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Abstract

Computed tomography angiography (CTA) is useful for diagnosing and planning treatment
of heart disease. However, contrast agent in surrounding structures (such as the aorta and
left ventricle) makes 3-D visualisation of the coronary arteries difficult. This paper presents a
composite method employing segmentation and volume rendering to overcome this issue. A key
contribution is a novel Fast Marching minimal path cost function for vessel centreline extraction.
The resultant centreline is used to compute a measure of vessel lumen, which indicates the degree
of stenosis (narrowing of a vessel). Two volume visualisation techniques are presented which
utilise the segmented arteries and lumen measure. The system is evaluated and demonstrated
using synthetic and clinically obtained datasets.

Key words: vessel segmentation; volume visualisation; minimal path; Fast Marching; stenosis;
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1. Introduction

Coronary heart disease is a major health concern. This disease stems from the under-
lying problem of atherosclerosis, which is a build up of plaque (consisting of substances
including cholesterol, calcium, and others) on the interior surface of arteries supplying
the heart. Coronary heart disease typically manifests in two forms: heart attack, and
angina. A heart attack occurs when blood flow is completely blocked, typically from a
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dislodged portion of plaque. Angina — typically brought on by physical activity — is a
chest pain or discomfort caused by an inadequate blood flow due to a narrowed artery.

Computed tomography angiography (CTA) provides high-resolution, high-contrast im-
ages of the thoracic cavity and as such is emerging as a useful imaging modality for
diagnosis and treatment planning for coronary heart disease [1]. An intravenous contrast
agent (such as an iodine-based compound) is injected into the patient causing the blood
— and hence vessels — to exhibit high intensities in the resultant images [31]. In practice,
motion artefacts due to the beating heart must be reduced using electrocardiographic
(ECG) retrospective reconstruction (called ECG gating) [26].

From the acquired images, radiologists and cardiac surgeons require tools to easily
identify stenotic (narrowed or constricted) arteries. A number of post-processing tech-
niques are currently employed including: thin-slab maximum intensity projection (MIP)
[12], curved planar reformatting (CPR) [17], and direct volume rendering (DVR) [35].
Each of these techniques exhibit varying strengths and weaknesses, depending on the
task: MIP is useful for visualising calcified plaques, however 3-D information is dis-
carded; CPR lays flat vessels of interest, but surrounding contextual structures appear
deformed; DVR can depict the 3-D relationship between vascular and contextual struc-
tures, however specifying display parameters to clearly visualise the arteries is difficult
and sometimes not possible. Hybrid rendering approaches [38] (which display both direct
volume rendered and segmented polygonal structures) or tagged volume rendering [25]
(which uses a number of a priori binary volumes to separate structures of interest) are
other suitable techniques.

This paper proposes the use of segmentation methods to aid visualisation of stenotic
vessels. The proposed technique is relevant for a range of vascular images and appli-
cations, however the focus is on the coronary arteries in CTA. The method consists of
four stages: vessel enhancement, centreline extraction, stenosis measure computation,
and volume visualisation. The centreline extraction stage extends an existing technique
[29] by deriving a novel cost function using morphological top-hat by opening to enhance
the vessels. The resultant continuous centreline is then used to compute a quantitative
measure of stenosis based on the vessel radius. Two volume visualisation techniques us-
ing the resultant segmentation and measure — one based on MIP, one based on DVR
— are discussed and demonstrated using clinically obtained datasets. The segmentation
method is evaluated using various synthetic and clinical datasets using three criteria:
efficiency, accuracy, and reproducibility.

2. Related Work

Vessel enhancement and segmentation is a broad area of research; a partial review
of the field can be found in [19]. The existing work can be loosely organised into five
categories: differential geometry, active contours, skeletonization, tracking, and minimal
path extraction methods.

Differential geometry approaches utilise the differentiability of Euclidean space to de-
rive measures which indicate the ‘vesselness’ of each pixel in an image. Sato et al. [28]
and Frangi et al. [13] both proposed multi-scale line filters based on Gaussian differen-
tials. Manniesing et al. [23] extended this to control anisotropic diffusion filtering, which
smooths inside the vessels while maintaining sharp boundaries. Another approach pre-
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sented in [20] computes the degree of belonging to the medial axis (centreline). This
‘medialness function’ is realised by convolving the whole image with a kernel; the kernel
is typically a multi-scale construct utilising second-order derivatives (computed using
the Hessian matrix). These methods tend to be computationally expensive because they
process the whole dataset.

Active contour methods segment vascular structures by propagating a surface or front.
The surface is typically embedded in a higher dimensional function such as the zero
level-set. Lorigo et al. [21] was one of the first to extend the classical geodesic active
contour model to 3-D images for use segmenting vascular structures. In this method
a one-dimensional curve (corresponding to the tubular centreline) was evolved in 3-D
space. Holtzman et al. [15] formulated a level-set cost function based on three terms: the
zero crossings of the second-order derivative, a minimal variance term to penalise lack of
homogeneity inside and outside the evolving surface, and a geodesic active surface term
to regularise the functional. They showed this approach was suitable for detecting thin
vascular structures with low contrast compared to their background. Yan et al. [42] also
presented a level-set based approach suitable for segmenting thin vessels. Their method
was founded on the principle of capillary action — the attraction of fluid to the walls
of a bounding tube. This phenomena was used to derive an adhesion energy term for
propagating an active contour. In [9], three separate approaches were brought together:
firstly a multi-scale Hessian-based line filter was used for enhancement, then a level-
set based approach (which implicitly handled change in topology) was used to provide
an initial segmentation, and finally a geometric deformable model (triangulated mesh)
driven by a gradient energy cost function was evolved to provide the final result.

