4,017 research outputs found

    Whole-heart modelling with valves in a fluid–structure interaction framework

    Get PDF
    Computational modelling of whole-heart function is a useful tool to study heart mechanics and haemodynamics. Many existing heart models focus on electromechanical aspect without considering physiological valves and use simplified fluid models instead. In this study we develop a four-chamber heart model featuring realistic chamber geometry, detailed valve modelling, hyperelasticity with fibre architecture and fluid–structure interaction analysis. Our model is used to investigate heart behaviours with different modelling assumptions including restricted/free valve annular dynamics, and with/without heart-pericardium interactions. Our simulation results capture the interactions between valve leaflet and surrounding flow, typical left ventricular flow vortices, typical venous and transvalvular flow waveform, and physiological heart deformations such as atrioventricular plane movement. The improvement of ventricular filling and atrial emptying at early diastole is evident with free annulus. In addition, we find that the added pericardial forces on the heart have a predominant effect on atrial wall deformation especially during atrial contraction, and further help with the atrial filling process. Most importantly, the current study provides a framework for comprehensive multi-physics whole-heart modelling considering all heart valves and fluid–structure interactions

    Automatic segmentation of regions of interest in vaginal brachytherapy

    Full text link
    Treballs Finals de Grau d'Enginyeria BiomĂšdica. Facultat de Medicina i CiĂšncies de la Salut. Universitat de Barcelona. Curs: 2023-2024. Tutor: Aida Niñerola ; Director: AdriĂ  CasamitjanaThe postoperative endometrial carcinoma treatment often includes radiotherapy (external radiotherapy and/or vaginal brachytherapy) to prevent the reappearance of the tumour. This project aims to improve the efficiency of the vaginal brachytherapy treatment by developing an automatic segmentation algorithm capable of delineating both the clinical target volume and the organs at risk, reducing the time required by experts to exert such task. In this project, we develop an AI-based framework that uses a V-Net architecture at its core. To train and evaluate the model, we use retrospective CT images and corresponding manual delineations from patients treated in Hospital Clinic. The creation of the algorithm was achieved successfully, resulting in a completely functional creator of automatic segmentations. About its performance, the results were found satisfactory in the cases of the vagina, the rectum and the bladder, having acceptable discrepancies in the dosimetry output. On the other hand, the bowel and the sigma models would require further improvements since the segmentations obtained didn’t match the ground truth. Overall, the project represents a step forward in the application of artificial intelligence algorithms to radiotherapy related processes

    Flood dynamics derived from video remote sensing

    Get PDF
    Flooding is by far the most pervasive natural hazard, with the human impacts of floods expected to worsen in the coming decades due to climate change. Hydraulic models are a key tool for understanding flood dynamics and play a pivotal role in unravelling the processes that occur during a flood event, including inundation flow patterns and velocities. In the realm of river basin dynamics, video remote sensing is emerging as a transformative tool that can offer insights into flow dynamics and thus, together with other remotely sensed data, has the potential to be deployed to estimate discharge. Moreover, the integration of video remote sensing data with hydraulic models offers a pivotal opportunity to enhance the predictive capacity of these models. Hydraulic models are traditionally built with accurate terrain, flow and bathymetric data and are often calibrated and validated using observed data to obtain meaningful and actionable model predictions. Data for accurately calibrating and validating hydraulic models are not always available, leaving the assessment of the predictive capabilities of some models deployed in flood risk management in question. Recent advances in remote sensing have heralded the availability of vast video datasets of high resolution. The parallel evolution of computing capabilities, coupled with advancements in artificial intelligence are enabling the processing of data at unprecedented scales and complexities, allowing us to glean meaningful insights into datasets that can be integrated with hydraulic models. The aims of the research presented in this thesis were twofold. The first aim was to evaluate and explore the potential applications of video from air- and space-borne platforms to comprehensively calibrate and validate two-dimensional hydraulic models. The second aim was to estimate river discharge using satellite video combined with high resolution topographic data. In the first of three empirical chapters, non-intrusive image velocimetry techniques were employed to estimate river surface velocities in a rural catchment. For the first time, a 2D hydraulicvmodel was fully calibrated and validated using velocities derived from Unpiloted Aerial Vehicle (UAV) image velocimetry approaches. This highlighted the value of these data in mitigating the limitations associated with traditional data sources used in parameterizing two-dimensional hydraulic models. This finding inspired the subsequent chapter where river surface velocities, derived using Large Scale Particle Image Velocimetry (LSPIV), and flood extents, derived using deep neural network-based segmentation, were extracted from satellite video and used to rigorously assess the skill of a two-dimensional hydraulic model. Harnessing the ability of deep neural networks to learn complex features and deliver accurate and contextually informed flood segmentation, the potential value of satellite video for validating two dimensional hydraulic model simulations is exhibited. In the final empirical chapter, the convergence of satellite video imagery and high-resolution topographical data bridges the gap between visual observations and quantitative measurements by enabling the direct extraction of velocities from video imagery, which is used to estimate river discharge. Overall, this thesis demonstrates the significant potential of emerging video-based remote sensing datasets and offers approaches for integrating these data into hydraulic modelling and discharge estimation practice. The incorporation of LSPIV techniques into flood modelling workflows signifies a methodological progression, especially in areas lacking robust data collection infrastructure. Satellite video remote sensing heralds a major step forward in our ability to observe river dynamics in real time, with potentially significant implications in the domain of flood modelling science

