
ABSTRACT

Title of dissertation: EFFICIENT GEOMETRY AND
ILLUMINATION REPRESENTATIONS
FOR INTERACTIVE PROTEIN
VISUALIZATION

Xuejun Hao, Doctor of Philosophy, 2004

Dissertation directed by: Professor Amitabh Varshney
Department of Computer Science

This dissertation explores techniques for interactive simulation and visualiza-

tion for large protein datasets. My thesis is that using efficient representations for

geometric and illumination data can help in developing algorithms that achieve bet-

ter interactivity for visual and computational proteomics. I show this by developing

new algorithms for computation and visualization for proteins. I also show that the

same insights that resulted in better algorithms for visual proteomics can also be

turned around and used for more efficient graphics rendering.

Molecular electrostatics is important for studying the structures and interac-

tions of proteins, and is vital in many computational biology applications, such as

protein folding and rational drug design. We have developed a system to efficiently

solve the non-linear Poisson-Boltzmann equation governing molecular electrostatics.

Our system simultaneously improves the accuracy and the efficiency of the solution

by adaptively refining the computational grid near the solute-solvent interface. In

addition, we have explored the possibility of mapping the PBE solution onto GPUs.

We use pre-computed accumulation of transparency with spherical-harmonics-based

compression to accelerate volume rendering of molecular electrostatics.

We have also designed a time- and memory-efficient algorithm for interactive

visualization of large dynamic molecules. With view-dependent precision control

and memory-bandwidth reduction, we have achieved real-time visualization of dy-

namic molecular datasets with tens of thousands of atoms. Our algorithm is linearly

scalable in the size of the molecular datasets.

In addition, we present a compact mathematical model to efficiently represent

the six-dimensional integrals of bidirectional surface scattering reflectance distribu-

tion functions (BSSRDFs) to render scattering effects in translucent materials inter-

actively. Our analysis first reduces the complexity and dimensionality of the problem

by decomposing the reflectance field into non-scattered and subsurface-scattered re-

flectance fields. While the non-scattered reflectance field can be described by 4D

bidirectional reflectance distribution functions (BRDFs), we show that the scattered

reflectance field can also be represented by a 4D field through pre-processing the

neighborhood scattering radiance transfer integrals. We use a novel reference-points

scheme to compactly represent the pre-computed integrals using a hierarchical and

progressive spherical harmonics representation. Our algorithm scales linearly with

the number of mesh vertices.

Efficient Geometry and Illumination Representations
for Interactive Protein Visualization

by

Xuejun Hao

Dissertation submitted to the Faculty of the Graduate School of the
University of Maryland, College Park in partial fulfillment

of the requirements for the degree of
Doctor of Philosophy

2004

Advisory Committee:

Professor Amitabh Varshney, Chair/Advisor
Professor Leila De Floriani
Professor David Jacobs
Professor David Mount
Professor Hanan Samet
Professor Sergei Sukharev

c© Copyright by

Xuejun Hao

2004

ACKNOWLEDGMENTS

I owe my gratitude to all the people who have made this thesis possible.

First, I’d like to thank my advisor, Dr. Amitabh Varshney for his excellent

advice and for giving me the opportunity to work on challenging and extremely in-

teresting projects. He has not only taught me how to do good fundamental research,

but also given me a lifetime philosophy so as to be more successful as a human. His

constant cheering has made my graduate experience such an enjoyable one.

I would like to thank my other committee members for their insightful com-

ments and cheerful inspiration. In particular I would like to thank Dr. Leila De Flo-

riani for her wonderful advice on research topics, as well as on career opportunities;

Dr. David Jacobs for his inspirational work on spherical harmonic representation

for reverse rendering; Dr. David Mount for teaching me computational geometry,

and sharing his bright ideas on research problems in illumination and geometry;

Dr. Hanan Samet for sharing his key insights on various research topics and giving

numerous advices on research and life related issues; Dr. Sergei Sukharev for his

tutorial on computational biology, especially on ion-channel studies.

Dr. Yiannis Aloimonos and Dr. Cornelia Fermller have given me numerous

wonderful advice and encouragement. I would like to them for all their help.

I would like to thank Dr. Dianne P. O’Leary for sharing her deep insights on

scientific computations, and Dr. Marc Olano at University of Maryland at Baltimore

ii

County for sharing his wonderful insights on GPU programming.

I would also like to thank Bill Baxter at University of North Carolina at

Chapel Hill, and Won-Ki Jeong at University of Utah for sharing their insights on

GPU programming, and all members of GVIL Lab at Maryland for their support,

including Thomas Baby, Indrajit Bhattacharya, Aravind Kalaiah, Chang Ha Lee,

Ziyun Li, and Youngmin Kim.

I owe my deepest thanks to my family - my parents, my wife, and my sister,

for their continuous support and encouragement.

I have been fortunate to be with the people mentioned and because of them

my graduate experience has been one that I will cherish forever.

iii

Table of Contents

List of Tables ix

List of Figures x

1 Overview and Results 1

1.1 Motivation . 1

1.2 Simulation of Molecular Electrostatics 4

1.2.1 Problem Definition . 4

1.2.2 Algorithm Overview . 5

1.2.3 Results . 6

1.3 Visualization of Molecular Electrostatics and Dynamics 8

1.3.1 Order-independent Splatting for Efficient Electrostatics Visu-

alization . 8

1.3.2 Variable Precision Representation 11

1.3.3 Efficient Display of Dynamic Proteins 14

1.4 Interactive Rendering of Subsurface Scattered Reflectance Field . . . 17

1.4.1 Problem Definition . 18

1.4.2 Algorithm Overview . 18

1.4.3 Results . 19

1.5 A Guide to Chapters . 21

2 Efficient Solution of Poisson-Boltzmann Equations for Molecular

iv

Electrostatics 22

2.1 Proteins . 23

2.2 Fundamentals of Molecular Electrostatics 25

2.2.1 Electrostatics in Uniform Dielectric Medium – Poisson Equa-

tion and Coulomb’s Law . 25

2.2.2 Electrostatics in NonuniformMedium with Environmental Re-

sponse – Poisson-Boltzmann Equation 26

2.3 Previous and Related Work . 28

2.4 Finite Difference Method for PBE 29

2.5 Our Approach . 31

2.5.1 Analytical Solvent-accessible Surface 32

2.5.2 Distance-Field-based Tetrahedralization 33

2.5.3 Adaptive Tetrahedralization 34

2.5.4 Derivative Computation for Irregular Grids 37

2.5.5 GPU Solver for PBE on Regular Grids 39

2.6 Results and Discussion . 43

2.6.1 Results and Comparisons on an Analytical Solvable Case . . . 43

2.6.2 Results on Real Molecules . 46

2.6.3 Results of PBE solver on the GPU 46

2.7 Conclusions . 47

3 Order-independent Splatting for Visualization of Electrostatics 49

3.1 Previous and Related Work . 50

v

3.2 The Volume Rendering Integral . 51

3.3 Pre-computation of Accumulated Transparency 54

3.4 Compression by Spherical Harmonics 56

3.5 Results . 60

3.6 Conclusions . 63

4 View-dependent Variable Precision Data Representation 64

4.1 Introduction . 64

4.2 Related Work . 67

4.3 Our Approach . 69

4.3.1 Precision and Complexity . 69

4.3.2 View-dependent Transformation 73

4.3.3 Spatio-Temporal Coherence 77

4.3.4 Variable-Precision Lighting . 81

4.3.5 Some Implementation Details 90

4.4 Results . 92

4.5 Conclusions . 97

5 Interactive Visualization of Large Time-Varying Molecules 99

5.1 Previous and Related Work . 100

5.2 Our Approach . 102

5.2.1 Determination of the Visible Set of Atoms 102

5.2.2 Generation of Appropriate Triangle Tesselations of Spheres . 105

5.2.3 Run-time Triangle Strip and Triangle Fan Generation 106

vi

5.2.4 Memory Bandwidth Reduction 108

5.3 Results and Discussion . 109

5.4 Conclusions . 110

6 Real-Time Rendering of Translucent Materials 111

6.1 Introduction and Related Work . 112

6.2 Subsurface Scattering Model and Our Simplifications 118

6.2.1 Locality of Subsurface Scattering Effects 119

6.2.2 Multiple Scattering Approximation 120

6.2.3 Run-Time Two-Pass Local Illumination Model 122

6.3 Improving Efficiency . 123

6.3.1 Quantized Light Sources for Pre-computed Neighborhood Factor124

6.3.2 Rendering from Quantized Light Sources 127

6.3.3 Determining the Size of Light Source Set 130

6.4 Controlling the Memory Usage . 132

6.4.1 Decomposition by Spherical Harmonic Basis Functions 133

6.4.2 Reference Points with Spherical Harmonic Basis Functions . . 134

6.5 Results and Discussions . 142

6.6 Conclusions . 144

7 Future Work 146

7.1 Use of Temporal Information in Electrostatics Computation 146

7.2 Modeling and Rendering of Non-homogeneous Scattering Effects . . . 147

7.3 Simulation and Rendering of Dynamic Scenes 147

vii

7.3.1 Geometry Representation . 148

7.3.2 Reflectance Function Measurements and Representations . . . 148

7.3.3 Dynamics Simulation . 148

Bibliography 150

viii

List of Tables

1.1 Comparison of our method with DelPhi 7

1.2 Results on SOD and Ecoli membrane channel 11

1.3 Results from rendering at varying precisions 14

1.4 Total rendering times for our approach 20

2.1 Comparison of our method with DelPhi 44

2.2 Comparison of CPU and GPU solution of PBE 47

3.1 Results on SOD and Ecoli membrane channel 61

4.1 Results from rendering at varying precisions 92

4.2 Average number of bits per vertex coordinate operated upon for ap-

propriate output precision . 94

4.3 Average number of equivalent 32-bit operations per vertex coordinate

for appropriate output precision . 96

6.1 Total rendering times for our approach 142

ix

List of Figures

1.1 An analytically solvable case of PBE 6

1.2 Comparison of raycasting, our splatting, and axis-aligned splatting of

electrostatics on SOD dataset (red is for negative potential, and blue

is for positive potential) . 10

1.3 Auxiliary Machine Room (376K triangles) rendered in Variable Pre-

cision . 14

1.4 Top and side views of five stages of Escherichia coli mechanosensitive

channel showing its opening and closing 16

1.5 Rendering the Horse model with subsurface scattering increasing from

left to right (14,521 vertices with 10% vertices in N(xo) at (b), 20%

vertices in N(xo) at (c), and 30% vertices in N(xo) at (d)) 20

2.1 Amino acids . 24

2.2 2D view of the electrostatic model (based on [64]) 30

2.3 Marching-tetrahedra-based Iso-surfaces and Tetrahedral Grid Refine-

ment . 33

2.4 Different Space Decompositions for PBE solvers 34

2.5 Edge Collapse for Tetrahedral Decimation 35

2.6 Invalid edge collapse causes V0 to lose one of its neighbors necessary

for FDM solver . 36

2.7 Neighboring tetrahedra of V0 along X-axis 37

2.8 Mapping of a 3D grid onto a 2D texture 41

x

2.9 An analytically solvable case of PBE 44

2.10 Electrostatics on SuperOxide Dismutase (SOD) dataset (red is for

negative potential, and blue is for positive potential) 45

2.11 Electrostatics on Ecoli membrane channel (red is for negative poten-

tial, and blue is for positive potential) 45

2.12 Electrostatics on SuperOxide Dismutase (SOD) dataset solved by

CPU and GPU respectively (red is for negative potential, and blue is

for positive potential) . 48

3.1 Accumulation of transparency along ray r for voxel A 54

3.2 The first three SH bands plotted as unsigned spherical functions by

distance from the origin (green is for positive values and red is for

negative values) . 57

3.3 Electrostatics on SuperOxide Dismutase (SOD) dataset (red is for

negative potential, and blue is for positive potential) 60

3.4 Electrostatics on Ecoli membrane channel (red is for negative poten-

tial, and blue is for positive potential) 61

3.5 Comparison of raycasting, our splatting, and axis-aligned splatting of

electrostatics on SOD dataset (red is for negative potential, and blue

is for positive potential) . 62

4.1 Varying complexity versus varying precision 70

4.2 Objects of smaller projected size needs less precision 75

4.3 Pseudo code for top-down tree traversal 79

xi

4.4 Variable-Precision transformation of the Stanford Bunny model (69K

triangles; lighting for both images has been calculated in floating point) 80

4.5 Lighting Calculation . 81

4.6 Incremental Lighting Calculation . 88

4.7 Variable-Precision lighting of Bunny model 90

4.8 Speedup factor as a function of number of light sources (Venus model) 94

4.9 Histogram of vertices transformed in different number of bits using

Variable Precision (AMR model) . 95

4.10 Dihydrofolate Reductase Molecular Surface (145K triangles) rendered

in variable precision . 96

4.11 Stanford Bunny (69K triangles) rendered in variable precision 97

4.12 Cyberware Venus (268K triangles) rendered in variable precision . . . 97

4.13 Buddha Model(1087K triangles) rendered in variable precision 98

5.1 Pipeline of our run-time algorithm 101

5.2 Visibility test of an atom . 103

5.3 Over- and under-estimation for Occlusion Culling 103

5.4 Generating points on a sphere . 105

5.5 A complete triangle fan and triangle strip as seen from above the

North pole of a sphere . 106

5.6 Triangle fan and triangle strip of front-facing triangles (in blue) as

seen from above the North pole of a sphere 107

6.1 Scattering of light in BSSRDF models (based on [Jensen et al.,2001]) 118

xii

6.2 Dipole approximation of multiple scattering (based on [Jensen et

al.,2001]) . 121

6.3 Interpolation of the vector integral for a new light source direction

from its four nearest neighbors in the pre-computed set 127

6.4 Comparison of subsurface scattering using pre-computed vector inte-

gral and scalar integral on the Horse model (14,521 vertices) 129

6.5 Root-mean-square error as a function of the number of light sources . 131

6.6 Comparison of subsurface scattered teapot using q and qml (150,510

vertices) . 135

6.7 Closeup of Figure 6.6 . 136

6.8 Construction of Reference Points . 137

6.9 Root-mean-square error as a function of the number of reference

points for teapot dataset with 9 (n = 3) and 36 (n = 6) spherical

harmonic basis functions . 139

6.10 Comparison of subsurface scattered teapot using q and different num-

ber of reference points with 9 (n = 3) spherical harmonic basis func-

tions (150,510 vertices) . 140

6.11 Closeup of Figure 6.10 . 141

6.12 Rendering the subsurface scattered teapot model with varying light

source direction (150,510 vertices, 8.6 fps) 143

6.13 Santa model without and with subsurface scattering (75,781 vertices) 144

xiii

6.14 Rendering the Venus model with subsurface scattering increasing

from left to right (42,656 vertices with 10% vertices in N(xo) at (b),

20% vertices in N(xo) at (c), and 30% vertices in N(xo) at (d)) . . . 145

xiv

Chapter 1

Overview and Results

1.1 Motivation

Interactive simulation and visualization of dynamic proteins are vital for many im-

portant applications, such as protein folding and rational drug design.

Globular proteins are well packed and adopt ordered three-dimensional struc-

tures. More importantly, they possess a variety of motions such as bond vibrations,

side-chain rotations, segmental motions, and domain movements. It is motion that

is required for proteins to work, and it is our inability to fully understand protein

dynamics and their role in protein function that restricts our understanding of the

mechanisms of protein folding, recognition, allostery, and catalysis. Protein dynam-

ics are extremely complex and difficult to analyze, because a variety of motions

take place in the same molecule and at the same time. Being able to simulate and

visualize protein motions on a computer is therefore of utmost importance for the

understanding of the very complex picture of protein dynamics and for the devel-

opment of proper theoretical models for analysis.

Virtual environments offer a powerful interaction medium for exploring such

datasets in real time, enabling superior insights into the underlying biochemical

processes. I consider Visual Proteomics to be the field that studies the relationship

1

between structure and function of proteins through visualization of various protein

properties, such as their 3D structure, electron density, and electrostatic potential.

Visual Proteomics can enhance the accessibility of protein modeling methods and

assist the analysis and interpretation of voluminous data to distill the essential

findings. Interactive visualization can not only provide a high-bandwidth human-

computer interface to convey the rich multi-dimensional information space, but also

make computation more insightful and efficient through computational steering.

Computational steering is the interactive control over a computational process

during execution. By closely coupling simulation and visualization, it becomes pos-

sible to control the execution of the simulation through visualization of its output.

In an interactive computational process, a sequence of specification, compu-

tation, and analysis is performed. For each adaptation that is to be made to the

computational model, this process has to be repeated. Computational steering closes

the loop such that scientists can respond to results as they occur by interactively ma-

nipulating the input parameters for model exploration, algorithm experimentation,

and performance optimization.

Computational steering enhances productivity by greatly reducing the time

between changes to parameters and the viewing of the results, and makes the cause-

effect relationships self-evident [101]. Computational steering has become a powerful

paradigm for scientific discovery and has been applied successfully to molecular

dynamics visualization and protein visualization [13,17,88].

A crucial aspect of visual steering and molecular dynamics visualization is

interactivity. We believe that the design of efficient data representations with better

2

precision and resolution control will improve the interactivity of simulation and

visualization of protein dynamics. So I have developed a set of techniques for better

representation of geometry and illumination.

In this thesis, I will detail these representations, as well as the resulting algo-

rithms for visual proteomics.

Let me first give an overview of the geometry representations that I have de-

veloped. I have devised a distance-field-guided tetrahedral-space decomposition to

improve the efficiency of protein electrostatics computations [55] since molecular

electrostatics is one of the most important aspects of non-bonded protein interac-

tions. The distance field is computed from the solvent-accessible surface. To im-

prove the interactivity of protein dynamics visualization, I have designed a variable-

precision representation that leverages the multiple-precision operations in modern

processors [54]. In addition, I have generated a real-time triangle-strip represen-

tation to render from connectivity-compressed data. I have also used a real-time

occlusion map to cull occluded atoms and reduce the geometry bandwidth as well

as the pixel-fill rate bottlenecks [57]. My algorithm for displaying dynamic proteins

is four times faster than the popular VMD system [69].

Let me next give an overview of the illumination representations that I have

developed. I have used spherical-harmonic-based accumulated transparency to de-

velop an order-independent splatting algorithm for electrostatic field visualization.

I have taken advantage of spatial coherence in the subsurface scattered reflectance

field and developed a reference-point-based representation for light scattering inte-

grals. This enables an interactive rendering of translucent materials with a factor

3

of 60 speedup over the previous best result [53,56]. Similarly, my work on variable-

precision lighting uses spatial-coherence of light, view, and normal vectors to speed

up the rendering [54].

This chapter is an extended abstract of the dissertation, outlining the problem,

our approaches, and the results.

1.2 Simulation of Molecular Electrostatics

Electrostatic interactions play a central role in biological processes. Electrostatics

influence nearly all biochemical reactions, such as macromolecular folding and con-

formational stability. Electrostatics also determine the structural and functional

properties of biological samples, such as their shapes, binding energies, and associa-

tion rates. The successful modelling of electrostatics has great practical, as well as,

theoretical importance.

1.2.1 Problem Definition

Modern electrostatic models are based on the non-linear Poisson-Boltzmann equa-

tion (PBE). Development of fast computational methods to solve PBE is vital for

biomolecular modeling and simulation packages.

In most cases, an analytical solution to PBE does not exist and numeric

methods have been developed. Among them, the finite difference method is the

most widely used. The accuracy of the results is highly dependent on grid spac-

ing, while the computational cost increases steeply with the number of grid points.

4

The multi-grid method has been used successfully to reduce the cost. But it might

not converge when applied to the non-linear PBE. Since the computational cost

of using a regular grid is proportional to the cube of the grid size, the adaptive

space-subdivision approach has been introduced to address the problem. It works

by increasing the accuracy of the solution by explicitly giving a higher spatial res-

olution to the solvent-solute boundary region. However, it tends to over-subdivide

around the solvent-solute boundary region and results in slow convergence.

To resolve the tradeoffs between a more accurate solution and faster conver-

gence, we believe that the previous 3D grid data structures are not the best. We

want to design an irregular 3D grid structure such that the local resolution of each

grid region is determined by its importance to the final solution.

Our method is based on the observation that the accuracy and stability of the

solution to PBE is quite sensitive to the boundary layer between the solvent and

the solute. Therefore an accurate construction of this boundary with adaptively

controlled grid density should improve the accuracy and convergence rate of the

solution.

1.2.2 Algorithm Overview

Our approach first analytically constructs the solvent-accessible surface of the molecule.

This surface is the interface between the solvent and molecule where the physical

properties such as dielectric constant, and therefore the electrical potential, changes

dramatically. We then build a tetrahedral decomposition of the 3D space around the

surface and construct a distance field from the surface. Next, we build iso-surfaces

5

by the marching-tetrahedra method on the distance field with progressively greater

distances. This results in nested isosurfaces at varying distances from the solvent-

accessible surface. After that, we apply an edge-collapse-based volume-simplification

algorithm to simplify the tetrahedral grid to adaptively adjust the grid density ac-

cording to its influence on the solution. We maintain a higher resolution in the

vicinity of the solvent-accessible surface that determines the accuracy and conver-

gence rate of the solution. Finally, we solve PBE on this irregular grid with a

generalized finite difference method based on Taylor’s series expansion. Details of

this algorithm and its implementation are given in Chapter 2.

1.2.3 Results

In this and the following chapters, except otherwise specified, results have been

obtained on a 2GHz Pentium 4 PC running Windows 2000 with a nVIDIA Geforce3

graphics card.

Solvent

Ion-exclusion layer

Molecule

Ra

Mobile ions

Figure 1.1: An analytically solvable case of PBE

We have tested our algorithm on an analytical solvable case (see Figure 1.1)

6

and compared the results with the popular DelPhi (V.4) program. The results are

summarized in Table 1.1. Here we have used a spherical surface charge with a

diameter of 27 Å and a positive charge of 20e (where e is the charge of an electron).

The sphere is immersed in a cubic solvent volume whose each side is 66 Å long.

DelPhi Our Method

Grid size 673 1333 1993 N/A

Number of pts 300,763 2,352,637 7,880,599 26,987

PSNR 8.17 19.1 25.1 27.7

Average error 30.88% 17.91% 13.27% 15.98%

PBE Time 0.31 sec 4.50 sec 20.09 sec 0.25 sec

Table 1.1: Comparison of our method with DelPhi

The average error in Table 1.1 is defined as the average of the relative error over

all grid points. Peak-signal-to-noise-ratio (PSNR) is defined as 20 log10(
signal energy
noise energy

).

The signal energy is defined as the sum of the squares of the potential values over

all grid points. The noise energy is defined as the sum of the squares of the errors

over all grid points. PBE time is the time for solving linear PBE on the grid. One

can see the advantages of our method from Table 1.1. To get the same accuracy,

our method needs only 27K points instead of several million needed by DelPhi, and

takes only 0.25 seconds to converge, compared with several seconds by DelPhi. For

about the same amount of time, our method is much more accurate than DelPhi,

e.g., 15.98% instead of 30.88% error. Our algorithm with 27K points has even higher

PSNR than DelPhi with about 8M points.

7

1.3 Visualization of Molecular Electrostatics and Dynamics

Protein electrostatics and dynamics data are large and contain complex structures.

Interactive display of these data provides (a) a high-bandwidth human-computer

interface to provide a better understanding of the relation between the structure

and function of proteins, and (b) help in computational steering of large protein-

folding and molecular docking simulations.

1.3.1 Order-independent Splatting for Efficient Electrostatics Visualiza-

tion

The 3D electrostatic potential field is a scalar field defined over a volume. Vol-

ume visualization methods have been developed to display volumetric data. These

methods are categorized into indirect and direct volume rendering methods. Indi-

rect volume rendering first converts the volume data into a polygonal iso-surface

representation and then displays the surface. The Marching Cubes algorithm [92]

is an example of the indirect volume rendering. Direct volume rendering renders

volume data directly using methods such as ray casting, splatting, shear-warp, and

3D texture mapping. Here we choose splatting, one of the direct volume render-

ing methods for displaying the electrostatic field. We will detail reasons for this in

Chapter 3.

8

Algorithm Overview

The basic element of direct volume rendering methods is the low-albedo volume

rendering integral. It simulates the scattering of the radiance along the ray to the

viewer. This integral requires a strict order of evaluation, either from back to front,

or from front to back. This ordering requirement might lead to inefficient memory

access patterns and thus inefficient rendering.

Since 3D electrostatic potential around molecules is generally a smoothly vary-

ing scalar field, we exploit this high coherence in the electrostatic field to improve

the rendering efficiency of the traditional splatting algorithm by designing an order-

independent splatting algorithm.

Our algorithm pre-computes the accumulated volume shadowing and trans-

parency factors and stores them using spherical harmonics. At run time, we syn-

thesize images through order-independent traversal of the 3D field data using pre-

computed data and achieve better rendering speed. Details of this algorithm and

its implementation are given in Chapter 3.

Results

We show our results for two real molecules. The first dataset is superoxide dismutase

(SOD) enzyme with 2196 atoms. Our second dataset is a 10585 atom ion-channel

on the outer membrane of the Escherichia coli (Ecoli) bacterium molecule.

