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Abstract

Many biomedical applications require accurate non-rigid image registration that can cope
with complex deformations. However, popular diffeomorphic Demons registration algo-
rithms suffer from difficulties for complex and serious distortions since they only use
image greyscale and gradient information. To address these difficulties, a new diffeomor-
phic Demons registration algorithm is proposed using hierarchical neighbourhood spectral
features namely HNSF Log-Demons in this paper. In view of three important proper-
ties of hierarchical neighbourhood spectral features based on line graph such as rotation
invariance, invariance of linear changes of brightness, and robustness to noise, the hierar-
chical neighbourhood spectral features of a reference image and a moving image is first
extracted and these novel spectral features are incorporated into the energy function of
the diffeomorphic registration framework to improve the capability of capturing complex
distortions. Secondly, the Nyström approximation based on random singular value decom-
position is employed to effectively enhance the computational efficiency of HNSF Log-
Demons. Finally, the hybrid multi-resolution strategy based on wavelet decomposition in
the registration process is utilised to further improve the registration accuracy and effi-
ciency. Experimental results show that the proposed HNSF Log-Demons not only effec-
tively ensures the generation of smooth and reversible deformation field, but also achieves
better performance than state-of-the-art algorithms.

1 INTRODUCTION

Medical image registration refers to the process of finding a
plausible spatial transformation for moving images, so that it
can reach the same spatial relationship with the correspond-
ing anatomical points or at least diagnostic points on reference
images [1, 2]. According to different spatial transformations,
medical image registration is generally categorised into two
groups, i.e. rigid registration and non-rigid registration. The rigid
registration only describes the motion that is limited to global
rotations and translations while non-rigid registration usually
includes very complex local and global elastic deformations.
Practically, in the process of image acquisition, same or differ-
ent patients are often influenced by other factors, such as lung
movement and bladder filling, resulting in complex non-rigid
deformation. The non-rigid registration often plays an impor-
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tant role in the medical clinical applications such as adaptive
radiotherapy, image-guided surgery, disease diagnosis, patholog-
ical change tracking and treatment evaluation etc. Meanwhile,
the non-rigid registration is still one of the most challenge top-
ics in medical image analysis [3].

The diffeomorphic Demons is a popular non-rigid registra-
tion algorithm and widely used in medical image registration [4,
5]. However, the diffeomorphic Demons cannot capture com-
plex distortions, since the driving force of the diffeomorphic
Demons only depends on grey and gradient value of a reference
image and a moving image [6, 7]. Therefore, two problems
need to be overcome for image registration with complex
distortions. The first is to incorporate new features that can
represent structure information of images into the driving
force of the diffeomorphic Demons. The second is to how to
reduce the computational complexity of algorithms caused by
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the incorporation of new features. Hierarchical neighbourhood
spectral features based on line graph can describe the unique
and intrinsic geometry shape of images due to three useful
properties: rotation invariance, invariance of linear changes
of brightness and robustness to noise [8]. Therefore, it is
suitable to guide the non-rigid registration procedure to cap-
ture complex distortions. Aiming to address the above issues,
we proposed a diffeomorphic Demons registration algorithm
using hierarchical neighbourhood spectral features in this paper,
called HNSF Log-Demons for short. The proposed HNSF
Log-Demons makes the following contributions:

∙ A novel spectral matching similarity based on the hierarchical
neighbourhood spectral features is presented and incorpo-
rated into the diffeomorphic registration framework, which
not only solves complex distortions, but also ensures the dif-
feomorphic transformation and the registration accuracy.

∙ The Nyström approximation based on random SVD is
employed to reduce the spectral decomposition time of the
high-dimensional weighted adjacency matrix and improve the
registration efficiency.

∙ By introducing the hybrid multi-resolution strategy based
on wavelet decomposition, the registration procedure is exe-
cuted from coarse to fine to further improve the registration
accuracy and efficiency of the HNSF Log-Demons.

The rest of this paper is organised as follows. Section 2 illus-
trates the related work. Section 3 proposes a spectral matching
similarity based on the hierarchical neighbourhood spectral fea-
tures and describes the HNSF Log-Demons in detail. Section 4
demonstrates the registration performance of the HNSF Log-
Demons in comparison to other well-established non-rigid reg-
istration algorithms. Section 5 discusses the practical properties
of the HNSF Log-Demons. Finally, Section 6 makes the conclu-
sion for this paper.

2 RELATED WORK

In recent years, a large number of non-rigid registration models
for medical images has been reported, such as the free form
deformation (FFD) models based on B-spline [9–11], finite ele-
ments model (FEM) [12–15], viscous fluid model [16, 17], and
Demons [4, 5, 18–22] etc. Since FFD based on B-spline employs
the cubic B-spline to model the elastic deformation and each
B-spline curve is only related to four adjacent control points, it
can provide a high degree of flexibility for estimating the local
motions of human tissues and organs. Although FFD based
on B-spline does not require assumptions about the elastic
properties of the tissues and organs compared to physics-based
deformation models, it is unable to effectively describe the
global and large-scale deformation of human tissues and organs
[9–11]. Image registration based on FEM transforms complex
deformation into discrete and simple deformation elements,
and then utilises these elements as the basic unit combined
with the overall topological structure to fit the whole complex
elastic deformation. Though FEM shows good adaptability to

irregular geometry, it needs to solve many unknown parameters
resulting in high computational cost[12–15]. Different with
FFD and FEM, the viscous fluid model simulates the image
registration as the fluid flow process, it can therefore better
describe large-scale deformation. However, it is sensitive to
greyscale changes of images, and the registration process suffers
from serious time-consuming [16, 17].

