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Abstract

Image registration seeks pointwise correspondences between the same or analo-

gous objects in different images. Conventional registration methods generally impose

continuity and smoothness throughout the image. However, there are cases in which

the deformations may involve discontinuities. In general, the discontinuities can be of

different types, depending on the physical properties of the tissue transitions involved

and boundary conditions. For instance, in the respiratory motion the lungs slide along

the thoracic cage following the tangential direction of their interface. In the normal

direction, however, the lungs and the thoracic cage are constrained to be always in

contact but they have different material properties producing different compression or

expansion rates. In the literature, there is no generic method, which handles different

types of discontinuities and considers their directional dependence.

The aim of this thesis is to develop a general registration framework that is able to

correctly model different types of tissue transitions with a general formalism. This has

led to the development of the eXtended Free Form Deformation (XFFD) registration

method. XFFD borrows the concept of the interpolation method from the eXtended

Finite Element method (XFEM) to incorporate discontinuities by enriching B-spline

basis functions, coupled with extra degrees of freedom. XFFD can handle different

types of discontinuities and encodes their directional-dependence without any addi-

tional constraints.

XFFD has been evaluated on digital phantoms, publicly available 3D liver and lung

CT images. The experiments show that XFFD improves on previous methods and that

it is important to employ the correct model that corresponds to the discontinuity type

involved at the tissue transition. The effect of using incorrect models is more evident

in the strain, which measures mechanical properties of the tissues.
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Chapter 1

Introduction

1.1 Motivation

Image registration is a fundamental task in image processing. The aim of image reg-

istration is to find spatial alignment of corresponding structures between images ac-

quired from different views, with different image modalities, from different subjects,

or at different time points. This general objective provides image registration with a

wide rage of applications in diverse domains, such as remote sensing [7], computer

vision [8] and medical imaging [9].

In the medical field, image registration is an essential tool for a wide range of

clinical applications, including image fusion [10], image-guided surgery [10], popu-

lation study [11], atlas based segmentation [12], motion analysis [13] and longitudinal

study [14].

Registration requires a transformation model to describe the type of motion that is

allowed in the process of image alignment. The simplest model is rigid, which only

allows rotation and translation of rigid objects [15], whereas affine transformation also

allows shear and scale [9] and more complex localised deformations can be described

by nonrigid models, such as elastic [16], fluid [17] or FFD [18]. Tissue deformations

are commonly involved in medical images. Thus, nonrigid registration is widely em-

ployed for recovering the motion of tissues or accommodating anatomical variability

across individuals.

1



Chapter 1: Introduction 2

When images are acquired from the same subject, the anatomical correspondence is

expected to represent the same material point, following the motion and deformation

of the tissues. In general, conventional non-rigid registration methods are based on

the assumption that the deformation field is continuous and smooth across the image.

This smoothness constraint is typically imposed by explicit regularisation or a smooth

transformation model. However, this assumption is only valid when the properties of

the tissues involve continuous variation. In a temporal image sequence, organs or tis-

sues can have different material properties and be bound by different types of contact

conditions. When these structures are subject to stretching or compression, different

types of discontinuities may occur in the overall deformation field. In that case, the

deformation field is not necessarily continuous nor smooth. Imposing continuity and

smoothness in the registration will introduce artefacts in the resulting deformations and

any quantities derived from it. An important quantity to estimate from registration is

strain, which measures tissue elastic properties and is a significant clinical parameter

for evaluating the kinetics and functionality of the corresponding organs [19–22]. In

addition, strain is sensitive to the correct modelling of discontinuities in the deforma-

tion field.

A variety of discontinuities can be present in the underlying deformations of med-

ical images. The type of discontinuities depends on the physical properties of tissue

transitions. Despite of the importance of correct modelling of these discontinuities,

very little research has been carried out on this direction. Moreover, the models em-

ployed in the literature are not based on a physically motivated classification of dis-

continuities.

1.2 Thesis Aim

The aim of this thesis is to develop a non-rigid registration framework that is able to

correctly describe and model the different discontinuity types existing in tissue transi-

tions. Such framework should treat different types of discontinuities correspondingly

including the directional properties of those discontinuities.



3 1.3 Potential clinical applications

This aim has led to the development of a registration framework, named eXtended

Free Form Deformation (XFFD) with the following objectives:

Physically motivated classification of discontinuities at tissue transitions: Various

types of discontinuities may exist in the deformation field. In addition, the disconti-

nuity type can also vary in different directions. The characteristics of discontinuities

will be studied and a physically motivated classification will be proposed.

Development of a registration framework handling general tissue transitions: a

general registration framework will be developed to handle the various discontinuity

types accompanying tissue transitions. Such framework should be able to handle

different types of discontinuities in different directions at tissue transitions.

The methods developed during this thesis have been evaluated on digital phantoms

mimicking different types of tissue transitions to demonstrate the importance of cor-

rect modelling discontinuities. Its applicability on clinical images is illustrated on the

publicly available 3D liver CT images, because of the apparent discontinuous motion

of the liver and other abdominal organs, such as the kidney. In addition, the DIR-lab

dataset [23] of 3D lung CT images is employed, due to the complexity and medical

relevance of lung registration. The lungs and the rib cage slide along and have very

different material properties. Thus, the discontinuities in lung images exhibit direc-

tional dependence at the tissue interface.

1.3 Potential clinical applications

Image registration is crucial for detecting and monitoring abnormalities or diseases to

support clinical decisions, diagnosis and treatment planning. Many of these applica-

tions require the correct displacements at the interface of tissues with discontinuous

deformations.

In general, images registration is employed to extract motion information from

medical images, from which a number of clinical relevant parameters can be computed,

such as strain. Strain measures local tissue elastic properties, which are important for



Chapter 1: Introduction 4

many clinically relevant questions [19, 21]. Handling discontinuities incorrectly may

introduce artefacts near the tissue interface in the resulting displacement field. Fur-

thermore, errors from these artefacts will propagate to any quantity derived from the

displacements, which implies a direct negative impact on the assessment of the tissue

functionality and clinical decisions.

Lung images exhibit evident discontinuous deformations at the interface between

the lungs and the thoracic cage. Thus, it is important for clinical applications to employ

lung motion analysis that handles discontinuities properly. Failing to do so would ham-

per the accuracy of the clinical parameters. For instance, lung injury is characterised

by heterogeneity of regional mechanical properties, which can be assessed by clinical

parameters based on the volumetric strain (the determinant of Jacobian) [24, 25]. In

addition, Chronic Obstructive Pulmonary Disease (COPD) is a progressive disease that

causes an overall decrement in the lung tissue elasticity. The presence of COPD and

its severity can be predicted from the local tissue mechanical properties measured by

metrics based on image registration [26]. Examples of these metrics are: the Jacobian

determinant, strain, and anisotropic deformation index, which measures the magni-

tude of directional preference in volume change computed from the eigenvalues of the

strain [27].

In addition, motion information based on registration, like displacements and strain,

can also be employed for the assessment of cardiac diseases and conditions [28, 29],

such as cardiac dyssynchrony [30]. In the cardiac images, the myocardium slides

along surrounding tissues and is always in contact with the blood, producing con-

tinuous displacement field. However, the heart has different material properties from

this surrounding structures, which produces different rate of expansion and contraction

resulting in discontinuous strain field. Without handling discontinuities in the regis-

tration, the strain would be continuous across the interface of the myocardium and

its surrounding tissues. This would introduce a smoothing effect that would artificially

reduce the cardiac strain near the tissue interface. This would adversely affect any clin-

ical parameter computed from the strain, leading to an adverse impact on the clinical

decisions. Thus, discontinuities should be handled in the image registration in order to
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obtain realistic cardiac strain.

Another important clinical application of the proposed framework is Image-Guided

Radiation Therapy (IGRT), which employs imaging during radiation therapy to im-

prove the precision and accuracy of treatment delivery for the tumour. Registration

is used to align the pre-therapy CT image and a treatment planning scan. This align-

ment affects the radiotherapy field, which should cover the whole tumour and a margin

around it for an effective treatment. The aim is to reduce as much as possible the

dose in the surrounding healthy tissue to reduce the risk of side effects. For example,

radiation fibrosis may develop when normal lung tissue is damaged during radiother-

apy [31]. In this case, handling discontinuities is especially important, since regis-

tration that simply masks the moving organ cannot provide sufficient information for

treatment planning, in which not only the motion of the tumour but also the surround-

ing tissue should be studied [32].

Finally, the proposed registration method could also be used in the construction

of biomechanical models towards personalised medicine. For instance, in the case of

the spine, it is necessary to combine the information from different image modalities

to characterise the vertebrae, intervertebral discs (IVD) and muscles [33]. However,

IVDs are soft tissues whereas vertebrae are bone tissues. Thus, they need to be treated

differently in the registration process, while maintaining their attachment. Deform-

ing the IVDs and vertebrae separately will lead to gaps and overlaps between the two

structures resulting in unrealistic displacement fields. In contrast, the proposed regis-

tration framework can handle discontinuities due to different material properties and,

thus, could potentially perform this task straightforwardly.

1.4 Thesis Structure

This thesis has been structured into five chapters.

Chapter 2 introduces the general concepts of image registration, providing along-

side an overview of existing methods in general. A more detailed literature review of

methods dealing with discontinuity is provided in the methodology chapters (Chapter
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3, 4).

Chapter 3 and 4 present the methods in two stages. In Chapter 3, the XFFD frame-

work is developed for the most generic discontinuity type. Other types of discontinuity

can be considered as a constrained version of this general type. More complex models

for other types of discontinuities will be introduced in the following chapter.

Chapter 4 introduces the complete classification of discontinuity types correspond-

ing to the possible tissue transition properties. Different models are developed and

incorporated in XFFD to handle different tissue transitions. This includes modelling

all types of discontinuities and incorporating their directional properties.

Chapter 5 discusses limitations and key points of the methodology and provides

potential directions of future research.



Chapter 2

Image registration

2.1 Introduction

Image registration is a fundamental task in medical image processing. The aim of

image registration is to find point correspondences of anatomical structures between

images acquired using different modalities, from different subjects or at different time

points.

Over the past 20 years, image registration has undergone remarkable advances.

General image registration reviews can be found in [8, 15, 34–36]. For an in-depth ex-

planation of image registration techniques, the reader may consider the books [9, 37].

This chapter aims at providing a broad overview of the existing methods for each of

the main components of registration. More specific reviews on registration methods

modelling discontinuous deformations are presented in Chapter 3 and 4. This chapter

follows a similar structure to the one proposed by Sotiras et al. [36], who provided a

very comprehensive survey with advances in image registration until 2013. Notwith-

standing, the organization of the chapter has been adapted to include new registration

methods.

In the medical field, image registration is an essential tool for a wide range of clin-

ical applications, which can be summarised into the following categories [36]:

Image fusion: The combination of images from different modalities into the same

space can provide more information on the patient’s anatomy or function [38]. For

7
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instance, CT images provide good visualisation of bone structures and calcified tis-

sues, whereas MRI is more suitable for soft tissues. The most typical fusion (regularly

used in the clinics) is of PET or SPET with CT or MRI. As the first step, image fusion

requires multimodal registration [39] to align the images [10] (Fig. 2.1).

(a) (b) (c)

Figure 2.1: An example of image fusion of hip scans: (a) X-ray image, (b) bone lesion,
(c) fused image.

Image-guided surgery: CT and/or MR imaging are often required for planning a

surgery, providing high quality 3D images. However, during the intervention, lower

resolution modalities, such as 2D ultrasound or X-ray fluoroscopy, are used for real-

time imaging. Registration is used in this case to align the high-resolution pre-

operative images with the low resolution ones during the intervention to help physi-

cian to analyse anatomical changes during the surgery process [40]. This procedure

involves registration of images of different dimensions, namely from 3D to 2D [1]

(Fig. 2.2).

Population study and statistical models: The analysis of the anatomy or morpho-

logical changes of a population can help to identify differences between healthy

and unhealthy subjects for future diagnosis, such as age related pathologies in the

brain [11] and cardiac motion atlas for coronary heart disease diagnosis [41]. An im-

portant requirement for such tasks is the inter-patient registration [42] to obtain point

correspondences. Moreover, The population normal variability or the differences due

to certain diseases can be encoded by statistical models. Similarly, the generation of

shape and appearance statistical models [43] require inter-patient registration.
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Figure 2.2: 3D/2D registration for image-guided interventions [1]

Atlas based segmentation: Registration can be employed for atlas based image seg-

mentation [12, 44]. This requires one or more images to be initially segmented (the

atlas). In order to segment a new case, the segmentations of the atlas are propagated

using image registration (Fig. 2.3). In case that the atlas is composed of more than

one images, the label of each voxel is determined by fusing the results, for instance,

using majority vote [45] or weighted voting [46].

Motion analysis: Image registration can be applied to a temporal image sequence for

the analysis of organ motion (Fig. 2.4), which is key in assessing the organ’s kinetics

and functionality. This has been applied in the motion analysis of organs, such as the

heart [3, 47] or lungs [48, 49]. For instance, evaluating regional cardiac wall motion

can help to detect structural and functional abnormalities causing heart failure [50], or

the analysis of lung motion can be used to assess regional lung function for detecting

diseases, such as chronic obstructive pulmonary disease [13].

Longitudinal study: Registration can also be applied on images taken at different

time points for monitoring long-term progression of diseases or the follow-up of the

outcome of a treatment [14].
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Figure 2.3: An example of the framework for multi-atlas segmentation of brain MR
images [2].

Figure 2.4: An example of temporal image registration for motion analysis. Contin-
uous spatiotemporal trajectories are computed from the 3D+t velocity field, parame-
terised by a 3D+t grid of control points with B-Spline kernels [3].

2.2 Principles of image registration

The objective of image registration is to establish the optimal transformation between

different images, capturing anatomical correspondences between the structures present
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in the images. In the simplest case, image registration involves a target image It, also

known as fixed image, and a moving image, Im, also referred to as source image

It : Ωt → R, Ωt ⊂ Rnt

Im : Ωm → R, Ωm ⊂ Rnm

(2.1)

where nt and nm are the spatial dimension of the target and moving image respectively.

The idea of registration is to seek the optimal transformation T : Ωt → Ωm according

to a designed objective function. Thus, the transformed image can be expressed as

Im ◦ T , where ◦ is the composition operator. The transformation at any point x =

(x1,x2, ...,xnt) is usually described in terms of the displacement field u(x)

T (x) = x+ u(x)

Image registration is usually formulated as an energy minimisation problem with

respect to an objective function:

−S(It, Im ◦ T ) + λR(T ) (2.2)

The objective function includes two terms:

• Similarity metric (S): It measures how similar the transformed image is to the

target one.

• Regulariser (R): It constrains the transformation to ensure certain properties of

the deformation field, such as smoothness. It is weighted by a coefficient, λ.

In general, image registration consists of three components (Fig. 2.5):

• Transformation model: It defines a geometric transformation to map the moving

image to the target one.

• Objective function: It consists of a similarity measure and possibly a regulariser.

• Optimisation: it minimises the objective function to achieve the optimal align-

ment of the images.
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Fixed image 

Moving image 

Sampler 

Interpolator 

Cost Function 

Transform 

Optimiser 

General registration framework 

Figure 2.5: A general image registration framework with basic registration compo-
nents. The complete scheme is annotated by a dashed box. The moving image is going
to be deformed to be as similar as possible to the fixed image. The type of deformations
are parameterised by the transform model and the cost function is based on a similarity
metric with the possible addition of one or more regularisation terms.

The following sections present a review of classical methods together with recent

advances in image registration following these four aspects: transformation model,

similarity measure, regularisation and optimisation.

2.3 Transformation model

The transformation model determines the class of deformations that are considered

for transforming the moving image to match the target one. It restricts the type of

acceptable or desired deformations and, thus, limits the search space of possible solu-

tions [51]. The simplest transformation models are used in rigid registration, where no

actual deformation is considered, only a global translation and rotation. More general

and complex transformation models are considered when non-linear deformations are

expected. The number of degrees of freedom in the transformation model is equivalent

to the number of parameters to estimate in the optimisation. Higher number of degrees

of freedom allows richer description of the deformations. However, this may cause ex-

cessive deformations and also increase the complexity of the model, implying higher

computational cost and more challenging optimisation problem. For instance, the op-

timiser may be more likely to get stuck at a local minima in a high-dimensional search

space. Therefore, a desirable transformation model should seek a balance between the
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descriptive power and computational performance.

Transformation models can be classified, based on the underlying theoretical in-

sight, following similar criteria to the ones proposed in [36, 52] with an extension to

include recent advances in image registration. The transformation models are classified

into two main categories: 1) physical models; 2) basis function representation.

2.3.1 Physical models

This class of transformation models are based on physical models representing some

assumptions on the physical properties and behaviours of the tissues involved. These

models can be further divided into four sub-categories following similar classification

to that in [53]: 1) elastic models, 2) fluid models, 3) diffusion models, 4) Polyaffine

models.

