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Zusammenfassung

Der Realismus einer Szene basiert im Wesentlichen auf der Qualität der
Modelle, der Beleuchtung und der verwendeten Materialien. Mittlerweile
existieren zahlreiche Methoden für die Erstellung und Messung dreidimen-
sionaler Modelle. Ebenso gibt es sehr effiziente Algorithmen für die Appro-
ximation von globaler Beleuchtung. Die Messung und Darstellung realisti-
scher Materialien bleibt jedoch ein schwieriges Problem, für das bis heute
keine einheitliche Lösung existiert.
Materialien sind für die Computergrafik unentbehrlich, denn sie beschrei-

ben das Reflektanzverhalten von Oberflächen. Dieses Verhalten wird durch
die Interaktion von Licht und Materie bestimmt. In der realen Welt existiert
eine enorme Vielfalt von Materialien mit den verschiedensten Eigenschaf-
ten. Das Ziel der Computergrafik ist es, diese in all ihrer Vielfalt zu erfassen,
zu formalisieren und zu simulieren.
Zu diesem Zweck existieren bereits analytische Repräsentationen, die auf

der Verteilung von sogenannten Mikrofacetten beruhen. Diese sind jedoch
aufgrund der hohen Zahl der Koeffizienten nur schwer zu parametrisieren.
Eine alternative Vorgehensweise ist die Messung von Materialien durch
herkömmliche Fotografien. Der Nachteil hierbei besteht jedoch im hohen
technischen Aufwand zur Aufnahme und den großen resultierenden Daten-
mengen. Zwar existieren Kompressionsalgorithmen auf Basis statistischer
Verfahren, diese erlauben jedoch keine nachträglichen Änderungen, bei-
spielsweise der Farbe oder der Oberflächenstruktur. Kern dieser Arbeit ist
eine Materialrepräsentation, welche gemessene Materialien einerseits kom-
primiert, andererseits aber auch nachträgliche Änderungen von bestimmten
Eigenschaften erlaubt.
Dieser Ansatz basiert nicht ausschließlich auf Kompression, sondern auf

einer Zerlegung der Oberfläche in mehrere Klassen von Materialien. Jede
Klasse besitzt dabei unterschiedliche Eigenschaften. Auf demMicrofacetten-
Modell beruhend, wird das Reflektanzverhalten dabei durch eine Funkti-
on dargestellt, welche als herkömmliche zweidimensionale Textur gespei-
chert werden kann. Neben Tiefeninformationen werden zusätzlich die loka-
len Rotationsparameter und die diffuse Farbe gespeichert. Da durch diese
Zerlegung auch Informationen verloren gehen, werden im weiteren Verlauf
der Arbeit Ansätze vorgestellt, diese verloren gegangenen Informationen
nachträglich wieder analytisch hinzuzufügen.
Ein weiterer Beitrag dieser Arbeit ist eine wahrnehmungsbasierte Metrik
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zur Simplifizierung von Dreiecksnetzen. Das Neuartige an dieser Metrik ist,
dass sie das Material des Dreiecksnetzes berücksichtigt. Dies ist dadurch
möglich, dass die Eigenschaften des menschlichen Sehsystems, beispielsweise
die reduzierte Farbwahrnehmung oder räumliche Auflösung, mit einbezogen
werden. Die vorgestellte Metrik erlaubt eine aggressivere Vereinfachung der
Geometrie in Bereichen, in denen existierende geometrische Metriken zu
schwach vereinfachen.
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Abstract

The realism of a scene basically depends on the quality of the geometry, the
illumination and the materials that are used. Whereas many sources for
the creation of three-dimensional geometry exist and numerous algorithms
for the approximation of global illumination were presented, the acquisition
and rendering of realistic materials remains a challenging problem.
Realistic materials are very important in computer graphics, because

they describe the reflectance properties of surfaces, which are based on the
interaction of light and matter. In the real world, an enormous diversity of
materials can be found, comprising very different properties. One important
objective in computer graphics is to understand these processes, to formalize
them and to finally simulate them.
For this purpose various analytical models do already exist, but their

parameterization remains difficult as the number of parameters is usually
very high. Also, they fail for very complex materials that occur in the real
world. Measured materials, on the other hand, are prone to long acquisi-
tion time and to huge input data size. Although very efficient statistical
compression algorithms were presented, most of them do not allow for ed-
itability, such as altering the diffuse color or mesostructure. In this thesis,
a material representation is introduced that makes it possible to edit these
features. This makes it possible to re-use the acquisition results in order to
easily and quickly create deviations of the original material. These devia-
tions may be subtle, but also substantial, allowing for a wide spectrum of
material appearances.
The approach presented in this thesis is not based on compression, but on

a decomposition of the surface into several materials with different reflection
properties. Based on a microfacette model, the light-matter interaction is
represented by a function that can be stored in an ordinary two-dimensional
texture. Additionally, depth information, local rotations, and the diffuse
color are stored in these textures. As a result of the decomposition, some
of the original information is inevitably lost, therefore an algorithm for the
efficient simulation of subsurface scattering is presented as well.
Another contribution of this work is a novel perception-based simplifi-

cation metric that includes the material of an object. This metric com-
prises features of the human visual system, for example trichromatic color
perception or reduced resolution. The proposed metric allows for a more
aggressive simplification in regions where geometric metrics do not simplify



strong enough.
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Vorwort

”Was glänzt, ist für den Augenblick geboren;
Das Echte bleibt der Nachwelt unverloren”

- Johann Wolfgang von Goethe (Faust I)

Üblicherweise steht an dieser Stelle etwas über den rasanten Fortschritt
moderner Computergrafik, die ständig steigende Rechenleistung der Hard-
ware und den wachsenden wirtschaftlichen Bedarf realistischer, künstlich
generierter Bilder. Stattdessen möchte ich mit einer Frage beginnen: Sind
wir Maler?

Als Computergrafiker können wir Stunden damit verbringen, das Licht
einer Kerze, ihren Schattenwurf und die Brechung ihres Lichts durch ein
Weinglas hindurch zu simulieren. Dabei stellen wir hohe Ansprüche an uns
selbst: Der Farbverlauf der Kerzenflamme muss realistisch erscheinen, der
Schattenwurf weich sein und die Bündelung des Lichts exakt der Krümmung,
Dichte und Dicke des Glases entsprechen. Dazu nutzen wir unser Wissen
über die wahren Vorgänge der Natur: Photonen, kleinste Teilchen von Licht,
werden verschossen, reflektiert oder absorbiert, der Verlauf ihrer Flugbahn
wird in jedem Punkt des Raumes berechnet bevor sie in räumlichen Da-
tenstrukturen gespeichert und schließlich aufgesammelt werden. Millionen
von Berechnungen werden durchgeführt und führen am Ende zu einem Hel-
ligkeitswert eines Punktes, dessen Fläche lediglich einem Bruchteil eines
Quadratmillimeters entspricht.

Fertig und zufrieden mit unserer Arbeit sind wir erst, wenn das Bild
real aussieht. Eben wie ein Maler, der seine Staffelei vor einem träume-
rischen Straßenkaffee, einer sonnengetränkten Naturlandschaft oder einem
wunderschönen Modell aufbaut und jeden Pinselstrich mit der Realität ab-
gleicht, so gleichen wir jeden Pixel ab. Der Bildschirm ist unsere Staffelei,
die Programmiersprache und die Grafikkarte sind unsere Pinsel und Farb-
palette. Was uns mit dem Maler eint ist die Tatsache, dass wir uns nicht
damit zufrieden geben das Motiv für den Augenblick zu genießen. Stattdes-
sen möchten wir es reproduzieren, es verstehen, es festhalten.
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Sind wir Maler? Haben wir Pinsel und Farben durch moderne Techno-
logie ersetzt? Sind wir einfach nur angepasst an ein neues Zeitalter und
betreiben ein digitales ”Malen nach Zahlen”?
Was wir mit Malern teilen, ist unser Antrieb und unser Wille, die Vorgänge

der Natur zu durchschauen. Wenn ein Maler ein Motiv erblickt, so möchte
er dieses festhalten. Die Leinwand dient dazu, das Gesehene auf Papier zu
bannen und es über den Augenblick hinaus zu konservieren. Aber der Maler
möchte auch verstehen: Durch die Art und Weise, wie er die Farben zu ei-
ner Komposition verarbeiten muss um ein Abbild der Realität zu erschaffen,
lernt er die Vorgänge nachzuvollziehen. Dabei ist er auf sein handwerkliches
Geschick, seine Augen und seine Vorstellungs- und Wahrnehmungskraft an-
gewiesen.
Das Erzeugen eines realistischen Computerbildes beherbergt viele der

Vorgänge, die auch beim Zeichnen eines Bildes von Bedeutung sind: Wir
können die komplexen Vorgänge der Natur am besten verstehen, indem wir
sie in Programmcode umsetzen. Wir können Schönheit festhalten, indem wir
sie als Pixel auf den Bildschirm bannen. Digitale Technologie erlaubt uns
außerdem, sie zu reproduzieren, zu verfielfältigen, zu manipulieren und die
Realität noch schöner zu machen. Denn oft ist es erst die Überzeichnung,
die uns in Erstaunen versetzt.
Als Goethes Faust in seiner Studierstube die Bilanz seines Lebens zieht,

kommt er zu einem niederschmetterndem Fazit: Trotz seiner lebenslangen
Studien ist er weit davon entfernt erklären zu können, was die Welt im In-
nersten zusammenhält. Vielmehr erkennt er, dass wir nichts wissen können,
ein philosophisches Dilemma der fehlenden Beobachterperspektive. Zwar
weiß ich viel, doch möcht ich alles wissen, fasst er das Bestreben eines Wis-
sensschaftlers zusammen, bevor er sich Mephisto verspricht und am Ende
seines Lebens erkennt, dass beim Streben nach dem höchsten Dasein sein
Glück in wohltätiger Arbeit für andere Menschen besteht, eine Anlehnung
an den philosphischen Kulturalismus.
Wie kommt man von Computergrafik über Malerei schließlich zu Faust?

Als Erklärung sei eine Reiseschilderung Goethes aus dem Jahr 1788 gege-
ben:

Ich hatte nämlich zuletzt eingesehen, daß man den Farben, als
physischen Erscheinungen, erst von der Seite der Natur beikom-
men müsse, wenn man in der Absicht auf die Kunst etwas über
sie gewinnen wolle. Wie alle Welt war ich überzeugt, daß die
sämtlichen Farben im Licht enthalten seien; nie war es mir an-
ders gesagt worden, und niemals hatte ich die geringste Ursache
gefunden, daran zu zweifeln.

Goethe war ein begeisterter Maler.
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Chapter 1.

Motivation

Before the first graphics cards became available, the infamous Phong shading1

was the only real-time material affordable on hardware at that time2. Unfortu-
nately, the flexibility of this shading model is very limited, as it is controlled by
just a few parameters, making it only plausible for plastic-like materials. How-
ever, with the processing power and memory capacity of modern graphics cards,
it became possible to compute more complex materials. For this purpose, sev-
eral physically correct surface representations have been introduced: well-known
examples are the Bidirectional Reflectance Distribution Function (BRDF), the
Bidirectional Surface Scattering Distribution Function (BSSRDF) or the Bidi-
rectional Texture Function (BTF). But for what do we need more sophisticated
material representations?

If we look at the real world, we notice that the diversity of materials is abso-
lutely overwhelming. To simulate a material, we have to analyze and understand
what physical processes take place in that particular material. Subsurface scat-
tering, for example, occurs for almost every material in nature, especially for
organic matter. Another well-known effect is that polished surfaces reflect more
light when we look at them at grazing angles. Transparent and translucent ob-
jects change the light’s direction according to the refractive index. Nacre, an
organic material that is produced by sea shells, is one of the most complex mate-
rials in nature: it changes the color as the angle of view changes, a phenomenon
called iridescence. Phosphorescence, which exists in synthetic materials, describes
when energy absorbed by a substance is released relatively slowly in the form of
visible light. It is closely related to fluorescence, where light is absorbed and
then reflected at a different wavelength. These are just a few examples that
demonstrate the complexity of real-world light-matter interaction.

Of course, there is a vast industrial need for more realistic materials: in car
design, measured materials are used to simulate the interior, seat covers, and
car paint. A realistic simulation of the final product is extremely useful for
designers and customers. The simulation of the appearance of cloths is another
important area, since fabric exhibits extremely complex light-matter-interaction
properties. Realistic materials are also important for flight simulators, as air
can be considered as a material as well: atmospheric effects are created by the
interaction of light with the participating media, containing particles such as dust

1Named after its inventor Bui Tuong Phong in 1973
2Of course besides Gouraud shading, which was presented by Henri Gouraud in 1971



Chapter 1. Motivation

and aerosols. For pilots, the color of the sky is an important clue of altitude,
weather conditions, distance, and time. Not to mention that realistic materials
are basic elements of every video game and computer-generated movie.

In the last years it became common practice to take reflection properties di-
rectly from the real-world. For this purpose, special devices for the acquisition
of materials were built. Typically, they consist of two gantries, one holding a
light source and the other one holding a digital camera3. If the camera remains
static and only the light source changes its position, the result is a reflectance
field. If this is repeated for several view positions, a dense representation of the
material’s reflection properties for every light and view combination is obtained.
Unfortunately, this creates input data up to several gigabytes, which significantly
exceeds the capacities of graphics hardware.

To address this problem, several approaches have been introduced to reduce
the high dimensional input data. In most cases, statistical methods like principal
component analysis (PCA) or matrix factorization have been used. With these
methods, the input data can be transformed into a set of ordinary 2D textures in
the range of several megabytes. The reconstruction is then computed on the GPU
in the fragment shader in real-time. However, these approaches lack of editability.
Once the materials are compressed, they cannot be altered anymore. This can
be compared to a compressed text document: in the compressed representation,
it is not possible to change specific letters or words in a meaningful manner. The
document has to be decompressed first, then changes can be made, and then it can
be compressed again4. One of the key ideas presented in this thesis is to perform
a decomposition instead of a compression, resulting in a set of materials with very
distinct properties. It is then possible to compress each material more efficiently,
since only little deviations can be expected in the same material5. Unfortunately,
one problem of material decomposition is, that some of the reflectance properties
are lost, since the geometric corresponce can not be guaranteed6. This thesis
addresses this problem by introducing efficients methods for the simulation of
some of the material properties that are not included in the decomposition, such
as self-shadowing or subsurface scattering.

In addition to the editable material representation, a perception-based metric
for the simplification of meshes with arbitrary materials is presented as well.
Simplification is important, because the rendering of models with high polygonal
count is still a challenging task in real-time computer graphics. A very common
way to improve rendering performance is to generate different levels of detail
(LOD) of a model. These are computed by polygonal simplification techniques,
which aim to reduce the number of polygons without a significant loss of visual
appearance. The contribution of this thesis is a very fast simplification algorithm
grounded in the human visual system. The key idea is to change the domain for
the error computation from image-space to vertex-space. The advantage is that

3e.g. the Stanford Spherical Gantry developed by Marc Levoy.
4Note, that in the case of materials, this compression process can last several hours.
5e.g. deviations in color, depth etc.
6For example color bleeding or shadowing of one pixel onto the other.
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Chapter 1. Motivation

the verification of a local simplification operation can be computed much faster
compared to existing algorithms.
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Chapter 2.

Basics

”What if angry vectors veer,
Round your sleeping head, and form,
There’s never need to fear
Violence of the poor world’s abstract storm.”

- Robert Penn Warren

The basics of this thesis are manifold and from a wide range of areas of com-
puter graphics. They are divided into a theory and an implementation section:
in the theory, the principles of high dynamic range imaging (HDRI), the human
visual system (HVS), material representations, and mesh simplification are ex-
plained. The implementation section is divided into shader programming and
a brief discussion about the more general parallel languages Compute Unified
Device Architecture (CUDA) and Open Computing Language (OpenCL).

Figure 2.1.: Structure of the Basics chapter.

This chapter begins with high dynamic range imaging, where the quality of
display devices, frame buffer representations, and quantities for different levels

7
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of light intensities are presented. After this, the principles of the human visual
system are explained, including the structure of the eye, adaptation mechanisms,
contrast sensitivity, color perception, and image metrics.This section is important
for the visual metric that is presented later in this work. It is followed by a
survey of material representations, starting with the rendering equation, the
fundamentals of light-matter interaction, and finally the BRDF, the BSSRDF,
and the BTF. The theory part ends with a brief overview of the most important
simplification algorithms, including vertex clustering, mesh removal, and quadric
error metrics.

The implementation section starts with a general introduction to GPU pro-
gramming and is followed by a closer look at the High Level Shading Language
(HLSL), followed by a quick glance at CUDA and OpenCL.

1 High Dynamic Range Imaging

The perceived quality of a displayed image depends on several things: first, the
resolution of the display device. The more pixels are available on an area of fixed
size, the more details can be shown in relation of the distance of the viewer to
the image. Second, the contrast of the display device determines how realistic
the lighting of the the image appears. Third, but less important in the context
of this thesis, is the temporal resolution of a sequence of images.
This section gives an technical overview of the most important components of
realistic image synthesis, such as display resolution, contrast, color precision,
gamma correction, and high dynamic range rendering in real-time computer
graphics.

1.1. Display Resolution

The display resolution depends on the technical quality of the device and in-
creases ever since the first presentation of the cathode ray tube. Standard dis-
play resolution in the year 2010 is 1920x10801. Highest available resolutions
are 2560x1600 WQXGA for consumer market liquid crystal displays (LCD) and
3280x2048 WQSXGA for medical diagnostic devices. A high resolution greatly
improves the visual quality for the viewer, since it allows to show more detail
and reduces aliasing effects. Note, that the display resolution is independent of
the resolution on which the image is actually formed.

1.2. Screen Resolution

The screen resolution depends on resolution of the framebuffer in the memory
of the graphics device. In television, it depends on the signal of the television
provider, which is 768x576 for the European PAL standard and the American
NTFS standard and unchanged since the 1950s. The screen resolution of games
and applications is continuously growing: these days, it is common to play games
in HD.

1(High Definition or HD)
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1.3. Contrast

As explained in more detail in section 2, the human eye adapts to a great variety
of light intensity levels. In an image, the relation of the darkest to the brightest
intensity value is called the dynamic range. The real world comprises a dynamic
range of nearly twelve magnitudes, reaching from only a few photons to full
sunlight. An ideal monitor would emit no light at all if it displays black and it
would be very bright if it displays white. In computer graphics, the synthesis
of images done in larger dynamic range is called high dynamic range rendering.
Video games and computer-generated movies benefit from this as it allows to
create more realistic images2.

1.4. Temporal Resolution

The rate at which images are displayed is measured in frames per second (fps) or
Hertz (Hz). At one fps, there is only little sense of interactivity. At around 6 fps,
a sense of interactivity starts to grow. An application at 24 fps can be considered
as real-time, as the user is able to focus on action and reaction3. From about
3× 24 fps and up, differences in the display rate are effectively undetectable.

1.5. Integer Color Precision

Traditionally, a pixel is encoded with 24 bits using 8 bits per color channel, which
confines lighting integer precision to intensities in the range [0..255]. The color is
encoded as an RGB triplet (r, g, b), where each component can vary from zero to
a defined maximum value. If all of the color values are zero, the result is black.
If all are maximum, the result is the brightest white representable on the display
device. For obvious reasons, concerning the dynamic range that the real world
provides, 256 intensity levels are not enough.

1.6. Floating-Point Color Precision

When Microsoft released DirectX 9.0, lighting precision was not limited to 8-bit
anymore on software side. On the hardware side, the R300 chip of ATI’s Radeon
9700 was finally designed for floating point precision with fractional color values
in the range [0..1]4. Modern graphics hardware provides full support for floating
point precision framebuffers and textures(including texture filtering).

1.7. Measuring Luminance

The luminance of a device is measured in candela per square metre (cd/m2). It is
defined as the amount of light that passes through or is emitted from a particular
area and is defined as

Lv =
d2F

dAdΩcosΘ

2Like the display resolution, the contrast of a display device is technically limited.
3This is also the norm of the PAL television standard.
4However, the R300 supported only 96-bit (FP24) color precision instead of DirectX 9.0’s maximum of
128-bit (FP32).
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where Lv is the luminance, F is the luminous flux (or luminous power), Θ is
the angle between the surface normal and the specified direction, A is the area
of the surface (m2), Ω is the solid angle in steradian5 and d is the distance for
consideration of the attenuation.
The smallest luminance corresponding to the intensity value (0, 0, 0) displayable
by a LCD monitor lies usually between 0.15 to 0.8 cd/m2, on a CRT monitor
below 0.1 cd/m2. The brightest values lie between 150-500 cd/m2 on a LCD and
between 80-200 cd/m2 on a CRT. This means that both LCD and CRT devices
always have a residual amount of light, even if they display black. Also, they are
very limited in the maximum brightness.

1.8. Limitations and Compensations

Modern graphics hardware is able to represent and process color values in full
floating-point precision at high resolution in real-time. Yet, no monitoring device
on the consumer market is able to show the full gamut and range of an HDR
image. Whereas synthesis is performed in HDR and textures can be stored in
special HDR file formats, the final image is always squeezed to 256 intensity lev-
els.
To compensate for this, algorithms exist that map colors from the HDR im-
age range to a lower dynamic range that matches the capabilities of the desired
display device. Such a method is called tone reduction or tone-mapping opera-
tor (TMO). Essentially, tone mapping addresses the problem of strong contrast
reduction from the scene values to the displayable range. The most simple TMO
would be just to clamp all color values above the maximum displayable value (e.g.
> 1.0). More sophisticated TMO try to preserve image details and color appear-
ance to appreciate the original scene content. Well-known TMO were presented
by Reinhard et al. [RSSF02] and Ashikhmin and Ferwada [AG06, RSSF02].

1.9. Gamma Correction and Linear Color Values

Gamma correction is the practice of applying the inverse of the monitor trans-
formation to the image pixels before they are displayed. That means that if the
pixel values are raised to the power 1

γ before display, then the display implicitly
raising to the power gamma will exactly cancel it out, resulting, overall, in a
linear response:

Vout = V γ
in

CRTs do not behave linearly in their conversion of voltages V into light intensi-
ties. And LCDs, although they do not inherently have this property, are usually
constructed to mimic the response of CRTs. A typical gamma of 2.2 means that
a pixel at 50 percent intensity emits less than a quarter of the light as a pixel at
100 percent intensity. Gamma is different for every individual display device, but
typically it is in the range of 2.0 to 2.4. Adjusting for the effects of this nonlinear

5solid angle in the international system of units
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characteristic is called gamma correction.
Note that renderers, shaders, and compositors operate with linear data in most
of the cases. They sum the contributions of multiple light sources and multi-
ply light values by reflectances. Unfortunately, if the pixel’s numerical value is
doubled, the CRT, LCD, or similar device display will not display a pixel twice
as bright. The nonlinearity is subtle enough that it is often unintentionally or
intentionally ignored, particularly in real-time graphics, which makes it worth
noting in the context of this thesis.

1.10. HDR in Real-Time Graphics

HDR Rendering has several advantages compared to traditional 8-bit rendering.
First of all, light sources with very different intensities can be used. A dim candle
in a dark room can as well be represented as the sun6. It is barely possible to
model this relation with 256 intensity levels, especially because surfaces reflecting
the sunlight (e.g. shiny or wet surfaces, water) will have high luminance values
after reflection as well.
A second advantage are spatial filtering operations such as Gaussian blur, motion
blur or other filter types: for a normalized kernel and 8-bit precision, a surface
that has the maximum intensity of 1.0, will have an intensity < 1.0 if only one
neighbored pixel has a value < 1.0. This means that filter operations directly
influence the dynamic range, which is not intended by the programmer. This is
no longer a problem when HDR and floating point render targets are supported.