In these models, the Demons is a popular non-rigid registra-
tion algorithm based on the theory of optical flow field, and it
has been widely used in medical image registration due to its
complete mathematical theory [4, 5, 18]. However, the Demons
algorithm suffers from three shortcomings. First, since only
the gradient information of reference images is used to drive
the deformation, the Demons algorithm has a very slow con-
vergence speed. Secondly, when the value of gradients is close
to zero in the textureless areas of reference images, the algo-
rithm easily generates the wrong results of registration. Thirdly,
Demons algorithm is based on the assumption that there is
small deformation between images, therefore, it is difficult to
accurately estimate the large deformation only using grey infor-
mation of images. To speed up the convergence of registra-
tion procedure, Wang et al. [23] proposed the active Demons
algorithm that introduces the gradient information of mov-
ing images into diffusion equation and utilises homogenisation
coefficient to adjust the intensity of driving forces. However,
the active Demons algorithm only adjusts the intensity of driv-
ing forces through the homogenisation coefficient, which can-
not achieve a balance between the large and the small deforma-
tion. Xue et al. [24] presented an improved active Demons algo-
rithm that introduces a new parameter called balance coefficient
into the active Demons to adjust the driving force between the
large and small deformation. To keep the topology of the defor-
mation field and avoid the physical unreasonable deformation,
Vercaiteren et al. [4, 5] proposed the diffeomorphic Demons
registration algorithm based on the Lie group theory, the algo-
rithm regards the registration procedure as an optimisation pro-
cess of energy function. Although the diffeomorphic Demons
is a well-established intensity-based registration framework, it
cannot capture the complex and large-scale distortions [6, 7].
To tackle the problem and enhance the registration accuracy,
many researchers presented improved algorithms that can be
categorised coarsely into two different strategies for the diffeo-
morphic Demons. The two strategies for improving the diffeo-
morphic Demons are shown in Figure 1.

2.1 Employing a new similarity measure

Based on Vercauteren’s work, many improved algorithms that
employ new similarity measures are reported in [25–28]. For
example, Avants et al. [25] incorporated the cross-correlation
into the symmetric diffeomorphic registration framework,
which improves the performance of medical image non-rigid
registration. Lorenzi et al. [26] added stationary velocity fields
(SVFs) constraints and used a new similarity measure named
local correlation coefficient (LCC) in the Log-Demons regis-
tration framework for the deformation field. Authors indicated
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FIGURE 1 The recent advances of the application of diffeomorphic
Demons for non-rigid image registration

that the LCC-Demons was a generic, flexible, efficient and
robust algorithm for non-rigid registration of images. Further-
more, Mehdi et al. [27] implemented a masking of the similarity
term on the non-rigid registration, which enhances the robust-
ness of algorithms with respect to intensity artefacts of the brain
boundaries. Han et al. [28] extended the mono-modality, dif-
feomorphic form of the Demons algorithm to multi-modality
registration using pointwise mutual information (pMI) as a sim-
ilarity metric. The proposed pMI-Demons achieves registration
accuracy comparable to MI-FFD and MI-SyN, and maintains
diffeomorphic transformation similar to MI-SyN.

2.2 Incorporating new features into the
driving force

Popular features mainly include similarity of grey gradient
field [29], multi-support-region-order-based gradient histogram
(MROGH) [30], geometric constraint [31, 32], the well-known
robust feature descriptors such as SIFT, SURF or ASIFT [33],
unsupervised deep features using stack auto-encoder (SAE)
extraction [34], modal independent neighbourhood descriptor
(MIND) [35, 36], spectral features [37] and Gabor features
[38]. Reaungamornrat et al. [35] put forward a deformable
image registration algorithm using the MIND and the Huber
metric, the algorithm is robust against realistic anisotropic
resolution characteristics in MR and yields high registration
accuracy. However, the algorithm does not satisfy rotation and
scale invariance properties, and requires a high computational
cost. The spectral Demons is a new framework for capturing
large and complex deformations in image registration, which
achieves clear improvements in accuracy and robustness to
large-scale deformations compared to conventional Demons
algorithms. However, the final transformation obtained by
spectral Demons is suitable for the registration of images with
similar topological structure but unsuitable for the registration
of images with occlusions and holes, which is bad for the
monitoring and evaluation of postoperative rehabilitation.
Additionally, the spectral Demons is time-consuming caused

by spectral decomposition of high dimensional matrix, which
limits its practicability in many clinical applications [37]. Wen
et al. [38] extracted Gabor features of the reference and moving
images to construct similarity metric since Gabor filters can
effectively extract image texture information. Furthermore,
they proposed an inertial constraint strategy to provide guided
information for updating the current velocity field. As a result,
both Gabor features and inertial constraint strategy improve
the performance of Demons algorithm [38].

However, many improved non-rigid registration algorithms
utilising the above two strategies are usually time-consuming
due to the introduction of new similarities or new fea-
tures. In practice, there are two popular ways to accelerate
these improved algorithms: the multi-resolution strategy and
the parallel computing technology. Researchers applied multi-
resolution strategy in the registration process to speed up the
registration convergence [39, 40]. In the coarse stage of multi-
resolution registration, the similarity measure is calculated for
images with low resolution, which is not only fast but also can
suppress local extrema. And then, registration parameters from
the coarse stage are set as initial parameters of the fine stage,
which can shorten the time of optimisation process and effec-
tively improve the registration efficiency. In addition, a lot of
non-rigid image registration algorithms are accelerated based on
parallel computing techniques such as GPU and other multi-
core hardwares, which become an important way to improve the
registration performance [41, 42]. For instance, Gu et al. [43]
implemented the classical Demons registration algorithm and
other five improved Demons algorithms based on CUDA on
GPU, and evaluated their performance. Shackleford et al. [44]
used GPU’s flow processing model to accelerate the Demons
algorithm, where Nvidia 680 GTX GPU is selected leading to
a 150 times speedup ratio for large medical volumes (e.g. 2503

voxels).

3 METHODOLOGY

In this section, we propose the HNSF Log-Demons that
is a hierarchical neighbourhood spectral features-based Log-
Demons algorithm for image registration with complex defor-
mation. First, we introduce briefly the proposed registration
framework. Secondly, we design the extraction of hierarchical
neighbourhood spectral features. Thirdly, we propose a spec-
tral matching algorithm to calculate the similarity measure based
on hierarchical neighbourhood spectral features and integrate
it into the energy function of the proposed registration frame-
work. At last, we summarise the HNSF Log-Demons.