Elastic models

Elastic models consider the moving image as a linear elastic solid, which is deformed

under two counteracting forces: 1) the external force that deforms the shape of the

object driven by the image similarity measure; 2) the internal force which resists any

changes from its equilibrium shape, due to the elastic property of the material. The

matching process stops when the two forces reach an equilibrium state, which can be

described by Navier linear elastic Partial Differential Equation (PDE) [9]:

µ∇2u+ (λ+ µ)∇(∇ · u) + f = 0 (2.3)

where f represents the external force applied on the elastic body, u the displacement

field, and µ and λ denote the Lamé’s elastic constants.

This model was first proposed by Broit et al. [16] and was later extended to mul-

tiresolution by Bajscy and Kovačič [54]. Davatzikos et al. [55] modelled the mov-

ing image as inhomogeneous elastic objects by employing spatially varying elasticity

properties. This allows different tissues to deform to different extent. For instance, the

brain ventricles are allowed to deform more freely than other stiffer structures in the
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images.

The main drawback of the linear elastic models is that they cannot handle large

deformations. To mitigate this weakness, nonlinear elastic models were proposed.

Rabbitt et al. [56] modelled the moving image as hyperelastic materials, which allows

large magnitude material deformations. The nonlinear equations are solved by local

linear approximation using finite element method.

Later, the elastic registration was studied as an energy minimisation problem em-

ploying elastic energy as regularisation. Droske et al. [57] adopted nonlinear elastic

energy as a regularisation term. Pennec et al. [58] adopted St Venant-Kirchoff elastic-

ity to account for nonlinear elastic deformations and employed log-Euclidean metrics

instead of Euclidean ones ensuring inverse-consistency. Recently, Burger et al. [59]

proposed a hyper elastic regularisation to ensure diffeomorphic and mass-preserving

transformations.

Fluid models

A main limitation of the linear elasticity model is its assumption of small deformations.

In contrast, fluid models overcome this limitation by representing the moving image as

a viscous fluid. The deformations are described by the Navier-Stokes equation [17]:

µ∇2v + (λ+ µ)∇(∇ · v) + f = 0 (2.4)

where v = (x, y, z) describes the velocity field in a 3D case. This equation is similar

to Equation (2.3) but it considers the velocity field instead of the displacement field.

The resulting displacements can be estimated by integrating the velocities over time.

Equation (2.4) can be solved using successive over realaxation (SOR) [17]. Bro-

Nielsen et al. [60] presented a faster implementation using a convolution filter assum-

ing constant viscosity. However, this assumption does not always hold true. To over-

come this limitation, Lester et al. [61] proposed a fluid model with spatially-varying

viscosity to allow different degrees of deformations in different tissues in the image.

Beg et al. [62] proposed Large Deformation Diffeomorphic Metric Mapping (LD-

DMM) method. In LDDMM, deformations are modelled by time dependent velocity
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field according to Euler-Lagrange equations. The cost function employs geodesic im-

age metric and a smoothness regulariser and it is minimised by gradient descent. By

employing time-varying velocity field, LDDMM allows the estimation of large defor-

mations. However, it has high computational cost and memory demands. An alterna-

tive to improve the computational efficiency is to decrease the number of degrees of

freedom by employing stationary velocity field. Arsigny et al. [63] employed station-

ary velocities that belong to the Log-Euclidean space. This allows the computation of

vectorial statistics of deformations in a well studied space that also guarantees their

invertibility. Based on this method, Vercauteren et al. [64] proposed LogDemons algo-

rithm, which is computationally more efficient. LogDemons allows all the computation

of vectorial statistics in the log-Euclidean space without the need of using the log and

exponential mappings as required in [63].

Diffusion models

Thirion et al. [65] proposed a diffusion model, considering the deformation process as

a diffusion process, which is modelled by the equation:

4u+ f = 0 (2.5)

This model was inspired by Maxwell’s Demons in thermodynamics. The basic idea

is that each point of an object in the moving image can be determined as inside or

outside the same object in the target image. Demons are effectors situated at the object

boundary to push the outside points into the object, and to pull the inside points outside

the boundary. The forces are based on optical flow [66, 67], which was developed

to recover motion between objects in two images in a temporal sequence, assuming

constant intensities of the objects along time.

The Demons method was remarkably faster than elastic and fluid registration meth-

ods at that time. However, it lacked a sound theoretical justification. Pennec et al. [68]

investigated nonrigid registration as an optimisation problem and showed that Demons

method is equivalent to a second order gradient descent on the similarity measure of

the sum of square difference (SSD) with a Gaussian smoothing regulariser. This work
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shed insight on Thirion’s algorithm, which led to a large number of extensions of the

method. A set of the most well-known extensions are: Vercauteren et al. endowed

Demons method with symmetric [64] and diffeomorphic properties [69]. Stefanescu

et al. [70] proposed adaptive smoothing to account for varying elasticity of different

tissues. Mansi et al. [71] developed the logDemons algorithm [64] to ensure incom-

pressible deformations.

2.3.2 Basis function models

Instead of being described by physical models, transformations can also be modelled

by a set of basis functions based on interpolation or approximation theory. Unlike em-

ploying a dense deformation field as in physical models, basis function models employ

much fewer degrees of freedom. In this class, some models describe deformations by

basis functions, which are normally continuous and smooth, producing smooth defor-

mation field. In other models, displacements are recovered in limited locations in the

image and a dense displacement field can be obtained by interpolation. These mod-

els can be further classified into four sub-categories following [36]: i) Radial Basis

Functions, ii) Elastic Body Splines, iii) Free-Form Deformations iiii) polyaffine.

Radial Basis Functions

In Radial Basis Function (RBF), the interpolation value of a point x is computed based

on its distance from the landmarks xi

u(x) =
N∑
i=1

ωiφ(‖x− xi‖) (2.6)

where ωi are weights, obtained by solving a set of linear equations [72,73]. In general,

RBFs have global support and allow irregular landmark locations. However, their

global support requires sufficient landmarks to describe local deformations.

Bookstein et al. [74] employed Thin-Plate Splines (TPS) for landmark-based im-

age registration. TPS is the most commonly used RBF [8]. It minimises the bend-

ing energy of splines assuring smooth deformations. The main drawback of these
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models is that they have global support, which hinders its capability of modelling lo-

calized deformations and also leads to high computational cost with a large number

of landmarks. Therefore, TPS was extended to have local support [75–77]. Rohr et

al. [78, 79] proposed to approximate thin-plate splines to accommodate for landmark

errors. Zagorchev and Goshtasby [80] conducted a comparative study of RBFs to eval-

uate their performances in nonrigid image registration.

Elastic Body Splines

Davis et al. [81] introduced Elastic Body Splines (EBS), inspired by a physical model,

which describes a homogeneous and isotropic elastic body subject to a force. The

basis of EBS is obtained from the analytical solutions of Navier equilibrium equation

(2.3), which can be solved analytically, when the force is defined as a radial symmetric

function.

The original EBS model cannot handle local deformations. To cope with this draw-

back, later methods employ forces that have compact support. Kohlrausch et al. [82]

proposed Gaussian EBS employing a Gaussian function as the force. As a result, the

compactness of the support of the landmarks can be controlled by the standard devia-

tion of the Gaussian function. This method was extended by Wörz and Rohr et al. [83]

to consider landmark errors by adjusting the Gaussian forces to allow varying weights

of the landmarks with respect to the reliability of their localisation.

Free Form Deformation

The Free From Deformation (FFD) was initially proposed as a method to deform 3D

objects in computer graphics [84,85]. It was introduced in nonrigid image registration

as a transformation model based on B-splines [18, 86, 87]. FFD can deform objects by

manipulating the control points, producing continuous and smooth deformations (Fig.

2.6).

In general, RBF and EBS have global support. Each control point has influence in

the entire transformation and, thus, cannot handle local deformations. When using a

large number of control points, RBF can be computationally demanding. In contrast,
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Figure 2.6: An example of the FFD registration framework. This figure depicts the
concept of FFD, showing deformations of the grid points and how this is translated to
the deformations of the image. First row: target and moving images; second row: trans-
formed images after FFD registration using grid spacing of 20 mm (left) and 10 mm
(right) [4].

FFD has compact local support. Changes in a control point will only influence its

neighbourhood. This enables FFD to model localised deformations with fewer degrees

of freedom than RBF and, thus, being more computationally efficient. RBF and EBS

work with irregularly placed control points and can be employed for feature-based

registrations, while the FFD requires regular grid, which is suitable for intensity-based

registration.

FFD is commonly based on B-splines, in which the displacement of any point x =

(x1, . . . , xn) ∈ Rn is expressed as a linear combination of the displacements of the

corresponding control point µI :

D(x) =
∑
I∈C

BI(x)µI (2.7)
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where the index I = (I1, . . . , In) runs along the set of supporting control points, dis-

tributed in a regular grid at positions xI = (xI1 , . . . , xIn).

The B-spline basis functions are tensor products of 1D B-spline functions centred

at each control point:

BI(x) ≡ B

(
x− xI

L

)
≡

n∏
i=1

β

(
xi − xI,i
Li

)
(2.8)

where Li is the spacing between control points along the ith axis. The most commonly

used basis is the cubic B-splines [88],

β(u) =


2
3
− 1

2
|u|2(2− |u|) if |u| < 1

1
6
(2− |u|)3 if 1 ≤ |u| < 2

0 if |u| ≥ 2

(2.9)

which is a symmetric C2-differentiable piece-wise cubic function.

Non-uniform rational basis spline (NURBS) is another type of basis that has been

employed in the FFD framework. Uniform B-spline requires a regular grid, while

NURBS generalises the nonrational parametric form and can be applied in a non-

uniformly distributed control points. NURBS includes the weights of the control points

as extra degrees of freedom

D(x) =

∑
I∈C BI(x)wI µI∑
I∈C BI(x)wI

(2.10)

where wI are the weights of the control points.

Uniform B-splines can be considered as a special case of NURBS when the control

points are located in a regular grid and the weights of the control points are 1. NURBS

contains more degrees of freedom, and therefore, they are more flexible and can better

describe local deformations. However, the user must specify the initial location of the

control points and the initialisation often requires segmentation of the region of interest

[89, 90]. In contrast, uniform B-spline is easy to use and it has simpler formulation

allowing faster computation when the number of grid points is elevated [3, 47].
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The FFD has a number of advantages over RBF. It produces smooth transforma-

tions and has compact support requiring fewer degrees of freedom than the RBF to

describe local deformations. Thus, it is more efficient and more suitable for modelling

local deformations than RBF [36]. The FFD have been rapidly extended for solving

different problems and gained popularity in various applications. Tustison et al. [91]

observed that conventional FFD with steepest gradient descent exhibits problematic

energy topographies. This is caused by the nature of FFD formulation, which produces

disproportionate weighting of the gradient at different control points. They proposed

to solve this problem by normalising the gradient using B-spline weights. Schnabel

et al. [92] proposed multi-level FFDs, in which a subset of control points across dif-

ferent scales are activated and optimised simultaneously. The activation of the control

points is determined based on the local image entropy in the target image and the local

alignment of the image pair. Recently, Shi et al. [47] developed multi-level FFDs with

sparsity constraint, based on the principles of compressed sensing, assuming that the

multi-level representation of the transformation is sparse in the parametric space. The

sparse FFDs were extended to temporal registration of image sequences [93]. Other

works on temporal registration based on 4D FFD were developed by Ledesma-Carbayo

et al. [94] and Chandrashekara et al. [95]. Based on this idea, De Crane et al. [96] pro-

posed temporal diffeormorphic FFD, which models the velocity field and integrated it

over time to obtain temporal consistent displacements.

Polyaffine models

Arsigny et al. [97] proposed the polyaffine models to parameterise deformations with

a finite number of rigid or affine transformation components. Similar to FFD, a group

of control points, named anchor points, are located in the image. Each of these points

influence a defined region and they do not need to be in a regular grid. In order to

have a smooth transition between regions, a Gaussian function is used to represent the

influence of each anchor point. The global displacements are obtained by integrating

the weighted average velocities associated to each transformation component. The

polyaffine models can produce invertible and smooth deformation fields. In addition,
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since they are locally rigid, they are an excellent choice for registering locally rigid or

affine structures, such as bones and histological slices.

The computation efficiency of the polyaffine models was improved by Arsigny et

al. [98], who also extended them to guarantee that their inverse is also polyaffine. A

recent work carried out by McLeod et al. [99] employed polyaffine models for the

statistical analysis of the motion of the left ventricle of the heart.

2.4 Similarity measure

The similarity measure is employed to quantify the degree of likeness between the

transformed image and the target image. These metrics can be categorised into feature-

and intensity-based [100]. Feature-based similarity measures require a prior step to

extract features, such as salient points, edges and surfaces [8]. In contrast, intensity-

based metrics do not need such pre-processing and can be computed directly from

the images. Feature-based similarity metrics require the images to have rich details

of distinctive objects. Nevertheless, medical images often lack such details [8]. In

addition, feature selection is highly application dependent, making it less general than

intensity-based metrics. Thus, in this thesis, intensity-based similarity measures are

adopted. The selection of such metrics highly relies on the application and the image

modalities involved. Specifically, the selection should be based on the relationship

expected between the corresponding intensities in the images.

The goal of optimisation is to minimise the dissimilarity between the images. To be

consistent with energy minimisation of the cost function, similarity metrics that com-

pute image difference are directly included in the cost function, while others measuring

image similarity are negated.

2.4.1 Image difference measure

The simplest similarity measure is the Sum of Square Difference (SSD) of the intensi-

ties between the target and transformed moving images, defined as
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SSSD(It, Im) =
1

N

∑
x∈Ω

|It(x)− Im(T (x))|2 (2.11)

where x is a voxel position and T (x) is the voxel location after transformation, N the

number of voxels in the image domain Ω.

The SSD is sensitive to outliers of high intensity difference. A simple approach to

improve the robustness to such outliers is to use Sum of Absolute Differences (SAD),

defined as:

SSAD(It, Im) =
1

N

∑
x∈Ω

|It(x)− Im(T (x))| (2.12)

The SSD is easy to implement and efficient. Viola et al. [101] have shown that

SSD is the optimal measure if the images have identical intensities in the correspond-

ing structures, only differing by Gaussian noise. Thus, it has been widely employed,

for instance, in intra-patient registration [102, 103]. However, it is restricted to mono-

modal registration, as it assumes that corresponding structures in the images have the

same intensities. It also requires that the images are equally calibrated, without differ-

ence in intensity normalization or field bias.

2.4.2 Image correlation

Cross Correlation (CC) assumes linear relationship of the image intensities [53].

SCC(It, Im) = − 1

N

∑
x∈Ω

It(x) · Im(T (x)) (2.13)

The Normalized Cross Correlation (NCC), also known as correlation coefficient, has

been widely used in image registration [34, 104, 105], as it is more robust to intensity

and contrast changes than CC [53].

SNCC(It, Im) = −
∑

x∈Ω(It(x)− µt)(Im(T (x))− µm)√∑
x∈Ω(It(x)− µt)2

√∑
x∈Ω(Im(T (x))− µm)2

(2.14)

where µt, µm, σt, σm are the mean and standard deviation of the intensities of the target

and moving images.
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2.4.3 Mutual information

In terms of the information theory, image registration can be considered as a process to

maximise the amount of shared information between the target and transformed images

[9]. The information of the image content can be measured by Shannon entropy [106]:

H = −
∑
i

p(i) log(p(i)) (2.15)

where p(i) is the probability of a voxel in an image having intensity i. This probability

is estimated from the intensity histogram. The joint entropy can be defined as [9]:

H(I, J) = −
∑
i,j

p(i, j) log(p(i, j)) (2.16)

where p(i, j) is the joint probability distribution of intensity i, j in the moving and

target image respectively. Low values of joint entropy is normally related to good

alignment of the images. However, it highly depends on the overlaps of the images.

For instance, when the overlap is only a region in the background, this misalignment

also produces low joint entropy [42]. To mitigate this problem, mutual information

includes the marginal entropies of the images, so that it is less sensitive to overlaps

than joint entropy. Collignon et al. [107,108] and Viola and Wells et al. [101,109,110]

independently proposed mutual information in multi-modal registration [9]

I(I, J) = H(I) +H(J)−H(I, J) =
∑
i

∑
j

p(i, j) log
p(i, j)

p(i) · p(j)
(2.17)

The mutual information I(I, J) represents how well I explains J and vice versa. When

the two images are optimally aligned, mutual information is maximised (the cost func-

tion is minimised)

SMI(I, J) = −I(I, J) (2.18)

However, mutual information can still increase in case of misalignment with decreas-

ing overlap [42]. To make it more robust to changes in overlap, Studholme et al. [111]
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introduced normalised mutual information:

SNMI(I, J) = −H(I) +H(J)

H(I, J)
(2.19)

Mutual information globally measures the difference of statistical distribution of

intensities in the images. This restriction has been relaxed to locally computing the

similarity measure [112–117]. Alternatively, spatial information of the image can

also be included by incorporating local geometric information, such as image gra-

dient [118], higher order mutual information [119, 120] and employing prior segmen-

tation [121–123]. Mutual information can also be computed from label representation

of image patches using dictionary learning [124].