Figure 1.2 compares the images generated using raycasting, our order-independent

splatting, and axis-aligned splatting [145]. The three images are largely similar in

9

(a) Raycasting (6.297 seconds)

(b) Axis-aligned splatting (3.156 seconds)

(c) Our splatting (1.397 seconds)

Figure 1.2: Comparison of raycasting, our splatting, and axis-aligned splatting of

electrostatics on SOD dataset (red is for negative potential, and blue is for positive

potential)

10

Dataset Volume Image Rendering time (seconds)

size size Ray Regular Our

casting splatting splatting

SOD 1283 512× 512 6.297 3.156 1.397

Ecoli 2563 512× 512 14.593 8.329 3.967

Table 1.2: Results on SOD and Ecoli membrane channel

visual quality while our method is significantly faster. It takes us 1.397 seconds to

generate a 512×512 image for a 1283 grid data, compared to 3.156 seconds required

by regular splatting, and 6.297 seconds used by raycasting. A similar conclusion

also holds for Ecoli dataset, for which we use a 2563 grid data. The results are

summarized in Table 1.2.

1.3.2 Variable Precision Representation

As shown in previous sections, compact data representation is essential for fast access

and manipulation. Protein structures have limited dynamic range and accuracy.

They are determined by using X-ray crystallography, NMR experiments, or gel

electrophoresis. All of these methods have their accuracy limitations. Similarly,

picking the right precision for data representation at the modeling stage will also

help to interactively visualize large proteins.

11

Problem Definition

As the complexity of visualization datasets such as large proteins and their proper-

ties such as electrostatics and hydrophobicity have increased beyond the interactive

rendering capabilities of the graphics hardware, new techniques have to be developed

to reconcile the conflicting goals of visual accuracy and interactivity.

In addition, increase in the geometric complexity of the graphics datasets has

far outpaced the increase in the display complexity. This has resulted in a bottleneck

in transferring 3D vertex data from the CPU processor to the graphics processor.

The geometry operations for graphics primitives are currently carried out at

full floating-point precision only to be converted to a fixed-point representation

during the rasterization phase. Such high accuracy during geometry transformation

and lighting stages sometimes exceeds even the display accuracy and thus causes

several bits worth of unnecessary precision computation.

Our idea is to relate the minimum (or optimum) number of bits of accuracy

required in the input data to achieve a desired accuracy in the display output.

Algorithm Overview

To find the minimum number of bits of precision for input data, we first carry out

a careful analysis of different kinds of errors in geometric transformation and light-

ing stages, assuming fixed-point data representation. In addition to representation

error, error also arises from pipeline operations of two fixed-point numbers, such as

addition, multiplication, division, vector dot product, square root operation, and

12

exponentiation evaluation.

We build an octree bounding volume hierarchy for efficient estimation of the

projected size of different parts of an object. The idea is to find the minimum and

maximum number of bits required for accurately rendering each bounding box. If

the two numbers are equal, then all vertices within this box will need the same

number of bits. Otherwise, we recurse lower in the octree hierarchy.

We use the reduced precision to optimize the pipeline operations by using Sin-

gle Instruction Multiple Data (SIMD) parallelism in modern processors and reduce

the precision even further by spatial-temporal coherence in frame-to-frame transfor-

mations and lighting.

Details of this algorithm and its implementation are given in Chapter 4.

Results

We show here our results on polygonal datasets from several application domains

including molecular, laser-scanned, mechanical CAD, and procedurally generated

datasets. They are summarized in Table 1.3 and appear in Figure 1.3.

The results are obtained by using a Pentium II 400MHz PC with 128MB RAM

and a Voodoo3 3500 graphics card. We achieve more than a factor of four speedup

in all the datasets tested. From Table 1.3, we can see that under the pixel-level

accuracy constraint required for the output, the maximum difference between the

two methods is less than 0.00033 of the size of the bounding box for all the six

datasets tested. Since we perform the worst-case analysis, our method actually

delivers 2 to 3 sub-pixel bits of accuracy.

13

Model Bunny DHFR Dragon Venus AMR Buddha

Size (triangles) 69K 145K 202K 268K 376K 1087K

Floating Rendering(seconds) 0.586 1.28 1.726 2.278 3.131 9.351

Point Precision(bits/vert coord) 32 32 32 32 32 32

Variable Rendering (seconds) 0.138 0.275 0.385 0.499 0.632 1.733

Precision Precision(bits/vert coord) 7.9 7.9 7.6 7.1 4.2 5.6

Speedup 4.25 4.65 4.48 4.57 4.96 5.40

erms (object space) 1.3e-4 1.3e-4 1.2e-4 1.2e-4 1.1e-4 1.2e-4

Max error (obj. space) 3.0e-4 3.1e-4 3.0e-4 2.9e-4 2.6e-4 3.1e-4

erms (image space) 8.5e-3 8.8e-3 8.7e-3 6.0e-3 8.4e-3 7.0e-3

Table 1.3: Results from rendering at varying precisions

(a) Floating Point (b) Variable Precision (c) Floating Point (d) Variable Precision

(32 bits/vert. coord.) (4.2 bits/vert. coord.) Closeup Closeup

Figure 1.3: Auxiliary Machine Room (376K triangles) rendered in Variable Precision

1.3.3 Efficient Display of Dynamic Proteins

In this section, we develop and extend various rendering techniques for efficient

display of time-varying molecular data.

Problem Definition

The existing acceleration techniques work by either reducing the number of graphics

primitives to be rendered, such as multi-resolution rendering and visibility-based

14

culling, or by improving the memory bandwidth efficiency by better organization of

the data (for example triangle strips and triangle fans). These techniques work by

a pre-analysis of data with the design of clever data structures for efficient run-time

access. Although they have achieved impressive results on static data, it is non-

trivial to adapt the above techniques to time-varying datasets. There is little prior

art for accelerating the rendering of time-varying datasets.

We try to address the problem of interactive rendering and visualization of

large time-varying protein datasets. Our goal is to use no pre-processing and little

memory overhead.

Algorithm Overview

The main idea is to only display the visible parts of the visible atoms of the protein

data at the proper resolution and precision.

We start by loading the list of atoms with their 3D positions for current time

frame, and sort them according to their distance from the viewer using a quick-sort

algorithm. Next we determine the visibility of each atom by using our conservative

visibility-based culling algorithm. We use multi-resolution techniques to decide the

appropriate number of triangles to represent the spherical atoms. We also decide

the necessary precision for vertex data from display resolution specification. For the

triangles that survive the back-face culling phase we generate triangle strips and

compute illuminated color. Finally, we send the triangle strips and triangle fans

with appropriate precision to the graphics card for rasterization and display.

Details of this algorithm and its implementation are given in Chapter 5.

15

(a) Top-view of frame 0 (b) Side-view of frame 0

(c) Top-view of frame 50 (d) Side-view of frame 50

(e) Top-view of frame 100 (f) Side-view of frame 100

(g) Top-view of frame 150 (h) Side-view of frame 150

(i) Top-view of frame 200 (j) Side-view of frame 200

Figure 1.4: Top and side views of five stages of Escherichia coli mechanosensitive

channel showing its opening and closing

16

Results

We have applied our approach to ion-channel studies, an area of biophysics with

applications in neurobiology, pharmaceutical research, and many other branches of

biomedical science.

EcoMscL complex shown in Figure 1.4 consists of 10585 atoms. We display

the ion-channel transition process as a two hundred frame animation of the large-

conductance mechanosensitive channel MscL as it transitions from the closed to the

open state. We have achieved more than 32 frames per second (fps) rendering speed

on this time-varying dataset, each frame of which consists of 1.3 million triangles.

Our approaches are about four times faster than VMD (version 1.8.2) with the same

image quality.

The techniques we develop for visualization of protein properties, such as effi-

cient data representations and rendering from compressed data can also be applied

to a broader range of graphics rendering problems. As an example, we next show

how to adapt them to render the translucent materials interactively.

1.4 Interactive Rendering of Subsurface Scattered Reflectance

Field

Interactive photorealistic rendering remains one of the primary goals of Computer

Graphics. To achieve this, it is necessary to correctly and efficiently simulate the

interaction of light with matter. As an example, accurate modeling of the scattering

of light inside objects is crucial for rendering translucent materials such as skin,

17

milk, marble, clouds, and snow. Previous methods for subsurface scattering were

memory-intensive and computationally expensive to render.

1.4.1 Problem Definition

Modeling the interaction of light with objects is an exciting, but difficult task.

The widely used 4-dimensional (4D) bi-directional reflectance distribution functions

(BRDFs) are inadequate to simulate the appearance of translucent materials. More

general 8D bi-directional scattering surface reflectance distribution functions (BSS-

RDFs), special cases of surface reflectance field, are necessary. It is both memory

and computation expensive to render the 8D BSSRDFs for translucent materials.

Our goal is to develop a O(N) (N is the number of vertices) run-time algo-

rithm with minimal storage requirements. We have achieved this goal with better

mathematical representation of the scattered 8D reflectance field. We reduce the

complexity and dimension of the problem by decomposing the reflectance field into

non-scattered and scattered reflectance fields. While the non-scattered reflectance

field can be described by general 4D BRDFs, we show that the scattered reflectance

field can also be represented by a 4D field through pre-processing the neighborhood

scattering radiance transfer integrals.

1.4.2 Algorithm Overview

Our algorithm consists of pre-processing and real-time rendering stages.

In the preprocessing stage we build subsurface scattering neighborhood infor-

mation, which includes all the vertices within effective scattering range from each

18

vertex. We then modify the traditional local illumination model into a run-time

two-stage process. The first stage involves computation of reflection and transmis-

sion of light on surface vertices. The second stage bleeds in scattering effects from

a vertex’s neighborhood to generate the final result. We then merge the run-time

two-stage process into a run-time single-stage process using pre-computed integrals,

and reduce the complexity of our run-time algorithm to O(N), where N is the num-

ber of vertices. The selection of the optimum set size for pre-computed integrals is

guided by a standard image-space error-metric. Furthermore, we compress the pre-

computed integrals using spherical harmonics. We compensate for the inadequacy

of spherical harmonics for storing high frequency components by a reference points

scheme to store high frequency components of the pre-computed integrals explicitly.

Details of this algorithm and its implementation are given in Chapter 6.

1.4.3 Results

The results of using our approach are summarized in Table 1.4 and in Figure 1.5.

As one can see from Table 1.4, our scattering model can generate subsurface

scattered images within a few tenths of a second for a model with over one million

triangles, and achieve interactive frame rates for objects with less than 300K tri-

angles. We compute the BSSRDF for all the model vertices as in Table 1.4. Our

algorithm has an effective O(N) complexity (N is the number of vertices), with

small constant factors. The extra storage for pre-computed integrals is less than

28 bytes per vertex. Figure 1.5 shows increasing subsurface scattering effects on a

horse model from left to right.

19

(a) Without Scattering (181 fps) (b)(c)(d) With scattering (79.1 fps)

Figure 1.5: Rendering the Horse model with subsurface scattering increasing from

left to right (14,521 vertices with 10% vertices in N(xo) at (b), 20% vertices in N(xo)

at (c), and 30% vertices in N(xo) at (d))

Model No. of No. of No. of Extra Compression Frame

Name Vertices Triangles ref pts storage ratio by rate (fps)

(Bytes/vert) using ref pts

Horse 14,521 29,054 1,034 27 7.4 79.1

Venus 42,656 90,044 2,827 26 7.7 27.3

Santa 75,781 151,558 3,458 22 9.1 14.6

Teapot 150,510 292,168 5,176 20 10.0 8.6

Dragon 437,645 871,414 10,285 18 11.1 2.7

Buddha 543,652 1,087,716 12,330 18 11.1 2.4

Table 1.4: Total rendering times for our approach

20

1.5 A Guide to Chapters

The rest of this dissertation is organized as follows.

In Chapter 2, we give an overview of molecular electrostatics and the resulting

Poisson-Boltzmann Equation (PBE). We then describe our approach for construct-

ing and solving PBE on a irregular grid whose resolution is based on the importance

to the solution. We present an overview of a few implementation details and con-

clude with our results.

We describe in Chapter 3 our order-independent splatting algorithm for visu-

alization of the generated electrostatic field. We give details of pre-computation and

spherical-harmonic compression of the transparency functions.

Chapter 4 gives the details of view-dependent variable precision data represen-

tation, includes error analysis for different kinds of pipeline operations, and view-

dependent precision control that takes advantage of spatio-temporal coherence. The

results show the effectiveness of our algorithm.

Chapter 5 explains our time- and memory-efficient algorithms for the display

of dynamic proteins, including the development of new techniques as well as the

extension of current techniques.

In Chapter 6, we discuss dimension reduction and compression of subsurface

scattered reflectance field. We describe algorithm for interactive rendering of the

compressed illumination data, followed by results.

We conclude in Chapter 7 with directions for further work.

21

Chapter 2

Efficient Solution of Poisson-Boltzmann

Equations for Molecular Electrostatics

Electrostatic interactions are of central importance for many biological processes [86,

133]. Experiments have shown that electrostatics influences nearly all biochemical

reactions, such as macromolecular folding and conformational stability. Electrostat-

ics also determines the structural and functional properties of biological samples,

such as their shapes, binding energies, and association rates.

Molecular modeling packages [69] have invested significant effort in correctly

and efficiently modeling the electrostatics to simulate the static structure and bind-

ing energy, in addition to modeling user-defined conformations [84] or trajecto-

ries [86]. The successful modelling of electrostatics has great practical, as well as,

theoretical importance, for structure-based drug design and protein folding.

There are two ways to model the electrostatic properties of biological samples

– quantum mechanical methods and classical electrostatics. Quantum mechanical

methods are more accurate, but due to their immense computational demands, can

only be applied to small molecules. Thus the application of quantum mechanical

methods to large molecules, such as the ones we consider here, is currently not

possible for real-time systems.

22

Classical electrostatic interactions are modeled as the interactions between

partial atomic charges (also called net atomic charges). Partial atomic charges arise

since electronegative elements, such as Oxygen, attract electrons more readily than

elements such as Hydrogen. This give rise to an unequal distribution of charges in

a molecule. The electrostatics of molecules depends not only on their 3D structures

and charge distributions, but also on their environment. Biological processes occur in

aqueous solution, so solvent plays an important role in determining the electrostatics

of the solute molecules. Solvent properties are usually described in terms of average

values. Thus, instead of treating each solvent atom explicitly, we treat them as a

continuum with average properties. Only the most important solute molecules are

treated explicitly [65].

In this chapter, I will first give a brief overview of proteins. I will also briefly

review the theoretical foundation of molecular electrostatics, and work related to

its solutions. Then I will describe our new approach [55] for efficiently solving the

problem based on the observation that the accuracy and stability of the solution is

quite sensitive to the boundary layer between the solvent and the solute. I will show

the results of using our approach.

2.1 Proteins

Proteins are long chains of linked amino acids. There are 20 naturally-occurring

amino acids. Each amino acid consists of a central carbon atom to which are at-

tached a hydrogen atom, an amino group (NH2), a carboxyl group (COOH), and a

23

distinguishing sidechain R (Figure 2.1(a)). R can be as simple as a single hydrogen

atom, or it can be a long chain consisting of carbon, nitrogen, sulfur, oxygen, and

hydrogen atoms. One of the 20 amino acids, proline, is special in that it has a

bond between the sidechain R and the nitrogen atom (Figure 2.1(b)). Two amino

acids adjacent in a protein chain are bonded by a covalent linkage, which is called

a peptide bond. The chain of amino acids is also known as a polypeptide.

C

H

R

COOHH N2

C

H

COOHHN

CH2

CH2

CH2

(a) A typical amino acid (b) Proline

Figure 2.1: Amino acids

The various amino acids can be characterized as hydrophilic or hydrophobic

based on the interactions of their sidechains with water. Thus all amino acids

that have aliphatic hydrocarbon sidechains are hydrophobic, and all amino acids

that have polar atoms such as oxygen are hydrophilic. The book by Brande and

Tooze [16] gives more complete information on protein structures.

In addition to protein structures, the protein properties can be broadly di-

vided into bonded and non-bonded properties. The bonded properties include bond

length, bond angle, dihedral angle, and proton donor/acceptor distributions (ability

to form hydrogen bonds). Non-bonded interaction properties include van der Waals

potential, electrostatic force, and shape-based interactions. Amongst these proper-

24

ties, protein electrostatics is one of the most challenging one as we discuss in detail

next.

2.2 Fundamentals of Molecular Electrostatics

The current trends in real-time molecular electrostatics follow the principles of clas-

sical electrostatics, explicitly treating each atom in the protein molecule and each

ion in the surrounding solution. The solvent is treated as a continuum.

2.2.1 Electrostatics in Uniform Dielectric Medium – Poisson Equation

and Coulomb’s Law

Electrostatics has a simple form when all the charges and the field considered are

in a uniform dielectric medium, including vacuum. The electrical potential then

satisfies the Poisson equation [70]:

�2φ(−→r) + 4πρ(−→r)
ε

= 0

where φ(−→r) is the electrostatic potential, ρ(−→r) is the charge density, and both φ(−→r)

and ρ(−→r) are functions of position. Here the dielectric constant, ε, is independent

of the position in a uniform media.

As an example, the electric potential field generated by a point charge is given

by Coulomb’s Law [70]:

φ(r) =
q

εr

where the point charge q is assumed to be at the origin and r is the distance from

the origin.

25

Here the linear superposition rule holds and the electric potential field gener-

ated by a set of point charges is the summation of the fields generated by each point

charge [70]:

φ(−→r) =
n∑
i=1

φi(
−→r) =

n∑
i=1

qi
ε |−→r −−→ri |

where n is the number of point charges, qi is the charge and
−→ri is the position vector

of point charge i.

If instead of assuming point charges, one assumes continuously distributed

charges the superposition rule still holds with the summation changing to an integral:

φ(−→r) =
∫∫∫

ρ(
−→
r′)

ε
∣∣∣−→r −−→

r′
∣∣∣d
−→
r′

where ρ(
−→
r′) is the charge density.

2.2.2 Electrostatics in Nonuniform Medium with Environmental Re-

sponse – Poisson-Boltzmann Equation

The Poisson equation given in the previous subsection assumes a uniform medium

without the environmental response. If the dielectric ε varies through space, then

we arrive at a general form of the Poisson equation:

�[ε(−→r)∇(φ(−→r)] + 4πρ(−→r) = 0

where ε(−→r) is a function of position. Normally the solute is treated as a uniform

medium with a low relative dielectric of about 2 ∼ 4. The solvent is also treated as

a uniform medium with a relative dielectric of about 80 [42].

The environmental response consists of three physical processes that screen

the effects of charge: (a) electronic polarization, (b) reorientation of permanent

26

dipole in polar materials, and (c) redistribution of charges, such as mobile ions.

Combining these factors, we get a general form for the molecular electrostatics – the

Possion-Boltzmann Equation (PBE):

�[ε(−→r)∇(φ(−→r)]− κ′2(−→r) sinh[φ(−→r)] + 4πρ(−→r) = 0

where κ′ is the modified Debye–Hückel parameter defined as:

κ′2 =
8πNae

2I

1000kT

where Na is Avogadro’s number, e is the electron charge, k is the Boltzmann con-

stant, T is the absolute temperature, and I is the ionic strength of the bulk solution.

The variables φ, ε, κ′, and ρ are all functions of the position vector −→r . The general

form of the PBE above incorporates electronic and dipole polarization through ε

and ion-screening through κ′.

If there are no highly-charged molecules and ionic strengths are low, we can

make an approximation to linearize the sinh term:

sinh[φ(−→r)] ≈ φ(−→r)

and then the general PBE simplifies to the linear PBE:

�[ε(−→r)∇(φ(−→r)]− κ′2(−→r)φ(−→r) + 4πρ(−→r) = 0

If there are no mobile ions present in the system, the modified Debye–Hückel

parameter κ′ will be equal to zero, and PBE reduces to the general Poisson equation.

27

2.3 Previous and Related Work

Analytic solution for linear PBE is only possible for simple cases [134]. In most

cases, however, an analytical solution does not exist, and numeric methods have been

developed to solve linear [143] or nonlinear PBE. Among them the finite difference

method (FDM) [143] is the most widely used. In finite difference methods the

molecule is mapped onto a 3D grid. Partial atomic charges are assigned to grid

points and the electrostatic potential at each grid point is calculated using the

finite difference approximation of the PBE. The accuracy of the results is highly

dependent on grid spacing, while the computational cost increases steeply with the

number of grid points. One approach to reduce the cost is called focusing [46], in

which the mesh of the grid is reduced only in the vicinity of ionizable groups of

particular interest with potentials from coarser grids used as initial guesses. A more

powerful approach is the multi-grid method [103], in which the solution on a given

grid (generally the finest grid), is obtained by iterating over a hierarchy of coarser

grids. The key advantage is that the accuracy of the solution is iteratively improved

by solving the problem on the coarser grids where the computational cost is low

with infrequent visits to the finer grids where the computational cost is high. One

drawback of the multi-grid method is that, while it works gracefully for linear PBE,

the solution might not converge when applied to non-linear PBE.

The finite difference algorithms using a regular grid, though quite successful,

have several shortcomings. First, their computational cost is proportional to the

cube of the grid size, which makes it very hard to increase the resolution. Sec-

28

ond, they do not scale well. For fixed grid size, the resolution will decrease as the

dataset becomes bigger. Third, the low resolution approach, even with multi-grid

refinements, easily introduces visual artifacts at the visualization stage.

The adaptive space-subdivision approach [10,63] has been used to address the

high cost of using a regular grid. This approach increases the accuracy of the solution

by explicitly giving a higher spatial resolution to the solvent-solute boundary region.

However, since the adaptive space-subdivision approach does not start from an

analytical definition of the solvent-solute boundary (the solvent-accessible surface),

it tends to over-subdivide around the boundary region. This over-subdivision results

in two drawbacks. First, it increases the number of grid points and therefore the time

for each iteration of the PBE solver. Second, it increases the number of iterations to

reach a desired convergence threshold since a greater number of closely-spaced points

near the boundary increases the time to propagate the solvent-solute boundary

effects.

Our new approach solves the linear and non-linear PBE on an irregular grid.

It has the advantage that the PBE-solution-sensitive boundary layer is constructed

analytically. Before we present details of our approach, we briefly give an overview

of the finite difference method(FDM).

2.4 Finite Difference Method for PBE

In FDM the molecule and a region of the surrounding solvent are mapped onto a 3D

grid. Each grid point represents a small region of either the molecule or the solvent.

29

Values are assigned at each point for the charge density, dielectric constant, and ionic

strength parameters in the PBE. With a sufficiently fine grid scale, variation in the

dielectric response can be represented at the atomic resolution. The electrostatic

potential at each grid point is calculated using the finite difference approximation

of the PBE:

φnew
i =

∑
εijφj + 4πqi/h∑

εij + κ′2
i h2[1 + φ2

i /3! + . . . + φ2n
i /(2n + 1)! + . . .]

where the non-linear term is represented as an infinite series, which equals 1 for

linear PBE, h is the grid spacing in Å, φi is the electrostatic potential at the central

grid point, qi is the charge at this grid point, and the summations are over the six

neighboring grid points (j = 1..6) [143].

To assign charge density, dielectric constant, and ionic strength parameters to

the grid points, we first define the molecule-solvent boundary, which is the smooth

solvent-accessible surface [87], using a probe radius for the water molecule (assumed

1.4 Å).

Solvent

Ion-exclusion layer

Molecule

Mobile ions

Figure 2.2: 2D view of the electrostatic model (based on [64])

Figure 2.2 shows the two-dimensional view of the electrostatic model. The

30

grid points within the molecule are normally assigned a uniform dielectric of ε1 = 2

as an approximation to the high-frequency dielectric constant of organic liquids.

All grid points within the solvent region and the ion-exclusion layer are assigned a

dielectric constant ε2 = 80. The modified Debye–Hückel parameter κ′ is zero inside

the molecule and at the ion-exclusion layer, where there are no mobile ions; κ′ is

non-zero in the solvent region. With these considerations we get following forms of

the PBE:

ε1∇2φ(−→r) + 4πρ(−→r) = 0 inside molecule

ε2∇2φ(−→r) + 4πρ(−→r) = 0 at ion-exclusion layer

ε2∇2φ(−→r)− κ′2(−→r) sinh[φ(−→r)] + 4πρ(−→r) = 0 within solvent

The numerical solvers for partial differential equations using FDM initialize the

grid boundary values using various methods. The boundary values, once estimated,

do not change. In our case, a trivial possibility is to set the potential at the grid

boundary nodes to be zero. We use the analytical approximation obtained using

Debye-Hückel potentials [46] that are accurate if the solution grid is large enough

relative to the size of the molecule.

2.5 Our Approach

From the discussion above, we find that the solvent-accessible surface boundary

layer is critical to the accuracy of the FDM solution of the PBE. This is because

that all the atomic charges lie within the molecule, and also because there are large

31

differences in the dielectric constants between the two regions separated by the

molecular surface boundary layer. As several biological processes occur at or near

the molecular surface, a high accuracy for the solution to PBE close to this boundary

layer is critical. Not coincidentally, the stability and accuracy of numerical methods

also depend largely on the discretization of the grid in this region. To the best of our

knowledge, no previous algorithm for solving PBE for molecules exists that builds

the tetrahedral grid based on the solvent-accessible surface at the solvent-solute

boundary. Our algorithm builds an adaptive tetrahedral space-decomposition about

the solvent-accessible molecular surface and gives higher priority and resolution to

the boundary region.