6The sun’s luminance on a bright day is 100, 000 times higher than a candle.
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2 The Human Visual System

The human visual system can be divided into the following components: the
eyes - consisting of the lens, iris, the retina and the optic nerve - and the visual
pathways in the brain, along which these signals are transmitted and processed.
The following sections explain the biological fundamentals of the human vision,
which are essential for the development of the perceptual metric presented later
in this work.
Note, that the HVS is based on biological and psychological processes which are
not yet fully understood. A so called perceptual model, which is used to quantify
visual quality, is just an approximation of the real processes occurring in the eye
and brain and simulates the behavior of this very complex system. A typical
perceptual model includes features such as

• Light adaption

• Lack of color-resolution

• Masking

• Low-pass filter characteristics

• Motion sensitivity

For the development of a perception-based metric, it is important to know the
principles of human vision, therefore the most relevant elements are introduces
in this section. A very comprehensive review can be found in [Win05].

2.1. The Eye

The eye serves as sensor for electromagnetic radiation. We see things because
each object has its specific electromagnetic spectrum, which is the characteristic
distribution of radiation that is emitted, absorbed or reflected by that particular
object. The eye only sees radiation in the range 380 − 750 nm, with ultra-
violette (UV) at the shorter end and infra-red (IR) radiation at the longer end.
Working very similar to the principles of a photographic camera, the eye com-
prises a system of lenses and a variable aperture to focus images on the retina.
The optics of the eye rely on the physical principles of refraction, as a beam
of light changes its direction as it is transmitted through media with different
refractive indices.

2.2. The Pupil

The pupil is the visible part of the lens. The size of the pupil is controlled by the
iris muscle. It is able to regulate the amount of light over a 10 log unit range,
changing its diameter from approximately 8.0 mm down to about 1.5 mm. The
pupil is only able to produce a little more than a log unit change, so pupillary
action alone is not sufficient for visual adaptation. More than adaptation, the
pupil’s size serves to mitigate the visual consequences of aberrations in the eye’s
optical system. At high levels where there is plenty of light to see by, the pupil
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stops down to limit the effects of these aberrations. At low levels where catching
enough light to allow detection is more essential than optimizing the resolution
of the retinal image, the pupil opens to allow more light into the eye.

2.3. The Retina

The retina consists of a large number of photoreceptor-cells, which are arranged
in several layers which the light has to pass before it is finally absorbed in the
pigment layer, located at the very back of the retina. A small area on the retina
is called the fovea: it is responsible for sharp central vision. The human fovea has
a diameter of about 1.0 mm and contains a very high number of photoreceptor
cells. The high spatial density of cones accounts for the high visual acuity in the
fovea.

2.4. Photoreceptors

The photoreceptors are specialized neurons that contain a particular protein
called rhodopsin. Two types of opsin are involved in vision, namely rods and
cones. Rods are responsible for scotopic vision at low light levels, and cones are
responsible for photopic vision at high light levels. When both the rod and cone
systems are active, this is called mesopic range. Rods are found primarily in the
periphery of the retina. Though rods sample the retina very finely, their acuity
under scotopic conditions is poor, because signals from many rods converge onto
a single neuron, which improves sensitivity but reduces resolution. There are
between 75 and 150 million rod and 6 to 7 million cone photoreceptors in each
retina.
There are three types of cones that differ in wavelength of light they absorb.
These three types are referred to as L-cones, M-cones and S-cones, according to
their sensitivity to long, medium and short wavelengths. They are used primarily
to distinguish color and other features of the visual world at normal levels of light.

Figure 2.2.: Sensitivity levels of the three cone types.

As shown in Figure 2.2, peak sensitivities occur around 440 nm, 540 nm, and
570 nm. The absorption spectra of the L- and M-cones are very similar, whereas
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the S-cones exhibit a significantly different sensitivity curve7.

2.5. Light Adaptation

The range of light energy we experience is vast: the light of the noonday sun
can be as much as 10 million times more intense than moonlight. Figure 2.3
displays the range of luminances we encounter in the natural environment and
summarizes some visual parameters associated with this luminance range.
The way our visual system copes with this huge range of luminances is by chang-
ing its sensitivity, depending on the luminance prevailing in the visual field. This
process is called adaptation. During the adaptation, the system becomes ac-
customed to processing higher or lower light levels in its environment than it
was exposed to before. The human visual system is capable of adapting to an
enormous range of light intensity levels. Adaptation allows us to better discrim-
inate relative luminance variations at every light level. The HVS provides three
different systems to control adaptation:

• Pupillary aperture: The pupil diameter can be varied between 1.5 mm
and 8 mm, corresponding to a 30-fold change of the light quantity.

• Chemical processes in the photoreceptors: Existing in both cones
and rods, this process changes the concentration of photochemicals in the
receptors8.

• Adaptation at neural level: This mechanism involves all neurons in all
layers of the retina. While neural adaptation is less powerful, it is faster
than adaptation in the photoreceptors.

Figure 2.3.: The range of luminances in the natural environment and asso-
ciated visual parameters. From Ferweda et al. [FPSG96].

Although adaptation provides visual function over a wide range of ambient
intensities, this does not mean that we see equally well at all intensity levels.
For example, under dim conditions our eyes are very sensitive and are able to
detect even small differences in luminance. However, at low lighting conditions,
our acuity for pattern details and the ability to detect colors are poor.

7The overlapping regions are essential to discriminate fine color differences.
8This adaptation mechanism is rather slow, as it may take up to an hour.
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2.6. Contrast Sensitivity

Much like the contrast of display devices, the contrast in the HVS describes the
ratio between the color of an object and its background. The higher the con-
trast, the more distinguishable is the object from the background. Contrast is
depending on both color and luminance. Because the human visual system is
more sensitive to contrast than to absolute luminance, we are capable of perceiv-
ing the world regardless of the huge changes in illumination. This property is
known as the Weber-Fechner law. Mathematically, Weber contrast is expressed
as

CW =
ΔL

L

where ΔL is the difference between the foreground object and the background,
and L is the luminance of the background.

2.7. Color Perception and Trichromacy

The color matching experiment by Brainard [Bra95] showed that human color
vision is based on trichromacy, this means that any color can be expressed by
the linear equation

t = Cx

where t is a three-dimensional vector whose coefficients are the intensities of the
three primary lights, x is the color to be matched, and N is a matrix, where the
rows consist of N samples of the so-called color-matching-functions as investi-
gated by [Bay87].

2.8. Disadvantages of Pixel-based Metrics

The mean square error (MSE) is the mean of the squared differences between the
gray-level values of pixels in two pictures I and I ′:

MSE =
1

XY

∑
x

∑
y

[I(x, y)− I ′(x, y)]2

for pictures of size X × Y . The root mean square error (RMS) is simply
RMS =

√
MSE. For measuring image quality, an MSE of zero means that two

images match with perfect accuracy.
The peak signal-to-noise ratio, abbreviated PSNR, is defined as

PSNR = 10 log
m2

MSE

where m is the maximum possible pixel value of an image9. When the two
images are identical, the MSE will be zero, resulting in an infinite PSNR.

9e.g. 255 for 8-bit images.
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Both MSE and PSNR are widely used, since they are intuitive and their com-
putation is very easy and fast. But because they only perform a pixel-by-pixel
comparison of images, they only have a limited, approximate relationship with
the actual visual distortion. Therefore, they only poorly represent the way the
human visual system perceives the difference between two images. Under certain
conditions, the PSNR can even be improved by adding noise to the image. The
reason for this is that distortions are often much more disturbing in relatively
smooth areas, whereas distortions is textured regions are not taken into account
by pixel-based metrics. Therefore, the perceived quality of images with the same
PSNR can be very different.

16



Chapter 2. Basics

3 Material Representations

The physically correct simulation of the light-matter interaction is infeasible in
practice. Therefore, much effort has been spent on developing material represen-
tations that describe the reflection properties of a possibly wide range of materials
with a few parameters only. Ideally, these representations are also computational
inexpensive to be rendered in real-time.
This section begins with a short look at the rendering equation, which describes
the interaction of light with a surface, including indirect lighting and reflection
properties. In the next section, the different types of light interaction prevailing
in the real world are discussed in detail. After this, the BRDF, the BSSRDF,
the BTF, and the d-BRDF are explained.

3.1. The Rendering Equation

The radiance of an infinitesimal surface point is defined by the rendering equation

Lr(λ,x, ωr) = Le(λ,x, ωr) +

∫
Ω+

ρ(λ,x, ωr, ωi)Li(λ,x, ωi) cosΘidωi

where Lr is the outgoing radiance at surface point x into direction ωr. The
equation has to be solved for each wavelength λ separately to account for effects
like chromatic dispersion or to simulate spectral rendering10. The emissive power
Le is only greater than zero if the point x lies on a light source. Otherwise, the
incoming radiance depends on the integral of all incoming light directions ωi

over the positive hemisphere Ω+. The term Li(λ,x, ωi) represents the irradiance
coming from direction ωi. Note, that for the computation of Li, the rendering
equation has to be solved again for each incoming light direction ωi. Due to
this nesting, the rendering equation cannot be solved analytically. Finally, the
reflectance function ρ represents the material at this particular surface point, i.e.
it describes the way the surface reflects the light. The rendering equation was
first introduced by Kajiya [Kaj86].
However, there are some properties not included in the rendering equation, such
as phosphorescence11 and subsurface scattering12.

3.2. Light Matter Interaction

In general, when a light ray hits a surface, a complicated light-matter dynamic
occurs. This interaction depends on the physical characteristics of the light as
well as the physical composition and characteristics of the surface. Some of these
processes are illustrated in Figure 2.4.

Basically, three types of interaction can occur:

• Reflection

10as required for correct atmospheric scattering, for example
11Phosphorescence is the time-shifted re-emission of the radiation that is absorbed by the material.
12For the simulation of subsurface scattering, the integral has to be computed not only over all directions
of incoming light, but also over an area A.
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Figure 2.4.: Interaction of light with a material.

• Absorption

• Transmittance

As shown in Figure 2.4, the the portion of light that is not absorbed can either
be reflected perfectly or diffusely into all directions of the positive hemisphere.
It can as well penetrate the material, following the direction of the refracted ray
according to the law of Snellius. For grazing angles, reflection occurs instead
of refraction, a phenomenon described by the Fresnel equation. Both of these
effects depend on the light’s wavelength, i.e. the red, green, and blue potions of
the light have different directions after the transformation. Finally, light can be
reflected by small particles in the material, causing it to leave at an arbitrary
surface position. This effect occurs for materials such as milk, wax or human
skin.
Some very basic materials are shown in Figure 2.5: one of the simplest materials
models only describes only diffuse reflection (top left), defined by the dot product
between the surface normal and the light vector. The light intensity can be
computed per vertex13 or per pixel. Another well-known material is the Phong
lighting model [Pho75], which adds a specular highlight to the diffuse reflection
(top right). Both of these materials have the advantage that they can easily be
rendered in real-time. This is not the case for perfect or diffuse reflection (bottom
left) and refraction (bottom right), which are computationally more expensive.

These reflection types are just a small subset of the variety of effects that
occur in the real world. Currently, no existing material representation is able to
comprise all of them. Therefore, it is left to the graphics programmer to observe
real-world materials and translate the light-matter interaction into source code.
This process can be described in three elemental steps:

1. Analysis: Observation of real-world behaviors, knowledge of the actual
physical processes.

13Faster in general.
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Figure 2.5.: Basic materials types: diffuse, specular, reflective, and
refractive.

2. Formalization: The light-matter interaction has to be transformed into
a set of mathematical rules and equations.

3. Simulation: The formalization has to be simulated by source code, which
is then executed on the CPU or the GPU.

In the case of real-time graphics, the simulation must also be done highly
efficient to meet performance constraints, whereas offline renderers (e.g. used in
CG movies) may spend hours for the computation of a single image.

3.3. The BRDF

The BRDF [NRH+92] is a weighting function that describes how light is reflected
when it makes contact with a surface, depending on the physical characteristics
of light as well as the physical composition and characteristics of the matter.
Consequently, a BRDF is a function of incoming light and outgoing view direction
to a local orientation at the light interaction point. Additionally, when light
interacts with a surface, different wavelengths of light may be absorbed, reflected
and transmitted to varying degrees depending upon the physical properties of
the material itself. This means that the BRDF is also a function of wavelength.
Considering these aspects, a BRDF can be written as:

ρ(ωo, ωi,x, λ)

where ωo = (Θo,Φo) and ωi = (Θi,Φi) are spherical angles and defined over
the positive hemisphere of point x. BRDFs can be classified into two classes:
isotropic and anisotropic BRDFs. The latter class exhibits variant reflection
properties when rotated around the normal. Furthermore, two important prop-
erties of the BRDF are reciprocity

∀x, y : ρ(ωo, ωi) = ρ(ωi, ωo)

and conservation of energy
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∀x, y, ωi :

∫
Ωo

ρ(ωo, ωi)dωo ≤ 1

The sources of BRDF data are manifold: phenomenological models (e.g. Phong)
have intuitive parameters and are the most used BRDF in real-time computers
graphics. Physical models like Cook-Torrance [CT82] simulate the behavior based
on a microfacette model.

3.4. The BSSRDF

One major flaw of the BRDF is the assumption that light entering a material
leaves at the same position. This approximation is valid for metals, but fails for
translucent materials, which exhibit significant transport below the surface, as
shown in Figure 2.6.

Figure 2.6.: Reflection properties of the BRDF (left) and the BSSRDF
(right).

To simulate translucent materials such as milk, wax or skin, Jensen et al. [JMLH01]
introduced the more general Bidirectional Subsurface Scattering Distribution
Function or BSSRDF, which can describe light transport between any two rays
that hit a surface. The outgoing radiance Lo at point xo into direction ωo of the
BSSRDF is defined as

Lo(xo, ωo) =

∫
A

∫
2π

S(xi, ωi, xo, ωo)Li(xi, ωi)(nωi)dωidA(xi)

where S is the BSSRDF integrated over all surface positions xi of the surface
area A and all incoming lighting directions ωi.

3.5. The BTF

The BRDF and the BSSRDF have several disadvantages: since they describe
reflectance on a micro-scale only, they cannot capture the full complexity of in-
homogeneous materials at meso-scale, such as self-occlusion and inter-reflections.
Materials with spatially varying properties can be faithfully described by the
Bidirectional Texture Function or BTF which was first introduced by Dana et
al. [DvGNK99]. Like the BRDF, the BTF is a function of six dimensions:

Lo(u, v, θi, φi, θo, φo)

Here, θi, φi, θo, and φo are spherical angles and u, v is the position on the
parameterized surface.
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The acquisition of the BTF is a very simple process which can be performed
using a standard off-the-shelf-camera and an image-processing software. On the
contrary, the acquisition of BTFs requires a complex and controlled measure-
ment environment. As BTF acquisition is physical measurement of real-world
reflection, special attention has to paid to the device calibration and image regis-
tration. Rendering directly from this data via linear interpolation is impractical
even on todays graphics hardware. Therefore, compression methods have to be
applied to the data before rendering.

Figure 2.7 shows the relation of processing power and memory consumption
in proportion to realism. For this purpose, the surface functions Phong Model,
the BRDF, the BSSRDF, and the BTF are plotted.

Figure 2.7.: The relation of realism to processing power and memory
consumption.

3.6. The d-BRDF

The distribution-based BRDF (d-BRDF) introduced by Ashikhmin [Ash06] plays
a very elemental role for the material representation that is presented later in this
work. It is based on the assumption that the surface consists of a large number
of small facettes as first proposed by Cook and Torrance [CT82].

ρ(k1,k2) =
cp(h)F (kh)

(k1n) + (k2n)− (k1n)(k2n)

Here, p(h) is the so called Normal Distribution Function (NDF), that simulates
the distribution of microfacettes at microscale. The constant c is an RGB scaling
factor, and h is the halfway vector. The denominator is a continuous function
for simulation of masking and shadowing as shown in Figure 2.8. The Fresnel
function can be computed using Schlick’s approximation:

F (kh) = r0 + (1− r0)(1− (kh))5

where r0 is a user-defined value that controls the minimum reflectance. The
most useful property of the d-BRDF is, that the NDF function can be stored as
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a two-dimensional bitmap. This can be achieved by a mapping of the halfway-
vector from three to two dimensions. The dimensional reduction can be done
with spherical or paraboloid mapping.

Figure 2.8.: Shadowing and masking in the d-BRDF representation.
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4 Brief Survey of Simplification Algorithms

Currently, polygonal models dominate interactive computer graphics. Graphics
cards are specialized hardware for the rendering and rasterization of polygonal
models. While NURBS14 or subdivision surfaces define an object analytically,
polygonal models are discrete linear approximations of a surface. In most cases,
an approximation with more polygons is visually more appealing than an ap-
proximation with just a few polygons. This is true especially for the silhouettes
of three-dimensional objects, as shown in figure 2.9.

Figure 2.9.: Comparison of silhouette quality. Left: a sphere with 72 poly-
gons and a cylinder with 24 polygons. Right: a sphere with
648 polygons and a cylinder with 96 polygons.

Often, a polygonal model is referred to as a mesh. In its general form, a mesh
is identical to an undirected graph G = (V,E), where V is the set of nodes and E
is the set of edges, which are 2-element subsets of V . In a mesh, a node is called
a vertex. Two connected vertices define an edge. Three vertices, connected to
each other by three edges, define a triangle, which is the simplest polygon in
Euclidean space. Note, that a model of more complex polygons can always be
reduced to a set of triangles by triangulation algorithms. Sometimes, a polygon
is also called a face.
Mesh simplification often requires collapsing an edge into a single vertex. This
operation requires deleting the faces bordering the edge and updating the faces
which shared the vertices at the end points of the edge. This step requires to
discover adjacency relationships between components of the mesh, such as the
faces and the vertices. While these operations certainly can be implemented on
the simple mesh representation mentioned above, they will most likely be costly.
Many will require a search through the entire list of faces or vertices, or possibly
even both.
To implement these types of adjacency queries efficiently, more sophisticated
boundary representations (b-reps) have been developed which explicitly model
the vertices, edges, and faces of the mesh with additional adjacency information
stored inside.
The half-edge data structure is a slightly more sophisticated b-rep which allows
all of the queries listed above to be performed in constant time. In addition, even
though adjacency information are included in the faces, vertices and edges, their

14Non-Uniform rational B-Spline
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size remains fixed (no dynamic arrays are used) as well as reasonably compact.
These properties make the half-edge data structure an excellent choice for many
applications, however it is only capable of representing manifold surfaces, which
in some cases can prove prohibitive. Mathematically defined, a manifold is a
surface where every point is surrounded by a small area which has the topology
of a disc. For the purpose of a polygon mesh, this means that every edge is
bordered by exactly two faces; t-junctions, internal polygons, and breaks in the
mesh are not allowed.
In the remainder of this section, a brief survey of simplification algorithms is
given. A good survey is also found in [Lue01].

4.1. Vertex Clustering

Vertex clustering was first proposed by Rossignac and Borrel [dLK93]. First, a
3D grid is laid over the object. Next, an importance is assigned to each vertex,
depending on curvature and size of adjacent triangles. Then all vertices inside
a grid cell are collapsed to the vertex with the highest importance. When a
triangle becomes degenerated, it is replaced by a line, merging them together
when several lines connect the same two vertices. When a line is collapsed it
is replaced by a point and again merged with points at the same position. In
this algorithm the grid resolution determines the trade-off between quality and
reduction rate.

4.2. Simplification Envelopes

Cohen et al. developed simplification envelopes [CVM+96] to guarantee fidelity
bound while enforcing local and global topology preservation. The simplifica-
tion envelopes consist of two offset surfaces at some distance ε from the original
surface. Since these envelopes are not allowed to self intersect, ε is decreased at
high curvature regions. By keeping the simplified surface inside these envelopes,
the algorithm can guarantee a geometric deviation of at most ε. Additionally,
surface self-intersections are prevented during simplification.

4.3. Quadric Error Metrics

The quadric error metric simplification algorithm [GH97] provides perhaps the
best balance between speed, fidelity and robustness. The algorithm works by it-
eratively merging pairs of vertices which do not necessarily need to be connected
by an edge. Candidate pairs include all edges plus all vertices closer than a user
specified threshold t. The major contribution of this algorithm was the way to
represent the error and calculate a new vertex position using a quadric. Another
advantage besides speed and quality is that the algorithm also performs topolog-
ical simplification and therefore does not require a manifold input mesh. Since
the number of candidate pairs approaches O(n2), as t approaches the model size,
Erikson and Manocha proposed an adaptive threshold selection scheme [EM98]
to improve performance. A comparison between Vertex Clustering and Quadric
Error Metrics is shown in Figure 2.10.

24



Chapter 2. Basics

Figure 2.10.: Comparison between Vertex Clustering (left) and Edge Col-
lapse (right) for the Buddha model with 27,303 triangles:
Vertex Clustering simplifies without respect to curvature and
spends too many triangles in flat areas (such as the forehead).

4.4. Appearance Preserving Simplification

Cohen, Olano and Manocha extended the simplification envelopes and introduced
an appearance-based simplification algorithm [COM98] by using a fidelity error
term, which is based on maximum screenspace deviation. This means that the
simplification’s appearance when rendered should must not deviate from the
original appearance by more than a user-defined number of pixels. Attributes
affecting the appearance are surface position, surface color and surface curvature.

4.5. Progressive Meshes

A progressive mesh is a representation of a polygonal model as sequence of col-
lapse operations. It was introduced as the first dynamic simplification algorithm
for manifold polygon meshes by Hoppe [Hop96]. The progressive mesh is com-
posed of a simple base mesh created by a series of edge collapses and the se-
quence of vertex split operations necessary to reconstruct the original model.
Although the original progressive mesh used only edge collapses, adding other
collapse operations is possible. The constructed sequence encodes the simplifi-
cation process from the model to the base mesh. Since the edge collapse and
vertex split operation can be performed relatively fast, it is possible to compute
them during runtime. Later Hoppe extended the progressive meshes to support
view-dependent simplification [Hop97].

4.6. Geometric Error

The distance d(p, S′) between a point p and a surface S and another surface S′

is defined as:

d(p, S′) = min
∀p′∈S′ d(p, p

′)

where d(p, p′) is the Euclidean distance between two points in E3. The geomet-
ric distance - also called one-sided or single-sided Hausdorff distance - between
two surfaces S and S′ is then defined as
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D(S, S′) = min
∀p∈S

d(p, S′)

Note, that this distance is not symmetric in general, i.e. D(S, S′) �= D(S′, S).
Therefore, the (symmetrical) Hausdorff distance is defines as

H(S, S′) = max(D(S, S′), D(S′, S))

This value gives a more accurate measure of the distance between two surfaces
by preventing the possible underestimation, which can occur if using only one-
sided distances.

4.7. Disadvantages of the Geometrical Error

Quadric error metrics can be extended by taking the Hausdorff distance into
account. This has the advantage, that silhouettes with very high visual quality
can be preserved. Unfortunately, the same error bound must be used for all
regions of the object, even for regions where a more aggressive simplification is
possible. For this purpose, a perception-based error metric is introduced in part
3 of this thesis.
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5 Programming the GPU

In the early nineties, most computer graphics hardware was hard-wired to the
specific tasks of vertex and fragment processing. This means that algorithms to
rasterize, shade and draw triangles were fixed within the hardware. Even though
these hard-wired graphics algorithms could be configured by graphics applica-
tions in a variety of ways, reprogramming the hardware was not possible.
Fortunately, as the graphics hardware advanced, the vertex and fragment process-
ing units in recent GPUs became programmable. Before programmable hardware
was available, no programming language existed. Therefore, the only available
way to address the capabilities of the GPU was low-level assembly language. A
shading language makes it much easier to program GPUs. The following sections
give an overview of the languages:

• High Level Shading Language (HLSL)

• Compute Unified Device Architecture (CUDA)

• Open Compute Language (OpenCL)

5.1. Shading Languages in General

A shading language specifically targets graphics hardware, as it is specialized
to control the shape, appearance, and motion of objects. These languages are
different from conventional programming languages, because they are based on a
data-flow computational model. In such a model, computation occurs in response
to data that flows through a sequence of processing steps, or stream. The most
widely used shading languages are currently Cg (NVidia), HLSL (Microsoft)
and GLSL (OpenGL ARB). All three languages have in common that they are
compiled down to assembly code. Cg code can be compiled to fragment code
for different platforms, HLSL compiles directly to DirectX and GLSL compiles
natively.

