PHY implementation, and focus more on the upper layers. For instance in Network 

Simulator 2 (NS2), Nakagami fading simulator was just recently included, but the actual PHY 

implementation is limited in modulation schemes.  Our OFDM Simulator models standard 802.11p DSRC 

PHY which includes channel equalization, modulation schemes as implemented according to [2].  The 

PHY broadcasts and receives through a Rayleigh fading channel model with each fading path’s Doppler 

shift being modelled according to relative vehicle velocity from mobility model.  Specifically, the Rayleigh 

paths from a transmitting vehicle’s broadcast are generated at a different SNR and Doppler shift because 

each receiving vehicle is at a different distance and relative velocity to each other.   

1.2.3 PHY Layer Receivers Comparison 

This dissertation also proposes applying a receiver design for the 5.9 GHz DSRC system that can make use 

of ICI information caused by the time-varying channels.  Hence, we compare our proposed receiver design 

against another receiver design that uses adaptive filtering scheme in its design.  The proposed receiver 

uses a maximum a posteriori (MAP)-based equalization concept in frequency-domain to combat ICI instead 

of ISI in DSRC systems without the need of feedback loops.  The receiver designs are tested for QPSK and 

BPSK modulation schemes, and are compared to the conventional DSRC system.  The improvements are 

achieved through a worst-case scenario at relatively high and low speed limit studies, that is, by using 

Rayleigh fading channel at high and low legal limits of relative vehicular velocity. 

1.2.4 PHY Layer Simulator Design 

Finally, it is evident that OFDM systems intended to be used in dynamic environments must be tested 

under various conditions in order to be designed for optimality. Hence, a new simulation design is proposed 

coupling the GUI, parallelism, and high-level object-oriented design techniques to be beneficial to the 

researcher.  GUI interface can serve as a learning/research tool for students or practicing professionals to 

investigate particular designs.  A high-level design and GUI layouts of the proposed simulator is shown in 

detail. Important OFDM parameters needed for reconfiguration of transmitter components, channel 

condition parameters, and receiver components are discussed. In addition, we provide a simple technique to 

implement simulation partitioning for increased parallel performance of reconfigurable object-oriented 

OFDM simulators. This simple technique applies to scenarios where there is disproportionate simulation 

duration between different OFDM configurations. It is shown to decrease total simulation time 

considerably. 

1.3 Organization of the thesis 

The rest of this dissertation is organized as follows:  

In Chapter 2 safety related considerations and traffic model formulation and analysis are discussed.  

Probabilities of success for the leading three repetition-based broadcast MAC protocols under hidden 



1. Introduction 

  6 

terminal conditions are derived.  We also present in this chapter the performance results and discussions on 

safety broadcast messaging under the effect of hidden terminals compared to the non-hidden scenarios.  

Chapter 3 introduces the three new MAC layer designs, namely PCCW, EPCCW and ePCCW.  The 

chapter starts with a brief literature review on repetition codes that are useful for working with and 

comparing to PCCW.  The design process of PCCW for the scope of vehicle safety messaging, 

implementation and behaviour of the PCCW protocol including behaviour description, and interoperation 

considerations are then covered.  We derive PCCW’s analytical equations and present the modified 

versions of PCCW to include the underlying repetition protocols.  EPCCW and ePCCW’s are then 

introduced and their analytical equations are derived.  Delay equations for all proposed protocol designs are 

also derived. Also, an illustration of the important technical aspects related to emergency scenario protocol 

is presented, which is crucial when it comes to our ePCCW protocol for emergency vehicles.  Simulation 

and analytical performance results of PCCW, EPCCW and ePCCW protocols reliability enhancements 

under different scenarios using the simulation model and analytical models are also presented.  Analytical 

and simulation results agree. 

Chapter 4 presents our MAC simulation design which also uses a precise PHY model that we also 

present in a later chapter of this dissertation.  Chapter 4 covers the simulation environment for PCCW, 

MAC, PHY, channel fading, channel interference, and mobility model assumptions, and details the 

respective interactions between each other with assistance of UML diagrams, essentially giving an 

explanation of our framework for testing vehicular safety messaging protocols. 

In Chapter 5 we start with a description of the baseband model of the conventional DSRC PHY design, 

and then we discuss the enhanced different PHY receiver designs for DSRC, after which they are compared 

with each other.  Specifically, a linear-decision demapper is compared with non-linear demapper with 

different decoders.  It is shown that the linear demapper generally outperforms the non-linear demapper.  

Also, the channel mobility model is described in this chapter to better shed light on the reasons why 

different receiver designs for DSRC are required.  The receiver design that uses frequency domain 

equalization to combat ICI is shown to outperform all the other designs, namely the conventional, Viterbi-

aided receiver designs. 

Chapter 6 describes important aspects of modelling the OFDM PHY.  Also, the proposed GUI and 

object oriented simulator environment for OFDM PHY communication system is presented.  More 

precisely, the chapter starts with a highlight of the simulation design overview.  Then the simulation 

environment overview is presented, which is followed by the descriptive Unified Modelling Language 

(UML) class diagrams for the simulator design.  Then, the relationship between the high level design and 

GUI is illustrated.  Finally, we propose using simulation partitioning for distributed and parallel simulation 

with an example case study to show the resulting improvement in simulation run-time for different OFDM 

PHY designs.  Sequence diagrams are used to highlight the flow between simulation processing units.  A 

thorough explanation of the distinctiveness of our proposed design is also discussed. 
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Chapter 7 covers the conclusion and future works.  Appendices A, B, and C contain the Elsevier and 

IEEE reprint permissions, list of publications, and the pseudo codes for the probability of success analytical 

equations for the 3 new MAC layer protocol designs, respectively. 
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Chapter 2 

A Quantitative Analysis of DSRC Repetition Based 

Broadcast Safety Messaging with Hidden Terminals 

Dedicated short range communications (DSRC) systems are currently being developed by the IEEE 

802.11p workgroup, for vehicle-to-vehicle and vehicle-to-roadside communications [1]. The IEEE 802.11p 

amendment to the IEEE 802.11 standard has recently been released [2].  DSRC are an important part of 

Intelligent Transportation Systems (ITS).  Although, their main reason for deployment is to provide 

significant road safety, they are also being considered for commercial purposes.  DSRC system’s medium 

access control (MAC) layer is based on IEEE 802.11 MAC, which uses carrier sensing medium 

access/collision avoidance (CSMA/CA) protocol [2].  Broadcast is widely used for safety messaging 

because it provides low latency, and is also proposed for highway safety communications [3].  Since, safety 

applications are very crucial, highway broadcast-based inter-vehicular safety applications are considered in 

this study.  

Some MAC protocols use RTS and CTS schemes in their design to lower the chance of packet 

collisions such as in [2] and [4].  Safety messages are short and comparable in length to that of RTS, 

creating a similar chance of RTS/CTS packets causing a collision as the safety message.  Additionally, 

safety messages such as environment hazards, position, direction and speed of the vehicles are usually 

broadcasted with frequency of 10-20 times per second [5].  Hence, if RTS are sent by a vehicle, the 

resulting flood of CTS packets in broadcast mode causes a flood of high collision probability.  Therefore, 

these kinds of protocols are inefficient for short safety messaging. A quantitative approach to evaluate the 

broadcast performance of the conventional IEEE 802.11 MAC DSRC system in a highway scenario was 

presented in [6].  The authors conclude that the designers of DSRC broadcast-based highway safety 

systems can shift their main focus on improving the probability of success performance as opposed to being 

too concerned with the delay study.  

Repetition-based protocols [6], [16] and [17] show an increase in probability of success relative to the 

conventional system, and meet the DSRC system requirements when tested under no hidden terminals 

scenarios.  The protocols in [16] and [17], are random-based repetition protocols.  These protocols are 

called Asynchronous p-Persistent Repetition or APR, Asynchronous Fixed Repetition or AFR, 
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Synchronous p-Persistent Repetition or SPR, and Synchronous Fixed Repetition or SFR.  Generally, the 

synchronous protocols were shown to outperform asynchronous protocols, with the SFR systems 

performing better than SPR systems.  Furthermore, they proposed a protocol that improved the 

performance of the AFR by adding a carrier sensing (CS) mechanism, which they call AFR-CS.  The 

authors in [6] proposed a repetition protocol that is based on Optical Orthogonal Codes (OOC), which they 

called Positive Orthogonal Codes (POC).  They have shown that POC outperforms SFR and SPR protocols.   

The hidden nodes problem is well known in vehicular ad-hoc networks.  Although, the hidden node area 

in broadcast is dramatically larger than that in unicast [15], in all the aforementioned repetition protocols, 

the authors do not take hidden nodes into account.  This is the key motivation of our study.  We examine 

the safety performance of repetition-based broadcast DSRC in a highway scenario when hidden nodes are 

taken into account.  In our work, we construct detailed mathematical models of the probability of success 

under hidden terminals condition, and quantitatively compare against non-hidden terminals condition.  

Furthermore, we show how different traffic models compare under repetition protocols. 

2.1 Safety Related Considerations and Traffic Model Formulation and 

Analysis 

In this section, a description of relevant DSRC safety related information is presented, and then the 

probability of having � interfering in-range terminals and ℎ interfering out of range hidden terminals is 

defined with respect to a transmitting user.  For calculating the probability of having � interfering 

terminals, and ℎ interfering hidden terminals, both binomial and Poisson traffic models are considered.  In 

this section, the probability of success of one of the repetition protocols in both binomial and Poisson 

traffic models are also compared. 

2.1.1 DSRC safety related considerations 

At 5.9 GHz licensed band, the DSRC system is divided into seven 10MHz channels.  One of these channels 

is restricted for communications of safety messages only [1].  A main purpose of DSRC is ensuring a high 

probability of delivery of critical safety of life broadcast safety messages.  Broadcast mode was improved 

by the 802.11p workgroup as an important part of the amendment to 802.11 protocol [1] and [7], as is 

evident by the introduction of faster connection setup for broadcast mode over that of 802.11.  Besides 

having faster connection time, RTS and CTS packets could be dropped in broadcast mode in order to 

minimize congestion that would be caused by one-to-many and many-to-one broadcast responses.   

In regards to the DSRC safety message, its payload size is relatively small yet variable, and also has a 

range in QoS requirements ranging from routine to critical safety of life [14].  Routine messages could 

include small changes in position, velocity or acceleration, while critical safety of life message could 

include event information such as emergency braking or airbag activation messages.  For these messages to 

be relevant and effective, they need to be received by other vehicles at low latency, and with high 

reliability, even under scenarios of high channel usage.  For a safety message to be effective, it makes sense 
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that it should be received and interpreted in less time than human reaction time.  Therefore, in order to 

greatly improve vehicular safety, the communication delay has been reported as not exceeding 

approximately 200 milliseconds (ms) [6].  If there are a large number of users transmitting at the same 

time, reliability of the message will decrease as a result of packet collisions.  It has been shown that the 

amount of degradation in reliability can be mitigated through repetition based broadcasting methods [6], 

[16] and [17]. 

2.1.2 Probability of having � interferers 

We define a maximum number of interferers named	�JKL, which is used in determining the total 

probability of success in Section 2.2.  Commonly utilized traffic models and assumptions as validated in 

[15] and [18] are used.  Hence, we assume a highway environment with vehicles placed exponentially 

along a one dimensional ad-hoc network, as seen in Figure 2.1, using a Poisson process with density of	: 

(vehicles per unit length).   

 

 

Figure 2.1 Hidden and in-range vehicle regions relative to center transmitter 

Average number of vehicles within transmission range of the transmitting vehicle (center transmitter in 

Figure 2.1) including itself is	� = : × �8�9, where	�8�9 is twice the transmission radius of a terminal.  

Hidden terminals are located outside the transmission range of the transmitting vehicle, but not exceeding �8�9 distance from the transmitting vehicle, as in Figure 2.1.  When hidden terminals are included,	< of 

them that could potentially interfere with the � users, where	< = 2 × : × �8�9 − �.  Furthermore, to 

focus on performance degradation due to packet collisions, in this study an ideal channel is assumed. 

2.1.3 Interferers for binomial transmission model 

For binomial distributed interferers, we have the user load �	 (packets/user/frame) which can be interpreted 

as the probability of a user transmitting during the frame.  For example, if � is 1, then the probability of 

each user sending is 100%, that is, each user is sending 1 packet per frame.  Hence, it can be seen that the 

probability of having � interferers is given by: 

PrPQRSJQKT(�	interferers) = 	Pr[ (�) = \�JKL� ] �J(1 − �),^_`	a,, for	� = 0	cd	�JKL, (2-1) 
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where �JKL goes to � − 1 trials because there are � − 1 maximum amount of interfering users under 

binomial model.   

Similarly, for ℎ interfering hidden terminals we have: 

PrPQRSJQKT(ℎ	hidden	terminals) = Pr[ (ℎ) = \ℎJKLℎ ] ��(1 − �)�^_`	a�, for	ℎ = 0	cd	ℎJKL, (2-2) 

where ℎJKL goes to < trials because there are a maximum of < hidden terminals in the hidden terminal 

region under binomial model. 

2.1.4 Interferers for Poisson transmission model 

For Poisson distributed interferers, the probability of finding � interferers depends on the mean number of 

interferers.  Hence, the probability of a user transmitting during a frame � to affect the expected value of 

number of interferers	7, is used.  Therefore, the expected number of in-range interferers with respect to the 

transmitting user is the frame load	� times the terminal density times the length of the in-range region less 

the transmitting user, and can be written as: 

	7, = � × : × �8�9 − 1 = �� − 1. (2-3) 

The probability of having � interferers in range of the transmitting user under Poisson distribution is:   

PrjSQkkSR(�	interferers) = Prl (�) = 7,,�! 8a#n = (�� − 1),�! 8a(loap), for	� = 0	to	�JKL. (2-4) 

Note that for Poisson, �JKL goes to ∞ because Poisson probability models assume an infinite number 

of trials.  It can be seen that as	� ≫ 7,, the probability added is negligible. 

Similarly, for hidden nodes, there is a mean number of 7� hidden terminals which is	7� =�(2 × : × �8�9 − �) = �<. The probability of having ℎ hidden terminals in range of the transmitting user 

under Poisson distribution is:  

PrjSQkkSR(ℎ	hidden	terminals) = Prl (ℎ) = 7��ℎ! 8a#s = (�<)�ℎ! 8a(lt) , for	ℎ = 0	to	ℎJKL. 
(2-5) 

Similarly, ℎJKL goes to ∞ because Poisson probability models assume an infinite number of trials, 

and it can be seen that as	ℎ ≫ 7�, the probability added is negligible. 

2.1.5 Validation of traffic model using Poisson under no-hidden nodes 

In this section, a comparison of binomial and Poisson traffic models under the assumption of no-hidden 

nodes is presented. Let � be the probability that a vehicle will have packets to transmit.  Figure 2 shows the 

probability of success for the SPR protocol under both binomial and Poisson traffic models and under 

various loads.  Although, the probability of success equations are not presented until the next section, the 

purpose of this plot is to show that under non-hidden node scenario our model is comparable to other 

papers that use binomial traffic model as well.  For this test, the vehicle density is fixed at : = 0.1 vehicles 
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per meter (i.e., 1 vehicle per 10 meters).  The difference between binomial and Poisson in Figure 2.2 is 

negligible which validates that the Poisson and binomial cases can be compared directly. 

 

Figure 2.2 Poisson and binomial traffic models with no hidden nodes 

2.2 Repetition Based Broadcast Models with Hidden Terminals 

As mentioned earlier, repetition-based protocols introduced in [6], [16] and [17] assumed that vehicles 

were clustering within the transmission range together, and hence it ignored the effect of hidden terminals 

on the probability of success.  This assumption is not made in our model and instead it takes collision of 

hidden node transmission into account.  We choose SPR, SFR and POC for our study, due to the reasons 

mentioned in Chapter 1.  

2.2.1 Probability of Success for Repetition Based Protocols with Hidden Terminals 

Probability of success is defined as the probability of having at least one transmission in a frame that does 

not collide.  A frame is divided into	H time-slots.  The decision on whether a user (or terminal) can transmit 

a safety message packet during a specific time slot depends on the repetition protocol.  When taking into 

account hidden nodes, both the interference from non-hidden terminals and the effect of interfering hidden 

terminals must be included.  Hence, the probability of success in a frame with � in-range terminals and < 

hidden terminals as	Pro,t(�) is denoted as:  

 Pro,t(�) = Pro (�) × Prt (�). (2-6) 

When the vehicle’s transmission success is not affected by hidden vehicles, the probability of success of 

the transmitting user is given by:  
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 Pro (�) = u Pr,,v(�) × Pr(�)J
,wx , 

(2-7) 

where Pr,,v(�) is the probability of success of the transmitting user given � interferers for a frame length 

of L time slots, Pr(�) is the probability of having � interferers which is dependent on the traffic model as 

shown in Section 2.1, and �JKL is the maximum number of interferers for the interference model.   

Likewise, for hidden terminals we have: 

 Prt (�) = u Pr�,v(�) × Pr(ℎ)�^_`
�wx , 

(2-8) 

where Pr�,v(�) is the probability of success of the transmitting user given ℎ hidden terminals for a frame 

length of H time slots.  Whereas, Pr		(ℎ) is the probability of having ℎ hidden terminals, shown in Section 

2.1; and ℎJKL is the maximum number of hidden terminals.  Hence, the expanded equation of the 

probability of success for the transmitting terminal in Equation (2-6) becomes: 

 Pro,t(�) = u Pr,,v(�) Pr(�),^_`
,wx × u Pr�,v(�) Pr(ℎ)

�^_`
�wx . 

(2-9) 

2.2.2 Probability of Success for SPR with Hidden Terminals 

SPR [16] works by repeating a packet within a frame a mean of � number of times.  This is accomplished 

over a frame of length H time slots by choosing to transmit in a slot or not via a random slot transmission 

determination with mean of	�/H.   

Let � be the event of slot success, where for a slot, the transmitting user must transmit, and	4 terminals 

must not transmit for the transmitting user to be successful.  For the entire frame success consisting of H 

independent time slots and � independent users, we need the probability of having one or more successful 

slot transmissions, which is equal to the inverse of H failures [6].   

 Pry,v,zj{(�) = Pr(�p ∪ �} ∪ …∪ �v) 
= (�̅)v������ = 1 − (1 − �)v = 1 − �1 − �H \1 − �H],�v , (2-10) 

where S is the frame success, and �v is the H�� slot success. 

Similarly, the equation for the probability of frame success for SPR due to ℎ hidden terminals 

interfering is obtained as: 

 Pr�,v,zj{(�) = 1 − �1 − �H \1 − �H]��v . (2-11) 

Substituting Equations (2-4), (2-5), (2-10) and (2-11) into Equation (2-9), we derive the total probability 

of success for SPR with hidden terminals, and under Poisson distributed terminals we have:  
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Pro,t,zj{(�) = u �1 − �1 − �H \1 − �H],�v� �(�8�9 × � − 1),�! 8a(loap)�,^_`
Jwx

× u �1 − �1 − �H \1 − �H]��v� �(�<)�ℎ! 8a(lt)��^_`
�wx . 

(2-12) 

2.2.3 Probability of Success for SFR with Hidden Terminals 

SFR [16] works by repeating a packet in random time slot positions exactly � times out of H total time slots 

in a frame.  The probability of frame success is different from SPR because of the dependency between 

time slots that exist in SFR.   

The probability of an interfering terminal transmitting zero times in the transmitting user’s x successes 

is determined by the hyper geometric equation for dependent slots and independent � interfering users as 

follows: 

 �&va�� )&�x)&v�) �, = �&va�� )&v�) �,. 
(2-13) 

Therefore, as shown in [6], the probability of having one or more successes out of � repetitions 

without hidden nodes taken into account is: 

Pr,,v,z�{(�) = Pr(�p ∪ �} ∪ …∪ ��) = u(−1)��p \��] �&va�� )&v�) �,�
�wp , 

(2-14) 

where �� is the ��� slot success. 

Similarly, the equation for the probability of frame success for SFR with ℎ hidden terminal interferers 

can be obtained as: 

 Pr�,v,z�{(�) = u(−1)��p \��] �&va�� )&v�) ���
�wp . 

(2-15) 

Once again, substituting Equations (2-4), (2-5), (2-14), and (2-15) into Equation (2-9), we obtain 

the total probability of success for SFR due to hidden terminals, and under Poisson distributed terminals we 

have:  

Pro,t,z�{(�) = u �u(−1)��p \��] �&va�� )&v�) �,�
�wp � �(�� − 1),�! 8a(loap)�,^_`

,wx
× u �u(−1)��p \��] �&va�� )&v�) ���

�wp � �(�<)�ℎ! 8a(lt)��^_`
�wx . 

(2-16) 
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2.2.4 Probability of Success for POC with Hidden Terminals 

POC works by using � repetitions that are arranged in a predetermined set of orthogonal code patterns [6].  

These patterns are derived from code division multiple access (CDMA) based optical orthogonal codes 

(OOC), which provide a minimum overlap between sets of code words.  The non-hidden terminal version 

of the probability of transmitting user success for POC as defined in [6] is: 

 Pr,,v,j��(�) = u(−1)��p \��] (1 − ���),�
�wp , 

(2-17) 

where �� is the transmission probability for the POC repetition protocol with maximum of λ overlapping 

transmissions between the transmitting user’s code and any other users’ code pattern.  As defined in [6], �� 

is	�� = � ‖�‖⁄ , where � = va��a�, and ‖�‖ = �v� �vap�ap⋯�va�p ��� is the total number of codewords (�	⋅	� 
represent the floor operation).   

Similarly, the equation of the probability of frame success for POC protocol taking only hidden 

terminals into account is obtained as:  

 Pr�,v,j��(�) = u(−1)��p \��] (1 − ���	)��
�wp . 

(2-18) 

Therefore, substituting Equations (2-4), (2-5), (2-17), and (2-18) into Equation (2-9) gives the total 

probability of success for SFR with hidden terminals, and under Poisson distributed terminals as follows:   

 Pro,t,j��(�) = u �u(−1)��p \��] (1 − ��p	),�
�wp � �(�� − 1),�! 8a(loap)�,^_`

,wx
× u �u(−1)��p \��] (1 − ��p	)��

�wp � �(�<)�ℎ! 8a(lt)��^_`
�wx . 

(2-19) 

2.2.5 Delay Considerations for Repetition Protocols 

Average delay is defined as the expected time slot count at which the transmitting user’s packet is first 

received successfully, and is defined as 5? = ∑ 5?(�),^_`	,wx Pr(�), where	5?(�) is the average delay of a 

transmission being successfully received having m interfering users.  This depends on the probability of 

success of a given repetition protocol.  The delay without hidden terminals is derived in [6].  For this study, 

the delay is modeled the same as in [6], except the probability of success is replaced with the one with 

hidden terminals derived in this study. 

2.3 Performance Results and Discussions  

The protocols of SPR, SFR, and POC are tested in an idealized channel with Poisson traffic model with no 

hidden nodes versus the same channel with hidden nodes included.		H −	time slots is chosen to be 128.  The 
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safety communication range is set to 300 meters.  We choose three common traffic density scenarios to test 

the protocols, namely :	 = 	0.1	(vehicles/meter) to represent highly congested amount of vehicles, :	 = 	0.06 for medium, and : = 0.03 for low vehicle density scenarios.  In order to show the trend of 

average load, we show condition of	� = 0.3, which translates to a 30% transmission probability, and also 

compare to load at	� = 1.   

 

Figure 2.3 Probability of success for SPR protocol at load � = 0.3 

 

Figure 2.4 Probability of success for SFR protocol at load � = 0.3 
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Figure 2.5 Probability of success for POC protocol at load � = 0.3 

From Figures 2.3-2.5, we can see that for all three repetition protocols, and for hidden node scenarios, 

the optimum probability of success occurs at around 4 or 5 repetitions for high load	: = 0.1, and between 5 

and 7 repetitions for medium load conditions.  The effect of hidden nodes on the performance of this 

repetition broadcast is significant at high vehicle density.  Also, at the lower densities (: = 0.03), the 

performance is effected marginally.  However, it can be seen that more repetitions are required under 

hidden terminal conditions to obtain the same reliability obtained with less amount of repetitions with no 

hidden terminals.   

Critical safety of life transmissions rely on a 0.99 probability of success QoS [19].  Therefore, the 

probability of success reduction due to hidden nodes makes the critical safety QoS requirement 

unattainable except at very low vehicle densities.  Other more routine safety applications also exist, which 

are not as stringent as 99%, each with their own set of maximum allowances for delay and reliability.  

Hence, using our model and these results, designers and researchers can evaluate their applications and 

make comparisons. 

In Figure 2.6, it can be seen that the delays of the users in timeslots are not affected significantly by 

hidden terminals at load	� = 0.3.  In order to check delay requirement satisfaction, translation of slot 

durations to actual DSRC time is needed.  Assuming that safety related applications require a delay less 

than that of human reaction time (not including decision time), and as defined earlier, the latency is 

constrained to be less than ~200ms. According to the standard [7] depending on modulation scheme and 

code rate, the data rate ranges from 3 Mbps to 27 Mbps.  To tax the system we assume a relatively large 

average payload of 400 bytes for a safety message, and use the 3Mbps data rate for calculating maximum 

delay.  It is found that the 50 timeslot maximum seen in Figure 2.6 translates to	£xx×¤	(PQ�k/kTS�)¥×px¦(PQ�k/k) ×
50(slots) = 0.053s < 0.200s.  Therefore, the delay requirement is satisfied at low load of	� = 0.3 
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regardless of the vehicle density.  This latency will obviously be less if the data rate is increased and the 

average payload is reduced to less extreme values. 

 

Figure 2.6 Delay plots for SPR, SFR, and POC under load � = 0.3 

 

Figure 2.7 Probability of success for POC at load � = 1 
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Figure 2.8 Delay plot for POC at load � = 1 

Maximum load condition is shown in Figures 2.7 and 2.8 for probability of success and delay, 

respectively.  POC is used for these plots because it performed the best in terms of probability of success. 

Figure 2.7 shows a very detrimental outcome due to hidden terminals, an approximately 50-70% reduction 

in probability of success.  Figure 2.8 shows that delay becomes unbounded at high load and high vehicle 

density under hidden terminal conditions.  From Figure 2.7, the optimum probability of success is shown to 

be at 	�	 = 2 or 3.  From Figure 2.8, and at these optimum repetition values, the delay corresponds to a 

similar conclusion as from Figure 2.6.  Hence the delay requirements are met.  However, as the repetitions 

increase, the unbounded delay leads to unacceptable latency.   
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Chapter 3 New PCCW, EPCCW and ePCCW MAC Designs for Enhanced 

Vehicular Reliability Safety Messaging 

Chapter 3 

New PCCW, EPCCW and ePCCW MAC Designs for 

Enhanced Vehicular Reliability Safety Messaging 

3.1 Introduction 

This chapter introduces the design background and concepts of passive cooperative collision warning 

(PCCW) for improving repetition based vehicular broadcast safety MAC reliability performance.  The 

PCCW protocol’s purpose is to inform other user nodes of potential collisions of repetitions. The protocol 

is passive as it does not incur additional transmissions to send this information, and instead appends a small 

header payload to packets that have been pre-determined by an underlying repetition protocol.  This header 

payload incurs a slightly increased latency per slot, but as we will show, is not detrimental.  In addition an 

improved form of PCCW is also proposed and analysed for further improvement, named enhanced PCCW 

(EPCCW), which uses the ability of the DSRC PHY in reducing the chance of collision in certain 

scenarios.  It is important for the protocols not to incur additional data packet transmission to achieve an 

overall reduction of collisions.  Importantly, we chose to design PCCW to make most of its decisions in 

each node, with error tolerance allowed so that node decisions will not adversely affect the other users.  

PCCW works on top of an existing repetition protocol to pass warning information to surrounding users 

of potential collisions.  By having users warn each other of transmissions and collisions, collectively packet 

collisions can be reduced by selective intentional transmission back-off during warned transmission slots.  

As previously mentioned, it is a passive warning system because it does not incur additional packet 

transmissions in order to warn in range users of impending transmission, but instead uses existing 

transmissions themselves to carry the warning information as a header payload.  Distinctively, the PCCW 

header payload is processed in a distributed fashion at each node without requiring transmission of results 

to one another (the protocol tolerates some differences between node information, as the protocol is 

imperfectly distributed as in [20]).   

The amount of vehicles in a region affects the reliability of a protocol because increasing the number of 

users in range of each other correspondingly increases the chance of collision from competing safety 

broadcasts.  The interference range of messages magnifies the vehicle density’s effect on the number of 
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collisions and is modelled in this dissertation according to [4] as described in the next chapter.  Interference 

also depends on power of transmission, which we assume is set to achieve the message range at the SNR at 

set data rate.  The amount of packet collisions, or potential collisions for the case of PCCW also depend on 

other factors including the message lifetime, PHY modulation scheme, and coding rate used.   

Message security is required to prevent malicious activity and ensure anonymity and privacy.  This 

security can be applied before the MAC layer as PCCW does not add any per vehicle identifiable 

information that might be of concern, and hence is not discussed in this dissertation.   

Delay of a safety message is a critical issue that must be taken into consideration when designing a 

vehicular safety message protocol.  If the delay of a safety message is too long, some applications 

interpreting the messages may not operate properly and lose effectiveness.  This happens if the delay 

exceeds the minimum reaction time of a human [21], because it renders any vehicle safety system too slow 

to be of assistance to the driver.  The human reaction time has been listed as being between 500-1200 ms 

[21], and hence for our analysis, we invalidate implementations if they go above this limit.  In repetition 

protocols specifically, as the packet size increases, so too does the average successful reception delay on 

the repetition system used because the frame slots increase.  Also, a factor in delay for repetition protocols 

is the probability of success, that is, the average delay is inversely proportional to the probability of 

success.  That means increasing the probability of success of a protocol effectively lowers its average 

delay.  This additionally validates PCCW’s goal of increasing probability of success.   