3.1 The proposed registration framework

To maintain the reversibility of displacement field and the topo-
logical structure of images, the HNSF Log-Demons is based on
diffeomorphic registration framework. Inspired by the diffeo-
morphic Log-Demons, we design the registration framework as
shown in Figure 2.
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In this framework, we first adopt the hybrid multi-resolution
strategy based on wavelet decomposition, and the registration
process is performed from coarse to fine, so as to improve the
execution speed of registration process and prevent the registra-
tion process falling into local optimum solutions. More impor-
tantly, in view of the advantages of the hierarchical neighbour-
hood spectral features in geometry structure representation, we
extract hierarchical neighbourhood spectral features of a refer-
ence image and a moving image, respectively. Furthermore, we
combine the features with other important information of the
reference and moving images, such as grey scale, gradient and
space coordinate, to obtain robust and effective features used
for non-rigid registration with complex distortions. Finally, we
incorporate these combined features into the energy function of
the proposed diffeomorphic registration framework to obtain
better registration models.

Although HNSF Log-Demons is inspired by the diffeomor-
phic Demons, there are two difference between them. On the
one hand, the energy function of diffeomorphic Demons only
utilises the grey scale, gradient, and spatial information of the
reference and moving images to guide the registration process,
but HNSF Log-Demons employs much more information, i.e.
hierarchical neighbourhood spectral features of the reference
and moving images, which can describe geometry structures
of the reference and moving images. Therefore, HNSF Log-
Demons possesses a more powerful driving force than the dif-
feomorphic Demons and can capture more complex distor-
tions. On the other hand, HNSF Log-Demons incorporates the
hybrid multi-resolution strategy into the registration process, it
can thus improve the accuracy and efficiency of registration bet-
ter than diffeomorphic Demons.

3.2 Hierarchical neighbourhood spectral
features

For the image I of size m × n, the feature of any non-boundary
pixel p can be determined by the relationship between its neigh-
bourhood pixels, so the feature of pixel p is represented based
on the graph [8]. Supposing the eight neighbourhood pixels of
p as qi (i = 1, 2, … , 8), we can construct the star graph S . In this
graph, all these neighbourhood pixels are connected by the edge
pqi and the weight ri of an edge is:

ri = |I (p) − I (qi )|∕‖‖X (p) − X (qi )‖‖, (1)

where I (p) and X (p) are the greyscale value and the space coor-
dinate of the pixel p, respectively. To further reflect the char-
acteristic of the pixel p, the line graph L(S ) and the weighted
adjacency matrix A corresponding to L(S ) are constructed. The
element of matrix A is:

A(i, j ) =

{|ri − r j | i ≠ j

0 i = j
, (2)

where 1 ≤ i, j ≤ 8, i, j ∈ R+. Since the weighted adjacency
matrix A is a real symmetric matrix, eight real eigenvalues can
be obtained after spectral decomposition, and 𝜆1(p) ≥ 𝜆2(p) ≥
⋯ ≥ 𝜆8(p). Using 𝜆i (p) to replace grey value of the pixel p
and regularising it to [0, 255], we can get the eigenvalue image
Ii (i = 1, 2, … , 8) with the size of (m − 1) × (n − 1).

If we only use the pixel p and its eight neighbourhood pixels
to construct a graph and obtain its spectral features, the features
of the pixel p cannot be fully described. By enlarging the neigh-
bourhood range of the pixel p, we can get (2k + 1)2 − 1 neigh-
bourhood pixels, where k is the number of layers of neighbour-
hood pixels. However, if all the selected neighbourhood pixels
are used to construct line graph, the construction of the adja-
cency matrix and the spectral decomposition will require a high
computational cost when the value of k is large. To reduce com-
putational cost, we divide the neighbourhood pixels into k layers
according to the distance to the pixel p, and utilise the hierar-
chical neighbourhood method to construct spectral features as
shown in Figure 3.

In Figure 3, the feature construction consists of four steps.
The first step is to create the hierarchical neighbourhood layer
by layer and construct the corresponding line graphs. The sec-
ond step is to compute spectral features of the pixel p from the
t -layer(1 ≤ t ≤ k):

𝝀t = (𝜆t ,1, 𝜆t ,2, … , 𝜆t ,8t ) t = 1, 2, … , k . (3)

The third step is to select main features 𝜆
′

t from 𝜆t to reduce
the computational cost of feature matching. The last step is to
combine the main spectral features of each layer to obtain the
final spectral feature vector of the pixel p:

𝚲(p) =
(
𝝀
′

1∕
‖‖‖𝝀′1‖‖‖, 𝝀′2∕‖‖‖𝝀′2‖‖‖, … , 𝝀′k∕‖‖‖𝝀′k‖‖‖) , (4)

where ‖.‖ is the L2 norm.
In the process of extracting hierarchical neighbourhood spec-

tral features, it is necessary to construct weighted adjacency
matrix and implement the spectral decomposition of the matrix.
With the increase of the value of k(i.e. the number of lay-
ers), the size of the weighted adjacency matrix increases rapidly.
Therefore, it will take much time to implement the spectral
decomposition of the matrix. To reduce this expensive cost,
we employ the Nyström approximation based on random SVD
[45] to realise the low rank approximation of the weighted adja-
cency matrix. The Nyström approximation based on random
SVD finally outputs 𝝀t that is the approximate eigenvalue of A.
Therefore, it does not require to directly decompose the high
dimensional weighted adjacency matrix. We can significantly
reduce the computational cost of spectral decomposition and
improve the final registration efficiency.