5.2. CPU and GPU Architecture

In 2010, the consumer market for CPU is dominated by multicore processors con-
taining two to four cores integrated onto multiple dies in a single chip package.
The user benefits from this development, since several tasks can be performed
concurrently, accelerating tasks like video processing or rendering.
At the same time, graphics hardware has become more flexible due to pro-
grammability. The GPU has evolved into a highly parallel, multithreaded, many-
core processor with tremendous computational power and very high memory
bandwidth. In contrast to a multi-purpose CPU, the GPU is specialized for
compute-intensive, highly-parallel computation, such as computer graphics. There-
fore, the GPU’s architecture is devoted more to data processing rather than data
caching and flow control.
The reason why the GPU operates so much faster than the CPU is, that CPUs
are designed to get the maximum performance from a stream of instructions,
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which operates on diverse data. This data can consist of integers, floats, pointers
and strings in a random access manner. Though multiple instructions can be
executed in parallel by a modern CPU, the problem is that there is a limit to the
parallelism that is possible to get out of a sequential stream of instructions.
In contrast to the CPU, memory access in a GPU is extremely coherent: when a
texel is read, a few cycles later the neighboring texel is read. When the memory
is organized intelligently, performance comes close to the theoretical bandwidth.
As a result, the GPU does not need an enormous cache. Table 2.1 shows that
for sequential data, the GPU outperforms the CPU by more than three times.

Proc Cache Sequential Rand
GPU 45 20 3
CPU 44 6 1

Table 2.1.: Comparison of GPU and CPU memory access in gbyte/sec

5.3. Limits of Parallelism

The amount of performance gained by the use of multi-core processors is strongly
dependent on the algorithm and the implementation. Generally, the speedup is
determined by the fraction of the software that can be parallelized to run on
multiple cores simultaneously. This effect is described by Amdahl’s law, which
says that in the best case the speedup factors are near the number of cores, also
called embarrassingly parallel.

5.4. HLSL

The High Level Shading Language or HLSL was developed by Microsoft for the
use with the Microsoft Direct3D API. It is almost identical to the Cg shading
language. A typical HLSL program consists of

• A vertex shader that performs per-vertex processing such as transforma-
tions, skinning, vertex displacement, and calculating per-vertex material
attributes. As a minimum, a vertex shader must output vertex position in
homogeneous clip space. Optionally, the vertex shader can output texture
coordinates, vertex color, vertex lighting, fog factors, and so on.

• A geometry shader that performs per-primitive processing such as ma-
terial selection and silhouette-edge detection, and can generate new prim-
itives for point sprite expansion, fin generation, shadow volume extrusion,
and single pass rendering to multiple faces of a cube texture.

• A pixel shader that performs per-pixel processing such as texture blend-
ing, lighting model computation, and per-pixel normal and/or environ-
mental mapping. Pixel shaders work in concert with vertex shaders; the
output of a vertex shader provides the inputs for a pixel shader. In Di-
rect3D 9 some pixel operations (such as fog blending, stencil operations,
and render-target blending) occur after the pixel shader is finished.
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Since DirectX 11, the rendering pipeline has been extended by the following,
hardware-accelerated tessellation features:

• Hull Shader: Receives patch control points, outputs patch control point
after basis conversion

• Tesselator: Converts control points to topology (primitive assembly)

• Domain Shader: Receives final control points and creates domain points
with displacement.

These three stages are located before the geometry shader. As shown in Fig-
ure 2.11, the new tesselation feature greatly improves the visual quality at rela-
tively low computational cost. This is because not the full geometry has to pass
the vertex shader.

Figure 2.11.: Tesselation at runtime on DirectX11 hardware.

A typical HLSL program must contain at least one technique, which is ad-
dressed by the application. A technique must consist of at least one pass. If
more than one pass is defined (multi pass), the passes are processed in sequential
order. Optionally, the DirectX Standard Annotations and Semantics (DXSAS)
can be used directly in the shading language, as shown in Listing 2.1. The main
purpose of DXSAS is that shaders can be used in a standard way in a variety of
applications, tools and game engines.

Listing 2.1: HLSL Basic Structure
1 techn ique DX9x
2 {
3 // op t i ona l : DXSAS in s t r u c t i o n s
4 pass p0
5 {
6 // . . .
7 }
8 }

29



Chapter 2. Basics

Listing 2.2 shows the definition of the vertex- and pixel shaders. In DirectX
9, they are generated using the compile keyword, followed by the shader model
(SM). Note that in DirectX 9, the highest available model is SM 3.0. Renderstates
such as enabling the depth buffer or backface culling can be set in the pass. The
second part of the listing shows that these definitions heavily changed in DirectX
10. The compile keyword and the setting of the render states was replaced by
specific commands. Also, a new keyword for the definition of the geometry shader
is available.

Listing 2.2: Defining Vertex- and Pixel Shaders in D3D9 and D3D1x

9 techn ique D3D9x
10 {
11 pass p0
12 {
13 ZEnable = true ;
14 Cullmode = none ; // CW, CCW
15 VertexShader = compile v s 3 0 VertexShader ( ) ;
16 Pixe lShader = compile p s 3 0 Pixe lShader ( ) ;
17 }
18 }
19
20 techn ique D3D10
21 {
22 pass p0
23 {
24 SetDepthStenc i lS ta te ( EnableDepth , 0 ) ;
25 SetVertexShader ( CompileShader ( vs 4 0 , VertexShader ( ) ) ) ;
26 SetGeometryShader ( NULL ) ;
27 SetPixe lShader ( CompileShader ( ps 4 0 , VertexShader ( ) ) ) ;
28 }
29 }

5.5. CUDA

CUDA is the acronym for Computing Unified Device Architecture and was first
presented by NVidia in early 2007. CUDA works with all NVidia GPUs from
G8X onwards.

The CUDA-Toolkit and the CUDA-SDK offer an extended C-Compiler and
several programming interfaces. The C-Compiler does not only understand con-
ventional C-Code, but also some additional commands and so called device code.
Written in the well-known C-syntax, device code can be transmitted and exe-
cuted directly on the GPU. The C-compiler also understands so called host-code,
which is executed on the CPU.

Functions that contain device-code always begin with the keyword global .
These function are also called kernel. Recursion is not allowed in kernels. Inside
a kernel function, only functions declared with the device keyboard may be
called. Such function calls are treated like macros due to inline-expansion. On
the GPU, a kernel is executed in parallel as a thread.

A thread is a basic processing element of data. A warp is a group of 32 threads,
which is the minimum size of the data processed in SIMD fashion. Warps cannot
be manipulated directly, but have to be arranged in blocks that can contain
64 to 512 threads. Finally, these blocks are put together in grids, which are
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automatically broke down by the CUDA runtime, depending on the underlying
hardware: if the device has only few resources, grids are computed sequentially.
If the hardware has a very large number of processing units, grids are processed
in parallel, making CUDA scalable for future GPUs.

Listing 2.3: A CUDA kernel
30 g l o b a l void thre sho ldKerne l ( f loat ∗ g data , int width , f loat th r e s )
31 {
32 unsigned int x = blockIDx . x ∗ blockIDx . x + threadIdx . x ;
33 unsigned int y = blockIDx . y ∗ blockIDx . y + threadIdx . y ;
34
35 unsigned int index = y ∗ width + x ;
36
37 i f ( g data [ index ] >= thre s )
38 {
39 g data [ index ] = 1 .0 f ;
40 }
41 else
42 {
43 g data [ index ] = 0 .0 f ;
44 }
45 }

In Listing 2.3 computes a threshold operation on a two-dimensional array. The
implicit variables in lines 3 and 4 are used to address the elements in the array.
Another restriction is, that device-code can only access device-memory, that is
memory on the graphics hardware. Host-code, instead, can allocate memory,
release and change memory on the graphics hardware. Note that direct manip-
ulation of the device memory, e.g. with device array[ 0 ] = 0;, is not possible in
the host-code.

The use of multiple blocks is required, since CUDA only allows 32 to 512
threads in a single block. All threads in a particular block share resources, such
as memory or registers. Too many threads in a block result in a slow parallel
execution or even parallelization is not possible. These and other limitations
are listed in the CUDA Programming Guide and are hardware-independent. In
the Guide, several levels of capabilities, called compute capabilities, are defined.
They usually depend on the hardware that is used.

The most significant hardware enhancement is support for shared memory
atomics. One simple application of that would be counting the number of charac-
ters in a string, as used for Huffmann encoding for example. Another new feature
is the ability to run CUDA code as highly efficient SSE-based multithreaded C
code on the CPU.

Listing 2.4: CUDA Host-Code
1 void executeThreshold ( f loat ∗ hostArray , int width , int height , f loat th r e s )
2 {
3 f loat ∗ deviceArray ;
4 int a r rayS i z e = width ∗ he ight ∗ s izeof ( f loat ) ;
5 cudaMalloc ( ( void∗∗ )&deviceArray , a r r ayS i z e ) ;
6
7 // Copy : Host −−> Device
8 cudaMemcpy( deviceArray , hostArray , ar rayS ize , cudaMemcpyHostToDevice ) ;
9

10 dim3 b locks ( width / 16 , he ight / 16 , 1 ) ;
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11 dim3 threads ( 16 , 16 , 1 ) ;
12 thresho ldKerne l<<< blocks , threads >>>( deviceArray , width , th r e s ) ;
13
14 // Copy : Device −−> Host
15 cudaMemcpy( hostArray , deviceArray , ar rayS ize , cudaMemcpyDeviceToHost ) ;
16
17 cudaFree ( deviceArray ) ;
18 }

In line 6 of the example code memory is allocated on the graphics device. The
C array passed as a parameter is then copied into this memory in line 9. The
following lines describe the block-/thread layout: in this case it is assumed, that
the width and height of the image are multiples of 16. When the kernel is called
in line 13, 256 (16x16x1) threads work in concurrently in a block. After this, the
content of the array if copied back to the memory of the host (line 16) and the
memory on the graphics card is released (line 18). The kernel-call is synchronous,
meaning that the execution of the host-code is paused as long as the kernel is
working.

5.6. OpenCL

OpenCL, standing for Open Computing Language, was initially developed by
Apple in 2008, but then submitted to the Khronos Group, an industry consortium
that develops and maintains open standards, with Apple still holding trademark
rights. Being supported by AMD, IBM, Intel and NVidia, OpenCL serves as
a framework for programs running across heterogeneous platforms consisting of
CPUs, GPUs and other types of processors.

OpenCL’s main purpose is to use all computational resources in the system
by supporting a data- and task-parallel compute model. OpenCL’s execution
model consists of a kernel, a program and an application queue. Kernels are
executed across a global domain of work-items. Work-items are arranged into
local workgroups, which share local memory and synchronization. Workitems
must be independent and do not allow for a global synchronization.

In contrast to CUDA, which is restricted to NVidia hardware, OpenCL can be
used by AMD cards as well as on other hardware.

Figure 2.12.: Components of the OpenCL framework

The most important components of the OpenCL framework are the OpenCL
Platform Layer, the OpenCL Compiler and the OpenCL Runtime Library 2.12.
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The task of the Platform Layer is to handle different hardware with different
capabilities. Once the hardware is recognized, the platform layer is able to create
a so called context, which is explained in more detail later. The OpenCL Runtime
is used to manage the context object and provides an API to create kernel-
queues, memory- and program objects and kernels. The Runtime layer also
manages the communication between host and device memory. The third and
last component, the OpenCL Compiler, is responsible for the transformation of
the shading language into executable assembly code.

5.6.1. Context and Command Queues

The context is created by the host and defines an environment to run kernels.
No kernel can be executed without a proper context [Khr09], which consists of:

• Devices: The collection of OpenCL devices to be used by the host

• Kernels: The OpenCL functions that run on OpenCL devices.

• Program Objects : The program source and executable that implement the
kernels.

• Memory Objects: A set of memory objects visible to the host and the
OpenCL devices. Memory objects contain values that can be operated on
by instances of a kernel.

The context is created and manipulated by the host using functions from
the OpenCL API. The host creates a data structure called command-queue to
coordinate execution of the kernels on the devices. The host places commands
into the command-queue which are then scheduled onto the devices within the
context. These include:

• Kernel execution commands : Execute a kernel on the processing elements
of a device.

• Memory commands: Transfer data to, from, or between memory objects,
or map and unmap memory objects from the host address space.

• Synchronization commands : Constrain the order of execution of com-
mands.

The command-queue schedules commands for execution on a device.

• In-order Execution: Commands are launched in the order they appear in
the command-queue and strictly in-order. In other words, a prior com-
mand on the queue completes before the following command begins. This
serializes the execution order of commands in a queue.

• Out-of-order Execution: Commands are issued in order, but do not wait to
complete before following commands execute. Any order constraints are
enforced by the programmer through explicit synchronization commands.
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Kernel execution and memory commands submitted to a queue generate event
objects. These are used to control execution between commands and to coordi-
nate execution between the host and devices.
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Realistic Materials
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Previous Work

As shown in Figure 3.1, the main goal of this thesis is the real-time rendering
of realistic materials. This means that the material representation has to be
powerful enough to simulate even complex materials, but must also be simple
enough to be computational in real-time. Furthermore, the representation should
also be editable, which means that it must be possible for the user to change the
appearance and behavior1.

There are basically two fundamental classes of material representations: first
are the analytical models as shown on the right side of Figure 3.1. Typically, the
appearance of analytical models is controlled by only a few intuitive parameters.
The Phong model is probably the most famous and popular analytical model,
since its appearance can be controlled only by diffuse color, specular color and
the size of the specular highlight. Unfortunately, analytical representations are
restricted to a relatively small subset of materials and do not cover the diversity
that is found in the real world.

Figure 3.1.: Structure of the material representation chapter.

The second class are the image-based representations, which rely on materials
that exist and that we observe in the real world. As shown on the left side

1By using standard image processing software, in the best case.
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of Figure 3.1, there are two important issues in image-based representations:
acquisition describes the technical and physical process in which the input images
are obtained. Since this step usually results in several gigabytes of input data,
compression is necessary to reduce the size of the data.

This part of the thesis covers acquisition, compression and rendering of realis-
tic materials. Therefore, the previous work section covers a wide range of related
work: first, the high dynamic range image compression is described, including
surface parameterizations and statistical compression methods. This section is
followed by two acquisition methods, covering image alignment for hand-taken
photographs and the decomposition of the Bidirectional Texture Function. Fi-
nally, an efficient algorithm for the simulation of subsurface scattering is pre-
sented.

1 High Dynamic Range Image Compression

The efficiency of a compression method depends significantly on the way the
data is represented. Therefore, the previous work about high dynamic range
image compression is divided into two sections: first, different parameterizations
of surfaces are presented. Then, an overview of the most relevant compression
algorithms is given.

1.1. Surface Parameterizations

As the ability of the graphics hardware to display more and more triangles per
frame is constantly increasing, the complexity of scenes and models used in real-
time applications grows ever on and on. As a result, the manual design of real-
istic environments becomes very time-consuming and finally unfeasible. Possible
solutions to this problem are procedural models or (semi-)automatic generated
geometry.

Image-based rendering and modeling (IBRM) presents another solution to ad-
dress this issue. Normally, input images are acquired using either 2D or 3D imag-
ing or capture devices, before they are stored in a sample database [CBCG02]2.
The method proposed here is strongly correlated with the reflectance field intro-
duced by Debevec et al. [DHT+00]. A non-local reflectance field is described as
a set of light fields, denoted as

Rr(x, θr, φr)

where Rr is the radiance exiting an object at surface point x = (ur, vr) into
the direction θr, φr to the observer. A non-local reflectance field then is defined
as

R(x, θr, φr, θi, φi)

where θi, φi is the direction to the light source. An efficient method to render
the sample database in real-time was introduced by Chen et al. [CBCG02]. They

2A good overview of different methods to cope with the representation of such a sample database is given
in [MMS+05]
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propose to partition a light field into

fv
j (r, s, θ, φ) = Λv

j (r, s)f(r, s, θ, φ)

where fv
j is a small area, the so called vertex light field (VLF), around the j-th

vertex, sampled for a discrete set of outgoing directions (i.e. point of views). Due
to small rotation angles, these sampled areas are highly coherent, an observation
described by Nishino et al. [NSI99] before. After statistical compression and
quantization, several VLFs are packed together and stored as texture map. Once
loaded into the memory of a rendering device, they can be accessed extremely
fast, making it possible to reconstruct the VLF in real-time. While this work
originally focused on light fields only, it can also be used for local reflectance
fields.

The conceptual difference between a BTF and a reflectance field is the same
as between light fields and surface light fields: while reflectance fields are param-
eterized over screen space, BTFs are parameterized over the surface of an object
and thus can be used in the same way as textures.

1.2. Statistical Compression

Statistical compression has been widely adopted in IBRM. Originally it has been
introduced by Kautz and McCool for the compression of BRDFs [KM99, Kau99,
Wyn01]. They proposed to restate image compression as a problem of matrix fac-
torization. For this purpose, the 4D domain of a (possibly continuous) BRDF has
to be translated into the discrete 2D domain of a matrix. Non-specular BRDFs
can be fully reconstructed using normalized decomposition, essentially being a
1-term truncated PCA. More complex BRDFs contain diagonal structures, which
do not allow to reconstruct the BRDF with a few terms only3.

Kautz and McCool also showed that after quantization, the principal com-
ponents can be stored as regular bitmaps allowing to use hardware-accelerated
texture mapping for efficient reconstruction.

As the amount of data is especially huge for high dimensional representations
like non-local reflectance fields and BTFs, several methods have been proposed
to increase the covariance between pixels or texels. The pixels are either grouped
in clusters of high covariance [MMK03] or a per-pixel local coordinate system is
calculated such that the inter-pixel covariance is maximized [MSK06].

The principal component analysis has the disadvantage of evoking negative
values that cannot be stored directly in a common texture on older graphics
hardware. For this reason the homomorphic factorization was introduced by
McCool [MAA01] and extended by Latta [LK02]. Instead of a partial sum, the
matrix is decomposed as partial product containing only positive values. The ho-
momorphic factorization has the disadvantage that it is non-progressive, meaning
that for N+1 terms it has to be completely recomputed. Note, that the problem
of negative values became more or less obsolete due to the programmability of
modern rendering devices and their ability to store floating point textures.

3To a certain degree, the problem of diagonal structures can be addressed by the half-angle difference-
angle Gram-Schmidt reparameterization as shown by Wynn [Wyn01].
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2 Image Alignment

For the acquisition of materials and reflection properties, ordinary cameras
mounted on special acquisition devices or gantries can be used. Currently, the
dynamic range of most digital digital cameras is confined to 256 intensity levels.
This is not enough for specular materials, where it is necessary to sample the
input data in high dynamic range to preserve the original reflectance. For this
purpose, a sequence of images with different exposures can be taken. If the im-
ages are taken manually without a tripod, they have to be aligned before they
can be converted to a high dynamic range image.

For the creation of HDR images based on a sequence of different exposure
levels, the algorithm of Debevec and Malik [DHT+00] is the most widely used.
In their work, the dynamic range of an image is recovered by a weighted average
of multiple input images, each one taken with a different exposure time. While
the dynamic range of lambertian objects does not justify the use of HDR images,
specular or reflecting objects provide a dynamic range that exceeds the capabil-
ities of low dynamic range photographs. Although the weighting of the images
has been improved by Robertson et al. [RBS99], the basic principle is still the
same.

Initially, Debevec and Malik proposed using multiple exposures to recover the
full dynamic range [DM97] of a scene. Their proposal arises from the observation
that if one pixel has twice the value of another, it cannot be concluded that it
received twice the irradiance. Instead, the irradiance of a pixel is determined by
an unknown, nonlinear function called the response function or response curve.
Once the response curve is reconstructed, it can be re-used for the same camera
type. However, as the response curve is badly conditioned at extreme intensities,
Debevec and Malik introduced a linear weighting function to assure that values
near saturation have a lower contribution to the final image. The HDR image is
then computed as a weighted average of each pixel, thus containing information
captured by each of the images. Later, Robertson et al. introduced a smoother
Gaussian weighting function [RBS99] that better fits the accuracy range of a
CCD sensor.

The generation of HDR images from exposure sequences requires perfectly
aligned pictures since the intensity is calculated on a per pixel basis. If this is
not the case, the pictures need to be correctly aligned before HDR reconstruction.
A fast and robust method for image alignment was developed by Ward [War03].
Based on a median cut in combination with an XOR fitness function, it is able
to robustly remove translations between the images in the sequence. Grosch
extended this method to rotations [Gro06] using a downhill simplex solver and
exploiting graphics hardware to improve performance. The drawback of this
method is that, despite its robustness to moving objects, only an alignment of
static parts of the scene can be performed. The remaining artifacts, originating
from object movement or parallax, are removed in a second, semi automatic
phase at the cost of a reduced dynamic range.

The ghost removal algorithm proposed by Khan [KAR06] improves the weight-
ing function by not only considering the probability that a pixel is correctly ex-
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posed, but also the probability that the pixel is part of the background. For
this purpose an estimation scheme, based on a d-variate Gaussian density func-
tion, is introduced. For each pixel in every input image a small neighborhood is
considered to determine the contribution to the final image. The results of the
proposed algorithm claim that no further local alignment is required.

Mere ghost removal, however, cannot replace the process of image alignment,
because the dynamic range is removed from those areas where only a single image
contributes to the final image. The differences between ghost removal and image
alignment cannot always be seen at first glance, but become visible through the
loss of highlights4.

If not only the static background, but also moving foreground objects are
to be aligned, a single linear transformation is not sufficient. A similar non-
linear matching problem needs to be solved for state-of-the-art video codecs like
MPEG-4 [WSBL03]. In this case, so called macroblocks from one image need to
be found in a corresponding image. This matching problem is typically solved
using optical flow techniques [BFBB94, BBF94].

In the context of temporal image processing, Kang [KUWS03] presents a
method to create a sequence of HDR images from a stream of LDR input im-
ages. For this purpose, the input images are captured with alternating exposure
times using a programmable capturing device. To assure that the number of
output images is equal to the number of input images, neighboring images have
to be aligned, combined and tone mapped. Subsequent images are registered by
estimating an affine transform that maps one onto the other. A gradient-based
optical flow is used to compute a dense motion field to form a local correlation.

The presented approach is comparable to [KUWS03] in the sense that al-
ways three neighbored images are registered. Instead of an affine transform
macroblocks are used for the alignment. For motion estimation, a very accu-
rate and – with respect to different luminance – robust methods is the cross-
correlation [Lew95]. Another possibility to solve the non-linear alignment based
on optical flow would be the use of dense gradient matching [CDR02, SDR04].
However, this technique only works well, if the luminance in both images is ap-
proximately identical. While this could be achieved by mapping an image to the
dynamic range of the reference image, the method is not robust to noise and
thus will fail at dark and bright regions of the reference image. However, these
regions are the most important parts of the other images as they contain most
of the additional information.

3 BTF Decomposition

As mentioned before, one of the first empirical but physically not plausible BRDF
models was introduced by Phong [Pho75]. Later a physically correct model
was introduced by Ward [War92]. Data-driven models are based on real-world
measurements and construct a representation using orthogonal basis functions.
Kautz and McCool [KM99] represent a BRDF as sum of separable functions

4This can be seen on the roof tiles in Figure 5.7.