PCCW utilizes the benefit of being a distributed protocol in that each node has its own view of the 

surrounding environment, and hence does not need to continuously pass this information around.  Hence, 

the choice for the name passive in PCCW, and it does not have a completely accurate view of all nodes 

accessing the medium.  PCCW does not incur additional packet transmissions, and instead piggy backs on 

pre-determined packet transmissions.   

3.2 Related Work 

From the literature related to QoS for safety communications, protocols such as HIPERLAN/1 [22] have 

been designed to reduce reception delay in communications by categorizing messages according to QoS for 

priority messaging.  The proposal [23] extended Distributed Coordination Function (EDCF) was also 

presented to reduce frame size for packets that are of high quality of service as a way to increase relative 

probability of success through a smaller potential collision period. Yin et. al [24] performed accurate 

modelling of the DSRC PHY, and showed that the 802.11 DCF required improvement to achieve 

satisfactory performance on both latency and throughput.  Our proposed design of PCCW offers improved 

latency indirectly by increasing probability of reception success, directly reducing average delay.  

Additionally the literature, [5] presents a repetition based medium access control protocol based on 802.11 

DCF, incorporating variations of SFR and SPR protocols.  Here Qing et. al presents the idea of using a 

Cooperative Active Safety System (CASS) as a theoretical safety application architecture for the purpose of 

modelling constrains when designing MAC protocols for vehicular safety messaging.  We also adopt a 
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similar strategy for our design in order to stay within design criteria specified as part of our assumptions.  

For their repetition based safety messaging protocol design, a dependency on number of rebroadcasts, 

transmission power, modulation scheme, coding scheme, and vehicular traffic volumes is identified.  

However we choose to model the PHY layer accurately according to our OFDM PHY model simulator 

design in [11], to precisely represent effects of coding, modulation, and vehicular power for each repetition, 

as described in the next chapter (Chapter 4).  Also, in the literature related to repetition protocols is that of 

Positive Orthogonal Codes (POC) [6], which presents the idea of assigning repetition slots to users based 

on geographic location from a subset of topology-transparent orthogonal codes.  This contrasts from Slotted 

Aloha, SPR, and SFR repetition protocols because it uses a pseudo random slot assignment scheme instead 

of the random-based transmission protocols.  This design has been shown to outperform the SPR and SFR 

protocols in many scenarios, hence we chose to test PCCW running on top of POC, SPR, and SFR 

protocols in our analytical and simulation performance testing.  We will show in this dissertation how the 

proposed PCCW protocol can work on top of other repetition protocols such as the ones mentioned above 

for potential improvement in reliability and delay performance. 

3.3 Safety Related Consideration and Emergency Vehicle Communications 

DSRC safety message has a relatively small but variable payload size, with a QoS range from routine to 

critical safety of life [17].  Routine messages may include small changes in velocity or acceleration and 

position.  Critical safety of life messages may include information that conveys for example emergency 

braking messages, airbag deployment messages, or other imminent danger warnings.  All of these messages 

need to be received by other vehicles at low latency for it to be effective, and with high reliability, even 

under scenarios of high channel usage.  It is reported that in order to greatly improve vehicular safety, the 

end-to-end communication delay should not exceed approximately 200 milliseconds (ms).  This is because 

if the delay is more than this, it would be slower than human reaction time.  Repetition-based broadcasting 

protocols, has shown to considerably mitigate the amount of degradation caused during a large number of 

users transmitting at the same time.  It is prudent to attempt to gain more reliability out of repetition 

protocols by further avoiding transmission collisions of repetitions as our PCCW protocol does.  

Packet synchronization of the repetition protocol is helpful because it reduces the chance of having 

overlapping packet collisions.  In order for multiple vehicles to be synchronized, they have to maintain an 

accurate clock that is identical, or near identical to each other clock.  This can be achieved using GPS 

which provides time measurement accurate within 10 and 20ns [25].  Alternatively, a time pulse system 

could be implemented to allow for regional based synchronization using an FM radio pulse [10].   

For safety messaging transport requirements, we have an idea of what kind of information will be useful 

for vehicle-to-vehicle (v2v) transmissions.  Although messages can occur from roadside units as well, in 

this dissertation we focus on v2v communications only, but PCCW could be used for infrastructure to 

vehicle communications as well if the applications required high reliability, low delay or under high load. 
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Table 3-1 provides important parameters we assume for constructing the analytical and simulation models 

for evaluating performance of the proposed PCCW protocol vs. other protocols.   

Table 3-1: Data traffic parameter ranges 

Parameter Value 

Message rate 

(messages/msec) 
1/50 – 1/500 

Packet Payload (Bytes) 100 to 400 

Communication Range 

(meters) 
50 to 300 

Average Inter-Vehicular 

density (meters) 
10 (jammed) to 30 

Lane number per road 2 to 8 

Maximum Latency 0.2 s 

3.4 Repetition Protocols for Safety Messages 

For the safety messages to be received by users with increased reliability, repetition schemes have been 

suggested.  Since our protocol’s main aim is to improve the probability of success for repetition schemes, 

the following descriptions will aid in the understanding of how our protocol is unique with respect to other 

designs.  Repetition-based MAC layer protocols’ goal is to decide which packets to repeat, which timeslots, 

and how frequently in order to achieve QoS goals of the applications.   

3.4.1 SFR, SPR, POC Repetition Protocols 

Synchronous p-Persistent Repetition (SPR) [5], Synchronous Fixed Repetition (SFR) [5] and Positive 

Orthogonal Codes (POC) [6] are three leading repetition protocols for safety communication.  SPR works 

by choosing which slots to transmit based on a random likelihood equal to the average desired repetitions 

over the number of slots in the frame, while SFR chooses a fixed number of repetitions at which to re-

transmit a packet in each MAC frame.  Essentially, SFR will have exactly � repetitions, while SPR will not 

necessarily have � average repetitions.  POC repetition codes use the concept of having partially orthogonal 

codes used to specify slot positions of the repetitions.  Each node chooses a different code from a look up 

table (LUT) so as to try and reduce repetitions of other users.  In our experience of implementing POC, it is 

difficult to find a very large subset of LUTs necessary for optimum POC performance.  This is because of 

the complexity of the search function for finding optimum codes.  It was shown that POC is generally 

superior to both SPR and SFR, while SFR is superior to that of SPR.  The detailed analytical equations and 

simulation results for these protocols can be found in [5] [6] and [8].  However, we include in this 

dissertation the final probabilities of success equations, given in [6], for all three protocols as they will be 

used in our initial “window” success in our proposed protocol design, as will be explained later. 

The probability with at least one successful transmission for SPR [6] is: 

 ��v,�,,6©�(�) = 1 − �1 − �H \1 − �H],�v , (3-1) 

where	� is the number of interfering users, and	H Is the amount of slots in a frame. 
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The probability with at least one successful transmission for SFR [6] is: 

 ��v,�,,,6*�(�) = u(−1)��p \�,+�� ]�nª«
�wp ¬\ va��nª«]\ v�nª«]

, , 
(3-2) 

Finally, the probability with at least one successful transmission for POC [6] is: 

 ��y,v,©®¯(�) = u(−1)��p \�,+�� ] (1 − ���),�nª«
�wp , 

(3-3) 

where �� is the transmission probability for the POC repetition protocol with maximum of t overlapping 

transmissions between the transmitting user’s code and any other users’ code pattern.  As defined in [6], �� 
is	�� = � ‖�‖⁄ , where � = va��a�, and ‖�‖ = �v� �vap�ap⋯�va��a���� is the total number of codewords (�	⋅	� 
represent the floor operation).   

3.5 Proposed New PCCW Design for Safety Messaging  

Passive Cooperative Collision Warning (PCCW) protocol can work on top of existing repetition-based 

protocols for serving as a passive collision warning mechanism in the MAC layer for reducing the number 

of node collisions.  It is important to note that PCCW can also be adapted for other protocols.  The protocol 

cooperatively uses distributed storage of potential future collisions, where each node imperfectly decides 

when to transmit or omit packet repetitions, without adding additional warning packets into the channel 

(hence, passive), and appends specialized header payloads to predetermined safety message transmissions.  

PCCW benefits from the message repetitions found in the underlying repetition-based protocols, and have 

shown to considerably improve reliability for all repetition-based protocols, especially at high loads.  

Additionally, it is shown to have a decreased average timeslots delay that is well within acceptable delay 

threshold.  Its inherent increased success is due to the fact that it does not increase packet repetitions and 

includes warning messages in pre-planned packet repetitions.   

In its basic form, PCCW works by expanding the header by adding warning message containing the 

location of future packet repetitions, which result in nodes either omitting repetitions, or deciding to 

transmit, based on a random function deterministically.  Specifically, repetitions will be omitted if warnings 

have been detected, bringing the node’s state for that slot into CW state, and the result of a randomized 

probability function with probability inversely proportional to the number of received warnings returns 

false.  Table 3-2 provides a description of the PCCW states shown in Figure 3.1. 
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Figure 3.1 PCCW state machine 

Table 3-2: PCCW states 

State State Name Description 

NC No Collision Default state that has no collision information available for the node. 

TI Transmission Informed 
Slots are set to this state when no warnings have been heard from 

other users, but a warning has been attempted by the slot’s host. 

CP Collision potential 
Slots are set to this state when warnings have been heard from other 

users, but the host user has not attempted a warning. 

CW Collision Warned 
Slots are set to this state when warnings have been heard from other 

users, and the host user has warned about this slot. 

CP0 
Collision potential of current 

slot 

Slots are set to this state only when they are the current state next for 

transmission into the PHY, and the previous state was CP.  This will 

result in CP0 back-off. 

CW0 
Collision warning for current 

slot 

Slots are set to this state only when they are the current state next for 

transmission into the PHY, and the previous state was CW.  This will 

result in CW0 operation. 

The uniqueness of our protocol is how the warning messages are generated and processed by PCCW as 

a whole.  PCCW is a non-greedy protocol that acts passively to correct some errors, instead of attempting 

to fix all errors.  This is facilitated by nodes being aware of other nodes’ transmission intentions.  The 

warnings are interpreted by the PCCW protocol to change state according to Figure 3.1, for use in inferring 

an optimal decision on how to transmit based on the available information.  Every node has a state machine 

for each timeslot in the frame in which it is intending to have a repetition.  The states operate and change 

based on comparing incoming warnings from all nodes, interpreting the number of warning users per slot, 

taking into account the node’s intended action for each slot, as well as the warning status of the node’s past 

transmissions. We will illustrate a simple scenario between two users.  If user A broadcasts a transmission 
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that is received by user B, warning of user A’s future transmissions at a slot that is 10 slots in the future, the 

receiving user B marks that slot as a CP slot.  User A marks that same slot as being in the TI state because 

it has informed of a transmission.  If user B has its own transmission in that slot, but has not warned for that 

slot, it will remain in CP state for that slot until that slot becomes the current slot set for transmission, 

where CP0 back-off then occurs.  Contrastingly, if user B was able to warn of its transmission before user 

A transmitted its warning, user B would have already had that state set to TI mode, for which user B’s slot 

would transition to CW state on receiving a warning from user A.  Likely user A’s slot would also 

transition from CP state to the CW state.  Both users’ states for that slot will become the CW0 state when 

that slot becomes the current slot set for transmission.   The CW0 state activates deterministic transmission 

based on the number of users that have successfully warned, and attempts to distribute success probability 

fairly between the users that are in that state.  This state’s behaviour is described in detail later in this 

chapter, and its mathematical model will also be derived and presented.  

Of course the above scenario is simplified as it assumes that packets were successfully received by the 

users.  For example, in the second scenario where both users warned each other, user B’s first transmission 

could have been blocked from user A by another user C that is hidden to user B.  Here again, user B sets 

the state for the slot it is warning about from NC to TI, because it sent out a warning.  In this case, when 

user A warns of its intention to transmit at the future slot (i.e. the 10th slot from time of user A’s warning, 

that user B now failed to warn for), user A will transition that slot from state NC to TI state, while user B 

will transition from TI to CW state.  Hence, when that slot occurs, user A will transmit normally, while user 

B will transmit according to CW0.  This still results in a potential success for user A, due to the nature of 

CW0 state operation.    

We categorize the users’ behaviour based on the situations they may encounter as being either an alpha 

(.), beta (/), and gamma (0) users, for use in PCCW analytical modelling.  Where . users are interpreted 

as users that successfully warned of transmission, / users attempted to warn of their transmission but failed 

unknowingly, and 0 users for users that have not warned previously, and will only transmit in a slot if they 

do not hear a warning.   Both . and / users will either transmit from TI state, or enter CW0 state from CW, 

while 0 users will either transmit from TI or enter CP0 backoff from CP state. 

3.5.1 State Entry Conditions  

In Figure 3.2, a UML activity diagram is used to illustrate basic functionality of a slot processing.  The 

main decision branches are based on whether the user is transmitting in the slot, broadcasted a warning 

payload in the past for the slot, and also is based on whether a user has been warned by other users of 

potential collisions in the slot.  Each slot will enter the states of TI, CP, CW, or NC states, and from there 

will be able to either transmit directly, or enter CP0 or CW0 states for further processing based on available 

information.  The CW0 state uses a transmission determination function that is calibrated according to 

equations derived in this chapter, from the number of users that have warned about the slot in question.  

The function allows transmissions at a probability that optimizes the probability of success for all users that 
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have succeeded warnings. Part of the transmission determination function must use a random seed that is 

unique to the particular node.  This is required so that each user’s determination function does not operate 

identically, as this would result in identical outcomes.  So instead each user that enters CW0 has a fair 

chance of success in the slot.  One of the beneficial results that this function allows is that even if a user 

failed in their actual warning, they still have a chance of succeeding in that slot transmission with at least 2 

other simultaneous users, but their chance of transmitting is less than that of the users that succeeded in 

warning for the slot.  The CP0 back-off allows for users that were able to warn in the slot transmission to 

succeed where normally a collision would occur.   

The state entry decisions can be represented according to three control signals for deciding the state 

flow, namely iWarned (iW), iHeardWarning (iHW), and isCurrentSlot (iCS).  The signal iW is triggered for 

a slot when its upcoming transmission has been warned about through a sent packet at a different slot.   

 

Figure 3.2 PCCW activity drawing 

The signal iHW is triggered for a slot when the MAC receiver receives a PCCW payload attached to a 

packet that indicates that another user intends to transmit in that slot.  Finally, the iCS signal is triggered 

when a slot is ready for transmission, as triggered by the repetition protocol detected by PCCW.   These 

signals are directly related to state changes as represented in Table 3-3. Also important to observe is the 
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control of sending and receiving of a user/node’s MAC transmissions using the PCCW transmission control 

state machine as shown in Figure 3.3.  Here the sending of packets only occur when iCS is 1, and during a 

transmission triggers iW as 1 for upcoming slots that have been warned.  Also, from the MAC Receiver 

connected to the DSRC PHY, successful reception of warnings from other users can be processed 

triggering iHW for applicable slots, before sending the packet to the upper MAC.   

We interpret these state machine actions analytically in the next section.   

Table 3-3: PCCW state table 

Input1 iWarned (iW) 
Input2 iHeard-Warning 

(iHW) 

IsCurrentSlot 

(ICS) 
Present Next 

0 0 0 NC NC 

0 1 0 NC CP 

1 0 0 NC TI 

1 1 0 NC CW 

X (0) X (0) 1 NC TX 

0 X (1) 0 CP CP 

1 X (1) 0 CP CW 

X (0) X (1) 1 CP CP0 

X (1) 0 0 TI TI 

X (1) 1 0 TI CW 

X (1) X (0) 1 TI TX 

1 1 0 CW CW 

1 1 1 CW CW0 

X X X TX NC 

X X X CW0 NC 

X X X CP0 NC 

 

 

Figure 3.3 Single node PCCW transmission control state machine 
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3.5.2 PCCW Analytical Analysis  

In order to calculate the probability of success for PCCW, we need its probability of entering each CP0 or 

CW0 states (shown in Figure 3.3), because these states contributes to success that would not normally 

occur in the regular underlying repetition protocol.  In other words, we need to take these states into 

account because they offer corrections and preventions of collisions that would otherwise result in 

broadcast failures.   

Previously, we introduced the three different types of users that a vehicular system may encounter.  We 

will further discuss it in this section in order to clarify their roles mathematically.  The probability of 

success in a given slot is determined by the ratio of alpha, beta and gamma users, and is composed of 

transmission load (�) and probability of success with event	� (Pr(�)).  Alpha (.) users are the users that 

have successfully warned about their future transmission during their “present” transmission.  Beta (/) 

users are the users that “thought” that they have successfully warned, however their transmission resulted 

in a collision and failed to warn about their future transmission.  Finally the gamma (0) users are the 

remaining users who “know” that they haven’t warned, and that occurs when users don’t transmit during a 

frame.  Figure 3.4 shows the relationship of the probability of each node being categorized as a particular 

user type, either	.,	/ or	0.   

 

Figure 3.4 User relationship 

In Figure 3.4,	� is the transmission load or probability of transmission and � is slot success probability 

assuming normal operation. The probability of having	., /	and	0 users can be written as	�# = � ×�=,	�$ = � × (1 − �=), and	�% = 1 − �, respectively.  Whereas,		�= is the probability of “window” frame 

success and is used as “window” frame warning in PCCW protocol.  PCCW’s initial “window” frame 

warning comes from the underlying repetition protocol, hence the initial probability of “window” frame 

success,		�= is one of the repetition-based probability of success of Equations (3-1), (3-2) and (3-3).  

However, after that initial frame, the subsequent success is based on the PCCW protocol.   

In analytical analysis of PCCW, it is necessary to obtain	�= as	� recursive subsequent window 

successes, as follows: 

 ∀	1 < � < �,+�: �= = Pr&�©¯¯=(�)) = Pr&�©¯¯=(� − 1)), 
(3-4) 

´		�µ = 1 − � 
¶ 	�+ = � × �= 

· 	�¸ = � × (1 − �=	) 
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where ∀ means “for all”, hence Equation (3-4) is for all � greater than 1 and less than the maximum 

number of recursions	(�,+�), the probability of success for PCCW is recursively related to itself.  This can 

also be seen in pseudo code in the Appendix.   

Assuming the desired user is transmitting a message, the probability of the overall PCCW with at least 

one successful transmission with a defined traffic model for safety vehicles can be written as:  

 ��(�©¯¯=) = 	 u u ��, (�©¯¯=)oap
, �(; = �),�nª«

�wp  
(3-5) 

where, � is the random variable denoting the number of interfering users, Pr,(�©¯¯=) is the probability of 

PCCW’s success of the event �	given that there are � interfering users, and � is the total amount of users.  

For a given transmitter/receiver pair, and according to [5], a good approximation for	� when the 

interference range is much larger than the lane is calculated as: 

 � = 2 × �′′;8c8��	�8�	G8ℎ4º�8 × �»��8�	dF	H��8�, 
(3-6) 

where meters per vehicle is the reciprocal of vehicle traffic density, and		�′′ is the interference range.  In 

this dissertation, the interference range is slightly different in that it is calculated to accurately model the 

physical layer taking into account not only hidden nodes, but also secondary interferer used for the passive 

feedback system.   

Whereas,	�(; = �) in Equation (3-5) is the probability of having � interfering users and it depends 

on the traffic model.  For Binomially distributed traffic, we define it as: 

 ��l,,,o(; = �) = �� − 1� � �,(1 − �)oa,ap, 
(3-7) 

where � is the probability of transmission, and � is the number of mobile interferers.  For Poisson 

distributed traffic, we define it as: 

 ��l,,,o(; = �) = 8a,�¼ (���)B�! , 
(3-8) 

where	�	and	� are the rate of message generation and lifetime of a message, or the time duration of a 

frame, respectively; while � is the number of messages generated.  Each MAC frame is defined by a useful 

life	(�), and that useful life is separated into timeslots	(H), where the amount of slots depends on the packet 

size, useful life, and data rate, as:  

 H = � × 5�c�	��c8��º
8c	�4½8 , 
(3-9) 

As previously mentioned, we need the PCCW’s probability of entering each CP0 or CW0 states to 

determine its success.  Hence, the probability of PCCW’s success given that there are � interfering users is 

defined as: 
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  ��,(�©¯¯=) = ∑ ��,,%(�?�+�-w¯©x) × ∑ ���,,,#,%(�?�+�-w¯=x),a%#wx,%wx . 
(3-10) 

The term ∑ Pr,,γ(�?�+�-w¯©x),%wx  is the probability of the desired user due to other user’s success being 

in CP0 state, and is mainly due to γ users, as they are the only users that “know” that they have not 

transmitted during a frame, which I turn mean that they have not warned other users.  It is defined as: 

 u ��,,%(�?�+�-w¯©x),
%wx =	u��0 � ×	&�µ)% ×	&1 − �µ),a%,

%wx , 
(3-11) 

where p¿ is the probability of having gamma users as in Figure 3.4 (p¿ = 1 − �). 
We now derive the desired user’s success being in the CW0 state, namely	∑ Pr,,#,%(�?�+�-w¯=x),a%#wx  

seen in Equation (3-10).  As noted earlier, the 0 users either transmit or they do not, however the remaining 

α and / users have to “fairly compete” for a slot.  The α users go up to	� − 0, while the remaining users, 

the	/ users, which are users that were not heard by others, while they “think” that they have been heard is 

fixed to	/ = � − 0 − ., which obviously depend on the values of the 0 and . users during the all 

combination calculations.  Therefore, we define the probability of having	. users,	Pr,,#,%(À = .), having �,., and	0 users in the system as follows: 

 ��,,#,%(À = .) = 	 \� − 0. ] (	�#)#(1 − 	�#),a%a# , 
(3-12) 

where, �# is the probability of having alpha users in a particular frame, which depends on the probability of 

previous window frame success	(�=), derived in Equation (3-4), and the probability of packet 

transmission	(�) in that previous frame, that is	�# = � × �=. 

Again, assuming the desired user is transmitting a message, their success probability when in CW0 state 

requires the calculations of having alpha users in a frame, and the probabilities of the desired user’s slot 

success being an ., /	d�	0 users, while having all the “other” users compete for those same slots in the 

frame.  It is defined as follows: 

 u ���,,,#,%(�?�+�-w¯=x),a%
.wx = u Á ��,,#,%(À = .),a%

#wx× ���'w#	× ��#,$,%(�'w#)	�ÂKJÃ� +	��'w$	× ��#,$,%&�'w$)	�ÂKJÃ�	+ ��'w%	× ��#,$,%&�'w%)	�ÂKJÃ��Å, 
(3-13) 

where	Pr,,#,%(À = .) is given in Equation (3-12), and 	�5=. is the probability of having . users in the 

frame with respect to their transmissions.  In this case, the desired user can either be an	., /	or	0 user, that 

is,	�5=. = 	�# = � × �=, �5=/ = 	�$ = � × (1 − �=)	and	�5=0 = 	�% = (1 − �), as seen in Figure 3.4. 



3. New PCCW, EPCCW and ePCCW MAC Designs for Enhanced Vehicular Reliability Safety Messaging 

  32 

The terms Pr
α,β,γ(�'w#)�ÂKJÃ, Prα,β,γ&�'w$)�ÂKJÃ, and Pr

α,β,γ&�'w%)�ÂKJÃ	are the probabilities of the 

desired user’s success in a transmission slot of that frame having all possible combinations of the “other” 

remaining users competing for the same slot alongside with the desired user	5 being an ., / or 0 user 

respectively.  In its general form, it is derived as:  

 Pr�,#,$,%&�',()*�+,- = 1 − �1 − Pr#,$,%&�',()�� . (3-14) 

Note that the variable Æ is used as an index to differentiate between the different users.  We define	Æ =0, Æ = 1, and	Æ = 2 to represent	., / and 0 users respectively.  Additionally, the individual slot successes 

are defined, also in general form as: 

 ��#,$,%&�',() = u��9	 ×u��� ×u��� × �',( × &1 − �+,()+ × &1 − �¸,()¸ × &1 − �µ,()µ,$
¸wx

#
+wx

%
µwx  

(3-15) 

where	��9, ���	and	��� are the probabilities of having specific amounts of 0, . and	/ users, respectively, 

transmitting in a slot.   

 ��9 = �09� �µ(1 − �)%aµ		��� = &#+)�+(1 − �)#a+  ��� = &$̧)�¸(1 − �)$a¸. 
(3-16) 

where the variable  � is the probability of a slot transmission, which depends on the underlined repetition 

protocol.  As discussed previously, it is	�v , �v and 	va��a� �v� �vap�ap⋯�va��a����	Ç [6] for SFR, SPR and POC 

respectively.  In addition if	5 is used as the first index, the second index,	Æ, represents the “other” ., / and 0 users.  However, if the first index is the “other”	., / and 0 users, then the second index,	Æ, represents the 

desired user.  For the desired user to succeed it is necessary that all the “other” users fail, hence we 

have	&1 − �K,()K, &1 − �P,()P	and	&1 − �¿,()¿ , where �K,( , �P,( 	and	�¿,( are the probabilities of success of 

the “other” users, for all combinations of namely	., / and 0 users competing with the desired user	5 in the 

same slot of the frame.   

In order to derive	�K,( , �P,( 	and	�¿,(, we first present the probabilities of transmission of all the different 

users in Table 3-4 shows all the users’ (.,	/ or	0) transmission probabilities when under CW0 state.  The 

first row shows the desired user’s transmission probability having the “other” users in the system (shown as 

the columns in the table).  As an example to illustrate its meaning, having alpha (.) users	(Æ = 0) that 

transmitted successfully in a warning frame (these users are in CW0 state or cause the user to enter CW0 

state), the probability that the desired user will transmit (�') is	\ p#�p].  Note that the desired user in this 

case has also warned about their transmissions.  We call this the transmission determination process for 

CW0.  This ensures that a fair transmission process is taking place among all the warned vehicles.  When 

looked at the “other” users having the desired user to “compete” with during a slot, the columns represent 
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the desired user, and the rows the “other” users.  For example, for alpha users’ �K,(, their probability of 

transmissions are 1/(. + 1)	 or 1/. depending on which kind of a user is the desired user.  If		Æ = 0 then 

the desired user is an alpha user, hence the “other” alpha users will transmit at a probability that accounts 

for that desired alpha user (hence the +1 in the denominator).  As for the other 2 cases, the transmission 

probability only relies on other alpha users being in the system, that is, the fact that the desired user is a 

beta user (Æ = 1), the alpha users could not have heard the desired user, which in turn reduces the desired 

user’s success.  If the desired user is a gamma user	(Æ = 2), the desired user will not transmit as they will 

go into the CP0 state as defined in Equation (3-11), meanwhile the alpha users will all go through the 

transmission determination procedure with other alpha users in the system. 

Table 3-4: Users transmission probability under CW0 state 

Users J=0 for alpha J=1 for beta J=2 for gamma 

SD (desired) 
ÈÉ + È 

ÈÉ + È ÊÈ, É = ËË, É > ËÍ 
Sa (alpha) 

ÈÉ + È 
ÈÉ 

ÈÉ 

Sb (beta) 
ÈÉ + Î 

È¶ + È 
È¶ + È 

Sg (gamma) 0 ÏË, ¶ ≥ È ∪ ´ = ËÈ,																ÑÒAÓÔDÕÖÓÍ ÏË, ¶ ≥ È ∪ ´ = ËÈ,																ÑÒAÓÔDÕÖÓÍ 
 

Based on Table 3-4, and the logic behind the different users’ behaviours in a vehicular communications 

system, we provide all the users’ (.,	/ or	0) transmission probabilities equations under CW0 state at the 

slot level.  The control variable	Æ represents the desired user	5’s behavior as being an .,	/ or	0 user.  For 

the desired user, having other users “competing” with them, we obtain the desired user’s	(5) transmission 

probability	�',( given .,	/ or	0	competing users in a slot as:  

 �',( = × 1. + 1 , Øℎ8�	Æ < 21, Øℎ8�	Æ	4�	2	��Ù	. = 00, Øℎ8�	Æ	4�	2	��Ù	. ≥ 1Í. (3-17) 

As for the transmission probability for the alpha users (.),	�+,(, is simplified in respect to the desired 

user competing in the same slot is derived as: 

 �+,( = 1. + 12 Æ} − 32 Æ + 1	. (3-18) 

The transmission probability for the beta users (/),	�¸,(, having Æ representing the behavior of the 

desired user	5 being an .,	/ or	0 user, compete with probability of transmission as: 

 �¸,( = 1. + 12 Æ} − 32 Æ + 2. (3-19) 

As for the transmission probability for the gamma users (0),	�µ,(, we similarly have: 



3. New PCCW, EPCCW and ePCCW MAC Designs for Enhanced Vehicular Reliability Safety Messaging 

  34 

 �µ,( = Ï0, when	Æ = 0, d�	. ≥ 1, d�	9 = 01, otherwise Í. 
(3-20) 

Therefore, the desired user’s PCCW’s success probability when in CW0 state can now be derived by 

first substituting Equations (3-16), (3-17), (3-18) , (3-19) and (3-20) into Equation (3-15), and then the 

result into Equation (3-14).  Finally, combine Equation (3-14) result with Equation (3-12) into Equation  

(3-13).    

 u Pr�,,,#,%(�?�+�-w¯=x),a%
.wx = u Ï\� − 0. ] (	�#)#(1 − 	�#),a%a#,a%

#wx× \(� × �=)	× Pr
α,β,γ(�'w#)	�ÂKJÃ] +	\�'wβ	× Pr

α,β,γ(�'wβ)	�ÂKJÃ] 	+	��'w%	× Pr
α,β,γ&�'w%)	�ÂKJÃ�Û, 

(3-21) 

From Equation (3-10), the probability of PCCW’s success given that there are � interfering users, can 

now be fully defined by substituting Equations (3-11) and (3-21) into Equation (3-10). 