2.4.4 Other types of similarity for multi-modal registration

Mutual information can be employed for multi-modality registration, in contrast with

SSD and cross-correlation, which are not suitable for multi-modality. However, the

original mutual information does not provide a good local representation of image

structure, since it quantifies similarity using a global statistical measure. Heinrich et al.

[125] proposed the modality independent neighbourhood descriptor to describe local

image structure by measuring the similarities of voxels in a neighbourhood of image

patches. The similarity measure is the vector difference of the descriptors computed

from the images. Lee et al. [126] and Bronstein et al. [127] employed machine learning

techniques to measure similarity between images from different modalities.

2.5 Regularisation

Image registration is an ill-posed problem due to the existence of multiple solutions.

This issue may be alleviated by including a regularisation term in the cost function.

This term allows the inclusion of prior knowledge of the physical properties of the

underlying deformations to restrict the outcome of the registration. There is a myriad

of different regularisations in the literature, however, this thesis focuses on those used

in an FFD framework.
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An important characteristic of deformations involving soft tissues is smoothness.

In FFD registration, the transformation is implicitly regularised to be continuous and

smooth by parameterising the deformations with smooth B-spline basis. To Further

improve smoothness of the deformations, Rueckert et al. [18] proposed the bending

energy term. This regularisation term penalises high curvature of the transformation.

Thus, it is zero for any linear or affine transform and only relevant for nonrigid trans-

formations.

Topology preservation is equivalent to invertibility of the transformation. This prop-

erty can be imposed to avoid singularities in the deformation field. Rueckert et al. [128]

introduced two ways to ensure diffeomorphic transformation: (1) hard constraint on the

maximum displacements of the control points, (2) a penalty term to avoid the determi-

nant of the Jacobian falling below a pre-defined threshold.

When the images involves rigid objects, such as bones, nonrigid registration may re-

sult in undesired deformations in the rigid structures. To address this problem, Loeckx

et al. [129] imposed orthogonality of the Jacobian matrix of the transformation to guar-

antee local rigidity. Staring et al. [130] proposed a local rigidity penalty term based on

three conditions: (1) the second order derivatives of the transformation are kept close

to zero; (2) the rotation matrix is controlled to be orthogonal; (3) the determinant of

the Jacobian of the transformation is maintained close to one. This penalty term is

computed efficiently by being expressed in terms of B-spline coefficients.

In medical images, many soft tissues are known to be nearly incompressible when

undergoing small deformations in a short time period [131]. Based on this observation,

Rohlfing et al. [132] included a local volume-preservation constraint based on the log-

arithm of the Jacobian determinant, which is zero when the local volume is preserved.

In addition, prior knowledge of the expected deformations can be described by

statistical deformation models built from registration on training data [133]. These

models were employed to guide the registration process [134–136]. Similarly, in atlas

registration, expected shape information of the organ of interest can also be included.

Berendsen et al. [137] employed statistical shape model as a penalty term for atlas

segmentation.
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2.6 Optimisation

The aim of image registration is to seek the optimal transformation that minimises the

objective function, which is based on a similarity metric with the possible addition of

one or more regularisation terms. The detailed description of optimisation methods

can be found in [138–140]. Depending on the nature of the search space, optimisers

can be classified into two types: continuous and discrete, in which the parameters are

searched in continuous values or in a discrete set [36].

2.6.1 Continuous optimisation

In continuous optimisation methods, variables take real values and a solution is found

by iterative search, until a minimum is reached. The parameters µ are updated follow-

ing the rule:

µk+1 = µk + αkdk, k = 0, 1, 2, ... (2.20)

where αk denotes the step size, also referred to as gain factor at the kth iteration. Con-

tinuous optimisation methods differ in computing the step size αk and search direction

dk. The step size can be set to be constant, decaying with each iteration or computed by

exact or inexact line search to minimise the objective function [141]. The search direc-

tion is normally computed from the first-order or second-order derivatives of the cost

function. Multiple methods provide different ways of computing the search direction,

as discussed in the following subsections.

Gradient descent

Gradient descent methods optimise the cost function in the direction of its negative

gradient, in which the function value decreases

dk+1 = −gk (2.21)

where gk is the gradient direction. Variants of gradient descent differs in their ways

of computing step size. The step size can be simply set to be fixed, computed as a
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decaying function of the number of iteration [141], using monotone line search [142],

inexact line search [143], or golden section search [144]. Gradient descent methods

have been applied to various registration problems, such as in the LDDMM [62] and

FFD registration framework [18].

Computing the exact derivatives required for gradient descent is costly. To mitigate

the computational burden, stochastic gradient descent was proposed, based on an ap-

proximation of the gradient direction. Different ways of approximating the gradient

have been studied in [141]. The Kiefer-Wolfowitz (KW) method is the most basic ap-

proach employing finite difference approximation of the gradient [145]. Simultaneous

Perturbation (SP) computes the approximation of the gradient at each iteration using

only two measurements of the objective function, obtained by randomly varying all

variables simultaneously [146]. This differs from the KW, in which the variables are

varied one at a time. The Robbins and Monro (RM) is a more general method, since it

does not assume the way of approximating the gradient, it only assumes the existence

of an approximation of the gradient [147]. The convergence of the method is artifi-

cially forced by reducing the step size. In [141], the RM method performed the best

among the three methods and was later extended to use adaptive step size [148].

Conjugate gradient descent has a better convergence rate than other gradient descent

methods [36]. It employs a search direction that is conjugate to the search direction in

the previous step. It is a linear combination of the current gradient direction and the

previous search direction [138].

dk = −gk + βkdk−1 (2.22)

The weights of the directions can be defined in various ways, such as formulas pro-

posed in [149–152]. Mored detailed reviews on the conjugate gradient methods can be

found in the survey by Hager and Zhang [153].

Quasi-Newton methods

The Newton method, also known as the Newton-Raphson method, employs first and

second order derivatives. In each iteration, it constructs a quadratic local approxima-
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tion of the cost function and moves to the minimiser of this quadratic function until

convergence [138]. Thus, each step is given by

µk+1 = µk − |H(µk)|−1gk(µk) (2.23)

where H(µk) is the Hessian matrix of the objective function. The Newton method

converges faster than gradient descent. However, computing the Hessian matrix and

its inverse is computationally expensive. To alleviate the computational burden, quasi-

Newton method approximates the inverse of the Hessian matrix using first order deriva-

tives

µk+1 = µk − αkLkg(µk) (2.24)

where Lk ≈ |H(µk)|−1. The approximation Lk can be computed in different ways,

among which the most important ones are the Davidon-Fletcher-Powell (DFP) and the

Broyden-Fletcher-Goldfarb-Shanno (BFGS) [154]. BFGS formula is more efficient

than DFP [154, 155]. A variant of BFGS, limited memory BFGS (LBFGS), is widely

employed, because it requires less memory for storing Lk and, thus, it is suitable for

high dimensional problems [156, 157]. Quasi-Newton methods have been applied in

various image registration problems [49, 116, 158]. Stochastic quasi-Newton was also

developed to improve the computational efficiency [159].

2.6.2 Discrete optimisation

In discrete optimisation, variables have discrete values and the optimal solution is

searched in a discrete set. This optimisation approach usually employs Probabilistic

Graphical Models (PGM), and most of the time Markov Random Fields (MRF) [160].

A PGM consists of nodes representing random variables taking values in a discrete set

of labels and edges representing the relationship between the variables. In this setting,

the set of labels is related to a set of possible deformations. Thus, the optimisation

searches for the best label for each grid point in order to minimise the cost function.

Methods for solving a PGM problem can be classified into: min-cut, belief propagation

and dual decomposition.
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Min-cut

Min-cut problems are usually solved using max-flow. In a binary label problem, a

directed graph has two special nodes, called the source s and the sink t. The cost of

a cut is the total flow passing through the edges of the graph. This value is control by

the weights of the edges and the capacity of the nodes. Finding the minimum cut is

performed by searching the path that maximizes the flow from s to t [161]. Tang and

Chuang [162] employed a dense displacement field representing each pixel as a node

and the cost function is optimised using graph-cut [163]. So et al. extended this work

to multi-level [164], replacing SSD to mutual information [165] and applied it to brain

images [166]. Graph-cut can find the global minimum or close to the global minimum.

But due to the computational complexity, the number of nodes and search space are

limited.

Belief propagation

Belief propagation is also known as message passing. The idea is that each node sends

a message with their belief about the optimal label to their neighbours. These neigh-

bouring nodes update their beliefs and send messages to the next neighbours. This

process is repeated until all the belief of the nodes does not change [167]. Yang et

al. [168] improved the efficiency of the belief propagation method by hierarchically

reducing the search space. Heinrich et al. [169] adapted this algorithm in a FFD regis-

tration framework.

Dual decomposition

Dual decomposition is based on decomposing a complex problem into a set of sub-

problems, called slaves, together with linear constraints to enforce an agreement in the

solution of each sub-problem. The set of linear constraints is controlled and modified

by a master to ensure that the global solution is close to that of the original complex

problem. The fast Primal-Dual (fast-PD) [170] is an efficient algorithm of this type.

Glocker et al. [171, 172] reformulated the cost function of FFD registration using an
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MRF definition and optimised it using fast-PD method [170, 173]. This work was ap-

plied to atlas-based segmentation [174] and extended to include prior knowledge of

the deformation using pairwise potentials estimated from statistical correlation of the

deformations in the training data [175]. Sotiras et al. employed fast-PD for diffusion

tensor registration [176], symmetric iconic registration [177] and group-wise registra-

tion [178]. Fast-PD is computationally efficient and obtained comparable accuracy to

continuous optimisation methods. However, due to the large memory requirement, it

only takes sparse sampling of the displacements, leading to reduced accuracy [172].

Heinrich et al. [179] employed dynamic programming on minimum spanning tree to

reduce the demand for large memory and, thus, was able to employ denser displace-

ment sampling to achieve more accurate results. This method was later extended to

replace FFD by supervoxel graphs [180].

The discrete optimisation methods can find the global minimum or a solution close

to the minimum. They do not require the derivatives of the cost function and, thus,

allows a larger range of similarity measures and regularisers. A common drawback of

this type of methods is that the discretization of the search space limits the registration

accuracy. Furthermore, it is not straightforward to introduce them to the existing regis-

tration frameworks, as they are not directly compatible with other existing components

of registration and often require reformulation of the cost function.

2.7 Conclusions

Registration is an important tool for acquiring deformations of anatomical structures

in medical images. The three main components of registration are: objective function

(similarity metric and regularisation), optimisation and transformation model.

In the literature, the most widely used similarity metrics in mono-modality registra-

tion are SSD and cross correlation, whereas in the case of multi-modality registration,

mutual information, metrics based on image gradient, or features-based similarity are

commonly required.

In optimisation, gradient-based methods, such as LBFGS, are widely used, because
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of their accuracy and compatibility with most of the previously proposed similarity

metrics and transformation models. However, they are sensitive to the initial con-

ditions. This can be alleviated by first rigidly aligning the images and employing a

multiresolution scheme, which reduces the likelihood of the optimiser to stop in a

local minima. Another limitation of the gradient-based optimisers is their long com-

putational time. These two problems do not exist with discrete optimisers, which are

fast and robust to local minima. However, in general, discrete optimisers cannot be

directly included in an existing registration framework and often require reformulating

the objective function or developing problem specific metrics. Moreover, the accuracy

of discrete registration is limited by the discretisation of the search space. On the other

hand, continuous optimisation does not have the limitation of accuracy and their speed

can be largely improved by employing stochastic techniques, such as stochastic gra-

dient descent [148] or stochastic LBFGS [159], or by optimising the implementation

based on multi-threading [181] or GPU computing [182]. In general, the simplicity

of gradient-based approaches and their compatibility with existing registration frame-

works make them more popular than discrete optimisers.

The most widely-used transformation models are Demons and FFD. The main ad-

vantage of Demon over FFD is its computational efficiency [183]. However, Demons

is more sensitive to noise than FFD [184] and provides lower accuracy [100]. Never-

theless, FFD is versatile with multiple extensions, such as, multiresolution [18], mul-

tiview [185], spatio-temporal [3], and diffeomorphic registration [128]. The main ad-

vantage of FFD is its modularity. Most previously-proposed similarity measures and

continuous optimisers can generally be employed straight-forwardly. In contrast, the

formulation of demons is equivalent to optimising the similarity measure of SSD with

gradient descent [68]. SSD assumes constant intensities, hindering its usability for

multi-modality registration. Employing other similarity metrics in the Demons frame-

work requires to modify the formulation of the metrics [183,186]. Moreover, FFD has

a sound mathematical formulation, which allows direct manipulation of the transfor-

mation model, such as multilevel FFD [92] and 4D FFD [96]. These properties make

FFD a good candidate for incorporating discontinuities in the transformation model.
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Thus, in this thesis, FFD was selected as the base for developing a registration frame-

work to handle general discontinues.



Chapter 3

eXtended Free-Form Deformation

(XFFD): tissue transitions with strong

discontinuities

This chapter describes the XFFD registration framework. The formulation of XFFD

was inspired by the interpolation method from eXtended Finite Element Method (XFEM).

XFFD incorporates discontinuities by enriching the B-spline basis functions coupled

with extra degrees of freedom. XFFD is integrated into a rigorously formulated mul-

tiresolution scheme that employs an exact parameter upsampling method. As explained

in Chapter 1, the aim of this thesis is to develop a general registration methods that can

handle all types of tissue transitions. In this chapter, only the most generic model is

developed with the XFFD framework. The general classification of tissue transitions

and the mathematical formulation for the corresponding models integrated in XFFD

will be presented in the following chapter.

3.1 Motivation

As explained in the literature review (Chapter 2), the classical FFD commonly relies on

B-spline basis, resulting in a smooth and continuous deformation field, which reflects

the similarly smooth deformations hypothesised to be exhibited by compliant tissues.

33
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This constraint, however, is not desirable when the tissue transitions are discontinuous.

For instance, discontinuities are present at the interface of structures that undergo dif-

ferent motion patterns during the respiratory cycle, such as, the lungs and the thoracic

cage. For images acquired in different poses, the relative position between different

organs can also change, as observed in the abdominal organs. In longitudinal studies,

discontinuities may also result from morphological changes associated with growth

process or treatments, such as at the boundaries between tumours and surrounding

parenchyma. Artificially imposing continuity in registration of tissues that exhibit dis-

continuities can introduce artefacts, resulting in non-physically plausible deformation

and strain fields (Fig. 3.4). The strain is related to the physical properties of tissues,

which are key to many diagnostic questions [19]. Therefore, artefacts leading to in-

correct strain field have a direct negative impact on the assessment of kinetics and

functionality of the corresponding organs.

3.2 Previous works

Proper management of physical discontinuities in medical image registration is an ac-

tive area of research. According to the transformation model employed, the existing

approaches can be classified into two categories; diffusion- or spline-based registration

methods. In most diffusion-based methods, discontinuities were explicitly incorpo-

rated in the regularisation schemes. Direction-dependent regularisers were employed

by decomposing the deformation field into normal and tangential directions at the dis-

continuity interface and smoothing was only applied in the tangential components but

not across the boundary [187, 188]. Locally adaptive regularisers were adopted with

discontinuity preserving properties [189, 190].

FFDs are parametric transformation models with fewer degrees of freedom; thus,

they are potentially more efficient. They naturally produce smooth deformation fields

without explicit regularisers. The basis functions are piece-wise polynomial and have

local support, so that they are computationally efficient and compatible with gradient-

based optimisers. The most straightforward FFD-based method for handling disconti-
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nuities is based on independently registering regions on either side of the discontinuity

interface using masks, covering the object of interest. However, this simple approach

does not prevent the misalignment of the object boundaries. In the transformed image,

the organ can shrink or expand beyond the actual boundary position, since it is not

penalised by the cost function, unless specific constraints are imposed.

In [5], this problem is addressed by using masks to modify the image intensities

outside the region to a homogenous extreme value. Thus, any misalignment is pe-

nalised since it increases the dissimilarity metric. This method requires provision of

masks for both moving and target images. This requirement is reduced to one discon-

tinuity interface for the target image in [6]. They introduced another strategy based on

the decomposition of the displacement field into the normal and tangential directions

of the interface in a multiple B-spline transformation framework. The main issue of

this method is that the decomposition into the tangential and normal directions was

performed at the control points. Thus, the interpolation of these directions only ap-

proximates the orientation of the actual discontinuity interface, producing inaccuracies

in the registration results. This problem is more evident when there are structures of

smaller scale, like sharp edges present in the interface delimiting the lungs. In their

experiments, they used a motion mask covering also the abdomen, based on the as-

sumption that the lungs and the abdomen move continuously together, although this

assumption is not accurate, as the lungs and the abdominal organs slide relative to

each other [191]. This restriction in the shape of the discontinuity interface was allevi-

ated by using multiple B-spline transformations covering the regions separated by the

discontinuity interface, and a penalty term to reduce gaps and overlaps at the region

boundaries [192].

