11 research outputs found

    Multiresolution eXtended Free-Form Deformations (XFFD) for non-rigid registration with discontinuous transforms

    Get PDF
    Image registration is an essential technique to obtain point correspondences between anatomical structures from different images. Conventional non-rigid registration methods assume a continuous and smooth deformation field throughout the image. However, the deformation field at the interface of different organs is not necessarily continuous, since the organs may slide over or separate from each other. Therefore, imposing continuity and smoothness ubiquitously would lead to artifacts and increased errors near the discontinuity interface. In computational mechanics, the eXtended Finite Element Method (XFEM) was introduced to handle discontinuities without using computational meshes that conform to the discontinuity geometry. Instead, the interpolation bases themselves were enriched with discontinuous functional terms. Borrowing this concept, we propose a multiresolution eXtented Free-Form Deformation (XFFD) framework that seamlessly integrates within and extends the standard Free-Form Deformation (FFD) approach. Discontinuities are incorporated by enriching the B-spline basis functions coupled with extra degrees of freedom, which are only introduced near the discontinuity interface. In contrast with most previous methods, restricted to sliding motion, no ad hoc penalties or constraints are introduced to reduce gaps and overlaps. This allows XFFD to describe more general discontinuous motions. In addition, we integrate XFFD into a rigorously formulated multiresolution framework by introducing an exact parameter upsampling method. The proposed method has been evaluated in two publicly available datasets: 4D pulmonary CT images from the DIR-Lab dataset and 4D CT liver datasets. The XFFD achieved a Target Registration Error (TRE) of 1.17 ± 0.85 mm in the DIR-lab dataset and 1.94 ± 1.01 mm in the liver dataset, which significantly improves on the performance of the state-of-the-art methods handling discontinuities

    Non-rigid medical image registration with extended free form deformations: modelling general tissue transitions

    Get PDF
    Image registration seeks pointwise correspondences between the same or analogous objects in different images. Conventional registration methods generally impose continuity and smoothness throughout the image. However, there are cases in which the deformations may involve discontinuities. In general, the discontinuities can be of different types, depending on the physical properties of the tissue transitions involved and boundary conditions. For instance, in the respiratory motion the lungs slide along the thoracic cage following the tangential direction of their interface. In the normal direction, however, the lungs and the thoracic cage are constrained to be always in contact but they have different material properties producing different compression or expansion rates. In the literature, there is no generic method, which handles different types of discontinuities and considers their directional dependence. The aim of this thesis is to develop a general registration framework that is able to correctly model different types of tissue transitions with a general formalism. This has led to the development of the eXtended Free Form Deformation (XFFD) registration method. XFFD borrows the concept of the interpolation method from the eXtended Finite Element method (XFEM) to incorporate discontinuities by enriching B-spline basis functions, coupled with extra degrees of freedom. XFFD can handle different types of discontinuities and encodes their directional-dependence without any additional constraints. XFFD has been evaluated on digital phantoms, publicly available 3D liver and lung CT images. The experiments show that XFFD improves on previous methods and that it is important to employ the correct model that corresponds to the discontinuity type involved at the tissue transition. The effect of using incorrect models is more evident in the strain, which measures mechanical properties of the tissues

    GIFTed Demons: deformable image registration with local structure-preserving regularization using supervoxels for liver applications.

    Get PDF
    Deformable image registration, a key component of motion correction in medical imaging, needs to be efficient and provides plausible spatial transformations that reliably approximate biological aspects of complex human organ motion. Standard approaches, such as Demons registration, mostly use Gaussian regularization for organ motion, which, though computationally efficient, rule out their application to intrinsically more complex organ motions, such as sliding interfaces. We propose regularization of motion based on supervoxels, which provides an integrated discontinuity preserving prior for motions, such as sliding. More precisely, we replace Gaussian smoothing by fast, structure-preserving, guided filtering to provide efficient, locally adaptive regularization of the estimated displacement field. We illustrate the approach by applying it to estimate sliding motions at lung and liver interfaces on challenging four-dimensional computed tomography (CT) and dynamic contrast-enhanced magnetic resonance imaging datasets. The results show that guided filter-based regularization improves the accuracy of lung and liver motion correction as compared to Gaussian smoothing. Furthermore, our framework achieves state-of-the-art results on a publicly available CT liver dataset

    Sliding at first order: Higher-order momentum distributions for discontinuous image registration