There are three important properties of the hierarchical
neighbourhood spectral features based on the line graph [8]:
rotation invariance, invariance of linear changes of brightness,
and robustness to noise.
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3.3 Similarity measure based on HNSF

The registration process can be degraded to the problem of
minimising the following energy function:

E (R,M , exp(c ), exp(v)) =
1
2
𝛼2

i Sim(R,M◦exp(c ))

+
1
2
𝛼2

i Sim(R◦exp(−c ),M )

+ 𝛼2
xdist(c, v)2

+ 𝛼2
T Reg(v),

(5)

where v is the regular diffeomorphic non-rigid transforma-
tion, and c is a non-parametric spatial transformation and an
exact realisation of the spatial transformation v, which allows
some error at each image pixel. The hidden variable c is intro-
duced into the energy function, so that the diffeomorphic Log-
Demons algorithm is regarded as an optimisation problem for
a suitable criterion. The dist(c, v) = ‖c − v‖ represents the dis-
tance error before and after regularisation, and the Reg(v) is a
regular term. The 𝛼x and 𝛼T are the traditional Demons param-
eters controlling the step size and the regularisation, respec-
tively.

To deal with the complex deformation, we consider to com-
bine the greyscale information, the spatial information and
spectral features into the feature space of pixels to imple-
ment image registration. Meanwhile, R = (𝛼i IR, 𝛼sXR, 𝛼g𝝌R)
and M = (𝛼i IM, 𝛼sXM, 𝛼g𝝌M) are obtained by weighting grey
information, spatial information and hierarchical neighbour-
hood spectral features, so the similarity measure of the HNSF
Log-Demons is given as follows:

Sim(R,M◦exp(c )) = ‖‖‖IR − IM◦exp(c )
‖‖‖2

+ 𝛼2
s∕𝛼

2
i
‖‖‖XR − XM◦exp(c )

‖‖‖2

+ 𝛼2
g∕𝛼

2
i
‖‖‖𝝌R − 𝝌M◦exp(c )

‖‖‖2
,

(6)

where ‖IR − IM◦exp(c )‖2 is sum of intensity differences, ‖XR −

XM◦exp(c )‖2 integrates the norms of the displacements between
corresponding points and acts as a form of spatial regularisa-
tion, and the ‖𝝌R − 𝝌M◦exp(c )‖2 is a hierarchical neighbourhood
spectral matching similarity between the reference and moving
images, and parameters 𝛼i, 𝛼s and 𝛼g are used to control the
consistency in intensity, space and geometry, respectively.

In this work, we propose the hierarchical neighbourhood
spectral matching algorithm to calculate the spectral feature
similarity between the reference and moving images, which is
shown in Algorithm 1. First, the extraction of spectral features
for each pixel includes four steps: constructing line graphs, cal-
culating the spectral features for each layer, selecting main fea-
tures and concatenating all feature vectors of all layers. Secondly,
we need to reorder spectral features of the moving image with

ALGORITHM 1 Hierarchical neighbourhood spectral matching

Input: A reference image R and a moving image M.

Output: Correspondence c mapping R to M.

1: For each pixels in R (and M).

2:For i = 1 to k //Calculate the HNSF

3:Construct the line graph L(S).

4:Generate the corresponding adjacency matrix A.

5:Calculate the spectral features 𝝀i ∈ 
8k.

6:Select main spectral features 𝝀
′

i ∈ 
rk .

7: End For

8:Connect the spectral features 𝚲(p).

9: End For

10: Generate 𝝌M and 𝝌R for R and M, respectively.

11:Build embedding: R = (IR,XR, 𝝌R) and M = (IM,XM, 𝝌M).

12: Find c mapping nearest points R(p) ↦ M(c (p)).

respect to spectral features of the reference image. Finally, we
embed hierarchical neighbourhood spectral features of the ref-
erence and moving images into their feature spaces, respectively,
and find a map from the feature space of the reference image to
the feature space of the moving image. Owing to hierarchical
neighbourhood spectral matching, the newly updated field not
only takes the grey-scale and gradient information into account,
but also utilises local structural features of images.

3.4 The HNSF Log-Demons

To keep the reversibility of displacement field and the topologi-
cal structure of images, we select the diffeomorphic registration
framework in this work. According to the theory of Lie group, a
diffeomorphic transformation 𝜙, which resides on a Lie group
structure, is related to the exponential map of a velocity field
v, and is associated with Lie algebra: 𝜙 = exp(v). However, in
the registration process, every iteration needs to calculate the
exponential map of the velocity field, so a simple and efficient
approximate method is needed to calculate the exponential map.
In the case of stationary velocity fields, a practical and simple
approximation is possible with the scaling-and-squaring method
[5]. In the proposed HNSF Log-Demons algorithm, we employ
the scaling-and-squaring to implement the exponential map.

To improve the accuracy and efficiency of Demons regis-
tration for medical images with complex distortions, we put
forward a diffeomorphic Demons registration algorithm based
on hierarchical neighbourhood spectral features as shown in
Algorithm 2. In the Line 1 of Algorithm 2, the hybrid multi-
resolution strategy based on wavelet decomposition is utilised
to generate the image pyramids of the reference and moving
images. The velocity field applicable to the first layer of image
pyramids is initialised in the Line 2. From the Line 3–16, for
the image pyramids, the HNSF Log-Demons executes the reg-
istration process from the coarse layer to fine layer. From the
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ALGORITHM 2 The HNSF Log-Demons

Input: A reference image R and a moving image M.

Output: Transformation 𝜙∗ from R to M.

1: Decompose R and M by using the hybrid multi-resolution strategy based
on wavelet decomposition, generate two image pyramids
Ri (i = 1, 2, … ,N ) and Mi (i = 1, 2, … ,N ).

2: Initialise the velocity field v applicable to the images at the first layer.

3: For i = 1 to N do

4:if(i > 1)

5:Initialise the velocity field v at the current layer.

6: End if

7: While (Convergence conditions are not met?) do

8:Compute updates uR→M mapping R to M◦exp(v) using theAlgorithm 1.

9:Compute updates uM→R mapping M to R◦exp(−v) using theAlgorithm 1.

10:Average updates: u ← (uR→M − uM→R)∕2.

11:Smooth updates: u ← Kfluid ∗ u.

12:Update velocity field: v ← log(exp(v)◦exp(u)).

13:Smooth velocity field: v ← Kdiffuse ∗ v.

14: End While

15:Output the velocity field v at the current layer.

16: End For

17: Output the optimal transformation 𝜙∗ ← exp(v).