Skeletonization converts a binary volume to a discrete centreline — or skeleton — using
a method such as distance-ordered homotopic thinning [27]. Pruning and graph analysis
techniques must then be applied to transform the unordered discrete set of points into
an acyclic graph [14,10]. The challenge for skeletonization is to obtain a good initial
segmentation. In [14] a region-growing technique was used to produce the initial binary
volume. Such intensity-based techniques are susceptible to noise and varying intensity
within the vessel, so therefore in [8] an additional gradient magnitude criteria was added
to the traditional lower and upper thresholding strategy. Because these methods only
consider pixels comprising the vessel, they are relatively fast; however, they operate in
discrete pixel space which can cause the centreline to exhibit stair-case artefacts. In [22]
a level-set based method was applied to produce the initial segmentation, followed by a
graph analysis method to order and smooth the skeleton.

Similar to skeletonization, tracking methods only consider the pixels in close proxim-
ity to the vessel centreline, and therefore tend to be relatively fast. Such methods are
typically iterative in nature; at each step an operator is applied to compute a continuous
point on the centreline and a direction to step. Wink et al. [39] proposed a ‘centrelikeli-
hood’ operator based on the termination of a number of radially projected lines. Aylward
et al. [4] used a Hessian-based metric to compute both the centre point and step vector,
as well as estimate the radius. Tracking methods tend to be highly susceptible to noise:
once the computed centre point deviates from the actual, it is difficult for the algorithm
to recover.

Minimal path techniques frame the centreline extraction problem in terms of cost
function minimisation. In [37] a hybrid tracking—path technique was presented. An initial
estimate of the centreline was found by tracking in a helical or ‘corkscrew’ motion. A
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(a) Dijkstra’s algorithm (b) Fast Marching method

Fig. 1. Dijkstra’s algorithm is restricted to the grid points, whereas the Fast Marching method solves
the underlying continuous solution.

cost function — based on a centrelikelihood measure similar to that discussed above in
[39] — was then iteratively minimised. Unfortunately, the authors indicate this method
was not robust in the presence of noise. Wink et al. [40] explored two best-first minimal
path search algorithms: Dijkstra’s algorithm and A*. Dijkstra’s algorithm operates on
a cost function and fans out from the start position, accumulating the cost of each
possible discrete path until the end point is reached. The A* algorithm is a generalization
which uses a heuristic function h(Z) to better steer the search process (a simple — but
common — heuristic function is the Euclidean distance between the current node and
the goal). If h(Z) = 0 then A* reduces to Dijkstra’s method. The authors compared
both unidirectional (expanding from start to end) and bidirectional (expanding from
both start and end) searches. As discussed by Sethian [29], Dijkstra’s method (and by
generalization A*) is inconsistent with the underlying continuous problem: the resultant
minimal path is bound to the discrete grid. In contrast, Fast Marching approximates the
continuous solution to the underlying partial differential equation (see Fig. 1). For this
reason, our proposed method builds upon the Fast Marching minimal path extraction
framework set out in [29], which is discussed in greater detail in the following section.

3. Method

Our goal is to enable radiologists and cardiac surgeons to visualise the morphology
and degree of stenosis of the coronary arteries from 3-D CTA images. Visualisation is
important for diagnosis, treatment planning, training, and patient education. However,
this task is not easy for a number of reasons:

(i) CTA images of the thoracic cavity are often large (=~ 5123 x 12-bits).

(ii) It is common for images to contain noise and artefacts from breathing and other

motion, metal streaking, and calcified plaques.

(iii) Both desired structures (coronary arteries) and undesired structures (ventricles,
atria, aorta, and pulmonary arteries) contain contrast agent and exhibit similar
intensity distributions.

(iv) The coronary veins reside in close proximity to the arteries and in some cases can
have higher intensity (particularly the great cardiac vein and coronary sinus).
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(v) The contrast agent can vary along the length of the arteries; that is, distal segments

have lower intensity than proximal segments.

To address these concerns, a composite method employing segmentation to aid visuali-
sation is proposed. To ensure robustness, a semi-autonomous segmentation methodology
— which recognises the user as an important participant of the system capable of correct-
ing problematic regions — is adopted. The path extraction must be fast to allow the user
to interact and quickly process large images. Therefore, the proposed method consists of
four stages: (1) vessel enhancement for generating an efficient cost function, (2) vessel
centreline extraction using Fast Marching minimal path extraction, (3) computation of
a measure of stenosis from the resultant centreline, and (4) visualisation of the resultant
segmentation and measure. The following sections details each of these steps.

3.1. Vessel Enhancement

As will become apparent, it is important to suppress non-vascular structures to ensure
fast and robust centreline extraction. In this section two vessel enhancement strategies are
considered: morphological top-hat by opening [30], and multi-scale line filtering [28,13].
Readers already familiar with these techniques are invited to skip to the next section.