Most of the existing registration methods handling discontinuities are tailored solely

to sliding motion. This type of discontinuity exists between structures which are ad-

joint and unable to get detached, but which are able to slide over each other. This

assumption concerning the allowed motion is not suitable for some organs undergo-

ing more complex motion. For instance, the liver slides over the diaphragm and some

other abdominal organs, but it also touches and separates from some organs, such as
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the kidney. We refer to this type of motion as free discontinuous motion, existing be-

tween objects that are not attached and can move freely from each other. Imposing a

sliding constraint at the interface of organs detaching from each other can introduce

detrimental artefacts in the deformation field.

In this chapter, a novel registration method is developed for treating discontinuities

in general, coined eXtended Free Form Deformation (XFFD). The XFFD method was

inspired by the interpolation function enrichment concepts that underpin eXtended Fi-

nite Element Methods (XFEMs) and Partition of Unity Methods more generally. The

XFEM is an extension of Finite Element Methods (FEM) aiming at handling discon-

tinuities without the need of remeshing, which is employed to adapt the finite element

mesh by tracking the discontinuities at each time point. We have borrowed the en-

richment concept from XFEM, extended it from the linear interpolation case to that of

cubic B-splines, and incorporated it into the FFD formalism. In XFFD, discontinuities

are incorporated in the enrichment term with extra degrees of freedom within a single

B-spline transformation.

FFD registration algorithms often employ a multiresolution strategy, in which mul-

tiple scales of both image resolution and control point grid spacing are considered [18].

In general, this strategy improves the result, allowing for larger deformations without

being trapped in a local minimum.

A multiresolution framework is developed for XFFD, initializing the transforma-

tion with the output transformation from the previous scale. Since the transformations

in two consecutive scales are represented by different sets of parameters, we need to

obtain the mapping between the parameter sets that renders the transformations them-

selves equivalent. We name this operation parameter upsampling.

Despite its importance, parameter upsampling has not received sufficient attention

in the literature. To the best knowledge of the authors, this process has not been ex-

plicitly described in details and and only sometimes the reader is referred to one of the

following articles [193–195]. Nevertheless, its application in the case of methods in

which discontinuous motion is represented is not straightforward.

In the literature, there are two existing strategies for parameter upsampling: least
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square approximation [193,194], and B-spline refinement [195]. The first method was

initially designed for image resampling. But it is widely used for B-spline parameter

upsampling, as it has been implemented in ITK [196] and employed in Elastix [181].

However, it is not straightforward to extend it for XFFD. The second method was

derived in [195] only for 2D, and with a notation not easily generalizable for other

dimensions. In this chapter, the second strategy is employed but it is reformulated

with more intuitive expressions, in order to develop its extension for XFFD in any

dimension. This procedure has a unique and exact solution, as demonstrated in Section

3.3.4, and has been integrated in the multiresolution XFFD.

3.3 Methods

3.3.1 Free form deformation

FFD was developed as a method to deform objects in computer graphics [84] and was

later introduced to transform a moving image of any dimension n to a target one in

nonrigid image registration [18]. In order to obtain smooth and continuous deforma-

tions, B-splines are commonly used as basis functions. The displacement of any point

x = (x1, . . . , xn) ∈ Rn is thus expressed as the linear combination

D(x) =
∑
I∈C

BI(x)µI (3.1)

where the index I = (I1, . . . , In) runs along the set of control points, C, distributed in

a regular grid at positions xI , and µI is the displacement of the corresponding control

point. The basis functions are tensor products of 1D B-spline functions centered at

each control point:

BI(x) ≡ B

(
x− xI

L

)
≡

n∏
i=1

β

(
xi − xI,i
Li

)
(3.2)



Chapter 3: eXtended Free-Form Deformation (XFFD): tissue transitions with strong discontinuities 38

where Li is the spacing between control points along the ith axis. The most used basis

function is the cubic B-spline [88],

β(u) =


2
3
− 1

2
|u|2(2− |u|) if |u| < 1

1
6
(2− |u|)3 if 1 ≤ |u| < 2

0 if |u| ≥ 2

(3.3)

which is a symmetric C2-differentiable piece-wise cubic function.

3.3.2 Extended free form deformation

The eXtended Free Form Deformation (XFFD) method has been inspired by the eX-

tended Finite Element methods (XFEM) [197]. Because of the continuity of the stan-

dard FEM interpolation functions, discontinuities like fractures and material interfaces

can only be incorporated by using a mesh that conforms to the interface geometry.

Modelling evolving discontinuities therefore entails continuous remeshing, to main-

tain conformation with the changing interface geometry, incurring high computational

cost. The XFEM avoids remeshing by adding an additional structure describing the

location of the discontinuity surface, such as a surface mesh or level sets, and enriched

basis functions encoding the desired discontinuities. In this chapter, a surface mesh is

adopted to represent the discontinuity location.

In a registration framework, discontinuities can be accommodated in a similar way

to XFEM by introducing an enrichment term in the conventional FFD formalism [198]:

D(x) =
∑
I∈C

BI(x)µI +
∑
J∈C̃

MJ(x)λJ (3.4)

where λJ denotes the parameters for the extra degrees of freedom, added for the subset

of control points J ∈ C̃, for which the discontinuity intersects the support of their

corresponding basis function, BJ(x). Since the extra degrees of freedom are added

only near the discontinuities, the increase in computation with respect to standard FFD
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is not substantial. The enriched basis function is defined by the product

MJ(x) = BJ(x)ψ(x) (3.5)

where ψ(x) is the enrichment function incorporating the discontinuity.

3.3.3 Enrichment function

The enrichment function must incorporate a gap across the discontinuity surface, but be

continuous elsewhere. This can be implemented in many different ways. In general, an

n-dimensional closed hyper-surface will be considered for representing the boundary

of an object. Then, the most simple option is the sign function

ψ(x) =

−1 if x is inside

1 if x is outside
(3.6)

An illustration of the resulting enriched basis functions, MJ(x), is presented in

Fig. 3.1. Thus, the enriched basis functions decay to zero smoothly at the function

support limits. This similarly guarantees a smooth transition between enriched and

conventional control points, without introducing extra discontinuities. In addition, the

Lp-norm (for any p) of these enriched functions coincides with that of the normal B-

splines, and is independent of the control points. Observe that the enriched subset,

C̃, only includes control points whose support region intersects with the discontinuity.

The enriched function for control points outside this subset would be unavailing.

3.3.4 Control points upsampling

The most common strategy for the upsampling of the control poins is to halve the grid

spacing at each scale refinement, keeping all the control points in the same position

and inserting extra control points between them. For this upsampling protocol, it will

be proven below that a unique exact solution exists for the upsampling of the XFFD

parameters, and the corresponding mapping will be deduced. An analogous proof

could be provided for the corresponding protocol of dividing the control points spacing
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Figure 3.1: Enriched B-spline basis functions in the vicinity of a discontinuity, in-
dicated by a pink dashed line: (a) conventional basis functions; (b) enriched basis
functions. (c) a 2D conventional B-spline basis function; (d) a 2D enriched B-spline
basis function with curved discontinuity boundary.

by any integer m. However, for simplicity, the proof is restricted to m = 2.

Cubic B-splines are piecewise cubic polynomials. As stated in formula (3.3), the

support of β(u) is split into four components, corresponding to the intervals between

consecutive control points: [-2,-1], [-1,0], [0,1], and [1,2]. The upsampled basis func-

tions are also piecewise cubic polynomials for intervals resulting from halving the

previous ones. It is evident that if a function is a cubic polynomial in an interval, it is

also a cubic polynomial in any subinterval, with smooth matching between subinter-

vals. This fact provides the intuition behind the result that the function β(u) can be

exactly represented as a linear combination of the upsampled basis:

β(u) =
2∑

k=−2

Ak β(2u− k) (3.7)
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Separating the equation into different intervals and expanding the expressions accord-

ing to (3.3) results in a system of linear equations for the constantsAk, with polynomial

coefficients in u. Although this system is overdetermined, it is consistent and has the

unique solution

A−2 = A2 =
1

8
, A−1 = A1 =

1

2
, A0 =

3

4
. (3.8)

The resulting linear combination is illustrated in Fig. 3.2 (a). The symmetry of the

coefficients is a consequence of the symmetry of the B-spline basis functions.
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Figure 3.2: 1D B-spline basis functions, represented by the ones in the upsampled grid
with half grid spacing: (a) a non-enriched B-spline basis function in the original grid
(red) can be represented by non-enriched basis functions in the upsampled grid (blue);
(b) an enriched B-spline basis function in the original grid (red) can be represented
by non-enriched basis functions (blue) and enriched ones (green dashed line) in the
upsampled grid.

Considering the definition of n-dimensional B-spline basis functions in (3.2), it is

straightforward to derive the analogous expression for the upsampled basis functions:

BI(x) =
n∏

i=1

β

(
xi − xI,i
Li

)

=
2∑

k1=−2

· · ·
2∑

kn=−2

n∏
i=1

Aki β

(
2
xi − xI,i

Li

− ki
) (3.9)

Since the control points are located in a regular grid with spacings L = (L1, . . . , Ln),

their position can be expressed relative to the origin of the control point grid: xI =

x0 + IL. To simplify expressions, the following assumption can be made: Ak = 0 for
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|k| > 2, denoting Ak = Ak1 × · · · × Akn . Thus,

BI(x) =
∑
k

Ak

n∏
i=1

β

(
xi − x0,i
Li/2

− 2Ii − ki
)

=
∑
k

AkB
↑
2I+k(x)

=
∑
I↑∈C↑

AI↑−2IB
↑

I↑(x),

(3.10)

where the upsampled functions, coefficients and sets are denoted by the superscript ↑.

The expression of the enriched basis functions (3.5) can be obtained from the pre-

vious one:

MJ(x) = BJ(x)ψ(x) =
∑
I↑∈C↑

AI↑−2JB
↑

I↑(x)ψ(x) (3.11)

In this summation, enriched and non-enriched control points need to be discriminated.

For the enriched ones, J ↑ ∈ C̃↑, the product of the upsampled basis functions with

ψ(x) results in the upsampled enriched basis functions, M ↑

J↑(x). For the non-enriched

ones, I↑ ∈ C↑ \ C̃↑, the factor ψ(x) is constant in the whole support of the function

B↑

I↑(x), being positive or negative depending on the region where the control point,

xI↑ , is located. Thus,

MJ(x) =
∑
I↑∈C↑

SI↑AI↑−2JB
↑

I↑(x) +
∑

J↑∈C̃↑

AJ↑−2JM
↑

J↑(x), (3.12)

where

SI↑ =


−1 if xI↑ is inside and I↑ /∈ C̃↑

1 if xI↑ is outside and I↑ /∈ C̃↑

0 if I↑ ∈ C̃↑.

(3.13)

Fig. 3.2 (b) illustrates this linear combination for the enriched functions.

Equation (3.10) and (3.13) can be substituted into (3.4) to reexpress the displace-

ments in the upsampled basis functions:

D(x) =
∑
I↑∈C↑

B↑

I↑(x)µI↑ +
∑

J↑∈C̃↑

M ↑

J↑(x)λJ↑ (3.14)
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where the upsampled parameters are

µI↑ =
∑
I∈C

AI↑−2I µI +
∑
J∈C̃

SI↑AI↑−2J λJ

λJ↑ =
∑
J∈C̃

AJ↑−2J λJ

(3.15)

Observe that enriched and non-enriched parameters are coupled in the upsampling.

3.4 Materials

To evaluate the proposed method, two synthetic datasets and two publicly available

clinical datasets were employed for validation.

3.4.1 Synthetic dataset

The first dataset includes 2D images with checkerboard texture and a deformation pat-

tern that emulates sliding motion. The image size is 256 × 256 pixels. In the target

image, the right-side region was vertically displaced by 15 pixels (Fig. 3.4).

The second synthetic dataset presents free discontinuous motion. The images show

two objects that touch and separate, with resolution of 512×512 pixels (Fig. 3.7). The

target image is composed of four elements, two circles touching each other and two

small ellipses near the right circle. The moving image differs from the target in that

the right circle moves towards the right side and the two ellipses towards each other.

The right circle can move independently of the other structures and the surrounding

materials. Thus, the discontinuity interface was set at its boundary.

3.4.2 DIR-lab dataset

The dataset contains 10 4D CT images acquired from patients treated for esophageal

and lung cancer with a spatial resolution varying between 0.97×0.97×2.5 mm3 and

1.16×1.16×2.5 mm3 [23]. This dataset includes 300 landmarks for each image vol-

ume, annotated by experts with inter-observer variability around 1 mm [23]. Lung
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masks were semi-automatically created using thresholding and morphological opera-

tions followed by manual corrections.

3.4.3 4D CT liver dataset

This dataset consists of 4 cases acquired in the Children’s National Medical Center at

Stanford [188]. The images cover the lower part of the lungs and abdominal organs,

including the liver. For each volume, 20 landmarks were provided for the abdominal

organs. A rough segmentation of the liver was also provided for each volume. The

mask for the target image was manually corrected and used as input of XFFD.

For both medical image datasets, the volume at the end of inhale was selected as

the target image and the one at the end of exhale as the moving image.

In the respiratory cycle, the lungs exhibit sliding motion at the lung boundary

against the rib cage and diaphragm, as the lungs expand and contract, while the ribs and

spine remain relatively static (Fig. 3.3 (a-b)). The liver motion is more complicated, as

it is the most movable abdominal organ [199], and does not have a fixed relationship

to the skin surface or the surrounding organs [200, 201], although they are related by

ligaments or membranes [202]. Thus, the liver can be subject to both sliding and free

discontinuous motion (Fig. 3.3 (c-d)).

(a) (b) (c) (d)

Figure 3.3: Motion in the clinical datasets: (a-b) lung motion; (c-d) liver motion.
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3.5 Experiments

The proposed method has been implemented as a module in the image registration

toolbox Elastix [181]. In the experiments, XFFD was employed as the transforma-

tion model, normalized cross-correlation as similarity metric, and Limited memory

Broyden-Fletcher-Goldfarb-Shanno (LBFGS) as the optimiser, because cross-correlation

is robust to linear variations in image intensities [203] and LBFGS is known for its

high performance in dealing with high-dimensional problems [204]. For the sake of

fair comparison, parameters were selected similar to those from [192]. For the lung

and liver datasets, five scales were employed in the multiresolution scheme (Table 3.1,

3.2). In the DIR-lab dataset, at each resolution, the images were smoothed and down-

sampled by a Gaussian smoothing pyramid with standard deviation (σ) corresponding

to half of the one at the previous scale. For the five scales, the smoothing is set by

σ = (16, 8, 4, 2, 1) voxels in the transversal plane and σ = (8, 4, 2, 1, 0) voxels in the

perpendicular direction, since the transversal image spacing is approximately half of

that of the vertical. The grid spacing was set to be (80, 80, 40, 20, 10) mm for each

scale. For the first synthetic dataset, a single resolution was employed with grid spac-

ing of 64×64 pixels (Table 3.3). For the second synthetic dataset, three resolutions

were used with grid spacings 256, 128, and 64 pixels (Table 3.4).

Table 3.1: Parameters for experiments on DIR-lab dataset
Parameters Values Function

Number of scales 5 number of scales of image pyramids

standard deviation (σ) (16, 8, 4, 2, 1) voxels (transversal plane) standard deviation of Gaussian smoothing(8, 4, 2, 1, 0) voxels (axial direction)
grid spacing (80, 80, 40, 20, 10) mm grid spacing of grid pyramids

Table 3.2: Parameters for experiments on 4D CT liver dataset
Parameters Values Function

Number of scales 5 number of scales of image pyramids

standard deviation (σ) (4,4,4,2,1) voxels (transversal plane) standard deviation of Gaussian smoothing(2,2,2,1,0) voxels (axial direction)
grid spacing (80, 80, 40, 20, 10) mm grid spacing of grid pyramids
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Table 3.3: Parameters for experiments on synthetic dataset with sliding motion
Parameters Values Function

Number of scales 1 number of scales of image pyramids
standard deviation (σ) (0, 0) pixels standard deviation of Gaussian smoothing

grid spacing (64, 64) pixels grid spacing of grid pyramids

Table 3.4: Parameters for experiments on synthetic dataset with free discontinuous
motion

Parameters Values Function
Number of scales 3 number of scales of image pyramids

standard deviation (σ) (4, 2, 0) pixels standard deviation of Gaussian smoothing
grid spacing (256, 128, 64) pixels grid spacing of grid pyramids

3.5.1 Metrics for evaluation

Target Registration Error (TRE) was employed to quantitatively evaluate the accu-

racy of the registration. The landmark error is computed as the Euclidean distance

between the landmarks in the moving image and those in the target image, displaced

by the deformation field. The mean and standard deviation of the distance of all the

landmarks in each case was reported as the TRE [5, 6, 187, 188, 190, 192].