2.5.1 Analytical Solvent-accessible Surface

Previous methods to solve PBE approximate the solvent-accessible surface after

building a 3D grid around the molecule. For each grid point, a binary marker indi-

cates whether it is inside the molecule or inside the solvent. The solvent-accessible

surface is then defined as passing between those grid points that have dissimilar

markers. With such methods the accuracy of the solvent-accessible surface is lim-

ited to the grid resolution; the actual solvent-accessible surface points do not in

general coincide with the grid points.

Several analytical solvent-accessible surface algorithms have been published

[2, 7, 26, 77, 122, 141]. We analytically generate the solvent-accessible surface using

the approach in [141] and then incorporate it in the 3D grid used for the solution

of the PBE. Guaranteeing that the grid points at the solvent-solute boundary are

32

actually on the exact surface improves the accuracy and speed of the algorithm.

2.5.2 Distance-Field-based Tetrahedralization

The accuracy of the FDM solution to PBE depends on the ionic strength assignment,

which is zero in the 2Å ion-exclusion layer from the solvent-accessible molecular sur-

face, and constant outside. Therefore we need an accurate ionic-screening surface

that is offset 2Å outwards from the molecular surface. Our tetrahedralization al-

gorithm is based on the distance field from the solvent-accessible molecular surface

and can generate the ionic-screening surface as well as provide an adaptive space

decomposition.

We use an odd/even scheme for splitting rectilinear and curvilinear grids into

tetrahedra as done in [97]. We use a method similar to the one described in [45]

to build a signed-distance map of the space that measures the distance of each grid

point to the solvent-accessible surface.

V0

V1 V2

V3

V0

V1 V2

V3

V4

V5

V6

Figure 2.3: Marching-tetrahedra-based Iso-surfaces and Tetrahedral Grid Refine-

ment

Next, we generate a sequence of iso-surfaces from the distance map using

a tetrahedral variant of the Marching Cubes algorithm [92]. We use tetrahedra

instead of cubes for simplicity and stability. We insert new grid points into the

33

3D grid such that they form surfaces at a fixed distance away from the real solvent-

accessible surface. One case of the marching tetrahedra is shown in Figure 2.3. Here

the processing of tetrahedron V1V2V3V0 generates triangle V4V5V6, which splits the

original tetrahedron into four new tetrahedra: V4V5V6V0, V4V5V3V6, V1V5V3V4, and

V1V2V3V5.

2.5.3 Adaptive Tetrahedralization

Hierarchical space decompositions have a rich and long history of research [120,121].

In our case, adaptive tetrahedral space decomposition is driven by the twin goals

of accuracy and efficiency of the PBE solution. We desire a finer grid near the

solvent-solute boundary for accuracy and a sparser grid elsewhere for efficiency.

(a) Regular (b) Adaptive Subdivision (c) Interface-focused

Figure 2.4: Different Space Decompositions for PBE solvers

We depict a 2D version of our adaptive tetrahedral grid in Figure 2.4(c). Here

the thick red curve represents the molecular surface, while the thin red curves are

the iso-distance layers from the surface. Figure 2.4 clarifies the conceptual differ-

ence between our approach and the approaches using regular grids(Figure 2.4(a))

or octree-based space-subdivision scheme(Figure 2.4(b)). The advantage of our ap-

proach is that we refine the grid directly on the molecular surface and in regions

34

close to it. Regular grids are not adaptive and hence suffer from low accuracy, or

high computational costs, or both. The adaptive octree-based subdivision scheme in

most cases generates an excessively fine grid around the molecular surface to approx-

imate it well. Our approach can adjust the resolution progressively and seamlessly

based on the distance from the molecular surface.

V0

V2V1

V4
V3

V5

E

V0

V1

V4

V5

V3

Figure 2.5: Edge Collapse for Tetrahedral Decimation

We achieve adaptive tetrahedral decomposition by using edge collapses. Mul-

tiresolution tetrahedral grid hierarchies have been built using bottom-up edge-

collapses [22] or top-down longest edge bisections [50]. An edge collapse will de-

crease the triangle count on the iso-surfaces, as well as the tetrahedra count. We

use a half-edge collapse scheme so that an edge will collapse to one of its vertices

and no new vertices need to be generated. Each edge collapse decreases the vertex

count by one, and decreases the triangle and tetrahedron count based on its local

connectivity. As an example, Figure 2.5 shows the collapse of edge E that results in

decimation of tetrahedron V0V1V2V5 and vertex V2, while the tetrahedron V0V2V3V5

is changed to V0V1V3V5.

The finite difference method (FDM) computes the value at a grid point from

35

the values at its neighboring points (Section 2.4). During volume simplification we

have to be careful not to simplify the volume into a state in which some grid points

lose some of their neighbors necessary for FDM.

We also carefully avoid generating tetrahedra with negative volume (i.e., tetra-

hedra with a wrong orientation) and flipped triangles with reversed normals during

the simplification process. In Figure 2.6, we show a 2D projection of one of these

cases. Here the collapse of edge E results in grid point V0 losing one of the six

neighbors necessary for FDM. To avoid this we check and invalidate edge collapses

that result in a new tetrahedron with three collinear vertices. In Figure 2.6, we get

a new tetrahedron with collinear vertices V0, V3, and V1 and therefore the edge E’s

collapse should not be allowed.

V0
V1

V2

V4

V6

V3

V5

E

V0
V1

V2

V6

V3

V5

Figure 2.6: Invalid edge collapse causes V0 to lose one of its neighbors necessary for

FDM solver

Another constraint for edge collapses is to preserve the spatial grid’s outer (vol-

umetric) boundary. We do this to ensure that the total volume of all the tetrahedra

in the grid does not change as a result of the edge-collapse-based simplification. If a

candidate edge for collapse has one of its vertices on the grid boundary we collapse

the edge to the boundary vertex. If the candidate edge for collapse has both of its

36

vertices on the grid boundary we carry out the collapse only if it will not result in

a change in the total volume of all the affected tetrahedra.

2.5.4 Derivative Computation for Irregular Grids

The FDM solver for the PBE has to compute first and second derivatives of the

3D potential field at each grid point. The derivatives can be computed for regular

grids by taking the finite differences between the potential value at each grid point

with values at their six axis-aligned neighboring grid points. The regular structure

of the regular grids makes this procedure straight forward. For irregular grids the

situation is complicated by the fact that not only do the distances between grid

points vary, but also the neighboring points are rarely axis-aligned.

We compute the derivatives of the potential at a grid point i by using the values

at the vertices of the tetrahedra that are adjacent to i and include the principal

axes from point i. As an example, consider the derivatives along x-axis for point V0.

First, we find the two tetrahedra that share the vertex V0 extend towards positive

and negative x-axis from point V0 as shown in Figure 2.7. This can be done by a

simple orientation test.

xV0

V1

V2

V3V4

V5

V6

V-x V+x

Figure 2.7: Neighboring tetrahedra of V0 along X-axis

37

After we have identified the two tetrahedra we locate points V−x and V+x, that

are equidistant from V0 and along the x-axis. Let the distances between V−x and V0

and between V+x and V0 be h, then the second-order derivative of potential at V0

can be approximated by:

∂

∂x
[ε(−→r)

∂

∂x
φ(−→r)]

∣∣∣∣
V0

≈ ε(V+x)φ′
x(V+x) − ε(V−x)φ′

x(V−x)
2h

The first partial derivative of potential along x at V−x and V+x can be estimated

by using a Taylor series expansion. We express potential values at vertices of each

tetrahedron in terms of the value and derivatives at point V−x and V+x. As an

example, φ′
x(V+x) can be estimated by solving the following system of four linear

equations in four unknowns (φ(V+x), φ
′
x(V+x), φ

′
y(V+x), φ

′
z(V+x):

φ(V0) = φ(V+x) + φ′
x(V+x)(−h)

φ(V1) = φ(V+x) + φ′
x(V+x)�x1 + φ′

y(V+x)�y1 + φ′
z(V+x)�z1

φ(V2) = φ(V+x) + φ′
x(V+x)�x2 + φ′

y(V+x)�y2 + φ′
z(V+x)�z2

φ(V3) = φ(V+x) + φ′
x(V+x)�x3 + φ′

y(V+x)�y3 + φ′
z(V+x)�z3

where [
xi,
yi,
zi], i = 1, 2, 3, is the vector difference between 3D positional

vector of point Vi and V+x:

[
xi,
yi,
zi] =
−→r (Vi)−−→r (V+x)

The above equations can be solved analytically. With such a solution we

can express the second-derivative of the potential at V0 along x-axis as the linear-

38

weighted sum of the potentials at V0 to V6. We similarly compute the derivatives

along y and z axes.

This method of computing the derivatives for irregular meshes will have the

same degree of accuracy as the method used for regular grids because both use the

first-order Taylor series expansion to connect the values at neighboring points.

2.5.5 GPU Solver for PBE on Regular Grids

The techniques described above are for efficient solution of PBE on CPU. In this sec-

tion, we explore the possibility of mapping the solution of PBE to modern Graphics

Processing Units (GPUs). The goal is to study, understand, and harness the GPU

power for high-performance computing and scientific applications.

The recent rise in the capabilities and programmability of the GPUs such as

the ATI Radeon and Nvidia GeForce FX (among others) has enabled them to rise

above the threshold where they have now become powerful enough to be serious

contenders to the CPUs as high performance computational engines for floating

point intensive applications. The major advancements in recent GPU development

includes:

Computing Power: The steady advances in semiconductor VLSI coupled

with a deeply pipelined and SIMD architectures in modern GPUs have enabled a

faster-than-Moore’s law improvement in GPU performance. Since 1993 the perfor-

mance of the GPUs has achieved an annual growth rate of 2.8 (versus the Moore’s

law’s annual rate factor of 1.7). This growth rate is expected to be maintained for

at least another five years. As an example, Nvidia GeForce FX 5900’s performance

39

peaks at 20 gigaflops, the equivalent of a 10 GHz Pentium. GeForce FX 5900 has a

four-way pixel pipeline architecture with two texture units per pipe (4×2) resulting

in a fill-rate of 3.6 Gigatexels/second. Even better, the current GeForce 6800 has

a 16-way parallelism in pixel pipelines and a six-way parallelism in vertex pipelines

and delivers more than twice the floating point performance of GeForce FX 5900.

GeForce 6800 has been released less than ten months after the release of GeForce

5900 and seems to be maintaining the annual growth rate factor of 2.8.

Programmability: Initial GPU programming models had to be programmed

at the assembly-language level with no function calls, no branches, and no loops. Re-

cent development of high-level programming languages (Cg from Nvidia and HLSL

from Microsoft) have made the current-generation GPUs significantly easier to pro-

gram. In addition, current GPUs allow the floating-point computation through the

entire rendering pipeline. Together, the ease of programmability and floating-point

representation have made GPUs attractive for a much wider set of computing ap-

plications.

Modern GPUs possess vertex and fragment (also called pixel) shaders. The

fragment shader can be viewed as a stream processor. The processor executes the

same kernel (fragment program) to produce each element (rasterized pixel) of an

output stream (group of rasterized primitives). The output stream can be saved us-

ing texture memory and used as input (via texture fetches) for downstream kernels.

Our design of a PBE solver on a GPU maps the appropriate data structures and

algorithms into streams (textures) and kernels (shaders) respectively. The GPU has

40

two SIMD characteristics: (1) the same kernel is executed over all elements of a

stream, and (2) processor instructions can operate on wide data types, i.e., 4-tuples

of floating point values.

Mapping 3D grid data to 2D textures

The first step of our GPU solver is to map the 3D grid data into streams, which are

textures for GPU fragment shader. We have used a regular tiled mapping from 3D

to 2D for data values on the grid as shown in Figure 2.8. Each slice of the 3D grid

is mapped onto a square region of the texture. Since both the length and the width

of the texture area have to be a power of 2, there can be texels that have no grid

points mapped on them.

x

y

z

Figure 2.8: Mapping of a 3D grid onto a 2D texture

From Section 2.4, we know that the potential value at a grid point in a new

iteration is computed from the weighted potential values of its six axis-aligned neigh-

boring points from the previous iteration, together with the charge density at the

41

point as follows:

φnewi =

∑
εijφj + 4πqi/h∑

εij + κ′2
i h

2[1 + φ2i /3! + . . .+ φ2ni /(2n+ 1)! + . . .]
(2.1)

We store the potential values φi in a texture map. Each grid point i needs to

use the weights for each of its six neighbors εij, j = 1..6, its charge density qi and

the modified Debye–Hückel parameter κ′
i from 3D grid to 2D textures. Unlike the

potential values that change between iterations, these eight parameters are fixed for

the whole solution process and thus can be stored in regular 2D textures. Since each

texel on the texture map has 4 tuples for the four color channels, we only need two

texture maps to store these eight parameter maps.

Fragment program and Render-to-texture

The highly pipelined and parallelized fragment shader applies the same kernel opera-

tions to each pixel on the processed fragment. For the iterative solution of the PBE,

we render the potential values φi of one iteration to a texture object, and then use

the texture as the input to the next iteration. This can be realized by creating two

texture objects using front pBuffer (on Windows) and switch between them after

each iteration. During each iteration, the fragment program will read the poten-

tial texture from the previous iteration, together with the two constant parameter

textures, and generate the output potential texture object. Modern GPUs provide

random access memory fetch into saved streams (textures in our case) and hide the

latency of the random memory access so long as the bandwidth is not limited. So

the access to the potential values of each grid point’s neighbors is easily realized as

42

an offset from the grid point’s current location in the potential texture map. The

kernel function for each grid point is the one used in Equation 2.1. After the iter-

ative process, we use glGetTexImage to read the contents of the potential texture

object for the final results. The results of this approach appear in Section 2.6.3.

2.6 Results and Discussion

We present results on an analytical solvable case and compare them with the results

by the well-known DelPhi system for computing molecular electrostatics. Our results

show clear advantages of our algorithm over the standard DelPhi algorithm. We

achieve better accuracy with less computation time. We then show our results

on some real molecular datasets. We display the results by color coding smooth

solvent-accessible molecular surfaces.

2.6.1 Results and Comparisons on an Analytical Solvable Case

Normally it is difficult (or impossible) to obtain analytical solutions to the PBE.

In some special cases we may have analytical solutions to the linearized PBE. One

example is that of a spherical molecule, with total charge q uniformly distributed on

the surface, immersed in a solvent containing mobile ions, as shown in Figure 2.9.

The analytical solution to this special case is [64]:

φ(r) = q
ε2R

(
1− Rκ

1+κa

)
inside molecule

φ(r) = q
ε2r

(
1− rκ

1+κa

)
ion-exclusion layer

φ(r) = qeκa

ε2(1+κa)
· e−κr

r
inside solvent

43

Solvent

Ion-exclusion layer

Molecule

Ra

Mobile ions

Figure 2.9: An analytically solvable case of PBE

The comparison of results with DelPhi (V.4) program for the analytically

solvable case are shown in Table 2.1. The test consists of a spherical surface charge

with a diameter of 27 Å and a positive charge of 20e (where e is the charge of an

electron) which is immersed in a cubic solvent volume with each side 66 Ålong.

DelPhi Our Method

Grid size 673 1333 1993 N/A

of pts 300,763 2,352,637 7,880,599 26,987

PSNR 8.17 19.1 25.1 27.7

Avg. error 30.88% 17.91% 13.27% 15.98%

PBE Time 0.31 sec 4.50 sec 20.09 sec 0.25 sec

Table 2.1: Comparison of our method with DelPhi

Our method needs many fewer points and less time to get the same accuracy.

For example our method requires 27K points with 0.25 seconds to converge, instead

of several million needed by DelPhi with several seconds to converge. For the same

amount of time, our method is much more accurate. For instance, our approach has

44

(a) Solvent-accessible surface (b) Closeup of (a)

(c) Lighted on-surface potential (d) Closeup of (c)

Figure 2.10: Electrostatics on SuperOxide Dismutase (SOD) dataset (red is for

negative potential, and blue is for positive potential)

(a) Solvent-accessible surface (b) Lighted on-surface potential

Figure 2.11: Electrostatics on Ecoli membrane channel (red is for negative potential,

and blue is for positive potential)

45

a 15.98% error compared to an error 30.88% for DelPhi in 0.31 seconds.

2.6.2 Results on Real Molecules

We now show our results for some real molecules. The first dataset is superoxide dis-

mutase (SOD) enzyme, which consists of 2196 atoms. Our second dataset is a chan-

nel on the outer membrane of the Escherichia coli (Ecoli) bacterium molecule [131],

which consists of 10585 atoms. The results are shown in Figures 2.10 and 2.11.

Figures 2.10(a) and 2.11(a) display the smooth solvent-accessible surfaces of

SOD and Ecoli membrane channel using the SURF algorithm [141]. Electrostatic

potential is traditionally displayed on molecular surfaces [117]. Figures 2.10(c) and

Figure 2.11(b) display the electrostatic potential on the surfaces, with red for nega-

tive and blue for positive potential; both use the potential information to modulate

lighting color with grey denoting neutral potential. Figures 2.10(b) and (d) are

closeups of Figures 2.10(a) and (c), respectively.

2.6.3 Results of PBE solver on the GPU

We have tested our GPU electrostatics solver on Nvidia GeForce FX5900 Ultra

graphics card with 256MB on-chip memory. The results are compared with those

obtained on a 2GHz Pentium 4 PC running Windows 2000 with 2GB RAM.

Table 2.2 compares the CPU and GPU performance in solving the PBE on

SOD dataset. One can see that GPU has a big advantage over CPU in solving the

PBE. For this application, GPU is about twice as fast as CPU for a grid size of 643,

but is an order of magnitude faster than CPU for a grid size of 1283. Both CPU

46

Grid size CPU GPU

time/iteration (msec) time/iteration (msec)

643 60.5 26.9

1283 472 39.1

Table 2.2: Comparison of CPU and GPU solution of PBE

and GPU take the same number of iterations to converge, which is 155 for a grid

size of 643 under the convergence threshold of 0.1% of the largest potential value.

Similar to the observation by Hillesland and Lastra [60], we find that the floating

point operations on GPU are less precise than those on CPU. We have observed

that for our datasets, the maximum error thus introduced can be as high as 5.8%

for the grid size of 643. We have not gone beyond grid size of 1283 due to the 256MB

GPU memory limitation. With the rapid advances in GPUs, we anticipate that the

advantage of using GPU will be even higher for larger grid sizes when the support

for larger on-chip memory becomes available in the near future. Figure 2.12 visually

compares the CPU and GPU solutions of PBE on SOD dataset.

2.7 Conclusions

Our new algorithm uses compact and efficient 3D data representation to achieve

faster convergence and better accuracy for computing electrostatic potentials of

large molecular datasets. Our method gives higher priority and resolution to the

solution-sensitive region to improve the accuracy and accelerate convergence rates.

The advantage of our algorithm in solving partial differential equations directly from

47

(a) CPU solution (b) GPU solution

Figure 2.12: Electrostatics on SuperOxide Dismutase (SOD) dataset solved by CPU

and GPU respectively (red is for negative potential, and blue is for positive potential)

the geometrical point of view gives it a broad range of possible applications in other

scientific domains as well.

With the advances presented here our electrostatic computation methods are

now almost fast enough to be used in interactive molecular docking experiments

with interleaved computation and visualization of large molecules.

48

Chapter 3

Order-independent Splatting for Visualization of

Electrostatics

The 3D electrostatic potential field computed in Chapter 2 is a scalar field defined

over a volume. Real-time visualization of the electrostatic potential is important for

better understanding of the relation between the structure and function of proteins

and thus their applications in protein folding and molecular docking.

Traditional electrostatics visualization methods either display only the subset

of the electrostatic field that lies on the solvent-accessible molecular surface [117] or

visualize the iso-value surfaces using marching cubes algorithm [92]. We believe that

it will be more informative to visualize electrostatics using direct volume rendering

algorithms, such as raycasting [33, 90], splatting [100, 145], shear-warp [85], or 3D

texture-mapping hardware-based approaches [18,144].

Most volume visualization datasets are characterized by an underlying struc-

ture, usually with meaningful boundaries. For instance, medical imaging datasets

embody connected tissues and bones. However, 3D electrostatic potential around

molecules is generally a smooth-varying scalar field. We exploit this high coherence

in the electrostatic field to improve the rendering efficiency of the traditional splat-

ting algorithm. We have developed an order-independent splatting algorithm to

49

speedup the rendering by pre-computing the accumulated transparency information

and storing them at each grid point using spherical harmonics.

3.1 Previous and Related Work

Volume visualization methods can be categorized into indirect and direct volume

rendering methods. Indirect volume rendering first converts the volume data into

a polygonal iso-surface representation and then displays the surface. The Marching

Cubes algorithm [92] is a representative of indirect volume rendering. Direct volume

rendering displays volume data directly using methods such as ray casting, splatting,

shear-warp, and 3D texture mapping. Ray casting methods [5, 33, 90] cast rays

from viewer into data volume, composite along the ray, and at each step sample

the volume with filtering (typically tri-linear) from neighboring voxels. Splatting

algorithms [100, 145] treat data volume as an array of 3D reconstruction kernels.

Each kernel generates a splat (or footprint) on the screen and the final image is

a composite of all splats. The shear-warp method [85] traverses both image and

object space at the same time. The shear-warp method renders the run-length-

encoded volume using a ray-casting-like scheme by shearing the volume such that

the rays are perpendicular to the volume slices. Three-dimensional texture-based

volume rendering loads the volume into 3D texture memory and rasterizes and

composites the slices parallel to the image plane in a back-to-front order.

We choose direct volume rendering for displaying the 3D electrostatic fields

for a couple of reasons. First, the potential field of molecular datasets has positive

50

and negative values mingled together in several disconnected components. This

gives the iso-surface rendering a fragmented appearance and makes direct volume

rendering quite attractive. Second, the potential field normally has no sharp features

and thus anti-aliasing in direct volume rendering does not lead to artifacts. In the

following sections, we present an order-independent splatting algorithm to render the

3D potential field by pre-computing the accumulated shadowing and transparency

information for each voxel.

3.2 The Volume Rendering Integral

The basic element of direct volume rendering methods is the low-albedo volume

rendering integral [15, 96]. It computes the amount of light I(−→x ,−→r) of wavelength

λ coming from ray direction −→r , received by point −→x as:

Iλ(−→x ,−→r) =
∫ L

0

Cλ(s(u))τ(s(u)) exp
(
−
∫ u

0

τ(s(v))dv

)
du

Here s is the scalar value of the volume data, Cλ is the light of wavelength λ

reflected at location u in the direction −→r , L is the length of ray along −→r , and τ

is the light extinction coefficient [96]. Light and extinction coefficients are specified

by transfer functions [140], usually defined as one-dimensional functions over s as

C(s) and τ(s). The transfer functions can also be defined as a multi-dimensional

function [80]. The light scattered at u is attenuated by the particles between u and

the eye according to an exponential attenuation function. This integral cannot be

computed analytically in general. We can approximate the integral by discretizing

51

it into a series of sequential intervals i of width d:

Iλ(−→x ,−→r) =
L/d−1∑

i=0

Cλ(s(id))τ(s(id))d
i−1∏
j=0

exp (−τ(s(jd))d)

We can further approximate the summation by keeping only the first two terms

of Taylor expansion of the exponential term and get the compositing equation:

Iλ(−→x ,−→r) =
L/d−1∑
i=0

Cλ(s(id))α(id)
i−1∏
j=0

(1 − α(jd)) (3.1)

where α is opacity, and (1− α) is defined as transparency. The definition of α is:

α(id) ≡ 1− exp

(
−
∫ (i+1)d

id

τ(s(u)) du

)
≈ 1− exp (−τ(s(id))d)

≈ τ(s(id))d

The above assumes a constant opacity across each interval. A more accurate

approximation is to compute a linearly-interpolated opacity using pre-integrated

transfer functions, as introduced by Max et al. [97] in 1990 and recently used by

Engel et al. [37], Knittel [82], and Schulze et al. [124]:

α(id) ≈ 1− exp

(
−
∫ 1

0

τ((1− ω)sf + ωsb)d dω

)

where sf ≡ s(id) is the scalar value at the start (front) of the segment, and sb ≡

s((i + 1)d) is the scalar value at the end (back) of the segment. So α(id) is a

function of sf , sb, and d. Since d is assumed constant and scalar values sf , and sb

are generally 8-bits each, this function can be pre-computed and stored in a table.

At run-time the value can be fetched by a table lookup.

52

The above discussion is directly applicable to a general raycasting approach.

Splatting reorders the volume rendering integral so that each voxel’s contribution to

the integral can be computed separately from other voxels and the volume can be

treated as a field of overlapping interpolation kernels. For radially symmetric kernels,

we can pre-integrate the kernel into a 2D lookup table called a footprint. We then

map voxel footprints scaled by voxel values on the image plane and accumulate

them to form the final image. The accumulation requires either back-to-front or

front-to-back compositing order.

Some of the recent work in direct volume rendering is based on simulating

the light-scattering properties of real-world media such as atmospheric particles,

clouds, and human skin. Riley et al. [116] have developed a multi-field visualization

algorithm of weather data. Their approach is based on the light scattering prop-

erties of atmospheric particles. The individual extinction and scattering of these

particles form the basis of the transfer function and enable them to achieve realistic

weather visualization. Kniss et al. [81] have developed an interactive volume shading

model to incorporate volumetric shadows, phase functions, forward scattering and

chromatic attenuation, and provide subtle appearance of translucency. The light

transport is computed in image space and achieves interactive volume rendering

with non-static transfer function, light direction, or volume data. The visualization

of the electrostatic potential is different from the above since it does not correspond

to visually observable phenomenon. We have decided to implement a simple light-

ing model for direct volume rendering and we discuss it below. However, should the

need arise for more sophisticated lighting models as in [81, 116] we can incorporate

53

them in our approach at the pre-processing stage.