The relevant morphological operations are defined following the treatise in [30]. The
erosion of an image I is denoted by e5(I) and is defined at a given pixel & as the minimum
value of the image in the window defined by the structuring element B when its origin
is at

lep(D)(F) = min I(7+b) (1)
Similarly the dilation of an image is defined as the maximum value of the image in the
window defined by the structuring element:

BBI)(7) = max I(7 +1) (2)
The opening of an image I by a structuring element B is denoted by v5(I) and is defined
as the erosion of I by B, followed by the dilation by B:

v(I) =0Blen(I)] (3)

Top-hats use knowledge about the shape characteristics that are not shared by the
relevant image structures. Top-hat by opening (otherwise known as white top-hat or
simply WTH) is the difference between the original image I and its opening ~:

WTHp(I) =1 - (D) (4)

The top-hat by opening with a ball structuring element suppresses structures which do
not fully contain the element (ie. large non-tubular structures are removed).

The computation time for morphological filtering rises exponentially with increasing
structuring element radius. Therefore, a number of methods have been proposed to ac-
celerate morphological methods to overcome this hurdle. The approach presented by van
Herk [34] in the early 1990’s is still one of the most efficient. This approach considers
each dimension separately and uses a recursive procedure to track the extrema, resulting
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in an operation independent of the structuring element size, but only supporting box
structuring elements. More recent techniques which support arbitrarily shaped elements
include moving histogram [33] and anchor [32] methods.

A more sophisticated approach for enhancing tubular structures is to take advantage
of second-order local structure. There exist a number of vesselness measures which utilise
the eigenvalues (A1, A2, A3) of the Hessian matrix H = V2I. Two noteworthy methods
include the line filter proposed by Sato et al. [28], and then further refined by Frangi et
al. [13]. Both of these methods firstly compute the Hessian matrix using convolution with
a derivative of Gaussians. Given H, the eigenvalues are then ordered: Sato’s approach
sort based on value (ie. Ay > A2 > A3), whereas Frangi’s method perform the ordering
using absolute value (ie. |A1| > |Az2| > |As]). Different ratios of the eigenvalues are then
used to construct the respective vesselness measures.

Sato’s method analysed the ideal case and asserted that a bright line exhibits the
following relations: A\; = 0, A2 =~ A3 << 0. With these in mind the line filter was
suggested as follows:

M
L . >
eXp ( 2(0(1)\6)2) ) )\1 - Oa AC % 0
)\2
VS(I7U) = exp (—m) ; )\1 > 0, Ac 7é 0 (5)
27¢c
0; Ae =0

where A\, = min(—X2, —\3), and a7 and ay are control parameters. Frangi’s method
asserted that the following relations hold for an ideal line: A\ =~ 0, \; < Aa, Ao = A3. The
proposed line filter consequently used of all three of the eigenvalues:

Vil o) = (1 S <:§2>) P <§;BZ> (1 - ( @3)) (6)

0; Ao >0o0r A3 >0

where «, (3, and 7 are control parameters, Ry = |;‘—§|, Rp = \/li‘ili/l\, and |H|p is the
213

Frobenius norm of the Hessian matrix. Both methods detect tubular structures of varying
radius using a multi-scale approach:

VI, 0min, Omaz) = max V(l,0) (7)

Omin < 0 < Omaax

The unavoidable computational burden with such line filtering methods resides in the
construction of the Hessian matrix H for the entire image by convolution with potentially
large kernels. Fig. 2 depicts results from each of the discussed measures. Notice that the
line filtering methods suppress more of the non-tubular structures than morphological
top-hat by opening.

3.2. Centreline Extraction

The ability to quickly and accurately extract vessel centrelines from large and noisy
images is difficult. This section proposes techniques to achieve this task for contrast-
enhanced CT images of the coronary arteries, however other modalities and vasculature
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Fig. 2. A maximum intensity projection (MIP) of the dataset used in Section 4.1 for each of the different
vessel enhancement measures: white top-hat (WTH) and multi-scale line filtering.

are inherently supported. Firstly an overview of conventional Fast Marching minimal
path extraction techniques and limitations is given. Three improvements are then pre-
sented: (1) an efficient cost function is constructed using vessel enhancing filters, (2) a
mechanism is presented for correctly handling calcification artefacts in CTA images, and
(3) regularisation is introduced to control the step vector length for gradient descent
back-propagation. Finally, a proposal is made for the incorporation of way-points into
the Fast Marching minimal path framework, which provides the user with a means to
guide the process.

3.2.1. Conventional Method

Fast Marching is typically known as an active contour method, however it is also
suitable for a range of optimisation problems including minimal path extraction (see [29,
pp. 284-312]). Active contour methods model the motion of a contour normal to itself
with a known speed function F. A contour is a curve (2-D) or surface (3-D) separating two
regions (inside, outside). The speed function F' may depend on various factors, however
this paper deals exclusively with fronts that propagate outwards (ie. F' > 0). Sethian [29]
describes one way to characterise such an expanding front: each grid position is assigned
an arrival time 7" at which the front crosses it. Fig. 3 illustrates the arrival function for an
arbitrary curve travelling with speed F' = 1. The arrival function T'(Z) can be computed
for n-dimensional images using the fact that distance = speed x time:

1=F||VT| suchthat I'={(Z)|T(Z¥) =0} (8)

where V is the grad function orthogonal to the level sets of T, and T' is the initial
location of the front. If the speed function F' only depends on position, then the equation
reduces to the boundary value problem known as the Fikonal equation: a non-linear
partial differential equation.