41



Chapter 3. Previous Work

where each of the functions can be stored as texture map and rendered in real-
time.

However, the focus of this thesis lies on physically based BRDF models
as introduced by Torrance and Sparrow [TS67]. Approaches of microfacette-
based models have been generalized to arbitrary facet distribution by the Mi-
crofacette BRDF Generator [APS00] that was used to approximate measured
BRDFs [NDM05]. Later, Ashikhmin proposed the d-BRDF model [Ash06] which
has a simplified shadowing and masking term and was used for BRDF acquisi-
tion by Ghosh and Heidrich [GH07]. Instead of discrete functions, Lafortune
et al. [LFTG97] fit measured BRDFs analytically using multiple cosine-lobes,
resulting in a very compact representation.

BTFs were introduced by Dana et al. [DvGNK99] and a comprehen-
sive overview of acquisition, synthesis and rendering is given by Müller et
al. [MMS+05]. Much effort has been spent in the field of BTF compression,
mostly based on statistical compression. Suykens et al. [SvBLD03] treat a BTF
as a set of spatially varying apparent BRDFs and introduce the chained matrix
factorization. Resulting factors can be stored as ordinary texture maps and ren-
dered on consumer hardware. Müller et al. [MMK03] took a similar approach
but used local principal component analysis to compress the apparent BRDFs,
whereas Liu et al. [LHZ+04] perform singular value decomposition of the whole
BTF dataset.

In addition to compression, some work has been conducted on measuring or
extracting the meso-scale geometry of BTFs. Lensch et al.x [LKG+01] present
a robust fitting algorithm of BRDFs to spatially varying materials, which does
not include interreflections or self-shadowing.

Magda and Kriegman proposed to decompose a BTF into a set of semi-
transparent layers [MK06] to encode the meso-structure. While this approach
has the advantage that complex structures can be modeled, the micro-structure
is stored volumetrically and thus can hardly be edited intuitively. Another draw-
back is the limited depth resolution resulting in rather strong shearing artifacts
at grazing angles.

Wang et al. [WTS+05] proposed a method to directly capture the meso-
geometry of a BTF and store it as 4D distance field, allowing for correctly shaped
silhouettes. Müller et al. [MSK06] extract a normal and tangent map and use
them to better align the ABRDFs with a data-driven local coordinate system.
The Meso-structure can also be obtained from specularity maps [CGS06] or using
the so-called Helmholtz stereopsis [ZBK02] where the structure and normals are
estimated by exploiting the Helmholtz reciprocity. Pairs of light source and cam-
era positions are chosen that guarantee that the ratio of the emitted radiance to
the incident irradiance is the same for corresponding points in two images. The
advantage is that no assumptions about the underlying BRDF have to be made,
but the resulting depth maps show strong artifacts for uniform materials.

None of the methods discussed so far consider the aspect of editing BTF data.
The non-parametric Inverse Shade Tree [LBAD+06] contains 1- or 2-dimensional
material representation at leaf level. These low dimensional materials can be
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edited, but the method is restricted to flat materials which can be described by a
few BRDFs only. Pellacini et al. [PL07] present an approach for editing spatially-
and temporally-varying BRDFs that adopts a stroke-based workflow. Efficient
solvers are used to allow interactive refinement of this appearance-driven opti-
mization, but there is no straight-forward extension to BTF editing. Kautz et
al. [KBD07] proposed an out-of-core data management for editing raw data of an
entire BTF. They developed sophisticated operators to edit shadows, specularity,
meso-structure and a method to build a selection-tree in order to represent dis-
tinct materials. The main drawback of this approach is that if the meso-geometry
is changed, affected features – e.g. shadows – do not change accordingly. While
interactive editing of a BTF is possible and took about 10-15 minutes for the
examples they used, the compression required for real-time rendering takes sev-
eral hours. Müller et al. [MSK07] developed a technique for procedural editing
of BTFs. They are able to alter or replace the original mesostructure using pro-
cedural models and generate a new BTF using constraint synthesis. Their main
benefit is that the whole complexity of shadowing and light transport is pre-
served. Unfortunately, the system is restricted to previously acquired materials
and the BTF has to be recompressed before rendering.

The idea of representing materials as combination of heightfield and BRDFs is
not novel: One of the first approaches to model meso-scale geometry was bump
mapping [Bli78] which simulates small-scale variation of surfaces by shifting nor-
mals into tangent and bitangent directions. Normal maps can also be directly
created from meshes and stored per pixel [COM98] to improve the visual qual-
ity of a simplified mesh. Parallax mapping is an enhancement of bump mapping
where per-pixel depth information is stored in a texture. The surface is displaced
accordingly per pixel which provides more realism for bumpy surfaces and can
further be improved by adding soft shadows in real-time [Tat06].

4 Subsurface Scattering

Fundamental work on translucent materials has been done by Wann Jensen et al.
[JMLH01]. They state that a BRDF can only describe metallic materials, but not
translucent materials where light does not necessarily enter and leave at the same
position. Therefore only methods that consider subsurface scattering can capture
the true appearance of translucent materials. For this purpose they propose to
use a diffuse approximation for the BSSRDF, which is based on the observation
that a light distribution in highly scattering media tends to become diffuse and
isotropic, that is invariant with respect to rotations around the normal.

One of the first real-time approximations for subsurface scattering was pre-
sented by Green [Gre04]. The assumption is that the farther through the ma-
terial light travels, the more it is scattered and absorbed. In order to measure
the distance light has traveled through a material, the scene is rendered from
the light’s position, storing the distance from the light to a texture. In the sec-
ond rendering pass this texture is used to obtain the distance from the light at
a given point seen by the viewer. By subtracting this value from the distance
from the light to this point, an estimate of the distance the light has traveled
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through the object is obtained. One problem of this approach is that it deals
with convex objects only and it does not consider refraction. Furthermore, only
a single view-dependent light path is calculated per pixel and thus the scattering
changes with the camera position.

Banterle and Chalmers [BC06] proposed a real-time technique for the rendering
of translucent materials based on spherical harmonics. The technique consists
of two passes, first the irradiance of the object is projected onto a spherical
harmonics basis, then in the second pass the exitant radiance is evaluated. This
technique supports also deformable objects with no precomputation time. For
the evaluation of the scattering they use a simplified approximation of the diffuse
dipole equation, which is enough to generate translucency effects, but not capable
of accurately reproducing the appearance of real-world materials. In addition,
the local geometry that has a significant contribution to the scattering is only
roughly approximated by a thickness term similar to [Gre04].

For the simulation of realistic human skin, d’Eon and Luebke [dL07] devel-
oped a multilayer model consisting of a thin oil layer, the epidermis and dermis.
The epidermis layer is a very rough surface, while the dermis holds many blood
vessels which leads to the reddish color when light is scattered inside the skin.
For the simulation of scattering, they combine a series of intermediate Gaussian
convolution textures which are combined in the final render pass. This technique
is called Texture Space Diffusion and handles only very local scattering. For
the transmission through thin surface regions such as ears or fingers, they use
the Translucent Shadow Maps (TSM) technique [DS03]. TSMs are an extension
of ordinary shadow maps and additionally store normals and irradiance values.
For each visible pixel, the according texel in light space in computed and its
local and global neighborhoods are sampled. They use the dipole approxima-
tion for simulation of the light subsurface scattering. Reflectance Shadow Maps
(RSMs) [DS05] extend the TSMs by additionally storing so called Flux values,
because each pixel is a potential light source. This algorithm is based on the
assumption that a shadow map contains all pixels that contribute to the indirect
lighting of a visible pixel. The disadvantage of their approach is that a very high
number of samples (up to 448) is required for accurate results.

To reduce the number of samples Ki and Oh [KO08] introduced a GPU-based
light hierarchy for real-time approximation of environment or indirect illumina-
tion. They store virtual point lights in images and then build a hierarchy of
these light sources into image pyramids using a clustering strategy. While the
proposed static clustering works very well for distant light sources which occur in
environmental or indirect lighting, the performance gain for subsurface scattering
where most of the light comes from close virtual lights is rather low.

Hoberock and Jia [HJ07] represent a polygonal mesh with a set of approximat-
ing disks in order to compute high quality ambient occlusion in real-time. A disk
is associated with each vertex of the mesh to approximate its adjacent polygons.
The algorithm computes the occlusion at a vertex by summing shadow contri-
butions from every other individual disk. A straightforward implementation has
a complexity of O(n2), which is avoided by recursively aggregating disks that
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have little variation in their contribution. The resulting hierarchical tree can be
exploited for the computation of subsurface scattering by simply replacing the
integration method for the energy transfer. The disadvantage of this technique is
that the computation of the disks as well as the aggregation have to be computed
offline and therefore it cannot be applied to dynamic objects.

Tong et al. [TWL+05] acquire material representations from physical samples
in a way that allows arbitrary geometric models to be rendered with these ma-
terials. The key observation is that the subsurface scattering characteristics of
quasi-homogeneous materials are locally non-uniform and require a local repre-
sentation with respect to the surface mesostructure. Since diffuse scattering does
not allow variation of the inner material properties, they propose to variate the
portion of light entering and exiting the surface at a given point. This way the
core subsurface scattering algorithms can still be used.
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As mentioned in the previous sections, the BRDF is able to convincingly model
macro-scale structures, but its limitations are easily apparent when rendering
structures at meso- or micro-scale. At this level, certain reflectance properties
like inter-reflection or subsurface scattering become visible. These phenomena
profoundly occur in materials such as fabrics, fur, and skin.

As BRDFs vary over viewing- and lighting-directions only and cannot express
spatial varying surface properties, reflectance fields, bidirectional texture func-
tions and surface light fields were introduced to compensate for this inability.
Reflectance fields and BTFs both are extensions of BRDFs as they have two
additional dimensions to represent spatial variance. They both are 6D functions
f(u, v, θi, φi, θo, φo), i.e. they store an incoming and outgoing ray for each point
on screen or on the surface. SLFs are defined as 4D functions f(x, θo, φo), but
stored as a piecewise linear approximation for each vertex only to meet memory
constraints.

Currently, it is not feasible to create analytical models that are able to rep-
resent a material at arbitrary scales. Therefore, image-based methods become
increasingly important. All image-based methods have in common that they are
acquired as a set of real-world input images. They can be divided into two classes,
namely geometry-less and geometry-based methods. The latter ones additionally
use a piecewise linear approximation of the object geometry. As low entropy and
spatial proximity are strongly correlated, compression methods can be expected
to work highly effective. In addition, geometry-based methods need fewer input
images.

The input for the image-based methods is gathered by taking a large num-
ber of input images under varying light and view conditions. The acquisition of
the input images is both very time- and space-consuming and the efficient com-
pression of the acquired data is a challenging task. Common techniques either
use statistical compression such as principal component analysis, homomorphic
factorization, normalized decomposition, fixed bases like wavelets and spherical
harmonics or vector quantization. More sophisticated algorithms combine several
of these techniques, e.g. vector quantization and PCA.

The problem that arises is that none of the aforementioned techniques can
be applied to these exponentially distributed values directly since all of them
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minimize the RMS-error1, whereas the domain of radiance values is non-linear.
In addition, the radiance values are not directly visualized, but a tone mapping
operator is applied to map them into the lower dynamic range of a given display
device. Note, that even if this mapping was not necessary, the visual perception of
the radiance is non-linear as well, such that a linear least squares approximation
can never yield optimal visual quality.

The solution to these problems is to apply an invertible operator that maps
the radiance values to a uniformly distributed domain before compression and
remaps them into their original domain after decompression. The mapping needs
to be chosen in such a way, that it is invertible and perceptually as linear as
possible to achieve high visual quality. Working in a perceptually linear domain,
any compression and quantization method can be applied that minimizes the
RMS difference. After decompression, the inverse mapping translates the values
back into their original domain thereby recovering the full HDR radiance values.
Afterwards, an arbitrary tone mapping operator can be applied to the compressed
data for visualization.

The novel compression method presented in the following sections allows for
a high-quality compression and decompression of light fields in high dynamic
range. A comparison with the traditional approach is shown in Figure 4.1.

Figure 4.1.: Sample dataset from Debevec’s Lightstage Gallery. Notice the
poor approximation quality of the linear PCA (left) compared
to the original input image (middle) and the non-linear PCA
(left). Size of the datasets from left to right: 96 MB, 1518 MB,
8 MB.

1 Compression

In this approach PCA was chosen to compress the input images, because its qual-
ity is superior to vector quantization (VQ). The first step of the algorithm is to
rearrange the input data into a 2D matrix. Then, a non-linear transformation is
applied to each element to achieve a uniform distribution of the radiance values.
After this, the matrix is approximated with a linear least squares rank-k approx-
imation using a truncated PCA. Finally, the principal components are quantized
to 8 bits and stored as ordinary bitmaps. To further reduce the size of these

1i.e. they produce an optimal linear solution
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images, hardware-accelerated texture compression is used. The reconstruction of
the data is performed by accumulating the tensor products2 of the principal com-
ponents. After reconstruction, the inverse non-linear transformation is applied
to the reconstructed RGB values in order to recover the original high dynamic
range radiance values. To reduce the dynamic range to the displayable range
[0..255], a simple tone mapping operator3 is used.

2 Non-linear PCA

In order to apply matrix factorization to the sampled input images, the four-
dimensional data has to be rearranged into a 2D matrix. This is accomplished by
fixing two domains and letting the two other domains vary, and vice versa. In case
of a reflectance field this means that while the lighting-angles θi and φi remain
fixed, the components ur, vr of the surface location x may vary. Essentially, this
unrolls the 2D images into 1D column vectors of the matrix M:

M =

⎛
⎜⎝

f(r1, s1, θ1, φ1) · · · f(r1, s1, θN , φN )
...

. . .
...

f(rM , sM , θ1, φ1) · · · f(rM , sM , θN , φN )

⎞
⎟⎠ ,

Here, M is the total number of red, green and values in each image and N
the total number of input images. In the next step, these values have to be
transformed into the linear domain.

If an arbitrary tone mapping operator is applied to the input matrix M, its
values will be more or less linearly distributed, depending on the quality of the
chosen operator4. It is important to note that not every operator can be applied
unless it is completely invertible. The latter condition is essential for the recon-
struction of the full dynamic range. In this approach, a logarithmic operator
was chosen to do this transformation, because HDR images are created by the
following equation introduced by Debevec and Malik [DM97]:

Ei = eg(Zi)−lnΔtj ,

Here, Ei is the radiance of a single pixel, calculated by evaluating the irradiance
Zi and the exposure time Δtj . To transform the images into a domain with
uniformly distributed values, the logarithm has to be applied to all elements of
the input matrix M:

ln (M) =

⎛
⎜⎝

ln (δ +m11) · · · ln (δ +m1N )
...

. . .
...

ln (δ +mM1) · · · ln (δ +mMN )

⎞
⎟⎠ = M̃,

δ is a very small number to avoid the singularity of the logarithm and M̃ is
the transformed matrix containing linear distributed values.

2or outer products
3inverse gamma or square root
4i.e. whether it is local or global
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The next step is a linear least-squares approximation of M̃ using principal
component analysis and keeping only those k eigenvectors with the largest cor-
responding eigenvalues:

M̃ ≈
k∑

i=1

ut
iσivi = Ut

kΣkVk,

The values σiui and vi are stored to save the memory for the singular values.
Note that for the datasets, U t

k has the dimension 253×253 and Vk the dimension
(1024×1024×3)2, so a progressive decomposition of the PCA should be computed
instead of a computational expensive complete decomposition.

The fact that only the first few principal components are required can be
exploited by first projecting the BTF into a Krylov subspace [Kry31] of low di-
mension using Lanczos iteration [Lan50], since calculating the first k components
from a subspace with a dimension of 4k already yields a very accurate approxi-
mation. So instead of M̃, this approach uses

M̃ ≈ M̃4k =

4k∑
i=1

wt
iqi = Wt

4kQ4k.

When generating the subspace, the first basis vector has to be guessed. Typ-
ically, a random unit vector is chosen for this purpose. In the context of eigen-
images5 however, choosing a white image as first basis vector leads to a more
stable subspace construction, as all pixels are all positive and thus the second
eigenimage becomes the average image. To find the first k principal components,
the property is exploited that the eigenvalues of the orthogonalization matrix
H constructed during the Lanczos iteration are those of M̃ and the principal
components can be found by unprojecting those of H.

3 Quantization

An eigenimage created by the PCA is an array of floating point numbers and may
contain negative values. The problem caused by this representation is that only
floating point texture formats support negative values. At this point, another
advantage of the transformation into the linear domain becomes obvious: Since
the radiance values of the eigenimages are distributed linearly, they can efficiently
be compressed by first quantizing them uniformly and then applying common
(lossy) texture compression. Quantization is done in a two-step algorithm: For
each eigenimage, first the minimum and maximum color values, (r, g, b)min and
(r, g, b)max are determined. In a second, the interval [(r, g, b)min, (r, g, b)max] and
thus all color values are scaled into the interval [(0, 0, 0), (255, 255, 255)] such that
they can be stored in a common 8-bit per channel bitmap. The same scaling is
applied to the weights with the exception that they are scalar values per light
and/or view direction and thus stored in an 8 bit per pixel luminance image.

After quantization each pixel of the eigenimages can be stored with 24 bpp

5An eigenimage is a set of eigenvectors
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instead of 48 bpp (half precision) or 96 bpp (float precision). To further reduce
the required memory, these textures are compressed using DXT1 compression
that stores 16 input pixels in a 64 bit array, consisting of two 16-bit RGB 5:6:5
color values and a 4× 4 two bit lookup table. Other variations of DXT addition-
ally consider the alpha channel, which is not needed for the eigenimages. After
quantization and compression, the size of the eigenimages has been reduced to 4
bit per pixel, resulting in a compression ratio of 1:12 compared to a half precision
float texture.

4 Reconstruction

To reconstruct the dataset from the first principal components, each step of
the quantization has to be inverted in reverse order. Since DXT1 is supported
by hardware, it can be loaded directly into the texture memory of the render-
ing device. After this, the color values of each eigenimage have to be rescaled
from [(0, 0, 0), (255, 255, 255)] back to [(r, g, b)min, (r, g, b)max]. Since the fragment
shader is used to perform the reconstruction in real-time, the scaling parameters
have to remapped into a texture in order to make them accessible to the rendering
device. Section 5 describes these steps in detail.

The next step is the reconstruction of each pixel according to the number of
eigenimages used. This is done with the sum

M̃ ≈
k∑

i=1

ut
iσivi,

which computes the approximation of the original reflectance field. For this
purpose, the highly parallel architecture of the GPU can be exploited, making it
possible to accumulate several pixel at the same time. After the reconstruction
the image still lies in the linear domain and has to be remapped to the original
high dynamic range non-linear domain. This is accomplished with the mapping

(r̃, g̃, b̃)to(r, g, b) = (er̃ − δ, eg̃ − δ, eb̃ − δ).

Finally, a tone mapping operator – either global or local – is applied to the
reconstructed image for output on a low dynamic range display device.

5 Resampling of Weights using Cube-Maps

As stated in section 3.2, minimum and maximum offset values have to be stored
for each eigenimage. In order to make these offset values accessible to the frag-
ment shader, they have to be converted to texture data first. A radial basis
function is chosen in order to perform all-frequency interpolation at any given
sample position.

For this purpose the offset values have to be remapped onto the six planes of
a cubemap. A radial function e−d2 is used to map them onto the unit sphere,
first. After this, a linear equation system has to be solved in order to remap
these coordinates to the unit cube. Mipmap degradation then gives the desired
approximation of the integral over all directions.
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fi(x) =

N∑
j=1

wi,je
−‖pj−x‖

with

fi(pj) = ui,j

6 Results

As database for evaluation of the non-linear PCA Debevec’s Light Stage Data
Gallery6 was chosen. Although the presented technique was not tested on high
dynamic range (surface) light fields or higher dimensional datasets like 6D re-
flectance fields or BTFs, the experimental results will directly transfer to these.
Each dataset shows a static subject captured under 253 individual lighting di-
rections covering the full sphere of illumination, resulting in a 4D reflection field.
The input images are stored with 48 bpp at a resolution of one megapixel.

First, the RMS of the reconstructed input images is compared to the original
signal after a simple global tone mapping operator (adaptive exposure followed
by gamma 2.2) is applied. In Figure 4.2 you can see the RMS plots for each of
the six datasets, indicated by a small scale sample in the lower left corner. As
can be seen in any of these plots, the RMS error of the non-linear PCA falls much
faster compared to the linear PCA. While this argument always holds for more
than four terms, it can be observed that the results strongly differ for less than
four terms. In contrast, in the dataset ”knight standing” it can be seen that the
linear PCA is better for less than four terms. Figure 4.2 also shows that close-up
models such as ”helmet side” and ”helmet front” can be approximated with less
terms than the other models.

The RMS plots do already indicate that the overall approximation quality of
the non-linear PCA is superior to the linear PCA. In figure 4.3 a direct visual
comparison is presented, showing the original input images in the middle column.
In the left column are the reconstructed images from the linear PCA. Here,
many dark areas are noticeable, originating from the fact that the linear PCA
needs many terms for the approximation of the exponentially distributed radiance
values, underrating the areas with lower radiance. In the right column images
from the non-linear PCA are presented. In the ”knight fighting” dataset it is
observable that sharp highlights lose their details, though the overall impression
is by far better than the linear PCA.

6http://gl.ict.usc.edu/Data/LightStage/
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Figure 4.2.: RMS plots of each dataset. The according dataset is indicated
by a small scale model in the lower left corner.

53



Chapter 4. Compression using Log-Space

54



Chapter 4. Compression using Log-Space

Figure 4.3.: Five datasets from Debevec’s Lightstage Data Gallery. In the
middle are the original, uncompressed input images. On the
left side are the reconstructed images after linear PCA was
applied. It is clearly to see that poor approximation leads to
visual artifacts. On the right side are the images created with
the non-linear PCA.

55





Chapter 5.

Measuring and Combining HDR
Data

The dynamic range of an image is the perceived ratio between the darkest and the
brightest pixel. This ratio easily exceeds the capabilities of a common photograph
taken with a single exposure. Instead, the full dynamic range of a scene can be
obtained by taking multiple photographs, each one with a different exposure
time. This way it is guaranteed that shadowed areas as well as very bright areas
are captured in full detail. After the actual acquisition, the next step prior to
combining the images is the reconstruction of the response function of the camera
that relates color values to light intensities. The discrete response function is a
non-linear curve that can be different for each color channel and is stored as a
simple lookup table containing 256 values. After this step, the radiance map is
computed as a weighted sum of pixel intensities from the images with different
exposure times.

For the recovery of the dynamic range it is crucial for all pixel locations to be
exactly aligned. This constraint originates in the assumption that the irradiance
of each pixel remains constant throughout the whole exposure sequence. For
this purpose it is advisable to create exposure sequences using a tripod and in
addition, a remote controlled release. Besides avoiding undesirable vibrations,
the scene has to be static as well, which makes capturing of naturally moving
objects, such as clouds, leaves or waves, difficult to impossible. Up to now,
these constraints limit HDR photography to professionals or dedicated hobby
photographers. This restriction can only be lifted by a tool that is able to align
the images of an exposure sequence by removing any motion origination from
camera or object movement.

To construct a robust freehand motion compensation algorithm, it is important
to understand which effects may occur besides translation of the image:

• When photographs are taken by hand, rotation is inevitable, though very
small angles of typically less than 20 degree can be expected.

• Even the slightest translation may cause severe parallax effects, e.g. when
looking through a window or straight down a wall.

• In addition to the parallax, occlusion can also occur whenever the camera
or an object moves.