For the final probability of success for PCCW taking into account the traffic model, we substitute the 

final result obtained in Equation (3-21) together with (3-11) into (3-10) for PCCW success, finally 

combining that with Equations (3-7) or (3-8)  into Equation (3-5).  

u Pr�,,,#,%(�?�+�-w¯=x) =,a%
#wx u Ü\� − 0. ] (	�#)#(1 − 	�#),a%a#,a%

#wx
× ¬(� × �=)	×u �09� �µ(1 − �)%aµ 	Ý

µwx
×u\.�] �+(1 − �)#a+ ×u�/�� �¸(1 − �)$a¸ × �',x × &1 − �K,x)K × &1 − �P,x)P × &1 − �¿,x)¿$

¸wx
#

+wx 
+	¬(� × �=)	×u �09� �µ(1 − �)%aµ 	Ý

µwx
×u\.�] �+(1 − �)#a+ ×u�/�� �¸(1 − �)$a¸ × �',p × &1 − �K,p)K × &1 − �P,p)P × &1 − �¿,p)¿$

¸wx
#

+wx 	
+	¬(� × �=)	×u �09� �µ(1 − �)%aµ 	Ý

µwx
×u\.�] �+(1 − �)#a+ ×u�/�� �¸(1 − �)$a¸ × �',} × &1 − �K,})K × &1 − �P,})P × &1 − �¿,})¿$

¸wx
#

+wx Þ, 
(3-22) 

Equation (3-22) can also be understood through inspection of the included detailed pseudo code for 

CW0 state for PCCW provided in Appendix C.  



3. New PCCW, EPCCW and ePCCW MAC Designs for Enhanced Vehicular Reliability Safety Messaging 

  35 

3.6 PCCW over SPR, SFR and POC Analytical Analysis 

As previously mentioned, we selected repetition-based protocols to implement into our PCCW because we 

want to improve on the reliability of these protocols for improved vehicular safety messaging.   

We take the equations derived earlier and discuss the different modifications required for PCCW to 

accommodate these changes for the different repetition-based protocols, namely, SFR, SPR and POC, 

noting that PCCW is not limited to these protocols. 

 For both SPR and SFR it is	�v, while for POC it is		va��a� �v� �vap�ap⋯�va��a����	Ç [6].  These changes are 

reflected in the equations where there is the transmission probability	�, such as in Equations (3-16) and  

(3-21).   

The main difference between SPR and the other two protocols is that SPR doesn’t have a fixed amount 

of repetitions in its frame.  We derive the mathematical difference of SPR in this section. 

We show only where the modification takes place.  Note that the change occurs at the slot level, since it 

is not known how many repetitions there are in a frame for SPR, hence we start by modifying the CW0 

state as it is inside that set of equations that we start going into the slot level.  The difference starts in 

Equation (3-13), where we have to start with repetition	(�̂ = 0) for all possible repetitions all the way up to 

repetition	(�̂ = H	slots) given	� average repetitions, hence Equation (3-13) becomes:  

 u u Pr�,,,#,%(�?�+�-w¯=x)v
�̂wx

,a%
.wx = u uÏ PrJ,α,γ(A = α)á

�̂wx
,a%
#wx× â\�'w#	× Pr

α,β,γ(�'w#)	�ÂKJÃ] +	\�'wβ	× Pr
α,β,γ(�'wβ)	�ÂKJÃ] 	+	��'w%	× Pr

α,β,γ&�'w%)	�ÂKJÃ�ãÛ. 
(3-23) 

Since it could be any amounts of repetitions, we also need to know the probability of having	�̂ 

repetitions out of 	H total slots given the average repetition	�,	��H� as follows: 

 ��H�̂ = �L�̂� ×	\�H]�̂ ×	\1 − �H]áa�̂ . (3-24) 

Equation (3-24) will be multiplied to the CW0 state, hence Equation (3-10) for SPR becomes: 

 Pr, (�©¯¯=)6©� =	u Pr,,γ(�?�+�-w¯©x) × u u Pr�,,,#,%(�?�+�-w¯=x)v
�wx

,a%
.wx

,
%wx × ��H�̂ . 

(3-25) 

Finally, since we are looping or summing through	�̂, the probability of the desired user’s success in a 

transmission frame derived in Equation (3-14) goes to	�̂ instead of	�, hence Equation (3-14) for SPR 

becomes: 
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 Pr�̂,#,$,%&�',()*�+,- = 1 − �1 − Pr#,$,%&�',()��̂ . (3-26) 

As presented, the equations for probability of frame success are the same for each repetition type SFR, 

SPR and POC with the exception that the probabilities of slot transmissions are different for each type. 

3.7 Enhanced-PCCW (EPCCW) Design 

Enhanced-PCCW (EPCCW) combines the capability of the OFDM PHY layer to change data rates with the 

PCCW warning scheme.  In essence EPCCW increases the transmission data rates of selected packet slots, 

effectively creating sub slots, which simultaneously reduce transmission time and collision potential of 

selected slots for multiple users.  An example will be where users are aware of a collision potential at a 

certain slot via PCCW protocol, and in EPCCW these users will randomly select a sub slot within that slot.  

Table 3-5 shows the different data rates of the current DSRC system with its relative modulation and code 

rate schemes. 

Table 3-5: DSRC (IEEE802.11p) data rates 

Modulation Scheme Code Rate Data Rate (Mbps) 

BPSK 1/2 3 

BPSK 3/4 4.5 

QPSK 1/2 6 

QPSK 3/4 9 

16QAM 1/2 12 

16QAM 3/4 18 

64QAM 2/3 24 

64QAM 3/4 27 

However, increasing to higher data rates is well known to increase the bit error rate (BER) and packet 

error rate (PER) at the PHY layer level.  In literature [26], including our experience working with the PHY 

[4], [11], [27], [28], [29], [30], and [31], it has been observed that this significant increase in BER and PER 

occurs at the highest modulation schemes (QAM16 and QAM64).  Hence, regardless of the decoding 

schemes used, increasing the 3Mbps BPSK-modulated DSRC to a 9Mbps QPSK-modulated DSRC data 

rates the BER and PER difference is relatively insignificant.  In addition, EPCCW design increases the data 

rate only at slots that were detected as being warned of collision, hence the increased chance of BER and 

PER is negligible.  This is interesting because with EPCCW, the collisions at the MAC layer will have a 

higher chance to be avoided without increasing the chance of a packet drop due to corruption caused by the 

channel at the PHY layer.   Examples are shown in the Figures 3.5 and 3.6.  We, therefore, only use two 

variations to the EPCCW in our proposed design, namely, we will consider both the doubling and tripling 

of the 3Mbps data rate.  We refer to these modifications as	EPCCW{} and	EPCCW{¥ with the increased 

3Mbps data rate to 6Mbps and 9Mbps respectively.  

Figures 3.5 and 3.6 are simulated using our OFDM simulator in [28], and the parameters are carefully 

considered to ensure that the situations are tested in wireless access vehicular environment (WAVE) [1].  

Additionally, in order to justify the use of	EPCCW{} and	EPCCW{¥, these simulations are carried out under 

the worst case scenario, namely no line of sight (NLOS) Rayleigh fading channel, and with varying signal 
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to noise ratios (SNR) for DSRC systems.  Since the parallel OFDM PHY subcarriers are always fixed in 

DSRC to 48 subcarriers, only choosing different modulation schemes and forward error correction (FEC) 

code rates for convolution coding will provide the desired data rates.  That is, 3Mbps BPSK-modulated 

DSRC, 6Mbps QPSK-modulated DSRC, and 9Mbps QPSK-modulated DSRC.  The 12Mbps 16QAM-

modulated DSRC is also shown in the figures for highlighting that this data rate begins to show a 

significant increase in BER and PER. Puncturing is used to achieve the higher code rates (2/3 and	3/4 

convolutional encoding) as per the IEEE802.11p standard [7]. The legal maximum relative speed in 

highways is assumed to be 238 km/h, hence is used as worst case Doppler shift Rayleigh fading channel. 

We use 5000 OFDM packets with 2880 data bits for each of the modulation schemes.  The figures show a 

significant increase in both BER and PER at the higher data rates, i.e. at 12 Mbps and higher.  Both 12 

Mbps and 27 Mbps respond with error floor.  As for the higher than the 12Mbps modulation scheme, it can 

only get worse, especially that puncturing is used to achieve these higher data rates.  However, the BER 

and PER between 3, 6, and 9 Mbps are comparable, and none of them result in error floor. 

 

 

Figure 3.5 BER plot showing different data rates for conventional DSRC PHY 
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Figure 3.6 PER plot showing different data rates for conventional DSRC PHY 

3.7.1 EPCCW Analytical Analysis 

EPCCW has the same logic and design as the PCCW except for when the colliding users will split into sub 

slots 1, 2 or 3.  Hence, the change or difference between PCCW and EPCCW occurs at these sub slots.   

This change occurs at the CW0 state in Equation (3-13), specifically in the	��#,$,%&�',() probability of 

Equation (3-15), which becomes the probability of the desired user’s success in a transmission slot of that 

frame having all possible combinations of the “other” remaining users competing for the same sub slot 

alongside with the desired user	5 being an ., / or 0 user respectively,		��#,$,%,+,¸&�',().  Note the addition 

of the extra input variables	�	and	� in that probability are necessary to obtain the probabilities of 

having	��	and	�� users of the	�	and	� of the	.	and	β users “competing” in that sub slots, respectively.  

These extra variables represent all combinations of different user types interacting in the environment so 

that the probability of success given each user type is represented.  In addition, it is worth noting that since 0 users do not participate in sub slots for the same reason that they did not warn of their transmissions, 

hence we do not add	9� users in the equation.  We now derive the equation as follows: 

 		 ��#,$,%,+,¸&�',() = u��9	%
µwx×u���#

+wx
×u��� u ���� u ���� 	×¸

¸êwx
+

+êwx �',( × &1 − �+,()+ × &1 − �¸,()¸$
¸wx× &1 − �µ,()µ. 

(3-27) 
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As previously mentioned,	���� and	���� are the probabilities of having	��	and	�� out of �	and	� 

“competing” users in the same sub slots, given .	and	β frame transmitting users, respectively, and are 

defined as: 

 ���� = \ ++ë] ��+ê(1 − ��)+a+ê  

 (3-28) 

and, 

 ���� = \ ¸̧ë] ��¸ê(1 − ��)¸a¸ê. (3-29) 

where	p{ = 1 RíKî�SÂ⁄  and  is the probability of a user success in a sub slot with	RíKî�SÂ = 1	or	2	or	3 

depending on the amount of sub slots, and hence data rate increase. 

Everything else stays the same for EPCCW as compared to PCCW, and the final desired user’s 

EPCCW’s success probability is derived in a similar fashion as we did for PCCW. 

3.8 Delay Considerations for PCCW and EPCCW 

Similarly defined in [6], average delay is defined as the expected timeslot count at which the transmitting 

user’s packet is first received successfully: 

 5©¯¯= = u 5©¯¯=(�),nª«	
,wx ��(�), 

(3-30) 

where	5©¯¯=(�) is the average delay of a transmission being successfully received having m interfering 

users; while Pr(�) is the probability of having � interfering users as in Equations (3-7) or (3-8) .  The 

translation from timeslot to real time accounting for number of bits in header and the message is explained 

in the simulations chapter, Chapter 4. 

3.8.1 PCCW Average Delay 

1) For PCCW over either SFR or POC: where a fixed amount of repetitions is used is defined 

similarly in [6]: 

 Í5©¯¯=(�)|z�{	SÂ	j�� =u��y&�3©¯¯=)��, (�©¯¯=)
�	
ywx × u Ù × �,&5 = ÍÙ|�3y)va��y

ðwy , 
(3-31) 

The variables	��y&�3©¯¯=) and��,(�©¯¯=) are the probabilities of having the	4�� slot as the first 

successful timeslot and the PCCW’s probability of success, respectively. These two obviously defer from 

SFR and POC protocols, whereas the variable	�,&5 = ÍÙ|�3y) is the probability that the delay is equal to	"Ù" 
when the	4�� transmission is the first successful transmission and is the same for all three protocols (PCCW, 

SFR and POC).  It is defined using the hypergeometric function, and is used due to the fact that in both 
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SFR and POC repetition protocols, hence also for PCCW over those protocols, the slots are depended with 

one another whereas the interfering users are not.  This is given by: 

 &ðapyap)&vað�ay )&v�) . 
(3-32) 

The probability of PCCW with at least one successful transmission	��,(�©¯¯=) is derived earlier in this 

chapter.  In order to derive	��y&�3©¯¯=), we first need to find the probability of PCCW with at least one 

successful transmission up to	4 − 1 transmissions,		��(�3yap), and subtract that from the probability of 

PCCW with at least one successful transmission up to	4�� transmissions,		��(�3y), hence it can be written as: 

 	��y&�3©¯¯=) = 	��&�3y) − 	��&�3yap), (3-33) 

where both 	��(�3y) and	��(�3yap) are same as the probability of PCCW,��,(�©¯¯=), except that the 

probability of frame success goes up to	4 and	4 − 1 respectively, instead of		� repetitions.  This is 

accomplished by modifying Equation (3-14) to loop up to 	4 and 4 − 1 respectively, instead of	�, that is: 

 Pr�̂,#,$,%&�',()*�+,- = 1 − �1 − Pr#,$,%&�',()�y , (3-34) 

and,  

 Pr�̂,#,$,%&�',()*�+,- = 1 − �1 − Pr#,$,%&�',()�yap, (3-35) 

respectively. 

The only difference between SFR and POC representation is that the probability of frame success has 

different transmission probabilities due to SFR having fixed transmissions, while POC’s transmission are 

related to LUT codeword generation. 

2) For PCCW over SPR: the slots are independent as well as the interfering users.  Similarly 

defined in [6], the average delay of a transmission being successfully received having m 

interfering users is defined as: 

 Í5©¯¯=(�)|zj{ =u4	 ×	��y&�3©¯¯=)��, (�©¯¯=) .v	
ywx  

(3-36) 

Note that in the SPR case, there could be up to	H repetitions.  Both ��y&�3©¯¯=) and��,(�©¯¯=) have 

the same meaning as the ones used in PCCW over SFR and POC, the main difference is their derivations.  

The PCCW over SPR’s probability of having at least one successful transmission is	��,(�©¯¯=), and is 

derived previously earlier.  To obtain the probability of having the	4�� slot as the first successful 

timeslot	��y&�3©¯¯=) over SPR, and since the slots are independent, first find the probability of success of 

any of the slots in the frame by modifying Equation (3-14) to not include all possible � repetitions but 

rather one slot success as follows: 
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 	��(�3) = 	u Pr,,γ(�?�+�-w¯©x) × u Pr�,,,#,%(�?�+�-w¯=x),a%
.wx

,
%wx × �H. 

(3-37) 

Note how the probability of having	� repetition in	H slots	(��H�̂) is being replaced with the transmission 

probability of an SPR slot	\�v] in the Equation (3-37).  Using Bernoulli distribution, we then multiply 

Equation (3-37) by the	4 − 1 slots failures to obtain the first	4�� slot success.  Hence, the probability of 

having the	4�� slot as the first successful timeslot	��y&�3©¯¯=) over SPR can be written as: 

 	��y&�3©¯¯=) = 	 	��(�3) 	× 	&1 − 	��(�3))yap. (3-38) 

Substituting Equation (3-38) into Equation (3-36), we obtain the average delay of the entire frame 

having	4�� slot being any slot up to	H slots with	� interfering users as: 

 Í5©¯¯=(�)|zj{ =u4	 ×	 	��(�3) 	× 	&1 − 	��(�3))yap��, (�©¯¯=)
v	
ywx , 

(3-39) 

The average delay for EPCCW protocol is same as for the PCCW, except we replace the probability of 

PCCW’s success,	��,(�©¯¯=), with the probability of EPCCW’s success,	��,(�ò©¯¯=), derived earlier in 

this chapter.  Additionally, the probability of having the	4�� slot as the first successful 

timeslot,	��y&�3ò©¯¯=), can easily be derived similarly to	��y&�3©¯¯=), with EPCCW’s probability of 

success instead of PCCW’s probability of success in its calculations.   

3.9  Simulation and Analytical Results  

As previously mentioned, we simulate the system in a highway environment from SUMO to generate a 

mobility model which influences our accurate PHY layer environment.  Based on the DSRC standard [7] 

and simulator design, Tables 3-6 to 3-8 provides the parameter values used for simulations and they are 

according to the IEEE 802.11p standard on the PHY and MAC layers [7].   

As mentioned earlier, we are assuming a highway traffic environment under two, four, and eight lane 

scenarios.  DSRC safety systems would actually influence the movement of vehicles for the purpose of 

providing a safe driving experience.  The movement of vehicles could include braking times, acceleration, 

and turning.  Because we are simulating on a frame by frame basis, and the length of a frame	(�) is not 

fixed, this vehicle movement within that period of time is not significant to frame performance.  Hence, this 

information is not used to influence our mobility model of our simulator, and the movement is determined 

entirely by the SUMO [32] validated mobility simulation [32].   

Although our simulator design is capable of measuring success for both unicast and broadcast traffic, 

we focus on the description of broadcast success because PCCW is intended for broadcast safety 

messaging.  Regarding accurate measurement of delay and success performance, it is important to note that 

the users at the ends of the highway (due to limited highway simulations in SUMO) have much less 

interference due to having no vehicles present beyond either end of the road.  These vehicles are not 
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included in calculating the probability of reception failure (PRF) because it is not fair relative to the users 

not at the edges of the simulation.  However we include all vehicles as interferers regardless if they are at 

the edge or not.  

Table 3-6: Simulation parameters 

Parameter Value 

MAC Header 
24 Bytes + additional Bytes 

for PCCW 

Preamble Duration 32	óÖ 

Antenna Gain 4 dB 

Channel Frequency 5.9 GHz 

Channel Width 10 MHz 

Thermal Noise - 96 dBm 

PHY Subcarriers 48 

PHY Pilot Subcarriers 4 

PHY Training Symbols 2 

The simulated communication takes place in a 5.9-GHz 802.11p DSRC channel and not in a 2.4 GHz 

802.11a channel.  The reception signal-to-interference-plus-noise ratio (SINR) thresholds for all the data 

rates supported by the radio are listed in Table 3-3, and were thoroughly studied in [4].  It can also be noted 

that these SINR thresholds are not that different from the ones used in [5] to simulate the IEEE802.11a 

DSRC standard.  The transmission power is calculated based on these SINR thresholds for the different 

DSRC data rates, and intended communication range.   Similar to the literature, such as [32] and [5], in our 

model, the Friis freespace channel model is used for short transmitter/receiver (TX/RX) distances and the 

two-ray model should be used for long distances.  In addition to those channel models, we use Rayleigh 

fading channel caused by Doppler shift.   

Table 3-7: Data traffic parameter ranges 

Coding 

Rate 
Modulation 

Data Rate 

(Mbps) 

SINR Thresholds 

(dB) 

1/2 BPSK 3 7 

3/4 BPSK 4.5 10 

1/2 QPSK 6 8 

3/4 QPSK 9 11 

1/2 16QAM 12 11 

3/4 16QAM 18 15 

2/3 64QAM 24 18 

3/4 64QAM 27 20 

 

Table 3-8:  Nominal parameter values 

Parameter Value 

Message rate (messages/msec) 1/50- 1/500 

Packet Payload (Bytes) 170, 250 

Communication Range (meters) 50, 75, 150 

Average Inter-Vehicular Density 

(meters) 
10 (jammed), 30 

Lane number per road 2, 4, 8 

Maximum Latency 0.2 s 
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Each highway segment is of length 2 km, as per maximum and DSRC possible communication range; 

however for safety messaging the communication range is less as per Table 3-1. The highway is straight 

that includes entrances and exits to allow the vehicles to enter and leave the highway for a more accurate 

highway representation. The number in of vehicles in each lane varied according to SUMO, such that 

vehicles in the centre lane tended to travel fastest, and were furthest apart from each other.  We measured 

and averaged the number of vehicles per lane between the density ranges given in Table 3-8.  Based on the 

vehicle densities and interference ranges, the average number of total repetitions per second 

are	(�d�ÙH8�9cℎ	 × 	�»��8�H��8�	/Àô958��4cõ�8�H��8) × �8�8c4c4d���8��8ºd�Ù.  Additionally, 

we simulated for 300 seconds, leading to a large number of messages.  For example if the maximum 

number of repetitions is 12 messages per second, with an average vehicle density of 0.2 per lane, we have 

(2000*4/0.2)*12*300 = 144 million messages maximum (not including repetitions systematically reduced 

by PCCW).   

Table 3-9: Nominal parameter values 

Parameter Value 

Packet Payload (Bytes) 170 

Communication Range (meters) 50 

Average Inter-Vehicular density (meters) 30 

Lane number per road 2, 4 

 

 

 

Figure 3.7 Probability of success showing simulation and analytical results for 18 Mbps SFR vs. PCCW 

and EPCCW 
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Figure 3.8 Average delay showing simulation and analytical results for 18 Mbps SFR vs. PCCW and 

EPCCW 

Figures 3.7-3.20 show the results of all our proposed protocol designs presented in this chapter of the 

dissertation, and the leading repetition-based protocols discussed earlier under varying scenarios at the 

parameters shown in Tables 3-6 to 3-8.  Whenever simulation is compared to analytical results, the 

Rayleigh fading channel is turned off in our PHY layer simulator.  However all the different types of 

interfering users present in SUMO are taken into account.  That is, interferers within or outside the 

communication range, and primary and secondary hidden nodes are also present.  The plots with only 

simulation results have the Rayleigh fading channel turned on in our PHY layer simulator. Table 3-9 

summarizes the parameters used to simulate Figures 3.7-3.14. 

Figures 3.7 and 3.8 show both simulation and analytical performances in terms of probability of success 

and average delay in timeslots of our proposed designs compared to SFR repetition-based protocol.  For 

fair comparison, both PCCW and EPCCW protocols had SFR as their underlying repetition protocol.   

We show the behaviour for 18 Mbps data rate, which is neither too low nor the highest data rate used in 

DSRC.  Compared to SFR, and when safety is concerned, Figure 3.7 show a significant increase in success 

probability of around 12% and 16% for PCCW and EPCCW respectively.  This increase in success results 

to a near 100% performance, especially for EPCCW protocol where 98% probability of success is 

observed.  Relative to that of SFR, it is interesting to note that the proposed designs have a constant 

performance improvement as the number of repetitions is increased.  This indicates that our designs are 

very well suited to be used over repetition-based protocols.  The optimal repetition values for SFR, PCCW 

and EPCCW are 3, 4 and 7 repetitions respectively.  As for the average delay, our proposed designs show a 

significant decrease in timeslots as opposed to SFR protocol.  This timeslots can easily be translated to real 

time as a check whether these protocols meet the maximum latency requirement as follows: 
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 ���º
8c	�4½8 + ;À�	<8�Ù8� + �ÙÙ�8��	<8�Ù8�	�4c�	Fd�	���°5�c�	��c8 � × @4�8��dc�	Ù8��õ (3-40) 

Packet size in this scenario is 170 Bytes.  The extra address header bits are required for PCCW and 

EPCCW to add information about future transmissions, and it depends on the number of repetitions and the 

number of average slots in a frame derived in Equation (3-9).  That is, the address Header bits for 

PCCW/EPCCW is:  

 �ÙÙ�8��	<8�Ù8�	�4c�	Fd�	���°d�	7���°= 	�»��8�dF	�8�8c4d��	4�	�	F���8× �4�. #	dF	�4c�	�8÷»4�8Ù	cd	�ÙÙ�8��	cℎ8	H	��dc�	4�	�	F���8		 
(3-41) 

The frames in our simulations are not fixed, however the average number of slots in the frame for 

Figures 3.7 and 3.8 is 150 slots.  Hence from Equations (3-42) and (3-43), and at the optimal success 

repetitions, the average delay for PCCW and EPCCW are	4.5	��	and	3.7	��	 respectively.  Hence, they 

both easily meet the maximum latency requirement of	0.2	�.  Although we used the optimal repetitions for 

the delay calculations as it is fair to do so, it can easily be noted that at all the repetitions the delay 

requirement is met.  Additionally, both simulation and analytical results match.   

Figures 3.9 and 3.10 show both simulation and analytical performances in terms of probability of 

success and average delay of our proposed designs compared to SFR repetition-based protocol.  For these 

plots, we show the behaviour for 2 of the lower DSRC data rates, 4.5 Mbps and 6 Mbps.  At these data 

rates, all protocols responded in an above 90% success rate.  However, only our proposed protocols 

converge to a 100% success rate, while SFR success rate declines after repetition 4.  The optimal repetition 

values for SFR, PCCW and EPCCW are around 4 and 7 repetitions respectively.  Similarly, our proposed 

designs show a decrease in timeslots delay.     

 

Figure 3.9 Probability of success showing simulation and analytical results for lower data rates SFR vs. 

PCCW and EPCCW 
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Figure 3.10 Average delay showing simulation and analytical results for lower data rates SFR vs. PCCW 

and EPCCW 

At its worst, i.e. with the smaller data rate, the average delay for PCCW and EPCCW 

are	0.013	�	and	0.011	�	 respectively.  Hence, they both meet the maximum latency requirement.  Both 

simulation and analytical results agree.   

Figures 3.11-3.14 show the probability of success and average delay of our proposed designs compared 

to the different types of repetition protocols, SPR, SFR and POC.  Figures 3.11 and 3.12 show simulation 

and analytical performances of PCCW compared to SPR, SFR and POC, while Figures 3.13 and 3.14 

compares EPCCW with SPR, SFR and POC.   

 

Figure 3.11 Probability of success showing simulation and analytical results for 6 Mbps SPR, SFR, POC 

vs. PCCW 
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Figure 3.12 Average delay showing simulation and analytical results for 6Mbps SPR, SFR, POC vs. PCCW 

 

Figure 3.13 Probability of success showing simulation and analytical results for 6 Mbps SPR, SFR, POC 

vs. EPCCW 

All of the simulation and analytical results match except with POC protocol where a slight difference is 

observed.  The reason why the POC simulation have a slight disagreement from the POC analytical results 

is due to the fact that “the all combination” of POC codes are not possible to generate in simulation, and 

hence the POC codes we use in our simulation is from a set smaller than the theoretical maximum.  It is 

interesting to note that although we used a subset of the maximum number of codes, our proposed protocols 

PCCW and EPCCW (built over POC protocol) simulations are still able to approach very closely the 

theoretical POC with PCCW.  This is because collisions are reduced using PCCW or EPCCW.  Hence, 

when PCCW and EPCCW are used instead of POC, it is not a requirement to have all the possible codes in 
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the system for an almost 100% success performance.  From these figures, it can be seen that PCCW and 

EPCCW outperform all of their underlying repetition protocols (SPR, SFR and POC).  Significant 

improvement is observed with our proposed designs, with EPCCW again converging to close to a 100% 

success rate.  Similarly, the average delay can be calculated, and all of which meet the latency requirement.   

 

Figure 3.14 Average delay showing simulation and analytical results for 6Mbps SPR, SFR, POC vs. 

EPCCW 

 

Figure 3.15 Probability of success showing simulation results for proposed design’s optimum data rate 

Figure 3.15 shows the simulation result for optimal study between all data rates found in DSRC.  The 

plot is divided into two for improving visual clarity.  Communication range used is 50m with 4 lanes, and 

average inter-vehicular density of 30 meters/vehicle.  We only show EPCCW protocol because both PCCW 

and EPCCW responded the same for this study.  Table 3-10 provides the success rate performance in 

descending order for PCCW or EPCCW.  
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Table 3-10: Data rate success rate performance in descending order for PCCW and EPCCW 

Coding Rate Modulation Data Rate (Mbps) 

1/2 BPSK 3 

1/2 QPSK 6 

3/4 BPSK 4.5 

1/2 16QAM 12 

3/4 QPSK 9 

3/4 16QAM 18 

2/3 64QAM 24 

3/4 64QAM 27 

 

Table 3-11 summarizes the parameters used to simulate Figures 3.16-3.18. 

Table 3-11: Parameter values for larger communication range 

Parameter Value 

Packet Payload (Bytes) 170, 250 

Communication Range (meters) 150 

Average Inter-Vehicular density (meters) 10, 30 

Lane number per road 4, 8 

 

 

Figure 3.16 Probability of success showing simulation results with150m communication range and with 

low vs. high traffic loads for SFR vs. PCCW vs. EPCCW 

Figure 3.16 shows the difference between having an 8-lane and 4-lane scenario at relatively high 

communication range of 150m.   At the 8-lane scenario, the figure shows that at the very high load, PCCW 

outperforms the repetition protocol; however unlike EPCCW both do not perform well at higher repetitions.  

Although this scenario is rare, we use it to show that EPCCW is the protocol to choose under high 

interference load. 

1 2 3 4 5 6 7 8 9 10 11
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Repetitions (r)

P
ro

b
a
b
ili

ty
 o

f 
S

u
c
c
e
s
s
 (

%
)

 

 

SFR, 3Mbps 4 Lanes 

PCCW, 3Mbps 4 Lanes 

EPCCW, 3Mbps 4 Lanes 

SFR, 3Mbps 8 Lanes 

PCCW, 3Mbps 8 Lanes

EPCCW, 3Mbps 8 Lanes



3. New PCCW, EPCCW and ePCCW MAC Designs for Enhanced Vehicular Reliability Safety Messaging 

  50 

Figure 3.17 shows that EPCCW reduces the average delay by around 50 timeslots.  It is interesting to 

note at its worst with the 8-lane scenario and average 375 frames; both PCCW and EPCCW meet the 

latency requirement of approximately	0.148	�	and	0.145	� respectively. 

 

Figure 3.17 Average delay showing simulation results with150m communication range and with low vs. 

high traffic loads for SFR vs. PCCW vs. EPCCW. 

 

 

Figure 3.18 Probability of success showing simulation results with medium size communication range for 

SFR vs. PCCW vs. EPCCW. 
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Figure 3.19 Probability of success showing simulation results for higher data rate comparison between 

repetition-based SFR protocol, PCCW and EPCCW. 

 

 

Figure 3.20 Probability of success showing simulation results for higher data rate comparison between 

repetition-based SPR protocol, PCCW and EPCCW. 