In practice the Eikonal equation is solved using numerical methods. Sethain [29, pp.
68] reports a backward finite difference approach:

1/2
max(D T, —D T, 0)?

+ max(DYT, —DTVT,0)? = 9)
+ max(D™*T, —D"*T,0)?
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F = speed function
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Fig. 3. Active contour methods model curves which propagate with speed F' normal to their surface. The
arrival function on the right was computed with F' = 1.

Definition:
Alive is the set of grid points with known 7 values.
Trial is the set of grid points with recently computed 7 values.
Far is the set of remaining grid points with no computed T value.

Loop:
Let A be the Trial point with the smallest T value.
Add A to Alive; remove it from Trial .
For all neighbours of A:
If neighbour is Far, remove from Far and add to Trial.
Recompute 7 for all Trial neighbours of A according to Eq. 9
End

Listing 1. Fast Marching pseudo-code

where D is the spatial derivative operator:

u(x + h,t) — u(x,t)

Dty = o (10)
D=ty = u(z,t) — Z(a: — h,t) (11)

The problem now reduces to solving the quadratic equation given in Eq. 9 in an efficient
manner. Fast Marching is the name given to one such solution which propagates infor-
mation from smaller values of T to larger values. This is typically achieved using a heap
sort data structure to iteratively compute T for the neighbours of the smallest known
value. The pseudo-code for the method is listed in Listing 1.

In simple terms the Fast Marching method introduces an optimal ordering to all grid
points. The order is propagated outward from the set of Trial points and the order can
only grow (due to Eq. 9). When using a heap sort data structure for the set of Trial
points, the method requires only a single pass over the image. The worst-case scenario
for updating one point in the heap (ie. moving a point from the bottom to the top)
results in O(log N) complexity. Therefore, for N grid points the Fast Marching method
has O(N log N) complexity.

Given a cost function F' and an initial front consisting of a single point pg, the resultant
arrival function T'(p) contains the arrival time ¢ for each point. The minimal path P
between py and p; can be found by back-propagating from T'(p1) to T(pg) (remember
T(po) = 0.0). Because the front moves normal to the initial point, it can be shown that
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Fig. 4. The minimal path is extracted from the arrival function T using back-propagation. The extracted
path is comprised of a set of line segments computed by stepping along the gradient, which is orthogonal
to the level sets of T'.

tracking orthogonal to the level sets of T'(p) from p; will always converge to py along the
minimal geodesic path (see [18]). In practice this continuous path is approximated using
numerical methods. Sethian originally proposed a second-order scheme (Heun’s method)
to compute the step vector [29, pp. 285-286]. In [11] a simple first-order gradient descent
method was used:

Pn—1=pPn + VT(pn) (12)
where p,, is the current position, p,_1 the previous position, and « is the step length
(see Fig. 4).

Deschamps [11] also proposed a cost function for Fast Marching minimal path extrac-
tion based directly on the input image intensity:

F = Rescale (I) (13)

where [ is the input image, Rescale is a function which rescales the intensity to the range
[0,1], and F is the resultant cost function. This cost function allows the front to expand
to unwanted portions of the image, which is computationally expensive. Deschamps pro-
posed two possible mechanisms for dealing with this issue: (1) alter the Fast Marching
algorithm to freeze Trial points which have reached the boundary of the object, and/or
(2) stop the front propagating once the end point of the path has been reached (which
he termed partial propagation).

3.2.2. Improved Method

The conventional method described above suffers a number of drawbacks: (1) the ex-
panding front visits unnecessary pixels which increases computation time and potentially
creates undesirable ‘short-cuts’, (2) the path is incorrectly attracted to high-intensity cal-
cification artefacts, and (3) gradient descent back-propagation is sensitive to oscillation.
This section proposes various improvements to address each of these concerns.

The value of the cost function outside of vascular structures (denoted 4) influences
both the correctness and efficiency of the minimal path extraction. Large d values cause
the front to visit unnecessary pixels which is computationally expensive. Also, if § is too
large, the back-propagation may find an undesirable ‘short-cut’ between p; and pg. Fig. 5
illustrates the effect of different values of §. Ideally the value of the cost function outside of
vascular structures should be as close to zero as possible. With this observation in mind,
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Fig. 5. The value of the cost function outside of the vessel (§) plays a significant role in both the
correctness and efficiency of Fast Marching minimal path extraction. Cost functions in which ¢ is small
ensure correct results and are computationally efficient (only visiting pixels near the desired centreline).

it is possible to construct a simple cost function which prevents the front propagating to
unnecessary pixels:

~ J; Enhance(I) < t;
I= (14)
Enhance(I); otherwise

F = Rescale (Smooth (f)) (15)

where [ is the input image, Enhance is a vessel enhancement strategy, Smooth is a suitable
smoothing function, § is a small value which impedes the motion of the front outside of
vessels (typically 6 = 0.0), and ¢; is the lower threshold value (typically ¢; ~ 100). As
shown later, the white top-hat (WTHpg) with box structuring element of length 2B is a
suitably fast vessel enhancement strategy. The smoothing function is required to suppress
discontinuities in the cost function due to the thresholding. Such discontinuities can skew
or prematurely halt the gradient descent back-propagation. Furthermore, the smoothing
helps exaggerate the Gaussian profile of the vessels, which is important for extracting
a centred path. The curvature flow denoising method described in [29, pp. 200-213]
is an appropriate — yet relatively fast — smoothing technique, controlled using two
parameters: time step (fc,s) and number of iterations (ne,r).