57



Chapter 5. Measuring and Combining HDR Data

• In contrast to traditional image matching, it cannot be assumed that find-
ing matching patterns between different exposures is always possible due
to shifted detail. Detailed areas in one image are possibly totally saturated
or at noise level in the next or previous image of the sequence, making it
impossible to find a direct matching. This can be interpreted as missing
data problem.

Considering these problems, a two step algorithm is proposed. In the first step,
the images are aligned as faithfully as possible. In the second step, the occlusion
and missing data problems are handled by a robust HDR reconstruction method
including a ghost removal step. This ends up in these two essential contributions:

• A hierarchical non-linear alignment algorithm that is robust with respect
to missing data due to black level noise and saturation.

• A robust HDR reconstruction algorithm that removes the remaining arti-
facts originating from occlusion while preserving information that is not
contained in the other images of the sequence.

The first step of the algorithm is the non-linear alignment of the images using
macroblocks and maximizing the cross-correlation. The alignment is performed
hierarchically to assure that matching blocks as well as non-matchable blocks
are moved into a consistent direction. An in depth description of this process is
given in section 1.

After the alignment, most pixel locations match exactly but occlusion and
parallax effects inside a single leaf level macroblock cannot be solved, which
can lead to ghosting artifacts. This is solved in the HDR reconstruction phase
described in section 2 by calculating a per-pixel confidence value and marking
non-plausible pixels so that they do not contribute to the final image.

1 Hierarchical Matching

For the non-linear matching, first an anchor image r is chosen by simply selecting
the one containing the highest entropy1 and then all other images are aligned to
this one. One way to capture the input images freehand is to use the automatic
exposure bracketing (AEB) function of the camera. The AEB function induces
the camera to capture a sequence containing an optimally exposed, underex-
posed and overexposed image. It is expected that the optimal exposed image
contains the highest entropy and thus, this image is set as anchor for every mac-
roblock. Since capturing more than three images seems impractical for ad hoc
purposes, the implementation is limited to three input images, though the full
dynamic range of outdoor scenes might not be covered with three input images
only. In addition, if more than three images are used, finding an optimal anchor
image might be a difficult task, since optimal correlation can expected only for
neighboring images.

1i.e. containing most variation and thus possible image information and contrast
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The basic idea for the motion estimation is that for a given macroblock M in
the anchor image, the displaced matching macroblock in image i will have the
locally maximal cross correlation Ci(M, δ). Instead of normalizing both vectors
before computing the cross correlation, a slightly different formulation is used
that is basically just a scaled version with the same maximum2:

Ci(M, δ) =

∑
p∈M c̃i(p+ δ) · c̃r(p)

N(M)
√∑

p∈M ‖c̃i(p+ δ)‖2

with

c̃i(p+δ) = ci(p+δ)−
⎛
⎝1
1
1

⎞
⎠∑

p∈M ‖ci(p+δ)‖1
3N(M)

c̃r(p) = cr(p)−
⎛
⎝1
1
1

⎞
⎠∑

p∈M ‖cr(p)‖1
3N(M)

,

where ck(p) is the RGB color vector of image k at pixel p, and N(M) is the
number of pixels contained in the macroblock. To emphasize local contrast, the
edges in all input images are enhanced using the following filter kernel F :

F =

⎛
⎝ 0 −1

4 0
−1

4 2 −1
4

0 −1
4 0

⎞
⎠ ,

where pixels at the boundaries are duplicated for consistent filtering.

Unfortunately, choosing a good macroblock size that works for every input
sequence is not possible. If the size is too large, local movements cannot be
compensated for, while too small macroblocks cannot always be matched reliably
in the absence of local detail. Therefore, the image i is aligned in a hierarchical
manner starting with a single centered square macroblock of size 2n that is large
enough to contain the whole image. After the best match for this root block is
found, it is divided into four sub blocks and for each of them the best match is
searched recursively while re-using the alignment of the previous level as initial
guess.

Hierarchical guessing is prone to be less robust towards large motion of small
objects. The problem is that while the confidence value of a large macroblock
might by high, the motion of smaller objects cannot be estimated until a finer
subdivision level is reached. In order to find the object, the algorithm then has
to increase the search radius instead of actually reducing it in order to converge.
Here, a trade-off between robustness of motion estimation and computing speed
has to be found.

2The reason for omitting the normalization step is that the modified version is somewhat more robust to
areas of uniform luminance and little contrast.
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To prevent random displacement when the macroblock contains noise only, a
block is not displaced if its cross correlation less than 10% of its parent block’s
cross correlation. If this value is lower for the current block, it gradually decreases
from level to level. During recursive search, the maximum search radius is re-
duced by a factor of two at each subdivision until it reaches two at a block size of
16×16 pixel. This allows to also compensate for rotations of up to approximately
14 degree.

At each recursion step, the displacement is bilinearly interpolated between
the four adjacent parent nodes. Then an iterative search is performed for each
macroblock starting with its interpolated displacement and that of its up to eight
neighbors. For each initial displacement, the next local maximum is found using
a gradient descent method with a fixed step size of one pixel. The only exception
is the root block, were the algorithm starts with a step size of four pixels in order
to find the global maximum. The search from the current start displacement is
stopped when either the local maximum is found, or the number of iterations
reaches the search radius of the current level.

When the local maxima are found for each of the nine starting displacements,
the final displacement for the current block is chosen to be that one with the
highest cross correlation. If the maximum is reached for more than one different
displacement, the closest one of them to the initial interpolated displacement is
chosen to prevent displacement of macroblocks that do not contain local detail.
Figure 5.1 shows the hierarchical alignment process for an input image where the
clouds had moved with respect to the reference image.

Figure 5.2.: Difference of aligned image and reference image converted
into same exposure. The darker the color, the higher is the
difference.

After calculating the displacement vectors for the finest level macroblocks, the
transformed image is assembled. For each macroblock, the corresponding pixels –
without edge enhancement – are copied from the displaced position to their orig-
inal position in the reference image. This way, the features of the current image
become aligned with their corresponding features in the reference image. To pre-
vent the well known blocking artifact of macroblock based motion compensation,
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Figure 5.1.: Hierarchical alignment of an image where the clouds had moved
upwards and right during the exposure sequence. The magenta
squares depict the matching macroblocks.

the displacement is bilinearly interpolated per pixel for the transformation of
the image. While this might introduce some distortions in badly aligned region,
the overall image quality is greatly improved. Figure 5.2 shows the difference
of the example image after alignment to the reference image mapped into the
same exposure. Notice that most of the difference is due to highlights that are
over saturated in the aligned image. The movement of the clouds and the slight
foreground parallax have been corrected.

2 HDR Image Synthesis

The HDR reconstruction is based on a per-pixel weighted average of the mea-
sured logarithmic irradiance. Thus, the irradiance has to be reconstructed from
each image as first step by calculating the camera response function f using the
least squares solver proposed by Debevec and Malik [DM97]. The accumulated
irradiance E(p) at the current pixel p is then calculated from the color values ci
and the exposure times ti of each image i for each color channel in the following
way:

logE(p) =

∑
iwi(p) log f(ci(p))− log ti∑

iwi(p)

The key to both, faithful reconstruction and artifact removal now lies in an ap-
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propriate weighting function. The first weighting function proposed by Debevec
and Malik [DM97] was a simple piecewise linear function:

wi(p) =

{
ci(p) : ci(p) ≤ 127.5
255− ci(p) : ci(p) > 127.5

The drawbacks of this function are the non-zero derivatives at both ends and
the relatively high weighting of extreme values. These introduce discontinuities
and can reduce the dynamic range of the final image. While the first problem
was solved with the Gaussian weighting function of Robertson et al. [RBS99]
the range reduction is even more apparent. To solve both problems, a quadratic
spline weighting function is proposed that has zero values and derivatives at both
ends:

wi(p) =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

8
(
ci(p)
255

)2
: ci(p)

255 < 1
4

1− 8
(
ci(p)
255 − 1

2

)2
: 1

4 ≤ ci(p)
255 ≤ 3

4

8
(
1− ci(p)

255

)2
: ci(p)

255 > 3
4

Due to the low weight for extreme values, the result might however become
noisy if the pixel is almost black or white in all images of the exposure sequence.
Therefore, the weight is set to one in the longest exposure image if the color value
is below 127.5 and in the shortest exposure image if the value is above 127.5 since
these contain the most accurate information. Figure 5.3 shows the resulting
weight functions for a sequence of five images with two f-stops between each
successive pair.

Figure 5.3.: Weight functions for a sequence of five images with an exposure
stepping of two f-stops and a gamma-2.2 camera response curve.

3 Ghost Removal

While these intensity based weighting functions only account for the accuracy
of the CCD sensor, Grosch [Gro06] additionally proposed to test the luminance
and color value of a pixel against the corresponding one in an anchor image for
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plausibility. If the difference between expected value and sampled value exceeds
some error threshold, the pixel is treated as ghost and its weight is set to zero.
This plausibility test however is prone to inaccuracies of the camera response
function and thus the confidence map often needs to be edited by the user.

Instead, the following ghost removal technique is proposed: For each pixel in
the all images, except the anchor image r, a confidence value, derived from the
cross-correlation, is calculated. A small neighborhood Np around the pixel p
is extracted from each image i and the confidence Ki(p) is calculated based on
these:

Ki(p) =

∑
j∈Np

ci(j) · cr(j)√∑
j∈Np

‖ci(j)‖2
√∑

j∈Np
‖cr(j)‖2

By considering the neighboring pixels instead of the camera response curve,
the result is much more robust and less sensitive to noise3. If the confidence of
a pixel falls below a threshold tK , its weight is set to zero. The only exception
is made for the shortest and longest exposure images: if the only information
about a pixel is contained in one of these images – i.e. the color values are below
the black noise level tb or above saturation ts in all other images – the confidence
test is skipped and thus the weight is not altered. Altogether, this leads to the
final weight:

w∗
i (p) =

{
0 : Ki(p)< tK , tb < ci(p)< ts
wi(p) : else

In the implementation, a neighborhood of 11×11 pixel is used that is centered
at the current pixel and tK = 0.95, tb = 0.05, and ts = 0.95 as threshold values.

Figure 5.4 shows the regions identified as non-plausible in the aligned example
image from section 2. The non-matchable lens reflection, as well as some less
accurately aligned features are removed.

3Note, that in contrast to the cross-correlation used for matching, the mean is not subtracted from the
blocks since this would prevent detecting differences of the average luminance.
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Figure 5.5.: Image sequences used for evaluation: The top row shows a
sequence that can be aligned using linear transformations, while
the middle sequence contains moving objects (the clouds) and
the bottom one significant parallax effects and occlusions.

Figure 5.4.: Pixels marked as ghosts in an aligned image.

4 Results

Figure 5.5 shows the three exposure sequences used as test data to compare
the presented approach with linear alignment. The first sequence is included to
demonstrate the that the new method delivers as least as good results as linear
alignment. Figure 5.6 shows a comparison of tone-mapped images generated
with the two techniques. As tone mapping operator, the gradient domain HDR
compression [FLW02] is used. The difference between the two images is almost
invisible and the ghost removal is required for neither of them.
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Figure 5.6.: Tone-mapped results generated from the first sequence the re-
sult using linear alignment (left) and the non-linear alignment
(right). Both are generated without ghost removal.

The second example demonstrates the superiority of the novel approach in the
presence of moving objects. Figure 5.7 shows a tone-mapped version of the HDR
image generated with the new approach in comparison with linear alignment.
While the ghost removal is capable to remove most of the artifacts of the linear
alignment technique, except for the still slightly blurry clouds (see magnifications
below the images), the dynamic range of the image is degraded. The improved
alignment of the new method does not only reduce the misalignment artifacts,
but also exhibits a higher dynamic range of the final image after ghost removal,
e.g. in the highlights of the roof tiles.

Figure 5.7.: Tone-mapped results generated from the second sequence using
linear alignment (left) and the non-linear alignment (right).
The top row is without and the bottom with ghost removal.

The final example is chosen to exploit the limitations of the presented tech-
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nique. Due to the significant parallax and large occluded areas, an alignment is
not possible for all parts of the image sequence. Thus the final HDR image (a
tone-mapped version is shown in figure 5.8) contains many artifacts in these ar-
eas. While the ghost removal is capable of removing almost all artifacts – except
for a region in the upper right part of the image that was completely white in two
of the images and occluded in the third one – it degrades the dynamic range of
the image. Nevertheless, the result with the new technique is significantly better
than with linear alignment, where even the ghost removal is not able to resolve
all ambiguities.

Figure 5.8.: Tone-mapped results generated from the third sequence the
result using linear alignment (left) and the non-linear alignment
(right). The top row is generated without and the bottom row
with ghost removal.
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Chapter 6.

An Editable BTF Representation:
The G-BRDF

In general, surface appearance is either determined by reflectance (coarse-scale)
or texture (fine-scale). When view and light directions vary, the equivalent de-
scriptions are the BRDF and the BTF. As explained in the first chapter, the
BTF can be understood as a simultaneous measurement of per-pixel BRDFs,
called apparent BRDFs (ABRDFs) as they also contain effects of the underly-
ing meso-scale geometry and represent the reflectance fields of single pixels. As
such, a BTF accommodates self-shadowing, inter-reflection, masking, and par-
allax effects of a complex material without explicit representation of the small
scale geometry. Currently, there are two major reasons speaking against BTFs
as common modeling resource: First, acquisition systems are expensive and the
measurement process lasts from several hours to days, and second, the size of a
BTF is in the range of several gigabytes, so effective compression methods have
to be applied before synthesis or rendering [MMS+05].

Recently much effort was spent on developing efficient compression methods for
BRDFs and BTFs. With these at hand, sample databases containing gigabytes
of input images can be reduced to a fraction of their original size, preserving most
of the original visual appearance. Many of these methods follow a similar ap-
proach: They reduce high-dimensional input data to low-dimensional subspaces
containing most of the variation. Resulting eigenvectors can be stored in ordinary
texture maps and the BTF can be rendered in real-time.

Nevertheless, BTFs are still far from being used as common modeling resource
like texture maps, one reason being that compressed data offers very little ex-
pressiveness to designers. Although user-guided modification and editing of raw
BTFs has become possible, in existing systems a BTF needs to be compressed
for real-time rendering which again requires several hours The solution to this
problem would be a method that breaks a BTF down into comprehensible prop-
erties and then use these for rendering as well as for editing. This would not only
enable designers to modify or combine BTFs to create novel materials, but also
yield a very efficient compression, as some properties have little contribution to
the final appearance and only the most visible ones are required to describe a
BTF’s appearance under varying light and view directions.

The reason why all the BTF information is needed, is that real-world surfaces
comprise extremely complex light interaction which physically-based BRDFs de-
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scribe at micro-scale without considering geometric variations at meso-scale.
Since these are contained in almost every BTF, a BTF cannot be treated as
spatially varying BRDF, because light interaction is closely related to geometry
and thus not locally bound.

The contribution of this chapter is hence an intuitive representation for both
meso- and micro-scale properties of a BTF as shown in Figure 10.9. By separat-
ing these two scales, an artist can use BRDF-editing techniques together with
geometric editing to modify an existing BTF or to create a novel one from scratch.
Whereas the combination of heightfield and BRDFs is not new to artists, the par-
ticular contribution of the presented approach is that an algorithm is proposed
to extract the meso-scale structure and analytical BRDFs from measured BTFs.
This means that physical properties of a real-world surface are described instead
of a hand-generated texture. This does not only allow to efficiently compress a
BTF and render it in real-time, but also to use measured data as basis for artistic
editing of a real-world material.

Figure 6.1.: Rendering of a BTF from its g-BRDF representation.

1 The g-BRDF Representation

To ensure both compression and editability, a BTF is best represented by a set
of 2D images describing either light interaction or the geometric structure of the
underlying surface. Therefore, two distinct classes are defined: light interaction
maps and geometry maps.

The meso-scale geometry is represented by a depth map and two scalar values
defining minimum and maximum depth offsets. In this form, the geometry can
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easily be modified by just increasing or decreasing pixels or whole areas. For more
complicated operations up to generating a complete depth map from scratch,
a variety of existing tools that have been developed to create depth maps for
3D computer games can be used. These tools range from procedural texture
generation to modeling systems that can output the depth map from a 3D model
instead of a rendered image. An additional normal map is not required, since it
can be derived from the depth map with the advantage that a designer does not
need to take care of consistency between the two. The only remaining degree of
freedom for the local coordinate system is a rotation about the normal which is
encoded in the orientation (or tangent) map, which is required for anisotropic
BRDFs. In the orientation map, each pixel stores the direction of the tangent
vector encoded as hue of the HLS color model, although any other coding would
be possible as well. While this second texture map might not seem very intuitive
at first sight, designers quickly get used to it and are able to achieve the desired
results. Figure 6.2 shows an example of depth and orientation maps.

Figure 6.2.: Meso-structure maps: depth (left) and orientation (right).

While the meso-scale geometry is completely represented by these two images,
the number of parameters required to describe the micro-structure is significantly
higher in order to preserve the visual appearance. Since it is impossible to com-
pletely define the light interaction for each texel, both from a designers point of
view, as well as considering the required storage amount, the BTF is divided into
a set of a few distinct basis materials. Each basis material can be represented
by an arbitrary BRDF model, where some low-dimensional parameters – like the
diffuse color – are stored per texel to allow for more variation.

2 BRDF Model

So far, geometry has been separated from light interaction and thus each material
can be represented by a BRDF ρ(k1,k2) that describes what fraction of light
coming from a given direction k1 is reflected into another direction k2. The
choice of an appropriate BRDF model is important because the complexity of
the underlying model determines how easily each basis material can be edited.
The more accurate (and thus more complex) a BRDF model is, the harder it
becomes to achieve a desired appearance by changing its properties. Therefore,
Ashikhmin’s distribution-based BRDF [Ash06] is chosen, as it is an excellent
trade-off between accuracy and intuition. There the BRDF is defined as:
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ρ(k1,k2) =
cd
π

+
csp(h)F (k1h)

k1n+ k2n− (k1n)(k2n)
,

where the Normal Distribution Function p(h) is an arbitrary anisotropic func-
tion that describes the normal distribution of the BRDF’s underlying micro-
structure and the half-vector h is the normalized average of k1 and k2. The NDF
is stored in a texture using the parabolic maps parametrization [HS98] which is
simple to calculate and has a relatively uniform sampling of the hemisphere, but
any other parametrization could be used as well.

For the Fresnel term, Schlick’s approximation

F (k1h) ≈ r0 + (1− r0)(1− k1h)
5,

is used, where the reflectance at normal incidence r0 depends on the refraction
index of the material.

Due to the complexity of the NDF, only a single one is stored per basis material.
The other two parameters cd and r0 are low-dimensional and thus allowed to
change per texel. This way, a compact editable representation is combined with
the possibility to introduce per-texel variation by modulating the diffuse color
and the specular reflection. Figure 6.3 shows an example of the complete set of
images defining the micro-structure of a BTF.

Figure 6.3.: Micro-structure maps (from left to right): Diffuse, Fresnel, clus-
ter, and NDF maps.

3 Rendering

Although it is possible to use the proposed g-BRDF representation directly for
rendering, a few modifications can improve the performance. Grouping of tex-
tures can save texture units and texture fetches, preprocessing is applied if possi-
ble in order to save shader instructions. The grouping and preprocessing requires
a few milliseconds per BTF only and could even be integrated as additional shader
pass operating on intermediate textures.

The surface normals are precomputed by discrete derivation of the depth map
using the 2D Sobel-filter [GW77]. The x- and y-components of the normals are
stored in the red and blue color channels of a 2D texture. The z-component is
redundant as it can be calculated with z = 1 − √

x− y. To rotate k1 and k2

into the local coordinate system, the sine and cosine of the tangent angles are
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precomputed and stored in the remaining two components of the rotation tex-
ture. This saves their costly computation at run-time and avoids discontinuities
between 0 and 2π during interpolation.

The cluster indices are originally stored in an indexed color map, which has
the drawback of not being suited for bilinear interpolation. For this reason, every
four materials are combined into a weight texture where each channel contains
the weight for one material. The monochrome Fresnel map is combined with
the diffuse map into a single RGBA texture and finally, all NDFs are aggregated
into a 3D texture, where the third dimension is equal to the number of distinct
materials. This does not only reduce the number of required texture units, but
also the number of texture fetches since the interpolated probability between two
adjacent NDFs can be obtained with a single texture fetch. Figure 6.4 shows an
overview of the textures and the overall workflow of the rendering algorithm.

Weight Map 2 

Parallax Occlusion
Mapping

Local Coordinate
System

Texture
Compositing

Final Image

Depth Map

Rotation Map

Color & Fresnel Map

Weight Map 1 

3D NDF Map

+

·

texture coordinates

light & view

a)

b)

c)

Figure 6.4.: Rendering workflow: a) the Parallax Occlusion Mapping deter-
mines (u, v) texture coordinates b) (u, v) are used to index the
rotation map c) local light and view are used to calculate the
BRDF.

The most time consuming part of the rendering algorithm is the mapping of
screen pixels onto the meso-geometry. For this step, Parallax Occlusion Mapping
(POM) [Tat06] is used, which essentially is a per-pixel ray-tracing algorithm that
is able to resolve inter-penetrations and self-occlusion in real-time. In addition
to the view ray, a shadow ray is traced toward the light source to generate self-
shadowing effects. Finally, the BRDF can be evaluated using the local coordinate
system (Figure 6.5).

4 BTF Decomposition

Since there is already a substantial amount of measured BTF data available, an
algorithm to decompose these measured BTFs into a corresponding g-BRDF is
desirable to use them as basis for editing and combine them with other g-BRDFs
in a real-time application. This decomposition needs to be split into two phases
since before each texel of the BTF can be approximated with the BRDF model,
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g BRDF(u,v,k1,k2) {
x = trace(u,v,k2);
Li = traceLight(x,k1);
R = setupRotationMatrix(x);
Lr = BRDF(x,Rk1,Rk2)*Li*(n ·Rk1);
return Lr;

}

Figure 6.5.: Basic structure of g-BRDF pixel shader.

the meso-structure has to be recovered in order to establish correct surface point
correspondences.

4.1. Meso-structure reconstruction

A surface to be generated by a 3D reconstruction algorithm is typically defined
to minimize some error functional. For a measured BTF, such functionals can
be derived from the physical properties of BRDFs, namely Helmholtz reciprocity
and lambertian law of cosines:

ρ(k1,k2) = ρ(k2,k1)

Lr(k1,k2) = ρ(k1,k2)(k1n)Li,

where Li is the irradiance which is constant for all k1, k2. Note, that most
BTFs that are stored as regular images in a database also do not contain linear
luminance so these have to be converted into linear values with an inverse gamma
correction before a reconstruction.

In addition to parallax effects, the meso-structure also influences the local
surface normal. Therefore, can neither the BRDFs be directly extracted from
the input images, that only contain the reflected radiance Lr(k1,k2), nor can the
reciprocity be used as error functional alone. These properties are also the basis
for the Helmholtz stereopsis [ZBK02] where the depth is defined such that the
difference to a reciprocal BRDF with unknown normal is minimized. While this
works well for materials with texture – i.e. per pixel color variation – no depth
values can be reconstructed for uniform materials. For such surfaces only global
optimization methods taking into account the local neighborhood of the point
can produce reasonable reconstructions.

Assuming that the meso-structure is locally planar, the cosine factor can be
canceled out by matching the local neighborhood of a point with the normalized
cross correlation of the log-scale radiance between Lr(k1,k2) and Lr(k2,k1). The
similarity S at point x is then:

S(x) =
∑
k1,k2

u(x,k1,k2) · u(x,k2,k1)

‖u(x,k1,k2)‖‖u(x,k2,k1)‖ ,

where u(x,k1,k2) is the log-mapped and mean-removed neighborhood of x
projected into the input image (k1,k2) written as a column vector:
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ui(x,k1,k2) = logL(pi(x),k1,k2)− L̄log(x,k1,k2),

with L̄log(x,k1,k2) being the mean log-radiance of the neighborhood pi(x) of
x in input image (k1,k2).