    Full text link
    In this paper, we propose a new approach to deformable image registration that captures sliding motions. The large deformation diffeomorphic metric mapping (LDDMM) registration method faces challenges in representing sliding motion since it per construction generates smooth warps. To address this issue, we extend LDDMM by incorporating both zeroth- and first-order momenta with a non-differentiable kernel. This allows to represent both discontinuous deformation at switching boundaries and diffeomorphic deformation in homogeneous regions. We provide a mathematical analysis of the proposed deformation model from the viewpoint of discontinuous systems. To evaluate our approach, we conduct experiments on both artificial images and the publicly available DIR-Lab 4DCT dataset. Results show the effectiveness of our approach in capturing plausible sliding motion

    Efficient convolution-based pairwise elastic image registration on three multimodal similarity metrics

    Get PDF
    Producción CientíficaThis paper proposes a complete convolutional formulation for 2D multimodal pairwise image registration problems based on free-form deformations. We have reformulated in terms of discrete 1D convolutions the evaluation of spatial transformations, the regularization term, and their gradients for three different multimodal registration metrics, namely, normalized cross correlation, mutual information, and normalized mutual information. A sufficient condition on the metric gradient is provided for further extension to other metrics. The proposed approach has been tested, as a proof of concept, on contrast-enhanced first-pass perfusion cardiac magnetic resonance images. Execution times have been compared with the corresponding execution times of the classical tensor product formulation, both on CPU and GPU. The speed-up achieved by using convolutions instead of tensor products depends on the image size and the number of control points considered, the larger those magnitudes, the greater the execution time reduction. Furthermore, the speed-up will be more significant when gradient operations constitute the major bottleneck in the optimization process.Ministerio de Economía, Industria y Competitividad (grants TEC2017-82408-R and PID2020-115339RB-I00)ESAOTE Ltd (grant 18IQBM

    HNSF Log-Demons: Diffeomorphic demons registration using hierarchical neighbourhood spectral features

    Get PDF
    © 2021 The Authors. Many biomedical applications require accurate non-rigid image registration that can cope with complex deformations. However, popular diffeomorphic Demons registration algorithms suffer from difficulties for complex and serious distortions since they only use image greyscale and gradient information. To address these difficulties, a new diffeomorphic Demons registration algorithm is proposed using hierarchical neighbourhood spectral features namely HNSF Log-Demons in this paper. In view of three important properties of hierarchical neighbourhood spectral features based on line graph such as rotation invariance, invariance of linear changes of brightness, and robustness to noise, the hierarchical neighbourhood spectral features of a reference image and a moving image is first extracted and these novel spectral features are incorporated into the energy function of the diffeomorphic registration framework to improve the capability of capturing complex distortions. Secondly, the Nystr ö o ̈ m approximation based on random singular value decomposition is employed to effectively enhance the computational efficiency of HNSF Log-Demons. Finally, the hybrid multi-resolution strategy based on wavelet decomposition in the registration process is utilised to further improve the registration accuracy and efficiency. Experimental results show that the proposed HNSF Log-Demons not only effectively ensures the generation of smooth and reversible deformation field, but also achieves better performance than state-of-the-art algorithms.National Natural Science Foundation of China. Grant Numbers: 61762058, 61861024, 61871259; Natural Science Foundation of Gansu Province of China. Grant Number: 20JR5RA404; Natural Science Basic Research Program of Shaanxi. Grant Number: 2021JC-47

    3D-3D Deformable Registration and Deep Learning Segmentation based Neck Diseases Analysis in MRI

