125 research outputs found

    Michigan experimental multispectral mapping system: A description of the M7 airborne sensor and its performance

    Get PDF
    The development and characteristics of a multispectral band scanner for an airborne mapping system are discussed. The sensor operates in the ultraviolet, visual, and infrared frequencies. Any twelve of the bands may be selected for simultaneous, optically registered recording on a 14-track analog tape recorder. Multispectral imagery recorded on magnetic tape in the aircraft can be laboratory reproduced on film strips for visual analysis or optionally machine processed in analog and/or digital computers before display. The airborne system performance is analyzed

    Efficient Geometry and Illumination Representations for Interactive Protein Visualization

    Get PDF
    This dissertation explores techniques for interactive simulation and visualization for large protein datasets. My thesis is that using efficient representations for geometric and illumination data can help in developing algorithms that achieve better interactivity for visual and computational proteomics. I show this by developing new algorithms for computation and visualization for proteins. I also show that the same insights that resulted in better algorithms for visual proteomics can also be turned around and used for more efficient graphics rendering. Molecular electrostatics is important for studying the structures and interactions of proteins, and is vital in many computational biology applications, such as protein folding and rational drug design. We have developed a system to efficiently solve the non-linear Poisson-Boltzmann equation governing molecular electrostatics. Our system simultaneously improves the accuracy and the efficiency of the solution by adaptively refining the computational grid near the solute-solvent interface. In addition, we have explored the possibility of mapping the PBE solution onto GPUs. We use pre-computed accumulation of transparency with spherical-harmonics-based compression to accelerate volume rendering of molecular electrostatics. We have also designed a time- and memory-efficient algorithm for interactive visualization of large dynamic molecules. With view-dependent precision control and memory-bandwidth reduction, we have achieved real-time visualization of dynamic molecular datasets with tens of thousands of atoms. Our algorithm is linearly scalable in the size of the molecular datasets. In addition, we present a compact mathematical model to efficiently represent the six-dimensional integrals of bidirectional surface scattering reflectance distribution functions (BSSRDFs) to render scattering effects in translucent materials interactively. Our analysis first reduces the complexity and dimensionality of the problem by decomposing the reflectance field into non-scattered and subsurface-scattered reflectance fields. While the non-scattered reflectance field can be described by 4D bidirectional reflectance distribution functions (BRDFs), we show that the scattered reflectance field can also be represented by a 4D field through pre-processing the neighborhood scattering radiance transfer integrals. We use a novel reference-points scheme to compactly represent the pre-computed integrals using a hierarchical and progressive spherical harmonics representation. Our algorithm scales linearly with the number of mesh vertices

    Earth survey applications division: Research leading to the effective use of space technology in applications relating to the Earth's surface and interior

    Get PDF
    Accomplishments and future plans are described for the following areas: (1) geology - geobotanical indicators and geopotential data; (2) modeling magnetic fields; (3) modeling the structure, composition, and evolution of the Earth's crust; (4) global and regional motions of the Earth's crust and earthquake occurrence; (5) modeling geopotential from satellite tracking data; (6) modeling the Earth's gravity field; (7) global Earth dynamics; (8) sea surface topography, ocean dynamics; and geophysical interpretation; (9) land cover and land use; (10) physical and remote sensing attributes important in detecting, measuring, and monitoring agricultural crops; (11) prelaunch studies using LANDSAT D; (12) the multispectral linear array; (13) the aircraft linear array pushbroom radiometer; and (14) the spaceborne laser ranging system

    Study of lunar, planetary, and solar topography First phase report, 1 Jul. 1965 - 15 Apr. 1966

    Get PDF
    Topographic information acquisition methods for lunar, planetary, and solar surface