Line 4–6, the HNSF Log-Demons initialises the velocity field of
the current layer according to the velocity field of the previous
layer. From the Line 7–14, first, the HNSF Log-Demons com-
putes the updating fields uR→M and uM→ R, respectively using
the Algorithm 1. And then, it computes the average updating
field and smooths the updating field using Gaussian filter. At
last, the velocity field is updated by adding the updating field and
smoothed using a diffusion kernel. In the Line 17, the HNSF
Log-Demons outputs the optimal transformation 𝜙∗ using the
exponent map.

The HNSF Log-Demons extracts hierarchical neighbourhood
spectral features of the reference and moving images and intro-
duces them into the energy function of the proposed registra-
tion framework, ensuring that the generated deformation field
has smoothness and reversibility, and provides better registra-
tion accuracy. Meanwhile, the Nyström approximation based
on random SVD is utilised to reduce the computational bur-
den of spectral decomposition and improve the registration effi-
ciency of the HNSF Log-Demons. In addition, in the regis-
tration process, the hybrid multi-resolution strategy based on
wavelet decomposition is combined to further improve the reg-
istration accuracy and efficiency. In the HNSF Log-Demons,
the corresponding updates u can be computed using hierarchi-
cal neighbourhood spectral matching at the coarser levels of res-
olution, while local details and deformations can be computed
more efficiently with the conventional gradient-based updates at
the finer levels of resolution. Hierarchical neighbourhood spec-
tral features are computed only at the coarser levels of resolu-

tion, and the coarser level has a smaller image size. Therefore, it
can complete image registration quickly.

4 EXPERIMENTS

We conducted experiments on two types of images: medi-
cal images that are randomly selected from the database of
retrospective image registration evaluation (RIRE) [46] at the
Vanderbilt university, as well as real images. Especially, to
demonstrate the generalisation of the HNSF Log-Demons on
medical image modality and body part, the test dataset of medi-
cal images includes different image modalities, such as CT, MRI-
T1, MRI-T2 and MRI-T2-rectified, and includes different parts
of human body, such as head, chest and abdomen. All algo-
rithms and experimental evaluations are performed on a PC
with an Intel(R) Core (TM)CPU, i7-9700, 4.20 GHz×8, and 32
GB RAM.

4.1 Parameter settings

To evaluate the effectiveness and efficiency of the HNSF Log-
Demons, six popular non-rigid registration algorithms are con-
sidered for comparisons. They are the FFD based on B-spline
[9], Demons [18], active Demons [23], improved active Demons
[24], Log-Demons [5] and spectral Demons [37]. For the sake of
fairness, the FFD algorithm based on B-spline changes param-
eters until the best performance. The active Demons, Log-
Demons, spectral Demons and HNSF Log-Demons choose
same parameters. Moreover, all algorithms adopt the three-level
multi-resolution strategy, and the maximal number of itera-
tions from high-resolution to low-resolution are 100, 50 and 20,
respectively. To balance efficiency and accuracy of the HNSF
Log-Demons, hierarchical neighbourhood spectral features are
computed only at coarse levels of resolution, and the number of
layer of hierarchical neighbourhood is set to 10 to capture com-
plex large-scale distortions. Additionally, we use r = 2 eigen-
modes with the HNSF Log-Demons to reduce the complexity
of similarity calculation. All Demons algorithms employ subse-
quently the same parameters, 𝜎fluid = 1, 𝜎diffuse = 1, and 𝛼x =
1. The experiment in [37] demonstrates that a larger value of
weight on spatial consistency actually degrades the registration
accuracy, since 𝛼s penalises large deformations. Therefore, the
weight value on spatial consistency should be low but non-zero,
and the best empirical value of parameters should meet the con-
dition of 1∕10 < 𝛼s∕𝛼g < 1∕3. In practice, 𝛼i = 0.8, 𝛼s = 0.05
and 𝛼g = 0.15 are often are used for spectral Demons to favour
consistency in geometry and intensity, and to prevent unrea-
sonable displacements during each iteration [37]. Compared to
ref. [37], we use hierarchical neighbourhood spectral features
instead of global spectral features in the HNSF Log-Demons.
However, the similarity between the HNSF Log-Demons and
ref. [37] is both algorithms make use of grey, spatial informa-
tion and spectral features. Among them, the weight of spatial
information should not be too large, otherwise it will lead to
the decline of registration accuracy. Therefore, in the HNSF
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Log-Demons, the values of three weight parameters are consis-
tent with ref. [37], especially, the weight value on spatial con-
sistency should be low but non-zero, and the best value of
parameters should meet the condition of 1∕10 < 𝛼s∕𝛼g < 1∕3.
Meanwhile, for the sake of fairness, the HNSF Log-Demons
choose the same weighting parameters 𝛼i = 0.8, 𝛼s = 0.05 and
𝛼g = 0.15.

In this work, registration results are evaluated by subjective
visualisation and objective quantitative evaluation. There are
four metrics for objective quantitative evaluation [47]: sum of
squared differences (SSD), sum of absolute differences (SAD),
normalisation mutual information (NMI) and normalisation
cross correlation (NCC). For these evaluation metrics, fine reg-
istration results correspond to large values of NMI and NCC
but small values of SSD and SAD.

4.2 Results on medical images

In this subsection, the non-rigid registration experiment is
conducted on medical images using the above seven algo-
rithms. Before this experiment, medical images are first reg-
istered rigidly, and then, the normalisation processing is car-
ried out to effectively avoid the influence of registration results
due to data inconsistency caused by different equipment posi-
tioning. Registration experiments are conducted by using the
FFD based on B-spline, Demons, active Demons, improved
active Demons, Log-Demons, spectral Demons and HNSF
Log-Demons. Figure 4 shows registration results on six pairs of
medical images with different modalities and body parts using
the above seven algorithms.