    Full text link
    Whiplash, cervical dystonia (CD), neck pain and work-related upper limb disorder (WRULD) are the most common diseases in the cervical region. Headaches, stiffness, sensory disturbance to the legs and arms, optical problems, aching in the back and shoulder, and auditory and visual problems are common symptoms seen in patients with these diseases. CD patients may also suffer tormenting spasticity in some neck muscles, with the symptoms possibly being acute and persisting for a long time, sometimes a lifetime. Whiplash-associated disorders (WADs) may occur due to sudden forward and backward movements of the head and neck occurring during a sporting activity or vehicle or domestic accident. These diseases affect private industries, insurance companies and governments, with the socio-economic costs significantly related to work absences, long-term sick leave, early disability and disability support pensions, health care expenses, reduced productivity and insurance claims. Therefore, diagnosing and treating neck-related diseases are important issues in clinical practice. The reason for these afflictions resulting from accident is the impairment of the cervical muscles which undergo atrophy or pseudo-hypertrophy due to fat infiltrating into them. These morphological changes have to be determined by identifying and quantifying their bio-markers before applying any medical intervention. Volumetric studies of neck muscles are reliable indicators of the proper treatments to apply. Radiation therapy, chemotherapy, injection of a toxin or surgery could be possible ways of treating these diseases. However, the dosages required should be precise because the neck region contains some sensitive organs, such as nerves, blood vessels and the trachea and spinal cord. Image registration and deep learning-based segmentation can help to determine appropriate treatments by analyzing the neck muscles. However, this is a challenging task for medical images due to complexities such as many muscles crossing multiple joints and attaching to many bones. Also, their shapes and sizes vary greatly across populations whereas their cross-sectional areas (CSAs) do not change in proportion to the heights and weights of individuals, with their sizes varying more significantly between males and females than ages. Therefore, the neck's anatomical variabilities are much greater than those of other parts of the human body. Some other challenges which make analyzing neck muscles very difficult are their compactness, similar gray-level appearances, intra-muscular fat, sliding due to cardiac and respiratory motions, false boundaries created by intramuscular fat, low resolution and contrast in medical images, noise, inhomogeneity and background clutter with the same composition and intensity. Furthermore, a patient's mode, position and neck movements during the capture of an image create variability. However, very little significant research work has been conducted on analyzing neck muscles. Although previous image registration efforts form a strong basis for many medical applications, none can satisfy the requirements of all of them because of the challenges associated with their implementation and low accuracy which could be due to anatomical complexities and variabilities or the artefacts of imaging devices. In existing methods, multi-resolution- and heuristic-based methods are popular. However, the above issues cause conventional multi-resolution-based registration methods to be trapped in local minima due to their low degrees of freedom in their geometrical transforms. Although heuristic-based methods are good at handling large mismatches, they require pre-segmentation and are computationally expensive. Also, current deformable methods often face statistical instability problems and many local optima when dealing with small mismatches. On the other hand, deep learning-based methods have achieved significant success over the last few years. Although a deeper network can learn more complex features and yields better performances, its depth cannot be increased as this would cause the gradient to vanish during training and result in training difficulties. Recently, researchers have focused on attention mechanisms for deep learning but current attention models face a challenge in the case of an application with compact and similar small multiple classes, large variability, low contrast and noise. The focus of this dissertation is on the design of 3D-3D image registration approaches as well as deep learning-based semantic segmentation methods for analyzing neck muscles. In the first part of this thesis, a novel object-constrained hierarchical registration framework for aligning inter-subject neck muscles is proposed. Firstly, to handle large-scale local minima, it uses a coarse