Figure 3.18 shows the performance improvement achieved by both PCCW and EPCCW as compared to 

SFR at 75m communications range and inter-vehicular spacing of 10m.  It shows that our proposed 

protocol designs significantly improve success rate performance, where EPCCW protocol’s success rate 

goes beyond 90%. 
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Figures 3.19 and 3.20 show the performance of PCCW and EPCCW in the highest data rates used in 

DSRC.  Significant improvement is shown in both PCCW and EPCCW when compared to both SFR and 

SPR.  Again, it can be seen that only the repetition protocols reduce to near percent success rate, while 

PCCW and EPCCW stay almost constant throughout repetitions.   

3.10 Emergency Vehicular Safety Messaging Reliability Enhancement using 

emergency-PCCW (ePCCW) MAC Protocol Design  

In this dissertation we derive and demonstrate the Medium Access Control (MAC) layer enhancement of 

V2V safety messaging specifically benefiting transmission from emergency vehicles (EVs) using DSRC.  

In [4], we presented a Passive Cooperative Collision Warning (PCCW) MAC protocol for enhancing 

reliability of safety messages in DSRC.  While in this work EVs are considered as requiring higher priority 

than that of other vehicles for conveying safety information to surrounding vehicles.  Our design allows for 

the sharing of channel between EVs and non-EVs, while maintaining high Quality of Service (QoS) for 

both user types.  We call this new emergency-based PCCW (ePCCW).  In order to work effectively, the 

protocol requires synchronized time slots in the MAC layer in order to prevent collisions in the DSRC 

Physical layer (PHY).  The precise time synchronization can be achieved practically using a number of 

techniques including Global Positioning Satellite System (GPS), or alternatively city wide pulse [5].  For 

this dissertation, communication access is limited to one DSRC channel that is shared by both EVs and 

non-EVs, this is the worst case.   

3.10.1 Safety Consideration and EV Communications  

Ranging in QoS requirements, DSRC safety message has a relatively small but variable payload size.  It 

ranges from routine to critical safety of life [9].  Routine messages may include small changes in velocity 

or acceleration and position.  Critical safety of life message may include event information such as 

emergency braking or airbag activation messages.  All of these messages need to be received by other 

vehicles at low latency for it to be effective, and with high reliability, even under scenarios of high channel 

usage.  It is reported that in order to greatly improve vehicular safety, the communication delay should not 

exceed approximately 200ms [8].   

As mentioned earlier, one of the primary roles of DSRC is to improve vehicle safety through effective 

communications.  Hence, higher safety standards can be achieved if EVs can provide information about the 

immediate surroundings to other vehicles.  This is a key motivation of our study.  Each EV is given priority 

over regular vehicles such that the EVs achieve the highest reliability communications which are broadcast 

to all surrounding nodes.  Our ePCCW protocol presented allows non-EVs to share the same channel for 

conveying safety information as the EVs, but in a way that lets EVs achieve higher reliability without 

increasing the number of repetitions.  Full functionality and analysis of performance in relation with other 

repetition based protocol in also presented.  
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3.10.2 ePCCW for Emergency Communications  

ePCCW follows the PCCW state machine with a redesigned conditional transmission CW0 state.  It is 

different in that unlike the PCCW protocol, the ePCCW protocol differentiates between EV and non-EV 

decision making.  EVs have a higher priority mode for sending safety messages.  This improved reliability 

requires non-EVs to intentionally operate in non-greedy mode.  When a non-EV detects the presence of an 

EV, it will only operate in CP0 mode and never enter CW mode.   

 

Figure 3.21 CW0 behaviour for ePCCW 

In essence, when a non-EV hears the EV, they will not transmit into the same slots as the EV.  Figure 

3.21 illustrates the decision making behavior of the ePCCW CW0 state.  In order to enter CW0 state, the 

node must have warned, and have sent a warning message via a previous recent broadcast, informing of the 

node’s intentions.  If a node is an EV node, it will also transmit into the slot either directly, or if other EVs 

are present, will randomly decide to transmit based on the number of EVs it heard warning.  If the node is a 

non-EV, then it will back off for EVs that have warned to use the slot, or otherwise behave as PCCW 

standard algorithm if no EVs warning are received.   

Based on this description we will now model the performance of this state analytically.  We define the 

length of the warning window used in ePCCW as	ú.  Probability of the EV success, Prû(�üý) for a given 

warning window of length	ú, we require the probability of past frame success for a given repetition 

protocol.  Recall, for SFR the probability of success (S) is given by the equation relating to repetitions and 

interferers [7]: 

 Pr,,�(�6*�) = u(−1)C�p \�
]
�

Cwp ¬\H − 
� ]&û�) , , 
(3-42) 

where 
 is the number of successful repetitions out of � total, H is the frame length, and � is the number of 

interferers.  All slots collide in the frame for EV at a probability of	1 − ��(�), at which point the ePCCW 

equation uses the window ú to predict non-EV back-off. This warning gives success improvement over 

other protocols. 

In order to calculate the probability of success for ePCCW, we need its probability of entering each CP0 

or CW0 states, because these states contribute to success that would not normally occur in the regular 
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underlying repetition protocol.  In other words, we need to take these states into account because they offer 

corrections and preventions of collisions that would otherwise result in broadcast failures.  The ePCCW 

version of CW0 gives preference to EVs by sending non-EVs to CP0 state instead of conditionally 

transmitting state, CW0.   Hence as long as the EV is heard by other non-EVs, the EV will take all the 

benefits of the CW0 state, while the non-EVs will result in success benefits assuming CP0 state.    

To summarize the relationship of ePCCW to its parent PCCW, we recall the probability of success in a 

given slot is determined by the ratio of alpha, beta and gamma users, and is composed of transmission load � and probability of success with event	�,	Pr(�).  Alpha (.) users are the users that has successfully warned 

about their future transmission during their “present” transmission.  Beta (/) users are the users that 

thought that they successfully warned, however their “present” transmission resulted in a collision and 

failed to warn about their future transmission.  Finally the gamma (0) users are the users who know that 

they haven’t warned for the “present” frame, and that occurs when users don’t transmit within the window 

of the “present” frame.   

Assuming the desired user is transmitting a message, the probability of the overall ePCCW success with 

a defined traffic model for EVs can be written as:  

 Pr(SÃj���) = 	u Pr, (�-©¯¯=)oap
, �(; = �), 

(3-43) 

where, � is the random variable denoting the number of interfering users, Pr,(�-©¯¯=) is the probability 

of ePCCW success of the event �	given that there are � interfering users, and � is the total amount of 

users.  �(� = �) is the probability of having � interfering users according to the traffic model.  For 

Binomially and Poisson distributed traffic, we respectively have: 

 Prl,,,o(; = �) = �� − 1� � �,(1 − �)oa,ap, 
(3-44) 

and, and	 for	Poisson	 Prl,,,o(; = �) = 8a,�¼ (���)B�! , 
(3-45) 

where � is the probability of transmission,	� is the message rate, � is message lifetime; and � the number of 

messages.   

To calculate success we need the probability of ePCCW entering each CP0 or CW0 states, dependent 

on � interferers: 

 Pr, (�-©¯¯=) = 	u Pr,,Ý(�?�+�-w¯©x) × u Pr�,,,#,%(�?�+�-w¯=x),a%
#wx

,
%wx . 

(3-46) 

 

The term ∑ Pr,,Ý(�?�+�-w¯©x),%wx  is the probability of the desired user due to other user’s success being 

in CP0 state, and is mainly due to γ users, as they are the only users that “know” that they have not warned 

other users, where we have: 
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 u Pr,,γ(�?�+�-w¯©x),
%wx =	u�m

γ
� ×	&�µ%) ×	&1 − p¿)Jaγ

,
%wx , 

(3-47) 

where p¿ is the probability of having gamma users.  The difference between ePCCW and PCCW lies in the 

probability of the desired user’s success with other users being in the CW0 state, 

namely∑ Pr,,#,%(�?�+�-w¯=x),a%#wx .  The success of the desired user relies on all the users bahaviour in the 

system from Table 3-12 which shows all the users’ (.,	/ or	0) transmission probability under CW0 state.   

Table 3-12: Users’ transmission probability under CW0 state 

Users 
J=0 for 

alpha 
J=1 for beta J=2 for gamma 

SD  

(desire

d) 

ÈÓ + È 1 ÊÈ, . = 0Ë, . > 0Í 
Sa  

(alpha) 
0 

ÈÉ 
ÈÉ 

Sb  

(beta) 
0 

È¶ + È 
È¶ + È 

Sg  

(gamm

a) 

0 ÏË, ¶ ≥ È ∪ ´ = ËÈ,																ÑÒAÓÔDÕÖÓÍ ÏË, ¶ ≥ È ∪ ´ = ËÈ,																ÑÒAÓÔDÕÖÓÍ 
The probability that the desired user will transmit is 1/(8 + 1), where 8 stands for the number of EVs, 

who are actually the number of alpha (.) users that transmitted successfully in a warning frame as EVs.  

This ensures that a fair transmission takes place among the EVs. The variable Æ is used as an index to 

differentiate between the different users.   

Alternatively, for the desired user (5) we obtain:  

 �',( = × 18 + 1 , Øℎ8�	Æ < 21, Øℎ8�	Æ	is	2	and	. = 00, Øℎ8�	Æ	is	2	and	. ≥ 1Í. (3-48) 

As for the .,	/ and 0 users, we respectively obtain: 

 �K,( = 1. �32 Æ − 12 Æ}�. (3-49) 

and, �P,( = p#�p \¥} Æ − p} Æ}].  (3-50) 

and, �¿,( = Ï0, Øℎ8�	Æ = 0, or	. ≥ 1, or	g = 01, dcℎ8�Ø4�8 Í.  
(3-51) 

Next we calculate the probability of success of transmission for the desired user 5 given the remaining 

other user types.  The probability of success for 5 given a, b, and g users is: 

 PrK,P,¿(�') = �',( × &1 − �K,()K × &1 − �P,()P × &1 − �¿,()¿, (3-52) 

and the probability of success for D given all .,	/ or	0 users is:  
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 Pr#,$,%(�') = ∑ Prg	 ∑ Pra	 ∑ Prb × �',( × &1 − �K,()K × &1 − �P,()P ×$̧wx#+wxÝµwx&1 − �¿,()¿,  (3-53) 

where	Prg = \%µ] �µ(1 − �)%aµ, and Pra = &#+)�+(1 − �)#a+, and Prb = &$̧)�¸(1 − �)$a¸. Finally, the 

desired user’s frame success given all .,	/ or	0 users at CW0 state is:  

 Pr�,#,$,%(�?�+�-w¯=x) = 1 − &1 − Pr#,$,%(�'))� . (3-54) 

Looking back at Equation (3-46), the probability of ePCCW’s success given that there are � interfering 

users, can now be derived by substituting Equations (3-47) and (3-54) into Equation (3-46).  Substituting 

that result with Equation (3-44) or (3-45) into Equation (3-43) will in turn obtain the final probability of 

success for ePCCW with the traffic model taken into account.  

Also modeled is a user’s average delay, when the first success occurs, giving 5? = ∑ 5?(�),^_`	,wx ��(�) where	5?(�) is the average delay of a transmission being successfully received 

having m interfering users; while	��(�) is the probability of having � interfering users. 

3.11 Simulation and Analytic Results of ePCCW 

The simulation environment we use for ePCCW is the same one we developed in the next chapter, and 

validated against analytics results from [33].  It uses a realistic mobility model based on the Simulation of 

Urban MObility (SUMO) [34] for vehicle movement simulation.  We also employ our accurate PHY 

DSRC simulator [11], which we have shown to provide a more accurate representation of PHY relative to 

other simulators, such as Network Simulator 2 (NS2). The SUMO highway environment mobility model 

supports different vehicle types in the simulation, such that we could define a new vehicle type for EVs that 

behaves different from the standard vehicles.  The properties of the EV included higher priority when 

entering and exiting on ramps, higher average velocity, and higher priority entering of intersections with 

increased likelihood of lane changes.   

The SUMO simulation has 2, 4, and 8 lanes and we consider a road length of 1000m.  Additionally, 

because the simulation model has a boundary at which no communications are heard from beyond the 

simulation, we do not include nodes that are close to the edge boundary in the success calculations.  

Specifically, our simulator still processes these nodes, but does not take their transmission success into 

account for the final results, while allowing them to interfere with other users in the mobility model.  

Channel model depends on the mobility model’s relative velocities and relative positions to model Doppler 

shift and signal to noise ratio (SNR) respectively.   

The performance of the EV is shown in the Figures 3.22-3.25.  We choose SFR as the repetition 

protocol and compare directly with PCCW and the proposed ePCCW.  The data is averaged over 1000 

frames of transmission to get a relatively accurate statistical performance trend.  The results found in 

Figures 3.22 and 3.23, is where the number of vehicles is relatively low representing a rural scenario, and it 

can be seen that ePCCW outperforms both SFR and PCCW protocols.  What is more important is that the 
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reliability is close to a 100%.  Both simulation results and analytical results agree.  The analytical plots are 

generated using the equations derived in this dissertation, and the traffic generation is based on the Poisson 

model. 

 

Figure 3.22 Pr(S) simulation and analytical results at � = 33, 150 slots/frame 

 

 

Figure 3.23 Delay simulation and analytical results at � = 33, 150 slots/frame 

Figure 3.23 shows the average delay of that same scenario, and it can be seen that ePCCW has a much 

lower average delay than the other two protocols in terms of time slots.  The data rate in DSRC ranges from 

3 Mbps to 27 Mbps.  To tax the system, we assume a relatively large average payload of 400 bytes used for 

safety messages, under 3Mbps rate for maximum delay.  In ePCCW, it is necessary to have extra header 

bits to add information about future transmission, and it depends on the number of repetitions and the 

number of slots in a frame.  The additional header bits used in the above example is equal to 96 bits (8 bits 
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to represent 150 slots in the frame per repetition, and in this example we choose 12 repetitions for a 

timeslot delay of approximately 12 slots).  It is found that the 12 timeslots delay at 12 repetitions translates 

to	12	timeslots × �(400 × 8	) bitsslot + (9 × 12) header	bitspacket � 386� = 0.013� ≪ 0.200�.  Therefore, the latency or delay 

requirement is met.  

 

Figure 3.24 Pr(S) plot simulation under high vehicle density at 441 slots/frame 

 

 

Figure 3.25 Delay simulation under high vehicle density at 441 slots/frame 

The second important scenario, shown in Figures 3.24 and 3.25 is with a high number of vehicles 

representing a dense traffic scenario. In the second scenario overall success goes down, but with sufficient 

repetitions ePCCW maintains a very high reliability above 95%.  Hence ePCCW is the protocol of choice 

especially at very high load or high vehicular densities.  
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Similarly, it can be shown that the delay requirements are met for this scenario as well.  We use the 

worst case scenario with 400 bytes safety messages at 3Mbps rate.  It is found that the approximately 54 

timeslots delay at 12 repetitions for the example in Figure 3.25, gives	0.06� ≪ 0.200�.  Again, the delay 

requirement is met easily.  In addition, this latency is less if data rate is increased and payload reduced.  
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Chapter 4 MAC/PHY Simulator Design for PCCW  

Chapter 4 

MAC/PHY Simulator Design for PCCW 

4.1 Architecture 

The following illustrates our proposed architecture for simulation of the MAC layer in a vehicular safety 

environment.  This is done over a realistic mobility model, with vehicle positions, and relative velocities 

used to influence channel conditions.  Additionally, the OFDM PHY is fully simulated across the channel 

conditions with multiple PHY simulations performed per transmission to determine appropriate success for 

each intended reception, as is discussed later in this chapter.   

We now present some important aspects of the MAC portion of the simulator, importantly describing 

how MAC transmissions are processed under the assumption of message feedback that is present in such a 

protocol as PCCW.  First a transmission matrix is generated for each node which represents the intended 

next frame of transmission, with appropriate repetition patterns included.  This matrix will be modified by 

the PCCW protocol based on information from the previous frame, where applicable, including which 

nodes were heard by other nodes.  This information comes from the MAC upstream of each node that the 

PCCW node has access to, which has influenced its state according to its design as mentioned in the last 

chapter.  Combining the hidden node matrix with the warning matrix gives a very accurate representation 

of which nodes actually hear the PCCW warnings.  Figure 4.1 clearly illustrates the relationship of the 

simulator behaviours to one another.  The warning matrix represents the view of each node’s transmissions 

according to PCCW protocol.  The influencing mobility and channel models are used for generating the 

Hidden node matrix, which obscures information exchange between users.  The warning and hidden node 

matrices are used to form a view of which nodes successfully warned each other, which is used in making 

decisions for future slots and frames.   

Essentially, to simulate PCCW, the protocol’s functionality is duplicated in the simulator so that a 

warning matrix can be generated for each node, basically indicating which nodes are known potential 

problems.  This accurately emulates the distributed memory that PCCW has in regards to warning 

knowledge, where not every node has that same warning information due to position, channel, or 

circumstantial reasons (such as if they were transmitting in the same slot as another node, hence not hearing 

a warning during that slot).  In order to simulate the effects of vehicle movement on the MAC performance, 
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the mobility model is used to get the precise locations for the purpose of simulating interference and 

communication range effects on the communications.  The mobility model is used to calculate relative 

success of broadcast data.  Now that we have a full node view based on in range nodes and received 

intentions from other nodes, the PCCW protocol can then be used to broadcast into the channel.  The 

PCCW state changes after receiving new information from the PHY.  This process repeats for each slot of 

every frame being processed as long as at least one user is transmitting during that slot.   

 

Figure 4.1 MAC simulation processing flow (include channel) including Hidden and warning matrices, for 

PCCW simulation. 

Also in Figure 4.1 the transmission matrix exists to represent expected transmissions as generated by 

the chosen repetition protocol.  This information will directly affect PCCW performance because of the 

passive nature of our design, where both pending possible transmissions are derived as well as potential 

transmission slots in which to include warning information.  As mentioned, the warning matrix contains a 

list of future time slots that are marked for potential collisions, where each collision determination 

calculation is performed according to PCCW warnings that each node successfully received. The success of 

the warnings is partially correlated with the mobility model discussed later on in this chapter, which is used 

to generate the hidden node matrix for the simulator.  Node view of warnings is where the view of each 

warning message is interpreted by the PCCW state machine from the previous chapter.   

4.2 Mobility Model 

The mobility model is used to model positions, densities, number of vehicle lanes, and velocities of 

vehicles being simulated.  It is used to modify channel conditions due to distance, affecting SNR between 

users as well as Doppler shift due to relative velocities of each vehicle to each other.  The mobility model is 

a federated mobility model defined in Simulation of Urban MObility (SUMO) [32], which is a validated 

vehicle traffic simulator used for traffic management.   
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Figure 4.2 Marked emergency and non-EVs in SUMO 

 

Figure 4.3 Class diagram for mobility model, OFDM PHY and channel model 

Figure 4.2 shows a visual representation of the vehicles for both emergency and non-EVs obtained in 

SUMO.  The EVs were marked in simulation by name so that their success can be measured differently 

from non-EV nodes.  SUMO uses eXtensible Markup Language (XML) for its configuration and output, 

which we were able to interface with using Matlab.  Hence, while the simulations of the movements were 

done using the Java based simulator SUMO, the configuration settings were mirrored in Matlab for 

federating SUMO into our simulator.  The important variables used in Matlab for defining the mobility 

model are show in Figure 4.2, and described briefly in Table 4-1.  Although not all parameters were easily 

controlled through Matlab, (for example to achieve a particular density of vehicles, the density was an 

average calculated post simulation after adjusting starting number of vehicles in the SUMO simulator.   



4. MAC/PHY Simulator Design for PCCW 

  63 

Figure 4.3 shows the class diagram for the mobility model, OFDM PHY, and channel models.  For the 

mobility model, the x and y coordinates are stored as well as the velocity for each node.  The number of 

lanes, mobility model, range of users in the mobility model, and focus range are the parameters that are 

important for the mobility model.  The OFDM PHY and channel models are used to send and receive 

broadcast data on a per node basis.  

Table 4-1: Class diagram attributes and methods descriptions  

Variable Purpose 

MobilityModel 

numberOf-Lanes Defines the number of lanes to use in SUMO highways. 

bidirectional 
Boolean variable configuring SUMO to run under either uni or bi-directional 

highways. 

Mobility-Mode Used for Matlab to select from predefined SUMO mobility model settings 

Mmodel 
Mobility model defines SUMO specific settings and connection details used to 

federate with Matlab. 

vehicleRange Used to limit model analysis to a group of users in a specific geographic region. 

inComm-Range 
Flag each node as being within theoretical communication range of each other, or not 

(uses PHY in conjunction with mobility model). 

inRange 
Flag each node as being within interference range of each other, or not (uses PHY in 

conjunction with mobility model). 

vehicleModel Stores vehicles positions and velocities for time range interval. 

model-Densities 
Stores position and time of various vehicle densities for calculating average model 

density, and for testing performance at particular vehicular densities. 

sumoRead-XML() Function for reading SUMO model files to get the vehicle information. 

getStats() Function for generating mobility model statistics such as vehicle densities. 

VehicleModel 

xPosition, yPosition 
X and Y coordinates at particular times for individual vehicles, for calculating 

interference of different vehicles. 

velocity 
Velocity of vehicles for use by PHY to calculate relative velocities between vehicles 

for returning Doppler shift. 

timeIndex 
Used for knowing which time the x and y coordinates are for each vehicle at specific 

time. 

OFDM_PHY  

settings 
Stores the OFDM PHY settings for particular vehicles, and is used to simulate the 

PHY. 

transmit() Simulates transmission of a packet into the channel from the MAC. 

receive() Simulates reception of a packet from the channel for processing by the MAC. 

modem() Performs various PHY processing such as modulate, demodulate, equalize etc. 

PHY_Settings 

modulation-Level 
Is used for part of choosing data rate, selects the number of modulation bits per 

OFDM symbol. 

puncturing-Pattern 
Contains a matrix of 0s and 1s for indicating which symbols will be punctured after 

convolution. 

channel-Model Stores the channel model simulator for the broadcast. 

symbol-Duration 
Defines the length of time that an OFDM symbol takes to transmit, for DSRC this is 

8us. 

timeResolution 
Used for synchronizing the Mobility, MAC and PHY simulators to use the same time 

units. 

Channel_Model 

signalTo-Noise Used for modeling signal to noise ratio of each broadcast. 

dopplerShift Used to model Doppler shift of each broadcast. 

riceFactor Used for line of sight transmissions. 

fade() Used to simulate fading of a broadcast. 

Interference() Simulates interference between multiple broadcasts. 
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Figure 4.4 MAC simulator deployment diagram 

The full description of the Physical layer (PHY) class can be found in our OFDM PHY simulator design 

[11] and presented in Chapter 6 of this dissertation.  We use a deployment diagram in Figure 4.4 to 

represent the inner components within each module of the simulator to improve understanding of how the 

components are related.  The deployment diagram shows the relationship between the simulation control, 

transmission model, PCCW MAC protocol simulation, mobility model, OFDM PHY simulation, and 

channel model.  The simulation control performs the operations of scenario update which includes 

maintaining the time of the simulation by setting global timer, broadcast modeling (described later in this 

chapter), maintaining a mobility view for determining success of each broadcast, as well as performing 

other statistics such as delay and throughput of the protocol.  The mobility model has many parameters 

derived from the SUMO XML files such as lane number, and position and velocity of moving vehicles.  As 

can be seen in Figure 4.4, the mobility model has multiple vehicles per lane and multiple lanes per road, but 

we need to process the communication as a whole and hence we combine all the data together in our 

simulator as the mobility model class.   The OFDM PHY simulator module shown in Figure 4.4 is the same 

as from [11], and is used to prevent and correct errors when broadcasting over the simulated DSRC channel 

environment.  It is important to model each broadcast message properly with respect to each receiver 

because each node that is broadcast to has a different distance and relative velocity, meaning that the 

Doppler shift and SNR will be different as well.  We achieve this by running multiple versions of the 

OFDM PHY in parallel for each broadcast with the parameters set based on the mobility model relative 

velocities and distances.  The channel simulation used for the DSRC simulator requires SNR, Doppler and 

fading.  As mentioned earlier, similar to the CASS environment specified in [5] and our study done in [4] 
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we use Friis free space model and two-ray model for calculating the SNR for short and long 

communication distances respectively [4]. 

4.3 PCCW Implementation 

 

Figure 4.5 UML class diagram of PCCW 

The initial state of a node using PCCW is that of its inherited repetition protocol, and proceeds based on 

the state table from Figure 3.1.  For the simulation, the PCCW state machine is implemented on a per node 

basis by creating loops that process each node.  In the class diagrams, an arrow is used to represent the 

relationship between a descendent class and its parent class. Figure 4.5 shows the relationship between the 

MAC layer protocols’ simulator’s representations of class diagrams.  Class inheritance is represented by an 

arrow that points to the class that another class inherits attributes and methods from.   

For the base MAC protocol class we assume the capability of repetition in each frame, where repetition 

mode is one of the leading repetition protocols [5] and [6], totalFrameSuccess represents the total frame 

success of each user, totalAverageDelay represents the total average delay measurements for each user.  

PCCW extends the basic MAC protocols by adding state condition variables, predictive window memory, 

and other attributes and methods for accomplishing the PCCW MAC protocol directives.  PCCW specific 

variables will now be discussed.  The stateMatrix attribute stores the current PCCW state of each node, 

while nextStateMatrix stores the next state for PCCW processing.  The nextTransmissions variable is used 

to store the next transmission pattern that comes from the transmission model, while 



4. MAC/PHY Simulator Design for PCCW 

  66 

nextWarnedTransmissions is used to store each node’s view of warned transmissions.  The descriptions of 

the attributes and methods used in the MAC simulator class diagrams from Figure 4.5 are in Table 4-2. 

Setting the states of PCCW in the simulator is done by taking each user’s individual perspective based on 

the received data through the OFDM PHY and Channel model.  The OFDM PHY and channel model are 

described later in this chapter, and the states are the same as described in the protocol description section.   

It is important to note that each slot has its own state based on warning information received and processed 

by the PCCW protocol.  In the simulation of the protocol, for each node we check for state changes on a per 

slot basis.  After each time slot for a node the simulator loops through and changes the node’s state based 

on a stored view of received messages from other nodes in the immediate region. 

If a node transmitted in the previous frame and heard no other node’s transmit warnings, the states for 

its upcoming time slots would be updated to match that assumption, namely as a “transmission informed” 

(TI) state.  Similarly, if a node transmitted, but other users were also heard with some overlaps of future, 

the affected slots would be updated to CW state.  The simulator must deal with all scenarios of state 

changes that a real node will experience.  For example if the node transmitted but other nodes transmitted at 

the same time, that node must still update its states under the assumption that it thinks that it warned.   

Table 4-2: Descriptions of the attributes and methods used in the MAC simulator class 

Attribute Description 

MAC 

MeasureSuccess() Abstract method for measuring success of a particular MAC implementation. 

MeasureDelay() Abstract method for measuring average delay of a particular MAC implementation. 

MAC_Protocol 

totalFrameSuccess Total frame success. 

totalAverageDelay Total frame delay. 

transmissionBuffer Transmission buffer for measuring performance 

chooseRepetitions() Function that uses a repetition protocol to decide which slots to transmit in. 

PCCW_MAC 

window 
Memory for each user for storing warnings to use in predictions of potential future 

collisions. 

stateMatrix 
Stores the states of each users in the PCCW simulator (i.e. default, CP, CW, CW0, 

CP0 etc. slot states). 

nextStateMatrix Stores the next states of the PCCW simulator. 

nextTransmissions Next transmission patterns for the users. 

nextWarned-Transmissions Next frame warnings. 

nextFrame-Transmitting Next frame transmitting users. 

frameTransmitting Current frame transmitting users. 

previousFrame-Transmissions Previous frame transmissions. 

slotSuccess Slot success. 

previousState-Matrix Previous state matrix for verification and validation testing purposes. 

warning-Transmissions Successful warning transmissions for each slot for all users. 

currentFrame-Transmissions Current frame slot transmissions for all users. 

delayOffset Stores time offset when first successful repetition in the frame occurs. 

findSuccessRatio() 
Function that uses the current slot, users transmitting in that slot and number of 

users in range to determine success ratio of the broadcast. 

EPCCW_MAC_Extension 

channelProportion Defines the proportion of channel usage for EPCCW during warned slots. 
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Figure 4.6 Simulator change state activity diagram 

In Figure 4.6, the behaviour of PCCW for all users in the system is computed based on interference 

depending on mobility model and channel, and warning messages that have been successfully or 

unsuccessfully received, for every slot that the users are transmitting into.  The activity diagram starts at the 

end of a time slot in a frame, where decisions can be made about future slot states.  It is assumed that each 

node has access to its past frame transmissions, as required by the PCCW protocol.  Also some warning 

messages from each user may have been transmitted successfully to other users.   

We make this determination by cross referencing the users that successfully communicated with a 

selected user, where in Figure 4.6, we refer to these as “inRange” users.  If they are in range, and 

successfully transmitted warnings to the selected user at least one time, we say that those users have 

warned the selected user successfully.  Also a factor is the concept that the selected user may think it 

warned successfully, when it actually did not, this is computed by comparing the received previous frame 

packets (transmissionBuffer) by all other users, where we can then isolate warning messages that were not 

received and which users didn’t receive them.  This is used only to ensure that the decision of whether to 
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enter a CW, CP state, or no information state is done accurately.  From here each user can make a 

determination about future time slots it is transmitting at from the information on its thinking it warned, and 

other users warning for the same slots.  That is, if the user warned about a slot, and other users warned 

about that same slot then the user will enter CW state for that slot, and otherwise will enter CP for not 

warning, or remain in the default no-information state.   

The mobility model influencing the in range criteria used above in Figure 4.6 comes from the federated 

Simulation of Urban MObility (SUMO) vehicle traffic simulator.  At the time of this writing, SUMO 

supports export of simulation trace data to simulators such as NS2, but has no built in support for Matlab 

interactions, and hence we present a way to facilitate this interaction.   