In Figure 4, owning to the complex large-scale deformation
in moving images, the FFD based on B-spline, Demons, active
Demons, improved active Demons and Log-Demons easily fall
into local optimum in the registration process, which limits
deformation correction of registration results. Therefore, these
algorithms only provide registration results with low registration
accuracy. Compared with the FFD based on B-spline, Demons,
active Demons, improved active Demons and Log-Demons, the
spectral Demons provides better registration results. However,
these results still include obvious mismatched areas. Compared
with other algorithms, there is no obvious registration error
in difference images by using the HNSF Log-Demons, which
achieves the best smoothness and the smallest registration error.

In addition, we quantitatively evaluate the registration accu-
racy of the HNSF Log-Demons. The above seven algorithms
are used to match six pairs of medical images, and the values
of four objective evaluation metrics for registration results are
shown in Table 1. It can be seen that the HNSF Log-Demons
achieves the best registration result in term of four metrics,
which is also consistent with the observation result of the
previous subjective visualisation. Therefore, this experiment
concludes that the proposed HNSF Log-Demons can achieve
better registration accuracy than other six algorithms for differ-
ent modality medical images and different parts of human body.

4.3 Results on real images

To further evaluate the registration accuracy and robustness of
the HNSF Log-Demons, we conducted experiments on four
pairs of real images from public datasets. Experimental results
are shown in Figure 5.

From Figure 5, we can see that the Demons, active Demons,
improved active Demons, Log-Demons and FFD based on
B-spline achieve poorer registration results than the spectral
Demons and HNSF Log-Demons. Therefore, it is difficult to
obtain fine transformations for registration results. An impor-
tant reason is that these algorithms only employ image grey
and gradient information to provide driving force, and then
use a Gaussian filter to update the displacement deformation
field smoothly. Consequently, some obvious mismatched areas
appear in Figure 5(c– g) due to insufficiently driving force for
complex deformation. Spectral Demons can capture the global
geometric similarity of the moving image by using spectral fea-
tures, and can deal with global large-scale non-rigid deforma-
tion, but the improvement effect of local small deformation
is limited. The HNSF Log-Demons can deal with the com-
plex deformation better in the moving image. Meanwhile, the
HNSF Log-Demons can also effectively deal with the local
non-rigid deformation and improve the registration accuracy,
which benefits from the employment of hierarchical neighbour-
hood spectral features. Furthermore, the quantitative result in
Table 2 is consistent with subjective visualisation evaluation of
registration results shown in Figure 5. From Table 2, it can be
seen that the HNSF Log-Demons that integrates the hierar-
chical neighbourhood spectral features into the energy func-
tion of proposed registration framework, is superior to other
six algorithms on real images in term of the four evaluation
metrics.

5 DISCUSSION AND ANALYSIS

In this section, we discuss HNSF Log-Demons from four
aspects, which mainly includes convergence, efficiency, compu-
tational complexity and limitations of HNSF Log-Demons.

5.1 Convergence analysis

In this subsection, we compared the HNSF Log-Demons with
the Log-Demons and spectral Demons to further analyse and
verify the convergence of the HNSF Log-Demons. We per-
formed non-rigid registration for a pair of medical images and
a pair of real images, respectively. For the sake of showing
the trends of energy function with iteration number, we nor-
malised the energy function value of each iteration in this exper-
iment. Again, since we analyse the convergence of the HNSF
Log-Demons, the same three-layer multi-resolution strategy is
applied in these algorithms. In the third resolution image, we
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TABLE 1 Comparison of evaluation results on real images. The best values are in bold

Data Algorithms SSD↓ SAD↓ NMI↑ NCC↑

Before registration 1502.2971 21.8617 1.5421 0.7050

FFD [9] 435.2780 6.8945 1.5882 0.8332

Demons [18] 856.7800 11.4539 1.7125 0.7583

Data 1 Active Demons [23] 816.1076 10.5932 1.7056 0.7625

Improved AD [24] 843.6259 10.7212 1.7223 0.7394

Log-Demons [5] 588.1494 7.5183 1.7473 0.7820

Spectral Demons [37] 277.2838 5.9890 1.8242 0.8424

HNSF Log-Demons 215.4856 5.0523 1.8525 0.8559

Before registration 1517.4972 22.9338 1.3162 0.7479

FFD [9] 56.2822 5.7493 1.6271 0.8965

Demons [18] 150.7552 6.4928 1.5351 0.8885

Data 2 Active Demons [23] 241.1918 7.9765 1.5103 0.8752

Improved AD [24] 98.0658 5.7739 1.5531 0.8955

Log-Demons [5] 76.6579 5.6202 1.5878 0.8918

Spectral Demons [37] 27.6788 2.6778 1.6956 0.9556

HNSF Log-Demons 27.5362 2.6736 1.7248 0.9456

Before registration 2398.2135 32.1029 1.5935 0.5067

FFD [9] 875.0539 21.1064 1.6207 0.8296

Demons [18] 894.9449 18.0559 1.6590 0.8177

Data 3 Active Demons [23] 1180.0406 20.2872 1.6435 0.7329

Improved AD [24] 613.2426 14.9198 1.6836 0.8473

Log-Demons [5] 1116.5671 20.1582 1.6902 0.7797

Spectral Demons [37] 230.8449 7.6227 1.7849 0.8545

HNSF Log-Demons 223.2480 7.4792 1.7962 0.8661

Before registration 1448.9204 25.1287 1.5091 0.7922

FFD [9] 183.2287 8.6817 1.7304 0.9744

Demons [18] 360.1036 10.3037 1.6611 0.9493

Data 4 Active Demons [23] 454.7496 12.1011 1.6506 0.9350

Improved AD [24] 205.8389 7.1893 1.6873 0.9709

Log-Demons [5] 267.3544 9.6041 1.6929 0.9622

Spectral Demons [37] 99.7576 5.7757 1.8417 0.9863

HNSF Log-Demons 93.6406 5.5843 1.8726 0.9872

Before registration 3198.2812 28.9617 1.4325 0.6870

FFD [9] 250.9387 9.7964 1.7402 0.8719

Demons [18] 359.3628 14.8811 1.6317 0.8247

Data 5 Active Demons [23] 310.0606 15.7705 1.6307 0.8327

Improved AD [24] 278.9320 13.9451 1.6312 0.8396

Log-Demons [5] 235.2939 9.3450 1.7227 0.8673

Spectral Demons [37] 150.3739 9.6775 1.8416 0.8857

HNSF Log-Demons 154.3015 7.5776 1.8533 0.8954

Before registration 2424.5134 29.6969 1.5261 0.7682

FFD [9] 295.8980 9.2308 1.7335 0.9794

Demons [18] 518.0328 11.6087 1.6664 0.9501

Data 6 Active Demons [23] 755.4856 14.0421 1.6581 0.9269

Improved AD [24] 387.2098 10.5572 1.6773 0.9627

Log-Demons [5] 277.7698 7.9493 1.7532 0.9730
(Continues)
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TABLE 1 (Continued)