registration technique which optimizes a new edge position difference (EPD) similarity measure to align large mismatches. Also, a new transformation based on the discrete periodic spline wavelet (DPSW), affine and free-form-deformation (FFD) transformations are exploited. Secondly, to avoid the monotonous nature of using transformations in multiple stages, affine registration technique, which uses a double-pushing system by changing the edges in the EPD and switching the transformation's resolutions, is designed to align small mismatches. The EPD helps in both the coarse and fine techniques to implement object-constrained registration via controlling edges which is not possible using traditional similarity measures. Experiments are performed on clinical 3D magnetic resonance imaging (MRI) scans of the neck, with the results showing that the EPD is more effective than the mutual information (MI) and the sum of squared difference (SSD) measures in terms of the volumetric dice similarity coefficient (DSC). Also, the proposed method is compared with two state-of-the-art approaches with ablation studies of inter-subject deformable registration and achieves better accuracy, robustness and consistency. However, as this method is computationally complex and has a problem handling large-scale anatomical variabilities, another 3D-3D registration framework with two novel contributions is proposed in the second part of this thesis. Firstly, a two-stage heuristic search optimization technique for handling large mismatches,which uses a minimal user hypothesis regarding these mismatches and is computationally fast, is introduced. It brings a moving image hierarchically closer to a fixed one using MI and EPD similarity measures in the coarse and fine stages, respectively, while the images do not require pre-segmentation as is necessary in traditional heuristic optimization-based techniques. Secondly, a region of interest (ROI) EPD-based registration framework for handling small mismatches using salient anatomical information (AI), in which a convex objective function is formed through a unique shape created from the desired objects in the ROI, is proposed. It is compared with two state-of-the-art methods on a neck dataset, with the results showing that it is superior in terms of accuracy and is computationally fast. In the last part of this thesis, an evaluation study of recent U-Net-based convolutional neural networks (CNNs) is performed on a neck dataset. It comprises 6 recent models, the U-Net, U-Net with a conditional random field (CRF-Unet), attention U-Net (A-Unet), nested U-Net or U-Net++, multi-feature pyramid (MFP)-Unet and recurrent residual U-Net (R2Unet) and 4 with more comprehensive modifications, the multi-scale U-Net (MS-Unet), parallel multi-scale U-Net (PMSUnet), recurrent residual attention U-Net (R2A-Unet) and R2A-Unet++ in neck muscles segmentation, with analyses of the numerical results indicating that the R2Unet architecture achieves the best accuracy. Also, two deep learning-based semantic segmentation approaches are proposed. In the first, a new two-stage U-Net++ (TS-UNet++) uses two different types of deep CNNs (DCNNs) rather than one similar to the traditional multi-stage method, with the U-Net++ in the first stage and the U-Net in the second. More convolutional blocks are added after the input and before the output layers of the multi-stage approach to better extract the low- and high-level features. A new concatenation-based fusion structure, which is incorporated in the architecture to allow deep supervision, helps to increase the depth of the network without accelerating the gradient-vanishing problem. Then, more convolutional layers are added after each concatenation of the fusion structure to extract more representative features. The proposed network is compared with the U-Net, U-Net++ and two-stage U-Net (TS-UNet) on the neck dataset, with the results indicating that it outperforms the others. In the second approach, an explicit attention method, in which the attention is performed through a ROI evolved from ground truth via dilation, is proposed. It does not require any additional CNN, as does a cascaded approach, to localize the ROI. Attention in a CNN is sensitive with respect to the area of the ROI. This dilated ROI is more capable of capturing relevant regions and suppressing irrelevant ones than a bounding box and region-level coarse annotation, and is used during training of any CNN. Coarse annotation, which does not require any detailed pixel wise delineation that can be performed by any novice person, is used during testing. This proposed ROI-based attention method, which can handle compact and similar small multiple classes with objects with large variabilities, is compared with the automatic A-Unet and U-Net, and performs best