4.4 Channel Simulation 

The channel model is composed of AWGN portion and a Rayleigh Fading simulator that has parameters 

defined by the PHY class settings and the mobility model.  The mobility model is very important because it 

affects the signal to noise ratio based on the distance between receiver and transmitter, and also affects the 

relative velocity, in turn affecting Doppler shift.  Authors in [5] use minimum required SNR values to 

achieve effective communication for IEEE802.11a.  We modelled in [4] the SNR thresholds for 

IEEE802.11p used in current DSRC system.  These SNR thresholds for achieving effective communication 

at different DSRC PHY data rates are given in [4].  These thresholds affect the power level at which the 

OFDM PHY must transmit at, affecting the signal to noise ratio heard by nodes at different locations.  The 

channel simulation requires SNR for the AWGN and Doppler shift for the Rayleigh fading simulation, 

where SNR and Doppler shift are derived from the mobility model for each node that is broadcasting.   

Table 4-3: SNR thresholds and 802.11p data rates 

Data Rate (Mbps) SNR Thresholds (dB) 

3 7 

4.5 10 

6 8 

9 11 

12 11 

18 15 

24 18 

27 20 

The deployment diagram in Figure 4.4 contains the data path, showing information exchange between 

mobility model and channel simulator.  After the MAC layer has determined to transmit into the channel or 

not based on PCCW on top of the repetition protocol, the message is sent to our federated OFDM simulator 

[11].  For faster simulation, only transmissions within interference range [4] of the broadcast were sent 

through the PHY simulation.  We model the vehicular channel under the same channel simulation used in 

OFDM PHY, and since we are broadcasting each packet into the channel with multiple potential receivers, 

and multiple potential interferers, interference occurs with multiple channel conditions.  It is very important 

to consider the effects of not just a single channel condition per broadcast, but multiple conditions relative 

to each in-range node.  Figure 4.7 shows the simplest case where a single node is communicating with one 
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other node.  Our model generates multiple channel models depending on the distance and relative velocities 

of each node, and also considers interfering nodes as they affect the broadcast.   

A packet that receives at least 1 bit error after OFDM PHY processing is considered to have failed, and 

is passed to the MAC for checksum processing which drops the packet.  Many simulators do not take into 

account the transmissions with the accuracy of having a full OFDM PHY such as NS2, and other 

simulators [35], [36], [37].  Although NS2 has recently been extended to support a more accurate PHY, it is 

still limited in implementation and at the time of this writing, only supports limited data rates of BPSK.   

 

Figure 4.7 Flow between MAC, PHY, and channel simulation 

In order to calculate the interference of each user to another user we need to take into account the data 

rate of each user, and the intended range of each broadcast.  For our interference modelling, we use the 

distance between vehicles, and transmission power as calculated from the minimum SNR required for path 

loss the same as in [4].   

 

Figure 4.8 Mobility model: varying interference ranges 
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Figure 4.8 shows a simplified example of the vehicle model with respect to interference range.   We do 

not assume that we know the communication range of each vehicle positions and hence we assume a 

transmission power related to the desired range we want the messages to be heard.  We call this range the 

minimum safety message range (MSMR).  This is important for incoming vehicles to be able to receive 

broadcasts from oncoming vehicles, but this is only possible if the transmission power can reach at least the 

safety message, for example in Figure 4.8, if the power of user A, is set to minimum required to transmit 

with user B, then user C will not be able to properly receive messages from A.  Conversely while D 

maintains communication with E, user F can detect and understand communications from D.  This 

increased message range increases safety communications at the expense of a much larger interference 

range.  

Interfering users must be taken into account to accurately simulate the communication system we are 

testing.  We accurately model the physical layer taking into account not only hidden nodes, but also 

secondary interferers.  This is necessary because of the passive feedback system can only be accurately 

modeled by taking into account these extra interfering users.   

 

Figure 4.9 Interfering and hidden nodes 

In Figure 4.9, the nodes that are out of range of the marked user but still causing communication 

failures due to their transmission power.  The transmission power is related to the intended range of the 

transmitter, and the code rate and modulation schemes. Here the solid line rectangle surrounds the region of 

communication range; the dashed rectangle shows the Hidden nodes from the desired user, while the dotted 

lined rectangle represents the regions where interfering nodes can cause secondary interference to users 

within the communication range.  The primary interference range �′ is found to be: 

 �′ = 106o�/}x × � 
(4-1) 

where � is the communication range, and resultantly the secondary and final interference range �′′ is 

therefore: 

 �′′ = 	�′ + � = &106o�/}x + 1	) × � 
(4-2) 

In order to properly measure PCCW success from the simulation we need to take into account hidden 

terminals, defined as nodes hidden from the user who’s performance we are measuring, but detectible 

nodes within one hop (i.e. detectible by users within the marked node’s communication range by other 

users). Also, we must take into account interfering hidden terminals that are out of communication range of 
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each other.  Hence in the simulator, we construct both a hidden node matrix and an interference node 

matrix for relating the users visibility to each other in terms of communication and interference range.   

Tables 4-4, 4-5, and 4-6 illustrate the contents of the inRange, hidden, and interfering matrices respectively 

using a simple example with 9 users.  Here for the hidden node matrix a 1 indicates that a node is hidden 

from the adjacent node, while a 0 represents not hidden.   

Table 4-4: In range matrix 

N 
1 2 3 4 5 6 7 8 9 

1 - 1 1 1 0 0 0 0 0 

2 1 - 1 1 1 0 0 0 0 

3 1 1 - 1 1 1 0 0 0 

4 1 1 1 - 1 1 0 0 0 

5 0 1 1 1 - 1 0 0 0 

6 0 0 0 1 1 - 1 1 0 

7 0 0 0 0 0 1 - 1 1 

8 0 0 0 0 0 1 1 - 1 

9 0 0 0 0 0 0 1 1 - 
 

Table 4-5: Hidden node matrix  

N 
1 2 3 4 5 6 7 8 9 

1 - 0 0 0 1 1 0 0 0 

2 0 - 0 0 0 1 1 0 0 

3 0 0 - 0 0 0 1 0 0 

4 1 1 0 - 0 0 1 1 0 

5 1 1 0 0 - 0 0 1 1 

6 1 1 1 0 0 - 0 0 1 

7 0 1 0 1 0 0 - 0 0 

8 0 0 0 0 1 0 0 - 1 

9 0 0 0 0 0 1 0 0 - 

 

 

Table 4-6: Interference matrix 

N 
1 2 3 4 5 6 7 8 9 

1 - 0 0 0 0 0 1 1 0 

2 0 - 0 0 0 0 0 1 1 

3 0 0 - 0 0 0 0 1 1 

4 0 0 0 - 0 0 0 0 1 

5 0 0 0 0 - 0 0 0 0 

6 0 0 0 0 0 - 0 0 0 

7 1 0 1 0 0 0 - 0 0 

8 1 1 1 1 0 0 0 - 0 

9 0 1 1 1 1 0 0 0 - 
 

We can use these matrices in the success calculations by multiplying the successes a user achieves 

relative to all nodes, so as to block out hidden and interfering users from the calculation.  Additionally, 

when measuring success of a broadcast message, we assume a success threshold	ℵ for which we count a 

broadcast as being successful if the ratio between the actual number of receivers 	′ and possible receivers 
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	 is greater than the success threshold.  That is if		
′
 ≥ 	ℵ, then success for the broadcast is considered 

successful, for example if ℵ is 0.9 (90% success threshold). If there are 10 in range users, and 9 out of 10 

receive the broadcast, then the broadcast is considered successful even though there was a failure.  An 

algorithm for determining success was used and operates as follows: for each transmitting user, compare 

against all possible interferers.   

4.4.1 Model Broadcast 

In order to appropriately model and measure broadcast success of a MAC protocol, we need to know 

the quality of service requirements, the range at which a message is intended to reach.  The sequence 

diagram in Figure 4.10 is used to describe the operations of our MAC simulator while performing accurate 

broadcast simulation.  The broadcast simulator module requires access to the channel, transmission, and 

vehicle mobility models in order to setup and keep track of the simulated broadcasts for measuring 

statistics from each broadcast and correlated receptions.   

For the first step of simulating the broadcast, the PHY parameters are set based on the current node’s 

transmission parameters.  Vehicle positions are updated to match the time of the current node’s 

transmission based on the mobility model.  Next the transmission matrix is accessed to determine other 

transmissions currently taking place for users within the interference range of the current node.  The 

broadcast simulator activates the transmission to the various vehicles present in the model.  Success and 

delay statistics are measured and stored for comparison of each broadcast.   

4.5 Model verification 

Another important aspect of simulating besides accurately measuring the result is that of simulating the 

systems under more realistic scenarios that may not be as accessible from a purely analytical approach.  

Our simulation is first verified to behave correctly under all the same assumptions as analytic, and related 

to the analytical results in later in this chapter.  Afterwards, more realistic conditions are applied to the 

simulation for more accurately representing real world results. For example, we can assume more users in 

simulation because the analytical probability functions rely on combinatorics and factorials that have a 

limited amount of precision when working with large numbers.   

For improving understanding of our simulation, we have separated the simulator into important 

elements that can make up the entire process of simulating DSRC in a vehicular environment.   

As seen in Figure 4.11, these elements include: the simulator as a whole representing the starting point 

at which user makes interaction; the broadcast simulator which controls the broadcasts of the users based 

on the transmission model defined by the MAC protocols used; vehicle model for representing the positions 

and velocities of all the vehicles; mobility model which define the movements and possible routes in which 

vehicles may travel; and the channel model which defines the BER and PER due to conditions present in 

the mobility model and transmission models together.   
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Figure 4.10 Broadcast simulation sequence diagram 

 

Figure 4.11 Sequence diagram for computing success ratio for user broadcasts 

  Also in Figure 4.11 we present an algorithm for calculating the ratio of success for each broadcast.  

We measure this success according to the transmission model, mobility model, and channel model.  A node 

is eligible to be included as a potential receiver in this calculation if it is within the range of the broadcast 
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message’s intended scope according to mobility and channel models, and the node is not attempting to 

transmit itself in that particular time.  A node is designated as an eligible receiver if its PHY is in the state 

of reception, i.e. the node is not transmitting during the time slot at which the broadcast is being 

transmitted.  We do not count nodes that are in range of a broadcasting node, but not in a state that is 

capable of reception as part of the users that determine overall broadcaster’s success.  A broadcasted 

transmission is determined to be successful for a particular receiver if the received message is sufficiently 

stronger than any interfering transmissions, as determined by mobility model, transmission model, and 

channel model. 

4.5.1 Averaging of users 

For displaying the results, obtained from the simulation, averaging of users over a time is performed.   This 

is a common practice that generally produces results that are more applicable to the average case.  We 

measure the frame success of the protocol by measuring the success of a group of users averaged together 

to get an averaged response for both delay and frame success performance.   

 

Figure 4.12 Averaging users Sequence Diagram 

Figure 4.12 indicates the simulator systems responsible for keeping track of the protocol slot successes.  

The broadcast simulator component passes broadcast success ratio on a per time slot basis to the MAC 

Frame protocol tracker.  The MAC frame protocol tracker passes total frame success to the Simulation 

tracker one frame at a time for all users.  The main simulator component can then use the total frame 

success to perform statistical analysis including averaging for the performance metrics of success and delay 

for a group of users. 
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Chapter 5 Performance Enhancement of DSRC PHY Using Improved 

Equalization and Demapping Schemes 

Chapter 5 

Performance Enhancement of DSRC PHY Using 

Improved Equalization and Demapping Schemes 

Before we discuss the enhanced receiver designs for DSRC, we first describe the conventional DSRC PHY 

layer design, so that a better understanding of the DSRC PHY systems is achieved when they are all 

compared with each other.  Also, the channel mobility model is described to better shade light on the 

reasons why different receiver designs for DSRC are required.   

5.1 OFDM-Based DSRC System 

OFDM systems function by partitioning a signal across many low symbol rate orthogonal subcarriers.  The 

main challenge presented to an OFDM system designer is to optimize the coherent detections and 

processing of these subcarriers for a given application maintaining quality of service requirements and 

usually minimizing hardware complexity.  Through the use of sufficient guard intervals inserted in front of 

each OFDM symbol, the OFDM systems are able to mitigate inter-symbol interference (ISI), which 

naturally exists in multipath scatter environments [38].   The orthogonal subcarriers carry the modulated 

data symbols that compromise the OFDM symbols.   

IEEE 802.11p specifications [7] are extensively exploited by researchers to understand or test a wireless 

link, and are built using OFDM systems. For a more detailed look at the individual elements in an OFDM 

system, the readers may refer to [39].  The major 802.11p configuration and timing related parameters are 

listed in Table 5-1 and Table 5-2 respectively [7], which can be reconfigured for representing other OFDM 

systems.  As shown in Tables 5-1 and 5-2, the IEEE 802.11p standard has a total of 64 subcarriers, with 

only 52 subcarriers used for transmission, 4 subcarriers of which are pilots and the remaining 48 subcarriers 

carry the actual data.  The symbol duration is 8.0	�� with 1.6	�� guard interval and signal bandwidth of 10 

MHz.  The subcarrier bandwidth is 0.15625 MHz (10 MHz/64).   

Figure 5.1 shows the DSRC PHY layout.  From that figure, the bold faced letters are used to denote a 

variable in frequency-domain, FFT/IFFT denote the Fast Fourier Transform and Inverse Fast Fourier 

Transform, respectively.  The symbols	�B,C and	B,C denote the transmitted and the received OFDM data 

symbols, respectively.  The thin line arrows and the thick block arrows represent the transmission of serial 
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data and parallel data, respectively.  The figure illustrates the transmitter and receiver configuration and 

their internal components, which need to be modeled as objects in the simulator.  From Figure 5.11(a), the 

binary message goes through a series of components before transmission.  First the message is encoded for 

forward error correction coding (FEC) with a convolution encoder whose generator is [133¤, 177¤] in 

octal, and constraint length of 7.   

Table 5-1: Main IEEE 802.11p OFDM PHY system configuration parameters 

System Parameter Parameter Range 

Modulation BPSK, QPSK, QAM16, QAM64 

Coding Type Convolution 

Coding generation Polynomial [133 171] 

Decoding Type Viterbi 

Interleaver Block 

Bandwidth 10 MHz 

Number of non-zero subcarriers 52 

Number of data subcarriers 48 

Number of pilot subcarriers 4 

 

Table 5-2: Main IEEE 802.11p DSRC PHY system timing related parameters 

System Parameter Parameter Range 

Subcarrier frequency spacing 0.15625 MHz 

FFT/IFFT period 6.4	óÖ 

Preamble duration 32	óÖ 

Guard interval duration 64	óÖ 

Symbol interval 8	óÖ 
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Figure 5.1 Layout of the OFDM PHY model: (a) transmitter, (b) receiver. 



5. Performance Enhancement of DSRC PHY Using Improved Equalization and Demapping Schemes 

  77 

The encoded message is then interleaved (�) to avoid long burst errors due to fading.  The interleaved 

message is then digitally modulated using one of the Gray-Coded constellations binary phase shift keying 

(BPSK), quadrature phase shift keying (QPSK), quadrature amplitude modulation (16 QAM), and 64 QAM 

[7].  The resulting modulated message is then divided into 64 shorter and parallel data symbols	�B,C 

(includes the 4 pilot symbols, and 12 zero-padding), for the ��� OFDM symbol and the 
�� subcarrier.  The 

pilot symbols are inserted in the 6th, 20th, 34th, and 48th subcarriers for each OFDM symbol, in order to 

estimate the frequency and track the phase of the received message [7].  These symbols are then 

multiplexed into a 64-point (IFFT) using the OFDM modulation scheme, denoted by	�B,C.  This resulting 

symbol	(�B,C) is transformed into an 80-point length vector after the addition of the guard interval, and then 

serially transmitted over the channel.  The data rate is calculated as follows [7]: 

�ð = �> log}(�)�?>@? , 
(5-1) 

where	�>	 is the code rate,	� is the number of modulation points in the mapping constellation, and	�?>	 is 

the number of data subcarriers in an OFDM symbol.  At the receiver end, shown in Figure 5.1(b), and after 

the removal of the GI, and converting the received signal to parallel signals (õB,C), the signal is transformed 

into a frequency-domain signal	B,C as follows:  

��@&	õB,C) = 	B,C = AB,C ∙ �B,C + 	DB,C, 
(5-2) 

for	0 ≤ n ≤ �?, 0 ≤ n ≤ �?, where	AB,C and	DB,C are the complex channel frequency response and the 

additive white Gaussian noise (AWGN) for the ��� OFDM symbol and the	
�� subcarrier, respectively.  In 

the channel estimator, the two training symbols are used to obtain the estimated channel response for the 

first OFDM symbol over the first two received symbols as follows, 

A�x,C = AÈ,C + AÎ,C2.�>-,C ,		 
(5-3) 

Defined earlier, the	�>- is one of the two identical training symbols.  The subscripts	È and	Î represent 

the first two received OFDM symbols.  The conventional IEEE 802.11p system uses the same channel 

response estimated for the first OFDM symbol throughout the entire packet, in other words the channels 

were assumed time-invariant and do not change throughout the packet (i.e.,	A�x,C ≅ A�B,C).  Therefore, 

different channel estimation and/or equalization schemes need to be implemented in a simulator design for 

time-variant channels.  Examples of such designs include [40], [38], and [37].  After channel estimation, 

the signal compensator compensates the received data symbols of the packet by the estimated channel 

response, as follows: 

�B,C = B,CA�x,C , (5-4) 

The components of Figure 5.1 are modeled dynamically in our simulator using object-oriented 

techniques presented in Chapter 6 to allow for the data rate, the amount of subcarriers, and the bit 

interleaver type (modeled as either block or symbol) to be variable.  Additionally, this allows for the 
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modulation level to change symmetrically across the transmitter and receiver, and the channel to be 

dynamic.  As well, the entire receiver module of the simulator is modeled assuming adaptive feedback 

architecture to cover a wide array of implementations. 

5.2 Channel Modelling 

Modelling of the communication channel can be done in many different ways, which includes AWGN, 

interference, fading, time-varying channels with Doppler shift, and time-invariant channel models.  The 

OFDM PHY is designed to cope with many of these different channel scenarios that it may encounter in 

urban, non-urban, mobile or static channel environments.  What follows is a more detailed description of 

the channel models that can be selected in our reconfigurable simulator for a wireless OFDM PHY system.  

Details of different channel modelling in OFDM systems can be found in [41], [39], and [42]. 

The wireless access vehicular environment (WAVE) channel model can be modeled using statistical 

methods presented in [41] and [42].  Figure 5.2 illustrates the WAVE channel model, showing both 

specular and scattering ray components.  The WAVE channel model can be used in simulating the effects 

of an L path Rayleigh/Rician multipath scattering channel with K factor affecting specular to scatter 

component fading path ratio and AWGN. 

��Ù4�9 �4�»��cd� 
��Ù4�9 �4�»��cd� 
��Ù4�9 �4�»��cd� 

À°�� 
�1 �2 �H  
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�� + 1 Specular Component 

S(t) 

Scatter 
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r(t) 

 

Figure 5.2 Channel model with multipath scattering, specular (LOS), and Rayleigh (no-LOS) portions and 

AWGN. 

OFDM systems are able to mitigate ISI.  However, the orthogonality principle is no longer valid in 

time-varying channels [38], [43], [44] and [45], which leads to the presence of ICI.  The ICI factor 

increases with increased vehicular speed.  ISI and ICI exist due to two physical phenomena known as the 

multipath fading and the Doppler shift, respectively.  Multipath refers to both line-of-sight (LOS) and non-

line-of-sight (non-LOS) components, due to the reflections of the transmitted signals by the surrounding 

objects.  Multipath may cause what is known as “frequency selective” fading, which induces ISI when the 
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symbol duration or symbol period (@?) is less than approximately 10 times the multipath root-mean-square 

delay (RMS) spread (στ), (@? ≤ 10σ
τ
) [28].  The channel may be considered flat if the range of the channel 

frequencies or coherence bandwidth (E>) satisfies the following condition [42], 

E> 	≈ 	 150στ, (5-5) 

In time-varying channels, a nonzero relative velocity is produced, because both antennas may be 

moving towards each other or in the same direction but at different speeds.  The resulting maximum 

Doppler shift (F') is related to the relative velocity via the equation	(F' =	G ∙ F> º⁄ ), where G is the relative 

velocity in meters per second	(� �⁄ ), F> is the carrier frequency in Hertz (Hz), and º is the speed of light in 	(� �⁄ ) [42].  Also, the channel may be characterized as a “fast fading” channel if		@? ∙ �? ≫	@>, where @> 	is 

the coherence time [42], 

@> =	0.423F' =	 0.423G ∙ F> º⁄ 	= 	0.423		ºG ∙ F> μs, 
(5-6) 

In other words, the channel impulse response is changing within the duration of a packet if	@? ∙ �? ≪ @> 

is not satisfied.  Since º	and	F>	remain constant throughout a particular system, the rate of fading is 

proportional to one of the parameters		@?, 		�? or	G while the others remain constant.  Rician fading channel 

(with K factor not equal to zero) [46] could be used if a strong LOS component exists, while Rayleigh 

fading could be considered when time-varying channels exist with No-LOS.  The time-varying Rayleigh 

fading channel can be produced using the Jakes’ fading channel simulator with no-LOS [47].  Jake’s 

method works by simulating the physical model of 2D isotropic scattering with non-LOS.  It assumes that 

there are -ú equi-spaced or uniformly distributed scatters around the moving transmitter or receiver.  The 

phase angle \�y = }�yû , 4 = 1,2, … , ú] associated with each scatter is chosen at random.  The received 

complex envelope is treated as wide-sense stationary Gaussian random process with zero mean, when 

Rayleigh channel is concerned.  In order to produce a zero mean Gaussian envelope, the following relation 

is used as in [48, 47], 

9(c) = 9�(c) + Æ	9�(c)
= √2 �2ucos/B cos 2�FBc + √2 cos . cos 2�F,c 

Bwp �
+ Æ �2usin /B cos 2�FBc + √2 sin . cos 2�F,c 

Bwp �, 
(5-7) 

where	/B = ��/;.  We need M number of oscillators with frequencies, 

FB = F, ºd� 2��ú , � = 1,2, … ,;. 
(5-8) 

According to [46], ; greater than 6 should suffice.  In addition,	; = p} \û} − p}] and	û} must be an odd 

integer.  In order to visually demonstrate the effect of the channel on the message bits, scatter plots in 

Figure 5.3 are produced for an OFDM system over a single packet message of duration of 0.64	�s, using 
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QPSK modulation scheme.  Different Rayleigh fading envelopes are simulated using different velocities.  

As illustrated in Figure 5.3, as the velocity is increased there exist a greater shift in both amplitude and 

phase, which result in the deviation of the received symbols from their constellation points.  Figure 5.4 on 

the other hand, shows an example of how AWGN increases the chance of erroneously interpreting the 

symbols.  
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Figure 5.3.  Scatter plots showing distortions caused by Doppler shift. 
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Figure 5.4.  Scatter plots showing distortions caused by AWGN shift. 
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5.3 Performance Enhancement of DSRC PHY Using Improved Demapper 

As mentioned in Chapter 1, the conventional DSRC system uses digital Viterbi decoding for forward error 

correction (FEC) [7]. Digital Viterbi decoders are extensively used in communication systems.  It is well 

known that soft-decision decoders achieve coding gain over the hard-decision. Four types of analog-input 

decoders are discussed in [49] including the hard-decision, soft-decision, ideal analog and non-ideal analog 

decoders [49]. The non-linear demapping scheme we focus on, namely the S and П-decision demapper 

[50], was shown to outperform hard-decision, 4-level and 8-level soft-decision decoders. Performance 

evaluations of DSRC such as [51] do not address higher order M-ary modulations that exist in current 

standard [7]. 

Our previous study [28,38], investigated performance limitation on DSRC receivers, using conventional 

channel estimation and static channel. In this work, we present a study on 5.9 GHz DSRC PHY 

performance limitations when using linear vs. non-linear demappers with different decoder designs. The 

linear demapping scheme designed in this dissertation and non-linear demapping scheme presented in [50] 

are tested with both digital and non-ideal analog decoders presented in [49] with varying signal to noise 

ratios (SNR), velocities, packet length, channels, modulations, and code rates. 

5.3.1 Demapping and Decoding Schemes for the DSRC PHY Systems 

Analog Viterbi decoders have been presented previously in [51].  They consist of analog add-compare-

select (ACS), where the analog path metric calculations are performed and digital path metric (PM) 

modules, where the bits are decoded using the trellis structure and survivor path.  Analog decoders have 

potential coding gain over digital Viterbi decoders because of the ability to process unquantized data 

symbols.  However, this coding gain is reduced because of internal circuit noise in the non-ideal analog 

circuitry [51].  Hard decision Viterbi decoders quantize the input data to two levels {0, 1}.  It uses the 

hamming distance of the received bits to possible outputs obtained from the trellis of the convolutional 

encoder to determine the most likely path.  Alternatively, the soft Viterbi decoders use Euclidean distance 

to determine the best choice of path for the decoding.  Both the analog and soft Viterbi decoders process 

soft information, where the analog Viterbi decoder receives real valued analog data, while the soft Viterbi 

decoder receives level data in the range from 0 to 2B!"#$ 	– 	1 levels (where �?&'� is the number of bits used 

to represent the digital input to the decoder).  This soft information is created by quantizing the 

demodulator soft decision demapping output.   

5.3.1.1 Linear decision demapper 

The linear demapper attempts to give a linear estimate of the received in-phase and quadrature-phase 

component ranges given to the DSRC PHY demodulator.  QPSK and QAM modulation schemes have in-

phase and quadrature phase components which are mapped according to Gray-coded constellation 

mappings.  According to the IEEE 802.11p standard [7], the same average power should be achieved for all 

created modulated symbol.  Therefore, the relative energy of each modulated symbol is normalized 
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according to the	� ®' factor, which is equal to	1/√2,	1/√10 and 1/√42 for QPSK, 16-QAM and 64-

QAM, respectively.  The main relationship between these modulation schemes is found in Table 5-3.  

Table 5-3: Modulation relationship according to DSRC standard 

Modulation type 
Bits per 

symbol 
()*+ Denormalized Range Data points Bit pattern 

QPSK 2 
È √Î�  [-1, 1] 4 ,Ë-Ë 

16-QAM 4 
È √ÈË�  [-3 -1, 

1 3] 
16 ,Ë,È-Ë-È 

64-QAM 6 
È √.Î�  [-7 -5 -3 -1, 

1, 3, 5, 7] 
64 ,Ë,È,Î-Ë-È-Î 

During demodulation the mapped data ranges are proportional to the inverse of	� ®', where each 

constellation data point is mapped to values in the de-normalized constellation points.  The variable ±x	represents the first received in-phase contributed bit and /x represents the first received quadrature-phase 

contributed bit, which come into the demodulator after signal compensation in the form of	0, = (± + Æ/) ∙
� ®'. The linear decision demapper implementation of each respective demodulation schemes needs to 

estimate the bit pattern of the in-phase and quadrature phase components, to the bit pattern from Table 5-3.  

The bit pattern is composed of ±̧  and	/¸, where � is the ��� bit pair of the demodulated symbol	0,.   
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Figure 5.5 QAM modulation with associated linear decision mapping. 

For example, for 16-QAM modulated symbols, the input to the demodulator is de-normalized using 1 � ®'⁄ = √10 resulting in data which is then compared to the constellation points intersecting at {-3, -1, 

1, 3} of the	± and / axes.  The linear decision demapper attempts to give a linearly proportional estimate to 

the received data based on the constellation point regions.  This serves as a probabilistic representation 

which is useful in soft decision decoding, and is done using a combination of linear mapping and cutoff 

patterns.  Figure 5.5 shows the linear mapping and cutoff patterns for each 16-QAM ± and / bits, as well as 

16-QAM modulation constellation points.   
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5.3.1.2 Equations for the linear decision mapping 

In linear decision demapping, the demapper maps each input signal	0, onto ±̧  and	/¸ output bits using 

pattern functions derived according to the pattern and position of the constellations points.  Since the 

difference between one adjacent constellation point and its closest neighboring constellation point is 1 bit 

difference.  The individual bit difference can be modeled as a line between those individual bits of the 

constellation points.  For the case of bit difference, the line is modeled linearly in the range of either {0 to 

1} or {1 to 0}.  For the case of no bit difference, the line is modeled as either a 0 or a 1.  It can be seen from 

Figure 5.5, for 16-QAM modulation, that the ±̧  and /¸ bits in the constellations follow a pattern of 

{±x±p	||/x/p ∈ [00, 01, 11, 10]}, which are broken down into {±x||/x 	∈ [0, 0, 1, 1]} and {±p||/p 	∈[0, 1, 1, 0]} bottom to top for	/B and left to right for ±B.  These mapping functions are shown as	�x(0,) 
and	�p(0,), in Equations (5-9) and (5-10), respectively.  Similar approach is applied to the 64-QAM 

modulation, where the ±̧  and /¸ bits in the constellations follow a pattern 

of{±x±p±}	||/x/p/} ∈ [000, 001, 011, 010, 110, 111, 101, 100]}, which are broken down into{±x||/x 	∈[0, 0, 0, 0, 1, 1, 1, 1]}, {±p||/p 	∈ [0, 0, 1, 1, 1, 1, 0, 0], and finally	{±}||/} 	∈ [0, 1, 1, 0, 0	1, 1, 0]}. 
In what follows we present the linear soft decision mapping transfer functions for QPSK, 16-QAM, and 

64-QAM demodulators.  Equation (5-9) �x(0,) is used for both ±x and /x of the QPSK demodulator for 

input data	0,. 

 �x(0,) = Ü 0 if	0, ≤ −1(0, − 1) 2⁄ if − 1 < 0, ≤ 11 if	0, > 1 Í. 
(5-9) 

For 16-QAM, �x(0,) from Equation (5-9) is used for ±x and /x bit pattern matching, while Equation 

(5-10) generates the output soft values for the bit pairs	±p and	/p.   