A consistent depth reconstruction for the whole BTF is obtained using graph-
cut stereo [RC98]. For a set of discrete depth values, the similarity is calculated
per texel and a 3-dimensional graph is constructed where each texel in every layer
is connected to its eight neighbors and to itself in the next and previous layer.
The weight of the edges corresponds to the sum of the similarity of both nodes,
where vertical connections are weighted with a smoothness factor k. The minimal
cut separating top and bottom layer then yields a reasonable approximation of
the parallax and approximately solves the point correspondence problem.

The local normal at x now minimizes the difference between ρ(k1,k2) and
ρ(k2,k1). Since radiance values are exponentially distributed, ρ is again trans-
formed into log-space:

E(x) =
∑
k1,k2

v(x,k1,k2)

(
log

ρ(x,k1,k2)

ρ(x,k2,k1)

)2

,

with

ρ(x,ki,kj) =
L(x,ki,kj)

kin(x)
,

where v(x,k1,k2) is one if x is visible from both k1 and k2, and zero otherwise.
The optimal local normal n at x is found using Levenberg-Marquardt optimiza-
tion [Lou04]. Convergence to a local minimum – a common problem when solving
non-linear equation systems – cannot occur since the error functional has only
a single minimum. Also, Levenberg-Marquardt has the fastest convergence-rate.
Finally, depth values and normals are combined using the method of Nehab et
al. [NRDR05]. Due to the normal reconstruction from the reciprocity, a global
normal shift cannot occur and thus the normal correction is skipped and only
optimize the depth values with the extracted normals. However, as the normal
map is not an integral part of the representation, new normals are calculated
from the depth map as described in Section 3 for the subsequent decomposition
steps.

4.2. Estimation of the BRDF parameters

When the meso-structure is fixed, the micro-structure can be reconstructed per
surface point by mapping the input images onto the generated height field and
transforming the light and view directions into the local coordinate systems.
Note that this transformation also includes the removal of occluded and shad-
owed samples since they are specifically handled within the Parallax Occlusion
Mapping algorithm. Using the d-BRDF model with Schlick’s Fresnel approxima-
tion, three parameters need to be determined: the diffuse color cd, the NDF p(h),
and the reflectance at normal incidence r0. As each of these can be calculated
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analytically if the other two are known, an alternating least squares method is
used, starting with cd, to find all of them.

Solving Equation 2 for the diffuse color yields the following equation for a least
square fit of the RGB-color cd:

cd =

∑
k1,k2

λd(k1,k2)δd(k1,k2)∑
k1,k2

λd(k1,k2)2
,

where

δd(k1,k2) =
Lr(k1,k2)

Li
− csp(h)F (kh)(k1n)

k1n+ k2n− (k1n)(k2n)

λd(k1,k2) =
k1n

π
,

with the constraint that no color channel can be below zero or above one
due to energy conservation. The normal distribution p(h) is extracted similar
to [NDM05] where the least squares fit is:

p(hi) =

∑
k1+k2=hi

λp(k1,k2)δp(k1,k2)∑
k1+k2=hi

(λp(k1,k2))
2 ,

with

δp(k1,k2) =
Lr(k1,k2)

Li
− cd

π

λp(k1,k2) =
csF (kh)(k1n)

k1n+ k2n− (k1n)(k2n)

From the probability for discrete halfway vectors hi the parabolic map over the
upper hemisphere is calculated using the push-pull algorithm [GGSC96]. Then
the specular intensity is extracted with:

cs =

∑
k1,k2

λs(k1,k2)δs(k1,k2)∑
k1,k2

λs(k1,k2)2
,

where

δs(k1,k2) =
Lr(k1,k2)

Li
− cd

π

λs(k1,k2) =
p(h)F (kh)(k1n)

k1n+ k2n− (k1n)(k2n)

Energy conservation is enforced for the NDF in three steps: First, the probabil-
ity for any halfway vector cannot be larger than the reciprocal of it’s differential
area, second, the sum of all probabilities (i.e. the integral over the hemisphere)
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cannot exceed one, and third, cs is restricted to at most 1 − cd. Finally, the re-
flectance at normal incidence r0 (Equation 2) is calculated based on the current
estimates for cd and p(h):

r0 =

∑
k1,k2

λf (k1,k2)δf (k1,k2)∑
k1,k2

(λf (k1,k2))
2 ,

where

δf (k1,k2) =
Lr(k1,k2)

Li
−
(cd
π

+ csp(h)(1− kh)5
)

λf (k1,k2) =
(
1− (1− kh)5

)
csp(h(k1n))

Up to now, the BRDF approximation process minimizes the root mean square
error, whereas radiance values are exponentially distributed and thus the loga-
rithmic error needs to be minimized. This can be accomplished by weighting the
contribution of each radiance value Lr(k1,k2) with the derivative of the logarith-
mic mapping function during summation of the λ’s and δ’s, which simply is the
reciprocal of the radiance.

4.3. Clustering

To combine the independent per-texel BRDFs into n basis materials, those texels
need to be found that have similar microfacet distributions. As the local normal
is fixed, the only remaining degree of freedom is the rotation about the normal.
When the NDF is parameterized over spherical coordinates (θ, φ), the rotation
becomes a shift in φ and the offset can efficiently be found utilizing the Fourier
shift theorem: Let F and G be the Fourier transformations of the NDFs f and
g. Then the maximum of the inversely transformed function h of H = FḠ lies
at (0, φ0) with φ0 being the rotation between f and g. Based on this pairwise
alignment, a k-means clustering of NDFs is performed by aligning each NDF
to the cluster center before distance calculation and summation. The rotation
about the normals to the cluster centers is then equivalent to the orientation map
of the g-BRDF.

As the clustering operates on each texel independently, the boundaries be-
tween different base material tend to become noisy. To reduce this boundary
noise, an additional relaxation labeling [Gen89] is performed after clustering.
The probability of an NDF to belong to a cluster is defined as the reciprocal of
the distance between the two and normalize the total probability of each NDF
to one. Then the relaxation labeling is performed to pull the probabilities of
each NDF into the direction of those of its neighbors. The required number of
clusters is automatically determined by calculating the separation index SI(n)
for all possible number of clusters n up to a given maximum and choosing the one
for which SI(n) is minimal. The separation index is defined as the ratio of the
root mean square difference between the per-texel NDFs and their corresponding
cluster centers to the minimum difference between two cluster centers. Finally,
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the BRDF parameters are estimated for the complete BTF as described above,
where the NDF pi(h) is calculated per cluster i and cd(x) and r0(x) per texel.

5 Results

For the BTF decomposition several BTFs from a publicly available database [SSK03]
have been used. These measured BTFs have the advantage that the sample set
is dense and spatially registered, that is the directions of incoming and outgoing
light as well as camera parameters are known for each image. Other measured
BTFs, like the pioneering CUReT database [DvGNK99] are unfortunately very
sparse and not spatially registered such that they cannot be used without prior
resampling. Another drawback of the CUReT database is that it contains some
graphical errors, caused by frame-grabber artifacts or reflections of the robot
sample holder plate visible in the raw data. Similarly, the database of Koudelka
et al. [KMBK03] lacks reciprocal image pairs and would also require resampling.

The decomposition process needs approximately 3 hours for a 2562× 812 BTF
on an Intel Core 2 Duo running at 2.4 GHz and the runtime is linear in the number
of pixels contained in the dataset. The best results have been achieved using
the following constants for decomposition: irradiance Li = 3, cross-correlation
window size 5×5, graph-cut smoothness k = 0.1, and depth weight λ = 0.2. The
RMS difference of the decomposed BTF to the original one is 6 to 12 times the
just noticeable difference (JND) in the CIELab color space according to the ΔE00

difference formula. This is slightly higher than for the currently best compression
algorithm [MMK03] with an error of 5 to 7 JND (see Table 6.1), but they need
17 megabytes texture memory while the g-BRDF requires 1.5 megabytes only.

For comparison of depth map reconstruction quality the algorithms of [RC98]
and [ZBK02] as shown in Figure 6.6 were implemented. The NCC does not clearly
separate between the two different height layers of the shown BTF. Helmholtz
Stereopsis performs better, but still produces some artifacts and lack of detail
without optimization.

material g-BRDF (1.5MB) [MMK03] (17MB)
corduroy 10.09 JND 5.98 JND
impalla 12.24 JND 6.70 JND
proposte 12.41 JND 7.06 JND
wallpaper 5.87 JND 5.02 JND
wool 8.94 JND 5.36 JND

Table 6.1.: Root mean square CIELab ΔE00 color difference in JND for
different BTFs.

The resulting g-BRDF textures for the six 2562×812 BTFs from the database
are shown in Figure 6.7-6.9 along with renderings from the compressed represen-
tation. Approximately 90% of the total rendering time is required for the two
trace functions of the parallax occlusion mapping [Tat06]. Therefore, the over-
all performance is similar to Parallax Occlusion Mapping rendering alone which
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Figure 6.6.: Left to right: Depth Maps created with Normalized Cross
Correlation, Helmholtz Stereopsis and the presented approach.
Bottom row: Depth maps after global optimization.

achieves about 200 fps on current graphics hardware at full screen coverage on a
1280× 1024 display. In addition, a visual comparison of the results with images
generated from the uncompressed BTF data is given: on the right side of Fig-
ure 6.7-6.9 a closeup is shown (top) in comparison to using the original BTF data.
Below, a difference image calculated in CIELab color space and exaggerated by
a factor of two is shown to depict the visual difference.

The main difference to the captured BTF data lies in shadow regions, especially
for the impalla BTF (Figure 6.7 bottom) due to the missing scattering. However,
the image generated from the uncompressed impalla BTF exhibits significant
blurring due to the naive image-based interpolation. For almost all BTFs, there
is some chromatic difference – especially for corduroy (Figure 6.7 top) and wool
Figure 6.9 bottom) – since microfacette models cannot model color changes when
the halfway vector is constant. Altogether, the comparisons suggest that a more
complex BRDF representation, that includes scattering, is required to accurately
describe all effects of a BTF. Nevertheless, the rather simple d-BRDF model still
produces convincing results.

To show how intuitively the g-BRDF representation can be edited, four dif-
ferent tasks were performed (Figure 6.10-6.13). In Figure 6.10 the orientation
of the fibres of the corduroy material is inverted. For this purpose the logo is
pasted into the orientation map. Then, the fibres below the logo are rotated by
180 degrees.

In Figure 6.11 the color of the wool is changed to red. For this the color chan-
nels of the NDFs and the diffuse texture were switched. To add some additional
lint, the grazing angles of the NDF are selected and a light pink reflection is
added.

In Figure 6.12 first the logo is copied into the diffuse texture. Then, the
depthmap is changed so that the logo is engraved into the surface. Finally, a new
BRDF for the paint of the logo is added. For this purpose, a synthetic specular
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Figure 6.7.: Rendering of the corduroy (top) and impalla (bottom) BTFs
from their g-BRDF representation shown on the insets. On
the right a closeup is compared to renderings from the original
BTF data together with the CIELab difference.

NDF is added. The index map is then altered accordingly in order to address
the new NDF. Finally, color and Fresnel map are modified to change reflection
behavior.

In the last example, a BTF was created from a single image. First the image
was copied into the diffuse texture. Then, the NDF is created by adding some
lint and a minor specular highlight. The rotation map is set to 45 degrees. The
depthmap is created by grayscaling the diffuse texture.

Each of these tasks was performed within less than four minutes and the
complete editing process can be seen in the accompanying video. A detailed list
of the editing times is shown in Table 6.2.

6 Discussion and Limitations

The proposed texture maps for meso-geometry and light interaction can easily be
edited with standard image operations. While previous approaches require spe-
cial software to modify raw BTF input data, the proposed representation allows
a designer to use his favorite image-editing tool and thus remain in a working
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Figure 6.8.: Rendering of the proposte (top) and pulli (bottom) BTFs from
their g-BRDF representation shown on the insets. On the right
a closeup is compared to renderings from the original BTF data
together with the CIELab difference.

task time (mm:ss)
meso-structure editing 0:39
BRDF editing 1:32
adding synthetic material 2:52
creating a complete g-BRDF 3:51

Table 6.2.: Editing times for example tasks.

environment he is accommodated to. Another advantage is that every change of
the maps directly affects the BTF’s appearance and can be reviewed in a shader
editor without latency, as no further compression is required. This way, a de-
signer has full control over the final result at any time. In this approach it has
also be shown that measured data can be seamlessly combined with user gener-
ated BRDFs and even the construction of a BTF from a single image is possible.
Furthermore, the presented representation is able to represent a measured BTF
with about 1.5 megabytes only.
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Figure 6.9.: Rendering of the wallpaper (top) and wool (bottom) BTFs from
their g-BRDF representation shown on the insets. On the right
a closeup is compared to renderings from the original BTF data
together with the CIELab difference.

The main limitation of this approach clearly lies in the choice of the d-BRDF
model which totally neglects subsurface-scattering and inter-reflections. With
the new method, shadows are stored only implicitly and reconstructed using
depth map and parallax occlusion mapping. The resulting harsh look could be
compensated by simulating light transport on the surface, a task that has been
done on meshes in real-time in [HJ07]. Another limitation is that only a single
Normal Distribution Function was used for each material. This way much of the
original variation and realism of a surface is lost. A solution to this would be to
store a set of the most distinct NDFs for each material. Also, the use of a single
depth map implies the assumption that the surface is opaque. This limitation
could be lifted by using a multi-layer model or a volumetric representation similar
to [MK06]. Such representations however significantly increase the complexity
and thus hinder intuitive editing.

The realism could be further improved by using an appropriate BSSRDF
model [JMLH01], but then the fitting of the parameters would become more
difficult. An open question is however how scattering can be extracted from
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Figure 6.10.: Editing the meso-structure of the corduroy BTF.

Figure 6.11.: Editing the BRDF of the wool BTF.

the input images as most acquisition systems do not even use back-lighting, al-
though Lensch et al. [LGB+02] proposed one that uses laser beams to capture
subsurface-scattering BTF data. Once its parameters are found, real-time ren-
dering is possible using a screen-space approximation [BC06].
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Figure 6.12.: Adding a synthetic material to the impalla BTF.

Figure 6.13.: Creating a BTF from a diffuse texture.
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Chapter 7.

Realistic Subsurface-Scattering
Post-Processing

Unfortunately, real global illumination and interactivity are usually incompatible.
Solving the rendering equation using global illumination techniques requires min-
utes to hours to generate a single image. On the other side it has been observed
that for many purposes, global illumination solutions do not need to be precise,
but only plausible. Relatively new to the graphics community is the computation
of global illumination features such as subsurface scattering, ambient occlusion
or indirect lighting in screen space. Screen space algorithms are executed purely
on the computer’s GPU and implemented as pixel shaders. The basic idea is to
generate arbitrary scene information in multiple, consecutive passes. The final
scene is then rendered in a deferred pass using the previously generated render
targets. Advantages of screen space algorithms are that they are independent of
scene complexity, work with dynamic scenes and in the same consistent way for
every pixel on the screen.

Screen space scattering algorithms are, generally spoken, an extension of shadow
maps, which store in each pixel the distance of the closest surface from the light’s
position. This information is used in the rendering pass of the final image to de-
termine whether a point lies in shadow by comparing its light source with the
shadow map distance. This approach aims to improve the technique proposed
by Dachsbacher et al. [DS03] by sampling the mipmap levels of the shadow maps
adaptively in dependence of the underlying geometry. Points of low variation do
only contribute little to the illumination integral, so a coarser sampling scheme
needs to be applied. The base observation is that only a few representative points
need to be sampled in very homogeneous regions. While this idea could also be
applied to ambient occlusion, indirect lighting and the calculation of caustics,
this approach focuses on subsurface scattering (see Figure 10.9).

Subsurface scattering summarizes all light reflection processes that occur un-
derneath the optical boundary of a surface and is used whenever light enters a
translucent material such as wax, milk or skin. In case of a completely transpar-
ent material, the light is reflected or refracted at a given surface point, enters the
object and leaves at another point. If light is scattered inside the material, we
distinguish between so called single scattering, where each non-absorbed photon
is scattered once – leading to a deterministic path from the light source to the
camera – and multiple scattering where each photon is scattered multiple times
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which results in diffuse light exiting the surface. In the remainder of this chap-
ter, the focus lies on the multiple scattering term since the contribution of single
scattering is only significant for relatively opaque materials.

Figure 7.1.: Phlegmatic dragon with quasi-homogeneous marble rendered
in real-time with the novel approach.

1 Diffuse Dipole Approximation

The well known BRDF is a simplification of the more general BSSRDF, be-
cause it assumes that light entering a material leaves at the same position. This
approximation fails for all translucent materials, which exhibit significant light
transport below the surface (see Figure 7.2).

Figure 7.2.: Light leaves at the entering point in a BRDF (a), while it leaves
distributed over an area in a BSSRDF (b)

Given a BSSRDF, the outgoing radiance is computed by integrating the hemi-
sphere of incident radiance over incoming directions and an the surface area A:

Lo(xout, ωout) =∫
A

∫
Ω
S(xin, ωin,xout, ωout) (7.1)

Li(xin, ωin)dωindA(xin),
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where S(xin, ωin,xout, ωout) is the BSSRDF.

One of the most widely adapted ideas is that the exiting area of the multiple
scattering can be approximated with a dipole point light source, called diffuse
dipole approximation. The dipole method simply places two point light sources
near the surface, with one light source beneath the surface and another negative
light source located above the surface (see Figure 7.3). Note that this approxi-
mation delivers good results only for flat materials and shows artifacts for highly
curved surface where the dipole source inside the material might appear too
bright.

Figure 7.3.: Dipole approximation of subsurface scattering with one light
source beneath the surface at distance zr and one negative
above at distance zv

2 Translucent Shadow Maps

To approximate the integral from Equation 7.1, the shadow map is not only sam-
pled at a single position, but over a larger area. The idea of Translucent Shadow
Maps is to densely sample the local neighborhood and use a few additional dis-
tant samples in appropriate mipmap levels of the shadow map. Since it is based
on the dipole approximation, TSMs simulate multiple scattering of light only and
are therefore restricted to materials with high scattering, such as marble, milk
or skin. In this case any relation between the directions of incident and exitant
light is lost.

The first step is the evaluation whether the ray is scattered into the material
or reflected due to the Fresnel term Ft. For an irradiance I(ωi) from a point or
parallel light this is:

E(xin) = Ft(η, ωin) | N(xin) · ωin | I(ωin),

where η is the optical density of the material. The Fresnel term Ft can be
approximated using Schlick’s approximation.
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In the second case light diffuses into the material, which is approximated with
the subsurface diffusion function Rd(xin − xout,nin), where xin,xout ∈ S are
points on the surface. Rd describes the transport of light entering the object at
xin and exiting at xout as is explained in [JMLH01]. This does not only depend
on the distance between xin and xout, but also on the surface normal xin at xin:

B(xout) =

∫
S
E(xin)Rd(xin − xout,nin)dxin

Figure 7.4.: The amount of light leaving at xout is obtained by integrating
the surface as seen from the light source

Note that this integral is only valid for convex objects, i.e. the path from xin

to xout lies completely inside the object. When the light leaves the object, the
Fresnel term has to be computed again because internal reflection can occur:

L(xout, ωout) =
1

π
Ft(η, ωout)B(xout)

With TSMs, the integration process is separated into two passes: In the first
pass Equation 2 is computed during the generation of the TSM. Additionally to
the depth value, a TSM stores irradiance E(xin) and the surface normal nin with
every pixel. With this information, the integral in Equation 2 can be computed
during rendering of the user’s view as a filter of the TSM color values, with
weights given by Rd. To speed up the summation, Rd is pre-calculated and
stored in a texture map.

3 Adaptive Sampling

Though TSMs achieve an appealing simulation of local scattering, the low num-
ber of distant samples is not sufficient for highly scattering material and intro-
duces banding and blurring artifacts. In contrast to this fixed sample kernel, the
proposed technique adaptively approximates the integral from Equation 2 and
prevents such artifacts by adding more samples if required. The precomputed
large kernel used for RSMs on the other hand takes far too many samples in
many situations and can thus not be as efficient as an adaptive technique.
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To adaptively calculate the multi scattering integral, Equation 2 is approxi-
mated by partitioning the surface into regions where R(xin−xout,nin) is almost
constant. This way, the light arriving at xout below the surface becomes:

B(xout) =
∑
i

Rd(xout − xi,ni)

∫
Si

E(xin)dxin,

where xi and ni are the average position and surface normal inside the region
Si.

Since an optimal partitioning is different for every xout, the shadow map is
hierarchically subdivided using a quad-tree and integrate E(xin) for every node.
This can be performed efficiently by summing up the incoming energy of each
child node along with the position and surface normal. After generating the quad
tree, the partitioning for every xout can be calculated by traversing the quad-tree
and subdividing a region if the approximation error supersedes a given threshold
εmax. Figure 7.5 shows a typical sampling scheme for subsurface scattering. As
the contribution declines with the distance, the clustering can be performed more
aggressively with increasing distance from xout.

Figure 7.5.: Typical partitioning when approximating B(xout).

3.1. Approximation error estimation

Finding an optimal partitioning implies that an estimate for the approximation
error for a given exitant point xout and a lit surface patch Si have been found. A
straightforward approach would now be to simply set up an estimate for a given
patch size δi of Si with respect to xin − xout and nin. This however would mean
introducing a seven dimensional function to estimate the error.

Since the subsurface diffusion function Rd(xin − xout,nin) is isotropic, it’s
dimensionality can be reduced to two. This can be accomplished by first rotating
xin − xout into the local coordinate system of nin which already reduces the
dimensionality to three and then exploiting the fact that Rd(xin − xout,nin) is
isotropic to arrive at a two-dimensional function. This means that it only depends
on the distance d between xin and xout and the angle θ between surface normal
and the distance vector.

Together with the maximum deviation δi from the average distance di, this now
leads to a three dimensional function. The maximum difference – required for a
conservative approximation – can now occur in one of the following configurations
with only two surface points xin1 and xin2 :
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1. The points lie on the line between xi and xout on opposite sides of xi at a
distance of δi each.

2. If δi > d, then also the same configuration is considered, but with a distance
of d between the surface points and xi.

3. The points are orthogonal to the line xi, xout at a distance of δi and
orthogonal to ni.

4. The points lie in the direction of ni and −ni at a distance of δi each.

For two surface points in a quad tree node evaluating these configurations
is sufficient since the dipole diffusion function is smooth and has only a single
maximum. For more points this estimation is not conservative but for smooth
surfaces it is a reasonable approximation of the upper error bound.

Figure 7.6.: Configurations evaluated to estimate the maximum approxima-
tion error.

Figure 7.6 shows the four configurations described above. In any of these the
approximation error ε is:

ε(d, δ, θ)=Rd(xi − xout,ni)− 1

2
(R1 +R2)

Rj=Rd(xinj − xout,ni),

where the final value required for the traversal decision is the maximum ap-
proximation error of all configurations.

3.2. Screen space subsampling

As already noted by Dachsbacher and Stamminger [DS03], the subsurface light
transport is of relatively low frequency. Translated into image space, this means
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that the difference between neighboring pixels is low except at depth discontinu-
ities, in regions of high surface normal variation, and near shadow boundaries.
This observation allows to significantly speed up the calculation of Bout for each
image pixel by first generating a low-resolution texture map – the subsurface light
transport map – followed by a recursive upsampling where only for pixels near
depth discontinuities, with high normal variation (i.e. the length of the filtered
normal is less than a threshold δn), and shadow boundaries Bout is calculated
using equation 3.