3.3 Pre-computation of Accumulated Transparency

From Equation(3.1) we can see that the contribution to the final image from voxel

at id is the product of Cλ(s(id))α(id) with the accumulated transparency along ray

−→r from viewer to this voxel, i.e.,
i−1∏
j=0

(1− α(jd)). This means, if we pre-compute

the accumulated transparency and store it at the voxel, then at run time, we can

get the contribution from this voxel by a simple product with Cλ(s(id))α(id). This

pre-computation already takes the ordering information between voxels into con-

sideration by only accumulating those voxels in front of this voxel. So at run-time,

voxels can be splatted in any order onto the image plane and we would get the correct

result. As an example in Figure 3.1, the accumulated transparency along ray −→r for

voxel W can be pre-computed as a product of (1−αa)(1−αb)(1−αc)(1−αd)(1−αe),

where the α values can be computed as usual or looked up from a pre-integrated

transfer functions table.

r

W

ab
c

de

Figure 3.1: Accumulation of transparency along ray r for voxel A

Our approach is similar to the pre-integrated transfer function approach [37,

82,97,124] in that we too assume fixed (or static) transfer functions. If the transfer

54

functions were to be changed, our approach like the pre-integrated transfer func-

tion approach will require re-computation. However, we will like to note here that

our approach and the pre-integrated transfer function approach are addressing two

fundamentally different aspects of volume rendering. The goal of our accumulated

transparency approach is to improve the efficiency of rendering. The pre-integrated

transfer function approaches improve the accuracy of assigned opacity for a small

interval along the ray by linearly interpolating the values across the interval. Thus,

they effectively replace the zeroth-order approximation of the opacity by a first-order

approximation. Although our approach does not require the linear-interpolation as-

sumption, if the pre-integrated transfer function tables are available, we can benefit

by getting more accurate opacity information for each interval along the accumula-

tion ray.

In practice we sample a few thousand discrete set of viewer directions and com-

pute the accumulated transparency in those directions for every voxel. Storage and

retrieval of such vast amount of additional information per voxel is a challenge for

real-time volume rendering applications. Fortunately for displaying highly-coherent

and gradually varying volume datasets such as the 3D electrostatic potential, we

can greatly compress the storage requirement using spherical harmonics.

Nulkar and Mueller [102] have used pre-computation of accumulated shadow-

ing factors for fixed light sources by storing them on a 3D grid to render volume

shadows. Our method can deal with dynamic lighting with unlimited number of

light sources. We also use the accumulated opacity information for speeding up the

rendering with changes in viewing direction.

55

3.4 Compression by Spherical Harmonics

The pre-computed accumulated shadowing and transparency information for each

voxel requires a large amount of storage. We use spherical harmonic functions to

compress this information. Spherical harmonic functions form an efficient basis to

represent functions defined over the directional space, such as incident radiance and

BRDFs [12,114,125,127]. Using the spherical harmonic functions for expansion and

storing the coefficients up to a given order is similar to a filtering process of the

angularly distributed signal [12,114].

Spherical harmonic basis functions ym
l
are solutions of the following eigenvalue

function [35]:

[
1

sin θ

∂

∂θ
(sin θ

∂

∂θ
) +

1

sin2 θ

∂2

∂ϕ2

]
ym

l
(θ, ϕ) = l(l + 1)ym

l
(θ, ϕ)

ym
l
are expressed in terms of associated Legendre functions Pm

l (x), which sat-

isfy the Legendre’s differential equation (−1 ≤ x ≤ +1, |m| ≤ l):

(1− x2)
d2Pm

l (x)

dx2
− 2x

dPm
l (x)

dx
+

[
l(l + 1)− m2

(1− x2)

]
Pm
l (x) = 0

If m = 0 the solutions are Legendre polynomials Pl(x):

Pl(x) =
1

2ll!

dl

dxl
(x2 − 1)l

=
ν∑
r=0

(−1)r (2l − 2r)!xl−2r

2lr!(l − r)!(l − 2r)!

For m �= 0, solutions are associated Legendre functions:

Pm
l (x) = (1− x2)m/2

dmPl(x)

dxm

56

Based on associated Legendre functions, real-valued spherical harmonic basis

functions [127] can be expressed as:

yml =

√
2Km

l cos(mϕ)Pm
l (cos θ), m > 0

√
2Km

l sin(−mϕ)P−m
l (cos θ), m < 0

K0
l P

0
l (cos θ), m = 0

where Km
l are the normalization constants:

Km
l =

√
(2l + 1)

4π

(l − |m|)!
(l + |m|)!

l = 0,m = 0

l = 1,m = −1 l = 1,m = 0 l = 1,m = 1

l = 2,m = −2 l = 2,m = −1 l = 2,m = 0 l = 2,m = 1 l = 2,m = 2

Figure 3.2: The first three SH bands plotted as unsigned spherical functions by

distance from the origin (green is for positive values and red is for negative values)

57

Figure 3.2 shows the first three bands (each band has the same l value) of real

spherical harmonic basis functions. One can see that the angular frequency goes up

as l increases.

The projection of the pre-computed accumulated transparency T (W) of voxel

W onto the spherical harmonic basis is given by:

Tm
l (W) =

∫
T (W,−→r)yml (−→r)d−→r

The reconstructed function up to the n-th order is:

T̃ (W,−→r) =
n−1∑
l=0

l∑
m=−l

Tm
l (W)yml (

−→r)

where

−→r = (sin θ cosϕ, sin θ sinϕ, cos θ)

One can use the standard recurrence on l to compute the associated Legendre

polynomials [113]:

(l −m)Pm
l = x(2l − 1)Pm

l−1 − (l +m− 1)Pm
l−2

Double-precision numbers can store numbers ranging from 2.22507 × 10−308

to 1.79769 × 10308. A factorial of 171 will overflow in this representation. This

will happen during the factorial computation inside the normalization factor Km
l

with l = m = 86 and thus limits the order of spherical harmonics functions to

l = 85. To overcome the range limitations in using double-precision values and

to improve the efficiency of computing spherical harmonics, we have built lookup

tables to store the Km
l values. To avoid the overflow in computing factorial values

58

in the evaluation of Km
l , we place the square root operation inside the factorial

computation. To address the underflow possibility of Km
l for large l and m, we

have used several tables to store them by splitting each underflowed Km
l into a

sequence of products such that each product element is within the effective range

of the double-precision representation. The whole product sequence representing

Km
l is multiplied by the associated Legendre polynomial Pm

l to get yml . During the

evaluation of Pm
l , we continually check the value being evaluated with the overflow

limit of double precision value. If the two numbers are close, we apply the product

elements from the pre-evaluation of Km
l . This allows us to multiply very small

values of Km
l with very large values of Pm

l and still get answers that are within the

double-precision range.

We store the spherical harmonic coefficients as short integers. If we use 16 or

25 basis functions, then we will need 32− 50 bytes extra storage for each voxel.

Molecular electrostatic potentials have a dynamic range that exceeds the dis-

playable ranges of our 8-bits per color channel monitors. A good solution here will be

to use graphics algorithms such as tone-mapping, that display high-dynamic range

images on regular monitors. We have, for now, chosen a simpler alternative. We

currently clamp the absolute electrostatic potential values from above and below.

At the lower limit, we only consider those voxels whose electrostatic potential is

above a certain threshold. For example, if we assume 8-bit color channels then we

clamp values less than 1/256 of the highest distinguishable potential to zero. This

reduces the number of voxels (and their associated spherical harmonic coefficients’

memory) that need to be processed for the final display.

59

3.5 Results

As in Chapter 2, we show our visualization results on superoxide dismutase (SOD)

enzyme (with 2196 atoms) and an ion-channel on the outer membrane of the Es-

cherichia coli (Ecoli) bacterium molecule [131] (with 10585 atoms). The results are

shown in Table 3.1, and Figures 3.3, 3.5, and 3.4. We have used about 2000 direc-

tions to pre-compute the accumulated transparencies for each contributing voxel.

Figure 3.3(a) and Figure 3.4(a) display the electrostatic potential on the sur-

(a) Lighted on-surface potential (b) Our splatting (up to surface)

(c) Closeup of (a) (d) Closeup of (b)

Figure 3.3: Electrostatics on SuperOxide Dismutase (SOD) dataset (red is for neg-

ative potential, and blue is for positive potential)

60

Dataset Volume Image Rendering time (seconds)

size size Ray Regular Our

casting splatting splatting

SOD 1283 512× 512 6.297 3.156 1.397

Ecoli 2563 512× 512 14.593 8.329 3.967

Table 3.1: Results on SOD and Ecoli membrane channel

faces, with red for negative and blue for positive potential; both use the potential

information to modulate lighting color with grey for neutral potential. Figures 3.3(b)

and 3.4(b) show the volume rendered 3D potential field, from the viewer up to the

molecular surface, using our splatting algorithm. Figures 3.3(c) and (d) are close-

ups of Figures 3.3(a) and (b) respectively. Electrostatic potential is traditionally

displayed on molecular surfaces [117]. We find it is more informative to use direct

(a) Lighted on-surface potential (b) Our splatting

Figure 3.4: Electrostatics on Ecoli membrane channel (red is for negative potential,

and blue is for positive potential)

61

(a) Raycasting (6.297 seconds)

(b) Axis-aligned splatting (3.156 seconds)

(c) Our splatting (1.397 seconds)

Figure 3.5: Comparison of raycasting, our splatting, and axis-aligned splatting of

electrostatics on SOD dataset (red is for negative potential, and blue is for positive

potential)

62

volume rendering to show the potential field between the viewer and the molecu-

lar surface. Comparing Figure 3.3(c) with 3.3(d), one can clearly see that in front

of the negative on-surface potential in the central region, there is a sizable posi-

tive potential region. It would have been hard to use the traditional electrostatic

potential display methods such as color-coded molecular surfaces or electrostatic

iso-potential surfaces to convey the same amount of visual information. Figure 3.5

compares the images generated using raycasting, our order-independent splatting,

and axis-aligned splatting [145]. It clearly shows the advantage of our method.

3.6 Conclusions

Our order-independent splatting algorithm gives us more efficient display of the

computed 3D electrostatic potential field. By pre-computing and storing the ac-

cumulated shadowing and transparency information, we are able to achieve faster

rendering speed. This algorithm can also be used to display other volume data that

are without clear underlying structures.

63

Chapter 4

View-dependent Variable Precision Data

Representation

Protein structures have limited dynamic range. They are determined by using X-ray

crystallography, NMR experiments, or gel electrophoresis. All of these methods have

their accuracy limitations. In this chapter, I will develop the idea of using variable-

precision data representation to accelerate the rendering of protein structure data

and other 3D datasets. Our approach complements the multiresolution techniques

as it reduces the precision of each graphics primitive in addition to the number of

graphics primitives.

Interactive visualization of protein data enables investigators to have interac-

tive control over a computational steering process and thus to gain more insight

from the computation with the instant display of the intermediate results.

4.1 Introduction

Several novel techniques have been developed to reconcile the conflicting goals of

scene realism and interactivity. These techniques can be broadly classified into two

lines of research. The first line of research includes techniques such as multireso-

lution rendering and visibility-based culling. Such techniques operate by reducing

64

the number of graphics primitives to be rendered based on viewing and illumination

parameters, such that there are minimal visually discernible differences between

viewing higher complexity and lower complexity scenes. Orthogonal to these ad-

vances, we have been witnessing another line of research whose goal is to reduce the

precision of each graphics primitive being rendered. Recently, reduction in precision

of the object properties such as colors [59, 148], normals [31, 151], and vertex coor-

dinates [76, 91] has been successfully attempted. The contribution of our approach

lies in merging these two lines of research for variable-precision, view-dependent

rendering.

Most transformations and lighting for graphics primitives are currently car-

ried out at full floating-point precision only to be later converted to fixed-point

representation during the rasterization phase. An argument can be made that such

high accuracy during geometry transformation and lighting stage sometimes exceeds

even the display accuracy and thus causes several bits worth of unnecessary precision

computation. We are currently witnessing these important trends in 3D graphics

that have increased the need for variable-precision rendering:

1. View-dependent Rendering: View-dependent rendering has already in-

troduced the concept of rendering different regions of a scene at varying geometric,

illumination, and texture detail [67, 93, 147] based on their perceptual significance.

A natural extension of this approach is to render each object at the precision appro-

priate for it. Under a perspective projection, objects that are close to the observer

need more bits of precision than objects that are far.

65

2. Processor-Level Support: With rapid growth in the size of the 3D

datasets, geometry processing (transformation and lighting) has become a signifi-

cant computational component of the 3D graphics pipeline. To partly alleviate such

computations in graphics and image processing, a variety of matrix math extensions

to the CPU instruction sets have emerged: Intel’s Pentium II with MMX and Pen-

tium III with SSE, AMD’s K6/Athlon with 3DNow!, and the Motorola PowerPC

G4 with AltiVec. All of these instruction sets take advantage of SIMD (single-

instruction multiple-data) parallel execution of instructions [61]. For instance, the

Intel MMX [106] allows variable precision integer arithmetic to be implemented in

SIMD parallelism where either two 32-bit, four 16-bit or eight 8-bit integer val-

ues are operated on in parallel. Such processor-level support for variable-precision

arithmetic has enabled efficient implementation for variable-precision rendering.

3. Geometry Bandwidth Bottleneck: Increase in the geometric complex-

ity of the graphics datasets has far outpaced the increase in the display complexity.

This has resulted in a bottleneck in transferring 3D vertex data from the geometry

processor to the graphics processor. If the variable-precision rendering techniques

discussed in this chapter are adopted in a graphics API and/or implemented on the

chip itself (in a manner similar to the MMX technology), this could significantly

reduce the bus traffic to the graphics chip and accelerate the transformation and

lighting stages on the graphics chip beyond the results reported here.

In the following sections, I will lay down the mathematical groundwork for

performing variable-precision geometry transformations and lighting for 3D graph-

66

ics. In particular, we explore the relationship between the distance of a given sample

from the viewpoint, its location in the view-frustum, to the required accuracy with

which it needs to be transformed and lighted to yield a given screen-space error

bound.

4.2 Related Work

In computational geometry and solid modeling, research has been done on perform-

ing robust geometric operations. Exact rational arithmetic (i.e. in homogeneous

coordinates) has been found to address several shortcomings of the conventional

floating-point arithmetic [62]. However, successive geometric operations can re-

sult in an unbounded growth in the precision required to accurately compute the

result. One way to limit the growth of the required precision is to intersperse round-

ing between arithmetic operations. Rounding-off vertex coordinates (or even line

and plane coefficients [62, 130]) is reasonably well-understood now. However, such

rounding is much more difficult if it must preserve some combinatorial or topological

structure amongst the primitives (in/out, above/below, clockwise/counterclockwise

orientation etc.). Several sophisticated approaches have been proposed that perform

rounding and preserve some of these relationships by adding some extra points [40]

or re-adjusting the rounded-off numbers to approximately maintain the relation-

ships [99]. In a number of cases, such results are used only to establish topological

relationships amongst primitives. This can be efficiently done by using sufficiently

accurate (as opposed to exact) arithmetic [11,41,75].

67

Most of the research in graphics dealing with limiting the precision of vertex

coordinates has focused on rounding-off the vertex coordinates (perhaps with at-

tributes) independently of the topological structure defined by the vertices. Thus,

with such approaches it is possible that the lower-precision models suffer from ar-

tifacts such as self-intersection and false incidences, even if the original higher-

precision models did not. In practice, such artifacts have not been observed fre-

quently enough yet, to convince most graphics practitioners to adopt the more

time-consuming algorithms to preserve the topological structures. We continue this

line of thinking and quantize the vertex coordinates independently of the underlying

topological constraints. Deering [31] has demonstrated that quantizing the normals

down to 12 bits (i.e. only 4K unique normals) and vertex coordinates to 24 bits

results in only minimal degradation in the rendered image quality. Reducing the

precision of the vertex coordinates is implicit in the work of Rossignac and Bor-

rel [119] and more recently, Luebke and Erikson [93]. The focus there is on reducing

the geometric complexity of the high detail models. Consequently, even though the

resulting vertex coordinates are effectively quantized on a grid and octree respec-

tively, the reduced precision has not been taken advantage of during transformation

and rendering.

Within the area of compression of 3D models, a lot of attention has been given

to reducing the number of bits to represent vertex coordinates. Most approaches

have used multi-stage quantization with Huffman encoding of delta-differences be-

tween successive vertices [9, 21, 31, 91, 135, 137]. Recently, progressive compression

and transmission has been actively exploited [8, 25, 104, 105, 135]. Using the tech-

68

niques of geometry prediction and progressive mesh encoding [8], combined with

batch processing [25, 104] and entropy encoding [105], compression ratios for pro-

gressive compression have started approaching those for single resolution compres-

sion. King and Rossignac [76] have further balanced the reduction of the number

of vertices and the reduction of bits per vertex coordinate using a shape complexity

measure. For a nice survey of 3D geometry compression the interested reader may

refer [9, 118].

4.3 Our Approach

4.3.1 Precision and Complexity

Let us first note the difference between multi-resolution and variable-precision ren-

dering for 3D graphics models. Multi-resolution hierarchies have traditionally in-

volved modeling each object at multiple levels of detail, where the detail is usually

measured in the number of geometric primitives required for representation. Thus,

a high-detail triangle-mesh object will require a higher number of vertices, edges,

and triangles for representation. This complexity is largely independent of the pre-

cision at which each vertex is being represented. As can be seen in Figure 4.1(b),

a multiresolution technique can be used to identify how many primitives are neces-

sary for a faithful representation of a given object with a given set of viewing and

lighting parameters. A variable-precision technique provides bounds on the bits of

accuracy per primitive that are required for high-fidelity rendering. This can be

seen in Figure 4.1(c) where the points selected to represent the circle all fall on

69

the quantization grid. Thus, the two techniques are orthogonal to each other and

depending on the application requirements for accuracy and speed can be used in a

complementary manner.

(a) (b) (c)

Figure 4.1: Varying complexity versus varying precision

In the following analysis of different kinds of errors in geometric transforma-

tions, we shall assume that a minimum-sized cube has been constructed to cover the

whole object using an algorithm similar to [47] and each axis has been normalized to

the range of [−1.0, 1.0]. Thus the operands a and b are n-bit fixed-point representa-

tions of floating-point quantities within [−1.0, 1.0]. Additionally, we assume that we

computed the n-bit fixed-point representation from such normalized floating-point

representation by multiplying by 2n−1 and rounding to the nearest integer. Also, we

would like to point out that we perform a worst-case analysis to guide the selection

of appropriate precision. A good reference for sources and propagation of numerical

errors is [111].

Representation Error

Often input data has uncertainty. A recent standards report from NIST outlines

several types of uncertainty [138]. These include statistical (e.g., confidence intervals

70

with mean and variance) and error (differences among estimates of the data from

multiple sources and/or multiple time instants) uncertainties. Such uncertainties

often limit the data acquisition precision. Other sources of error in the input data

include approximations in the abstractions from which data is derived, numerical

errors in computing the data using limited precision arithmetic, as well as instabil-

ities in the mathematical models (as in ill-conditioned systems). Such errors often

limit the number of bits of precision in the input dataset. For a n-bit fixed-point

representation derived by rounding from a normalized floating-point representation,

the representation error is at most half bit: εrep ≤ 1
2

Addition Error

For adding two n-bit integers, the error arises from the propagated error from the

representation. ε = εgen + εprop = εprop ≤ 1
2
+ 1
2
= 1. So we will lose at most one bit

of accuracy due to each addition.

Multiplication Error

We shall use 2n bits to store the intermediate result of multiplication of two n-bit

integers. Since each normalized floating-point operand was magnified by a factor of

2n−1 during conversion to fixed-point before multiplication, we need to take out that

extra 2n−1 factor by right shifting the intermediate result n− 1 bits. The n-bit final

result thus obtained has the largest error when both multiplier and multiplicand are

close to 2n−1 and the absolute representation error is 1
2
: ε ≤ 1

2
×2n−1+ 1

2
×2n−1

2n−1 = 1.

Thus, we lose one bit of accuracy due to each multiplication.

71

Division Error

Per-vertex division happens during the transformation from homogeneous coordi-

nate to 3D image-space coordinates. The propagated error due to the division is:

εprop = εa
b

prop =

∣∣∣∣∂(ab)∂a

∣∣∣∣ εa + ∣∣∣∣∂(ab)∂b

∣∣∣∣ εb = εa
b
+

a

b2
εb

Here, εa and εb are the representation errors in a and b and are each at most 1
2
. For

vertex within the view volume, we have a ≤ b. Also, the generated error due to

truncation is 1. Thus:

ε = εgen + εprop = 1 +
1
2

b
+

a× 1
2

(b)2
≤ 1 +

1

b

Since in viewing transformations, the divisor b is the distance of a scene vertex to

eye in normalized view-volume representation (where the distance of the farthest

point is 1.0),

ε ≤ 1 +
distance of far plane in view-volume from eye

distance of scene vertex from eye

So the loss of number of bits accuracy is

⌈
log2(1 +

distance of far plane from eye

distance of scene vertex to eye
)

⌉

Putting it all together

For a 1024 × 1024 window, with pixel level accuracy, we need 10 bits in each x

and y to represent the position of a vertex on the screen. Transformation of a

vertex in homogeneous coordinates with a 4×4 matrix requires four multiplications

and three additions for each coordinate. The height of this operation tree is three

72

(leaves at level 3 have four multiplies, level 2 has two additions, and the root at level

1 has the final addition). Thus, we will lose 3 bits of accuracy in this matrix-vector

multiplication. To get n bits of accuracy after transformation and homogeneous

division, we need m bits to represent the input data:

m = n+ 3 +

⌈
log2(1 +

distance of far plane from eye

distance of scene vertex to eye
)

⌉

Thus, if the display window is 1024 × 1024, n = 10 for pixel level accuracy; and if

the distance of the point being rendered is half way across the view-volume, we shall

need 15 bits to represent the vertex data: m = 10 + 3 + �log2(1 + 2)� = 15. This

can be used to compute the requisite number of bits of precision required for each

vertex based on its distance from the eye and forms the basis of view-dependent

precision-based rendering.

For applications which require sub-pixel accuracy, we can increase the window

resolution in the above formula. For example, if the application needs four bits

of sub-pixel accuracy along each dimension, then we add four more bits to the

requirements, which in the above example will result in a requirement of 19 bits of

accuracy per input vertex coordinate for a 1024× 1024 window.

4.3.2 View-dependent Transformation

The formula from the last section gives the upper bound on the number of bits

needed to transform the vertices in order to get n bits of accuracy. In reality, if

the object projects to the screen in an area that is small compared to the screen

size, we may need less than n bits to get window-resolution-level accuracy. For a

73

view-dependent transformation, we have to find out the number of bits needed for

vertices at different locations.

Octree-based Bounding Volume Hierarchy

To take advantage of the view-dependent information, we need an efficient way to

estimate the projected size of different parts of an object. An octree bounding

volume hierarchy is easy to build and very efficient to get the bounding volume of

the projected vertices.

The idea is to find the minimum and maximum number of bits required for

each bounding box using equations in the following subsections. If the two numbers

are equal, then all vertices within this box will need the same number of bits during

the transformation. Otherwise, vertices in this bounding box need different number

of bits, and we should recurse to the lower levels of the octree hierarchy. In our

implementation, we have used the normalized object coordinates, i.e., all x, y, and

z coordinates lie within [−1.0,+1.0].

Projected Size of the Dataset

For each view point, we calculate the projection of the eight corner points of the

root level bounding box. From these projected points, we can determine the size of

the object on the screen. The corner points are transformed into canonical viewing

volume. The whole viewport will map into [−1.0,+1.0] in both x and y direction

of this viewing volume, so the relative size of the projected object to screen is just

half the range of these projected corner points. During the calculation, we store

74

the transformed minimum and maximum W value (i.e., minimum and maximum

depth, Wmin and Wmax) of these eight points for later usage. The distance from the

nearest visible scene vertex to view point is just the bigger one of Wmin and the near

clipping plane.

Nearest Visible Vertex Accuracy

Given the width and height of the screen in number of pixels, the number of bits

for pixel-level accuracy is:

n = screen bits = max(�log2width� , �log2 height�)

If sub-pixel accuracy of s extra bits is desired, just add s to the number of bits

computed above. From last subsection, we know the ratio of the projected object

size to the screen size is the projected range divided by 2, so the bits needed to

represent the object will be
⌊∣∣log2(projected range2

)
∣∣⌋ bits less than screen bits.

(a) Need 3 bits in x and y (b) Need 2 bits (and 1 bit of offset)

Figure 4.2: Objects of smaller projected size needs less precision

Taking into account the computation error due to the multiplication, addition,

and division as mentioned in the last section, the number of bits needed for the

75

nearest visible scene vertex is:

near bits = n+ 3−
⌊∣∣∣∣log2(projected range2

)

∣∣∣∣⌋+⌈
log2(1 +

distance of far plane from eye

distance of nearest vertex to eye
)

⌉

As shown in Figure 4.2, the smaller object in (b) only occupies less than half of the

screen in each dimension, so it will need one bit less than the bigger object in (a).

The extra screen offset will be added in the final viewport transformation step.

Accuracy to Represent Each Vertex

Due to the perspective foreshortening, an object appears smaller as its distance to

the viewpoint increases. As an example, an object at twice the distance will have

half the size on the screen, and thus needs one bit less to represent.