    Deep saliency detection-based pedestrian detection with multispectral multi-scale features fusion network

    Get PDF
    In recent years, there has been increased interest in multispectral pedestrian detection using visible and infrared image pairs. This is due to the complementary visual information provided by these modalities, which enhances the robustness and reliability of pedestrian detection systems. However, current research in multispectral pedestrian detection faces the challenge of effectively integrating different modalities to reduce miss rates in the system. This article presents an improved method for multispectral pedestrian detection. The method utilises a saliency detection technique to modify the infrared image and obtain an infrared-enhanced map with clear pedestrian features. Subsequently, a multiscale image features fusion network is designed to efficiently fuse visible and IR-enhanced maps. Finally, the fusion network is supervised by three loss functions for illumination perception, light intensity, and texture information in conjunction with the light perception sub-network. The experimental results demonstrate that the proposed method improves the logarithmic mean miss rate for the three main subgroups (all day, day and night) to 3.12%, 3.06%, and 4.13% respectively, at “reasonable” settings. This is an improvement over the traditional method, which achieved rates of 3.11%, 2.77%, and 2.56% respectively, thus demonstrating the effectiveness of the proposed method

    Brittle-viscous deformation cycles at the base of the seismogenic zone in the continental crust

    Get PDF
    The main goal of the study was to determine the dynamical cycle of ductile-brittle deformation and to characterise the fluid pathways at different scales of a brittle-viscous fault zone active at the base of the seismogenic crust. Object of analysis are samples from the sinistral strike-slip fault zone BFZ045 from Olkiluoto (SW Finland), located at the site of a deep geological repository for nuclear waste. Combined microstructural analysis, electron backscatter diffraction (EBSD), and mineral chemistry were applied to reconstruct the variations in pressure, temperature, fluid pressure, and differential stress that mediated deformation and strain localization along BFZ045 across the BDTZ. Ductile deformation took place at 400-500° C and 3-4 kbar, and recrystallized grain size piezometry for quartz document a progressive increase in differential stress during mylonitization, from ca. 50 MPa to ca. 120 MPa. The increase in differential stress was localised towards the shear zone center, which was eventually overprinted by brittle deformation in a narrowing shear zone. Cataclastic deformation occurred under lower T conditions down to T ≄ 320° C and was not further overprinted by mylonitic creep. Porosity estimates were obtained through the combination of x-ray micro-computed tomography (”CT), mercury intrusion porosimetry, He pycnometry, and microstructural analysis. Low porosity values (0.8-4.4%) for different rock type, 2-20 ”m pore size, representative of pore connectivity, and microstructural observation suggest a relationship to a dynamical cycle of fracturing and sealing mechanism, mostly controlled by ductile deformation. Similarly, the observation from fracture orientation analysis indicates that the mylonitic precursor of BFZ045 played an important role in the localization of the brittle deformation. This thesis highlights that the ductile-brittle deformation cycle in BFZ045 was controlled by transient oscillations in fluid pressure in a narrowing shear zone deforming at progressively higher differential stress during cooling

    Self-supervised learning for transferable representations

    Get PDF
    Machine learning has undeniably achieved remarkable advances thanks to large labelled datasets and supervised learning. However, this progress is constrained by the labour-intensive annotation process. It is not feasible to generate extensive labelled datasets for every problem we aim to address. Consequently, there has been a notable shift in recent times toward approaches that solely leverage raw data. Among these, self-supervised learning has emerged as a particularly powerful approach, offering scalability to massive datasets and showcasing considerable potential for effective knowledge transfer. This thesis investigates self-supervised representation learning with a strong focus on computer vision applications. We provide a comprehensive survey of self-supervised methods across various modalities, introducing a taxonomy that categorises them into four distinct families while also highlighting practical considerations for real-world implementation. Our focus thenceforth is on the computer vision modality, where we perform a comprehensive benchmark evaluation of state-of-the-art self supervised models against many diverse downstream transfer tasks. Our findings reveal that self-supervised models often outperform supervised learning across a spectrum of tasks, albeit with correlations weakening as tasks transition beyond classification, particularly for datasets with distribution shifts. Digging deeper, we investigate the influence of data augmentation on the transferability of contrastive learners, uncovering a trade-off between spatial and appearance-based invariances that generalise to real-world transformations. This begins to explain the differing empirical performances achieved by self-supervised learners on different downstream tasks, and it showcases the advantages of specialised representations produced with tailored augmentation. Finally, we introduce a novel self-supervised pre-training algorithm for object detection, aligning pre-training with downstream architecture and objectives, leading to reduced localisation errors and improved label efficiency. In conclusion, this thesis contributes a comprehensive understanding of self-supervised representation learning and its role in enabling effective transfer across computer vision tasks