While depth discontinuities and normal variation are simple to extract from the
mipmap levels of the depth and normal map of the rendered model (c.f. [DS05]),
shadow boundaries are much harder to detect since their effect is not locally
bound in image space. While it would be possible to mark shadow boundaries
in a low resolution image and use this marking to determine if a pixel lies inside
a shadow boundary, it is much more simple and efficient to compare the color of
those pixels in the lower resolution subsurface light transport map from which the
current one is interpolated. If these are sufficiently similar, the pixel either does
not lie on a shadow boundary or the boundary is so smooth that the subsurface
light transport can be safely interpolated. Note that in the second case, basing
the decision on an exact determination of shadow boundaries would unnecessarily
lead to a calculation of Bout for that pixel.

4 Implementation

The approach was implemented using Cg on an GeForce 8800 GTX. 16 bit float-
ing point render targets have been used together with programmable vertex and
fragment processing using the Shader Model 3.0 instruction set.

The algorithm consists of three main passes, where the model is rendered once
in the first and once in the third pass. In the first pass all data necessary to
calculate the subsurface light transport is generated and stored in textures as
seen from the light source. The required data is the surface position, normal,
and incident light. The three texture maps are generated in a single rendering
pass using multi-render-targets.

In the next pass, the quad tree data required for the integration is constructed.
In addition to mipmap levels for position, normal, and incident light, the max-
imum distance δ needs to be calculated which requires two additional mipmap
pyramids to store the minimal and maximal points of the bounding boxes for
clustered positions xin. To reduce the number of texture units, all four textures
are stored in a single mipmap pyramid shown in figure 7.7.

To speed up rendering, Rd(x,nin) are stored additionally, where x = xin−xout

and ε(d, δ) in two texture maps. In contrast to [DS03] this approach stores
Rd(x,nin) in a 2D texture that can be recomputed directly on the GPU pa-
rameterized as Rd(d,x · nin). Since the parameters of both functions are within
[0,∞], they are mapped into [0, 1] with t′ = t

t+1 . Since both are low frequency,
a resolution of 64 in each dimension is sufficient.

In the final rendering pass, Bout is calculated for each screen pixel and used to
compute the total outgoing light at that point. As explained in section 3.2, first
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Figure 7.7.: Incident light quad tree stored in mipmap levels of a texture.

a low-resolution texture for Bout is computed. At this point, deferred shading is
used to avoid rasterizing the model several times and to render fragments that are
later overwritten. For the lower-resolution subsurface light transport textures,
mipmaps are built from the generated textures. Afterward, the subsurface light
transport textures are successively generated with increasing resolution, whereas
Bout is computed for those pixels only which lie along a depth discontinuity, have
a high normal variation, or whose four neighbors in the next lower level have too
different colors (i.e. the difference of one of them to the average color is more
than δB). For the normal variation the fact is exploited that when two different
normals are averaged, their length equals the dot product between them. Thus
a high normal variation occurs if the averaged normal’s length is less than δn.
Finally, the constructed subsurface light transport texture is combined with the
other textures generated for the deferred shading to render the model onto the
screen.

5 Results

To generate all images and measure the performance of the approach, εmax = 0.1
is used as maximum approximation error, δn = 0.9 as minimum filtered normal
length, and δB = 0.2 as maximum deviation of a pixel in the subsurface light
transport texture for interpolation from the previous level. First the bi-adaptive
sampling scheme is analyzed by evaluating the number of shadow map samples
for each pixel and the mipmap level of the subsurface light transport texture
from which Bout is taken. The results of this evaluation are shown in figure 7.8.

Table 7.1 lists the frame rates for various models at a screen resolution of
1280×1024. With the exception of the 7.2 million triangle David model all other
examples render at real-time frame rates. Comparing to TSMs [DS03] about the
same fill rate is achieved for simple models on the same graphics card (about 100
FPS for the bigguy model at a resolution of 512 × 512 using a TSM). For more
complex models, the original implementation of the TSMs lacks behind since the
model is rasterized 15 times which would nowadays not be necessary anymore.
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Figure 7.8.: Number of shadow map samples required to calculate Bout (left)
and mipmap level from at which Bout was interpolated (right).
In the left image black denotes zero samples and white 255,
whereas in the right image, red is the full resolution and from
yellow over green and cyan to blue are the lower-resolution
mipmap levels.

Instead, only rasterizing it twice, as with the novel approach, would suffice.

model #Triangles FPS
bigguy 2,900 28.5
phlegmatic dragon 39,962 27.3
bunny 69,666 33.5
buddha 100,000 28.5
dragon 100,000 25.9
angel 474,048 24.6
david 7,227,031 9.6

Table 7.1.: Frame rate for various models at a resolution of 1280× 1024.

Figure 7.9 shows a visual comparison of an image generated with the new ap-
proach and one using a TSM [DS03]. Notice that at the same performance, there
are significantly less artifacts with the new technique. Especially the banding
artifacts due to the mismatch between sample size and mipmap level and the
continuously moving sampling positions are not present.

Figure 7.10 shows the different rendered models with materials measured
by Wann Jensen et al. [JMLH01]. Notice that at the same performance as
TSMs [DS03], there are significantly less artifacts. Especially the banding ar-
tifacts due to the mismatch between sample size and mipmap level and the con-
tinuously moving sampling positions are not present using the novel approach.
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Figure 7.9.: Comparison of bunny model with marble BSSRDF rendered
with TSM (left) and out approach (right).

Figure 7.10.: Images generated with the new technique (from left to right
and top to bottom): bigguy (skin2), bunny (potato), buddha
(ketchup), dragon (wholemilk), angel (skimmilk), and david
(marble).
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Mesh Simplification

93





Chapter 8.

Advantages of Perception-based
Simplification

Current graphics hardware is able to render scenes of striking realism in real-
time: the ever growing processing power, memory size and bandwidth allows for
the rendering of global illumination, realistic materials and smooth animations
reserved to offline-renderers a few years ago. Three dimensional meshes have to
keep pace with the render quality in terms of accuracy and amount of detail.

Modern 3D acquisition techniques are able to provide digitized objects with
very high accuracy in the sub-millimeter range. This amount of detail often
exceeds the ability of the graphics hardware to render the object in real-time.
Therefore, real-time applications rely on simplified versions of the original mesh.
The main goal of mesh simplification is to generate a low-polygon-count approx-
imation that maintains the high fidelity of the original model. This involves
preserving the model’s features and overall appearance, such as surface position,
curvature, color, and shading. Many simplification algorithms use error bounds
on surface position only. This guarantees an upper bound on the maximum de-
viation of the object’s silhouette, but other attributes are not preserved. The
preservation of attributes – like texture coordinates or normals – is only possible
when their deviations are mapped to a geometric difference.

The assumption that mesh quality improves with the number of primitives
ignores the fact that visual fidelity is much more difficult to quantify. The im-
portant question concerning mesh simplification should not be geometric but
perceptual: does the simplified model look like the original? This is motivated
by the fact that certain regions of an object can be simplified in a more aggressive
manner, resulting in a lower polygon count compared to geometric approaches.

In this part of the thesis a polygonal simplification algorithm directly based
on the principles of the human visual system is described. In addition to the
well known Hausdorff distance as geometric difference, a per-vertex perceptual
metric is used that guarantees an upper bound on the visual error and preserves
the visual appearance of the model. The basic idea is to measure the changes in
contrast, curvature, and lighting at each vertex after a simplification step. Then
the step is only applied if it is considered imperceptible. Deviations in image-
space are measured using the contrast sensitivity function (CSF). In addition, the
interaction of spatial frequencies and orientations to account for visual masking
is included.
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Previous Work

Since the presented approach integrates models for human visual perception into
geometric simplification, a short overview of both fields is given and first ap-
proaches of their combination are analyzed.

1 Simplification

The principle of using multiple geometric representations of objects to improve
performance was first introduced by Clark [Cla76]. Hoppe [Hop96] developed
a geomorphing algorithm that smoothly interpolates between different levels of
detail (LODs). These LODs are precomputed using a specialized simplification
algorithm. Later he optimized the data structures and algorithms to further
improve speed and memory usage [Hop98]. Hoppe also proposed an appearance-
based quadric error metrics [Hop99] by comparing geometric correspondences.
Fundamental work by Garland and Heckbert [GH97] introduced quadric error
metrics for the geometric error created by edge removal. For the special case
of multiresolution meshes with texture, Schilling and Klein [SK98a] proposed a
simplification algorithm that does not strictly preserve texture coordinates unless
the simplification affects the appearance. This is achieved by storing the color
variation for each simplified vertex and simplifying more aggressively if it is not
modified.

Cohen et al. [COM98] proposed to decouple geometry from appearance by
sampling surface normal, curvature, and color attributes and storing them into
texture and normal maps. These maps can be precomputed and are a common
tool in interactive computer graphics. A similar approach based on deviation in
texture space was presented by Schilling and Klein [SK98b]. Klein and Schilling
also developed an illumination-based simplification algorithm [KSS98], where
normal deviation is used for the accurate simplification of surfaces with specu-
lar highlights that are rasterized with Gouraud shading. They also proposed an
algorithm for lighting-dependent refinement of multiresolution meshes based on
normal cones [KS99]. Unfortunately, neither of these two approaches can be used
for textured surfaces. Their ideas were later extended to textured models and
arbitrary lighting by Guthe et al. [GBBK04]. Based on the local variation of an
attribute in the unsimplified mesh, the attribute deviation is mapped to a geomet-
ric error. Although the results have a high visual quality, the number of required
primitives is drastically increased. Luebke and Hallen [LH01] used a perceptual
metric for the simplification operations by considering contrast and spatial fre-
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quency. Unfortunately, this approach only works for Gouraud shaded surfaces.
Williams et al. [WLC+03] improved this approach by accounting for textured
and dynamically lit surfaces. The proposed algorithm is view-dependent, sensi-
tive to silhouettes, texture content and illumination but cannot handle arbitrary
materials. A more aggressive perceptual-based simplification technique was pro-
posed by Luebke et al. [LHNW00]. They incorporate gaze-directed rendering to
simplify even more aggressively in regions that are outside the center of the user’s
vision. Dumont et al. [DPF03] presented a decision framework based on efficient
perceptual metrics for realistic rendering on commodity hardware. They address
problems such as diffuse texture caching, environment map prioritization, and
mesh simplification. Reddy was the first to attempt an LOD selection system
completely guided by a model of the human visual system [Red97, Red01]. By
analyzing the frequency content of objects and their LOD’s from multiple view-
points, the highest perceivable spatial frequency guides the LOD selection. While
all of these approaches modify the LOD selection mechanism, much better results
in terms of the number of required primitives could be achieved by integrating a
visual model into the LOD creation, as proved by Luebke et al. [LH01] before.

2 Perception

Kelly [Kel75] was the first to develop an analytical model to describe the spatial
frequency characteristics of retinal receptive fields. He showed that such a model
can be used to describe the sensitivity of the visual system to sine-wave patterns.
He also performed studies of the spatiotemporal sensitivity under conditions of
stabilized vision [Kel79]. He found out that the shape of the CSF remains nearly
constant for a wide range of velocities. Later Burbeck and Kelly [BK80] formu-
lated an analytic contrast sensitivity function based on these experiments. These
insights are elemental features of the metric that is proposed in this work. Based
on this psychophysical model several measures for image and video difference
were proposed. In our context the most important one is Daly’s visible differ-
ence predictor (VDP) [Dal93] that imitates the image processing in the human
eye and brain. A specialized model of visual masking was introduced by Fer-
weda et al. [FSPG97]. It describes how the presence of a visual pattern affects
the detectability of another by predicting changes in contrast, spatial frequency
and orientation of texture patterns. Based on Daly’s VDP, an extension to high
dynamic range images was introduced by Mantiuk et al. [MMS04]. The HDR
VDP could be used for image-based simplification, similar to the approach of
Lindstrom [LT00]. Mantiuk et al. [MDMS05] later extended their work by cal-
ibrating the HDR VDP using an advanced HDR display. A first approach to
efficiently integrate human perception into the simplification pipeline was pro-
posed by Qu and Meyer [QM08]. First, an importance map is generated based
on pre-computed visual masking and then this map is used to locally increase the
maximum simplification error. While the number of primitives can be reduced
compared to traditional geometric simplification, there is neither a guarantee for
the non-perceivability of the simplification nor for its efficiency with respect to
the number of remaining primitives. Lavoue et al. [Lav09] [Lav09] show how
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curvature, due to masking, can play an important role in the simplification of
geometric models. Pan et al [YIB05] examine the factors that determine the qual-
ity of 3D images including geometry- and texture resolution, shading complexity,
frame rate, and other psycho-visual factors. Corsini et al. [CDGEB07] address
the problem of assessing distortions produces by watermarking 3D meshes by
presenting a special visual metric. Yan et al. propose an algorithm that decou-
ples the simplification process into shape analysis and edge contraction to extent
collapses from immediately local to the more global [YSZ04]. Lee et al. introduce
a low-level human vision model by integrating mesh saliency into the simplifi-
cation process [LVJ05]. Their approach is based on a center-surround operator,
which is present in many models of human vision.
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Towards Perception-based Mesh
Simplification

1 Overview

Figure 10.1 shows the overall concept of the presented approach: First, the orig-
inal model is simplified using edge collapse operations. These operations are
sorted into a priority queue. As stated before, the simplification can continue
as long as the simplified model looks like the original. Unfortunately, three-
dimensional input data can not be used directly for a visual comparison. For
this reason, existing approaches rely on a per-pixel comparison of several pairs
of rendered images. When rendering the two models, the color of each surface
point depends on the position as well as the incoming and outgoing light direc-
tion. This results in a six dimensional domain: two dimensions for the position
on the surface, and two pairs of spherical angles.

Original
Mesh

Simplified
Mesh

BRDF
Parameterization

BRDF
Parameterization

Visual
Metric

Dimension
Reduction

Simplification
Algorithm

Visual Transformation

Dimension
Reduction

Visual Transformation

Figure 10.1.: Overview of the main concepts used in this paper.

In order to reduce this high dimensionality, a special BRDF parametrization is
introduced which is explained in section 2. The basic idea is to compare the mod-
els on a per vertex basis. This reduces the comparison to a computation of the
visual difference between two BRDFs. After the BRDF parametrization changes
in reflection for a fixed light direction can be represented by two-dimensional
maps. Using the proposed visual metric a perception-based comparison can be
performed on these maps. The result of this computation is a distance at which
the operation becomes perceivable.

The remainder of this paper is structured as follows: it starts with a brief
summary of the simplification pipeline and the modifications that have been
applied. After this, the BRDF parametrization is explained in detail. Then,
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basic concepts of the visual metric – such as contrast sensitivity and masking –
are explained. Finally, the results are presented and the algorithm is validated
with a user study.

1.1. Simplification Pipeline

The LOD is typically modulated based on an object’s distance from the view-
point. Depending on the application’s time and memory constraints, other cri-
teria would be size, velocity, eccentricity, fixed frame rate or orientation. One
common criterion is that geometric errors are only fully visible at grazing angles
(due to the background). Ideally, the reduced visual quality of the model is un-
noticeable because of the small difference of the object’s appearance when it is
far away or moving fast. Both, the acceptable perceptual quality and resource
requirements depend on the particular computing environment: the acceptable
perceptual quality is quite different for an automotive-selling application, or in
a game environment in which the player may be willing to accept a level of
artificiality.

One problem when using a geometric metric to compute discrete LODs is,
that the entire object must be simplified uniformly. Unfortunately, errors at
silhouettes tend to be more perceptible than other parts of the object because
they produce a higher contrast. In order to preserve high quality silhouettes,
the geometric deviation on the entire object has to be controlled. This however,
ignores the fact that a much more aggressive simplification could be applied to
areas that lie inside the object.

Process
priority queue

Collapse Edge

Visual
Difference

OK?

yes

Hausdorff
Distance

OK?
yes no

no

Postpone Edge

Figure 10.2.: Overall simplification pipeline.

As shown in Figure 10.2, the simplification pipeline is only slightly different
from the common geometric approach. First, the edge collapses are sorted into a
priority queue, depending on the error that this particular collapse induces: the
collapse operation causing the smallest geometric error is the first element and
the collapse operation causing the biggest error is the last. The error itself is
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estimated by the quadric error metric as introduced by [Hop99]. The classic ap-
proach works by removing the edge inducing the smallest error and recomputing
the error for all affected edges. This step is repeated until the smallest error is
above a user-defined threshold.

This simple loop was modified by performing the visual error computation on
the first element of the queue. If the collapse operation induces a visual error
higher than the one estimated by the error quadric, the operation is postponed
with the actual error. Otherwise, the Hausdorff distance is computed to preserve
the silhouettes. If the geometric error is above the estimated one, the edge
collapse is also postponed. If the operation passes both tests, the edge is collapsed
and the priority queue is rebuilt for all affected edges. The collapse is stored along
with it’s perceptual and geometric error and the algorithm repeats until no more
collapses are possible.

Figure 10.3 shows a sphere (blue) approximated by an octahedron (red) con-
sisting of 8 triangles. The distance d depicts the geometric deviation (or error)
induced by this approximation. Obviously, this error is most visible when the
view direction V is orthogonal to the surface normal N, because of the strong
change of the silhouette.

•

Figure 10.3.: Projection of geometric simplification error between original
(blue) and simplified model (red).

The induced frequency with maximum amplitude is 1
2α cpd, where α =

2arctan
(

d
2D sin θr

)
depends on the viewing distance D and the angle θr between

V and N. If this frequency is visible, i.e. it’s contrast sensitivity is not zero, the
collapse can be perceived. As an upper bound of the split/collapse distance is
required for the priority queue, the maximal projection of the geometric error is
used, i.e. sin θr = 1. This way the maximal edge displacement frequency can be
derived.

To prevent popping artifacts when switching between levels of detail, it is
always necesarry to measure the difference between two subsequent levels. The
most fine grained techniques are progressive meshes, where each simplification
or refinement operation represents a switch between two levels. In this case
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it is required to compare the mesh before and after the current simplification
operation. While this prevents popping artifacts, the difference to the original
model can become arbitrary. Therefore, the difference to the original model is
computed additionally.

2 Perceptual Model

Each collapse operation inevitably results in a geometric deviation from the orig-
inal surface. The geometric error allows one to simplify planar regions in a very
aggressive manner, whereas silhouettes or curved areas can only be simplified to
a certain degree, depending on viewing distance and direction. Additionally, each
simplification step induces a change of curvature, lighting, and parametrization.
The idea of our perceptual simplification is, that the degree of reduction depends
on the contrast of a surface area. For this purpose we propose a perceptual
model to determine whether a collapse operation induces a perceivable change
in contrast or not. With the help of such a model, it can be estimated if this
particular operation is visible from a given distance.

A straightforward approach is to measure contrast in image-space. If for ex-
ample a surface has a strong, sharp highlight, it is nearly impossible to simplify
that region without significantly altering the original appearance. On the other
hand, if there is no contrast at all1, it would be possible to replace even the
most complex geometry by a simple surface patch. Finally, if an object’s texture
contains very high and random frequencies, it is also possible to simplify more
aggressively due to a phenomenon called visual masking, which we address in
Section 2.4.

2.1. Color Perception and Color Space Conversion

The first step to determine the visibility of a collapse operation is to mimic human
color perception. Its main property is that it operates on contrast rather than
absolute luminances. Another important issue is that we have a trichromatic
perception of color signals: There are three different types of cones on the retina
with peak sensitivities of 570nm, 540nm, and 440nm. They are referred to as
long, middle and short (LMS) cones. Sensations of red and green as well as blue
and yellow are encoded as color difference signals in separate visual pathways.
This means that chromatic values are encoded in an opponent color space with
the color channels white-black (W − K), red-green (R − G), and blue-yellow
(B − Y ).

The first step of the perceptual model is the conversion from the non-linear
sRGB color space of the display into the energy absorbed by each of the three
cone types in the human retina. This includes inverting the gamma-correction
of sRGB and transforming from the device color space to the standard XYZ
color space. From there, a transformation to the long, middle and short (LMS)
wavelength color space can be performed as described by Hunt [Hun95]:

1e.g. in a shadowed area
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⎡
⎣ L
M
S

⎤
⎦ =

⎡
⎣ 0.7328 0.4296 −0.1624
−0.7036 1.6975 0.0061
0.0030 0.0136 0.9834

⎤
⎦
⎡
⎣XY
Z

⎤
⎦

Like Mantiuk et al. [MMS04] we do not model the photoreceptor response but
transform the linear luminance values y (i.e. L/M/S) in the JND-scaled space.
Their accurate approach is unfortunately too costly for our purposes. We thus
approximate the transformation with

l = ψ−1(y) ≈ kl log (y + ky) ,

where l is the response in JND-scaled space (i.e. L’/M’/S’), kl and ky are deter-
mined by a least squares fit to the threshold versus intensity function tvi, and ψ
is the photoreceptor response. Under the assumption that the eye can adapt to
a single pixel of luminance [Dal93], this function is:

tvi (ψ(l)) =
∂ψ(l)

∂l

The resulting constants are kl = 100 and ky = 1.02 cd/m2. Note that the
controversial flattening of the receptor response above 108 cd/m2 can be ignored
since we can safely assume that no display will produce such a high luminance.

Based on perceptual experiments one can derive different opponent color spaces
for the standard human observer. Since we are interested in pattern color separa-
bility, we use the color transformation defined by Poirson and Wandell [PW96]:⎡

⎣W −K
R−G
B − Y

⎤
⎦ =

⎡
⎣ 0.990 −0.106 −0.094
−0.669 0.742 −0.027
−0.212 −0.354 0.911

⎤
⎦
⎡
⎣ L′

M ′

S′

⎤
⎦,

where the non-linear cone responses L′, M ′, and S′ are given in JND-scaled space.

2.2. Local Visual Difference

As shown in Figure 10.1, the visual metric compares the original model to the
simplified one. For each edge collapse, we require the distance at which it be-
comes imperceivable for every combination of view and light direction. One
possibility to evaluate pairs of input images would be to directly use the HDR
VDP [MMS04]. Unfortunately, this is computationally too expensive, since it
would result in a very high number of input image pairs.

To avoid the per-pixel comparison, we only compare at the vertices of the
original and the simplified model. Since the number of vertices is usually much
smaller than the number of pixels, a significant speedup can be expected. As
a vertex defines an infinitesimal point on the surface, the frequencies can only
originate from the curvature of the surface at this point. To capture all pos-
sible frequencies, each vertex needs to be rendered from all light and view di-
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rections. These samples can be generated by rendering a hemisphere with its
normal parallel to the view-direction. This is performed with different light el-
evations by varying the angle between light and view direction. The result is
a four-dimensional reflectance field as shown in Figure 10.4 (right), where it is
mapped into a two-dimensional image.

N

T
B
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N

T

B
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i

iN

T

B

Figure 10.4.: Hemispherical view and light sampling (left) and resulting re-
flectance field (right).

When the curvatures of both the simplified and original local patch are iden-
tical, there are only two sources of differences. Either there is a rotation of the
surface, or other shading parameters have changed. If we describe the rotation
relative to the local coordinate system of the surface, we can obtain the angles
αt, αb, and αn for the rotation around tangent, bitangent, and normal respec-
tively (see Figure 10.4 left). This is a similar parametrization to the well known
rotation quaternions with the only difference that it consists of explicit rotation
angles. The three rotation angles are computed from the quaternion q with

αt/b/n =
qx/y/z

‖qxyz‖ · 2 arcsin ‖qxyz‖.

Note that the absolute values of the angles are independent of the ordering of
the two local coordinate systems as only the signs of the quaternion coordinates
change when rotating in the opposite direction.