Generally, given the near bits as defined before, we try to find the number of

bits for any other vertex. After the transformed W value (i.e., depth) is known, we

calculate the vertex bits as:

vertex bits = near bits−⌊
log2(

transformed W of this vertex

distance of nearest vertex to eye
)

⌋

It will be expensive if we need to do this calculation for each vertex. Fortunately,

with the bounding box hierarchy, very few calculations need to be done.

Starting from the top of the hierarchy, we calculate the minimum and max-

imum transformed W value for each node. First we calculate the transformed W

76

value of the center of the node (denoted as W ′
center), then we check the eight corner

points of the node to figure out the minimum and the maximum. As we already

have the Wmin and Wmax of the corner points at the root level, for the subtree at

level k:

W ′
min = W ′

center +
Wmin

2k
and W ′

max = W ′
center +

Wmax

2k

where the denominator is due to the fact that the node size is reduced by a factor

of two when we go down one level in the octree.

Using the above two equations, we can find out the minimum and the maxi-

mum number of bits needed for vertices within the box:

Vmin = near bits−
⌊
log2(

W ′
max

distance of nearest vertex to eye
)

⌋

Vmax = near bits−
⌊
log2(

W ′
min

distance of nearest vertex to eye
)

⌋
If these two numbers are equal, then we know that all the vertices within the box

will need these number of bits to represent. Otherwise, vertices in the box require

different numbers of bits and we need to recurse down one more level of the octree.

4.3.3 Spatio-Temporal Coherence

In the last two sections we have seen the relationship between the input bits of

accuracy and the bits of accuracy required for the output. For the same number of

bits of accuracy for the output, we can further reduce the bits of accuracy required

in the input by taking advantage of spatial and temporal coherence. This can result

77

in further savings in processing time as well as in the bandwidth to the graphics

processor.

Spatial Coherence

The basic idea that we use to take advantage of the spatial coherence is that the

difference in spatially close vertices can usually be represented in far fewer bits than

those required to represent each vertex coordinate in its entirety. This idea has been

used with great success in the research on 3D compression of geometry as discussed

in Section 4.2. If a vertex coordinate x′ can be represented by a delta-difference

with respect to another coordinate x as x′ = x + ∆x then one can decompose the

transformation for coordinate x′ as: Mx′ = M(x+∆x) = Mx+M∆x

Since the number of bits of accuracy required to transform ∆x is much smaller,

one can perform several of them in parallel. To exploit this idea, we can partition

the dataset by any spatial subdivision scheme, such as an octree, over the vertices

of the model. In our implementation we have used an octree that subdivides by the

volume centroid at each level. In this scheme, since each level reduces the range

by half, the vertices in each lower level require one bit less than their parents. The

accuracy of the transformation of a vertex coordinate with a matrix is represented

by the lower of the two accuracies. Thus if the vertex coordinates can be quantized

in less bits, the transformation matrix values can also be quantized with fewer bits.

In this approach we independently transform the delta difference in the vertex

coordinate position between the current level of the octree and its parent. Then we

can get the final transformed results for each vertex by a top-down tree traversal as

78

shown in Figure 4.3 (LIMIT is the lowest level of tree below which the difference

between the transformed parent and children is negligible).

Top-Down-Tree-Traversal(x)

if x �= NULL

if x.level ≤ LIMIT

x.value = x.parent.value+ x.transform

for i from 1 to 8

Top-Down-Tree-Traversal(x.child(i))

else

x.value = x.parent.value

for i from 1 to 8

Top-Down-Tree-Traversal(x.child(i))

Figure 4.3: Pseudo code for top-down tree traversal

As an example, if we could operate on byte- and short-precision operands and

we required 16 bits of accuracy, then we could transform the top eight levels of the

octree in short-precision and the lower levels could be transformed in byte-precision

(or even lesser, if available). By using such hierarchical schemes, one can get a better

precision efficiency without losing accuracy. Figure 4.4 compares the results on the

Stanford Bunny model using floating point and variable-precision transformations.

79

(a) Floating Point Transform (b) Variable Precision Transform

(32 bits/vertex coordinate) (Average 7.9 bits/vertex coordinate)

Figure 4.4: Variable-Precision transformation of the Stanford Bunny model (69K

triangles; lighting for both images has been calculated in floating point)

Temporal Coherence

Similar to the idea of spatial coherence, we can take advantage of temporal coherence

by noting that the difference in the transformed vertex positions does not differ

significantly from one frame to the next. Thus if we calculate the difference in the

transformation matrix from one frame to the next and use the difference matrix

∆M to transform a vertex, we can then add it to the previously transformed vertex

position in fewer bits: M ′x = (M + ∆M)x = Mx + ∆Mx. Extending this idea

further, we note that one can combine the spatial and temporal coherences: M ′x′ =

(M + ∆M)(x + ∆x) = Mx + ∆Mx + M∆x + ∆M∆x As we show in Tables 4.2

and 4.3 for the Auxiliary Machine Room dataset, the average number of bits that

are operated upon for each vertex as well as the equivalent number of operations

can both be greatly reduced by taking advantage of both spatial and temporal

coherences.

80

4.3.4 Variable-Precision Lighting

Color is usually represented by 8-bits of precision in red, green, and blue compo-

nents. Also, if depth cueing is turned on and the far objects are displayed at lower

intensities, their color can be represented using fewer bits.

Figure 4.5: Lighting Calculation

Before we go to the detailed treatment of the variable-precision lighting, let

us review the formula for the lighting calculation we have used. Although there are

good psychophysically-based light reflection models [107], we decided to implement

the OpenGL illumination model due to its widespread use. As in OpenGL, we

assumed diffuse and Phong illumination with Gouraud shading without per-pixel

normal evaluation:

Color = emissionmaterial + ambientlight model ∗ ambientmaterial +

+
m−1∑
i=0

(
1

kc + kld+ kqd2
)i ∗ (spotlight effect)i ∗

(Cambient + Cdiffuse + Cspecular)i

where m is the number of light sources, (1
kc+kld+kqd2

) gives the attenuation factor in

which d is the distance between the vertex and the local light source. Cambient =

ambientlight∗ambientmaterial, Cdiffuse = (max {−→L ·−→N , 0})∗diffuselight∗diffusematerial and

81

Cspecular = (max {−→s · −→N , 0})shin∗specularlight∗specularmaterial. −→
L is the unit vector

that points from the vertex to the light position,
−→
N is the unit normal vector at

the vertex, −→s is the normalized half way vector between the directions of the light

source and the viewer, and shin is the shininess, i.e., the specular exponent. Our

goal here is to find the necessary number of bits to represent the input illumination

data in order to get the required accuracy in output color.

Sources of Error in Local Illumination

There are several additional sources of error in local illumination computation be-

yond the sources of error we have already discussed in the transformation stage

(representation error, addition error, multiplication error, and division error). In

lighting computations we have to deal with addition and multiplication errors for

operands with different bits of accuracy, the square root operation error which re-

sults from vector normalization, and the error induced by exponentiation in specular

illumination. Also, the special case of dot product of two unit vectors is worthy of

separate analysis.

To reduce the error propagation, we can multiply the light coefficient with the

object material property coefficient in floating-point form before converting to the n

bit fixed-point representation. For example, instead of converting ambientlight model

and ambientmaterial to n bits of integer, we multiply them in floating-point repre-

sentation and then convert the result to a n bit integer. This way, we can save one

bit of accuracy which would have been lost due to the multiplication of two n-bit

integers. We next consider the other sources of error.

82

Error for Operands with Different Accuracy

Let us consider two operands with different bits of accuracy, say n and n′ where n′ <

n. This means that if the maximum possible value is 1, then the representation errors

are 2−(n+1) and 2−(n
′+1), respectively. For addition, the error ε can be computed as:

ε ≤ 2−(n+1) + 2−(n
′+1) = 2−(n

′+1)(1 + 2−(n−n
′))

As an example, if n − n′ = 2, then: ε ≤ 2−(n
′+1)(1 + 1

4
). The error will stay at

(n′ + 1)th bit, and the result will get n′ bits of accuracy, i.e., the same accuracy as

the less accurate operand.

Similarly, for multiplication of operands with n and n′ (n′ < n) accuracy,

the maximum possible error happens when the operands are close to the maximum

possible value which we treat as 1, as discussed in previous section:

ε ≤ 2−(n+1) ∗ 1 + 2−(n
′+1) ∗ 1 = 2−(n

′+1)(1 + 2−(n−n
′))

Again, the result has the same accuracy as the less accurate operand.

Error in the Dot Product of Unit Vectors

Let us consider two unit vectors, say −→α and
−→
β , with n bits of accuracy in each of

their three components:

−→α = (α1, α2, α3) and
−→
β = (β1, β2, β3)

Since the error in the three components εαi
and εβi

(i = 1, 2, 3) is in the

(n+ 1)th bit, i.e., 2−(n+1), their dot product error is:

ε
(−→α ·−→β) =

3∑
i=1

(βiεαi
+ αiεβi

) ≤ 2−(n+1)(
3∑
i=1

αi +
3∑
i=1

βi)

83

For unit vector −→α , we have: α21 + α22 + α23 = 1 .

From the inequality: a2 + b2 ≥ 2ab, we get:

(α1 + α2 + α3)
2 ≤ 3(α21 + α22 + α23) = 3

So we have (α1 + α2 + α3) ≤ √
3. Similarly, we have (β1 + β2 + β3) ≤ √

3.

Then:

ε
(−→α ·−→β) ≤ 2−(n+1)(

3∑
i=1

αi +
3∑
i=1

βi) ≤
√
3 ∗ 2−n

That means, we will lose one to two bits of accuracy for dot product of two unit

vectors.

Error in the Square Root Operation

For lighting calculations we need to normalize the vectors to unit length before

we compute the dot product. Normalization involves division by the magnitude

of the vector which requires a square root operation. In order to perform all the

operations in the fixed-point arithmetic, we use a table lookup to get the square

root of an unsigned integer.

For an unsigned integerX with 2n bits of accuracy we take the most significant

n bits (say X ′) as the lookup index into the square-root table to find the square

root.

X ′ = (X >> n) << n

The maximum possible error of X ′ relative to X is 2n (because the information

in the lower n bits is lost). We can reduce this error by half, though. If the value

84

of the nth bit of X is one, we can add one to X >> n, so that it becomes a kind of

rounding error instead of truncation error.

Next, we use the square-root table to find the square-root of X ′. Let this be

a′ in integer representation: X ′ = a′2. Suppose the square root of X in integer

representation is a : X = a2. Let a′ = a+ εa (εa is the error), then:

a′2 = (a+ εa)
2 = a2 + 2aεa + (εa)

2 = X ′

That is, 2aεa + (εa)
2 = X ′ −X ≤ 2n−1.

If X > 22n−2, then a > 2n−1, thus:

2aεa < 2aεa + (εa)
2 ≤ 2n−1 and εa < 2n−1

2a
< 2n−1

2∗2n−1 < 1
2

Which means that if we use the most significant n bits of the unsigned integer

as index into the square root table then as long as the integer is bigger than 22n−2,

the result has n bits of accuracy.

Error in the Evaluation of Specular Exponentiation

To calculate the specular component of illumination, we have to compute the ex-

ponent of the dot product of the half-way vector (computed as the average of view

vector and light vector) with the normal vector. Due to the fact that the dot prod-

uct of two unit vectors is always smaller or equal to 1 and that we are only dealing

with positive values of the dot product, we use 2m to represent the largest value 1.

The maximum possible representation error will be 1
2
, i.e., 2−(m+1) relative to 1.

If εa is the error in the value a of the dot product, then:

(a+ εa)
n ∼= an + naεa (if εa << a)

85

The maximum absolute error happens when a = 1, εa = 2−(m+1), and n is the

maximum value of 128: (as implemented by OpenGL)

naεa < 128 ∗ 2−(m+1) < 2−(m−6)

So we will have m − 6 bits accuracy in the result, i.e., we will lose 6 bits

accuracy due to this exponentiation.

Putting it all together

From the above analysis, we can get an equation which relates the input data accu-

racy with the output color accuracy. Assume the output color needs n bits accuracy

per R, G, and B, which requires m bits of accuracy in the input data. We next

relate n and m.

First, the normalization of each vector will lose one bit. As shown before, the

square root will have nearly the same accuracy as the input data. To avoid the loss of

accuracy due to division, instead of storing the square root, we store the reciprocal of

the square root in the lookup table. This reciprocal is calculated in the floating-point

representation before converting it to the n-bit fixed-point representation. Thus the

only error induced in the normalization will be in the final multiplication which is

a loss of one bit of accuracy.

The dot product of two unit vectors will lose one to two bits of accuracy. Since

the exponentiation will lose six bits, the term (max {−→s ·−→N , 0})shin will lose 1+(1 to

2) + 6 = 8 to 9 bits of accuracy. So the above term have between m− 8 and m− 9

bits of accuracy. Further, the term Cspecular will have the same accuracy because

86

specularlight∗specularmaterial will have m bits of accuracy, which is much higher than

the accuracy of (max {−→s · −→N , 0})shin.

Similarly, the term Cdiffuse will get between m− 2 and m− 3 bits of accuracy.

Cambient will have m bits of accuracy as explained in the overview.

Overall, (Cambient+Cdiffuse+Cspecular) will have the accuracy of the least accurate

term Cspecular, i.e., m− 8 or m− 9 bits of accuracy.

Since the attenuation and the spotlight terms can all be evaluated with more

than m − 8 bits of accuracy, the required color accuracy bits for the entire illumi-

nation equation can be expressed as:

n = m− 8 or m− 9

For example, if n = 8 , i.e., eight bits per R, G, and B, then the required

accuracy for the input data will be n+ 8 or n+ 9, i.e., we will need 16 or 17 bits to

represent the input data to get the desired accuracy of 8 bits per color component.

View-dependent Variable-Precision Lighting

Similar to the case of transformation in Section 4.3.3, we can take advantage of

the spatial coherence of the adjacent vertices in lighting calculations.The basic idea

is that the viewing and lighting directions do not vary much for the spatially close

vertices. Once we find those directions for one vertex, we can calculate the directions

for the nearby vertices incrementally, i.e., calculate the difference in far fewer number

of bits. The direction difference between the nearby vertices depends not only on

the absolute spatial difference of the vertices, but also on their distances from the

87

viewer and light source to the vertices. Once the viewer moves closer to the vertex

and below a threshold (which we will describe below) we will switch back to the

original case, i.e., treat that particular vertex independently of its adjacent vertices.

Figure 4.6: Incremental Lighting Calculation

In Figure 4.6 we show how to compute the lighting incrementally. Let
−→
L1 be

the light vector for vertex v1 for which we have already calculated the illumination.

Now suppose we would like to find out the light vector
−→
L2 for its adjacent vertex v2.

The displacement vector
−→
V between v1 and v2 is normalized by the distance between

the vertex v1 and the light source, i.e., its length is equal to the real distance between

v1 and v2 divided by the distance between the v1 and the light source.1 Both
−→
L1

and
−→
L2 are unit vectors.

One way to accurately compute
−→
L2 is to normalize the sum of

−→
L1 and the vector

between v1 and v2. This approach requires roughly the same amount of computation

as computing
−→
L2 directly from the vector between v2 and the light source. To reduce

the computation, we instead use
−→
L’2 (equal to (

−→
L1 +

−→
V⊥)) as the approximation of

−→
L2 if it satisfies our accuracy requirements.

−→
V⊥ is the component vector of

−→
V on the

perpendicular direction of
−→
L1, which can be easily computed:

−→
V⊥ =

−→
V −−→

L1(
−→
V ·−→L1).

1Note that this assumption is not shown in Figure 4.6, where
−→
V is shown to have its length as

the distance between v1 and v2.

88

Using this approach, the induced error ε−→
L2

is equal to
−→
L’2 −−→

L2.

If the length of
−→
V ,

∥∥∥−→V ∥∥∥, is much smaller than 1 (the length of
−→
L1 and

−→
L2),

then we have:

∥∥∥−→L’2∥∥∥ =

√∥∥∥−→L1∥∥∥2 + ∥∥∥−→V⊥
∥∥∥2 = √

1 +
∥∥∥−→V⊥

∥∥∥2
≈ 1 +

∥∥∥−→V⊥
∥∥∥2

2
≤ 1 +

∥∥∥−→V ∥∥∥2
2

Let the angle between
−→
L1 and

−→
L2 be α, between

−→
L2 and

−→
L’2 be ∆α, and

−→
V‖ be the

component vector of
−→
V along the direction of

−→
L1:

α = arctan(

∥∥∥−→V⊥
∥∥∥∥∥∥−→L1∥∥∥+ ∥∥∥−→V‖

∥∥∥) = arctan(

∥∥∥−→V⊥
∥∥∥

1 +
∥∥∥−→V‖

∥∥∥)

(α+∆α) = arctan(

∥∥∥−→V⊥
∥∥∥∥∥∥−→L1∥∥∥) = arctan(

∥∥∥−→V⊥
∥∥∥)

So ∆α = arctan(
∥∥∥−→V⊥

∥∥∥)− arctan(

∥∥∥−→V⊥
∥∥∥

1 +
∥∥∥−→V‖

∥∥∥)
≈

∥∥∥−→V⊥
∥∥∥ (1− 1

1 +
∥∥∥−→V‖

∥∥∥) =
∥∥∥−→V⊥

∥∥∥∥∥∥−→V‖
∥∥∥

1 +
∥∥∥−→V‖

∥∥∥
<

∥∥∥−→V⊥
∥∥∥∥∥∥−→V‖

∥∥∥ ≤ 1

2

∥∥∥−→V ∥∥∥2
The last inequality is because

∥∥∥−→V⊥
∥∥∥ =

∥∥∥−→V ∥∥∥ sin θ and
∥∥∥−→V‖

∥∥∥ =
∥∥∥−→V ∥∥∥ cos θ, and

sin θ cos θ = 1
2
sin(2θ) ≤ 1

2
. Thus if the distance between v1 and v2 is much less

than the distance between v1 and the light source, then
∥∥∥−→L’2∥∥∥ ≈ 1 =

∥∥∥−→L2∥∥∥ and

∆α << 1, therefore

∥∥∥ε−→L2

∥∥∥ ≈ 2
∥∥∥−→L2∥∥∥ tan(∆α

2
) ≈ ∆α ≤ 1

2

∥∥∥−→V ∥∥∥2
89

This means, the error of using
−→
L’2 as an approximation of

−→
L2 is less than

1
2

∥∥∥−→V ∥∥∥2.
If we want 15 bits of accuracy in

−→
L2, we only need

∥∥∥−→V ∥∥∥ ≤ 2−7, i.e., the distance

between v1 to the light source should be 27 = 128 times larger than the distance

between v1 and its adjacent vertex v2. This way we only use the local spatial differ-

ences in calculating the new direction and avoid an expensive vector normalization

operation.

(a) Floating Point Lighting (b) Variable-Precision Lighting (Speedup: 2.99)

Figure 4.7: Variable-Precision lighting of Bunny model

(Transformations for both cases have been calculated in floating-point)

4.3.5 Some Implementation Details

In addition to what we have already described in the previous sections, there are

some other implementation details which are worth mentioning.

Batched Transformation and Lighting

Most graphics APIs (OpenGL, Direct3D, Glide) allow the user to transform and light

the triangles one at a time and send the transformed and lighted triangles in floating-

point screen coordinates to the rasterizer. Since these APIs do not accept screen-

90

space triangles in the fixed-point representation, we had to convert our fixed-point

results to floating-point representation before asking the graphics API to rasterize

the triangles. In MMX technology, this means that we need to reset the register

flag back and forth when we switch from the integer operation to floating point

because these two share the same registers. The frequent resetting costs time, so

the intuitive solution is to minimize the number of resets, e.g., transform and light

the whole dataset first in object space, then do the viewport transform and then

send to the rasterizer. There are two problems with this approach. First we lose

some opportunities of pipelining which the hardware is very smart at. Second, there

are lots of extra memory accesses due to the write-back, so this does not work well.

To solve this problem, we make a tradeoff. Instead of transforming and lighting

the triangle one by one or all at the same time, we do them batch by batch. The

resetting of the flag only happens between batches and we avoid the extra memory

accesses. In practice, we find batch size of several hundred triangles works gracefully.

If the graphics APIs accepted screen-space fixed-point representation triangles, we

would not have to deal with this and our results would have been better than

reported here since switching from fixed-point to floating-point is expensive even

when we do them in batches.

Full-precision Matrix Calculation

At each view point we first calculate the transformation matrix and then apply it to

all the vertices in the dataset. The initial matrix calculation is a negligible fraction

of the overall computation which includes transformation of hundreds of thousands

91

of vertices. So we compute it in full-precision floating point before converting it

into the fixed-point representation. This way, we save the precision of the matrix

elements, and avoid the possibility of error build up when we take advantage of the

temporal coherence of the frames in transformation because the matrix is computed

in full precision separately for each frame.

4.4 Results

We have tested our approach on polygonal datasets from several application domains

including molecular, laser-scanned, mechanical CAD, and procedurally generated

datasets. The results of our approach are summarized in Tables 4.1, 4.2, 4.3 and

appear in Figures 1.3 and 4.4– 4.13.

Model Bunny DHFR Dragon Venus AMR Buddha

Size (triangles) 69K 145K 202K 268K 376K 1087K

Transform 61 130 185 230 330 968

Floating Lighting 469 1042 1374 1830 2503 7481

Point Other 56 108 167 218 298 902

Total 586 1280 1726 2278 3131 9351

Transform 17 33 46 59 83 235

Variable Lighting 79 155 212 280 337 882

Precision Other 42 87 127 160 212 616

Total 138 275 385 499 632 1733

Speedup 4.25 4.65 4.48 4.57 4.96 5.40

erms (object space) 1.3e-4 1.3e-4 1.2e-4 1.2e-4 1.1e-4 1.2e-4

Max error (obj. space) 3.0e-4 3.1e-4 3.0e-4 2.9e-4 2.6e-4 3.1e-4

erms (image space) 8.5e-3 8.8e-3 8.7e-3 6.0e-3 8.4e-3 7.0e-3

Table 4.1: Results from rendering at varying precisions

Table 4.1 compares the results using variable precision with the one using

92

traditional single-precision floating point and times are reported in milliseconds.

The variable precision rendering shown here is under the requirements of guaranteed

pixel-level position accuracy and eight bits per R, G, and B color. The object space

root-mean-square error and maximum error are measured in transformed object

space as the distance between the single-precision floating-point transformed vertices

and variable-precision transformed ones, while the image space root-mean-square

error is measured in the final image space as the difference between the R, G, B

color components. The formula for image space root-mean-square error as follows:

erms =

[
1

MN

M−1∑
x=0

N−1∑
y=0

[
f̂(x, y)− f(x, y)

]2]1/2

Here f(x, y) represents the original image, f̂(x, y) denotes an estimate of the image,

and M ×N is the image size.

From Table 4.1, we can see that under the pixel-level accuracy, the maximum

transformed distance between the two methods is less than 0.00033 of the size of the

bounding box for all the six datasets tested . We know the normalized transformed

object space is in the range [-1.0, +1.0], so the difference is less than six-thousandth

of the total range. This shows robustness of our method. Further, instead of getting

pixel-level accuracy, our method actually gave us 2 to 3 sub-pixel bits of accuracy.

This is because our error analysis gives the upper bounds of the error; the real error

is usually much less. To roughly compare how variable precision rendering stacks

up against multiresolution rendering, we compared the object-space Hausdorff error

in a 16K triangle model of the Bunny using Metro [23] against a 69K triangle model

of the Bunny using 7.9 bits/vertex coordinate. Although both give a factor of 4

93

speedup, the variable precision method has an order of magnitude smaller object

space Hausdorff error (0.012% of the bounding box diagonal) compared with 16K

triangle full precision model (0.12% of the bounding box diagonal).

We can see more than a factor of four speedup in all the datasets tested. One

aspect of our algorithm is that it scales well. The speedup factor goes up with

the increase in scene complexity (which means more data will be rendered in less

precision) and the number of light sources. See Figure 4.8 and Table 4.1.

Figure 4.8: Speedup factor as a function of number of light sources (Venus model)

Output Conventional Spatial Spatio-Temporal

bits Add Mult Add Mult Add Mult

32 bits 32 32 42.21 31.55 54.08 29.23

16 bits 16 16 12.95 7.77 13.77 4.02

8 bits 8 8 1.35 0.66 0.77 0.08

4 bits 4 4 0.03 0.02 0.01 0.001

Table 4.2: Average number of bits per vertex coordinate operated upon for appro-

priate output precision

94

Figure 4.9: Histogram of vertices transformed in different number of bits using

Variable Precision (AMR model)

Figure 4.9 shows the histogram of percentage of vertices transformed in differ-

ent number of bits for AMR dataset, which has a very low average 4.18 bits/vertex

coordinate for variable-precision transformation, instead of 32 bits/vertex coordi-

nate as in the single-precision floating point case. Figures 4.10–4.13(FP abbreviated

for floating point, VP abbreviated for variable precision) show the images rendered

by variable-precision rendering and compare them with the single-precision floating

point rendering. Even with zoomed-in views, there are hardly any visually distin-

guishable differences.

Table 4.2 shows the average number of bits that have to be manipulated per

vertex during the transformations while exploiting spatial and temporal coherences.

Since the vertices that are at the lower levels of the octree require less number of

bits for transformation, the overall average number of bits turns out to be much less.

The leftmost column indicates the number of bits that are required in the output

display.