In some cases high-intensity calcified plaque accumulates on the interior surface of
arteries, resulting in narrowing. Plaque blocks the passage of blood, and as such, should
be excluded when computing the vessel centreline. As depicted in Fig. 6(a), the currently
proposed cost function causes the path to be attracted to the high-intensity calcifications,
rather than repelled. Another threshold must be added to the cost function to suppress
this unwanted attraction:

03 Enhance(I) < t;
I={ s Enhance(I) > t; (16)
Enhance(I); otherwise

F = Rescale (Smooth (f)) (17)

where to is the additional calcification threshold value (typically t3 ~ 700). Fig. 6(b)
depicts the corrected path.
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(a) Uncorrected (b) Corrected

Fig. 6. An upper threshold (t2) must be added to the cost function to ensure the path correctly negotiates
high-intensity calcifications. From left to right, the synthetic vessels represent the following degrees of
stenosis (Sgeg): 0%, 25%, 50%, and 75%. The radius of the calcified plaque (r.) was computed for fixed

vessel radius (1, = 4.75mm) using the following relation: re = 744 /Sdeg-

Minimal path back-propagation using fixed length gradient descent is susceptible to
unwanted oscillation (see [11, pp. 19]). To prevent this the step length can be regularised
as follows:

Qg

= T (18)

«

where aq is the maximum desired step length. Using this approach, the step length will
vary based on the degree of change in the arrival function (areas of large change will result
in smaller steps, more closely approximating the underlying continuous function). The
value of g allows the user make a trade-off between efficiency and accuracy. Empirical
evidence suggests that oy = min(spacing) is a suitable choice (where spacing is the set
of physical distances between pixels for each dimension).

3.2.3. Way-point Guidance

Despite the addition of vessel enhancement to the cost function, it is still possible for
the back-propagation to find undesirable ‘short-cuts’ (see the first column of Fig. 7 for
one such example). To address this issue, Wink et al. [41] proposed an automated method
which searches for the optimal path through a multi-scale vesselness cost function. This
technique requires the pre-computation of the vesselness measure proposed by Frangi et
al. [13] which, as already discussed, is computationally expensive for large 3-D images.
Instead a semi-automated approach is adopted, similar to live-wire [6], in which the user
can specify a number of way-points which the path must pass near.

The proposed way-point guidance method is a generalisation of the partial-propagation
method proposed by Deschamps [11]. The user must provide a cost function and list of
paths; each path consists of start and end points, and any number of way-points (if no
way-points are specified the method reduces to the original). Starting with the first way-
point (or end point if there are no way-points) a front is propagated in the typical Fast
Marching manner and terminates when both the previous and next points in the path
have been reached. A path segment is extracted by back-propagation from the previous
point to the current Trial point. The process is repeated with each remaining way-point
and end point acting as the initial front. The resultant path is computed by concatenating
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Fig. 7. This figure depicts the proposed way-point guidance method. The first column (a—c) demonstrates
the minimal path is not always the desired path. The second column (d—f) displays the steps for extracting
the path. For each arrival function the path segments are extracted and combined. The arrow indicates
the unfortunate redundancy associated with the method.

each path segment. The second column in Fig. 7 depicts the arrival function for each step
of the process applied to a 2-D synthetic image.

Unfortunately, as indicated by the arrow in Fig. 7, some grid positions are visited by the
front on multiple occasions, which is computational expensive. The worst case complexity
is O(M x N log N) (where M is the number of way-points and N the number of pixels
in the image). However, as will be shown in a succeeding section, this worst case scenario
is rarely encountered; in fact the way-points can actually help reduce the computation
time. Adding a heuristic function (such as those in [2] or [40]) could also further improve
the efficiency.

3.3. Measuring Vessel Lumen

It is important for clinicians to have tools to visually quantify the prevalence of disease.
For coronary heart disease this is achieved through a measure of stenosis, typically derived
using an estimate of the vessel radius or cross-sectional area. Fig. 8 shows that these
measures are sensitive at bifurcations and tend to inflate the measure (see [5]). This
section proposes a simple measure based on the smallest Euclidean distance from the
centreline to the vessel wall; the minimum distance ensures the radius estimate is not
over-inflated near branch points (notice in Fig. 8 that vy < 71).

One of the strengths of the Fast Marching minimal path method is that the centreline
is computed without requiring the vessel surface (compare with skeletonization methods
which use a binary segmented volume to compute the centreline). However, given the
centreline, it is straight-forward to compute the binary volume representing the vascu-
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Fig. 8. The estimate of the vessel radius at bifur- Fig. 9. The vessel surface can be segmented using

cations is subject to inflation (r1). Choosing the Fast Marching. The cost function given in Sec-
minimum distance to the vessel wall on the cen- tion 3.2.2 is used as the speed image and the dis-
treline avoids this over estimation (r2). cretized centreline as Trial positions. The front

will expand perpendicular to the centreline and
slow down as it reaches the vessel boundary.

lature boundary. The discretized centreline acts as an initial front which is propagated
outward using Fast Marching (Fig. 9 depicts the process at increasing time steps). Tra-
ditional Fast Marching — with a user initialised front — is not suitable for segmenting
vessels because the front inevitably leaks (remember there are no curvature or homo-
geneity regularisation terms). However, because the centreline is a good initial estimate
of the vessel surface, the marching can be terminated after a small number of iterations
(typically t < 10), which not only prevents leakage but is also very fast. The cost function
given in Section 3.2.2 (without the smoothing term) is a suitable speed image.