Data Algorithms SSD↓ SAD↓ NMI↑ NCC↑

Spectral Demons [37] 236.6402 6.4309 1.8145 0.9745

HNSF Log-Demons 29.7711 3.2749 1.8498 0.9969

TABLE 2 Comparison of evaluation results on real images. The best
values are in bold

Data Algorithms SSD↓ SAD↓ NMI↑ NCC↑

Before registration 1412.4008 22.6707 1.6453 0.7487

FFD [9] 267.2136 8.0141 1.8816 0.9714

Demons [18] 452.3355 11.4896 1.7109 0.9635

Data 7 Active Demons [23] 365.8313 10.6585 1.7368 0.9700

Improved AD [24] 299.8337 9.8101 1.7410 0.9707

Log-Demons [5] 244.8383 7.6192 1.8905 0.9603

Spectral Demons [37] 147.8772 5.4409 1.9296 0.9804

HNSF Log-Demons 124.4131 5.4064 1.9494 0.9803

Before registration 781.6435 27.5351 1.7659 0.9264

FFD [9] 270.4656 12.8879 1.9043 0.9647

Demons [18] 340.1699 16.4655 1.8962 0.9562

Data 8 Active Demons [23] 370.2827 17.8804 1.8888 0.9534

Improved AD [24] 334.1317 15.4443 1.8953 0.9568

Log-Demons [5] 325.8646 14.9079 1.8867 0.9581

Spectral Demons [37] 330.1065 15.6571 1.8993 0.9572

HNSF Log-Demons 233.0871 14.2759 1.8994 0.9675

Before registration 1068.9422 47.5122 1.5682 0.8019

FFD [9] 68.2313 6.0580 1.6857 0.9011

Demons [18] 81.3634 10.1822 1.6282 0.8909

Data 9 Active Demons [23] 76.9287 11.0080 1.6126 0.8914

Improved AD [24] 70.3047 10.8852 1.6499 0.8927

Log-Demons [5] 62.8599 4.1611 1.8956 0.9222

Spectral Demons [37] 58.2036 4.0004 1.9023 0.9325

HNSF Log-Demons 57.5249 3.2828 1.9164 0.9326

Before registration 1388.6379 122.3772 1.4785 0.7921

FFD [9] 381.9337 23.4004 1.8143 0.9336

Demons [18] 360.4825 25.6769 1.7298 0.8911

Data 10 Active Demons [23] 369.5258 24.6287 1.7902 0.8898

Improved AD [24] 352.4928 24.5007 1.7998 0.8923

Log-Demons [5] 295.7556 22.6524 1.8185 0.9071

Spectral Demons [37] 297.4711 22.4047 1.8294 0.9169

HNSF Log-Demons 279.5750 21.1408 1.8357 0.9125

purposely calculate the change of energy function with the num-
ber of iterations. The curves of the energy function value are
shown in Figure 6.

As can be seen from Fig. 6, the HNSF Log-Demons shows
a fast convergence rate for two pairs of images, and it closes
to the optimal registration result after about 12–13 iterations.

We propose a new spectral matching similarity based on hierar-
chical neighbourhood spectral features and incorporate it into
the energy function of diffeomorphic registration framework,
which provides the deformation field with a prior information
that is invariant to rotation and brightness, and robust to noise.
This prior information is used to guide the whole registration
process, which overcomes the problem of insufficient driving
force, accelerates the convergence speed of the energy function
and improves the registration performance.

5.2 Efficiency analysis

Here we demonstrate the registration efficiency of the HNSF
Log-Demons. For the above ten pairs of images, seven regis-
tration algorithms are implemented on the same experimental
environment. The parameter settings of all algorithms are the
same as above. To eliminate the system error, all algorithms are
executed ten times for each pair of images, and then we compare
the average running time. Average running time of seven algo-
rithms is shown in Figure 7. For instance, the Demons, active
Demons and improved active Demons have high computational
efficiency since they only take about 30 s on the Lena image
of the size of 256×256, respectively, but the FFD based on
B-spline and Log-Demons take about 100 s, respectively. Unfor-
tunately, the registration process requires about 330 s with the
spectral Demons and about 270 s with the HNSF Log-Demons.

Since the grey and gradient information are only consid-
ered in the energy functions of Demons, active Demons and
improved active Demons, these three algorithms take relatively
short running time. The Log-Demons requires much time than
the Demons to obtain the reversible deformation field. The
FFD based on B-spline involves many parameters to deal with
the complex deformation and takes longer running time than
the Demons, active Demons and improved active Demons. The
spectral Demons and HNSF Log-Demons introduce spectral
features into the registration process, and the spectral match-
ing similarity is computed in each iteration. Therefore, both
the spectral Demons and HNSF Log-Demons take longer run-
ning time than other comparative algorithms in each iteration.
However, the spectral Demons and HNSF Log-Demons intro-
duce spectral information into their energy functions, which
makes the registration process have stronger driving force and
achieve faster convergence. According to convergence analysis,
the HNSF Log-Demons can approximate the best registration
result after about 12-13 iterations, so we can get the same results
with Log-Demons by reducing the number of iterations, and
the HNSF Log-Demons provides a better registration accuracy
than the Log-Demons. Compared with the spectral Demons,
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FIGURE 2 The proposed registration framework

FIGURE 3 Construction of hierarchical neighbourhood spectral features

the HNSF Log-Demons employs the Nyström approxima-
tion based on random SVD to decompose high dimensional
adjacency matrix, which effectively reduces the computational
complexity of spectral decomposition. Therefore, the HNSF
Log-Demons achieves better registration performance than the
spectral Demons.