Gap and Overlap volumes may appear between the regions in both sides of the

discontinuity as an undesired effect, when dealing with discontinuities in the transfor-

mation. To evaluate this effect, the surface mesh describing the discontinuity interface

was transformed by considering it to belong to either the inside or the outside, pro-

ducing two transformed meshes, denoted as S− and S+, respectively. The volume

enclosed by each transformed mesh was extracted and represented as a binary mask

in the same resolution as registered images. This results in interior, V ±In , and exterior,

V ±Out, regions for each surface, S±. Then, the gap volume were measured as V −Out ∩ V
+

In

and the overlap volume as V −In ∩ V +
Out [5, 6, 192].

Qualitative evaluation of the resulting deformation field was performed by visual

inspection of the transformed grid and the displacement vector field. Plausibility of

the tissue expansion and compression was assessed by the volumetric strain, which is

computed from the determinant of the Jacobian of the transformation [205].
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3.5.2 Comparison between FFD and XFFD: influence of incorporating discon-

tinuous transformations

To evaluate the importance of handling discontinuities in image registration, qualitative

evaluation was performed in the synthetic images presenting sliding motion and DIR-

lab dataset for both XFFD and FFD. In both datasets, the resulting transformed images

and deformation field and volumetric strain field were visualised and compared.

Qualitative comparison between FFD and XFFD was also performed on the second

synthetic dataset, presenting free discontinuous motion, by visualising the transformed

grid.

3.5.3 Comparison with previous methods

Multiresolution XFFD was compared with previous methods tested in the two clinical

datasets. The DIR-lab dataset was adopted in most of the previous methods treating

discontinuities. The same measurements, TRE, gap and overlap volumes, were com-

puted as reported in all the B-spline based methods [5,6,192] and some diffusion-based

methods [187, 188, 190].

For a fairer comparison, XFFD was benchmarked against two previous methods

[5, 6] using the same parameters and lung masks employed for XFFD on the DIR-lab

dataset. Wu’s method [5] was re-implemented and the implementation of Delmon’s

method [6] in Elastix [181] was employed.

In the second synthetic dataset, presenting free discontinuous motion, the experi-

ments demonstrate that the proposed method is not restricted to sliding motion. This

is complemented by the evaluation of the TRE in the liver dataset, subject to complex

discontinuous motion in the abdomen. The results were compared with the two previ-

ous methods tested on the same dataset [188, 206], which handle sliding motion. Gap

and overlap volumes were not relevant in this dataset, since some organs separate from

the liver and sliding motion does not exist everywhere at the discontinuity interface.
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3.6 Results

3.6.1 Comparison between FFD and XFFD: influence of incorporating discon-

tinuous transformations

In the synthetic dataset presenting sliding motion, XFFD produced a more accurate

transformed image than FFD, as the latter introduced artefacts, especially near the dis-

continuity (Fig. 3.4). The displacement field and transformed grid demonstrated that

the discontinuities in the deformation field have been properly handled by XFFD, while

FFD failed to do so. The displacements obtained from XFFD showed uniform rigid

movement at the right side of the image, while the displacements were almost zero

at the left side. This was in agreement with the actual deformation in the synthetic

images. On the contrary, FFD generated artefacts in the displacement field near the

discontinuity, which also influenced a larger neighbourhood. These errors in the defor-

mation field can be propagated in quantities computed from the displacements, such as

strain. The ideal strain field of this experiment should be zero across the whole image,

as there is only rigid motion. However, because of its inability to treat discontinuities,

FFD produced an unphysical volumetric strain field, in which the maximum value was

36.52, compared to 0.10 obtained from XFFD.

For the second synthetic dataset, the resulting transformed grid showed XFFD is

able to handle free discontinuous motion, while FFD produced an unrealistic transfor-

mation (Fig. 3.7).

Similar results were obtained in the DIR-lab dataset (Fig. 3.5). XFFD showed the

expected discontinuities in the deformation field, visible in the transformed grid. This

is in agreement with the relatively large motion of the lungs and the very small vertical

movement of the rib cage observed in the images. In contrast, for FFD, the transformed

grid evidences artefacts near the discontinuity boundaries, as a result of imposing con-

tinuity indiscriminately. By properly handling discontinuities, XFFD avoided unphys-

ical strains, which were present in the results of FFD. The maximum volumetric strain

was 1037.32 in FFD, compared to 1.75 in XFFD. The color map in the figure was

trimmed to the range [-1,5] for visualisation.
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Moving Target

FFD XFFD

Figure 3.4: Results in synthetic dataset with sliding motion: moving and target images;
2nd row: transformed images overlaid with displacement fields obtained from FFD and
XFFD; 3rd row: transformed grid obtained from FFD and XFFD; 4th row: strain fields
obtained from FFD and XFFD. The color map in the figure was trimmed to the range
[-1,5] for visualisation.

3.6.2 Comparison with previous methods

In the DIR-lab dataset, the TRE obtained with multiresolution XFFD was better than

those of all previous methods [5, 6, 187, 188, 190, 192] in every subject (Table 3.5).
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Moving Target

FFD XFFD

Figure 3.5: Qualitative results in DIR-lab dataset for sliding motion: 1st row: mov-
ing and target image; 2nd row: transformed images overlaid with displacement fields
obtained from FFD and XFFD; 3rd row: transformed grid obtained from FFD and
XFFD, surface mesh of discontinuity (red); 4th row: strain fields obtained from FFD
and XFFD. The color map in the figure was trimmed to the range [-1,5] for visualisa-
tion, although the maximum value for FFD was 1037.32, compared to 1.75 in XFFD.
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The average TRE was 1.17 mm, improving the best previous results by 14.0%. The

resulting gap and overlap volumes were reasonable. Compared with the best previous

method, the overlaps were reduced by 50%, but the gap volume was 22% larger (Ta-

ble 3.6). Nevertheless, they correspond to an average surface-to-surface distance of

1.04 mm (standard deviation 1.09 mm) between the transformed meshes S+ and S−,

which is comparable to the image resolution (1x1x2.5 mm3).

Table 3.5: The mean and standard deviation of TRE in the DIR-lab dataset in compar-
ison with other methods (mm)

Case Before Schmidt-Richberg Pace Papież Wu Delmon Berendsen XFFD
registration (2012) (2013) (2014) (2008) (2013) (2014)

1 3.89 ± 2.78 1.22 ± 0.64 1.06 ± 0.57 1.05 ± 0.6 1.1 ± 0.5 1.2 ± 0.6 1.00 ± 0.52 1.00 ± 0.51
2 4.34 ± 3.90 1.14 ± 0.65 1.45 ± 1.00 1.08 ± 0.6 1.0 ± 0.5 1.1 ± 0.6 1.02 ± 0.57 0.99 ± 0.59
3 6.94 ± 4.05 1.36 ± 0.81 1.88 ± 1.35 1.49 ± 0.9 1.3 ± 0.7 1.6 ± 0.9 1.14 ± 0.89 1.12 ± 0.64
4 9.83 ± 4.86 2.68 ± 2.79 2.04 ± 1.40 1.90 ± 1.3 1.5 ± 1.0 1.6 ± 1.1 1.46 ± 0.96 1.44 ± 1.03
5 7.48 ± 5.51 1.57 ± 1.23 2.73 ± 2.13 1.99 ± 1.7 1.9 ± 1.5 2.0 ± 1.6 1.61 ± 1.48 1.37 ± 1.35
6 10.9 ± 6.97 2.21 ± 1.66 2.72 ± 2.04 2.36 ± 1.9 1.6 ± 0.9 1.7 ± 1.0 1.42 ± 0.89 1.26 ± 1.04
7 11.0 ± 7.43 3.81 ± 3.06 4.59 ± 3.41 2.32 ± 1.9 1.7 ± 1.1 1.9 ± 1.2 1.49 ± 1.06 1.12 ± 0.67
8 15.0 ± 9.01 3.42 ± 4.25 6.22 ± 5.69 3.58 ± 3.4 1.6 ± 1.4 2.2 ± 2.3 1.62 ± 1.71 1.18 ± 1.22
9 7.92 ± 3.98 1.83 ± 1.19 2.32 ± 1.42 1.74 ± 1.0 1.4 ± 0.8 1.6 ± 0.9 1.30 ± 0.76 1.14 ± 0.64

10 7.30 ± 6.35 2.06 ± 1.92 2.82 ± 2.50 2.02 ± 2.1 1.6 ± 1.2 1.7 ± 1.2 1.50 ± 1.31 1.08± 0.82
mean 8.46 ± 5.48 2.13 ± 1.82 2.78 ± 2.96 1.95 ± 0.7 1.47 ± 0.96 1.66 ± 1.14 1.36 ± 0.99 1.17 ± 0.85

Table 3.6: Gap/Overlap volumes in DIR-lab dataset in comparison with other methods
(cm3)

Case Wu Delmon Berendsen XFFD
(2008) (2013) (2014)

1 38 / 26 39 / 15 23 / 18 39 / 2
2 78 / 46 67 / 60 74 / 34 74 / 31
3 99 / 28 83 / 33 57 / 30 71 / 24
4 75 / 34 66 / 44 66 / 28 92 / 13
5 110 / 38 78 / 52 61 / 32 54 / 6
6 100 / 86 119 / 77 130 / 50 155 / 11
7 105 / 79 108 / 77 119 / 45 138 / 19
8 96 / 91 92 / 93 85 / 53 150 / 40
9 61 / 34 54 / 44 70 / 51 58 / 14

10 120 / 63 94 / 56 80 / 43 109 / 28
mean 88.2/52.5 80.0/55.1 76.5/37.4 94.0/ 18.8

The TRE and gap and overlap volumes obtained from the methods in [5] and [6], but

employing the same parameters and lung masks used for XFFD, are shown in Table

3.7. Both methods showed an improvement in the TRE compared to their reported

results, but were still surpassed by XFFD. Wu’s method also improved in the gap and

overlap volumes. In contrast, Delmon’s method showed a large increase in gap and

overlap volumes, illustrating the limitation of the method in handling discontinuities
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with non-smooth shapes.

Table 3.7: The average TRE and gap and overlap volumes using the same parameters,
compared with [5] and [6].

Wu Delmon XFFD
(2008) (2013)

TRE (mm) 1.36 ± 1.61 1.38 ± 1.49 1.17 ± 0.85
gap/overlap (cm3) 53.7/65.7 279.1/438.5 94.0/18.8

Similarly, in the liver dataset, the TRE obtained from XFFD improved on those

from the two previous methods tested on the same dataset (Table 3.8), reducing the

average TRE by 13% with respect to the best previous result. The obtained XFFD

transformations are illustrated in Fig. 3.6 by the resulting grid deformation.

Table 3.8: The mean and standard deviation of TRE in the 4D CT liver dataset (mm)
Case Before Pace Papież XFFD

registration (2013) (2015)
0 9.08 ± 2.89 2.06 ± 1.10 N/A 1.54 ± 0.87
1 5.89 ± 3.15 2.10 ± 1.23 N/A 1.56 ± 0.93
2 6.30 ± 2.76 2.55 ± 1.41 N/A 2.25 ± 1.28
4 4.42 ± 3.30 2.82 ± 1.92 N/A 2.41 ± 0.98

mean 6.64 ± 3.42 2.30 ±1.45 2.19 1.94 ± 1.01

(a) (b) (c)

Figure 3.6: Transformed grid in the liver dataset: (a) moving image; (b) target image;
(c) transformed grid overlay on moving image with liver boundary in red.

3.7 Discussion

Handling discontinuities in the deformation field is challenging. Attempts to address

this issue have been based on direction-dependent or spatially varying regularisers
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Moving Target

FFD XFFD

Figure 3.7: Results in synthetic dataset with free discontinuous motion: 1st row: mov-
ing image and target image with discontinuity interface (red); 2nd row: transformed
images obtained with FFD and XFFD; 3rd row: transformed grid obtained from FFD
and XFFD.

[179, 187–190], multiple B-spline transformations [5, 6], or penalty terms to reduce

gaps and overlaps [192]. In contrast to these methods, XFFD handles this problem

in the transformation model, such that the discontinuities are implicitly incorporated

into a single B-spline transformation, while retaining all the desirable properties of B-

splines. The proposed method imposes no constraint on the shape of the discontinuity

interface and can handle free discontinuous motion. Other types of discontinuities,

such as sliding motion, can be considered as constrained versions of this general type,

according to the specific motion properties.
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To demonstrate the significance of treating discontinuities in the deformation field,

comparison was performed between the proposed method and FFD in the synthetic and

DIR-lab dataset. In the synthetic dataset, the deformation can be described by a rigid

body translation, having zero strain across the whole image. XFFD produced accurate

displacements, correctly reflecting the physical properties of the actual deformation

field, while FFD introduced unacceptable artefacts. These deficiencies were similarly

exposed in the experiments on the lung images (Section 3.6.1).

For the purpose of benchmarking against previous methods, XFFD has been tested

on two publicly available lung and liver datasets. In the lung dataset, the distribution

of the average motion of the landmarks was 8.46 ± 5.58 mm. This represents large

scale motion when compared to the small structures present in the lungs (airways),

thus challenging the registration algorithm. Despite the complexity of the images,

XFFD achieved high accuracy in both applications. The average TRE was 1.17 mm

on the lung dataset and 1.94 mm on the liver images, which significantly improves on

the performance of the previous methods handling discontinuities tested on the same

datasets. In order to quantify the improvement in the results given by XFFD, the results

of the two previous methods [5,6] were reproduced and compared with those of XFFD

using the same parameters and lung masks only differing in the transformation model.

This experiment confirms that the proposed transformation model is the key element

in the higher accuracy obtained with XFFD.

XFFD does not involve any explicit control of gaps and overlaps. However, by

using a single transformation, any misalignment is penalised, as it increases the image

dissimilarity measure. Thus, the gap and overlap volumes obtained from XFFD were

comparable to or better than the ones obtained from previous methods using ad hoc

restrictions.

In this chapter, the goal is to develop a registration method, which handles discon-

tinuities in the deformations. Different types of discontinuous motion can be observed

in medical images, such as sliding motion, in which two organs are touching but not

attached; and free discontinuous motion, where two organs are not attached and can

touch and separate. Other types of discontinuities can also be observed, for instance in
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the interface between tumours and the surrounding tissues, in which the two tissues are

attached but having different material properties. To improve the performance in han-

dling other types of discontinuities, different constraints or more specific enrichment

functions can be included in the XFFD framework to adapt to a specific application.

In particular, XFFD does not include any constraint or penalty on the activation

or the value of the enriched coefficients, λJ . Their values are driven in the registra-

tion only by the image similarity metric. This could result in instabilities or spurious

discontinuities due to image noise, especially in homogeneous regions. The XFFD

method could be extended to incorporate in the cost function a penalty term controlling

λJ . This penalty could also be made location-dependent, restricting the discontinuity

in regions of the interface which are known or expected to have nearly continuous

motion.

Furthermore, regularisers are sometimes included in FFD to impose desired prop-

erties of the deformations, such as bending energy or incompressibility penalties. The

regularisers often require derivatives of the transformation, which can be computed an-

alytically in FFD. This property is also shared by XFFD. Thus, the proposed method

is a flexible framework allowing inclusion of prior knowledge of the deformations via

regularisers. In addition, any of the extensions of the FFD registration proposed in the

past, such as spatio-temporal [3] and diffeomorphic registration [128], may be straight-

forwardly included in the proposed framework.

The computational complexity of XFFD is comparable to that of FFD. It only dif-

fers in that the enriched control points near the discontinuity interface have twice as

many parameters as those in FFD. Thus, the number of extra parameters depends on

the size and shape of the discontinuity interface, and on the resolution. Since the com-

putational cost of one iteration of LBFGS increases linearly with respect to the number

of parameters [204], the computational complexity of the XFFD is bounded to twice

that of the FFD. In the experiments on the DIR-lab dataset, the average increase in the

number of parameters across all the resolutions was 30%.

A limitation of XFFD is that it requires a segmentation in the target image. This

requirement is, however, shared by all the other B-spline based methods [5, 6, 192]
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and most of the diffusion-based methods [188, 207]. This may be facilitated by using

an automatic segmentation method [208–210] as a previous step. Extensions of the

presented method to enable automatic detection of the discontinuity boundaries during

registration, without prior segmentation, are subjects of current research.

3.8 Conclusions

In this chapter, a novel registration framework, XFFD, is developed to handle dis-

continuous transformations that generally accompany tissue transitions. XFFD treats

discontinuities within a single B-spline transformation, by enriching the basis func-

tions to incorporate discontinuities across the considered tissue interfaces. XFFD has

been integrated into a multiresolution framework using parameter upsampling.

XFFD does not incorporate any ad hoc penalty term conforming to a particular type

of deformations. It has been tested on synthetic images, 3D lung and liver datasets

along the respiratory cycle. The lungs follow sliding motion with respect to the rib

cage, while the liver involves complex motions with respect to surrounding organs.