The minimum Fuclidean distance to the surface can be efficiently computed using the
Maurer distance transform [24]. This value can then be interpolated at each point along
the centreline and stored for later retrieval. Because vascular structures represent only a
small portion of the whole image, it is advantageous to compute a low-resolution mask
(on a subsampled image) to indicate which pixels are near the centreline. Each pixel
under the mask can then perform a brute-force search to find the closest centreline point
and stored radius estimate. This masked brute-force method may not be as elegant as a
space partition approach (such as kd-trees), however it is adequate for our situation.

3.4. Visualisation

The extracted vessel volume and measure of vessel lumen create a number of opportu-
nities for improved visualisation. In this section two visualisation techniques are proposed
which address limitations with existing methods. The first method extends maximum in-
tensity projection (MIP) to allow the coronary arteries to always remain visible. The
second method uses direct volume rendering (DVR) to pseudo-colour the arteries with
the measure of vessel lumen.

3.4.1. Weighted Maximum Intensity Projection

Maximum intensity projection (MIP) is a favoured technique amongst radiologists
because it allows for three dimensional visualisation of the whole dataset, without the
need for adjusting display parameters (which can lead to large inter-observer variability).
This advantage comes at the cost of discarded 3-D information. A common issue for
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(a) MIP (b) Thin-slab MIP (c) Weighted MIP

Fig. 10. The coronary arteries are obscured when using conventional maximum intensity projection
(MIP) to visualise cardiac angiography data. Thin-slab MIP alleviates this issue at the cost of decreased
usability and removal of contextual cues. Weighted MIP enables the coronary arteries to be propagated
to the resultant rendering while still maintaining contextual cues (wout = 0.8, win, = 1.0).

cardiac angiography is that the left ventricle, left atrium, and aorta (all of which contain
high concentrations of contrast) often obscure the vasculature in normal MIP images.
Thin-slab MIP addresses this concern by projecting the maximum value along rays which
are restricted to a thin slice [12]. Despite the visualisation improvement, the usability of
thin-slab MIP is tedious, the user is required to scroll through the data similar to many
2-D visualisation methods. Furthermore, the resultant rendering only shows pixels within
the slab, removing important contextual cues.

Given the segmented volume representing the coronary arteries, it is possible to weight
the vessels to prevent them being obscured by other higher intensity structures. Values
outside of the arteries are assigned weight w,,; and values inside the arteries weight
Win, Where Weyr < Wip. If weye is sufficiently less than w;,, then the arteries will be
propagated as the maximum value, while still retaining contextual structures (with re-
duced intensity). We call this method weighted maximum intensity projection. Fig. 10
depicts the differences between traditional MIP, thin-slab MIP, and weighted MIP (for
this example, it was empirically found that wy,: = 0.8 and w;, = 1.0 produced suitable
results). Weighted MIP has the advantage of displaying the entire coronary network, with
contextual cues, using relatively simple display parameters. However, the method still
suffers from loss of dimensionality, the fundamental drawback associated with all MIP
techniques.
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3.4.2. Pseudo-colouring the Vessel Lumen

In contrast to MIP, direct volume rendering uses a number of perceptual cues to
represent three dimensional structures [12]. The user is required to specify various display
parameters (opacity and colour), typically in an iterative and interactive fashion via a
‘transfer function’. In some cases it may not be possible to specify parameters which
clearly depict the structures of interest. In these cases tagged volume rendering [25] can
be employed. Tagged volume rendering uses a combination of segmentation before and
during rendering to separate structures of interest with similar intensity characteristics.

A similar mechanism can be employed which, in addition to delineating structures of
interest, applies pseudo-colouring to the arteries to quantitatively depict the vessel lumen.
The method can be described as follows: cast a number of rays into the volume and sample
values at equidistant positions along each ray; query the label of each sample to determine
if it lies outside the heart, inside the heart, or inside an artery; discard samples outside
of the heart; apply typical volume rendering for samples inside the heart; use a lookup
table indexed using the lumen measure to pseudo-colour samples inside the arteries;
combine the samples along each ray to form the final output image. Diseased coronary
artery segments can be visually identified in the resultant renderings as bands, and the
colour map can be used to quantify the degree of stenosis. Fig. 14 depicts visualisations
generated using this method.

4. Results

Because the proposed method comprises both segmentation and visualisation, valida-
tion is a difficult task. The efficiency, reproducibility, and accuracy of the vessel seg-
mentation is firstly considered using a mixture of both real and synthetic datasets. The
two proposed visualisation methods were then applied to a small cohort of clinically
obtained datasets, the results of which are depicted in Fig. 14. The following tests were
executed on a high performance desktop computer (Intel Xeon, 4 x 2.66 GHz processors,
8 GB RAM, Windows XP 64-bit) with a recent graphics card (NVIDIA Quadro 4600,
768 MB VRAM). The algorithms were implemented in C++ using the Insight Toolkit
(ITK) !. The volume visualisation methods were realised using a custom made OpenGL
application with fragment shaders written in OpenGL Shading Language (GLSL).