    Two-layer ensemble of deep learning models for medical image segmentation. [Article]

    Get PDF
    One of the most important areas in medical image analysis is segmentation, in which raw image data is partitioned into structured and meaningful regions to gain further insights. By using Deep Neural Networks (DNN), AI-based automated segmentation algorithms can potentially assist physicians with more effective imaging-based diagnoses. However, since it is difficult to acquire high-quality ground truths for medical images and DNN hyperparameters require significant manual tuning, the results by DNN-based medical models might be limited. A potential solution is to combine multiple DNN models using ensemble learning. We propose a two-layer ensemble of deep learning models in which the prediction of each training image pixel made by each model in the first layer is used as the augmented data of the training image for the second layer of the ensemble. The prediction of the second layer is then combined by using a weight-based scheme which is found by solving linear regression problems. To the best of our knowledge, our paper is the first work which proposes a two-layer ensemble of deep learning models with an augmented data technique in medical image segmentation. Experiments conducted on five different medical image datasets for diverse segmentation tasks show that proposed method achieves better results in terms of several performance metrics compared to some well-known benchmark algorithms. Our proposed two-layer ensemble of deep learning models for segmentation of medical images shows effectiveness compared to several benchmark algorithms. The research can be expanded in several directions like image classification

    Evaluating the anticipated outcomes of MRI seizure image from open-source tool- Prototype approach

    Full text link
    Epileptic Seizure is an abnormal neuronal exertion in the brain, affecting nearly 70 million of the world's population (Ngugi et al., 2010). So many open-source neuroimaging tools are used for metabolism checkups and analysis purposes. The scope of open-source tools like MATLAB, Slicer 3D, Brain Suite21a, SPM, and MedCalc are explained in this paper. MATLAB was used by 60% of the researchers for their image processing and 10% of them use their proprietary software. More than 30% of the researchers use other open-source software tools with their processing techniques for the study of magnetic resonance seizure image

    Detection and diabetic retinopathy grading using digital retinal images

    Get PDF
    Diabetic Retinopathy is an eye disorder that affects people suffering from diabetes. Higher sugar levels in blood leads to damage of blood vessels in eyes and may even cause blindness. Diabetic retinopathy is identified by red spots known as microanuerysms and bright yellow lesions called exudates. It has been observed that early detection of exudates and microaneurysms may save the patient’s vision and this paper proposes a simple and effective technique for diabetic retinopathy. Both publicly available and real time datasets of colored images captured by fundus camera have been used for the empirical analysis. In the proposed work, grading has been done to know the severity of diabetic retinopathy i.e. whether it is mild, moderate or severe using exudates and micro aneurysms in the fundus images. An automated approach that uses image processing, features extraction and machine learning models to predict accurately the presence of the exudates and micro aneurysms which can be used for grading has been proposed. The research is carried out in two segments; one for exudates and another for micro aneurysms. The grading via exudates is done based upon their distance from macula whereas grading via micro aneurysms is done by calculating their count. For grading using exudates, support vector machine and K-Nearest neighbor show the highest accuracy of 92.1% and for grading using micro aneurysms, decision tree shows the highest accuracy of 99.9% in prediction of severity levels of the disease

    Improving accuracy and efficiency in seagrass detection using state-of-the-art AI techniques

    Get PDF
    Seagrasses provide a wide range of ecosystem services in coastal marine environments. Despite their ecological and economic importance, these species are declining because of human impact. This decline has driven the need for monitoring and mapping to estimate the overall health and dynamics of seagrasses in coastal environments, often based on underwater images. However, seagrass detection from underwater digital images is not a trivial task; it requires taxonomic expertise and is time-consuming and expensive. Recently automatic approaches based on deep learning have revolutionised object detection performance in many computer vision applications, and there has been interest in applying this to automated seagrass detection from imagery. Deep learning–based techniques reduce the need for hardcore feature extraction by domain experts which is required in machine learning-based techniques. This study presents a YOLOv5-based one-stage detector and an EfficientDetD7–based two-stage detector for detecting seagrass, in this case, Halophila ovalis, one of the most widely distributed seagrass species. The EfficientDet-D7–based seagrass detector achieves the highest mAP of 0.484 on the ECUHO-2 dataset and mAP of 0.354 on the ECUHO-1 dataset, which are about 7% and 5% better than the state-of-the-art Halophila ovalis detection performance on those datasets, respectively. The proposed YOLOv5-based detector achieves an average inference time of 0.077 s and 0.043 s respectively which are much lower than the state-of-the-art approach on the same datasets
    • 

    corecore