In both datasets, XFFD showed high performance, compared to the state-of-the-art

methods treating discontinuities tested on the same datasets.

In this chapter, the XFFD framework has been developed with the general disconti-

nuity model, which allows the most freedom of the discontinuous motion. In the lung

dataset, although XFFD showed good performance in terms of TRE and strain, this

model does not correspond to the physical properties of the tissue transition involved.

The most evident effect is that it permits the lungs to detach from the rib cage, which is

not anatomically possible. This excessive freedom results in gap and overlap volumes

that are not completely satisfying. The appropriate model should be more constrained,

controlling the type of discontinuity according to the actual tissue transition present.

In the next chapter, the tissue transitions and the associated discontinuity types are

classified according to their physical and mathematical properties. The corresponding

models and enrichment functions are developed and incorporated in XFFD.
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Anisotropic XFFD: dealing with

orientation-dependent, generic tissue

transitions

In the previous chapter, the XFFD framework with the most generic model was de-

veloped. This type of model allows the most freedom, while other types of models

can be considered constrained versions of this general type. In this chapter, the dif-

ferent types of tissue transitions are studied and a classification of discontinuities is

proposed considering also their directionality. This classification serves as the basis

for the formulation of different transformation models, which are incorporated in the

XFFD.

4.1 Motivation

Image registration is an essential technique for establishing material point correspon-

dences between images acquired from different subjects, with different image modal-

ities, or at different time points. When the images are from the same subject, the

anatomical correspondence is expected to represent the same material point, follow-

ing the motion and deformation of the tissues. Examples of such applications include

temporal sequences at different cardiac or respiratory phases and images acquired at

57
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different poses of the patient. In general, conventional non-rigid registration methods

are based on the assumption that the deformation field is continuous and smooth across

the entire image. This smoothness constraint is typically imposed by an explicit reg-

ularisation or a smooth transformation model. However, this assumption is only valid

when the properties of the tissues vary continuously. When discontinuities are present

at the tissue interfaces with different material properties or with relative motion across

organ interfaces, the deformation field is not necessarily continuous nor smooth. In

that case, imposing continuity and smoothness everywhere may lead to non-physical

deformation fields, which deteriorates the accuracy of any quantity derived from the

deformations (Fig. 4.6). One of these important quantities is the strain. Strain reflects

tissue elastic properties and has been employed to evaluate normal or abnormal organ

function or kinetics [19–22].

4.1.1 Tissue transition properties

Organs or tissues can have different material properties and be bound by different

contact conditions. When these structures are subject to stretching or compression,

different types of discontinuities may occur at their interface in the overall deformation

field. Such discontinuities are present, for instance, in the respiratory motion of the

lungs, which slide against the rib cage [211], at the boundary between myocardium

and cardiac blood pool during cardiac motion or at the interfaces between abdominal

organs under patient repositioning [212] or during respiratory motion [213].

There are a variety of discontinuities present in medical images involving different

levels of complexity. In this chapter, a classification of discontinuities involved in tis-

sue transitions is proposed by adapting the one from computational mechanics [197].

According to the contact conditions and the material properties of the interfacing tis-

sues, discontinuities fall into three categories (Fig. 4.1):

Continuity: exists when the material properties are continuous across the interface and

both parts are attached preventing relative motion. The deformation is then continu-

ous with continuous first derivatives (C1 continuous). This is considered a disconti-

nuity class, as continuity could be present in one of the directional components in an
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overall discontinuous tissue transition (Section 4.2.C).

Weak discontinuity: occurs at the transition of tissues that are attached to each other

but have different material properties. Thus, the deformation is a continuous function

but with discontinuous first derivatives at the transition (C0 continuous, piecewise

C1).

Strong discontinuity: is present when two tissues can move freely and are able to sep-

arate from each other. The deformations are then discontinuous (piecewise C0).

C1

x

f(x
)

C0, piecewise C1

x

f(
x)

piecewise C0

x

f(
x)

(a) (b) (c)

Figure 4.1: Classification of discontinuities: (a): continuity, (b) weak discontinuity, (c)
strong discontinuity.

For a tissue transition, the type of discontinuity can vary depending on the direction

with respect to the tissue interface. For instance, in the respiratory motion, a strong

discontinuity exists in the tangential direction of the interface between the lungs and

the rib cage, since the lungs move freely along the rib cage in this direction. In the

normal direction, however, a weak discontinuity is present, since the lungs and rib

cage keep in contact during deformation but they have different material properties. In

this chapter, general models of tissue transitions are proposed to account for different

types and directions of discontinuities.

4.1.2 Literature review

Although medical image registration has been an active area of research for over 25

years, only in the recent years, there have been limited efforts addressing discontinuous

image registration. The efforts, however, are partial and with limited success. These
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works, however, only modelled tissue transitions as strong discontinuities [5, 192] or

are tailored to sliding motion [6, 187, 188, 207].

The most straightforward approach to handle discontinuities is to register each of

the objects of interest individually and mask out the rest of the image. However, this

can cause large gaps and overlaps at the boundary of the regions separated by the

mask, since they are not penalised by the image similarity measure. Wu et al. [5] per-

formed two independent registrations inside and outside the object of interest with a

penalty term to reduce the boundary misalignment. Berendsen et al. [192] employed

multiple B-spline transformations for different regions separated by a tissue interface.

Gaps and overlaps between the regions are reduced using a penalty term that stitches

together the transformations at the tissue interface. Papiez̀ et al. [190] employed the

Demons framework replacing the conventional Gaussian smoothing by an adaptive

regularisation. Thus, the smoothing weights are reduced for neighbouring voxels with

large differences in image intensities or displacements. However, this criterion is nei-

ther based on a physical model of the tissues involved nor considers the directionality

of the tissue transition.

Some other methods have been specifically proposed to model sliding motion as

strong discontinuities along the tangential direction of the tissue interface and con-

tinuous transitions across the normal direction. Delmon et al. [6] employed multiple

B-spline transformations, in which the displacements were decomposed into normal

and tangential directions. However, the decomposition is performed at the B-spline

control points instead of at the actual point location. The resulting normal and tangen-

tial directions interpolated at the tissue transition may thus be different from the actual

directions. This is specifically the case for small structures involving discontinuities

where the resulting deformations and strain are likely to be inaccurately recovered.

Schmidt-Richberg et al. [187] proposed a direction-dependent regulariser acting in a

narrow band near the discontinuity interface. Along the tangential direction, the two

regions are smoothed individually, but in the normal direction, smoothing is applied

across the boundary, which effectively imposes continuity across this direction. This

idea was extended by Pace et al. [188] using a directional-dependent anisotropic dif-
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fusion regulariser over the entire image domain. Risser et al. [207] extended the large

deformation diffeomorphic metric mapping method [62] to handle sliding motion with

piecewise-diffeomorphisms.

A common limitation of these methods is that they model sliding motion as a strong

discontinuity along the tangential direction, while assuming continuity across the nor-

mal direction. However, this is only a particular case of sliding motion. In the human

body, organs sliding to each other often have different material properties. Thus, mod-

elling their discontinuity in the normal direction as weak discontinuity provides a more

realistic representation. On the contrary, imposing continuity in this direction will in-

troduce artefacts, which are specially evident in the strain fields, as shown in the results

(i.e. Fig. 4.6 and 4.9).

In the literature, there is no general image registration method capable of handling

different tissue transitions. Such method should treat each discontinuity type appropri-

ately and account for different tissue transition behaviours in different directions.

In this chapter, anisotropic XFFD is developed to be a general framework for han-

dling tissue transitions involving different types of discontinuities in different direc-

tions. Anisotropic XFFD is also integrated into a multiresolution scheme based on

parameter upsampling, which allows to initialise the transformation parameters at a

given resolution from those at the previous level.

Anisotropic XFFD has been tested on various synthetic images representing a diver-

sity of tissue transition types. The purpose is to demonstrate the ability of anisotropic

XFFD coping with general tissue transitions and the importance of modelling disconti-

nuities correctly. Its applicability on clinical dataset has been illustrated on the DIR-lab

dataset, a publicly available 3D lung CT dataset [23]. This dataset contains lung slid-

ing motion, which offers a good example of a complex tissue transition, consisting

of both strong and weak discontinuities in different directions. It is also a dataset in

widespread use for benchmarking previous methods handling discontinuities.
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4.2 Anisotropic eXtended Free Form Deformation

4.2.1 Conventional Free Form Deformation

Free Form Deformation (FFD) was initially proposed as a method to generate plausi-

ble deformations of 3D objects in computer graphics [84]. Later on, FFDs were in-

troduced in nonrigid image registration as a transformation model based on B-splines,

which ensure continuous and smooth deformations [18]. For any given point x =

(x1, . . . , xn) ∈ Rn, its displacement D(x) can be expressed as the linear combination

of the B-spline basis functions BI(x) weighted by the corresponding control point

vectorial coefficients µI :

D(x) =
∑
I∈C

BI(x)µI (4.1)

The index I = (I1, . . . , In) represents each element in a set of control points, C, at posi-

tion xI = x0 + IL in a regular grid with origin at x0 and spacings L = (L1, . . . , Ln).

The basis functions BI(x) are tensor products of 1D B-spline functions centered at

each control point:

BI(x) ≡ B

(
x− xI

L

)
≡

n∏
i=1

β

(
xi − xI,i

Li

)
(4.2)

The most common B-spline basis functions are cubic B-splines [88], where:

β(u) =


2
3
− 1

2
|u|2(2− |u|) if |u| < 1

1
6
(2− |u|)3 if 1 ≤ |u| < 2

0 if |u| ≥ 2

(4.3)

which is a piecewise cubic function with C2-continuity.

4.2.2 Isotropic eXtended Free Form Deformation

The eXtended Free Form Deformation (XFFD) method employs concepts of the inter-

polation method of the eXtended Finite Element methods (XFEM) [197], which was

developed to incorporate discontinuities, such as fractures at material interfaces, in the
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standard FEM. The FEM is based on continuous interpolation at each element. Thus,

it can only accounts for discontinuities by introducing a mesh conforming to the in-

terface geometry. This continuous remeshing results in high computational cost for

continuous remeshing to track the evolving discontinuities. The XFEM circumvents

remeshing and encodes discontinuities by enriching the linear interpolation basis func-

tions. The location of discontinuities interface can be described using a surface mesh

or level sets, for instance.

Analogously, in XFFD, an enrichment term is introduced to the conventional FFD

formalism [214]:

D(x) =
∑
I∈C

BI(x)µI +
∑
J∈C̃

MJ(x)λJ (4.4)

where λJ represents additional degrees of freedom for the subset of control points

J ∈ C̃ whose support intersects with the tissue interface. The enriched basis function

can be expressed as:

MJ(x) = BJ(x)ψ(x) (4.5)

where ψ(x) is the enrichment function, which encodes the target discontinuity class.

The mathematical properties of the enrichment function should be able to model

the discontinuity type at the interface. The location of the interface can be described

either directly by an n-dimensional hyper-surface, S, or by a level set function, φ(x).

This interface will split the image into regions that, in general, can be interpreted as

inside and outside an object of interest.

For strong discontinuities, the enrichment function should be continuous except

at the tissue interface, S, exhibiting a jump in the function’s value. Thus, a natural

candidate for strong-discontinuity enrichment function is the sign function.

ψstrong(x) = sign(φ(x)) =

−1 if x is inside

1 if x is outside
(4.6)

For weak discontinuities, the enrichment function must be continuous but with dis-

continuous derivatives across the tissue interface, and continuous and smooth else-

where. A natural candidate satisfying these properties is the absolute value of the level
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set function:

ψweak(x) = |φ(x)| (4.7)

In case the interface is described by a surface mesh, a corresponding level set func-

tion can be obtained from its signed distance transform [215]. Observe that the dis-

tance transform can be non-smooth outside a neighbourhood of the surface. Thus, a

smoothed approximation should be considered, but ensuring that it preserves the loca-

tion of the zero level. This can be obtained, for instance, by the algorithm presented

in [215], based on a distance-dependent Gaussian filter.

Fig. 4.2 presents 1D examples of strong and weak enriched basis functions. For

both types of discontinuities, the enriched basis functions preserve the C2-continuity

property of cubic B-splines, except at the intended tissue interface. This allows a

smooth transition between enriched and non-enriched basis, without introducing un-

desired discontinuities.
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Figure 4.2: Enriched B-spline basis functions in the vicinity of a discontinuity, in-
dicated by a pink dashed line: (a) Conventional basis functions; (b) Enriched basis
functions for strong discontinuity; (c) Enriched basis functions for weak discontinuity.

4.2.3 Anisotropic Extended Free Form Deformation

In this chapter, a general formulation of the anisotropic enrichment function is devel-

oped. Equation (4.4) defines the transformation with isotropic enrichment, assuming

the discontinuity type is independent of the direction of the deformation. However, the

actual deformations may exhibit different behaviours in different directions relative to

the orientation of the tissue interface (e.g. tangential versus normal direction of the



65 4.2 Anisotropic eXtended Free Form Deformation

interface). Thus, XFFD is developed to incorporate anisotropic discontinuities. For

that, the enrichment function (4.4) can be extended to a tensorial function:

D(x) =
∑
I∈C

BI(x)µI +
∑
J∈C̃

MJ(x)λJ (4.8)

where

MJ(x) = BJ(x)Ψ(x) (4.9)

is a symmetric matrix. The anisotropic enrichment allows to introduce diverse enrich-

ment functions according to the tissue transition properties relative to the orientation

with respect to the tissue interface. One specific and useful case is the differentiation

between the normal and tangential directions of the tissue interface. In this case, the

anisotropic enrichment function is given by

Ψ(x) = ψ⊥(x)P⊥(x) + ψ‖(x)P ‖(x)

where

P⊥(x) = n̂(x)⊗ n̂(x) and P ‖(x) = 1− P⊥(x)

are the normal and tangential projectors, respectively. The normal direction vector

field n̂(x) must be defined in the support of the set of enriched basis functions around

the tissue interface. A natural way to produce the normal direction filed is to compute

the gradient of the level set function:

n(x) = ∇φ(x), n̂(x) =
n(x)

‖n(x)‖
(4.10)

For isotropic discontinuities, either weak or strong, their enrichment function is

also isotropic ψ⊥(x) = ψ‖(x) ≡ ψ(x). Thus, the tensorial enrichment function can

be simplified to the scalar one (4.4):

Ψ(x) = ψ(x)1 ⇒ Ψ(x)λJ = ψ(x)λJ

The following enrichment functions are proposed to account for the different types of
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discontinuities relevant for various medical image registration cases, considering the

directionality of the tissue transition properties (Fig. 4.3).

Isotropic strong: the transition between two tissues moving freely from each other is

characterized by an isotropic strong discontinuity. The enrichment function is

ψ(x) = ψstrong(x)

This is observed, for instance, when the liver and some surrounding organs touch and

separate during respiratory cycle (Fig. 4.4 (a)).

Isotropic weak: the tissue transition between attached objects with no possible relative

motion at the interface but with different material properties. The enrichment function

is

ψ(x) = ψweak(x)

This can be found, for example, in the transition between a vertebrae and a interverte-

bral disc (Fig. 4.4 (b)), as a vertebra is rigid and the intervertebral disc is elastic [216].

Strong-continuous: the transition between two tissues having the same material prop-

erties but being able to move relatively to each other along the tangential direction of

their interface without losing contact in the normal direction. The deformation un-

dergoes strong discontinuities in the tangential direction and continuity in the normal

direction:

ψ⊥(x) = 0 and ψ‖(x) = ψstrong(x)

This model has been assumed in all the previous works explicitly modelling the slid-

ing motion present in the lung respiratory cycle [6, 187, 188]. However, this assump-

tion is incorrect, since the lungs and the ribs have different material properties [217].

Strong-weak: the transition between two tissues of different material properties that

can move relatively to each other along the tangential direction of their interface with-

out losing contact in the normal direction. The enrichment function is:

ψ⊥(x) = ψweak(x) and ψ‖(x) = ψstrong(x)
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This type of discontinuity has never been explicitly modelled before. One typical

example is the lung sliding motion against the thoracic cage (Fig. 4.4 (c)).

(a) (b) 

(c) (d) 

Figure 4.3: Examples of different types of discontinuous motion: (a) isotropic strong;
(b) isotropic weak; (c) strong-continuous; (d) strong-weak.
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Figure 4.4: Examples of different tissue transitions: (a): Respiration-induced motion
of the liver and kidney, (b) vertebrae and intervertebral discs, (c) lungs and rib cage.

4.2.4 Multiresolution registration

Multiresolution strategy is commonly employed in image registration, involving mul-

tiple scales of both image resolution and control point grid. It is more efficient than

single-resolution and helps to avoid the optimiser to be trapped at a local minimum

[218]. In the multi-resolution grids, the transformation parameters at a given scale can

be upsampled to initialise those at the next finer level. This process is referred to as

parameter upsampling.