4.1. Efficiency

In terms of efficiency, there are three interesting questions requiring investigation: (1)
Which vessel enhancement method performs the fastest? (2) Does adding way-points
increase the computation time? and (3) How long does the proposed method take?

Firstly, the question of vessel enhancement speed was considered. All of the methods
discussed in Section 3.1 are suitable for the task (the line filtering methods have partic-
ularly desirable characteristics), however practicality is an important consideration. A
simple experiment was devised to compare the computation times for five different vessel
enhancement methods: (1) naive top-hat by opening with ball structuring element (Ball
WTH), (2) histogram white top-hat with ball structuring element (Histogram WTH), (3)

I Insight Toolkit(ITK): http://www.itk.org
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Fig. 11. Experimental results comparing computation time of five different vessel enhancement strategies:
three morphological white top-hat (WTH) methods and two Hessian-based line filters.

van Herk white top-hat (Box WTH), (4) multi-scale line filtering using Sato’s method
(Sato Line) with a; = 0.5, as = 0.5, ¢ = [0.1,1.0], and (5) multi-scale line filtering
using Frangi’s method (Frangi Line) with o = 0.5, § = 0.5, v = 5.0, 0 = [0.1,1.0]. The
implementations detailed in [7] and [3] were used for this experiment. Each method was
executed in a sequential fashion on a single thread a total of five times, the mean time
was recorded. The dataset was a clinically obtained CTA dataset of the thoracic cavity,
cropped to include only the left anterior descending (LAD) (size [220, 260, 300] pixels,
spacing [0.35, 0.35, 0.4] mm). As can be seen in Fig. 11, the van Herk morphological
top-hat by opening (Box WTH) performed orders of magnitude faster than the other
methods (dashed line). Furthermore, the results confirm that the computation time is
independent of the structuring element size.

Next, the efficiency of the way-point guidance method was examined (note that the
reproducibility is addressed separately in the next section). The centreline of the LAD
from the same dataset as above was extracted using the proposed Fast Marching min-
imal path method with varying number of way-points. The following parameters were
employed: ¢ = 200, to = 800, 6 = 0.0, B =8, tevf = 0.15, newr = 4, ag = 0.35. The syn-
thetic example given in Section 3.2.3 indicated that adding way-points could potentially
degrade the path extraction performance. However, the results listed in Table 1 indicate
that for real datasets the reverse is true: additional way-points actually help focus the
expanding front, reducing computation time.

Finally, the overall time taken for each step of the proposed method was evaluated us-
ing a small cohort of clinically obtained datasets. Each dataset was acquired in a hospital
setting using contrast-enhanced, ECG-gated, 40-slice spiral computed tomography an-
giography (Brilliance 40, Philips Medical Systems, Best, Netherlands), with approximate
size [512, 512, 512] pixels and spacing [0.4, 0.4, 0.4] mm. The results listed in Table 2
show that — once the path information has been specified — the centreline, surface, and
measure of vessel lumen for the entire coronary network can be automatically computed
in approximately 6 minutes. The longest phase was for the user to specify the start,
way, and end points for the path extraction; future work could focus on methods to help
automate this stage.
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Way-points Time (s) DSC
1 3.55 0.946
2 3.93 0.898
3 2.12 0.930
4 1.87 0.923
5 1.44 0.896

Table 1

Execution time and Dice similarity coefficients (DSC) for varying number of way-points. The values
indicate that increasing the number of way-points does not increase the execution time and produces
similar resultant paths.

Dataset Size H Paths Cost  Centreline  Surface = Measure
A [512, 512, 428] 10m 30s  50.4s 71.5s 53.0s 171.9s
B [512, 512, 404] 10m 40s  40.0s 54.7s 65.2s 158.5s
C [512, 512, 334] 9m 45s  58.2s 56.4s 41.7s 129.0s
D [512, 512, 377] 14m 0s  64.7s 92.9s 53.3s 196.1s
E [512, 512, 400] 12m 40s  66.6s 86.8s 69.4s 158.9s

Table 2
The processing time for each stage of the proposed method on a small cohort of clinically obtained
datasets. Each dataset had approximate size [512, 512, 400] pixels and spacing [0.4, 0.4, 0.4] mm.

4.2. Reproducibility

It is desirable for the method to be invariant to user specified parameters. Dice sim-
ilarity coeflicients (DSC') have been shown to be a useful validation metric to evaluate
reproducibility [43]. The DSC metric is defined as follows:

2x (AN B)

DSC =
(A+ B)

(19)
where A and B are target regions, AN B is the intersection of the regions, and A+ B the
sum of the regions. To assess the reproducibility, dataset A had a start point (pg) placed
in the distal portion of the LAD and an end point (p;) at the origin of artery (near the
aorta). A number of way-points were spaced evenly along the artery (n = [1,2,3,4,5])
and the DSC' computed between the resultant path and the path without way-points.
Table 1 lists the resultant values. Given that a good overlap is considered to occur when
DSC > 0.7, these results indicate the placement of superfluous way-points does not
significantly alter the extracted centreline.