95

Output Conventional Spatial Spatio-Temporal

bits Add Mult Add Mult Add Mult

32 bits 6 8 7.92 7.89 10.14 7.31

16 bits 3 4 2.43 1.94 2.58 1.01

8 bits 1.5 2 0.25 0.17 0.14 0.02

4 bits 0.75 1 0.01 0.004 0.002 0.0002

Table 4.3: Average number of equivalent 32-bit operations per vertex coordinate for

appropriate output precision

Table 4.3 shows the average number of equivalent 32-bit operations per vertex

during the transformations while exploiting spatial and temporal coherences. Cen-

tral to this idea is that one 32-bit operation is equivalent to two 16-bit, four 8-bit,

and eight 4-bit operations. Even though SIMD parallelism at the level of 4-bits is

not yet available in the current generation of processors, the table shows the effec-

tiveness of our scheme if such parallelisms were to become available in future. As

(a) Floating Point (b) Variable Precision (c) Floating Point (d) Variable Precision

(32 bits/Vert. Coord.) (7.9 bits/Vert. Coord.) Closeup Closeup

Figure 4.10: Dihydrofolate Reductase Molecular Surface (145K triangles) rendered

in variable precision

96

(a) Floating Point (b) Variable Precision (c) Floating Point (d) Variable Precision

(32 bits/Vert. Coord.) (7.9 bits/Vert. Coord.) Closeup Closeup

Figure 4.11: Stanford Bunny (69K triangles) rendered in variable precision

(a) Floating Point (b) Variable Precision (c) Floating Point (d) Variable Precision

(32 bits/Vert. Coord.) (7.9 bits/Vert. Coord.) Closeup Closeup

Figure 4.12: Cyberware Venus (268K triangles) rendered in variable precision

in Table 4.2, the leftmost column indicates the number of bits that are required in

the output display.

4.5 Conclusions

Our variable-precision approach takes advantage of SIMD parallelism in modern

processors to speedup the transformation and lighting stages of the graphics pipeline.

It can successfully trade-off precision for speed without significantly affecting the

97

(a) Floating Point (b) Variable Precision (c) Floating Point (d) Variable Precision

(32 bits/Vert. Coord.) (7.9 bits/Vert. Coord.) Closeup Closeup

Figure 4.13: Buddha Model(1087K triangles) rendered in variable precision

visual quality of the rendered images. In addition, our method is complementary to

the conventional multiresolution approaches.

98

Chapter 5

Interactive Visualization of Large Time-Varying

Molecules

Interactive visualization of molecular datasets is an important tool to better under-

stand the structural and functional properties of biological samples. It remains a

challenge to interactively display large molecular datasets, especially time-varying

ones. In this chapter, we develop a time- and memory-efficient algorithm to solve

this problem [57]. Our approach speeds up the graphics rendering pipeline at sev-

eral stages by developing and extending various rendering techniques for efficient

display of time-varying molecular data, such as view-dependent precision control as

discussed in Chapter 4, run-time triangle strip and triangle fan generation, visibility-

based culling, and memory-bandwidth reduction. More importantly, our algorithm

requires no pre-processing and little memory overhead. It is linearly scalable in the

sizes of the molecular datasets. Our algorithm is flexible and scalable and our ideas

for this problem can also be applied to visualization of other large time-varying

datasets.

99

5.1 Previous and Related Work

Interactive visualization of large datasets has remained one of the major challenges

for computer graphics and scientific visualization researchers. Many techniques, such

as level-of-detail hierarchies, triangle-strip generation, and occlusion-based culling,

have been developed for speeding up the visualization of large datasets, especially

static scenes.

Multi-resolution hierarchies for level-of-detail-based rendering have tradition-

ally involved modelling each object at multiple levels of detail. The detail is usually

measured in the number of geometric primitives required for representation. A

high-detail triangle-mesh object will require a higher number of vertices, edges, and

triangles. At run-time, an appropriate level of detail is selected based on viewing

parameters for a faithful representation. Even better, level of detail can be applied

in a view-dependent manner to take advantage of temporal coherence and adap-

tively refine or simplify the geometry between adjacent frames [94]. Normally the

multi-resolution hierarchies of the geometry are built as a pre-process.

Triangle strips provide a compact representation of triangular meshes and are

supported by popular graphics APIs such as OpenGL. The use of triangle strips

results in fast rendering and transmission. A triangle strip with n triangles can be

rendered with only n+ 2 instead of 3n vertices. Thus substantial savings for mem-

ory bandwidth and computation of per-vertex operations such as transformations,

lighting, and clipping can be achieved. Triangle strips can be generated as a pre-

process and stored with the geometry for later usage [38], or can be pre-generated

100

 Load molecule
 data (atom list)

Quick sort
 atom list

Test visibility, i.e.,
occlusion culling

Tessellate sphere
to right resolution
 of triangles

 Select proper precision for vertex
 data and use byte for color

 Generate
triangle fans
 and strips

Send data to
graphics card

Figure 5.1: Pipeline of our run-time algorithm

and later updated view-dependently [36]. It can be costly to generate triangle strips

from scratch at run-time [36]. Triangle strips can also be used for polygonal mesh

compression [51,136].

Occlusion culling works by culling away portions of the scene that are not

visible from the viewer. Culling can be done in object space through the use of

spatial partitions or bounding volume hierarchies [28, 68]. Object-space algorithms

have been developed for several specialized environments such as architectural or

urban datasets [1,68,146]. However such techniques are not very effective on scenes

with several small occluders. Culling can also be done in image space using hier-

archical Z-buffer [49] or hierarchical occlusion maps [152]. Image-space occlusion

culling usually achieves better occluder fusion. Normally occlusion culling is done

conservatively [79, 149]. Non-conservative culling [78] can lead to popping artifacts

when objects appear and disappear between adjacent frames.

Most of the above techniques rely on a certain level of pre-processing of the

scenes and build the appropriate data structures before the rendering phase. Hence

they are well-suited for scenes with static geometry. For time-varying scenes, es-

pecially molecular dynamics simulations with significant changes, these techniques

can not be readily applied.

101

5.2 Our Approach

The space-filling display of time-varying molecules involves rendering each atom of

the molecule as a sphere with a van der Waals radius for every time frame. Different

atoms are represented by different-sized spheres, with possibly different resolution

tessellations. Since viewing individual atoms is not a normal real-life experience,

parallel projections are often considered more informative in molecular graphics

than foreshortened perspective projection. Here we assume parallel projection.

Figure 5.1 shows the pipeline of our algorithm for displaying each frame of

a time-varying molecular dynamics data. We start by loading the list of atoms

with their 3D positions for current time frame, and we sort them according to

their distance from the viewer using a quick-sort algorithm. Next we determine

the visibility of each atom, by using our visibility-based culling algorithm (detailed

in Section 5.2.1). We use multi-resolution techniques to decide the appropriate

number of triangles with which to represent the spherical atoms. We also decide

the necessary precision for vertex data from display resolution specification. For the

triangles that survive the back-face culling phase we generate triangle strips and

compute illuminated color. Finally, we send the triangle strips and triangle fans

with appropriate precision to the graphics card for rasterization and display.

5.2.1 Determination of the Visible Set of Atoms

Previous approaches for occlusion culling deal with general environments. They

achieve efficiency of the occlusion test by pre-processing the scene and building

102

Current occlusion map

A new atom projection

Visibility test Update occlusion map New occlusion map

Figure 5.2: Visibility test of an atom

a good data structure such as a cluster hierarchy [149] to store the relationships

between objects. Run-time efficiency is achieved through temporal coherence, since

the viewing parameters seldom change significantly from one frame to the next.

Occlusion culling for time-varying molecules is different from previous situations.

First, molecules go through large structure changes, so the occlusion information

between adjacent frames may change significantly. This makes it difficult and less

efficient to use temporal coherence by pre-processing the scene. Second, there are

no large occluders in time-varying molecules. Each molecule consists of thousands

of atoms whose sizes are of the same order of magnitude. The relationships among

this large number of small potential occluders vary significantly over time. Thus,

instead of trying to use pre-processing with temporal coherence, we decided to build

per-frame occlusion map on-the-fly to achieve better efficiency. We use the culling

Outer enclosing square
Circle projection of atom sphere
Inner enclosed square

Figure 5.3: Over- and under-estimation for Occlusion Culling

103

algorithm described below to build per-frame occlusion map and estimate the visible

set of atoms.

The list of atoms for each frame is sorted using the quick sort algorithm. We

use a conservative culling scheme to determine the potentially visible atoms. Since

our algorithm is conservative, it is possible for a few non-visible atoms to be sent

to the graphics card for rendering. Figure 5.3 shows the conservative nature of

our culling. Each spherical atom is projected to a circle on the image plane under

parallel projection. We project the atoms in a front-to-back order. If all the screen-

space pixels of an atom are already occupied by the nearer atoms, then the current

atom will not be visible. Since the projection and checking for overlap of circles

is hard to implement efficiently, we instead use two different-sized nested squares.

As shown in Figure 5.3, the blue square covered by the projected circle is used to

represent the definite occlusion by this atom for the atoms behind it. We use the

inner square of each atom to build the occlusion map and the outer green square

(in Figure 5.3) to check if the atom has been blocked by previously rendered atoms.

An example is shown in Figure 5.2. Here the atom is visible since its outer square

has not been totally blocked. The occlusion map is then updated using the atom’s

inner square.

For memory and time efficiency, we use a bit pattern to store the occlusion

map and check for atom visibility. Initially, each bit is set to zero to indicate

non-occupancy. The bit is set to one when the pixel gets covered by the inner

square of an atom’s projection for the first time. The pixel will from then on act

as an occluder for the atoms that project on it later. The bit pattern storage using

104

integers improves the memory usage. For a 1024× 1024 image, we only need 128K

bytes for storing the occlusion map. More importantly, storing the bit pattern as

packed integers improves efficiency. As an example, if a new atom is visible and

we want to adjust the occlusion map according to its inner-projected square, then

we just set the occlusion map pixels covered by the square to one. So we can use

a bitwise-OR operation of the values of the covered pixels with an all-one pattern

to simultaneously cover several pixels in a single operation. Similarly if we want

to check for visibility of a new atom, we need only to use a bitwise exclusive-OR

operation of the values of the covered pixels with an all-one pattern and check if the

result is zero.

5.2.2 Generation of Appropriate Triangle Tesselations of Spheres

Recent multi-resolution literature [39, 94] has discussed the interactivity and visual

realism tradeoffs in selecting an appropriate resolution for geometry. The screen-

space size of an atom is an important determinant for picking the number of triangles

for representing a sphere. We pick the tesselation resolution such that each triangle

x

y

z

Figure 5.4: Generating points on a sphere

105

0

1

3

6

9 11

14

17

20

1

2

3
4

5 6

7

8

9

10

11

12

13

14 15

16
17

18
19

(a) Triangle fan (b) Triangle strip

Figure 5.5: A complete triangle fan and triangle strip as seen from above the North

pole of a sphere

will have about ten pixels on the image plane.

For flexibility in adjusting the tesselation resolution, we generate points on

spheres along circles with same latitude (i.e. same angle to the z–axis) and sym-

metric over the x–y plane as shown in Figure 5.4. We then connect the points to

form triangles. Points connected to the North or South pole will form a complete

triangle fan. One such triangle fan (0, 1, 3, 6, 9, 11, 14, 17) is shown in 5.5(a), where

the ith triangle is described by the 0th, ith, and (i + 1)st vertices in the sequence.

The points between adjacent circles form a complete triangle strip. One such strip

(20, 1, 2, 3, 4,3, 5, 6, 7,6, 8, 9, 10, 11, 12,11, 13, 14, 15,14, 16, 17, 18,17, 19, 1, 20) is shown

in 5.5(b). Note that this is generalized triangle strip [38] where the repeated vertices

are shown in bold.

5.2.3 Run-time Triangle Strip and Triangle Fan Generation

After we decide the appropriate tesselation of an atom, we know that sending triangle

strips or fans to the graphics card is more efficient than sending separate triangles.

106

We can generate the triangle strips and fans easily from our tesselation scheme in

Section 5.2.2 using traditional methods. However, that will not always be the best

solution. A pre-generated triangle strip is fixed and will include both visible and

non-visible triangles for each viewing direction. Even if an atom is visible, its back-

facing triangles will not be visible. Pre-generated triangle strips can be updated at

run-time for complex geometry [36]. However, here we observe that we can take

advantage of the spherical atoms to generate the proper triangle strips and fans for

their front-facing triangles. Thus we can benefit from the efficiency of triangle strips

without the need to send back-facing triangles or to update the triangle strips for

every frame.

0

1

3

6

9 11

14

17

20

1

2

3
4

5 6

7

8

9

10

11

12

13

14 15

16
17

18
19

(a) Front-facing fan (b) Front-facing strip

Figure 5.6: Triangle fan and triangle strip of front-facing triangles (in blue) as seen

from above the North pole of a sphere

We first decide which triangles are front-facing. The front-facing triangle is

defined as one with at least one front-facing vertex. The front-facing vertex can be

easily determined by a dot product of its normal with viewing direction. Then we

generate the triangle fan for triangles consisting of front-facing vertices connecting

to the pole of the sphere, and triangle strips for triangles consisting of front-facing

107

vertices between adjacent circles on the sphere. As an example, Figure 5.6(a) shows

a run-time triangle fan (0, 3, 6, 9, 11, 14, 17) of Figure 5.5(a), while Figure 5.6(b)

shows a run-time triangle strip (4, 3, 5, 6, 7,6, 8, 9, 10, 11, 12,11, 13, 14, 15, 16) of Fig-

ure 5.5(b). The grey triangles in the figure are back-facing triangles.

An alternative to run-time generation of triangle strips and triangle fans is to

generate a fixed set of triangle strips and triangle fan for the visible hemisphere,

and rotate spheres at run-time to keep their orientation relative to the viewer fixed.

5.2.4 Memory Bandwidth Reduction

To further improve the memory and run-time efficiency, we adapt the variable-

precision approach [54] to reduce the precision of the vertex data. As shown in [54],

we need no more than 16 bits of accuracy to represent vertex data for pixel-level

positional accuracy in up to 213× 213 rendering window under parallel and 211× 211

window under perspective projection. In this work we use 16 bits instead of 32 bits

(floating-point representation) to reduce the memory bandwidth by half.

We also save some bandwidth by computing the color of vertices on the CPU

and sending only the unsigned byte color (three bytes total for red, green, and blue)

to the graphics card, instead of sending a vector vertex normal.

We have also used display list mechanism provided by OpenGL to get better

memory coherence to display atoms. At each frame, we generate a new display

list for each type of atom (carbon, oxygen, nitrogen, hydrogen, etc). Every visible

atom is just a differently translated instantiation of the display list containing the

triangles for its canonical representation.

108

5.3 Results and Discussion

We have applied the approach described above to ion-channel studies, specifically, a

two hundred-frame animation of the structure of the large-conductance mechanosen-

sitive channel MscL as it transitions from the closed to the open state. The anima-

tion is based on five models representing the closed, open and three intermediate

conformations. The smooth transition between these modeled states has been im-

plemented using a linear interpolation algorithm.

MscL is a ubiquitous part of the osmoregulation system residing in the cyto-

plasmic membrane of most bacteria, both free-living and pathogenic. Escherichia

coli MscL (EcoMscL) is the best understood model mechanosensitive channel gated

directly by membrane tension. The atomic-scale model of EcoMscL based on the

crystal structure of its homolog from Mycobacterium tuberculosis was built in or-

der to relate the structural information to the wealth of experimental data available

specifically for the E. coli channel. In the closed state the channel core is represented

as a tightly packed bundle of ten transmembrane alpha helices (Fig. 1.4a, b). The

opening transition driven by external tension has been modeled as an iris-like ex-

pansion of the transmembrane bundle accompanied by tilting of alpha-helices. The

open conformation is characterized by a large (3 nm) pore capable of passing a large

current or a flux of small omolytes (Fig. 1.4g, h). The last row of images (Fig. 1.4i,

j) represent the intermediate semi-closed conformation.

109

5.4 Conclusions

In this chapter we show that large time-varying molecular datasets can be displayed

interactively using our time- and memory-efficient algorithm. Various techniques

have been developed or extended to accelerate the graphics rendering pipeline. Our

algorithm has several properties which makes it very attractive. It has no memory

overhead, requires no pre-processing, and is linearly scalable. Though the tech-

niques have been designed for time-varying molecular datasets, the concepts are

general enough to benefit interactive display of large time-varying datasets in other

application domains as well.

110

Chapter 6

Real-Time Rendering of Translucent Materials

Interactivity is an important goal not only for scientific simulation and visualization,

but also for graphics rendering. Another long-standing goal of computer graphics is

creating high-quality images which are indistinguishable from photographs. How-

ever, these two goals have historically been at odds with each other. Photorealism

has resulted in beautiful pictures, but at the cost of slow algorithms taking hours

to days. Interactivity is normally achieved at the cost of sacrificing some degree of

realism. It is desirable to combine the two goals and achieve real-time photorealistic

rendering.

Among various of interactions between light and matter, subsurface scattering

is one of the most complicated to simulate. The complexity comes from the fact that

the incident light gets partly absorbed and is then re-emitted. This process may

occur many times before the light finally gets out of the object. Scattering effects

are important to accurately simulate the appearance of translucent materials, such

as human skin, clouds, marble, and milk.

In previous chapters, I have shown that efficient geometry representations,

such as adaptively controlled irregular grids, variable-precision representations, and

spherical harmonic representations, can be used to achieve the goal of interactive

simulation and visualization of protein properties. I will show in this chapter that

111

similar data representations used for illumination data can help us achieve real-time

rendering of translucent materials with optimal linear complexity in the number of

surface points with minimal memory overhead.

6.1 Introduction and Related Work

Illumination models are important for photo-realistic image synthesis. Correctly

modelling the physical interaction of light with objects is an exciting, but difficult

task. Over the years, many illumination models have been developed for image

synthesis. They can be classified as either empirically-based or physically-based.

For example, the Phong illumination model [110] is an empirically-based model.

Physically-based models are derived from principles of light-object interaction, using

either geometrical optics or wave optics. Most of them model the bidirectional

reflectance distribution function (BRDF).

One example of physically-based models using geometrical optics is the Cook-

Torrance [27] model, which can compute directional distribution of light and color

shift with incident angles and materials. Other geometrical-optics-based models

include microfacet-based approaches [3,14]. Inverse rendering methods can produce

high-quality illumination models from images [12, 19, 30, 114, 123, 150]. Significant

efforts have been devoted to determining the BRDF of an object. Researchers have

also developed methods to directly measure the BRDF [48,95,142].

Compared with geometrical-optics-based models, wave-optics-based models

are more complicated, but have the advantage of being able to model phenom-

112

ena which cannot be directly modelled using geometrical optics, such as interference

and diffraction patterns. Kajiya [74] has used scalar-form Kirchhoff approximation

to compute the BRDF of surfaces with anisotropy. He et al. [58] have presented

a general local reflection model based on vector-formed Kirchhoff wave diffraction

theory and have given an analytical formula to compute the BRDF for surfaces

with roughness, including polarization and directional Fresnel effects. Bahar and

Chakrabarti [6] have computed the differential scattering cross-section of a wave

from rough metallic surfaces using electromagnetic theory. Stam [128] and Sun et

al. [132] have extended the He-Torrance model [58] to handle anisotropic reflections

and demonstrated diffraction effects on a compact disk.

A good BRDF model, either derived or measured, can give highly realistic

visual effects. The basic assumption of BRDF models is that light enters and exits

an object on the same surface point. In most cases this assumption is valid and the

resulting BRDF models provide convincing visual appearance for simulating many

visual effects. But for some cases, the assumption is not valid. For example, BRDF

models alone are inadequate to simulate the appearance with subsurface scattering,

where light enters an object at one point and exits at another. This effect is very

important for simulating the appearance of translucent materials, such as marble,

skin, and milk. To simulate these materials, we have to go back to the more general

bidirectional surface scattering reflectance distribution function (BSSRDF) models.

While BRDF models are just approximations of BSSRDF models.

Many researchers have successfully simulated subsurface scattering effects.

Hanrahan and Krueger [52] have modelled subsurface scattering in layered surfaces

113

in terms of one-dimensional linear transport theory, and derived analytical expres-

sions for single scattering events. They have incorporated their results into a BRDF

model. The model is fast but also has the shortcoming of the BRDF assumption.

More recently, Dorsey et al. [32] have simulated subsurface transfer by solving the

radiative transfer equation using photon maps. Koenderink and van Doorn [83]

model light scattering in translucent objects as a diffusion process. Stam [129]

used a discrete-ordinate solution of the radiative transfer equation to model mul-

tiple anisotropic scattering for human skin layer bounded by two rough surfaces.

Another contribution of [129] is derivation of a bidirectional transmittance distri-

bution function (BTDF) to complement BRDF models. Pharr and Hanrahan [109]

have taken a different approach. Instead of simulating energy transport, they have

focused on scattering behavior and solve a non-linear integral scattering equation

using Monte Carlo evaluation. Jensen et al. [72] have used path tracing to simulate

subsurface scattering in wet materials.

The approaches above are able to simulate all the effects of subsurface scatter-

ing and generate impressive images, but are slow. Jensen et al. [73] have suggested

a more efficient approach to simulate scattering media by using a dipole diffusion

approximation for multiple scattering events, with an exact solution for single scat-

tering events. With this simple approximation, they achieve more than two orders

of magnitude speedup compared with the approach of using full Monte Carlo sim-

ulation. As an example, for one scene they have reduced the rendering time from

1250 minutes to 5 minutes with nearly indistinguishable visual difference. Jensen

and Buhler [71] have taken this one step further. They decouple the computation of

114

the incident illumination from the evaluation of the BSSRDF with a two-pass ap-

proach. The first pass samples the irradiance at selected points on the surface. The

second pass evaluates the diffusion approximation using a fast hierarchical scheme.

They achieve up to 7 seconds per frame using ray-tracing for a teapot dataset with

150K vertices, using a dual 800MHz Pentium III PC. Lensch et al. [89] have used

a preprocessing step to compute the impulse response for each surface point un-

der subsurface scattering. They separate the response into a local and a global

effect. While the local effect is modelled as a filter kernel and stored in a texture

map, the global response is stored as vertex-to-vertex throughput factors. The lo-

cal and global responses are combined during run-time to form the final image.

They achieve 5 frames per second on a dataset with about 9K vertices, using a

dual 1.7GHz Xeon computer. In addition, they can accommodate non-homogenous

material properties. All these make practical simulation of subsurface scattering

phenomena feasible. The next step is to enable subsurface scattering effects for

interactive rendering of larger datasets.

Recently, Sloan et al. [126] have incorporated surface scattering effects into

their pre-computed radiance transfer scheme and have achieved 27 frames per second

on a Buddha dataset with 50K vertices, using a 2.2GHz Pentium 4 machine. They

represent pre-computed view-independent subsurface-scattered radiance using low-

order spherical harmonics. In addition to subsurface scattering effects, their scheme

has successfully simulated many of the global illumination effects, such as soft shad-

ows, inter-reflections, and caustics. If their approach is used only for simulating

subsurface scattering effects, they can achieve significantly faster frame rates. They

115

have assumed low-frequency lighting environments. We instead, focus on subsurface

scattering effects, but for high-frequency lighting environments (for example, a sin-

gle directional point light source). Carr et al. [20] have modelled multiple-scattering

subsurface light transport to resemble a single radiosity gathering step. By using

their GPU algorithm for radiosity with a hierarchy of precomputed subsurface links,

they have achieved about 30 frames per second for a dataset with 70K triangles,

using GeForce FX graphics card. Mertens et al. [98] use a hierarchical boundary ele-

ment method to solve the integral describing subsurface scattering and achieve more

than 5 frames per second on a dataset with 132K triangles, using a dual 2.4GHz

Xeon computer. Their algorithm allows users to change object geometry, subsurface

scattering properties, lighting, as well as viewpoint at run time. Dachsbacher and

Stamminger [29] extend shadow maps to store depth and incident light information,

and compute subsurface scattering effects by filtering the shadow map neighborhood

using a hierarchical approach. They have implemented their algorithm on graphics

hardware and achieved 5.7 frames per second on a dataset with 100K vertices, using

a 2.4GHz Pentium 4 machine with ATI Radeon 9700 graphics card.

We have built a simpler, approximate model [53, 56] for subsurface scattering

and incorporated it into a local illumination model to make the effects more widely

accessible for different applications. Our approach is based on the observation that

subsurface scattering, although a global effect, is largely a local one due to its

exponential falloff, which limits the volume it can affect. Therefore even though the

light does not necessarily exit an object at the same point where it enters, as required

by a BRDF model, it will for all practical purposes exit within a short distance of

116

its entry point. This enables us to make modifications to existing local illumination

models to accommodate subsurface scattering effects. We approximate the BSSRDF

for subsurface scattering based on both, the underlying physical processes and visual

appearance. Jensen and Buhler [71] have shown that the visual appearance for

translucent materials can be almost entirely simulated by only considering multiple

scattering. We have used this fact and developed a macroscopic appearance-driven

approach to capture the most important features of subsurface scattering: multiple

scattered reflection and transmission. We modify local illumination process into a

run-time two-stage process: a traditional local lighting stage and a scatter-bleeding

stage. We then merge the run-time two-stage process into a run-time single-stage

process by using pre-computed integrals and improve the complexity of our run-

time algorithm from O(N2) to O(N). The local illumination characteristics and the

preprocessed scattering neighborhood information make our approach very efficient.