 

�p(0,) =
456
57 0 if	0, ≤ −3(0, + 3) 2⁄ if − 3 < 0, ≤ −11 if − 1 < 0, ≤ 1(−0, + 3) 2⁄ if	1 < 0, ≤ 30 if	0, > 3

Í. 
(5-10) 

64-QAM also uses the same �x(0,) transfer function to realize the linear pattern for bits ±x and	/x, and a 

modified version of �p(0,) to represent ±p and	/p, shown as Equation (5-11), which has extended range 

over the 16-QAM version.  

 

�p′(0,) =
455
6
557

0 if	0, ≤ −5(0, − 3) 2⁄ if − 5 < 0, ≤ −31 if − 3 < 0, ≤ 3(−0, + 5) 2⁄ if	3 < 0, ≤ 50 if	0, > 5
Í. 

(5-11) 

In addition, 64-QAM also has a third linear decision mapping for ±} and	/}, namely	�}′(0,) in 

Equation (5-12). 
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�}′(0,) =
45
55
6
55
57

0 if	0, ≤ −7(0, + 7) 2⁄ if − 7 < 0, ≤ −51 if − 5 < 0, ≤ −3(−0, − 1) 2⁄ if − 3 < 0, ≤ −10 if − 1 < 0, ≤ 1(0, − 1) 2⁄ if	1 < 0, ≤ 31 if	3 < 0, ≤ 5(−0, + 7) 2⁄ if	5 < 0, ≤ 70 if	0, > 7
Í. 

(5-12) 

where �}′(0,) can be visualized as two �p(0,) functions of Equation (5-10), concatenated over the 

range from −7 to	7. 

5.3.2 Simulation Results 

DSRC PHY has been simulated to compare its performance among a recently proposed non-linear 

demapper and our derived linear demapper, as well as non-ideal analog and conventional DSRC. To show 

realistic decoding, the add-compare-select noise, comparator offset, and nonlinear branch metric are chosen 

to be 0.07, 20% and 10%, respectively. The digital Viterbi decoder model includes the effect of 3-bit 

quantization at its input.  

 

Figure 5.6 BER comparison for QAM16 DSRC with varying SNR at v = 238 km/h, Rc =1⁄2, at 12Mb/s in 

Rayleigh channel. 

The simulations parameters were carefully considered to ensure that all possible situations are tested in 

WAVE. Both under the worst case scenario, namely no line of sight (NLOS) Rayleigh fading channel, and 

less severe channel, namely LOS Rician fading channel with Rice factor (K=1) is also considered. Hence, 

the DSRC PHY systems were tested with varying SNR, packet length, velocity, AWGN, Rayleigh and 

Rician fading channels, 960 data symbols, different modulation schemes, and different FEC code rates (��) 

for convolutional code. Puncturing was used to achieve the higher code rates as per standard [7]. The legal 
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maximum relative speed in highways was assumed to be 238 km/h.  Exhaustive simulations were produced, 

and without loss of generality, only few plots are presented as examples.  

Figures 5.6-5.10 show the performance of DSRC PHY with varying SNR, relative velocity, and packet 

length for the tested modulations and decoders.  Figure 5.6 shows that both the linear and non-linear 

demappers yield an improved performance at 16-QAM with	�¯ = 1/2 over the hard Viterbi decoder used 

in the conventional DSRC; however our proposed digital linear demapper outperforms the non-linear 

demapper.   

From Figure 5.7, a substantial improvement is noticed for both linear and non-linear demappers used 

with digital and analog decoders at the highest code rate and modulation (64-QAM and at	�¯ = 3/4) used 

in DSRC while our linear demapper performs better than the non-linear demapper. The linear demapper 

with digital decoder has reduced bit-error-rate (BER) by approximately a factor of 5.  

In addition, at lower relative velocity (ô	 = 	100 km/h) and with the existence of LOS component, 

Figure 5.8 shows that our proposed scheme performs better than the non-linear demapper scheme.  Figure 

5.9 shows that our proposed scheme provides an improved performance in both kind of decoders and at 

lower Doppler shifts or velocities (around the legal relative speed in a city).  

Figure 5.10 confirms that our proposed scheme can offer performance advantage of around a couple of 

orders of magnitude over both the conventional and non-linear demapper designs. 

 

 

Figure 5.7 BER comparison for QAM64 DSRC with varying SNR at v = 238 km/h, Rc =3⁄4, at 27 Mb/s in 

Rayleigh channel. 
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Figure 5.8 BER comparison for QAM16 DSRC with varying SNR at v = 100 km/h, Rc =1⁄2, at 12 Mb/s in 

Ricean channel. 

 

 

 

Figure 5.9   BER comparison for QAM64 DSRC with varying velocity at SNR = 30 dB, Rc =1⁄2, at 18Mb/s 

Rayleigh channel. 
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Figure 5.10 BER comparison for QAM16 DSRC with varying packet length at SNR = 10 dB, v = 238 

km/h, at 12Mb/s Rayleigh channel. 

5.4 Performance Enhancement of DSRC PHY Using Improved Equalization 

The physical layer (PHY) of DSRC is currently being developed by work group of IEEE 802.11p [52].  

DSRC PHY is originally based on the IEEE 802.11a standard with increased symbol duration [7], [38,28].  

It uses orthogonal frequency division multiplexing (OFDM).  OFDM systems are able to mitigate ISI, 

through the use of sufficient guard intervals inserted in front of each OFDM symbol.  Therefore, a 1-tap 

equalizer is sufficient to equalize the OFDM systems in time-invariant channels [53].  Orthogonal 

subcarriers carry the modulated data symbols that compromise the OFDM symbols.  The orthogonality 

principle is no longer valid in time-variant channels, which leads to the presence of inter-carrier 

interference (ICI) [54,55].  The ICI factor increases with increased vehicular speed.  Pilot, demapper and 

Viterbi-aided receiver design schemes were discussed for channel tracking for DSRC systems [27].  It was 

shown that the Viterbi-aided channel tracking technique improved the overall performance of DSRC 

systems in higher constellation modulations compared to the other two schemes [27,40].  In [30], a second-

order iterative tracking scheme, which runs the feedback loop twice was proposed to make use of the 

additional information obtained from the decision-directed channel estimation schemes of [40], [56], which 

resulted in a slight performance improvement for higher order quadrature amplitude modulation (QAM) 

schemes, however, no improvement was reported for quadrature phase shift keying (QPSK) and binary 

phase shift keying (BPSK) modulated schemes compared to the corresponding first-order-scheme [56]. 

These channel tracking schemes did not consider the individual ICI coefficients in their calculations.  In 

addition, channel tracking schemes rely heavily on the integrity of the decoding scheme for additional 

information.  For example, the decoder is more likely to produce unreliable data back through the feedback 

loop at the occurrences of deep fades.       
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This dissertation proposes applying a receiver design for the 5.9 GHz DSRC system that can make use 

of ICI information caused by the time-varying channels.  The proposed receiver uses a maximum a 

posteriori (MAP)-based equalization concept in frequency-domain to combat ICI instead of ISI in DSRC 

systems without the need of feedback loops.  The proposed system is tested for QPSK and BPSK 

modulation schemes, and is compared to the conventional system and the schemes in [40], [56].  The 

improvements are achieved through a worst-case scenario at relatively high and low speed limit studies, i.e. 

by using Rayleigh fading channel at high and low legal limits of relative vehicular velocity. 

This chapter starts with a discussion on the baseband model of the current conventional DSRC PHY 

system.  Then we describe and present the proposed receiver design that uses frequency domain 

equalization to combat ICI.  Later in this chapter we present simulation results for all three DSRC receiver 

designs, namely the conventional, Viterbi-aided, and proposed receiver designs, which illustrate the 

substantial performance improvement achieved by the proposed receiver design. 

5.4.1 Frequency-domain equalizer 

A thorough study of the effectiveness of different demapping and decoding schemes for the DSRC system 

were included in [38].  It was shown that both BER and PER performances of the DSRC system with 

different soft decoding (MAP-based or Viterbi) schemes relative to that of the conventional DSRC system, 

resulted in a slight improvement in the case of the higher constellation modulations, while almost no 

improvement in the case of the lower constellation modulations.   

For clarity, Figure 5.11 illustrates an example of such findings.  It can be seen that the DSRC system 

with different demapping precision outputs (hard output and soft output demappers) and decoding (MAP 

[46] and Viterbi) schemes have similar BER performances [38]. 
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Figure 5.11 BER vs. SNR at 238	
�/ℎ� for different demappers and decoders. 
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The fact is that the conventional IEEE 802.11a systems assume static channel characteristics [28], 

which means that the conventional signal compensator provides a poor equalized representation of the 

symbols to the remaining of the system.  In practical mobile communication applications, the Doppler 

spread associated with time-varying channels cause error floor, hence it should be taken into account [57].  

Various techniques for reducing ICI caused by the time-varying channels are defined, presented, and 

referenced in [57].  An example of time-varying Rayleigh fading envelopes produced by the channel 

simulator is shown in Figure 5.12.  It can be seen that at around the legal maximum relative velocity of 

vehicles (238	
�/ℎ�), deep fades exist across one DSRC packet with duration of 1.0	��, with 125 

DSRC/OFDM symbols per packet.  However, the change is relatively slow within one DSRC symbol with 

duration of 8.0	μ�.   
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 Figure 5.12 Rayleigh fading envelope examples for DSRC (a) over one packet with duration of 1.0	�� 

with 125 DSRC/OFDM symbols, and (b) over one DSRC symbol with duration of 8.0	μ�. 
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Figure 5.13 DSRC Receiver Designs with: (a) Viterbi-aided channel tracking, (b) Frequency-domain 

equalization. 
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The DSRC conventional and the DSRC receiver with the Viterbi-aided schemes are shown in Figures 

5.13(a) and 5.13(b).  The figure illustrates that the output of the Viterbi decoder is fed back to the channel 

estimator.  The serial output of the decoder is first encoded, interleaved, and then modulated to obtain the 

“desired signal” which is used to obtain an error estimate, which is in turn used to update the channel 

coefficients symbol-by-symbol [40].       
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Figure 5.14 DSRC receiver design with frequency-domain equalization. 

Figure 5.14 shows the frequency-domain (F-D) MAP equalizer block.  The MAP equalizer is based on 

the BCJR algorithm [46].  In order to obtain the channel coefficients in frequency-domain, it is necessary to 

have an equivalent channel coefficient model in frequency-domain.  Under the approximation of linear 

variation in a DSRC/OFDM symbol, the frequency-domain	�?> × �?> channel coefficients matrix	8 is 

given as [58]: 

 8y,( = 1�?> u AB,Co!9ap
Bwx . 8a(}�(ya()B/o!9 .. 

(5-13) 
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Figure 5.15 Subcarrier to subcarrier ICI contributions. 
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The off-diagonal elements represent the ICI coefficients (due to the time-varying channel).  It should be 

noted that the elements around the main diagonal of	8 contain the most concentration of ICI power.  The 

channel frequency response	AB,C can also be expressed as the FFT of the complex channel impulse 

response (CIR) for the subcarrier	
 at time	�, i.e.,	AB,C =: ℎB,l . 8a(}�lC/o!9vaplwx , where	ℎB,l is the CIR for 

the ��� path at time �.  It is important that an OFDM-based DSRC system with time-variant channels be 

able to exploit the ICI elements in its receiver design.  Figure 5.15 illustrates the ICI power in log form of 

the	8 matrix of one OFDM symbol under Rayleigh fading with Doppler frequency of 1300	<½. The output 

of the frequency-domain MAP equalizer including the demapping operation is given by the relation: 

 HH�&B,C,;|[B]) = 		�d9 �&B,C,; = +È|[B])�&B,C,; = −È|[B]) = 		∑ .C&� ′).<,=,>w�p?,	?′∈?	 /C�p(�). 0C&� ′, �)
∑ .C(� ′).<,=,>wap?,	?′∈?	 /C�p(�). 0C(� ′, �), 

(5-14) 

where	HH�&B,C,;|[B]) is the log-likelihood ratio of the conditional probability of the received coded 

bit	B,C,;, i.e., the received symbol at the	
�� subcarrier and the	��� time and the	ô�� bit (there are 2 bits for 

QPSK and 1 bit for BPSK).  The terms	.C(�) and	/C(�) are the forward and backward probability 

recursions [46].  The term	0C(�, � ′) is given by [58]: 

 0C(�, ��) = 		�(��|�). �(C|�, ��)
= 	Ü 8@a p}AB.C=au A=,D=EFGH!9 .		�D=EFGH!9#

FIE# CBJ,									(�, ��) ∈ ?		0,																																																																														Otherwise

Í 
(5-15) 

where	<. >o!9 is the modular	�?> operation, and is used together with the non-zero positive integer	F to 

specify which interfering subcarriers or ICI elements in the matrix	8 are used in the	0C(�, � ′) 
calculation;	K} is the complex AWGN noise variance, while	�	and	�� are the present state and the next state, 

respectively, in all possible states ? of the channel trellis. 

5.5 Performance Simulations  

Since the IEEE 802.11p or the DSRC PHY standard is still under development, and the conventional 

system fails in Wireless access vehicular environments (WAVE), this study is carried out to propose 

modifications to the receiver that enable the system to take ICI into account to achieve improved PER and 

BER performances.  The DSRC systems are simulated using MATLAB.  For a fair comparison, the DSRC 

receivers receive the same distorted data from the channel.  In DSRC systems, a strong specular component 

is usually present, but sometimes strong specular components don’t exist [27].  The DSRC systems are 

tested in time-varying channels.  Therefore, the BER and PER vs. the signal-to-noise ratio (SNR) per bit 

performances are simulated under the worst case scenario, i.e. No-line of sight (No-LOS) 1-path Rayleigh 

fading channel.  The SNR per bit refers to the non-dimensional ratio	7¸ �x⁄  measure, or the ratio of the 

energy per information bit	(7¸)	to the noise spectral density	(�x).  The DSRC systems with the channel 

tracking receiver and the conventional receiver are designed according to the specifications in [40] and [7], 



5. Performance Enhancement of DSRC PHY Using Improved Equalization and Demapping Schemes 

  92 

respectively.  The relative velocities of 238	
�/ℎ�, and 74	
�/ℎ� (or Doppler frequencies of around 

1300	<½ and 400	<½, respectively) are selected, which are around the legal maximum and low relative 

speed limits of vehicles.  All the simulations are carried out with 60 OFDM symbols for each packet for 

1200 packets.  Due to the fact that the elements around the main diagonal of	8 contain the most 

concentration of ICI power, we select the diagonal elements of matrix	8 and its 2 neighboring subcarriers 

(the previous and the next subcarriers to the subcarrier of interest), by choosing the value	F = 1 in Equation 

(5-15).  
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Figure 5.16 BER and PER vs. SNR at 238	
�/ℎ� and 60 OFDM symbols under Rayleigh fading. 
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Figure 5.17 BER and PER vs. SNR at 74	
�/ℎ� and 60 OFDM symbols under Rayleigh fading. 

Figures 5.16 and 5.17 show the BER and PER performances at both high and low velocities versus SNR 

per bit, respectively.  In the following, the observed SNR per bit for Figure 5.16 are those of the BER and 

PER levels of	10a}.  For Figure 5.17, the observed SNR per bit are those of the BER and PER levels 

of	10a} and	10ap, respectively.  Without loss of generality, and since the systems with BPSK modulation 



5. Performance Enhancement of DSRC PHY Using Improved Equalization and Demapping Schemes 

  94 

outperform the systems with the QPSK modulation, we use QPSK modulation in this study to provide the 

performance comparisons at the relatively low velocity.  The proposed system is also simulated using 

perfectly known coefficients for the system with the velocity of 238	
�/ℎ�, to identify the performance 

trend that can be used as a benchmark.  Figure 5.16 shows that the proposed system with the high velocity 

and the QPSK scheme has performance gains of about 9.8 dB and 6.75 dB for BER, and about 4.5 dB for 

PER over the DSRC system with the channel tracking scheme and the conventional system, respectively; 

while the proposed system with the BPSK scheme has performance gains of around 11.25 dB and 9 dB for 

BER, and about 10 dB for PER over the DSRC system with the channel tracking scheme and the 

conventional system, respectively. 

It is shown in Figure 5.17 that a substantial performance improvement in both BER and PER 

performances is achieved in QPSK modulation scheme over both the DSRC conventional and the DSRC 

channel tracking schemes.  It is at the lower velocity that the channel tracking scheme slightly outperforms 

the conventional system for PER.  It is also noted that the system with the channel tracking scheme resulted 

in a very poor BER performance in all cases. 

 

 



 

  95 

 

Chapter 6 Reconfigurable Simulator Using Graphical User Interface and Object 

Oriented Design for DSRC PHY  

Chapter 6 

Reconfigurable Simulator Using Graphical User 

Interface and Object Oriented Design for DSRC PHY 

6.1 Introduction 

In the development of any new communication technology, either a full prototype or a simulation must be 

modelled and developed alongside analytical/theoretical models.  Prototyping is time consuming and 

costly, especially during the research and development stage where simulation is more attractive.  

Object-oriented simulation environments have modularity, abstraction, reusability and encapsulation 

features [48].  These features can for example, allow for a fair comparison for multiple receiver designs in a 

communication system to be tested under the same transmission conditions.  In object-oriented simulation 

environments, the objects interact with each other at different states of the simulation.  This makes object-

oriented simulation more useful for getting reliable estimates of performance once all simulation 

components have been verified.  

Orthogonal frequency division multiplexing (OFDM) systems were first proposed by Chang and Gibby 

for digital communications [59].  It has been used in wireless local area network (WLAN) standards (IEEE 

802.11a/g and HIPERLAN/2), digital video broadcasting (DVB), digital audio broadcasting (DAB), new 

broadband wireless access standard WiMax (IEEE 802.16e), and now dedicated short range 

communication systems (DSRC) [38, 60].  OFDM wireless communication physical layer (PHY) is a 

versatile communication model [59, 38].  This is due to the OFDM PHY having multistage components 

that share dependent symmetrical parameters/settings on each side of the communication channel [7], 

which is capable of being used in many different configurations within one or more technologies, such as in 

[61], [3], [62], and [63].  Testing various OFDM receiver designs under various levels of strain is important 

because it gives a more objective analysis of a particular implementation.  In other words, OFDM PHY 

receivers have to be optimized and compared to one another in different environments, and hence is a 

useful candidate for object-oriented simulation analysis.  

OFDM communication systems have different configurations depending on different applications, and 

can also have different performance characteristics.  Hence, the OFDM communication systems are 
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required to operate in different operating modes, and having a simulator with a modular structure, capable 

of reconfiguring on demand is desirable as it gives the ability to test full system performance.  Object-

oriented simulators can be made compatible with other object-oriented simulators, and hence can be 

deployed as subsystems [64] when simulating other aspects/layers of a communication system.  An 

example would be for use in cross-layer analysis at different levels such as network layer or medium access 

control (MAC) layer [7].  

The majority of the simulation designs focus on simulation of higher layers of the open systems 

interconnection (OSI) communication stack, such as the ones shown in [65].  It is shown that changes in the 

physical layer or the channel of a communication system can have great repercussions in the higher layers 

[66].  In addition, other layers require information from the PHY to perform optimally.  For example, a 

more realistic PHY implementation is important when it comes to a dynamic MAC layer design [37].  Due 

to this fact, and with the PHY being the lowest part of the OSI Model in a communication system, it is very 

important to have a well optimized and accurate PHY model for simulations. 

Other works discuss OFDM simulators from different aspects, as heterogeneous simulation 

improvement, Network Simulator 2 (NS2) PHY accuracy improvement, model abstraction and 

approximation, Matlab and/or Simulink detailed modeling, and hardware accelerated simulation. 

Authors in [67] study the effects of detailed modeling of OFDM PHY and focus on the integration 

between a Matlab/Simulink OFDM PHY simulator and a Qualnet Medium Access Control (MAC) layer 

simulator.  The authors emphasize the importance of detailed modeling of the OFDM PHY and perform 

heterogeneous runtime performance study which resulted in improved simulation time.  In [67], Network 

Simulator 2 (NS2) is used in conjunction with Qualnet with its proposed model, and studies the effects of 

accurate PHY modeling on higher layers, and shows upwards of six fold TCP/UDP throughput difference.  

Studies [68] and [69] investigate the use of hardware assisted OFDM simulation, showing that using field 

programmable gate arrays (FPGAs) programmed using Hardware Description Language (HDL) can 

improve simulation runtime performance over pure software simulation.   

Some OFDM simulators use PHY abstraction to make approximations for parts of the OFDM PHY to 

improve simulator performance runtime and resource usage.  For example, authors in [70] focused on 

OFDM channel realization in the frequency domain for reducing complexity of simulation to increase 

simulation runtime performance.  There are advantages to OFDM PHY abstraction, but this may not be 

accurate in all OFDM PHY scenarios.   

In our OFDM PHY simulator model description, we use Unified Modeling Language (UML) diagrams 

to allow for understanding and implementation of the concepts we present regardless of platform choice or 

familiarity.  The UML diagrams express and emphasise the building of our high level objects that are 

inherently modular, flexible, and interactive.  Consequently, the flexibility and interaction of our 

simulator’s objects improve usability by introducing automatic reconfiguration, and parallel processing 

capabilities are improved through modularity of these objects.  Although, the initial development time 

investment in a high level simulator designs, such as ours, is arguably higher than that of a purely 
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functional implementation of a specific problem.  This fact is mitigated by the re-usability of the object-

oriented generic design, code modularity, and potential for rapid reconfiguration.  We choose to illustrate 

the benefit of using an object-oriented design to improve parallel processing, and a graphical user interface 

(GUI) to control simulation parameters of a versatile/reconfigurable and complex OFDM PHY 

communication simulation system.  Our object-oriented OFDM simulator allows for ideas to be expressed 

to others working in the same field through analysis of the simulation results.   

High-level object-oriented design is a technique that is used to create flexible simulation objects.  

Parallel processing and distributed computing reduces overall time to complete a simulation by transferring 

process load in a simulation.  Our work is based on the underlying complexity of designing OFDM PHY 

communication systems that need to be studied under various dynamic situations.  The creation of a 

platform for rapid design and preliminary evaluation is studied and developed, building on existing 

software development techniques to apply them to OFDM PHY communication engineering problems.  In 

addition, for explaining the development of our high level OFDM simulator, we are not focusing on any 

particular platform/programming language, such as Matlab, Simulink, IT++, Scilab, C++, Java.   

6.2 Modelling 

As stated by Bratley et al [71]: "a model is a description of some system intended to predict what happens 

if certain actions are taken,” which is an essential definition of a model of a real system.  For a 

communication simulation, the model would be based on the communication protocol with rules and 

algorithms used to emulate environmental reactions, that is, emulating the behaviour of both the engineered 

communication elements and the natural elements.   

Using generic simulations of the components of the OFDM system allow for testing and optimization of 

the PHY under unusual stress conditions or for specific applications such as for high mobility or high data 

rate conditions.  There are other components that can be added depending on what the designer wishes to 

include as a component such as coherent detection enhancement, alternate piloting schemes, ISI or inter-

carrier interference (ICI) cancelation compensation, or multi-input/multi-output features.   The diversity of 

OFDM communication systems both for application, medium, and technological improvements make it 

worthy of further study.   

OFDM PHY offers flexibility in the number of subcarriers used in transmission, modulation level, 

coding type, code rate, channel estimation technique, zero padding, interleaving type, and many other 

features which significantly affect the performance, as can be seen in [40], [41], and [7].  Table 6-1 

presents the value parameters used for running  IEEE 802.11p OFDM PHY system scenarios, which are 

used for the models that produced the simulated results in the Figures 6.1, 6.2, and 6.3.   
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Table 6-1: General IEEE 802.11p OFDM PHY parameter value combinations used in simulated examples. 

Name Symbol Unit Values 

Signal-to-Noise Ratio SNR dB [1, 2, 3, 6, 10, 15, 20, 25, 30] 

Channels   Rayleigh and Rician (1-path, 2-path), AWGN 

Rice Factor K  [0, 1] 

Pilot   48 

Interleaver   Block 

FFT   64-point 

Maximum Doppler 

Frequency (velocity) 

LM  

(v) 

Hz 

(km/h) 

[137,273,546,819, 1043,1300,1311] 

([25,50,100,150,200,238,240]) 

Symbol Duration NÖ  óÖ  [8,4] 

Packet Length OÖ  Symbols/ 

packet 

[60] 

Number of Packets   5000 

Modulation M  [BPSK, QPSK, 16QAM, 64QAM] 

Demapping   [hard and soft (linear quantization) decisions] 

Decoding   [hard, soft, BCJR, Viterbi] 
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Figure 6.1 BER vs. signal to noise ratio for different channel, transmitter and receiver scenarios. 
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Figure 6.2 PER vs. Doppler shift for different channel, transmitter and receiver with different symbol 

durations. 
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Figure 6.3 BER vs. packet length for different channel, transmitter and receiver scenarios. 
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Figures 6.1, 6.2 and 6.3, are sample result plots based on the system configurations and components 

presented in Table 6-1.  It is from these plot results, that the designer may be able to draw conclusions on 

the performance of his/her design compared to the conventional or other OFDM PHY designs.   For 

example, it can be concluded from Figure 6.1 that the OFDM system designs with the higher modulation 

scheme (16-QAM) suffers error floor.  On the other hand, the OFDM systems with the lower modulation 

scheme (QPSK) outperform the systems with 16-QAM modulation, but at the expense of a lower data rate, 

calculated from Equation (1).  Another important observation from the figure would be that the OFDM 

receiver designs with soft decision capabilities outperform their relative receiver designs with hard decision 

capabilities.  Figure 6.2 will later be used as a specific example of how the simulator can be used to 

compare different system designs and configurations, and later on in this chapter as the case study for the 

proposed packet partitioning technique.  

6.3 GUI Considerations 

An outline of some considerations to create a GUI for an object-oriented simulation system is presented in 

this section.  This will facilitate in the understanding related to the simulation design.  The GUI is the 

primary interface between the computer simulation and the user.  The GUI for the proposed simulation 

environment is built as a separate entity from the simulator, and is used to define configuration of the 

simulator.  The simulator is composed of classes that are configured to define the simulation environment 

metrics that change and select different components from the OFDM PHY to be simulated, as will be 

discussed.  It is important that a feedback relationship exists between the GUI and the simulator so that as 

the simulator is modified to feature new functionality, the GUI during simulation setup can query the 

components for what features are available.  For example, if new modulation types are added to a 

modulator class at the simulation level, the GUI will reflect those additions in its platform for the user to 

see.  Components such as these needs to be designed so that they can give appropriate update information 

to the GUI as part of their development.  Section 6.4 will illustrate this feedback relationship.   

Use of a GUI is recommended because it allows for fast reconfiguration of the components in the 

simulation.  Each component can have compatibility with each other based on the underlying programmatic 

relationships between the objects, but the actual control of the parameters should be controlled by the GUI.  

Additionally, if the designer wants to reconfigure an OFDM PHY design, many variables and parameters 

may be changed at the GUI level.  Coding these changes by hand can lead to errors.   By using a GUI with 

our proposed simulation environment, all of the parameters are in one place with constraints on the user 

input.  Therefore, when changing scenarios in our object-oriented simulator with GUI, the user does not 

have to worry about those errors because of the inherent flexibility of the system.   

6.3.1 Simulation control 

The functionality of adding new components to the simulation is very useful when testing different versions 

of a design. From the new component design point of view, once the input/output of the designed 
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components have been made compatible with the existing OFDM system, it is with relative ease that the 

new design can be fully integrated with the existing object-oriented simulator.  Configuring the individual 

components using a GUI is straight forward, while individual parameters are constrained based on the 

existing simulation objects. Constraints on the components are stored as bounded limits, and are 

communicated back to the GUI so that simulator does not exceed these limits.   

 
A:  Main Model Settings E: Output/Visual Settings 

B: Transmitter/Receiver Settings F: Modulation/Decoding Settings 

C: Channel Settings G: Simulation Initialization, and 

State Settings D: Simulation Controller Settings 
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Figure 6.4 Example GUI parameter setup for the OFDM PHY model. 

Figure 6.4 shows example parameters that may be used in a GUI for a versatile OFDM communication 

system scenario simulator.  Our implementation is achieved using the Matlab platform.  However, the 

theory behind our simulation environment can be used in many other object-oriented capable platforms.  

The layout of the GUI is divided into different sections with each section having different configuration 

settings, namely: main model settings, transmission/receiver settings, channel settings, simulation 

controller settings, output/visual settings, decoding settings, and simulation initialization and state settings, 

which is used for current state saving/loading configuration (for multi-stage simulations). For clarity, basic 
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descriptions of some of the main configuration settings found in our example GUI platform of Figure 6.4 

are presented in Table 6-2.  In general, the GUI has settings linked to all of the configurable OFDM System 

parameters, found in [41], [7] and [38].  

Table 6-2: Main user configurable GUI platform parameters  

Name Symbol/Variable Descriptions 

Convolutional Encoder poly2trellis Encoder generator used for FEC purposes 

Puncturing  Different encoders with different code rates require different 

puncturing levels to ensure relatively higher throughput 

Number of soft values nsoft The number of information bits needed (granularity of the 

information) 

Packet length pktlen Number of packets in an OFDM system 

Traceback length tblen Needed for proper storage of path decisions made by the decoder 

Modulation type  [BPSK, QPSK, 16QAM, 64QAM] 

Parallel carriers para Number of parallel data subcarriers in an OFDM symbol 

Fast Fourier Transform 

length 

fftlen Total number of subcarriers, which include para, zero padding and 

pilots subcarriers in an OFDM symbol 

Number of carriers noc Number of para, and pilot subcarriers combined in one OFDM 

symbol 

Intearleaver block intrlv Block interleaving is adopted if selected, or else random interleaving 

will be used as the interleaver 

Symbol duration sr The symbol duration of an OFDM symbol 

Guard interval guard Length of guard intervals in one OFDM symbol 

Signal to noise ratio ebn0 Ratio of energy per information bit to the noise spectral density 

Maximum Doppler 

Frequency 
LM 

 

This phenomenon exists when the relative velocity between 2 

antennas is greater than zero 

It is at the simulation controller settings (part D in Figure 6.4) that the user would specify a range of 

values that reflect how the user wishes to compare different OFDM designs.  Specifically, the user could 

compare the designs in varying signal-to-noise ratio, Doppler shift, and packet length values.  If needed, the 

user can save current plot results for later retrieval by selecting the save all plots option at the output/visual 

settings section (part E in Figure 6.4).   