A common strategy to upsample the deformation grid to a finer level is to insert
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additional control points between those at the previous scale, thus halving the grid

spacing [18]. With this protocol, there is a unique exact solution for the parameter

upsampling of the conventional B-splines. Cubic B-splines are piecewise polynomial

consisting of four segments segments, given by the intervals between successive con-

trol points, with smooth transition between the segments (4.3). The upsampled basis

are also piecewise polynomials. The function β(u) can be exactly represented by a

linear combination of the upsampled functions:

β(u) =
2∑

k=−2

Ak β(2u− k) (4.11)

To solve for the constants Ak, a system of linear equations for Ak can be obtained

by separating the the functional equation (4.11) into eight components in the intervals

divided by the upsampled control points, resulting in eight polynomial equations for

five unknowns. This system is overconstrained but it is consistent and has the unique

solution (Fig. 4.5 (a))

A−2 = A2 =
1

8
, A−1 = A1 =

1

2
, A0 =

3

4
. (4.12)
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Figure 4.5: 1D B-spline basis functions, represented by the ones in the upsampled
grid with half grid spacing: (a) a non-enriched B-spline basis function in the original
grid (red) can be represented by non-enriched basis functions in the upsampled grid
(blue); (b) strong enriched basis in the original grid (red) represented by non-enriched
basis functions (blue) and enriched ones (dashed green) in the upsampled grid. (c)
weak enriched basis in the original grid (red) coincides with the approximation of the
original basis using upsampling (black).
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The analogue of n-dimensional B-spline basis functions for upsampled grid can be

directly derived by inserting (4.11) into (4.2)

BI(x) =
n∏

i=1

β

(
xi − xI,i
Li

)

=
2∑

k1=−2

· · ·
2∑

kn=−2

n∏
i=1

Aki β

(
2
xi − xI,i

Li

− ki
) (4.13)

This expression can be simplified by representing the control point position with re-

spect to the grid origin: xI = x0 + IL. Besides, defining Ak = 0 for |k| > 2 and

Ak = Ak1 × · · · × Akn leads to

BI(x) =
∑
k

Ak

n∏
i=1

β

(
xi − x0,i
Li/2

− 2Ii − ki
)

=
∑
k

AkB
↑
2I+k(x)

=
∑
I↑∈C↑

AI↑−2IB
↑

I↑(x),

(4.14)

where the upsampled functions, coefficients and sets are denoted by the superscript ↑.

Accordingly, the tensorial enriched basis functions can be expressed as:

MJ(x) =
∑
I↑∈C↑

AI↑−2JB
↑

I↑(x)Ψ(x)

=
∑

J↑∈C̃↑

AJ↑−2JM
↑

J↑(x) +
∑

I↑∈C↑\C̃↑

AI↑−2JB
↑

I↑(x)Ψ(x)
(4.15)

In this equation, two different types of terms appear, depending on whether or not

the upsampled control point is enriched. This occurs because the support region of

enrichment decreases at a finer scale and only the minimum necessary number of en-

riched control points are employed for supporting the points at the discontinuities. For

the enriched upsampled control points, J ↑ ∈ C̃↑, the product of the upsampled ba-

sis B↑

J↑(x) with the enrichment function Ψ(x) produces the corresponding enriched

basis function M ↑

J↑(x). However, for the non-enriched upsampled control points,

I↑ ∈ C↑ \ C̃↑, the equivalent identity does not hold. For these terms, a unique exact
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expression in terms of the upsampled basis functions may or may not exist, depending

on the type of enrichment.

In case of the isotropic strong enrichment, Ψ(x) can be simplified to a scalar, ψ(x),

which is constant in the whole support of B↑

I↑(x) for any I↑ ∈ C↑\C̃↑. Thus, a unique

exact solution can be obtained:

MJ(x) =
∑

J↑∈C̃↑

AJ↑−2JM
↑

J↑(x) +
∑
I↑∈C↑

SI↑AI↑−2JB
↑

I↑(x) (4.16)

where

SI↑ =


−1 if xI↑ is inside and I↑ /∈ C̃↑

1 if xI↑ is outside and I↑ /∈ C̃↑

0 if I↑ ∈ C̃↑.

(4.17)

In contrast, for isotropic weak or anisotropic discontinuity, Ψ(x) is not constant

for each control point I↑ ∈ C↑ \ C̃↑. Thus, no exact expression of the enriched ba-

sis function exists in the upsampled basis. The best approximation in a least-square

sense implies minimizing an integral in the full image domain which would involve

all the upsampled parameters. This approximation is computationally expensive and

numerically unstable, given the large number of parameters to estimate. Alternatively,

a stable and efficient approximation is developed. For each non-enriched control point

I↑ ∈ C↑ \ C̃↑, the corresponding product can be approximated by substituting the en-

richment function by its central value at the control point location: B↑

I↑(x)Ψ(x) '

B↑

I↑(x)Ψ(xI↑). This gives the expression

MJ(x) '
∑

J↑∈C̃↑

AJ↑−2JM
↑

J↑(x) +
∑
I↑∈C↑

AI↑−2JB
↑

I↑(x)SI↑ (4.18)

where

SI↑ =

Ψ(xI↑) if I↑ ∈ C↑ \ C̃↑

0 if I↑ ∈ C̃↑
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Substituting (4.14) and (4.18) into (4.8), the displacement can be expressed as

D(x) '
∑
I∈C

∑
I↑∈C↑

B↑

I↑(x)AI↑−2IµI +
∑
J∈C̃

∑
J↑∈C̃↑

M ↑

J↑(x)AJ↑−2JλJ

+
∑
J∈C̃

∑
I↑∈C↑

B↑

I↑(x)AI↑−2JSI↑λJ

=
∑
I↑∈C↑

B↑

I↑(x)µI↑ +
∑

J↑∈C̃↑

M ↑

J↑(x)λJ↑

(4.19)

4.3 Materials and experiments

4.3.1 Materials

To evaluate the effectiveness of anisotropic XFFD, three synthetic datasets were cre-

ated emulating different types of discontinuous motion. In addition, a publicly avail-

able clinical dataset was also employed for the evaluation.

Synthetic dataset

Synthetic images were created to mimic different types of discontinuities that could be

found in medical images, such as strong-weak, strong-continuous and isotropic weak

discontinuity. All the images are in 2D with 256×256 pixels.

Strong-weak dataset: The images contain two regions: left and right (Fig. 4.6).From

the target to the moving image, the right region was shifted vertically and compressed

homogeneously in the horizontal direction, while the left region is static, presenting a

strong-weak discontinuity.

Strong-continuous dataset: Similar to the strong-weak dataset, these images contain

two regions (Fig. 4.7). The discontinuity was created by shifting the rightmost region

vertically and compressing both regions in the horizontal direction.

Isotropic weak dataset: the images contain a circle and a set of concentric rings

(Fig. 4.8). The circle (interior region) remains static while the rings (exterior regions)

are expanded.
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Dir-lab dataset

This dataset contains 4D lung CT images of 10 subjects. This dataset is a good candi-

date for evaluating anisotropic XFFD, as it involves complex deformations, including

both weak and strong discontinuities and with directional dependence. The in-plane

resolution of the images is between 0.97 × 0.97 mm2 and 1.16 × 1.16 mm2 and the

inter-slice resolution is 2.5 mm. For each subject, 300 landmarks are provided for

inhale and exhale phases annotated by experts with inter-observer variability around

1 mm [23, 219]. Masks covering the lungs were created by Delmon et al. [6] using an

automatic segmentation method [220].

4.3.2 Evaluation metrics

Target Registration Error

Target Registration Error (TRE) measures the registration accuracy based on land-

marks manually located in salient structures. It is defined as the Euclidean distance

between the groundtruth landmarks in the moving image and transformed landmarks

from the target space to the moving one using the obtained transformation from regis-

tration. In previous registration methods applied to the DIR-lab dataset [5, 6, 187, 188,

190, 192, 214], the mean and standard deviation of the TRE of all the landmarks were

reported for each subject.

Gap and overlap volumes

The boundary matching of two regions, defined inside and outside the discontinuity

surface, are assessed by the gap and overlap volumes [5, 6, 192, 214]. Large values

of this metric indicate misalignment of the boundaries of the two regions, which may

result in undesired artefacts in the transformed image and resulting deformation field.

Strain

From the deformation field obtained from the registration, the corresponding strain

field can be computed. The strain is related to the material properties of the tissues in-
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volved and is a significant clinical measurement to many diagnostic questions [19,21].

Strain is also more sensitive to local variations of the deformations. Thus, it is a good

indicator to evaluate the importance of modelling the registration with the appropriate

type of discontinuity. Volumetric strain measures the expansion or compression of the

tissue [205] and is given by the determinant of the Jacobian of the deformations. The

perpendicular strain is the projection of the Lagrangian strain tensor to the direction

normal to the interface.

4.3.3 Implementation details

The proposed method was implemented as a new transformation module in the Elastix

toolkit [181], which allows a fair comparison with other methods implemented in the

same platform [6, 192]. Elastix is a publicly available software platform for intensity-

based medical image registration. It consists of a collection of image registration al-

gorithms [181]. The modular design of Elastix allows the user to quickly test and

compare different algorithms for each component of image registration and to select

the best one for a specific application.

The Elastix code is written in C++ and it is based on the Insight Segmentation and

Registration Toolkit (ITK) [196]. It consists of two layers: 1) ITK-style classes that

implement image registration functionality, and 2) Elastix wrappers that take care of

connecting components, receiving inputs and saving results, and similar “administra-

tive” tasks [221]. To develop a new module, a first layer class should be created to

implement the algorithm. Subsequently, a second layer wrapper needs to be written to

connect the first layer class to the other parts of Elastix.

In this thesis, the proposed methods have been implemented as transformation

modules, inheriting from the mother class in Elastix. In addition, the derivatives of

the transformations were implemented for the optimisation as well as the upsampling

methods for the multiresolution scheme. The rest of the registration components, such

as similarity measure and optimisation, were selected from existing Elastix modules.

In the registration experiments, the anisotropic XFFD was adopted as the trans-

formation model, normalized cross-correlation as similarity metric, for its robustness
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to linear variations in image intensity [203], and Limited memory Broyden-Fletcher-

Goldfarb-Shanno (LBFGS) as the optimiser, due to its high performance in high-

dimensional problems [204].

On the DIR-lab dataset, for the comparison with the previous methods, the regis-

tration parameters were selected to be similar to those from [192] (Table 3.1). Five

scales were chosen in the multiresolution scheme. At each resolution, the grid spacing

is halved from that at the previous scale. Correspondingly, the images were smoothed

and downsampled using a Gaussian smoothing pyramid, with standard deviation, σ,

halved from the one at the previous scale. Thus, for the five scales, The grid spacing

was set to be (80, 80, 40, 20, 10) mm, and the smoothing σ = (16, 8, 4, 2, 1) voxels in

the axial plane and σ = (8, 4, 2, 1, 0) voxels in the perpendicular direction to accom-

modate the difference of image spacing in each dimension. For the synthetic datasets,

2 scales were employed with isotropic grid spacing of (128, 64) pixels and smoothing

with σ = (2, 1) pixels, respectively (Table 4.1).

Table 4.1: Parameters for experiments on synthetic datasets
Parameters Values Function

Number of scales 2 number of scales of image pyramids
standard deviation (σ) (2, 1) pixels standard deviation of Gaussian smoothing

grid spacing (128, 64) pixels grid spacing of grid pyramids

4.3.4 Experiments

The goal of the experiments is to demonstrate the ability of anisotropic XFFD in han-

dling general tissue transitions involving discontinuities and the significance of mod-

elling the discontinuities with the correct type. Thus, XFFD with the appropriate dis-

continuity type is compared with FFD and XFFD with a related but incorrect type.

Experiments on synthetic datasets

Each dataset is registered using FFD, strong-continuous XFFD, strong-weak XFFD,

and isotropic weak XFFD. The results are compared by visually inspecting the trans-

formed grid and the volumetric strain field, and quantitatively evaluated with the max-
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imum absolute error of the volumetric strain.

Experiments on DIR-lab dataset

DIR-lab dataset involves strong-weak discontinuity, which is the most complex type.

In the literature, previous methods modelled the lung motion using a simpler strong-

continuous model [6, 187, 188, 207]. However, this incorrect model generates clearly

observable artefacts in the strain. To illustrate this issue, perpendicular strain is com-

puted and visualised for the FFD, the strong-weak XFFD and the strong-continuous

XFFD. Besides, the TRE [5, 6, 187, 188, 190, 192, 214], gap and overlap volumes

[5, 6, 192, 214] were also computed and compared to those from previous methods.

4.4 Results

4.4.1 Experiments on synthetic datasets

In the synthetic datasets representing strong-weak and strong-continuous discontinuity

types (Fig. 4.6, 4.7), the transformed grids clearly show that FFD fails to capture strong

discontinuity in the vertical direction. However, anisotropic XFFD, with both strong-

weak and strong-continuous, results in very similar and seemingly correct transformed

grids. For the isotropic weak dataset (Fig. 4.8), no difference can be observed in the

transformed grid, even for the FFD registration. In general, it is difficult to observe

weak discontinuity in the transformed grid, since the displacement field is continuous

and discontinuities only exist in the derivatives of the displacements. In contrast, the

strain is computed from the first derivatives of the displacements allowing a much finer

evaluation and comparison between the registration with different models.

The volumetric strain fields obtained on the three datasets when registered with

different discontinuity types are also shown in Fig. 4.6, 4.7 and 4.8. The corresponding

maximum absolute errors are presented in Table 4.2. For each of the datasets, the best

result is always given by registration modelled with the XFFD of the corresponding

discontinuity type.
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In the strong-weak dataset, only the strong-weak XFFD correctly recovers the dis-

continuity in the strain given by the homogeneous compression in the right-side region

(Fig. 4.6).

In the strong-continuous dataset, the homogeneous horizontal compression should

result in a constant (continuous) volumetric strain. Strong-continuous XFFD correctly

recovers the constant strain, whereas the additional degrees of freedom given by the

strong-weak XFFD produce spurious discontinuities in the strain (Fig. 4.7).

In the isotropic weak dataset the discontinuous strain given by the homogenous

isotropic expansion in the exterior region and the static state of the interior circle is

only correctly recovered by the isotropic weak XFFD (Fig. 4.8).
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Figure 4.6: Results on strong-weak dataset: transformed grid and volumetric strain
of FFD, strong-continuous and strong-weak XFFD. The color map in the strain figure
was trimmed to the range [-0.2, 0] for visualisation.
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Figure 4.7: Results on strong-continuous dataset: transformed grid and volumetric
strain of FFD, strong-continuous and strong-weak XFFD. The color map in the strain
figure was trimmed to the range [-0.2,0] for visualisation.

Table 4.2: Maximum error of the volumetric strain for different registration models on
the three synthetic datasets with different discontinuity types.

Dataset FFD Strong-Cont. Strong-Weak Weak
XFFD XFFD XFFD

Strong-Cont. 0.0333 0.0060 0.0531 0.0598
Strong-Weak 0.1025 0.0958 0.0079 0.1771

Weak 0.2150 0.2277 0.1730 0.0392
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Figure 4.8: Results on isotropic weak dataset: transformed grid and volumetric strain
of FFD, strong-continuous and isotropic weak XFFD. The color map in the strain figure
was trimmed to the range [0, 0.5] for visualisation.
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4.4.2 Experiments on DIR-lab dataset

In the quantitative evaluation on the DIR-lab dataset, the strong-weak XFFD obtained

the best results. In terms of TRE (Table 4.3), the isotropic strong XFFD obtained the

best results, while the strong-weak XFFD produced slightly better results (1.32 mm in

average) than the best results from previous methods [5, 6, 187, 188, 190, 192]. How-

ever, only using the TRE is not adequate for evaluating the performance of registration

methods in handling discontinuities, since the landmarks are located inside the lungs.

Thus, it is important to evaluate the alignment of the region boundaries using gap and

overlap volumes. Regarding to this metric (Table 4.4), The isotropic strong XFFD ob-

tained equivalent results to previous methods [5, 6, 192]. But the strong-weak XFFD

showed substantial improvement (15.7 mm3 and 19.1 mm3 respectively, in average)

reducing by 79% and 49% the best results of the previous methods.

Strong-weak XFFD produced better TRE than strong-continuous XFFD, but they

were very similar in gap and overlap volumes. They are both able to handle strong

discontinuity in the tangential direction properly. However, their difference is more

evident in the strain field (Fig. 4.9). The strain showed that strong-weak XFFD cor-

rectly captures discontinuity present in the perpendicular strain due to the presence of

tissues with different material properties (the rib cage and lungs). In contrast, strong-

continuous XFFD failed in that aspect, as much as FFD.