In addition, we greatly reduce memory storage requirements for our pre-computed

integrals by using reference points with spherical harmonics. We demonstrate that

using only low-order spherical harmonics for representing pre-computed integrals

produces somewhat unsatisfactory image quality for high frequency lighting (e.g.,

single directional light source). To address this we have designed a reference points

scheme. In our scheme we select a subset of the input mesh vertices and store

the pre-computed integrals at these reference points. We use spherical harmonics

for efficiently representing low frequency integral differences between the reference

points and the rest of the mesh vertices. This results in little extra storage for

pre-computed integrals (less than 28 bytes per vertex) without loss of image quality

117

and a further improvement in the efficiency of our algorithm.

6.2 Subsurface Scattering Model and Our Simplifications

To describe subsurface scattering effects for translucent (i.e., highly-scattering) ma-

terials, we need general BSSRDF models instead of BRDF models. A BSSRDF

model relates the illumination of one surface point with light distribution at other

surface points by the following formula [73]:

dLo(xo,
−→ωo) = S(xi,

−→ωi ;xo,−→ωo)dΦi(xi,−→ωi)

where Lo(xo,
−→ωo) is the outgoing radiance at point xo in direction −→ωo, Φi(xi,−→ωi) is the

incident flux at point xi in direction
−→ωi , and S(xi,

−→ωi ;xo,−→ωo) is the BSSRDF. Thus

the total outgoing radiance is computed by an integral over incoming directions and

area A [73]:

Lo(xo,
−→ωo) =

∫
A

∫
2π

S(xi,
−→ωi ;xo,−→ωo)Li(xi,−→ωi)(−→ni · −→ωi)dωidA(xi)

where −→ni is the surface normal at xi. As can be seen in Figure 6.1, the effect of

BSSRDF results in a scatter-bleeding of the illumination for a surface point from

its neighborhood.

Figure 6.1: Scattering of light in BSSRDF models (based on [Jensen et al.,2001])

118

In the following sections, we will assume static geometry with homogeneous

translucency and given scattering properties where multiple scattering dominates,

and each vertex of the mesh represents a small area on the surface.

6.2.1 Locality of Subsurface Scattering Effects

To improve efficiency and achieve interactive frame rates for simulating translucent

material properties, we incorporate subsurface scattering into local illumination.

The main rationale in combining local illumination with subsurface scattering is

based on the key observation that the subsurface scattering effects are well localized.

First, scattering within one object will have very little effect on the appearance of

another object; the influence between different objects can be well described by

the reflectance values on their surfaces only. So unlike the situation addressed by

radiosity methods where every patch has an effect on every other patch in the same

scene, subsurface scattering only has prominent effect within an object. Second,

even within the same object, the subsurface scattering due to light entering from

one surface point will have little effect on another surface point on the same object

if the distance between the two points is large. This property is a result of the

exponential falloff of light intensity due to absorption and scattering within the

material. Therefore, subsurface scattering, although a global illumination property

in the sense that the illumination on one surface point is affected by the illumination

on other surface points, is still largely a local effect. Although, the local-effect

property of subsurface scattering is useful for efficiency reasons at the preprocessing

stage, it will not affect the run-time efficiency of our algorithm.

119

We therefore conclude that to model the appearance of a surface point with

subsurface scattering to a first approximation, we only need to know its scattering

neighborhood and associated material properties.

6.2.2 Multiple Scattering Approximation

As mentioned earlier, a BSSRDF model is needed to describe subsurface scattering

effects. The complete BSSRDF model S for subsurface scattering is a sum of a

single scattering term S(1) and a multiple scattering term Sd [73]:

S(xi,
−→ωi ;xo,−→ωo) = S(1)(xi,

−→ωi ;xo,−→ωo) + Sd(xi,
−→ωi ;xo,−→ωo)

Jensen and Buhler [71] have shown that multiple scattering alone is sufficient to

simulate the visual appearance of highly-scattering translucent materials. We follow

their results and focus here on modelling multiple scattering effects only. Jensen et

al. [73] have also shown that the dipole diffusion method is a good approximation for

volumetric effects due to subsurface multiple scattering. The dipole approximation

of the diffusion equations is expressed by the following formula:

Sd(xi,
−→ωi ;xo,−→ωo) = 1

π
Ft(η,

−→ωi)Rd(‖xi − xo‖)Ft(η,−→ωo)

where Ft is the Fresnel transmission term and Rd is the single dipole approximation

for multiple scattering [71]:

Rd(r) = −D
(−→n · −→�φ(xs))

dΦi

=
α

′

4π
[zr(σtr +

1

dr
)
e−σtrdr

d2r
+ zv(σtr +

1

dv
)
e−σtrdv

d2v
]

where D is the diffusion constant, φ is the radiant fluence, Φi is the incident flux,

α′ is the reduced albedo, σtr is the effective transport coefficient, zr and zv are the

120

r

Zv

Zr

Figure 6.2: Dipole approximation of multiple scattering (based on [Jensen et

al.,2001])

distance from the dipole lights to the surface, dr is the distance from x to the real

source, and dv is the distance from x to the virtual source. The configuration is

shown in Figure 6.2. From this equation, we can see that if the scattering property

of a material is homogeneous, i.e., the scattering cross-sections are constant, then

the formula relates reflectance at one surface point to incident flux at other surface

points. Since subsurface scattering has a limited effective range, we can obtain the

reflectance of a surface point due to multiple scattering by integrating flux incident

at points within a certain distance.

The multiple scattering term, Sd(xi,
−→ωi ;xo,−→ωo), depends on the transmission

terms at the entering and exiting surface points, and the dipole factor Rd(r). We

note that the dipole factor, Rd(r), only depends on the distance between two points

and decays exponentially with the distance. We define the scattering neighborhood

N(xo) of a vertex xo, to include all vertices xi of that object that lie within the ef-

fective scattering range from xo. We then compute multiple scattering contribution

from the scattering neighborhood of each vertex during the pre-processing stage.

Every such neighboring vertex xi is assumed to represent a small surface area whose

121

size can be approximately defined. We assign the integral of Rd(‖xi − xo‖) over

this small surface area as the contribution to the multiple scattering at xo due to xi

and append this information to xo’s list of multiple scattering contributors. Then

at rendering time, once we have Ft(η,
−→ωi) and Ft(η,

−→ωo) from the local illumination

computation, the contribution of point xi to xo due to subsurface scattering is just

the multiplication of Ft(η,
−→ωi) with Ft(η,

−→ωo) and the pre-computed Rd(‖xi − xo‖)

factor of xi from xo’s neighborhood list. The values of Fresnel terms and their associ-

ated relative indices of refraction that we used in our work can be found in [73]. The

pre-computation and storing of the dipole factors is similar to the approach taken

by Lensch et al. [89]. In their algorithm, instead of storing vertex-to-vertex dipole

factors for every vertex in the scattering neighborhood, they distinguish between

local responses and global responses. They store the global responses as vertex-to-

vertex throughput factors, and the local ones as texture atlas. We have not made

that distinction here, and store all of them as vertex-to-vertex factors.

6.2.3 Run-Time Two-Pass Local Illumination Model

We incorporate subsurface scattering effects into a local illumination model by ex-

tending the model into a run-time two-pass one. The traditional local illumination

model computes the outgoing radiance from a surface point according to lighting

direction, surface normal, and viewing direction in a single pass, using the particular

light and material properties.

In our run-time two-pass approach, the first pass generates reflection and trans-

mission radiance at each surface point as if there is no subsurface scattering, using

122

the Fresnel terms for reflection or transmission. After we compute the illumination

at all surface points, we come to the second pass, i.e., the bleeding pass. During this

pass, we combine on-surface reflection with subsurface scattering to get the total

radiance at the exterior surface points according to the multiple scattering factors

given in Section 6.2.2, using each point’s weighted contributions from its neighbors.

This bleeding pass adds subsurface reflection and transmission effects on the surface.

6.3 Improving Efficiency

Our run-time two-pass process is somewhat similar, but still quite different from

the approach proposed by Jensen and Buhler [71]. The main difference is when

the scattering neighborhood factors are computed. We pre-compute the factors at

the preprocessing stage, so bleeding the neighboring effects due to scattering in

the second pass is quite efficient, instead of traversing a hierarchical N-body data

structure for each frame as in [71].

The run-time complexity of this version of our algorithm is O(N2), where N

is the number of surface points, assuming the size of the object and the scattering

properties remain constant. This is due to the fact that the number of vertices

at which we have to perform the bleeding step is N , and the scattering neighbor-

hood size is proportional to surface point density, which in turn is proportional to

the number of surface points N . While Jensen and Buhler [71] build a hierarchi-

cal O(N logN) data structure to solve the inherent O(N2) complexity problem, we

propose a quantized light source scheme to merge the two stages of our run-time

123

lighting process into a single stage process to further improve the efficiency of our

algorithm. We can thus reduce the complexity of our run-time algorithm to O(N)

with quite small constant factors. It enables us to achieve interactive frame rates

for simulating subsurface scattering effects on larger datasets. However, the prepro-

cessing also means that any change of the material subsurface scattering properties

will require a new pre-computation, which is a limitation not incurred by Jensen

and Buhler [71].

6.3.1 Quantized Light Sources for Pre-computed Neighborhood Factor

We make further simplifications to reduce the complexity of our algorithm based

on the fact that each surface point in the neighborhood of another surface point

represents a small area on the surface and that real surfaces are usually rough.

The subsurface scattering contribution to the appearance of a surface point from a

directional light source with fixed direction ωi can be pre-processed as follows:

Lo(xo,
−→ωo) =

∫
A

S(xi,
−→ωi ;xo,−→ωo)Li(xi,−→ωi)(−→ni · −→ωi)µidA

≈
∫
A

Sd(xi,
−→ωi ;xo,−→ωo)Li(xi,−→ωi)(−→ni · −→ωi)µidA

=

∫
A

Ft(η,
−→ωi)[1

π
Rd(‖xi − xo‖)]Ft(η,−→ωo) · Li(xi,−→ωi)(−→ni · −→ωi)µidA

=

{∫
A

Ft(η,
−→ωi)(1

π
Rd)Li(xi,

−→ωi)−→niµidA
}
· −→ωi · Ft(η,−→ωo)

≡ −→
Q(η, xo,

−→ωi) · −→ωi · Ft(η,−→ωo)

where µi is defined as:

µi =

1 (−→ni · −→ωi) ≥ 0

0 otherwise

124

This means we can pre-compute the vector integral
−→
Q(η, xo,

−→ωi) for the scattering

factor during the preprocessing stage, and at run time perform the dot-product and

multiplication operations. Due to the discrete nature of input mesh geometry, the

vector integral above will be expressed as a vector summation in a real implemen-

tation:

−→
Q(η, xo,

−→ωi) =
∑

xi∈N(xo)

Ft(η,
−→ωi)(1

π
Rd)Li(xi,

−→ωi)−→niµi∆A(xi)

where the summation is over all the vertices in the scattering neighborhood N(xo)

of xo. ∆A(xi) is the area represented by vertex xi, which is a constant if vertices are

distributed uniformly as in [71]. For non-uniformly distributed vertices, we can ei-

ther resample the geometry, or use one third of the total area of the triangles sharing

the vertex as an approximation to ∆A at the vertex. So we actually pre-compute

the summation
−→
Q(η, xo,

−→ωi) for each vertex. Note, if a vertex at xi in the scattering

neighborhood of xo is in shadow, then it will not contribute to
−→
Q(η, xo,

−→ωi), because

xi receives no direct irradiance from light source. The summation will not be af-

fected by presence of shadow on xo, though. We use a technique similar to shadow

maps to determine if a vertex is in shadow. We first generate a depth image of the

scene as seen by the light source. Then for each vertex, we transform it into light

space and compare its depth value against the value on the depth image. If the

depth value of the vertex is bigger, the vertex is in shadow.

It will be impossible to compute the vector integral
−→
Q for each possible light

source direction, of which the number is infinite. Instead, we quantize the directional

space and pre-compute
−→
Q for a set of uniformly distributed light source directions.

125

For each light source j within the set, we compute the scattering neighborhood

integral
−→
Qj at each vertex during the preprocessing stage. An alternative to pre-

computing and storing a vector integral
−→
Q(η, xo,

−→ωi) is to pre-compute a scalar

dot-product value q(η, xo,
−→ωi) instead:

Lo(xo,
−→ωo) =

 ∑
xi∈N(xo)

Ft(η,
−→ωi)(1

π
Rd)Li(xi,

−→ωi)(−→ni · −→ωi)µi∆A(xi)

 · Ft(η,−→ωo)

≡ q(η, xo,
−→ωi) · Ft(η,−→ωo)

The advantage of using q instead of
−→
Q is the reduction of memory usage. The

pseudo-code for pre-computing q(η, xo,
−→ωi) for vertex xo is shown below (assume the

area ∆A(xi) and incoming flux Li(xi,
−→ωi) associated with each vertex xi has been

computed, and the effective scattering range is represented by RANGE):

Find–Scalar–Integral (η, xo,
−→ωi)

q = 0

for i from 1 to N

if (xi == xo OR xi in shadow)

skip

else

r = ‖xi − xo‖

if (r > RANGE)

skip

else

q + = Ft(η,
−→ωi)(1πRd(r))Li(xi,

−→ωi)(−→ni · −→ωi)µi∆A(xi)

return q

126

It is clear that the pre-processing stage shown above has complexity of O(N2).

If we use an octree-based data structure as in [71], then the complexity will go down

to O(N logN).

6.3.2 Rendering from Quantized Light Sources

After we pre-compute either the vector integral
−→
Q or scalar integral q for a set of

directional light sources, we use interpolation at run time to find the scattering in-

tegral
−→
Q or q for a specific light source direction. We use quaternion-based vector

interpolation [112] to compute
−→
Q from its four closest

−→
Qj’s in the set (as in Fig-

ure 6.3). Then we compute dot-product of the interpolated scattering integral
−→
Q

with real light source direction. This kind of interpolation is similar to the normal

interpolation scheme used in Phong shading, though quaternion interpolation gives

a more accurate result and avoids a vector re-normalization step. To compute q, we

simply use a linear scalar interpolation scheme, which is similar to the interpolation

used in the Gouraud shading algorithm.

Q1

Q4

Q3

Q2

Q

Figure 6.3: Interpolation of the vector integral for a new light source direction from

its four nearest neighbors in the pre-computed set

127

During the rendering of the scene we combine scattering effects with direct

on-surface reflected light (including shadows), to give the final appearance of each

vertex. As an example, for a light source in direction −→ωi , the scattering amount

for vertex xo along viewing direction
−→ωo will be Ft(η,

−→ωo) multiplied with the pre-

computed factor q(η, xo,
−→ωi), and scaled by this light source’s actual intensity. We

compute direct on-surface reflected light by a local illumination model.

The pseudo-code for computing the outgoing radiance L(xo,
−→ωo) for vertex xo

in direction −→ωo appears below. Here we assume the use of scalar integral q.

Find–Outgoing–Radiance (η,−→ωi , xo,−→ωo)

L(xo,
−→ωo) = 0

Find 4 nearest matches qj from the pre-computed set of {q} for xo

Interpolate the 4 matched values based on −→ωi to get q(−→ωi)

Lscattered = q(−→ωi) · Ft(η,−→ωo)

Compute reflected radiance Lreflected(xo,
−→ωo) using a local illumination

model

L(xo,
−→ωo) = Lscattered + Lreflected(xo,

−→ωo)

return L(xo,
−→ωo)

The visual difference between using
−→
Q and q for the models we have tested is

insignificant. This can be attributed to the diffuse nature of subsurface scattering.

Hence we are currently using the pre-computed scalar dot-products. Figure 6.4(a)

shows a image generated using
−→
Q on a horse model, and Figure 6.4(b) shows the

image generated using q on the same model. The difference image is shown in

128

Figure 6.4(c). The image space root-mean-square error between Figure 6.4(a) and

6.4(b) is 5.26× 10−3.

(a) Scattering using
−→
Q (b) Scattering using q (c) Difference of (a) and (b)

Figure 6.4: Comparison of subsurface scattering using pre-computed vector integral

and scalar integral on the Horse model (14,521 vertices)

What we have shown is that the light flux at a vertex on the surface due

to direct reflection and subsurface scattering can now be computed at the same

time under a local illumination model. Thus with pre-computed integral, the run-

time two-pass algorithm we suggested before now becomes a run-time single-pass

algorithm. Furthermore, this pre-computed integral scheme also indicates that the

run-time computation of the scattering effect on a vertex is just an interpolation of

the four nearest neighbors in the set of the pre-computed integrals which have the

same size as the light source set we have selected. So the complexity of computing

the

scattering component at run-time is constant, and not related to surface point

density. The total complexity of our run-time algorithm becomes O(N), instead of

O(N2), where N is the number of vertices. Subsurface scattering increases if the

translucency of the material increases or the physical size of the object decreases.

129

This increases the scattering neighborhood size that needs to be considered. How-

ever, since the scattering neighborhood size only affects the pre-computation of in-

tegrals
−→
Q or q, the rendering-time complexity of our display algorithm stays O(N).

6.3.3 Determining the Size of Light Source Set

The above sections show that if we use a quantized light source scheme for pre-

computation of scattering integrals and do interpolation at run-time, then we will

have a linear complexity single-pass run-time algorithm for rendering translucent

materials. We have not yet mentioned how to pick the size of light source set.

As we know, the scattering integral
−→
Q(η, xo,

−→ωi) or q(η, xo,
−→ωi) is a continuous

function of the directional space variable −→ωi . Quantization of light source directions

is a sampling process and interpolation is a reconstruction process. Similar to other

sampling processes, there is a tradeoff between sampling rate and time and storage.

Using a lower sampling rate is time and memory efficient, but gives us less accurate

results. Even worse, a low sampling rate may introduce aliasing problems when the

sampling frequency is lower than the Nyquist rate. A general frequency-space anal-

ysis for the scattering integrals is difficult because the scattering integrals depend

on geometry and scattering properties of the object and different vertices will have

different frequency distributions.

We instead experiment with different sizes of the light source set. We measure

the image-space root-mean-square error for our test datasets as follows:

erms =

[
1

MN

M−1∑
x=0

N−1∑
y=0

[
f̂(x, y)− f(x, y)

]2]1/2

130

Here f(x, y) represents the image generated without the specified approximation,

f̂(x, y) denotes an estimate of the image, either interpolated or approximated,M×N

is the image size, and the range for f(x, y) is [0, 1].

The results of the experiment are summarized in Figure 6.5. The root-mean-

square error is measured by comparing the results obtained by interpolation using

pre-computed scalar integrals q with the exact results. We compute this error for

about 100 randomly generated view directions and take the maximum RMS error

as the representative. We can see from Figure 6.5 that with a set of about 200 light

sources, the root-mean-square error is 3× 10−3 for all the four datasets. So we use

200 light source directions to pre-compute the scalar integrals q.

Horse model

Venus model

Santa model

Teapot model

10 100 1000

0.004

0.008

0.012

0.016

0.020

Number of Light Sources

R
oo

t-
m

ea
n-

sq
ua

re
 E

rr
or

Figure 6.5: Root-mean-square error as a function of the number of light sources

This directional quantization scheme can also be extended to include point

light sources. We can add one more dimension to the interpolation, i.e., we quantize

the distance from light source to the object along with quantization of its direction.

131

Then we can trilinearly interpolate 8 nearest neighbors to get an O(N) complexity

algorithm for directional and point light sources.

Here we limit ourselves to local illumination, so we ignore on-surface inter-

reflections between vertices during computation of the pre-computed integral q(η, xo,
−→ωi).

If we use efficient ray-tracing [4] or Monte Carlo simulation in the preprocessing

stage, we can incorporate it in our algorithm and get more accurate q(η, xo,
−→ωi).

6.4 Controlling the Memory Usage

For a set of 200 lights, we need to store 200 integrals per vertex. Instead of storing

a floating-point value per integral, we store a normalized unsigned byte value to

serve as an index into a lookup table. Thus we need 200 bytes of extra storage

per vertex. We have used the Lloyd quantizer algorithm [44] to design the lookup

table. As an example of the quantized result, the signal-to-noise ratio, SNR [44] is

50.99dB for pre-computed integrals of the teapot dataset by using this quantization,

with a resulting image-space root-mean-square error of 8.83 × 10−4. Normally for

each vertex we need to store three numbers each for position and normal direction,

as well as for texture coordinates and color, if any. If we assume floating-point

numbers to store these values, we will need 24 bytes to store the position and normal

direction alone. Even with this uncompressed number, the extra storage needed

for pre-computed integrals will increase it by a factor of 8, which is significant a

disadvantage for our algorithm. This factor can be reduced though. In the following

subsections we show how to dramatically reduce this factor so that the extra storage

132

is comparable with the original storage required for the vertex data.

6.4.1 Decomposition by Spherical Harmonic Basis Functions

Due to the diffuse-like nature of subsurface scattering effects, we apply spherical

harmonic functions to compress the pre-computed integrals. This is similar to the

approach used in Chapter 3.4.

The projection of the pre-computed scalar integral of q(η, xo,
−→ωi) onto the

spherical harmonic basis is given by:

qml (η, xo) =

∫
q(η, xo,

−→ωi)yml (−→ωi)d−→ωi

The reconstructed function up to the n-th order is:

q̃(η, xo,
−→ωi) =

n−1∑
l=0

l∑
m=−l

qml (η, xo)y
m
l (

−→ωi)

where

−→ωi = (x, y, z) = (sin θ cosϕ, sin θ sinϕ, cos θ)

As an example, we apply the above projection and reconstruction scheme to

the subsurface scattered teapot and results are shown in Figure 6.6 as the order

n varies from 1 to 7. Closeup versions are shown in Figure 6.7. The number of

the basis functions is equal to n2, which results in 1 to 49 basis functions being

used. For each basis function, we store a normalized short integer value (2 bytes)

for qml (η, xo). We therefore need 98 bytes per vertex for n = 7. We have not gone

to higher n because then the storage required becomes comparable to the method

that does not use spherical harmonics. From Figure 6.6 and Figure 6.7 we can

133

see that the image quality increases with the number of spherical basis functions.

With 49 basis functions, the visual quality is close to the one without compression.

However, if one notices carefully, some differences near the shadow boundaries are

still visible (Figures 6.7(a) and (h)). The reason is that the spatial frequency of the

pre-computed integral q is beyond the spatial frequency that 49 spherical harmonic

basis functions can completely cover. So with spherical harmonics, we can achieve

a factor of two compression ratio with small loss of image quality. For low fre-

quency lighting environments an interesting alternative is to use clustered principal

component analysis (CPCA) based compression of spherical harmonic coefficients

to achieve faster rendering [126]. For general lighting environments, we have to find

some way to suppress the spatial frequency of q.

6.4.2 Reference Points with Spherical Harmonic Basis Functions

We observe that the scattering from light entering one particular vertex and exiting

at two other points will not differ much if those two points are close to each other.

This is due to the diffuse nature of multiple scattering. The fact that each point

receives contribution from all its scattering neighborhood will smooth out the differ-

ence even further. This means, the difference of the scattering integrals ∆q between

nearby points will have much lower spatial frequency. So we pick some reference

vertices across the surface and store their scattering integrals q explicitly. For every

non-reference vertex, we compute the differences of the integrals by subtracting its

original value from a weighted average of the values from its closest neighboring

reference vertices. We can then expect that the spherical harmonic functions can

134

(a) Scattering by q (b) By qml (n = 1, erms = 0.18)

(c) By qml (n = 2, erms = 0.072) (d) By qml (n = 3, erms = 0.027)

(e) By qml (n = 4, erms = 0.020) (f) By qml (n = 5, erms = 0.012)

(g) By qml (n = 6, erms = 0.0096) (h) By qml (n = 7, erms = 0.0056)

Figure 6.6: Comparison of subsurface scattered teapot using q and qml (150,510

vertices)

135

(a) Closeup of scattering by q (b) Closeup of qml (n = 1)

(c) Closeup of qml (n = 2) (d) Closeup of qml (n = 3)

(e) Closeup of qml (n = 4) (f) Closeup of qml (n = 5)

(g) Closeup of qml (n = 6) (h) Closeup of qml (n = 7)

Figure 6.7: Closeup of Figure 6.6

136

be applied readily to those frequency-suppressed ∆q. Ramamoorthi and Hanra-

han [115] have treated a similar problem from a different perspective. Instead of

trying to compress the frequency before applying the spherical decomposition, they

determine the necessary number of basis functions for a faithful representation of

the original signal using a signal-processing framework.

Figure 6.8: Construction of Reference Points

We can build reference points using a mesh simplification algorithm similar

to [24,43,66] or a re-tiling scheme of Turk [139]. We prefer to generate the reference

points as a subset of the original vertices to reduce the storage overhead (as shown

in Figure 6.8). After we find the reference points, we generate the differences of pre-

computed integrals for each vertex with respect to its reference points as discussed

next.

We first determine the three reference points for each vertex. Re-tiling schemes

such as by Turk [139] keep track of which triangle each vertex has been flattened

to. For other mesh simplification algorithms we know one reference point for the

vertex, which is its parent in the simplification hierarchy. The vertex will lie in one

of the simplified triangles sharing this reference point. To find out the triangle the

137

vertex lies in, we project the vertex onto planes defined by those triangles, then do

a simple orientation test of the projected vertex relative to the three edges of each

triangle. Once we find the triangle the vertex V lies in, we compute the barycentric

coordinates of the projection V ′ of V onto the triangle.