The rotations induce a phase shift φ:

φ =
√

φ2
t + φ2

b + φ2
n =

√
α2
t

ω2
t

+
α2
b

ω2
b

+
α2
n

ω2
n

,

where ωt, ωb, and ωn are the angular frequencies of the signal. The first two
correspond to spherical oscillations and can thus be derived using a discrete
spherical harmonics transformation [DH94]. Finally, ωn corresponds to a discrete
Fourier transformation along αn. In total, we gain a signal amplitude for all
combinations of some discrete values of ωt, ωb, and ωn from these transformations.
In addition to the angular phase shift, the difference in shading parameters can
also lead to an additional phase shift for each frequency combination.
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If we were only interested in the visual difference at the current vertex, we
could simply compute the difference between the two shifted signals. Since we
can assume that at some nearby point on the mesh at least the phase shift
becomes zero again (e.g. at a not yet simplified vertex), we instead consider
the maximum difference δmax of the two signals with any phase shift up to the
computed one. This yields the following maximal signal difference:

δmax = min (a1, a2) + |a1 − a2|
√
2− 2 cosφmax

φmax = max (φ+ φs, π) ,

where ai is the amplitude (L’M’S’) of signal i and φs the phase shift between the
two signals in their local coordinate systems.

2.3. Distance Computation

To compute the perceived difference between the two signals, we also need to
know their frequency in cycles per degree of visual angle. For this purpose, we
first require the spatial frequency fs which is then projected onto the retina
depending on the viewing conditions. The mapping of the angular frequencies
to local spatial frequencies depends on the curvatures of the surface. The torsial
frequency fn can be calculated directly from ωn using the mean torsial curvature
κn (i.e. the mean absolute derivative of the torsion τ) with

fn = κnωn =

√(
∂τ

∂u

)2

+

(
∂τ

∂v

)2

ωn.

Note that in physical terms, the torsion τ corresponds to the angular momen-
tum of an idealized top pointing along the tangent of the curve. For surfaces
the top direction corresponds to the normal and the curve moves in tangent or
bitangent direction. For the tangential frequencies the mapping is not that sim-
ple. The tangential frequencies ft and fb can only be defined in relation to each
other. This is due to the fact that a combined rotation of light and view direction
around the surface normal has the same effect as a rotation of the surface itself.
Since ft and fb are orthogonal, they depend on the minimum and maximum
tangential frequencies fmin and fmax as follows:

ft =
√
(fmin sinβ)2 + (fmax cosβ)2

fb =
√
(fmin cosβ)2 + (fmax sinβ)2,

where β is the angle between the current light direction and the direction of
minimal curvature. The minimum and maximum frequencies are then:

fmin = κminmin(ωt, ωb)

fmax = κmaxmax(ωt, ωb),

where κmin and κmax are the minimum and maximum principal curvatures of
the local surface patch. The total spatial surface frequency f of the coefficient is
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now simply the L2-norm of the three frequencies:

f =
√
f2
t + f2

b + f2
n.

Exploiting the fact that cos2 β + sin2 β = 1 we can write:

f =
√

f2
min + f2

max + f2
n.

The mapping of spatial surface frequencies onto the retina then depends on the
view direction and distance. At distance D and observed under the angle θr
between view direction and surface normal, the retinal frequency fs is:

D

cos θr
f ≥ fs(D, θr) ≥ Df.

Given the signals amplitude difference and frequency, we can compute if the
average human observer will perceive a difference between them. For this purpose
we use the spatio-temporal contrast sensitivity functions Ca/c(fs, ft) defined by
Burbeck and Kelly [BK80]. To prevent visible popping when the level of detail
changes, we must use the maximum sensitivity for each spatial frequency with
respect to any temporal frequency:

Ca/c(fs) := max
∀ft

Ca/c(fs, ft)

This is simple for the chromatic contrast sensitivity Cc since the highest sensitiv-
ity is always at 0 Hz [Kel79]. For the achromatic contrast sensitivity Ca finding
the maximum is too costly to be evaluated for each coefficient. We therefore
approximate Ca using a sum of three Gaussians. For the sake of simplicity the
chromatic sensitivity is also approximated using a sum of two Gaussians:

Ca/c(fs) ≈
∑
i

wie
−f2s
σ2
i

The spreads σi and weights wi for a least squares fit are listed in Table 10.1 and
Figure 10.5 shows the approximated sensitivity functions.

i wi σi
Ca 1 1.98488 9.45161◦

2 1.06781 7.07609◦

3 −1.18094 3.14760◦

Cc 1 0.27519 7.00112◦

2 0.24116 3.78524◦

Table 10.1.: Spread and weight of Gaussian functions used to model the
contrast sensitivity functions.
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Figure 10.5.: Chromatic and achromatic contrast sensitivity: the reduction
of the fall-off towards zero is necessary to prevent popping.

For both the contrast difference δmax and the detection threshold td we need
to know the mapping of the spatial frequency into the field of view. For this
projection the viewing distance D is required. To determine the split distance,
we need to find that Dmax above which the difference cannot be perceived. As
this distance becomes smaller with increasing frequency, only the lower bound
of the spatial frequency fs after projection needs to be considered. Dmax itself
can then be computed using Newton iteration to find the distance at which
δ = td holds. In the achromatic case there may be two distances satisfying this
condition, Dmin and Dmax, so one can either store both or Dmax only. In the
first case, the edge could also be collapsed if the distance D is below Dmin. Since
for each operation three vertices are considered and the split range of the two
previous vertices also needs to be considered, this can however only marginally
reduce the number of triangles.

2.4. Visual Masking

Visual masking is a perceptual phenomenon that was studied in detail by Camp-
bell and Gubisch [CG66]. It occurs because the stimuli in the photoreceptors
cells are not independent of each other but interact in various ways. As a result,
a stimulus that is visible by itself cannot be detected due to the presence of an-
other. The reason is that each ganglion cell on the retina receives its input from
a local region called receptive field. The receptive field is not restricted to cells in
the retina, but also occurs in many later stages of the visual pathways. Without

109



Chapter 10. Towards Perception-based Mesh Simplification

masking the detection threshold td is always one. Masking can elevate td for a
given vertex, allowing for a more aggressive simplification beyond the bounds of
the just noticeable difference. Values smaller than one are also possible for td
due to the so-called facilitation, which occurs for very weak stimuli with similar
characteristics.

We consider two types of masking in our approach: local masking, which occurs
in the vicinity of a single vertex, and global masking, that depends on the entire
model. A cortex transformation [MMS04], which performs a decomposition into
spatial and orientational channels, is applied for the global masking. This is done
by applying directional filters to each color channel (orientation processing). The
transformation cannot be transferred to the local case, because here the signals
are already localized. This limits the local masking to the frequency domain for
which we have already performed a transformation using the spherical harmonics
and Fourier transformations.

For the global masking the object is rendered from different view and lighting
positions distributed over the unit sphere. This step results in a set of input
images Ik for incoming and outgoing directions (ωi,k, ωo,k), which means that Ik
is rendered from view direction ωi,k with light direction ωo,k. For each Ik the color
space conversion to JND-scaled space is applied. In contrast to local masking,
where the cortex transform is calculated for the parametrization of a single vertex,
it is now applied to the entire image as in [MMS04]. Then the visibility of each
vertex is checked, since the difference at a vertex can only be masked when it
is visible. If a vertex is visible, the maximum local amplitude of all receptive
field directions is calculated for each frequency band f . Finally, the maximum
amplitude over all images is computed and stored as global masking ag(f) for the
vertex. This is correct under the assumption that when the masking is maximal,
the signal difference is maximal as well. This assumption is reasonable for all real
world objects and materials. To finally compute td we use the masking function of
Daly with masking amplitude am and frequency f , where the masking amplitude
is a combination of local and global masking with:

am = max(ag(f),min(a1, a2))

We again need to use the maximum of the signals as the highest masker con-
trast determines the level of masking [Dal93].

3 Implementation

The first step when calculating the validity range of a collapse operation is to
generate the hemispherical samples for a given vertex and the closest interpolated
point on the reference model. For this purpose the same shader was used as
to render the model in the interactive application. To generate the samples,
precomputed meshes with appropriate normal and tangent vectors were used.
Note that only meshes for αn and φi are required as for different θi the meshes
can be reused.

The following spherical harmonics transformation is underdetermined, since
only the upper hemisphere is sampled. If the lower half is set to zero, frequency
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ringing occurs at the boundary. To prevent this, the underdetermined linear
equation system was solved that is set up by the inverse transformation under
the constraint that

∑
i

|ci|2
f2
i

→ min,

where ci is the i-th coefficient and fi its frequency. Note that it is not necesarry to
solve this least squares problem for each transformation but simply calculate the
pseudo-inverse of the constraint matrix once. Another possibility would be to use
the hemi-spherical harmonics proposed by Gautron et al. [GKPB04]. However,
these have the drawback that the phase shift cannot be computed directly from
the coefficients.

The transformations that need to be applied to the generated samples are
entirely implemented using CUDA. Such a parallel implementation is possible
since each transformation is essentially a sparse matrix vector multiplication. In
our implementation this general formulation is used even for the Fourier trans-
formation because the dimension is rather small and thus the transformations
are not the performance bottleneck. The most demanding part of the distance
computation is the comparison of the transformed samples due to the iterative
search for the distance at which the difference becomes just noticeable. In the
presented approach, the distance computation is performed in parallel on each
transformed coefficient. While this optimally exploits parallelism since the code
executed for each coefficient is identical and only the data differs, an inter thread
communication could be used to terminate those with smaller distance than the
currently computed lower bound.

3.1. Out-of-core Simplification

For the processing of very large polygonal models an out-of-core implementation
was developed. To optimize the input data for caching, the vertices and triangles
of the model are sorted using spectral mesh sequencing. Note that other types
of preprocessing such as cache-oblivious layouts [eYLPM05] would be possible as
well.

The priority queue containing all collapse operations is stored on disk. Each
element in the priority queue consists of a priority value and an index. The al-
gorithm starts by loading the first n elements of the queue into memory. These
elements are then sorted by the index of the target vertex v. Due to the prepro-
cessing step this results in a cache local access pattern. The simplification error
is then computed for this sorted list. Note that to compute the error, the mesh
datastructure has to be loaded as well to find the vertex neighbors. File accessing
is done using memory map files, which are provided by the operating system to
optimize disk IO. If a vertex passes all tests it is stored in another list. After
checking all vertices of the current block, the accepted operations are sorted by
their perceivability distance. Then they are applied in that order unless they
have become invalid due to the collapse of a neighbor vertex.
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4 Results

The test system was a PC with an Intel Core2 Duo 3.33 GHz CPU, 2 GByte of
main memory, and a GeForce GTX 295. As maximum display luminance of the
final interactive rendering application, 1000 cd/m2 was used, but this has little
influence on the simplification result and no effect on the computation time. The
hemispherical sampling has a resolution of 16 × 16 × 32 × 16 (αb, αt, αn/φi, θi)
which is sufficient for high frequency materials.

For each simplification operation three vertices are checked. Each of these tests
requires approximately 0.9 ms which sums up to 2.7 ms per operation. With one
third of the quadric error as estimate for the Hausdorff distance, almost every
second checked operation is postponed during simplification. This results in a
ratio of 2 : 1 for perception tests versus performed operations. The Hausdorff
test on the other hand needs 4 ms on average, but is passed by nearly every
operation. In total, approximately 100 collapses were computed per second which
is a throughput of about 1 million faces in 90 minutes. This performance is still
acceptable, although the fastest simplification algorithms that do not guarantee
a maximum error are almost two orders of magnitude faster.

As simplification is a preprocessing step that is performed once per model only,
the number of primitives required for a specific quality is far more important.
In this context the algorithm was compared to the attribute preserving simplifi-
cation of Guthe et al. [GBBK04]. To map view distance to simplification error,
the same scaling was used as for the Hausdorff distance ( 1

30

◦
fov). The resulting

number of triangles for different simplification errors are shown in Table 10.2 for
simplification errors of 0.1% and 1% of the bounding box diagonal. Using the
presented approach saves roughly half of the primitives compared to the attribute
preserving simplification.

simpl. error our algorithm attrib. pres.

phlegmatic 0.1% 276, 742 440, 646
dragon 1% 61, 208 133, 528

Stanford 0.1% 439, 446 723, 732
dragon 1% 14, 664 36, 034

Happy 0.1% 652, 808 834, 450
Buddha 1% 53, 054 61, 678

XYZRGB 0.1% 1, 203, 295 3, 357, 094
manuscript 1% 156, 437 263, 793

XYZRGB 0.1% 1, 570, 734 3, 776, 114
dragon 1% 266, 145 424, 131

Table 10.2.: Number of triangles for models simplified to a specified error.

To validate our perceptual measure, several simplifications of the three smaller
models with varying perceptual error threshold were produced. They were pre-
sented to a group of 32 (11 female, 21 male) subjects that had to decide if
they can perceive a difference to the non-simplified reference model or not. The
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subject can interactively view the model that is lit by a single directional light
source that can also be rotated. For rendering we created progressive meshes
of the three input models and used view-dependent refinement [Hop98] to adapt
them for the current viewing conditions. For each model, two tests have been
performed, one with increasing and one with decreasing error, until the subject
noticed or stopped to notice the visual difference. To remove any subject that was
only guessing, also a comparison of the original model with itself was added. A
calibrated display was used with a maximum luminance of 500cd/m2 and a view-
ing distance of 1 m (1.9× the image width). The surrounding illuminance was
approximately 500 lux such that the ratio of display to surrounding luminance
conforms with ITU-R BT.500-11. Figure 10.6 shows the experimental setup.

Figure 10.6.: Setup for perceptual experiment. In this example, the model
on the left is simplified up to four times the just noticeable
difference and the original model is shown on the right.

Table 10.3 shows the results of this study that are as expected as approxi-
mately half of the subjects started to notice the difference at 1 JND for most
models. Only the results for the phlegmatic dragon differ. Here the estimated
JND is only half of the real one, leading to the assumption that a more aggressive
simplification would have been possible. This might be due to the rather sparse
sampling when calculating the global masking. For both of the models, the real
just noticeable difference approximately lies between 0.8 and 1.2 of the estimated
JND. This validates the presented model as it complies with the formal definition
of the just noticeable difference.

Figure 10.7 shows a comparison of the meshes generated by the two simpli-
fication algorithms. The presented approach especially reduces the number of
triangles in smooth regions that contain high frequency noise, e.g. at the belly of
the Buddha and scales of the XYZRGB dragon.

Finally, Figure 10.8 shows a comparison of the visual quality using QSlim [Hop99]
and attribute preservation [GBBK04] with the same number of triangles as the
novel approach. While the quadric error metric does not preserve smooth vari-
ation of attributes (especially texture coordinates), the attribute preservation
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phlegmatic dr. Stanford dr. Happy Buddha
total (increasing/decreasing)

1
4

JND 11% (23%/ 0%) 0% (0%/ 0%) 22% (33%/12%)
1
2

JND 17% (28%/ 7%) 6% (8%/ 3%) 41% (52%/30%)
1 JND 37% (49%/24%) 34% (38%/ 30%) 63% (63%/63%)
2 JND 50% (65%/34%) 95% (96%/ 94%) 73% (63%/84%)
4 JND 63% (72%/54%) 100% (100%/100%) 86% (88%/84%)

Table 10.3.: Percentage of subjects that perceived a visual difference with
respect to perceptual error threshold of the presented model.

needs too many triangles resulting in a higher geometric error.
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Figure 10.7.: Simplified models at 0.2% simplification error using
the presented algorithm (left) compared to attribute
preservation(right). 115
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Figure 10.8.: Simplified models at the same number of triangles using QSlim
(top left), attribute preservation (top right), and our approach
(bottom left) compared to the original model (bottom right).
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Figure 10.9.: Stanford bunny with different materials simplified up to an
error threshold of 0.2%. Note how the number of triangles
(32902, 24198, 17669, and 27447) depends on frequency con-
tent.
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Chapter 11.

Conclusion

In section 4 a compression method to preserve the full dynamic range of a re-
flectance field was presented. After reconstruction, any post production effect
such as tone mapping or bloom can be applied, making it possible to use the
data in any dynamic environment. The prevailing problem is that all of the
compression techniques PCA, wavelets, spherical harmonics or VQ produce an
optimal linear solution, whereas HDR radiance values are non-linear distributed.
This work proposed to solve this problem by applying a non-linear transforma-
tion to the radiance data. It was shown that this transformation does not only
allow to apply a compression step, but also a quantization step. In the examples
a simple method to quantize the principle components to common RGB data
format was presented. After this, lossy hardware-accelerated DXT1 compression
was applied. After these steps one pixel takes 4 bits instead of 48, resulting in
an compression ratio of 1:12. Stored as conventional texture maps it is possible
to reconstruct the reflectance field in real-time using the fragment shader. The
main limitation of the method lies in the chosen simple PCA compression. If the
covariance between pixels is low, the image quality is low.

In section 5 a method was presented to generate HDR images from picture
sequences that are taken without a tripod or automatic exposure sequence and
can even contain moving objects (e.g. clouds, foliage, and people). Motion is
identified using a hierarchical macroblock matching based on cross-correlation.
This does not only compensate for moving objects, but also for movements of
the camera that lead to parallax effects. While the current implementation has a
runtime of less than 15 seconds for a sequence of three pictures and a resolution of
about one mega pixel on a 2.4 GHz CPU, an implementation on current graphics
hardware will be able to align high resolution pictures within a few seconds. A
limitation of the method is that it cannot compensate for large occluded areas
that were visible in the reference image and thus solely relies on the ghost removal
technique during the second step in such cases. If no data is available in the
other images (i.e. the region is completely black or white) the irradiance cannot
be reconstructed. Another limitation is that the technique can only compensate
small rotations (up to about 14 degree) about the z-axis of the camera. Thus
a possible extension would be to allow rotation the the macroblocks during the
alignment phase.

In section 6 a novel BTF representation was proposed that is suited for both
editing and rendering at the same time. This is achieved by splitting the BTF
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into texture maps describing meso-scale geometry and textures describing light
interaction. The main advantage of this representation is that changing the tex-
tures directly affects the BTF rendering since no further compression is required.
For designers, these textures are comprehensive and intuitive and do not require
deep knowledge of the underlying physics. A shader based on parallax occlu-
sion mapping to render g-BRDFs in real-time on current graphics hardware was
presented. In addition to generating a BTF from scratch, the proposed decom-
position process partitions a measured BTF into its g-BRDF representation and
thus allows editing of real-world materials. While the quality of the compressed
BTF is comparable to state-of-the-art statistical compression algorithm, the g-
BRDF requires significantly less texture memory.

In section 7 the concept of shadow maps and TSMs was extended by introduc-
ing a novel hierarchical approach for view-dependent subsampling of the shadow
map in dependence of the underlying projected geometry. For this purpose, mul-
tiple mipmap-levels of variance maps are created. Starting from the coarsest
level, finer samples are only taken if the variance exceeds a certain threshold.
This hierarchical approach allows to compute the whole scattering integral and
can therefore be considered a global approach. The technique could be improved
by adding a single scattering term. Furthermore, it is restricted to convex objects
and cannot simulate hollowed objects or objects that consist of multiple materi-
als, which could be solved using depth peeling. Another valuable addition would
be the validity feature as introduced by Ki and Oh [KO08] in order to improve
rendering speed with a quick validity check before estimating the approximation
error.

In section 10 a perceptual-based simplification algorithm was presented that
can be applied to arbitrary materials. In contrast to existing approaches, where
a perceptual metric is applied per pixel, the presented metric is evaluated for
each vertex. Since the number of visible vertices is usually much smaller than
the number of pixels, a significant speedup was achieved. The simplification
performance of 100 collapses per second is at least an order of magnitude faster
than any algorithm based on per-pixel comparisons. To compare two vertices, a
special BRDF parameterization was introduced that maps incoming and outgoing
lighting directions into a two-dimensional map. The parameterization accounts
for anisotropic materials as well. The main limitation of the method is that only
the difference at vertices is checked which can lead to unnoticed deviations on
textured surfaces. However, this did not occur for the models and materials that
were tested. This limitation is most critical for models with few vertices and
textures containing very high frequencies. For such materials, a per pixel metric
has to be applied.
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Future Work

For the simulation of subsurface scattering, more flexible algorithms have to
be developed: They need to work dynamic meshes, for distant and very close-
up views, and for any kind of material. Also, they must not depend on heavy
precomputation, or precomputation must be very fast. Also, note that for hollow
and concave objects, the diffuse dipole approximation1 is not plausible - a more
robust mathematical model has to be developed for such meshes. One possibility
for a more precise calculation of scattering would be the use of form factors,
although they are highly dependend on visiblity.

The methods for the acquisition of realistic materials must become faster and
more affordable. Current systems are very expensive and have to be controlled
by experts. Acquisition can last from several hours to days, resulting in data sets
of several gigabytes. I would think of a device that can be placed on a table, with
a small slide for the material sample and one or two gantries with the camera and
the light source. Ideally would be a uniform sampling of incoming and outgoing
light directions, including lighting samples from the back to measure subsurface
scattering.

For the acquisition of high dynamic range images, cameras with faster exposure
control have to be developed to avoid ghost artifacts and unwanted motion.
Alternatively, CCD sensor chips capable of HDR have to be affordable for the
consumer market. Current HDR chips are reserved to professionals and still have
a very limited dynamic range, used in cameras of overdimensional size.

A possible improvement of our g-BRDF representation would be to include
even more effects that are lost during the decomposition of the material proper-
ties, for example more precise self-shadowing or realistic interreflections. Also, an
additional parameterization for realistic subsurface scattering could be included.
A future implementation would possibly exploit the tesselation features of latest
graphics hardware: the height map would then be directly used in the rendering
pipeline to create a high number of additional triangles directly on the GPU.
This would greatly improve the quality of the material2

1used in methods such as TSM
2This would also make the parallax occlusion mapping obsolete.
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Glossary

A

AEB Automatic Exposure Bracketing provided by most digital cameras,
p. 58.

B

b-reps Boundary Representation of a mesh (e.g. half-edge datastructure),
p. 23.

BRDF Bidirectional Reflectance Distribution Function.

BSSRDF Bidirectional Surface Scattering Reflectance Distribution Function.

BTF Bidirectional Texture Function.

C

CG Computer-Generated or C for Graphics (context).

CRT Cathod Ray Tube.

CUDA Compute Unified Device Architecture.

D

display resolution The physical ability of the display device to show distinct
pixels., p. 8.

dynamic range Relation of the brightest to the darkest pixel on the screen.,
p. 9.

F

frames per second Temporal resolution is measured in frames per seconds or
Hertz., p. 9.

G

GPU Graphics Processing Unit.
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H

HDR VDP High Dynamic Range Visual Difference Predictor.

HDRI High Dynamic Range Imaging.

High Definition High Definition Resolution is 1920x1080 picture elements, p. 8.

high dynamic range Describes the synthesis of images done in larger dynamic
range., p. 9.

HLSL High Level Shading Language.

human visual system Human Visual System, p. 12.

I

IBRM Image-based Rendering and Modeling, p. 38.

L

LCD Liquid Crystal Display, p. 8.

N

NTFS National Television System Committee, p. 8.

O

OpenCL Open Computing Language.

P

PAL Phase Alternating Line, p. 8.

PCA Principal Component Analysis.

S

screen resolution The resolution of the framebuffer in the memory of the graph-
ics device., p. 8.

SVD Singular Value Decomposition.

T

tone-mapping operator Tone-Mapping Operator, p. 10.

V

VLF Vertex Light Field.

W

WQSXGA Wide Quad Super Extended Graphics Array, p. 8.

WQXGA Wide Quad Extended Graphics Array, p. 8.
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Real-time appearance preserving out-of-core rendering with shad-
ows. In A. Keller and H. W. Jensen, editors, Rendering Techniques
2004 (Proceedings of Eurographics Symposium on Rendering), pages
69–79 + 409. Eurographics Association, June 2004.
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