    Proceedings of the EAA Spatial Audio Signal Processing symposium: SASP 2019

    Get PDF
    International audienc

    Digital Image Processing

    Get PDF
    Newspapers and the popular scientific press today publish many examples of highly impressive images. These images range, for example, from those showing regions of star birth in the distant Universe to the extent of the stratospheric ozone depletion over Antarctica in springtime, and to those regions of the human brain affected by Alzheimer’s disease. Processed digitally to generate spectacular images, often in false colour, they all make an immediate and deep impact on the viewer’s imagination and understanding. Professor Jonathan Blackledge’s erudite but very useful new treatise Digital Image Processing: Mathematical and Computational Methods explains both the underlying theory and the techniques used to produce such images in considerable detail. It also provides many valuable example problems - and their solutions - so that the reader can test his/her grasp of the physical, mathematical and numerical aspects of the particular topics and methods discussed. As such, this magnum opus complements the author’s earlier work Digital Signal Processing. Both books are a wonderful resource for students who wish to make their careers in this fascinating and rapidly developing field which has an ever increasing number of areas of application. The strengths of this large book lie in: • excellent explanatory introduction to the subject; • thorough treatment of the theoretical foundations, dealing with both electromagnetic and acoustic wave scattering and allied techniques; • comprehensive discussion of all the basic principles, the mathematical transforms (e.g. the Fourier and Radon transforms), their interrelationships and, in particular, Born scattering theory and its application to imaging systems modelling; discussion in detail - including the assumptions and limitations - of optical imaging, seismic imaging, medical imaging (using ultrasound), X-ray computer aided tomography, tomography when the wavelength of the probing radiation is of the same order as the dimensions of the scatterer, Synthetic Aperture Radar (airborne or spaceborne), digital watermarking and holography; detail devoted to the methods of implementation of the analytical schemes in various case studies and also as numerical packages (especially in C/C++); • coverage of deconvolution, de-blurring (or sharpening) an image, maximum entropy techniques, Bayesian estimators, techniques for enhancing the dynamic range of an image, methods of filtering images and techniques for noise reduction; • discussion of thresholding, techniques for detecting edges in an image and for contrast stretching, stochastic scattering (random walk models) and models for characterizing an image statistically; • investigation of fractal images, fractal dimension segmentation, image texture, the coding and storing of large quantities of data, and image compression such as JPEG; • valuable summary of the important results obtained in each Chapter given at its end; • suggestions for further reading at the end of each Chapter. I warmly commend this text to all readers, and trust that they will find it to be invaluable. Professor Michael J Rycroft Visiting Professor at the International Space University, Strasbourg, France, and at Cranfield University, England

    Hardware-supported cloth rendering

    Get PDF
    Many computer graphics applications involve rendering humans and their natural surroundings, which inevitably requires displaying textiles. To accurately resemble the appearance of e.g. clothing or furniture, reflection models are needed which are capable of modeling the highly complex reflection effects exhibited by textiles. This thesis focuses on generating realistic high quality images of textiles by developing suitable reflection models and introducing algorithms for illumination computation of cloth surfaces. As efficiency is essential for illumination computation, we additionally place great importance on exploiting graphics hardware to achieve high frame rates. To this end, we present a variety of hardware-accelerated methods to compute the illumination in textile micro geometry. We begin by showing how indirect illumination and shadows can be efficiently accounted for in heightfields, parametric surfaces, and triangle meshes. Using these methods, we can considerably speed up the computation of data structures like tabular bidirectional reflectance distribution functions (BRDFs) and bidirectional texture functions (BTFs), and also efficiently illuminate heightfield geometry and bump maps. Furthermore, we develop two shading models, which account for all important reflection properties exhibited by textiles. While the first model is suited for rendering textiles with general micro geometry, the second, based on volumetric textures, is specially tailored for rendering knitwear. To apply the second model e.g. to the triangle mesh of a garment, we finally introduce a new rendering algorithm for displaying semi-transparent volumetric textures at high interactive rates.Eine Vielzahl von Anwendungen in der Computergraphik schließen auch die Darstellung von Menschen und deren natürlicher Umgebung ein, was zwangsläufig auch die Darstellung von Textilien erfordert. Um beispielsweise das Aussehen von Bekleidung oder Möbeln genau zu erfassen, werden Reflexionsmodelle benötigt, die in der Lage sind, die hochkomplexen Reflexionseffekte von Textilien zu berücksichtigen. Der Schwerpunkt dieser Dissertation liegt in der Generierung qualitativ hochwertiger Bilder von Textilien, was wir durch die Entwicklung geeigneter Reflexionsmodelle und von Algorithmen zur Beleuchtungsberechnung an Stoffoberflächen ermöglichen. Da Effizienz essentiell für die Beleuchtungsberechnung ist, nutzen wir die Möglichkeiten von Graphikhardware aus, um hohe Bildwiederholraten zu erzielen. Hierfür legen wir eine Vielzahl von hardware-beschleunigten Methoden zur Beleuchtungsberechnung der Mikrogeometrie von Textilien vor. Zuerst zeigen wir, wie indirekte Beleuchtung und Schatten effizient in Höhenfeldern, parametrischen Flächen und Dreiecksnetzen berücksichtigt werden können. Mit Hilfe dieser Methoden kann die Berechnung von Datenstrukturen wie tabellarischer bidirectional reflectance distribution functions (BRDFs) und bidirectional texture functions (BTFs) erheblich beschleunigt, sowie die Beleuchtung von Höhenfeld-Geometrie und Bumpmaps effizient errechnet werden.Weiterhin entwickeln wir zwei Reflexionsmodelle, welche alle wichtigen Reflexionseigenschaften berücksichtigen, die Textilien aufweisen. Während das erste Modell sich zur Darstellung von Textilien mit allgemeiner Mikrogeometrie eignet, ist das zweite, welches auf volumetrischen Texturen basiert, speziell auf die Darstellung von Strickwaren zugeschnitten. Um das zweite Modell z.B. auf das Dreiecksnetz eines Bekleidungsstückes anzuwenden führen wir einen neuen Renderingalgorithmus für die Darstellung von semi-transparenten volumetrischen Texturen mit hohen Bildwiederholraten ein