 

The following is a specific example of how the simulator can be used for a fair comparison of different 

system designs and configurations in a step-by-step format (refer to Table 6-2 for definitions of OFDM 

PHY GUI settings, and Figure 6.4 for the simulator GUI layout).    

1. Initialize 

a. Start the GUI on the client computer. 

b. If previous settings have been saved, the user can use the “Load Settings” button to load 

previously saved settings if desired (Figure 6.4 part G). 

2. Specify Simulation Settings and Visualizations 

a. Specify “Simulation Settings” including: number of OFDM packets to simulate; control 

variable (i.e. signal to noise ratio, Doppler shift, and packet length); number of times to run 

simulation (“numsim” in Figure 6.4 part D); and number of variations in the chosen control 

variable (“numvar” in Figure 6.4 part D).  Note that selecting the “Simulation Variation” 

(i.e. ebn0, Fð, pktlen) control variable will disable some blocks in the Model 
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Settings/Constraints because it is overriding the fixed variable settings (ebn0,	Fð, pktlen in 

Figure 6.4 parts A, B and C).   

b. Chose visualizations to include in simulation output using the drop down menu (for 

example scatter plots as depicted in Figure 5.4 from previous chapter).  The location to 

save files defaults in the plots folder, which can be changed by the user by typing the folder 

and subfolder names if applicable (Figure 6.4 part E).  For example, the user can specify 

the simulation output save folder location as “home\OFDM\testX”.   

3. Specify OFDM PHY design configuration 

a. The user then specifies “Model Settings” such as convolutional trellis for the convolutional 

encoder, modulation level/scheme, puncturing, packet length, system quantization level etc. 

(Figure 6.4 part A).  Note that drop down boxes contain all detected settings in the OFDM 

Simulator that can be chosen by the user.   

b. Afterwards “Shared Model Constraints” are specified which includes: number of parallel 

transmissions, symbol rate (sr), FFT length, guard interval length, number of training 

symbols, noise level (disabled if ebn0 is the control variable selected in “Simulation 

Variation” in Figure 6.4 part D). 

c. The user specifies decoder by selecting the decoder type from the drop down box (Figure 

6.4 part F).   

d. Then the user repeats steps 3a – 3c for each OFDM system configuration or design as 

applicable for comparison requirements. 

e. Time-varying channel conditions are then specified (Figure 6.4 part C). 

4. Simulate and Analyze 

a. The user then runs the simulation and waits for results by pressing the “Start Simulating” 

button (Figure 6.4 part G).   

b. BER and PER performance results are plotted by default for immediate comparison 

between the different system designs and configurations the user specified. 

Note that only compatible options are made available to the user because of the high level object 

interactions in our simulator.  This is due to the automatic simultaneous class object inspections of source 

and user settings.  This prevents simulation setting mistakes, which could otherwise cost time in debugging 

or simulation of incorrect systems.   

For a specific numeric example of the steps above for specifying an OFDM system configuration refer 

to system 1 of the total 8 systems in Figure 6.2.  That is, to specify an OFDM system that uses symbol rate 

of 125000 symbols per second, pure 1-path Rayleigh fading channel operating under BPSK modulation 

with hard decision Viterbi decoding, under varying	Fð at constant ebn0 of 30dB, do the following: 1) Start 

the simulator GUI; 2) set the control variable to	Fð, and specify the desired range interval for the Doppler 

shift; 3) set the modulation level to BPSK from the drop down list, initialize sr to be 125000, set rice factor 

K to 0 for pure Rayleigh fading, set ebn0 to 30dB, and chose 1-path Rayleigh fading; add another similar 



6. Reconfigurable Simulator Using Graphical User Interface and Object Oriented Design for DSRC PHY 

  104 

system for comparison in the same way; 4) press the “Start Simulating” button and results will be displayed 

and saved by default after simulation completion.   

In order to make good comparisons between different configurations, various saved states of the 

simulation can be continued and reused at different parts along the transmission and reception processing.  

A similar implementation of the concept is presented in [72].  The authors in [72] have shown that in 

scenarios with multiple runs that shared a lot of similarities among them acheived a significant reduction in 

simulation time when a technique called updateable simulations is used.  Rather than re-executing an entire 

simulation in scenarios where variations in the simulation model need to be taken into account, the 

technique reuses prior simulations run and updates them to accomodate these variations.  In our proposed 

simulator, loading and saving of previously run or paused simulations from the GUI is beneficial because 

saved state information can be analysed, compared, or even modified for evaluation.  The loading, saving 

and initialization process are controlled in part G of Figure 6.4.   

 

Load selected 

parameter values to 

GUI view 

Load Settings 

Search for saved 

intermediate data 

Modification of 

Simulation Parameters 

for Comparison 

Start Simulation 

Save new simulation 

data 
 

Figure 6.5 Example of GUI level state loading method. 

Figure 6.5 shows a method of how the settings could be loaded for simulation.  The figure demonstrates 

that after the load settings operation is initiated, the GUI level will search for saved intermediate data, and 

loads the selected parameter values that were used for the generation of those intermediate data.  The user 

may wish to change these parameters for a more meaningful comparison.  Using this method, any 

simulation created by the model can be continued from another simulation and/or can be branched off from 

the current or previously saved simulation for comparison.  The saved intermediate data are saved in 

buffers and can be at such locations as the transmission input, transmission output, channel output and 

decoder input.  From the saved data information, other simulation scenarios can be manually simulated in 

parallel using the GUI to load an intermediate data point, and then combined post simulation for 

comparison.  
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6.4 Simulation Design  

This section presents the connection between high level object-oriented design and usability for a flexible 

OFDM communication simulator.  Example flow charts, UML and sequence diagrams are presented with 

descriptions in order to assist in the understanding of the material.   

In order to create reconfiguration, information must be exchanged to configure the components to 

interact with each other.  It is important to understand some of the key parameters being used in the 

simulator in order to be able to control it appropriately, and so we present common parameters in Section 

6.4.2 along with relationship models coinciding with the parameters in the GUI previously presented.  The 

generic OFDM PHY parameters for the simulator including packet size, symbol size, modulation type, and 

code rate are updated from the configuration information to ensure interoperability of the components 

between each other.  The configuration information for each object consists of user input from the GUI, and 

some automatically extrapolated information based on overall system parameters as well.   

The tendency when creating an environment for testing OFDM PHY is to follow a pattern/standard, or 

to use pre-existing tools, such as [41], that limit the amount of flexibility of the simulator.  This limits the 

creativity of the person using the simulator to rigid design constraints, when a more flexible environment is 

preferable.  To build an effective object-oriented simulator for OFDM PHY, the components available for 

simulation must have their own information transfer such that each component of the OFDM system that is 

capable of changing must be able to convey the input/output constraints to the rest of the system.  The 

configuration settings can be stored in a database or in a data structure.  For example, in the case of a 

modulator at the transmitter, there must also exist an appropriate de-modulation technology at the receiver 

that will be performed, hence the demodulator will be chosen and set sharing information from the current 

modulation scheme.   

6.4.1 Simulation Environment Overview 

The simulation environment of the flexible simulator is designed to allow for many changes to be made to 

the system being simulated without having to change the code defining the simulator.  Figure 6.6 illustrates 

the simulation environment, which shows the flow of information between GUI level specifications and the 

simulation level specifications and the implementation of the reconfigurable OFDM PHY.  The GUI level 

contains the simulation parameters, such as varying	7¸/�x (or ebn0 as seen if Figure 6.4, and is defined as 

the ratio of the energy per information bit to the noise spectral density), and the system parameters (such as 

symbol rate (sr)).  Both the simulation and the system parameters come from the GUI platform.   The 

simulation parameters define varying parameters in a simulation that the OFDM system is being tested on, 

while the system parameters are the fixed parameters that define the specific OFDM system that is being 

tested.  For example, to test a transmitter/receiver through a channel with varying	7¸/�x, one would set a 

vector of simulation parameters with changing	7¸/�x (ebn0).  As can be seen from the figure, the 

simulation parameters and system parameters are passed to the simulation setup level, which in-turn passes 

these system parameters as variables for various components composing the simulation level requiring the 
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information.  As the information for the various components update, each OFDM PHY component receives 

the respective updated parameters, and hence the system changes state.     
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Figure 6.6 Simulation environment overview. 
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Figure 6.7 Illustration of information exchange between GUI and simulator levels. 

From Figures 6.6 and 6.7, the simulation level contains a transmitter bank (Tx1 to TxN), a channel bank 

(Ch1 to ChN), and a receiver bank (Rx1 to RxN).  In addition, it contains components that buffer information 

such as transmitter buffer (TX Buffer) and channel buffer (CH Buffer), which save simulated results of their 

respective stages for re-use later, as introduced previously.  It should be noted that the simulation and 

system parameters at the GUI level affect component banks at the simulation level differently, i.e. some of 
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them should affect specific component banks, while others share or affect all or multiple, as seen in  

Figure 6.7.  For example, ‘para’ is shared by all the banks, while ‘ebn0’ is only used in the channel bank.  

Therefore, different OFDM system models can be created with flexibility.  This flexibility is accomplished 

because the simulation environment is defined entirely using object-oriented programming with class 

information exchanging between the GUI level and the simulation level.   

6.4.2 Simulation Configuration Considerations 

Simulation configuration represents all the parameters and the settings that affect the behaviour of the 

simulator.  Simulation configuration is important to be considered for ensuring accuracy in the simulator.  

The flexible parameters, which are part of the simulation configuration, and consist of the simulation and 

system parameters, are completely defined in the GUI from earlier section.  For an OFDM PHY system, the 

transmitter, channel and receiver must be compatible with the simulation configuration.  Component 

configuration incompatibilities are eliminated by the sharing of configuration information between 

components.  In addition, sharing simulation configuration information for compatible simulations becomes 

a viable option for facilitating fair comparisons.  For example, the performance of the OFDM system is 

sensitive to variations in the channel [37], and hence each OFDM design has to go through the same 

channel for reliable comparison results.   

Transmitter 1 

Channel 1 Channel 2 

Receiver 1 Receiver 2 Receiver 3 

Combine data results and output performance 

 

Figure 6.8 Tiered simulation with each path resulting in dataset for output. 

Figure 6.8 shows a general tiered simulation scenario that uses sharing of simulation configuration and 

processed intermediate data sharing.  It has two channels and three receiver combinations, with the data 

from each simulation run processed for comparison.  Output data from transmitter 1 is run through both 

channels 1 and 2, and afterwards, the output data from channels 1 and 2 are processed individually by 

receivers 1, 2, and 3. 
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6.4.2.1 The High Level Design of the GUI and Simulation Layers 

Figure 6.9 shows the sequence diagram showing the interaction between the GUI level or layer and the 

simulation level.  The interaction occurs with the user starting the GUI; from there the GUI level polls the 

simulation level for what features are available in each module of the simulator.  This information is 

defined by each class in the simulator so that the GUI level needs to poll a functionality method which 

returns a list of variables that can be modified for each mode of operation.  The GUI level combines this 

information into a useful grouping of controls for the user to be able to modify as desired.  The user starts 

the simulation after making desired changes to the simulation and system parameters which triggers the 

GUI level to store the modified parameters into the Model_Settings class (seen in Figure 6.10).  The GUI 

layer passes the information to the simulation layer or level, which interprets the Model_Settings class 

information to reconfigure the OFDM PHY simulator (seen in Figure 6.11), potentially multiple times 

depending on what scenarios and systems the user has selected for testing.  As a summary, the GUI is 

linked with the simulator (at the simulation level) to both receive and provide simulator system parameters.  

In addition, it is also used to initialize configuration classes, and hence serves as the blueprint for the 

objects used by the rest of the simulator.   

 
 

Figure 6.9 Sequence diagram showing information exchange between the GUI and simulation levels. 
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Figure 6.10 The GUI level main simulation model control classes (Model_Settings). 

 

Figure 6.11 Overview of main classes for simulation level showing relationship between its classes. 

An example usage scenario with associated UML class diagrams of the proposed OFDM PHY 

simulator will follow.  A discussion of some of the main features and functions of the important 

configuration classes and how they relate to configuring the simulation will also be presented.  The user 

will start the GUI.  The GUI level or layer obtains the default features available in the simulator, and then 
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displays a visual representation of these features by showing the GUI platform dialog presented in  

Figure 6.4.  The user then operates and modifies variables that define the simulation configuration of the 

system according to requirements.  The user than runs the simulator, which in turn will pass the modified 

variables to a simulation node seen in Figure 6.11.  The simulation node then initializes an OFDM PHY 

instance (where an instance is one class that has been constructed and stored in the simulation memory) 

based on the parameters stored in the Model_Settings, Shared_Model_Settings and Simulation_Controller 

classes shown in Figure 6.10, which were defined at the GUI level.  Figure 6.11 shows the class diagram 

showing the high level relationships between the main classes for the simulator, also defined as the high 

level simulation level.  From the figure, the lines between the classes represent the entity relationship 

between the classes, where ‘1’ to ‘1..*’ means one class instance to many.  For example, an OFDM PHY 

system class can contain multiple transmitter modes for each system design.  The individual scenarios 

inherit their configuration from the Model_Settings classes presented in Figure 6.10. 

For simplicity, we show the configuration information inheritance as the variable “system info” in 

Figure 6.11, which defines the system and simulation parameters, and is an instance of class type 

Model_Settings.  As mentioned earlier, Model_Settings is used to store important information that is used 

throughout the system to ensure continuity of parameters, and serves as a verification and control check 

because functions explicitly retrieve parameter values from this structure only.  Incompatibilities between 

different OFDM PHY components can be avoided because each component is sharing its own copy of 

‘system info’.  Also in Figure 6.10, the class Model_Settings::Shared  stores information related to the 

reshaping of output data and sharing of that data between various components and ensures end-to-end 

compatibility of data, and Model_Settings::Simulation_Controller is used to control varying attributes of 

the simulation, which is used for comparisons between model instances after final output processing (for 

example, it is key in comparing a OFDM PHY design with itself at different	7¸/�x (ebn0) or Doppler shift 

(F') levels).  From previous section, the simulation parameters define varying parameters in a simulation; 

hence the Model_Settings::Simulation_Controller class contains these parameters.  A description of the 

variables from the Simulation_Settings classes in Figure 6.10 is presented in Table 6-3 for reference.  Most 

of these variables receive initialization from the GUI platform in Figure 6.4, and can also be found in Table 

6-3. 

The OFDM PHY class in our simulator, synonymous to the actual implementation, is composed of a 

transmitter class, a channel class, and a receiver class.  The transmitter class in Figure 6.12 contains 

components such as the encoder, interleaver, and modulator, with each of these capable of being designed 

with significant variation.   In order to perform flexibly and to perform the various tasks required by the 

OFDM PHY, the major classes such as the transmitter and the receiver must have internal classes of their 

own constructed to handle the operations and configurations, as shown in Figures 6.12 and 6.13 

respectively.  Each of these classes can be extended to behave in a different manner in order to react 

differently.  For example, with the modulator, it can be extended to perform additional modulation schemes 

with compatible input/output, as well as symmetrical demodulation schemes at the demodulator.  In order 
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to link objects together, even during reconfiguration, it is beneficial to use the same data addressing and 

dimensions of array elements being passed from one block to another.  This can be done by using either 

dynamic object types or pointers.  Exchange between components such as the signal compensator and 

decoder requires this for the option to have a flexible choice of demodulator designs because array indexing 

would lose consistency when using two-dimensional array or pointer indexing. 

Table 6-3: Attributes used in the classes defining the parameters used by the GUI and simulation levels 

Variables Description 

trel Convolutional encoder trellis structure 

generatorMatrix Convolutional encoder generator matrix 

constraintLength Convolutional code constraint length  

trackbackLength Convolutional code trackback length 

Txs Instance of class type Shared, used for the shared variables between different OFDM 

designs  

pktlen Integer packet length for the system 

mtype Number of bits per constellation point, decided by the modulation type (modulationType) 

np Number of paths for the Rayleigh fade 

fadestart The initial point or the delay of the fade signal 

puncture Puncture level for the convolutional encoder 

nsoft Number of soft bits for defining the number of quantization level purposes 

interleaverType For choosing between Block or symbol interleaving type 

modulationType Modulation type = [BPSK, QPSK, 16QAM, 64QAM] 

decoderType Decoder type selection 

sim Instance of class type Simulation Controller, used for the simulation parameters 

Para Number of parallel data transmission lines 

fftlen FFT/IFFT length of one OFDM symbol, includes para, zero paddings and pilot subcarriers 

noc Number of carrier lines (para +pilot subcarriers)  

modl Shared modulation level information 

kmod Modulation normalization factor 

sr OFDM Symbol rate 

Perfectcomp Enable perfect compensation tracking 

Kfactor Rice factor, used in fading 

Guard Guard interval 

ebn0 Signal to noise ratio 

fd Doppler frequency 

pktlen Vector or varying packet length 

Visualization 

Controller 

Used for saving and displaying result plots  

The channel class contains channel related information and methods for creating various channel 

conditions, including a mixture between multipath, AWGN and LOS components along with interference 

modelling, introduced earlier in this chapter.  With the receiver classes shown in Figure 6.13, channel 

estimation and equalization classes collectively correct for detected channel distortions.  For a more 

detailed look at channel estimation and equalization, the reader may refer to [38, 73].  Additionally, the 

demodulator and decoder classes are able to transform data for interpretation.  As mentioned earlier, each 

class can be extended to include alternate methods for performing their main operation according to 

preference of the designer and the implementation language.  These alternate methods are added to the 

class, and can be accessed when creating a new implementation of an OFDM system for simulation.  

Hence, this facilitates comparison and collaboration between researchers who want to benchmark their 

designs in a common environment.   
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Figure 6.12 OFDM PHY and its transmitter and channel subclasses. 

 

 

Figure 6.13 OFDM PHY and its receiver subclasses. 

6.4.2.2 Iterative Case 

The reduced granularity of feedback information is becoming increasingly important for turbo 

receivers, such as [74], and the amount of granularity required can be tested using our simulator, as shown 

in part A of Figure 6.4.  The rest of this section contains some relevant information for creating simulations 

that include iterative processing in the receiver portion of the physical layer.  It is assumed that the goal of 

the receiver is to reproduce the original transmission information in its original format, and hence the 

receiver should output in the same format as the transmitter's input for comparison.   
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Figure 6.14 Modified tiered simulation to include iteration. 

As seen in Figure 6.14, the simulation data feeds back when an iterative receiver is added for 

comparison against other receiver versions.  To achieve this, the iterative receiver needs to have a feedback 

component and save the feedback information for the next iteration.  Receiver 1A and Receiver 1B in 

Figure 6.14 denote the first iteration and the second iteration in an iterative receiver, respectively, while 

Receiver 2 and Receiver 3 are alternate receiver designs.  The decoding portion of the transmitter can 

decode an entire packet or decode an OFDM symbol (symbol-by–symbol), and feedback information can 

be transferred to have the receiver behave as an adaptive receiver.  When implementing this change in 

decoding OFDM Symbol size, one must be careful that the chosen decoder does not lose too much 

information during the decoding process, that is, for the case of the Viterbi decoder [75], a trackback length 

delay occurs between the encoded and decoded streams.  One way that could be done to overcome this is to 

store trellis state transition information for recursive reuse for subsequent decoding runs.  In order to 

simulate this type of shared information exchange, the receiver class would be iterated using a call to the 

iterate method (a recursive call), which treats the receiver class as if it is recursively being called, but 

instead of a full recursion where extra memory copies would be saved. Hence, the receiver alternatively 

updates current instance of the receiver class based on the previous values, and processes it as a standard 

receiver.  Examples of OFDM PHY receivers that use iterative techniques in their receiver designs include 

[40, 64].     

6.5 Distributed and Parallel Computing 

As is evident in [76, 77], using processing components to define the simulation objects inherently creates a 

natural separation of memory space that can be duplicated for separate processing threads and hence 
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parallel processing and distributed computing techniques can be used [78].  The general architecture of a 

distributed computing environment is shown in Figure 6.15 with a mix between sequential and parallel 

processing and reuse of processing cores.  This architecture allows for flexibility and information sharing 

because of the inter-communication between parallel and sequential processing units.  For example, a copy 

of Model_Settings discussed earlier, can be stored in each thread’s memory.  This will allow each 

component in these processing threads running in parallel to access the required parameters to allow a fair 

comparison among variations of the OFDM PHY designs.   

 

Figure 6.15 Processing units with inter-process communication showing the high level simulator layout. 

High level design also lends itself well to usability and control of components because of how attributes 

can be set in the objects.  That is why we have the controller processing unit, in Figure 6.15, taking input 

from a GUI and submits control instructions to lower processing units, including an output control 

processing unit for displaying information to the end user of the simulation.  The output processing unit 

collects information from the other processing units and computes useful relationships from the output.   

The general form of Figure 6.15 can be applied to the application specific form in Figure 6.7 presented 

earlier.  This allows for high throughput simulations for rapid testing of theoretical parameters, with the 

amount of processing time depending on factors such as packet processing time, iterations, number of 

processors available, and speed of processors used in the simulation, etc.  

In the next section, we propose that for testing multiple physical layer designs, packet partitioning 

across different scenarios be used instead of the commonly used scenario processing, to maximize the 

utilization of available processing units.   
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6.5.1 Simulation Partitioning  

A general approach to parallel and distributed computing concepts for object-oriented communication 

simulators was discussed in the previous section.  This section will now highlight some benefits of 

simulation partitioning for the enhancement of such parallel processing.  The simulation partitioning is a 

method of separating a simulation into smaller parts so as to run with lower memory requirements or for 

parallel processing. It can be applied to any object-oriented simulator that has parallel components.  In 

order to make use of the multi-core processors that are abundant in computer labs, we suggest finding the 

right mixture between scenario and packet partitioning.  When partitioning packets only, each thread uses 

different parts of the messages and can perform all scenarios.  When partitioning by scenario only, each 

thread uses identical transmitted messages for different scenarios.  Figure 6.16 shows 4 scenarios with 

equal messages with lines drawn representing packet partitioning (vertical dashed lines intersecting the 

packet array) and scenario partitioning (horizontal dashed lines).   
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Figure 6.16 General and uniformly distributed packet and scenario partitioning for four OFDM PHY design 

simulations. 

Uniform scenario partitioning can be processed without object-oriented simulators because each 

scenario can be programmed for the specific task. On the other hand, packet partitioning requires the 

reconfiguration of the simulator during runtime.  This reconfiguration is suited for the object-oriented 

simulator because of the capability of updating the object attributes, which change the states of the 

simulator.  Spreading out the processing load equally across all processing threads, while minimizing data 

exchanges between processing units, is an optimal partitioning.  For example, using 3 processors to process 

3 jobs of different difficulty will be optimum if each processor spends an equal amount of time on the 

processing. That is, the processor should simulate both packet and scenario partitioned data.  If more 

processors become available during the main simulation, the load can be redistributed to include them. 
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Hence the job will finish faster because each module is capable of acting as an independent reconfigurable 

simulation.   
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Figure 6.17 Timing diagram showing both packet and scenario partitioning methods used for parallel 

processing. 

The simulation of an OFDM system can be broken down into parts that can be run in parallel, i.e. 

packet groups can be run through a separate simulator, as seen in Figure 6.17.  The general example of 

Figure 6.17, illustrates 4 processors and 4 different OFDM PHY designs.  For the scenario partitioning 

example, each of these OFDM PHY designs run on separate processors.  In the case of the packet 

partitioning example, each OFDM PHY design will have its packet numbers separated into smaller groups 

and each of these packet groups will run in separate processors (shown as different shaded blocks).  The 

same procedure applies to each OFDM PHY design.  Processing elements of the simulator are represented 

by P1 through P4, and can be on the same machine or separate machines.  For a limited amount of parallel 

processors, a combination of both parallel and sequential simulation can be joined at the end of a 

simulation.  Besides the packet separation, additionally, the transmitter, channel, and receiver can each be 

simulated in a hierarchy manner, as in Figure 6.15 presented in an earlier section.   
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Figure 6.18 Flow chart showing steps for scheduling the objects in the simulation. 

 

Figure 6.19 Sequence diagram showing an example packet partitioning setup with four scenarios being 

processed by 2 main processing units and a controller unit. 
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In order to calculate the scheduling packet partitioning for the object-oriented simulator, several steps 

must be taken in order for the simulation to be partitioned according to available resources.  These steps are 

outlined by the flow chart in Figure 6.18, which includes a processor availability query for estimating 

resources. The packet partitioning step allocates the amount of packets to be run on each processing unit for 

each scenario, and steps for assigning the starting and ending states for each identical object in each 

partition in order to simulate straight time of the conditions of the OFDM PHY.  Rudimentary steps such as 

these may be calculated by the controller unit (see Figure 6.15) rather than the individual processing units 

to reduce overhead on those units.  Packet partitioning is setup before output, but must be recombined again 

and processed by the output processing unit.  The processing units each repeat the process for each OFDM 

PHY scenario until all scenarios have been simulated.  

The processing units do not have to wait because a controller unit would be processing the design 

concurrently, as more clearly shown in the example sequence diagram in Figure 6.19.  The reconfiguration 

overhead of the controller unit depends on the number of designs and not the number of processors used.  

Hence, for a low number of receiver designs being tested at once, which is usually the case, the 

reconfiguration overhead time is negligible.  The flow of the sequence diagram of Figure 6.19 outlines an 

example for 4 different packet groupings and 3 processors, a controller processor and 2 main processors 

interacting to produce 2 simulations using packet partitioning.  The sequence is as follows: first the 

controller processor checks to see the processor's availability; the processors units respond with load 

availability information; from there the controller processor creates a schedule for the simulation task and 

initializes copies of the Model_Settings in the simulator layer of each simulation scenario;  the controller 

processor assists with making sure the other processor units have the next model available in memory so 

that they can alternate jobs so that the load is evenly distributed.  After the simulations have finished, the 

data can be combined and output results can be analysed using the output processing unit as normal. 

Referring back to Figure 6.17, the relative speed increase of this processing arrangement can represent a 

considerable improvement over a scenario partitioning.  The greatest benefit being obtained is due to 

information exchange between simulator elements.    The difference in simulation time between dissimilar 

OFDM PHY models is due to the differences in design of the elements being simulated.  The difference in 

time between packet partitioning and scenario partitioning is the @4�8?+;-ð defined as the difference 

between the longest scenario simulation time and the packet partition simulation time.  The average or 

mean of all the scenario partition simulation time happens to be approximately equal to the packet partition 

simulation time, as can be observed from Figure 6.17.  Similarly, it can be expressed as,  

@4�8?+;-ð ≅ max(cy) − μk, 
(6-1) 

where ti is the time taken for the ith OFDM PHY model design, and μk is the average of all scenario 

partition simulation times.  The resulting time to complete each scenario for all system designs using packet 

partitioning can be estimated by the following equation: 
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@6 ≅ 	 u c6y�Q&�+l�
�SRR�(SÃkQ¿Rk)

Qwp , 
(6-2) 

where @6 is the total time to complete scenario S for all designs i assuming packet partitioning, c6y is the 

time for 1 packet in scenario S for design 4, n is the number of processors available, and �Q&�+l is the total 

number of packets for the scenario.  

We choose Figure 6.2 as a case study, which shows simulation results from 8 different OFDM PHY 

system design scenarios with 1600 simulated packets for each design for varying Doppler shifts (F').  The 

purpose of this plot would usually be used by researchers to compare the PER performance of 8 different 

OFDM PHY designs exposed to time-varying channels with varying	F'.  Eight 2.0 GHz processors were 

used for generating the simulation.  We define a ‘pass’ to mean a scenario or each OFDM PHY system 

design.  The partitioning of the simulation is as follows: pass A of the simulation is the simulation 

corresponding to hard Viterbi binary phase shift keying (BPSK), and for optimum timing would like equal 

partitions, and for the scenario with	F' = 150<½ with 1600 packets, the simulation is broken into 8 

elements, in this case 200 packets per processor.  Doing the same for each pass similarly will then yield the 

48 data points for the full plot comparison.  We define one data point to mean one F' instance for a 

particular OFDM PHY simulated system design.  Hence, Figure 6.2 shows a total of 48 data points for all 8 

scenarios and 6 F' variations.  Figure 6.20 shows the timing of 8 data points; one for each OFDM simulated 

system design at a particular F' scenario.  Figure 6.20, and for the case of the scenario partitioning scheme, 

shows that each OFDM design uses up a whole processor, while in the case of the packet partitioning 

scheme all 8 processors work in parallel to simulate each OFMD system design.  In Figure 6.20, the speed 

of the simulation for the case study clearly shows an improvement by using packet partitioning in 

simulation over scenario partitioning.  This simple example emphasises elimination of delay incurred in 

scenario processing time, while optimizing processing resource usage.   
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Figure 6.20 Timing diagram for the example case study showing disproportionate simulation time 

favouring packet partitioning. 
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Figure 6.21 Bar plot showing the relative time for simulating different scenarios for the case study with 

both scenario and packet partitioning (top half scaled differently from bottom to fit). 
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Figure 6.22 Bar plot showing the overall time duration for simulating both scenario and packet partitioning. 

Figure 6.21 is the plot of the simulation time for each OFDM PHY simulation scenario for this case 

study. Notice the difference in time delay for the Bahl Cocke Jelinek Raviv (BCJR) algorithm [46] vs. 

Viterbi [75].  This difference is also shown in Figure 6.20, as passes F and G for the designs with BCJR 

algorithms. This is a case of the cost saving as the simulator in this case is using an un-optimized BCJR 
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algorithm to show the long-time delay that can occur when dealing with new algorithms for OFDM PHY 

improvement.  The timing of each scenario is different because each design has different channels, 

modulation levels, and decoding, hence perform differently.  The final result for the case study gives a final 

improvement in simulation time of over 5 times faster in favour of the packet partitioning scheme 

compared to that of the scenario partitioning scheme due to improved utilization of the processing units.  