5.3 Computational complexity

For the HNSF Log-Demons, although extracting hierarchi-
cal neighbourhood spectral features is very important for
improving the registration accuracy, it needs to pay the price
of time. In the next, we briefly analyse the computational

complexity of extracting hierarchical neighbourhood spectral
features.

The procedure of extracting hierarchical neighbourhood
spectral features mainly includes two important components:
the construction of adjacency matrix and the spectral decompo-
sition. There are 8i points at the ith layer, therefore, considering
the symmetry, the calculation cost of constructing the adjacency
matrix of the ith layer is 8i (8i − 1)∕2 = 4i (8i − 1), the calcula-
tion cost of spectral decomposition is O((8i )3) = O(512i3), and

the calculation cost of generating total features is
∑k

i=1[4i (8i −
1) + O(512i3)] = O(k4). According to above analysis, it can
be indicated that the spectral decomposition is relatively time-
consuming than the construction of line graphs, especially
when the value of k is large. For this problem, in the HNSF
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FIGURE 4 The registration results for six pairs of medical images using seven algorithms. (a) The reference image; (b) the moving image; (c–i) the moving
images after registration and difference images between the reference image and the registered moving image using the FFD based on B-spline, Demons, active
Demons, improved active Demons, Log-Demons and spectral Demons and HNSF Log-Demons

Log-Demons, we adopt the Nyström approximation based on
random SVD to reduce the time of spectral decomposition
when the value of k is larger than five. Here, the computational
complexity of the Nyström approximation based on random
SVD is analysed and compared with that of spectral decompo-
sition of weighted adjacency matrix. For a weighted adjacency
matrix A with the size n × n, the computational complexity
of spectral decomposition is O(n3). However, in the Nyström
approximation based on random SVD, the computational com-
plexity of generating the approximation matrix of A is O(m2k),

the computational complexity of QR decomposition is O(mk),
the computational complexity of SVD is O(k3). Therefore,
the overall computational complexity is O(m2k + k3) due to
n >> m ≥ k. To summarise, the computational complexity
of the Nyström approximation based on random SVD is less
than that of the spectral decomposition of weighted adjacency
matrix. Consequently, the Nyström approximation based on
random SVD can reduce the execution time of the HNSF
Log-Demons and thus improve the efficiency of registration
process.
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FIGURE 5 The registration results for four pairs of real images using seven algorithms. (a) the reference image; (b) the moving image;(c–i) the moving images
after registration and the difference images between the reference image and the registered moving image using the FFD based on B-spline, Demons, active
Demons, improved active Demons, Log-Demons and spectral Demons and HNSF Log-Demons

5.4 Limitations of the HNSF Log-Demons

Although the proposed HNSF Log-Demons shows that hierar-
chical neighbourhood spectral features can improve the regis-
tration accuracy for moving images with complex deformation,
it still suffers from two limitations as follows.

From the perspective of practice, since hierarchical neigh-
bourhood spectral features are usually extracted from the
neighbourhood information of central pixels, the HNSF Log-
Demons depends on an assumption that the reference and
moving images have a similar topology without missing tissues
or organs. This assumption is generally true in many practical
applications, especially, we often perform image registration for
same or similar objects. However, the assumption could be a
limitation in some specific clinical applications. For example,
registering some medical images before and after tumour resec-
tion surgery, where tissues or organs are clearly missed.

From the perspective of clinical application, the HNSF Log-
Demons takes too much execution time to meet the high

real-time requirement of several clinical applications, such as
the online adaptive radiotherapy and the image-guided surgery.
Since the limitation of the proposed HNSF Log-Demons cur-
rently resides in the computational cost of extracting hierarchi-
cal neighbourhood spectral features for each pixel of reference
and moving images, especially, the reference and moving images
have a high resolution. Therefore, there is still much room
for improving the registration efficiency of the HNSF Log-
Demons.

6 CONCLUSION

In this work, we have studied non-rigid image registration algo-
rithms using spectral features. We proposed a novel diffeomor-
phic Demons registration algorithm for images with complex
distortions by incorporating hierarchical neighbourhood spec-
tral features. The proposed HNSF Log-Demons was used to
match medical and real images, respectively, demonstrating that
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FIGURE 6 The curves of the energy function value with the number of
iterations. (a) The changes of the energy function value with the number of
iterations for a pair of medical images using three algorithms; (b) the changes
of the energy function value with the number of iterations for a pair of real
images using three algorithms

FIGURE 7 Evaluation of average running time of seven algorithms

it can capture complex distortions of moving images due to
the incorporation of the hierarchical neighbourhood spectral
features. Meanwhile, the proposed algorithm reduces the com-
putational cost of hierarchical neighbourhood spectral features
in registration process by employ the Nyström approximation
based on random SVD and the hybrid multi-resolution strategy.
Moreover, the HNSF Log-Demons can effectively achieve the
smooth and reversible displacement field for images with com-
plex distortions and provide better performance of non-rigid
registration than conventional Demons algorithms.

In future work, further reducing greatly the computational
burden of the HNSF Log-Demons is very urgent and significant
for several real-time clinical applications. Fortunately, owing to
the intrinsic pixel-wise nature of extracting hierarchical neigh-
bourhood spectral features in the HNSF Log-Demons, parallel
computing techniques such as GPU or many-core architecture
will be utilised to significantly improve the computational effi-
ciency. Simultaneously, the future work may focus on deforma-
tion invariant feature descriptors and analysis of sensitivity to
noise, as well as incorporation of some prior knowledge (e.g.
edge information of key objects) to further constrain the solu-
tion space of the registration process and raise the registration
accuracy. In addition, it is also the subject of future investi-
gation to extends hierarchical neighbourhood spectral features
for 3D reference and moving images and apply the HNSF
Log-Demons to 3D medical images, such as intra-operative
CBCT images.
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