    Compression, Modeling, and Real-Time Rendering of Realistic Materials and Objects

    Get PDF
    The realism of a scene basically depends on the quality of the geometry, the illumination and the materials that are used. Whereas many sources for the creation of three-dimensional geometry exist and numerous algorithms for the approximation of global illumination were presented, the acquisition and rendering of realistic materials remains a challenging problem. Realistic materials are very important in computer graphics, because they describe the reflectance properties of surfaces, which are based on the interaction of light and matter. In the real world, an enormous diversity of materials can be found, comprising very different properties. One important objective in computer graphics is to understand these processes, to formalize them and to finally simulate them. For this purpose various analytical models do already exist, but their parameterization remains difficult as the number of parameters is usually very high. Also, they fail for very complex materials that occur in the real world. Measured materials, on the other hand, are prone to long acquisition time and to huge input data size. Although very efficient statistical compression algorithms were presented, most of them do not allow for editability, such as altering the diffuse color or mesostructure. In this thesis, a material representation is introduced that makes it possible to edit these features. This makes it possible to re-use the acquisition results in order to easily and quickly create deviations of the original material. These deviations may be subtle, but also substantial, allowing for a wide spectrum of material appearances. The approach presented in this thesis is not based on compression, but on a decomposition of the surface into several materials with different reflection properties. Based on a microfacette model, the light-matter interaction is represented by a function that can be stored in an ordinary two-dimensional texture. Additionally, depth information, local rotations, and the diffuse color are stored in these textures. As a result of the decomposition, some of the original information is inevitably lost, therefore an algorithm for the efficient simulation of subsurface scattering is presented as well. Another contribution of this work is a novel perception-based simplification metric that includes the material of an object. This metric comprises features of the human visual system, for example trichromatic color perception or reduced resolution. The proposed metric allows for a more aggressive simplification in regions where geometric metrics do not simplif

    Digitally reconstructed wall radiographs

    Get PDF
    Master'sMASTER OF SCIENC

    Advanced scanners and imaging systems for earth observations

    Get PDF
    Assessments of present and future sensors and sensor related technology are reported along with a description of user needs and applications. Five areas are outlined: (1) electromechanical scanners, (2) self-scanned solid state sensors, (3) electron beam imagers, (4) sensor related technology, and (5) user applications. Recommendations, charts, system designs, technical approaches, and bibliographies are included for each area
    corecore