4.3. Accuracy

To access the accuracy of the centreline extraction method the Simultaneous Truth
And Performance Level Estimation (STAPLE) method proposed by Warfield et al. [36]
was employed. The STAPLE algorithm takes a set of binary segmentations and generates
an assessment of the accuracy of each input using expectation-maximisation to charac-
terise the performance in terms of sensitivity (true positive fraction) and specificity (true
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Fig. 12. A surface rendering of the synthetic dataset using the OpenGL Tubing and Extrusion API
(GLE). The tubular object is tortuous, contains a branch, and exhibits varying radius.

negative fraction). Because the algorithm expects the set of binary segmentations to over-
lap, an iterative scheme must be used which morphologically dilates the centreline with
increasing radius [16]. This allows the given centreline segmentations to be compared for
each dilation factor in terms of sensitivity and specificity.

To test the algorithm in the presence of noise, a synthetic dataset with known charac-
teristics was created. The dataset contained a tortuous, branching, tubular object, with
size [256, 256, 256] pixels and spacing [1.0, 1.0, 1.0] mm, and varying radius in the range
3.0 mm to 1.0 mm. The background intensity was set to 0 and the object intensity to 500
(typical CTA values). The dataset was smoothed using a Gaussian kernel to represent
the parabolic cross-sectional intensity of real vessels (o, = 1.5). Fig. 12 depicts a surface
rendering of this dataset. Five centrelines extracted from the synthetic dataset were fed
into the STAPLE algorithm: the discretized centreline used to generate the synthetic
dataset (Known), the skeleton obtained using distance-ordered homotopic thinning [27]
(Skeleton), and three segmentations using the Fast Marching minimal path technique
with additive Gaussian noise of varying standard deviation o,, = [0,10,20] (Path). To
emphasise the robustness of the method, the Smooth function was omitted from the
cost function generation. The algorithm was configured with the following parameters:
t; =100, t2 = N/A, 6 = 0.05, and ag = 0.75. Fig. 13 shows that the Fast Marching path
extraction method performs well in comparison and the sensitivity is relatively constant
for varying levels of noise. It should be noted that no useful comparison could be made
using the specificity, and as such these values were omitted from the analysis.

5. Summary

A semi-autonomous composite segmentation and visualisation system for the coronary
arteries in 3-D CTA images was presented. The proposed method consisted of four stages:
(1) vessel enhancement to construct an efficient cost function, (2) coronary artery cen-
treline extraction using Fast Marching minimal paths, (3) computation of a measure of
vessel lumen (which directly relates to the degree of stenosis) using the minimum Eu-
clidean distance from the centreline to the vessel surface, and (4) visualisation employing
the resultant vessel segmentation and measure.

It was noted that the conventional Fast Marching minimal path method has the ten-
dency to visit unnecessary pixels (increasing computation time and the risk of undesir-
able ‘short-cuts’). A novel cost function which utilised a vessel enhancement strategy
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Fig. 13. This figure depicts the sensitivity comparison for the known, skeleton, and path techniques.
The Fast Marching path extraction method performs well in comparison and is relatively constant for
varying levels of noise (o, = [0, 10, 20]).

was proposed to address this issue. An analysis of existing vessel enhancement methods
showed that Hessian-based line filters, while having desirable properties, are computa-
tionally expensive. The morphological top-hat by opening was in this case a suitable
replacement, and — when using an efficient implementation — can be very fast and in-
dependent of structuring element size. Furthermore, a mechanism was added to the cost
function to correctly handle calcification artefacts. The step length for gradient descent
back-propagation was also regularised to help avoid oscillations in the extracted path.

Despite the improvements offered by the proposed cost function, it was still possible
for the back-propagation to find undesirable ‘short-cuts’. A semi-automated approach
was adopted in which the user could specify a number of way-points which the path
must pass near. It was hypothesised that additional way-points could degrade the path
extraction performance, however results indicated that for real datasets the reverse was
true: additional way-points actually helped focus the expanding front, reducing compu-
tation time. Furthermore, Dice similarity coefficients (DSC') indicated that additional
way-points did not significantly alter the reproducibility of the extracted centreline.

To provide clinicians with a tool to visually quantify the prevalence of disease, the lu-
men of the arteries (which indicates the degree of narrowing) was measured. The measure
was then mapped to volume renderings using pseudo-colour. Severely diseased coronary
artery segments could be visually identified in the resultant renderings. The vessel sur-
face was also used to weight maximum intensity projection (MIP) images, allowing the
arteries to remain visible, even when in alignment with higher intensity structures.

Using a proven methodology (STAPLE), the centreline extraction method was com-
pared against known synthetic results, demonstrating its robustness in the presence of
noise. Furthermore, the overall timings showed that — once the path information has
been specified — the centreline, surface, and measure of vessel lumen for the entire coro-
nary network can be automatically computed in approximately 6 minutes for large (=
5123 x 12-bits) CTA datasets.

The proposed method was applied to the problem of accessing the degree of stenosis
of the coronary arteries, which is vital for successful diagnosis and treatment planning
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Weighted MIP Tagged DVR Pseudo-coloured DVR

Fig. 14. Resultant direct volume renderings (DVR) with pseudo-coloured coronary arteries; white indi-
cates largest radius, blue smallest. Arterial segments exhibiting stenosis can be easily identified as bands
in the pseudo-coloured renderings (last column).

of heart disease. Aspects of the presented system are also applicable to other problem
domains, including segmentation and visualisation of other modalities and vascular struc-
tures, optimal path planning for image guided surgery, and robot navigation.
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