4.5 Discussion

Handling discontinuities in image registration is a challenging problem that have been

tackled with limited success. In the literature, most methods on discontinuous reg-

istration have been developed for lung images, implicitly or explicitly modelling the

discontinuous motion as either isotropic strong [5,190,192] or strong-continuous type

[6,187,188,207]. However, no previous work provides an explicit discussion and com-

plete modelling of general tissue transitions, nor considers weak discontinuities. In this

chapter, anisotropic XFFD is introduced as a general method to handle different types

of discontinuities in image registration. In particular, anisotropic XFFD addresses the
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Figure 4.9: Results on DIR-lab dataset: target image with region A defined in yellow
box. Zoom-in figures for transformed grid and perpendicular strain in region A. The
colour map in the strain figure was trimmed to the range [-0.5, 0.5] for visualisation.
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Table 4.3: The mean and standard deviation of TRE (mm) on the DIR-lab dataset
Case Before Schmidt-Richberg Pace Papież Wu

registration (2012) (2013) (2014) (2008)
1 3.89 ± 2.78 1.22 ± 0.64 1.06 ± 0.57 1.05 ± 0.6 1.1 ± 0.5
2 4.34 ± 3.90 1.14 ± 0.65 1.45 ± 1.00 1.08 ± 0.6 1.0 ± 0.5
3 6.94 ± 4.05 1.36 ± 0.81 1.88 ± 1.35 1.49 ± 0.9 1.3 ± 0.7
4 9.83 ± 4.86 2.68 ± 2.79 2.04 ± 1.40 1.90 ± 1.3 1.5 ± 1.0
5 7.48 ± 5.51 1.57 ± 1.23 2.73 ± 2.13 1.99 ± 1.7 1.9 ± 1.5
6 10.9 ± 6.97 2.21 ± 1.66 2.72 ± 2.04 2.36 ±1.9 1.6 ± 0.9
7 11.0 ± 7.43 3.81 ± 3.06 4.59 ± 3.41 2.32 ± 1.9 1.7 ± 1.1
8 15.0 ± 9.01 3.42 ± 4.25 6.22 ± 5.69 3.58 ± 3.4 1.6 ± 1.4
9 7.92 ± 3.98 1.83 ± 1.19 2.32 ± 1.42 1.74 ± 1.0 1.4 ± 0.8

10 7.30 ± 6.35 2.06 ± 1.92 2.82 ± 2.50 2.02 ± 2.1 1.6 ± 1.2
mean 8.46 ± 5.48 2.13 ± 1.82 2.78 ± 2.96 1.95 ± 0.7 1.47 ± 0.96

Case Delmon Berendsen XFFD XFFD XFFD
(2013) (2014) isotropic strong strong-cont. strong-weak

1 1.2 ± 0.6 1.00 ± 0.52 1.00 ± 0.51 1.02±0.58 1.02 ± 0.58
2 1.1 ± 0.6 1.02 ± 0.57 0.99 ± 0.59 1.01±0.63 1.02 ± 0.71
3 1.6 ± 0.9 1.14 ± 0.89 1.12 ± 0.64 1.23±0.80 1.23 ± 0.82
4 1.6 ± 1.1 1.46 ± 0.96 1.44 ± 1.03 1.47±1.03 1.46 ± 1.01
5 2.0 ± 1.6 1.61 ± 1.48 1.37 ± 1.35 2.20±3.53 1.58 ± 1.44
6 1.7 ± 1.0 1.42 ± 0.89 1.26 ± 1.04 1.36±0.83 1.39 ± 0.83
7 1.9 ± 1.2 1.49 ± 1.06 1.12 ± 0.67 1.37±0.82 1.39 ± 1.10
8 2.2 ± 2.3 1.62 ± 1.71 1.18 ± 1.22 1.54±1.84 1.53 ± 1.92
9 1.6 ± 0.9 1.30 ± 0.76 1.14 ± 0.64 1.73±0.95 1.38 ± 0.84

10 1.7 ± 1.2 1.50 ± 1.31 1.08± 0.82 1.25±0.78 1.26± 0.80
mean 1.66 ± 1.14 1.36 ± 0.99 1.17 ± 0.85 1.42±1.18 1.32 ± 1.00

Table 4.4: Gap/overlap volumes (mm3) on the DIR-lab dataset
Case Wu Delmon Berendsen XFFD XFFD XFFD

(2008) (2013) (2014) isotropic strong strong-cont. strong-weak
1 38/26 39/15 23/18 39/2 4/5 4/6
2 78/46 67/60 74/34 74/31 15/13 18/13
3 99/28 83/33 57/30 71/24 10/12 9/11
4 75/34 66/44 66/28 92/13 7/6 12/16
5 110/38 78/52 61/32 54/6 11/7 15/13
6 100/86 119/77 130/50 155/11 14/12 27/29
7 105/79 108/7 119/45 138/19 19/16 25/45
8 96/91 92/93 85/53 150/40 26/15 3/2
9 61/34 54/44 70/51 58/14 29/11 12/23

10 120/63 94/56 80/43 109/28 23/13 33/38
mean 88.2/52.5 80.0/55.1 76.5/37.4 94.0/18.8 16.0/11.2 15.7/19.1
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dependency of the discontinuity type on the displacement direction with respect to the

tissue transition interface.

The experiments on synthetic datasets have demonstrated that anisotropic XFFD is

able to correctly model different types of complex tissue transitions. Furthermore, they

have illustrated that modelling tissue transitions with the corresponding discontinuity

type is significant, showing that incorrect modelling can lead to artefacts in the defor-

mations, especially noticeable in the strain field. In the literature, methods handling

discontinuities [5, 6, 187, 188, 190, 192, 207] do not evaluate the strain. However, in

order to properly quantify the directions and magnitude of local tissue expansion, this

metric is necessary.

The strain reflects local tissue elastic properties and has been employed to evaluate

normal and abnormal organ function or kinetics [19–22]. The volumetric strain is the

determinant of the Jacobian, which is proportional to local volume change [24]. It is

shown that the determinant of Jacobian can be used as a physiologically meaningful pa-

rameter to assess the functional capacity of lung tissue [24]. Kaczka et al. [25] showed

that regional compliances computed from the determinant of Jacobian, can provide

unique and complementary information on the mechanical derangements associated

with lung injury. In addition, image registration based metrics, such as the Jacobian

determinant and maximum principle strain, are shown to be important biomechanical

features for the prediction of COPD presence and severity [26].

Anisotropic XFFD was also evaluated on the DIR-lab dataset imaging lung respira-

tory motion. This dataset exhibits the most complex type of discontinuity, strong-weak,

which involves strong discontinuity in the tangential direction and weak discontinuity

in the normal direction to the tissue interface. To the best knowledge of the author, this

is the first time this type of discontinuity has been correctly modelled. Some previous

methods modelled it as strong-continuous, which is a simpler and more constrained

model. The evaluation of the strain field showed more evident differences between

modelling the tissue transition as strong-weak or strong-continuous. The strong-weak

model correctly recovered discontinuity in the strain due to different material proper-

ties of the lungs and the rib cage, while the strong-continuous model introduced unreal-
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istic compression and expansion near the lung boundary (Fig. 4.9). In this case, strain

near the discontinuity interface is artificially smoothed, reducing the strain values of

the lung tissue near the boundary and introducing artefacts in the ribs. These errors will

adversely affect the clinical conclusions based on parameters computed from strain.

Besides the strain, the accuracy of the registration was measured by TRE and gaps

and overlap volumes. In the DIR-lab dataset, since the landmarks are located inside

the lungs, TRE evaluates the registration accuracy inside the lungs. Gaps and overlap

volumes reflect the registration accuracy near the boundaries when discontinuities are

involved. Compared to previous methods handling discontinuities, anisotropic XFFD

provided slightly better TRE and significantly smaller gap and overlap volumes.

The registration accuracy is important in clinical applications. For instance, in

image-guided radiotherapy, deformable registration can be used to map dose between

planning scans and diagnostic scans acquired before radiotherapy. It has been proven

that the registration error is correlated with the mapped location error [31], which is

associated to side effects of radiotherapy, when normal tissue receives high doses.

Cunliffe et al. [31] measured the dose alignment accuracy when nonrigid registration

is used for dose mapping. They found that the state-of-the-art method MEVIS EM-

PIRE10 [222] had a TRE of 5.2 mm when the lungs were not masked, since this method

did not handle discontinuities. They also discovered that the dose-mapping error in-

creases linearly with the registration error. Thus, the proposed registration framework

could be potentially used for this task since it highly reduces the registration error

while maintaining good boundary alignment.

4.6 Conclusions

In this chapter, a classification of tissue transitions is presented and the corresponding

transformation models have been developed for the corresponding discontinuity types

considering their directional dependence. By incorporating such models, XFFD has

been extended to a general non-rigid image registration framework for handling all

scenarios of tissue transitions.
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Anisotropic XFFD is able to handle discontinuities caused by relative motion of

non-attached structures (strong discontinuity) and discontinuities due to different ma-

terial properties of attached structures (weak discontinuity). Moreover, it can model

common tissue transitions characterised by anisotropic discontinuity types, in which

the behaviour of discontinuities depends on the displacement direction relative to the

interface orientation. No previous methods explicitly describe or model these types of

discontinuities.

The generality of anisotropic XFFD has been demonstrated on synthetic datasets

mimicking various discontinuity types. Its applicability to clinical images has been il-

lustrated on the DIR-lab open dataset, where anisotropic XFFD outperforms all previ-

ous registration methods handling discontinuities. The results evidence the importance

of adopting the correct discontinuity type in agreement with the physical properties

and contact conditions of the tissues involved.



Chapter 5

Conclusions and Outlook

5.1 Overview

Correct modelling of tissue transitions in image registration is important for recovering

physically realistic deformations, from which clinical quantities can be estimated for

measuring tissue mechanics. An important clinical parameter is the strain, which is

used to evaluate organ function towards disease diagnosis [19–22]. Failing to model

discontinuities with an appropriate model can introduce artefacts in the resulting de-

formations and strain, having an adverse impact on the relevant clinical analysis.

In this thesis, a general image registration framework has been developed for han-

dling discontinuities at tissue transitions, named eXtended Free-Form Deformation

(XFFD). The XFFD seamlessly integrates within and extends the standard FFD ap-

proach. This framework borrows the concept of the interpolation method from the

eXtended Finite Element method (XFEM) to incorporate discontinuities by enriching

the B-spline basis functions, coupled with extra degrees of freedom. Discontinuities

involved in tissue transitions can be classified into different types depending on the

physical properties of the tissue transitions: tissue material properties and contact con-

ditions. In addition, tissue transitions can also involve discontinuities with anisotropic

properties. XFFD incorporates all types of discontinues including the directional prop-

erties to handle different tissue transitions. The proposed framework has been devel-

oped in two stages presented in two chapters (Chapter 3, 4), leading to the following

85
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contributions:

• It contains the first study on tissue transition properties in image registration. A

classification of discontinuities is proposed based on the physical properties of

the tissue transitions.

• This study has led to the development of a set of transformation models within

XFFD that can handle all types of discontinuities involved at tissue transitions.

• XFFD is also developed to include directional dependence, which takes into ac-

count that the most usual types of tissue transitions involve anisotropic disconti-

nuity properties.

5.2 Conclusions

The XFFD has been tested on a variety of synthetic datasets mimicking different types

of tissue transitions and illustrated on a publicly available 3D liver and lung datasets.

XFFD produced physically plausible deformations and strain when modelling tissue

transitions with a correct model, as observed in the visualisation of transformed grid

and strain. In addition, XFFD achieved high performance in the lung dataset, in terms

of TRE, which measures registration accuracy inside the lungs, as well as gap and

overlap volumes, which measure boundary misalignment of the regions separated by

the discontinuity surface.

The XFFD has high registration accuracy and can produce more realistic displace-

ment and strain fields when discontinuities exist. Thus, it can be applied to clinical

applications involving discontinuous deformations. For instance, it could be directly

applied to dose mapping in radiotherapy planning of lung tumour (Section 1.3). For the

construction of biomechanical model of the spine, XFFD can be employed to match

CT and MRI images of the spine, since it can properly handle weak discontinuities

between IVDs and vertebrae. However, for a further improvement of the resulting

deformation field, a rigidity penalty term [130] should be included for bone structures.

Furthermore, it can be used for diagnosis and monitoring of cardiac diseases (Sec-

tion 1.3). In cardiac images the heart slide along other organs and is always in contact
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with the blood, so it can be modelled as strong-weak discontinuity. This application

would require the addition of a penalty term to smooth the strain (Section 5.3.1).

A limitation of XFFD is that it requires a segmentation of the target image to de-

scribe the location of discontinuities as prior knowledge. This requirement is, however,

shared by all the other B-spline based methods [5, 6, 192] and many of the diffusion-

based methods [188,207]. This may be alleviated by using an automatic segmentation

method [208–210] as a previous step (Section 5.3.3).

A further limitation of XFFD is that it does not incorporate any prior information

on the elasticity properties outside the tissue transitions. This can produce undesirable

results especially in the regions where the images lack enough texture to guide the

registration. This aspect can be improved by including a penalty term (Section 5.3.3).

5.3 Future lines of research

The work presented in this thesis has opened ways for a variety of lines of research

and future developments. Some of the potential research directions are presented in

the following.

5.3.1 Simultaneous registration and segmentation framework

The most important limitation of the proposed framework is the requirement of a high

quality segmentation of the tissue transition interface in the target image. For the

registration of an image sequence, only one segmentation is required. However, a fully

automatic method would be more convenient for clinical applications. Although an

automatic segmentation can be performed as an initial step, it would be valuable to

couple the registration framework with an automatic segmentation.

This task could be achieved by adding a new set of B-spline parameters controlling

the deformations of an initial mask to update the segmentation of the fixed image

during the registration process. This initial mask does not need to be accurate, but it

should partially cover the object of interest.

The main idea of this approach is that the cost function has a minima when the fixed
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image and transformed image coincide, and this can only happen if the mask is a per-

fect segmentation of the fixed image. During the registration process, when the mask

does not coincide with the boundary of the object being segmented, this will cause not

only the mis-alignment of the images but also high strain of the transformation near

the actual tissue interface. The mis-alignment of the images will be handled by the

cost of similarity measure. However, it would be necessary to include a penalisation

of the strain in the cost function, such as bending energy penalty [128].

The main caveat of this approach is the addition of new degrees of freedom, which

will increase the computational complexity and the likelihood of the optimiser being

trapped at a local minima. This could potentially be solved using a discrete optimiser

[171, 179].

5.3.2 Discrete optimisation

The XFFD registration framework implemented for the development of this thesis

adopts LBFGS to find the optimal transformation parameters. LBFGS is a continuous

optimiser based on the gradient and an approximated Hessian. Continuous optimisers

can provide accurate solutions and they are compatible with most of the previously

proposed similarity metrics and transformation models. However, the optimisation

process is time-consuming and they might get trapped in a local minima. To solve

this issue, discrete optimisers can serve as an alternative, as they are much faster than

continuous optimisers and can find the global minimum or a solution close to it. How-

ever, their accuracy is limited by the search space and they are not directly compatible

with other existing components of registration, often requiring reformulation of the

cost function.

Notwithstanding, the current enriched B-splines could be used in the frameworks

proposed in [171, 179]. These two methods produce continuous displacements and

they require a very dense grid to mimic discontinuous motion. Since these two meth-

ods employ B-splines to restrict the possible deformations, the modification would be

to change the B-spline parameterisation to include its enriched counterpart. The advan-

tage of this modification over the two previous methods [171,179] would be twofolds:
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the modified framework would not require a very dense grid, since discontinuities are

properly handled, and it would produce more realistic displacement and strain fields

when discontinuities are involved.

5.3.3 Penalising inhomogeneous strain

Correct modelling of discontinuities is key to producing realistic displacement and

strain fields. Even without an accurate information on the material properties of tissues

involved, it is expected that, under normal conditions, homogeneous regions present

continuous and smooth strains. However, regions with homogeneous intensities lack

texture to guide the registration process, resulting in high uncertainties. The proposed

framework does not impose any extra constraint on the behaviour of the transforma-

tion, which is only optimised for matching the image intensities. Thus, this can lead to

inhomogeneous strain in such regions. To achieve more physically plausible strain, a

smoothness penalty term could be included.

In the literature, the bending energy penalty term [128] is commonly employed

to smooth the strain field by penalising large values in the second derivatives of the

transformation. Thus, it could be extended in the XFFD framework by deriving the

second derivatives of the enriched B-splines.

5.3.4 Diffeomorphic temporal XFFD

The XFFD is a flexible framework, which allows the inclusion of any other extension of

FFD that have been proposed in the past, such as diffeomorphic registration [128] and

sparse FFD [47]. Especially, temporal registration can provide more accurate motion

analysis by including temporal information. XFFD can be extended to handle temporal

deformations by including enriched B-spline basis in the Temporal Diffeomorphic Free

Form Deformation (TDFFD) [3]. In this framework, the velocity field is modelled

by B-splines defined on a 4D control point grid. The velocities are described by 3D

B-spline basis weighted by 1D B-spline function in the temporal dimension and the

displacements are computed by the integral of the velocities with respect to time. Thus,

the enriched basis functions in XFFD can be plugged in to replace the 3D B-spline
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basis to incorporate discontinuities.
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