    Estimating and understanding motion : from diagnostic to robotic surgery

    Get PDF
    Estimating and understanding motion from an image sequence is a central topic in computer vision. The high interest in this topic is because we are living in a world where many events that occur in the environment are dynamic. This makes motion estimation and understanding a natural component and a key factor in a widespread of applications including object recognition , 3D shape reconstruction, autonomous navigation and medica! diagnosis. Particularly, we focus on the medical domain in which understanding the human body for clinical purposes requires retrieving the organs' complex motion patterns, which is in general a hard problem when using only image data. In this thesis, we cope with this problem by posing the question - How to achieve a realistic motion estimation to offer a better clinical understanding? We focus this thesis on answering this question by using a variational formulation as a basis to understand one of the most complex motions in the human's body, the heart motion, through three different applications: (i) cardiac motion estimation for diagnostic, (ii) force estimation and (iii) motion prediction, both for robotic surgery. Firstly, we focus on a central topic in cardiac imaging that is the estimation of the cardiac motion. The main aim is to offer objective and understandable measures to physicians for helping them in the diagnostic of cardiovascular diseases. We employ ultrafast ultrasound data and tools for imaging motion drawn from diverse areas such as low-rank analysis and variational deformation to perform a realistic cardiac motion estimation. The significance is that by taking low-rank data with carefully chosen penalization, synergies in this complex variational problem can be created. We demonstrate how our proposed solution deals with complex deformations through careful numerical experiments using realistic and simulated data. We then move from diagnostic to robotic surgeries where surgeons perform delicate procedures remotely through robotic manipulators without directly interacting with the patients. As a result, they lack force feedback, which is an important primary sense for increasing surgeon-patient transparency and avoiding injuries and high mental workload. To solve this problem, we follow the conservation principies of continuum mechanics in which it is clear that the change in shape of an elastic object is directly proportional to the force applied. Thus, we create a variational framework to acquire the deformation that the tissues undergo due to an applied force. Then, this information is used in a learning system to find the nonlinear relationship between the given data and the applied force. We carried out experiments with in-vivo and ex-vivo data and combined statistical, graphical and perceptual analyses to demonstrate the strength of our solution. Finally, we explore robotic cardiac surgery, which allows carrying out complex procedures including Off-Pump Coronary Artery Bypass Grafting (OPCABG). This procedure avoids the associated complications of using Cardiopulmonary Bypass (CPB) since the heart is not arrested while performing the surgery on a beating heart. Thus, surgeons have to deal with a dynamic target that compromisetheir dexterity and the surgery's precision. To compensate the heart motion, we propase a solution composed of three elements: an energy function to estimate the 3D heart motion, a specular highlight detection strategy and a prediction approach for increasing the robustness of the solution. We conduct evaluation of our solution using phantom and realistic datasets. We conclude the thesis by reporting our findings on these three applications and highlight the dependency between motion estimation and motion understanding at any dynamic event, particularly in clinical scenarios.L’estimació i comprensió del moviment dins d’una seqüència d’imatges és un tema central en la visió per ordinador, el que genera un gran interès perquè vivim en un entorn ple d’esdeveniments dinàmics. Per aquest motiu és considerat com un component natural i factor clau dins d’un ampli ventall d’aplicacions, el qual inclou el reconeixement d’objectes, la reconstrucció de formes tridimensionals, la navegació autònoma i el diagnòstic de malalties. En particular, ens situem en l’àmbit mèdic en el qual la comprensió del cos humà, amb finalitats clíniques, requereix l’obtenció de patrons complexos de moviment dels òrgans. Aquesta és, en general, una tasca difícil quan s’utilitzen només dades de tipus visual. En aquesta tesi afrontem el problema plantejant-nos la pregunta - Com es pot aconseguir una estimació realista del moviment amb l’objectiu d’oferir una millor comprensió clínica? La tesi se centra en la resposta mitjançant l’ús d’una formulació variacional com a base per entendre un dels moviments més complexos del cos humà, el del cor, a través de tres aplicacions: (i) estimació del moviment cardíac per al diagnòstic, (ii) estimació de forces i (iii) predicció del moviment, orientant-se les dues últimes en cirurgia robòtica. En primer lloc, ens centrem en un tema principal en la imatge cardíaca, que és l’estimació del moviment cardíac. L’objectiu principal és oferir als metges mesures objectives i comprensibles per ajudar-los en el diagnòstic de les malalties cardiovasculars. Fem servir dades d’ultrasons ultraràpids i eines per al moviment d’imatges procedents de diverses àrees, com ara l’anàlisi de baix rang i la deformació variacional, per fer una estimació realista del moviment cardíac. La importància rau en que, en prendre les dades de baix rang amb una penalització acurada, es poden crear sinergies en aquest problema variacional complex. Mitjançant acurats experiments numèrics, amb dades realístiques i simulades, hem demostrat com les nostres propostes solucionen deformacions complexes. Després passem del diagnòstic a la cirurgia robòtica, on els cirurgians realitzen procediments delicats remotament, a través de manipuladors robòtics, sense interactuar directament amb els pacients. Com a conseqüència, no tenen la percepció de la força com a resposta, que és un sentit primari important per augmentar la transparència entre el cirurgià i el pacient, per evitar lesions i per reduir la càrrega de treball mental. Resolem aquest problema seguint els principis de conservació de la mecànica del medi continu, en els quals està clar que el canvi en la forma d’un objecte elàstic és directament proporcional a la força aplicada. Per això hem creat un marc variacional que adquireix la deformació que pateixen els teixits per l’aplicació d’una força. Aquesta informació s’utilitza en un sistema d’aprenentatge, per trobar la relació no lineal entre les dades donades i la força aplicada. Hem dut a terme experiments amb dades in-vivo i ex-vivo i hem combinat l’anàlisi estadístic, gràfic i de percepció que demostren la robustesa de la nostra solució. Finalment, explorem la cirurgia cardíaca robòtica, la qual cosa permet realitzar procediments complexos, incloent la cirurgia coronària sense bomba (off-pump coronary artery bypass grafting o OPCAB). Aquest procediment evita les complicacions associades a l’ús de circulació extracorpòria (Cardiopulmonary Bypass o CPB), ja que el cor no s’atura mentre es realitza la cirurgia. Això comporta que els cirurgians han de tractar amb un objectiu dinàmic que compromet la seva destresa i la precisió de la cirurgia. Per compensar el moviment del cor, proposem una solució composta de tres elements: un funcional d’energia per estimar el moviment tridimensional del cor, una estratègia de detecció de les reflexions especulars i una aproximació basada en mètodes de predicció, per tal d’augmentar la robustesa de la solució. L’avaluació de la nostra solució s’ha dut a terme mitjançant conjunts de dades sintètiques i realistes. La tesi conclou informant dels nostres resultats en aquestes tres aplicacions i posant de relleu la dependència entre l’estimació i la comprensió del moviment en qualsevol esdeveniment dinàmic, especialment en escenaris clínics.Postprint (published version
    corecore