Figure 6.22 graphically shows the time saved using packet partitioning vs. scenario partitioning for the 

case study from Figure 6.2, which is the	@4�8_��ô8Ùand is approximately 30687 - 6075  = 24612 s.  When 

this method is extended to the other 40 of the remaining 48 data points in Figure 6.2, the cost savings is 

significant.  Since this can be extended to even more processors the time saving improves even more. 

One particularly useful thing about packet partitioning of the information is that the simulator does not 

have to know the relative speed of each simulation as it is a simple split of work across all available 

processors.  If each simulation scenario takes the same amount of simulation time, then the same utilization 

is obtained for packet partitioning, but as long as the number of processors exceeds the number of scenarios 

being processed, substantial improvement can be obtained through packet partitioning. 

6.6 Distinctiveness of Proposed Design 

Let us now reflect back on dissertations [36], [67], [68] and [69] introduced earlier for discussion and to 

emphasize the distinctiveness of our Object Oriented OFDM PHY simulator design.  Simulink OFDM 

simulators have the advantage that the model can be placed entirely using graphical structure blocks that 

are visually appealing and look like flow charts/block diagrams.  While this approach is appealing, many 

blocks/features of the Simulink platform are proprietary and the user cannot access the source code of the 

block, which can prevent researchers from implementing their ideas freely. The authors in [67] show 

improved TCP/UDP throughput performance using NS2 and Qualnet.  Network Simulator 2 (NS2) event 

driven simulator is more commonly used in research projects that involve higher network layers besides the 

PHY layer due to its inaccurate PHY and channel modeling.  However, some modeled PHY flexibility and 

improved accuracy is made available in [79], [80], and a further improved modelling of 802.11 OFDM 

PHY through a complete redesign in [81].  Modifications of this sort for the most part are platform specific 

and do not encourage code modularity, interoperability, and reusability. 

Dissertations [68] and [69] show improved simulation runtime performance over pure software 

simulation using FPGA assisted OFDM simulation programmed using HDL.  In general, HDLs used for 

designing hardware for FPGAs can be adapted from class-based high level design, and also can be adapted 

to use our OFDM PHY simulation architecture described in our study.  Simulators with hardware 

acceleration can be the most difficult to make reconfigurable if they do not have a sufficiently high level 

object-oriented code base for which they were designed.   

Matlab can implement mathematical models of the OFDM PHY, and can also perform 

analytical/statistical models for performance comparisons.  Matlab is rich in built-in libraries and toolboxes 

useful for analytical modeling.  Basic function-based and inflexible Matlab models for OFDM PHY 
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simulation design are presented in [41], and allow a novice researcher to investigate a specific OFDM 

communication scenario.  Modern and future mobile/cellular communication environments are complex, 

inevitably requiring ever growing complexities within OFDM PHY communication systems for 

optimization and mitigation of diverse channel effects.  Hence, we opted to expand upon basic models from 

[41] for our object-oriented OFDM PHY simulator design to allow for greater flexibility in usage and 

application.   

These works are different from our work in that we concentrate on improving flexibility, simulation 

time and reconfigurability of the OFDM PHY simulator platform, and making the physical parameters of 

OFDM easier to set up via GUI interface and high level design.  This allows the researcher to understand 

and implement OFDM systems faster, and facilitates focus on design optimization and creativity.  Hence, 

our work is unique in that our study focuses on three important aspects of designing simulators for creating 

object-oriented simulation environments for communication systems namely, usability, high-level design, 

and parallelism.  This type of structure is very helpful for independent long-term research in this topic.  It is 

also helpful that the simulator can be used by a research team collaboratively, including shared usage in a 

simulation laboratory.  Additionally, novice researchers can easily use and learn OFDM systems behaviour 

using our implemented simulator.  
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Chapter 7 Conclusions  

Chapter 7 

Conclusions 

In this dissertation, we proposed a quantitative model to evaluate the problem of hidden terminals in DSRC 

systems using repetition-based protocols.   Repetition-based protocols provide highly reliable probability of 

success when no hidden terminals are taken into account.  However, at high loads and regardless of 

common vehicle densities, our model performance study has shown a very detrimental outcome due to 

hidden terminals.  On the other hand, the reliability requirements were met at lower loads, but only at 

relatively low vehicle density and at the expense of increased repetitions.  The delay requirements were met 

in all cases, however, as repetitions increase, unbounded delay results at highest load and vehicle density. 

Our model can serve as a benchmark for comparing QoS requirements in DSRC safety applications, and for 

fast evaluation to further improve the system.  Future work includes extending current repetition-based 

DSRC safety MAC protocols to have hidden terminals robustness for better QoS in their design. 

Passive Cooperative Collision Warning (PCCW) is passive because it does not introduce additional 

message packets into the channel like other schemes such as CSMA/CA.  The proposed protocol introduces 

a modification to the 802.11p DSRC MAC protocol for processing received packet headers, and improving 

reliability of small packet safety messages.  The investigation in this dissertation illustrated the 

performance of our PCCW protocol design through a breakdown of protocol design methodology including 

comparisons with existing repetition protocols including.  In order for the vehicles to cooperatively warn 

each other of potential collisions, a small header payload is introduced for communicating node intentions.  

Because of this intention communications, storage of past transmissions by each node, and processing by 

the PCCW protocol, the nodes collectively act as a distributed memory for use in producing optimized 

probabilities of transmissions for potential colliding transmissions.  Extending PCCW by controlling the 

physical data rate determined by mutually warned slot.  This temporary data rate change is coordinated by 

PCCW to offer additional probability of successes through creating subslots for which packets can be 

transmitted into.  This is essentially a form of Time Division Multiple Access (TDMA) at very small scale.   

In order to communicate the PCCW protocol’s functionality, UML diagrams are used to represent the 

per node processing behaviour.  State-machine with conditional slots is presented for the purpose of 

allowing for easy implementation behaviour of PCCW in hardware or software state-machine.  In order to 

gauge performance of our PCCW protocol, an analytical model is provided that can be used in conjunction 

with other analytical models, and can be adapted to include various different models for comparison.  This 
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can be beneficial in finding intuitive benefit of using PCCW under particular loading scenarios with 

varying requirements on reliability and delay.  Comparison of probability of success and average delay are 

the main comparisons because these important metrics in QoS for future safety applications.  Model 

parameters used during simulation are ones in agreement with conditions that theoretically would be 

present post DSRC safety system deployment.  Results show gains up to 40% at optimum repetitions, and 

80% improvement at higher repetitions for the repetition protocols tested, with average delay ranging from 

a slight increase for PCCW, to a much improved average delay performance over non-PCCW repetition 

protocols.  We provided multiple views of our protocol performance against the other leading repetition 

protocols.  

Although DSRC in its current state can only support 3 times data rate increase, that is, we can increase 

up to 9Mbps data rate to a 27 Mbps, we show simulated results for even higher results to show future 

potential gains.  It is interesting to note that while EPCCW increases throughput by increasing, for example 

a 9Mbps data rate scheme to a 27Mbps, it also significantly increases the probability of a successful 

transmission. 

Combining existing repetition protocols into our PCCW design allowed for adaptations of PCCW with 

varying levels of improvement.  An important part of this dissertation is the development methodology that 

we used for comparing analytical performance of the PCCW protocol with existing protocols.  This is 

mainly because the PCCW protocol introduces improved success and delay performance related to past 

transmission warning success probabilities.  Resultantly, our full probability analysis presented takes into 

account causal effects of warnings produced by PCCW.  Additionally, the analytical validation through 

simulation was discussed and has shown to be an effective indicator of performance when incorporating 

other analytical models for comparison.  Through simulation comparison it is shown that the recursive 

probability calculations presented is effective at giving correctly correlated PCCW analytical results.  

Detailed simulation development was presented including accurate PHY correspondence with the mobility 

model, leading to a simulation design that effectively takes into account PHY and mobility model effects 

that exist to influence the MAC protocol performances. Each MAC broadcast is transmitted to many 

vehicles, with each vehicle having a different relative velocity to each other, which is dealt with in our 

simulator through the integration between the mobility model and the PHY and MAC simulation.  The 

methods for which we achieved an effective model of vehicular transmissions as controlled through PCCW 

with accurate PHY and mobility models was presented using deployment, activity, and sequence diagrams, 

showing simulation coordination and how/when information was exchanged between the models.  Full 

simulation modelling was presented so that our simulation methods can be effectively communicated, 

duplicated, critiqued, and adapted easily.   

We also introduced ePCCW for the purpose of improving safety emergency vehicles (EVs) messaging 

reliability.  The ePCCW protocol is a modification of PCCW that gives selective priority to EVs during the 

conditional transmission stage.  The protocol is passive and not greedy because it only broadcasts warning 

messages in the headers of pre-determined repetition slots, and only if the node has attempted a past 
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warning informing of that repetition.  Because ePCCW operates as a layer above the repetition selection 

process, it can be added to existing repetition protocols.  Both analytic and performance results show 

scenarios that can be used for benchmarking and quality of service (QoS) considerations for reliability and 

delay for both MAC and PHY protocols.  Performance improvements of 46% relative to the PCCW are 

observed.  This improvement is observed under high load, representing high probability of transmission 

and vehicular density near jammed.  This is important because a jammed scenario is one that would be 

hardest for EVs to coordinate efficient travel through an area.  Additionally up to 77% improvement for 

ePCCW is recognized for this same scenario versus SFR.  Interestingly, although the packet size is slightly 

increased, due to the header containing warnings of upcoming repetitions, the increased reliability 

decreases the average delay of first successful packet reception.  Using SUMO and an OFDM PHY 

simulator combined with the ePCCW MAC layer allowed us to show realistic performance, that is still 

comparable to analytic models.   

We have compared our previously proposed linear demapping scheme for the DSRC PHY system to 

that of a non-linear demapping scheme using different decoders. Both linear and non-linear demappers 

have equivalent complexities when implemented using look up tables (log}; look-ups for M-ary 

modulation).  Simulation results show that the derived linear demapper improved the BER performance 

when compared to both the conventional and the non-linear demapper designs in all scenarios (with varying 

velocity, packet length, and at higher data rates).  Substantial performance improvements were noted for 

higher constellation modulations and at higher code rates, where the conventional DSRC PHY system is 

found to be infeasible.  It is important to note that many different types of OFDM systems may employ 

such a demapping scheme.  The simulation results can also serve as a benchmark for future DSRC 

modulation schemes or for improving the performance of the DSRC receiver under development. 

MAP-based frequency-domain equalization for a 5.9 GHz DSRC receiver has been previously proposed 

to improve both the BER and PER performance of the receiver.  The designed frequency-domain equalizer 

has been compared with both channel tracking and signal compensator based conventional designs by 

simulation under Rayleigh fading channels.  Simulation results have shown that the receiver with the 

frequency-domain equalizer improved both BER and PER performances considerably in both BPSK and 

QPSK modulation schemes, and at both high and low relative vehicular speeds.  Hence the DSRC 

conventional and the DSRC channel tracking schemes considered in this study are relatively inferior in 

performance to a receiver design that takes ICI into consideration for Rayleigh fading channels 

Finally, a new reconfigurable simulator approach for use with the application OFDM PHY for 

communication systems was covered.  Advances in reconfigurable hardware could drive PHY adaptability 

further, but these optimum situations need to be studied in a highly dynamic way yielding the need for 

simulators.  It can be challenging to model OFDM PHY for changing environments such as urban mobile 

wireless environments.  Creating optimum designs in these environments requires reconfigurable 

simulation to model performance. 
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GUI interface can serve as a tool for a student or advanced professionals alike as a means for 

investigating particular OFDM PHY designs.  We showed the information exchange between GUI and 

simulation levels, including the loading state information from GUI, which is important for fair 

comparisons between the various OFDM PHY design scenarios.  High level design diagrams were 

presented including UML diagrams to visually specify the structure for the flexible simulator architecture 

for OFDM PHY.  Finally, a particular parallel processing partitioning technique of packet partitioning was 

proposed.  Additionally, a technique for using packet partitioning in reconfigurable object-oriented OFDM 

simulators for increased parallel performance was introduced.  It was shown that packet partitioning is 

beneficial for simulations that are testing multiple scenarios simultaneously, while minimizing inter-

processor communication because the packet processing is separated into isolated blocks of packets.  In 

addition, the packet partitioning technique was shown that it is most useful for providing non-preferential 

processing of reconfigurable OFDM PHY simulations. These benefits were shown through a provided case 

study and considerable simulation time improvement was achieved.   

As for future works cross layer design is one way to approach reducing the effects of packet collisions.  

The cross layer design is more feasible using the PCCW protocol presented in this dissertation, because the 

MAC information that is inherently introduced in the system due to PCCW can also be used at the PHY 

layer for collisions correction purposes.   

Although, this novel research work serves as an assistance/enhancement to research on emerging 

reconfigurable OFDM systems, it can also be applied to other communication systems that require relative 

performance studies. The descriptive UML diagrams convey functional information regarding the 

simulation process of OFDM PHY systems that is platform independent.  In addition, even though our 

implementation of this design was created using the Matlab platform, it is important to note that the 

concepts involved in our generic OFDM simulator can be applied using other high-level platforms and 

programming languages such as C++, Java, IT++, NS2, or Scilab.  
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Appendix C Pseudo Codes for PCCW, EPCCW and ePCCW Analytical Equations 

Appendix C 

Pseudo Codes for PCCW, EPCCW and ePCCW 

Analytical Equations 

For Passive Cooperative Collision Warning (PCCW) and Enhanced-

PCCW (EPCCW) 

function sfrPCCWs 

 Initialize the number of users in the system N  

 Initialize frame length L (frame length) //L =τ/tkTS�	 where tkTS� is the  

//duration of one time slot, and τ is the lifetime of a message, or the  

//duration of a frame.  

 Initialize communication load �  
 for � ← 1 to �JKL	 //loop through each repetition scenario 

 Initialize probability of success for SFR at  repetition � :  

 prS_SFR(�) ← 0 

 Initialize probability of success for SFR //using PCCW at  

//repetition � : prS_PCCW(�) ← 0 

 for � ← 0		cd	�JKL //loop through all possible interferers 

 //Store the probability of the number of interferers being	�: Prl, ,o(� = �) (Eq. 7) 

 pmm ← PrMgivenM(�,�,�) 

 //Find the probability of success for SFR as PrÂ,á,J(Sz�{) (Eq. 2): 

 prS1 ← PrSFR(r,L,m) 

 Store success into  

 prS_SFR(r) ← prS_SFR(r) + prS1 × pmm; 

 Set the probability of slot transmission p ← r/L 

 //Initialize PCCW windows success to SFR success 

 Set initial recursion probability of success  

 PrPCCW(0)	← prS1 

 for � ← 1	to	�JKL //loop through � recursions for  

//subsequent window successes 

 PrPCCW (�)	← Pr_PCCW(p,w,M,N,L,t PrPCCW(�-1))  

// PCCW window success  

 end 

 //Find the probability of success for PCCW Pr,(�©¯¯=)  
//(Eq. 4) as : 
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 prS2 ← Pr_PCCW(p,w,M,N,L, PrPCCW (R)) 

 Store success into  

 prS_PCCW(�) ← prS_PCCW(�) + prS2 × pmm 

end 

 end 

 Display the success vs. repetition of prS_SFR and prS_PCCW 

end function 

 

function PrSFR(�, H, �)  

// PrSFR calculates the probability of success of SFR 

prSFR ← Pr�,v,,(�6*�) = u(−1)C�p \�
]
�

Cwp ¬\H − 
� ]&v�) ,
 

 return prSFR 

end function 

 

function PrMgivenM(�,�,�) //binomial distributed data traffic 

// PrMgivenM implements equation Prl,,,o(� = �) (Eq. 7) as 

prMgivenM ← Prl,,,o(� = �) = �� − 1� � �,(1 − �)oa,ap 

 return prMgivenM 

end function 

 

 

function PrMgivenM(�,�,�) //Poisson distributed data traffic 

// PrMgivenM implements equation Prl,,,o(� = �) (Eq. 8) as 

Prl,,,o(� = �) = 8a,�¼ (���)B�!  
//n is the number of messages generated by all transmitters 

//� is the rate of message generation 

end function 

 

function Pr_PCCW(�,�,�,�,H,SW) 

// Pr_PCCW implements the probability of success for PCCW 

 Initialize PCCW probability of success prPCCW← 0 

 Set the probability of a node being a γ user to be p¿ = (1 − l)  
 for γ ← 0 to m// loop through all combinations of gamma 

 Initialize prS_CW0 ← 0 for calculating the probability of success  
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 //(for given α, β, and γ) 

 for α ← 0	to	m − γ 

 Set / ← (� − 0 − .)  
 //to set the users that did not warn successfully 

 //Calculate prStateCW0 as Pr#,$,%(�?�+�-w¯=x) as (Eq. 13): 

 prStateCW0 ← PrStateCW0(�,H,�,0,.,SW) 

 prS_CW0 ← prS_CW0 + prStateCW0; 

 end 

 //calculate probability of success due to backing-off users Pr,,%(�?�+�-w¯©x) as (Eq. 11):	
 prS_CP0 ← \J

γ

] ×	&�µ%) ×	&&1 − p¿)Jaγ)	
 prPCCW ← prPCCW	 + 	prS_CP0 × 	prS_CW0; 
 end 

 return prPCCW 

end function 

 

function PrStateCW0(�,H,�,0,/,.,SW) 

 // Calculate the probability of having alpha users Pr,,#,%(. = .) 
 prA← &,a%# ) × (� × SW)# × &1 − (� × SW)),a%a#

 

 // �y is the 4�� repetition out of � total repetitions.  Used only  

 //when calculating the delay equations. 

 Set �y ← 	� for success of � repetitions 

 // use Æ as a control variable, Æ = 0, 1, 2 when desired user is an ., /, 0 user respectively. 

 if decision mode enhancement is enabled  

 Set the data rate factor �'+>�&� according the EPCCW  

 prScw0a ←	PrScw0_EPCCW(�,�,�y,H,0,.,/,Æ = 0,SW, �'+>�&�) 

 prScw0b ←	PrScw0_EPCCW (�,�,�y,H,0,.,/,Æ = 1,SW, �'+>�&�) 

 prScw0g ← 	PrScw0_EPCCW (�,�,�y,H,0,.,/,Æ = 2,SW, �'+>�&�)  

 else //regular decision mode  

 prScw0a	← PrScw0(�, �, �y , H, 0, ., /, Æ = 0,SW) 

 prScw0b ← PrScw0(�,�,�y,H,0,.,/,Æ = 1,SW) 

 prScw0g ← PrScw0(�,�,�y,H,0,.,/,Æ = 2,SW)  

 end 

 //find the probability of the desired user being an ., /, and 0 user:   

 prðw+ ← 	� × SW	
 prðw¸ ← 	� × (1 − SW)	
 prðwµ ← 1 − �	 	prStateCW0	 ← PrA × \(prZwK × prScw0a) + (prðw¸ × prScw0b) + &prðwµ × prScw0g)]  

 return prStateCW0 

end function 

 

function PrScw0 (�,�,�y,H,0,.,/,Æ,SW)  

 Set the probability of transmission into a particular slot � ← �/H 
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 //Initialize the probability of success during CW0 state to zero:  

 prScw0 ← 0; 

 Initialize the summation of g possible transmitting out of 0 users: sum¿ ← 0 

 // loop through all g users out of 0 users transmitting in the time slot 

 for g ← 0	to	0 

 //Calculate the probability of having specific g transmitting out of the 0 users Pr%(g)	as in (Eq. 16): 

 pr¿ ← ��9 = Pr%(g) = \%¿] �¿ × (1 − �)%a¿ 

 Initialize summation for all combinations of a transmitting users out of alpha .: sumK 	← 	0 

 for a ← 0	to	. // loop through all a users out of . users transmitting  

 //in the time slot 

 //Similarly calculate Pr#(a) for a transmitting out of . users  

 //as in (Eq. 16): 

 prK ← ��� = Pr#(a) = &#K)�K × (1 − �)#aK 

 Initialize sumP ← 0 

 for b ← 0	to	/ // loop through all b users out of / users  

 //transmitting in the time slot 

 //Calculate Pr$(b) for b transmitting out of / users  

 //as in (Eq. 16): 

 prP ← ��� = Pr$(b) = &$P)�P × (1 − �)$aP 

 //Calculate desired user’s transmission under cw0 probability �',( as in (Eq. 17) 

 sd ← �',( = Ü p#�p , when	Æ < 21, when	Æ	is	2	and	a = 00, when	Æ	is	2	and	a ≥ 1Í 
 //Calculate the a users’ transmission under cw0 probability �K,( out of . users as in (Eq. 18) 

 sa ← �K,( = p#�\B(Ba]B(�p	 
 // Calculate b users’ transmission under cw0 probability �P,( out of / users as in (Eq. 19) 

 sb ← �P,( = p#�\B(Ba]B(�} 
 //Calculate g users’ transmission under cw0 probability �¿,( out of 0 users as in (Eq. 20) 

 sg ← �¿,( = Ï0, when	Æ = 0, or	a ≥ 1, or	g = 01, otherwise Í 
 //Calculate the probability of success of transmission for the desired user  

 //given a, b, and g users PrK,P,¿(�')  
 prS ← PrK,P,¿(�')	 = sd × (1 − sa)K × (1 − sb)P × (1 − sg)¿	
 //Sum for all b combinations knowing the desired user’s success 

 sumP ← sumP + prP × prS 

 end 

 //Sum for all a user combinations, knowing b user combinations  

 //given desired user’s success. 

 sumK ← sumK + prK × sumP 

 end 

 //Sum for all g user combinations, knowing a and b user  

 //combinations given desired user’s success. 

 sum¿ ← sum¿ + pr¿ × sumK 

 end 
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 //Save final sum¿ as the probability of success of transmission for the  

 //desired user  

 //given all combinations of	.,	/ and 0 users into Pr#,$,%(�') ← sum¿ 

 //Calculate the last step in calculating probability of the desired user’s  

 //frame success for all r //repetitions in the frame, Pr�,#,$,%(�?�+�-w¯=x) as  

 //in (Eq. 14) (note �y repetitions for delay calculations) 

 prScw0 ← Pr�,#,$,%(�?�+�-w¯=x) = 1 − &1 − Pr#,$,%(�'))� 
 return prScw0 

end function 

 

function PrScw0_EPCCW(�,�,�y,H,0,.,/,Æ,SW) 

 Set the probability of transmission into a particular slot � ← �/H 

 //Initialize the probability of success during CW0 state to zero:  

 prScw0 ← 0; 

 Initialize the summation of g possible transmitting out of γ users: sum¿ ← 0 

 for g ← 0	to	0 // loop through all g users out of 0 users transmitting  

 //in the time slot 

 //Calculate the probability of having specific g transmitting out of the 0 users Pr%(g) as in (Eq. 16): 

 pr¿ ← Pr%(g) = \%¿] �¿ × (1 − �)%a¿ 

 Initialize summation for all combinations of a transmitting users out of alpha .: sumK 	← 	0 

 for a ← 0	to	. // loop through all a users out of . users transmitting in the time slot 

 //Similarly calculate Pr#(a) for a transmitting out of . users as in (Eq. 16): 

 prK ← Pr#(a) = &#K)�K × (1 − �)#aK 

 Initialize sumP ← 0 

 for b ← 0	to	/ // loop through all b users out of / users transmitting  

 //in the time slot 

 //Calculate Pr$(b) for b transmitting out of / users  

 //as in (Eq. 16): 

 prP ← Pr$(b) = &$P)�P × (1 − �)$aP 

 Initialize the sum of enhanced aü users: sumK^ ← 0 

 for aü ← 0	to	a //loop through a users that are transmitting in same sub slot as desired user. 

 //Calculate the probability of having aü of the a users  

 //transmitting in the same sub slot PrK(aü) as in (Eq. 16). 

 prK^ ← PrK(aü) = \ KK^] � p�#ª9$"_�K^ × �1 − � p�#ª9$"_��KaK^ 

 Initialize the sum of enhanced bü users: sumP^ ← 0 

 for bü ← 0	to	b //loop through b users that transmitting in same sub slot as desired user. 

 //Calculate the probability of having bü of the b users  

 // transmitting in the same sub slot PrP(bü) in (Eq. 28). 

 prP^ ← PrP(bü) = \ PP^] � p�#ª9$"_�P^ × �1 − � p�#ª9$"_��PaP^ 

 //Calculate desired user’s transmission under cw0 probability �',( as in (Eq. 17). 
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 sd ← �',( = Ü p#�p , when	Æ < 21, when	Æ	is	2	and	a = 00, when	Æ	is	2	and	a ≥ 1Í 
 //Calculate the a users’ transmission under cw0  

 //probability �K,( out of . users as in (Eq. ). 

 sa ← �K,( = p#�\B(Ba]B(�p	 
 //Calculate b users’ transmission under cw0 probability �P,( out of / users as in (Eq. 18). 

 sb ← �P,( = p#�\B(Ba]B(�} 
 //Calculate g users’ transmission under cw0 probability �¿,( out of 0 users as in (Eq. 19). 

 sg ← �¿,( = Ï0, when	Æ = 0, or	a ≥ 1, or	g = 01, otherwise Í 
 //Calculate the probability of success of transmission for the desired user  

 //given a, b, and g users PrK,P,¿(�') as in (Eq. 20). 

 prS ← PrK,P,¿(�') = sd × (1 − sa)K^ × (1 − sb)P^ × (1 − sg)¿	
 //Sum for all �ò combinations knowing the desired user’s success 

 sumP^ ← sumP^ + prP^ × prS 

 end 

 //Sum for all aü combinations, knowing �ò user combinations  

 //given desired user’s success. 

 sumK^ ← sumK^ + prK^ × sumP^ 

 end 

 //Sum for all b user combinations, knowing aü and bü combinations  

 //given desired user’s success. 

 sumP ← sumP + prP × sumK^ 
 end 

 //Sum for all a user combinations, knowing b, aü, and bü user combinations  

 //given desired user’s success. 

 sumK ← sumK + prK × sumP 

 end 

 //Sum for all g user combinations, knowing a, b, aü, and bü user combinations  

 //given desired user’s success. 

 sum¿ ← sum¿ + pr¿ × sumK 

 end 

 //Save final sum¿ as the probability of success of transmission for the desired user  

 //given all combinations of	.,	/ and 0 users into Pr#,$,%(�') ← sum¿ 

 //Calculate the last step in calculating probability of the desired user’s frame success for all r 

//repetitions in the frame, Pr�,#,$,%(�?�+�-w¯=x) as in (Eq. 14) (note �y repetitions for delay 

calculations) 

 prScw0 ← Pr�,#,$,%&�',()*�+,- = 1 − &1 − Pr#,$,%(�'))� 
 return prScw0 

end function 
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For emergency-PCCW (ePCCW) 

function PrScw0_ePCCW (�,�,�y,H,0,.,/,Æ,tmpPrS) 

 Set the probability of transmission into a particular slot � ← �/H    // � repetition and H slots 

 //Initialize the probability of success during CW0 state to zero: prScw0 ← 0; 

 Initialize the summation of g possible transmitting out of 0 users: sum¿ ← 0 

 for g ← 0	to	0 // loop through all g users out of 0 users transmitting in the time slot 

 //Calculate the probability of having specific g transmitting out of the 0 users Pr%(g): 
 pr¿ ← Pr%(g) = \%¿] �¿ × (1 − �)%a¿ 

 Initialize summation for all combinations of a transmitting users out of alpha .: sumK 	← 	0 

 for a ← 0	to	. // loop through all a users out of . users transmitting in the time slot 

 //Similarly calculate Pr#(a) for a transmitting out of . users: 

 prK ← Pr#(a) = &#K)�K × (1 − �)#aK 

 Initialize sumP ← 0 

 for b ← 0	to	/ // loop through all b users out of / users transmitting in the time slot 

 //Calculate Pr$(b) for b transmitting out of / users: 

 prP ← Pr$(b) = &$P)�P × (1 − �)$aP 

 //Calculate desired user’s transmission under CW0 probability �',( as in (Eq. 7) 

 sd ← �',( = Ü p-�p , when	Æ < 21, when	Æ	is	2	and	a = 00, when	Æ	is	2	and	a ≥ 1Í 
 //Calculate the a users’ transmission under CW0 probability �K,( out of . users as in (Eq. 8) 

 sa ← �K,( = p# \¥} Æ − p} Æ}] 

 // Calculate b users’ transmission under CW0 probability �P,( out of / users as in (Eq. 9) 

 sb ← �P,( = p#�p \¥} Æ − p} Æ}] 

 //Calculate g users’ transmission under CW0 probability �¿,( out of 0 users as in (Eq. 10) 

 sg ← �¿,( = Ï0, when	Æ = 0, or	a ≥ 1, or	g = 01, otherwise Í 
 //Calculate the probability of success of transmission for the desired user D  

 //given a, b, and g users PrK,P,¿(�') as in (Eq.11) 

 prS ← PrK,P,¿(�') = sd × (1 − sa)K × (1 − sb)P × (1 − sg)¿	
 //Sum for all b combinations knowing the desired user’s success 

 sumP ← sumP + prP × prS 

 end 

 //Sum for all a user combinations, knowing b user combinations given desired user’s success. 

 sumK ← sumK + prK × sumP 

 end 

 //Sum for all g user combinations, knowing a and b user combinations given desired user’s success. 

 sum¿ ← sum¿ + pr¿ × sumK 

 end 

 //Save final sum¿ as the probability of success of transmission for the desired user  

 //given all combinations of	.,	/ and 0 users into Pr#,$,%(�') ← sum¿ 

 //Calculate the last step in calculating probability of the desired user’s frame success for all r 

//repetitions in the frame, Pr�,#,$,%(�?�+�-w¯=x) as in (Eq. 13) (note �y repetitions for delay calculations) 
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 prScw0 ← Pr�,#,$,%(�?�+�-w¯=x) = 1 − &1 − Pr#,$,%(�'))� 
 return prScw0 

end function 
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