Assume the reference points are V1, V2, and V3 with barycentric coordinates

w1, w2, and w3. Let {q1j}, {q2j}, and {q3j} (j is the quantized light source index)

be the pre-computed integrals for V1, V2, and V3, respectively. The {∆qj} set for

vertex V can then be computed as:

∆qj = qj −
3∑

k=1

ωkqkj

Finally, we decompose the integral differences {∆qj} by spherical harmonic basis

functions as before.

Figure 6.9 shows the root-mean-square error of using different number of ref-

erence points and with 9 (n = 3) and 36 (n = 6) spherical harmonic basis functions

on the teapot dataset.

Figure 6.10 shows the scattered teapot images generated using different num-

ber of reference points with 9 (n = 3) spherical harmonic basis functions. Closeup

versions are shown in Figure 6.11. From Figure 6.11, we can see that even with about

1200 reference vertices and 9 (n = 3) basis functions (Figure 6.11(d)), the result is

better (with smaller root-mean-square error) than the one using 49 (n = 7) basis

functions and no reference points (Figure 6.7(h)). For 5K reference vertices (about

3% of the total) and 9 (n = 3) basis functions, the image is almost indistinguishable

from the original one (Figure 6.11(a)), even for the closeup version.

138

100 1000 10000 100000

0.0025

0.0050

0.0075

0.0100

0.0125

Number of Reference Points

R
oo

t-
m

ea
n-

sq
ua

re
 E

rr
or

n = 3
n = 6

Figure 6.9: Root-mean-square error as a function of the number of reference points

for teapot dataset with 9 (n = 3) and 36 (n = 6) spherical harmonic basis functions

Now let us consider the storage requirements for the above case. We need 200

bytes for each vertex in the 5K reference set to store their original pre-computed

integrals, 4 bytes for each vertex to store its weight to its three nearest neighbors

(the first two values stored as normalized short integers, while the third value can

be computed at run-time by one minus the first two values), and 9 bytes for each

vertex to store the spherical harmonic basis functions’ coefficients (each is stored as

a normalized byte because the range for the coefficients has also been significantly

reduced). Overall, on average we need the following number of bytes per vertex to

store the pre-computed integrals:

200× 5176 + (4 + 9)× 150510

150510
≈ 20

So we only need 20 bytes per vertex. We know that each vertex needs a position

139

(a) Scattering by q (b) 390 Reference Points (erms = 0.010)

(c) 614 Reference Points (erms = 0.0065) (d) 1,264 Reference Points (erms = 0.0034)

(e) 2,526 Reference Points (erms = 0.0022) (f) 5,176 Reference Points (erms = 0.0017)

Figure 6.10: Comparison of subsurface scattered teapot using q and different num-

ber of reference points with 9 (n = 3) spherical harmonic basis functions (150,510

vertices)

vector and a normal vector. If we assume floating-point numbers to store them

we will need (3 + 3) × 4 = 24 bytes for each vertex. Then the storage required

by the pre-computed integrals is less than the storage required by the position

and normal alone. Of course, one can compress positions and normals for vertices,

140

(a) Closeup of scattering by q (b)Closeup of 390 Reference Points

(c) Closeup of 614 Reference Points (d) Closeup of 1,264 Reference Points

(e) Closeup of 2,526 Reference Points (f) Closeup of 5,176 Reference Points

Figure 6.11: Closeup of Figure 6.10

too. Nevertheless, this storage overhead seems quite reasonable for the interactive

simulation of translucent materials. Even better, the rendering speed increases from

7.5 frames/second to 8.6 frames/second, which is about 15% speedup. We achieve

similar results on other datasets we have tested. The extra storage will be no more

than 27 bytes per vertex, and it decreases as the complexity of the object increases

(Table 6.1).

141

6.5 Results and Discussions

In this section, we show the results obtained by our algorithm on polygonal datasets.

The results are summarized in Table 6.1 and in Figures 1.5, 6.6, 6.7, and 6.10–6.14.

The images usually have about 1024 pixels in each dimension, though their sizes have

nearly no effect on the total rendering time, because we use the graphics hardware

mainly to do rasterization.

Model No. of No. of No. of Extra Compression Frame

Name Vertices Triangles ref pts storage ratio by rate (fps)

(Bytes/vert) using ref pts

Horse 14,521 29,054 1,034 27 7.4 79.1

Venus 42,656 90,044 2,827 26 7.7 27.3

Santa 75,781 151,558 3,458 22 9.1 14.6

Teapot 150,510 292,168 5,176 20 10.0 8.6

Dragon 437,645 871,414 10,285 18 11.1 2.7

Buddha 543,652 1,087,716 12,330 18 11.1 2.4

Table 6.1: Total rendering times for our approach

From Table 6.1 one can see that our scattering model can simulate the homo-

geneous scattering effects interactively and requires no more than 28 bytes storage

per vertex. This small overhead should give most applications the opportunity to

include the subsurface scattering effects for more photo-realistic rendering without

sacrificing interactive frame rates.

142

Figure 6.12: Rendering the subsurface scattered teapot model with varying light

source direction (150,510 vertices, 8.6 fps)

Figure 6.12 shows the effects of varying light source direction with fixed viewer

position on subsurface scattered teapot. Figure 6.13 compares the appearance of

Santa model without and with subsurface scattering. We have used the Perlin noise

function [34,108] to generate the marble texture on the Venus model. Here we have

made the assumption that the marble texture is on surface, and will affect both

xi and xo. Figures 1.5 and 6.14 show how the object will appear if either its size

shrinks or its material property changes to allow greater subsurface scattering.

Our algorithm can also use a full Monte Carlo simulation in the preprocessing

stage. This will allow us to not only have an accurate subsurface scattering term,

but also include the single scattering term, treat inhomogeneity, and relieve the

algorithm from the limitation of the dipole diffusion approximations for multiple

scattering. Subsurface scattering is also characterized by color-shift effects. The

correct way to simulate color shifts is to do a full spectral rendering. However, the

three channel RGB approximation can also give visually appealing results. If one

would like to use the three-channel approximation of the subsurface scattered color

143

(a) Without Scattering (31.7 fps) (b) With Scattering (14.6 fps)

Figure 6.13: Santa model without and with subsurface scattering (75,781 vertices)

shifts in our algorithm, we can compute three different sets of integrals, one for

each channel. The storage requirements will then be a little less than three times as

before, since we only need to store the barycentric coordinates once, instead of three

times. That means we will need about 46 bytes extra per vertex for large datasets.

6.6 Conclusions

In this chapter we have integrated subsurface scattering effects into a run-time

single-pass local illumination model with an efficient O(N) run-time complexity us-

ing pre-computed scattering integrals for a set of quantized light directions. We show

that a reference points scheme, together with spherical harmonics can be applied to

greatly reduce the storage requirements of pre-computed integrals and improve the

run-time efficiency of our algorithm even further. The results capture the most im-

portant effects of subsurface scattering, such as neighborhood bleeding and smooth

144

(a) Without Scattering (62.5 fps) (b)(c)(d) With scattering (27.3 fps)

Figure 6.14: Rendering the Venus model with subsurface scattering increasing from

left to right (42,656 vertices with 10% vertices in N(xo) at (b), 20% vertices in N(xo)

at (c), and 30% vertices in N(xo) at (d))

illumination transitions between regions separated by sharp edges. Our method

provides an approximation of subsurface scattering for applications that need to

maintain the interactivity with a small memory overhead while preserving the real-

istic appearance for translucent materials. Our approach, by a little modification,

can also be incorporated into shadow algorithms to generate soft shadow effects.

145

Chapter 7

Future Work

In this chapter I will outline the possible research topics that are related to this

dissertation. These topics are direct or implied extensions of the areas that are

addressed in this dissertation.

7.1 Use of Temporal Information in Electrostatics Compu-

tation

We have seen in Chapter 2 how to efficiently solve PBE by adaptive adjustment of

the irregular grids based on their importance to the solution. There the 3D irregular

grid structure is built for a static molecular geometry. To efficiently solve PBE for

a continuous and dynamic motion of proteins, we can use incremental temporal

information to adjust the irregular grid for a new geometric conformation, instead

of reconstructing the grid from the beginning. Assuming continuous trajectories of

atoms’ movements, it should be possible to solve PBE incrementally and efficiently

by using the information from previous time steps. Efficient algorithms that exploit

the temporal coherence would benefit molecular dynamics simulation and interactive

docking applications.

146

7.2 Modeling and Rendering of Non-homogeneous Scatter-

ing Effects

We have used dipole diffusion approximation to interactively simulate the homoge-

neous scattering effects in Chapter 6. Non-homogeneous scattering is more compli-

cated, but is important for describing the appearance of many translucent materi-

als, such as human skin and marble with impurities. Correct modeling and efficient

rendering of non-homogeneous scattering effects also have great impact in many

scientific applications, such as medical imaging. To achieve this, we will also need

to design more efficient data representations to simulate such effects by solving the

underlying radiance transfer equations directly or indirectly, together with compact

representations to store the solutions.

7.3 Simulation and Rendering of Dynamic Scenes

Graphics rendering has come to a stage where static scenes alone cannot satisfy our

quest for visual realism. Simulation, modeling, and rendering of dynamic scenes

consisting of large collections of moving objects with real-time collision detection,

response, and deformation will become more important and ubiquitous in the next

generation graphics applications. Solutions to these problems will depend on efficient

representation and manipulation of high-complexity dynamic geometry, modeling

and representation of realistic illumination, and physics-based dynamics simulation.

This should greatly benefit several graphics application areas, such as architecture

and urban planning, lighting design, interactive walkthroughs, entertainment indus-

147

try, and next-generation user interfaces.

7.3.1 Geometry Representation

With the increasing complexity of geometry data due to advances in 3D data acqui-

sition, simulation, and design technologies, compact data representation for efficient

manipulation becomes more important. Parametric representation of shapes is one

of the possible solutions. The best candidate representations should possess the

properties of compactness, progressiveness, and suitability for kinetic data struc-

tures.

7.3.2 Reflectance Function Measurements and Representations

Realistic image generation requires correct simulation of the interaction of light

with objects. Efficient and accurate global illumination for dynamic environments

remains a challenge. Dynamic environments have either non-static geometry, or non-

static lighting, or both. This requires measurement and compact representation of

reflectance functions of real-world objects under varying lighting environments, more

efficient and accurate global illumination solutions for dynamic environments, and

the use of each object’s real reflectance functions instead of using the Lambertian

assumption.

7.3.3 Dynamics Simulation

In addition, rendering of dynamic scenes requires us to simulate the dynamics of

moving objects in a physically correct manner. Currently the simulation is limited

148

to a small collection of moving objects for interactive display. Development of

new algorithms to simulate dynamic scenes consisting of large collections of moving

objects will greatly enhance the visual realism.

149

Bibliography

[1] J. M. Airey. Increasing Update Rates in the Building Walkthrough System

with Automatic Model-Space Subdivision and Potentially Visible Set Calcula-

tions. PhD thesis, University of North Carolina at Chapel Hill, Department

of Computer Science, Chapel Hill, NC 27599-3175, 1990.

[2] N. Akkiraju and H. Edelsbrunner. Triangulating the surface of a molecule.

Discrete Appl. Math., 71:5–22, 1996.

[3] M. Ashikhmin, S. Premoze, and P. Shirley. A microfacet-based BRDF gener-

ator. In Kurt Akeley, editor, SIGGRAPH 2000, Computer Graphics Proceed-

ings, Annual Conference Series, pages 65–74, July 2000.

[4] F. B. Atalay and D. M. Mount. Ray interpolants for fast ray-tracing reflections

and refractions. In V. Skala, editor, Journal of WSCG 2002, volume 10(3),

pages 1–8, 2002.

[5] R. Avila, T. He, L. Hong, A. Kaufman, H. Pfister, C. Silva, L. Sobierajski,

and S. Wang. VolVis: A diversified volume visualization system. In R. D.

Bergeron and A. E. Kaufman, editors, IEEE Visualization ’94, pages 31–39,

October 1994.

[6] E. Bahar and S. Chakrabarti. Full-wave theory applied to computer-aided

graphics for 3D objects. IEEE Computer Graphics and Applications, 7(7):46–

60, July 1987.

150

[7] C. Bajaj, V. Pascucci, A. Shamir, R. Holt, and A. Netravali. Dynamic mainte-

nance and visualization of molecular surfaces. Discrete Appl. Math., 127:23–51,

2003.

[8] C. Bajaj, V. Pascucci, and G. Zhuang. Progressive compression and trans-

mission of arbitrary triangular meshes. In Proceedings Visualization 99, pages

307 – 316, Los Alamitos, California, 1999. IEEE, Computer Society Press.

[9] C. Bajaj, V. Pascucci, and G. Zhuang. Single resolution compression of ar-

bitrary triangular meshes with properties. Computational Geometry: Theory

and Applications, vol 14:167–186, 2000.

[10] N. Baker, M. Holst, and F. Wang. Adaptive multilevel finite element solution

of the Poisson-Boltzmann equation II: refinement at solvent accessible surfaces

in biomolecular systems. J. Comput. Chem., 21:1343–1352, 2000.

[11] R. Banerjee and J. Rossignac. Topologically exact evaluation of polyhedra

defined in CSG with loose primitives. Computer Graphics Forum, 15, No.

4:205–217, 1996.

[12] R. Basri and D. Jacobs. Lambertian reflectance and linear subspaces. In Proc.

International Conference On Computer Vision (ICCV-01), pages 383 – 390,

2001.

[13] L. D. Bergman, J. S. Richardson, R. Richardson, and F. P. Brooks, Jr. VIEW –

an exploratory molecular visualization system with user-definable interaction

151

sequences. In James T. Kajiya, editor, Computer Graphics (SIGGRAPH ’93

Proceedings), volume 27, pages 117–126, August 1993.

[14] J. F. Blinn. Models of light reflection for computer graphics. Computer Graph-

ics, 11(2):192–198, 1977.

[15] J. F. Blinn. Light reflection functions for simulation of clouds and dusty

surfaces. Computer Graphics, 16(3):21–29, July 1982.

[16] C. Brande and J. Tooze. Introduction to Protein Structure. Garland Publish-

ing, second edition, 1999.

[17] F. P. Brooks, Jr. Grasping reality through illusion – interactive graphics

serving science. In Proceedings of ACM CHI’88 Conference on Human Factors

in Computing Systems, pages 1–11, 1988.

[18] B. Cabral, N. Cam, and J. Foran. Accelerated volume rendering and tomo-

graphic reconstruction using texture mapping hardware. In A. Kaufman and

W. Krueger, editors, 1994 Symposium on Volume Visualization, pages 91–98,

October 1994.

[19] B. Cabral, N. Max, and R. Springmeyer. Bidirectional reflection functions

from surface bump maps. Computer Graphics (SIGGRAPH ’87 Proceedings),

21(4):273–281, July 1987.

[20] N. A. Carr, J. D. Hall, and J. C. Hart. GPU algorithms for radiosity and

subsurface scattering. In M. Doggett, W. Heidrich, W. Mark, and A. Schilling,

editors, Graphics Hardware 2003, pages 51–59, July 2003.

152

[21] M. Chow. Optimized geomerty compression for real-time rendering. In IEEE

Visualization ’97 Proceedings, pages 403 – 410. ACM Press, October 1997.

[22] P. Cignoni, L. De Floriani, P. Magillo, E. Puppo, and R. Scopigno. Selective re-

finement queries for volume visualization of unstructured tetrahedral meshes.

IEEE Transactions on Visualization and Computer Graphics, 10(1):29–45,

2004.

[23] P. Cignoni, C. Rocchini, and R. Scopigno. Metro: measuring error on simpli-

fied surfaces. Computer Graphics Forum, 17, No. 2:167–174, June 1998.

[24] J. Cohen, A. Varshney, D. Manocha, G. Turk, H. Weber, P. Agarwal, F. P.

Brooks, Jr., and W. Wright. Simplification envelopes. In Holly Rushmeier, ed-

itor, SIGGRAPH 96 Conference Proceedings, Annual Conference Series, pages

119–128, 1996.

[25] D. Cohen-Or, D. Levin, and O. Remez. Progressive compression of arbitrary

triangular meshes. In Proceedings Visualization 99, pages 67–72, Los Alamitos,

California, 1999. IEEE, Computer Society Press.

[26] M. L. Connolly. Solvent-accessible surfaces of proteins and nucleic acids. Sci-

ence, 221:709–713, 1983.

[27] R. L. Cook and K. E. Torrance. A reflectance model for computer graphics.

In Computer Graphics (SIGGRAPH ’81 Proceedings), volume 15(3), pages

307–316, August 1981.

153

[28] S. Coorg and S. Teller. Real-time occlusion culling for models with large

occluders. In Proc. of ACM Symposium on Interactive 3D Graphics, pages

83–90, 1997.

[29] C. Dachsbacher and M. Stamminger. Translucent shadow maps. In Per Chris-

tensen and Daniel Cohen-Or, editors, Proceedings of the 14th Eurographics

Symposium on Rendering, pages 197–201, 2003.

[30] P. Debevec, T. Hawkins, C. Tchou, H.-P. Duiker, W. Sarokin, and M. Sagar.

Acquiring the reflectance field of a human face. In Kurt Akeley, editor, SIG-

GRAPH 2000, Computer Graphics Proceedings, Annual Conference Series,

pages 145–156, July 2000.

[31] M. F. Deering. Geometry compression. In Robert Cook, editor, SIGGRAPH

95 Conference Proceedings, Annual Conference Series, pages 13–20. ACM SIG-

GRAPH, Addison Wesley. Los Angeles, California, August 1995.

[32] J. Dorsey, A. Edelman, J. Legakis, H. W. Jensen, and H. K. Pedersen. Model-

ing and rendering of weathered stone. In Alyn Rockwood, editor, SIGGRAPH

99, Computer Graphics Proceedings, Annual Conference Series, pages 225–234,

August 1999.

[33] R. Drebin, L. Carpenter, and P. Hanrahan. Volume rendering. Computer

Graphics (SIGGRAPH ’88 Proceedings), 22(4):65–74, August 1988.

[34] D. Ebert, F. K. Musgrave, D. Peachey, K. Perlin, and S. Worley. Texturing

and Modeling. Morgan Kaufmann Publishers, third edition, 2003.

154

[35] A. R. Edmonds. Angular Momentum in Quantum Mechanics. Princeton Uni-

versity Press, Princeton, New Jersey, second edition, 1960.

[36] J. El-Sana, E. Azanli, and A. Varshney. Skip strips: Maintaining triangle

strips for view dependent rendering. In IEEE Visualization ’99 Proceedings,

pages 131 – 138. ACM/SIGGRAPH Press, October 1999.

[37] K. Engel, M. Kraus, and T. Ertl. High-Quality Pre-Integrated Volume Render-

ing Using Hardware-Accelerated Pixel Shading. In Eurographics / SIGGRAPH

Workshop on Graphics Hardware ’01, pages 9–16, 2001.

[38] F. Evans, S. Skiena, and A. Varshney. Optimizing triangle strips for

fast rendering. In IEEE Visualization ’96 Proceedings, pages 319 – 326.

ACM/SIGGRAPH Press, October 1996.

[39] L. De Floriani, L. Kobbelt, and E. Puppo. A survey on data structures for

level-of-detail models. In N.Dodgson, M.Floater, and M.Sabin, editors, Pro-

ceedings MINGLE Workshop 2004, page to appear, 2004.

[40] S. Fortune. Vertex rounding a three-dimensional polyhedral subdivision. In

Proceedings of the Fourteenth Annual Symposium on Computational Geome-

try, pages 116–125. ACM Press, June 1998.

[41] S. Fortune and C. Van Wyk. Static analysis yields efficient exact integer arith-

metic for computational geometry. ACM Transactions on Graphics, 15(3):223–

248, 1996.

155

[42] G. Allen (editor). Protein: A Comprehensive Treatise, vol 2, 61 – 97. JAI

Press, 1999.

[43] M. Garland and P. Heckbert. Surface simplification using quadric error met-

rics. In Turner Whitted, editor, SIGGRAPH 97, Computer Graphics Proceed-

ings, Annual Conference Series, pages 209 – 216, August 1997.

[44] A. Gersho and R. M. Gray. Vector Quantization and Signal Compression.

Kluwer Academic, 1991.

[45] S. F. Gibson. Using distance maps for accurate surface representation in

sampled volumes. In IEEE Symposium on Volume Visualization, pages 23–

30, 1998.

[46] M. K. Gilson, K. A. Sharp, and B. Honig. Calculating electrostatic interactions

in biomolecules: method and error assessment. J. Comp. Chem., 9:327 – 335,

1988.

[47] S. Gottschalk, M. Lin, and D. Manocha. OBB-Tree: A hierarchical structure

for rapid interference detection. In SIGGRAPH 96 Conference Proceedings,

Annual Conference Series, pages 171–180. Addison Wesley, August 1996.

[48] D. P. Greenberg, K. E. Torrance, P. Shirley, J. Arvo, J. A. Ferwerda, S. Pat-

tanaik, E. P. F. Lafortune, B. Walter, S.-C. Foo, and B. Trumbore. A frame-

work for realistic image synthesis. In Turner Whitted, editor, SIGGRAPH 97,

Computer Graphics Proceedings, Annual Conference Series, pages 477–494,

August 1997.

156

[49] N. Greene and M. Kass. Hierarchical Z-buffer visibility. In Computer Graphics

Proceedings, Annual Conference Series, 1993, pages 231–240, 1993.

[50] B. Gregorski, M. Duchaineau, P. Lindstrom, V. Pascucci, and K. I. Joy. Inter-

active view-dependent rendering of large isosurfaces. In IEEE Visualization

’02, pages 475–482, 2002.

[51] S. Gumhold and W. Straßer. Real time compression of triangle mesh connec-

tivity. In SIGGRAPH 98 Conference proceedings, Annual Conference Series,

pages 133–140. ACM SIGGRAPH, 1998.

[52] P. Hanrahan and W. Krueger. Reflection from layered surfaces due to subsur-

face scattering. In James T. Kajiya, editor, Computer Graphics (SIGGRAPH

’93 Proceedings), volume 27, pages 165–174, August 1993.

[53] X. Hao, T. Baby, and A. Varshney. Interactive subsurface scattering for

translucent meshes. In ACM Symposium on Interactive 3D Graphics, pages

75 – 82, Monterey, CA, 2003.

[54] X. Hao and A. Varshney. Variable-Precision rendering. In 2001 ACM Sym-

posiom on Interactive 3D Graphics, pages 149–158, Research Triangle Park,

NC, 2001.

[55] X. Hao and A. Varshney. Efficient solution of Poisson-Boltzmann equation for

electrostatics of large molecules. In High Performance Computing Symposium,

pages 71–76, Arlington, VA, 2004.

157

[56] X. Hao and A. Varshney. Real-time rendering of translucent meshes. ACM

Transactions on Graphics, 23(2):120–142, 2004.

[57] X. Hao, A. Varshney, and S. Sukharev. Real-time visualization of large time-

varying molecules. In High Performance Computing Symposium, pages 109–

114, Arlington, VA, 2004.

[58] X. D. He, K. E. Torrance, F. X. Sillion, and D. P. Greenberg. A comprehensive

physical model for light reflection. In Thomas W. Sederberg, editor, Computer

Graphics (SIGGRAPH ’91 Proceedings), volume 25(4), pages 175–186, July

1991.

[59] P. Heckbert. Color image quantization for frame buffer display. In Computer

Graphics (SIGGRAPH 82 Procs), volume 16(3), pages 297–307, July 1982.

[60] K. Hillesland and A. Lastra. Egpu floating-point paranoia. In GP2, pages

C–8, 2004.

[61] J. Hirshon. A guide to CPU 3D instruction sets, August 1999. http://www.3d-

design.com /newsletter /1999 /0899/horizon0899.html.

[62] C. Hoffmann. Geometric and Solid Modeling. Morgan Kaufmann, San Mateo,

California, 1989.

[63] M. Holst, N. Baker, and F. Wang. Adaptive multilevel finite element solution

of the Poisson-Boltzmann equation I: algorithms and examples. J. Comput.

Chem., 21:1319–1342, 2000.

158

[64] M. J. Holst. Multilevel methods for the Poisson-Boltzmann equation.

Ph.D. thesis, Numerical Computing Group, University of Illinois at Urbana-

Champaign, 1993.

[65] B. Honig and A. Nicholls. Classical electrostatics in biology and chemistry.

Science, 268:1144 – 1149, 1995.

[66] H. Hoppe. Progressive meshes. In SIGGRAPH 96, Computer Graphics Pro-

ceedings, Annual Conference Series, pages 99 – 108, August 1996.

[67] H. Hoppe. View-dependent refinement of progressive meshes. In Proceedings of

SIGGRAPH 97 (Los Angeles, CA), Computer Graphics Proceedings, Annual

Conference Series, pages 189 – 197. ACM Press, August 1997.

[68] T. Hudson, D. Manocha, J. Cohen, M. Lin, K. Hoff, and H. Zhang. Accelerated

occlusion culling using shadow frustra. In Proc. 13th Annu. ACM Sympos.

Comput. Geom., pages 1–10, 1997.

[69] W. Humphrey, A. Dalke, and K. Schulten. VMD–Visual Molecular Dynamics.

J. Mol. Graphics, 14:33–38, 1996.

[70] J. D. Jackson. Classical Electrodynamics. JohnWiley and Sons, second edition,

1975.

[71] H. W. Jensen and J. Buhler. A rapid hierarchical rendering technique for

translucent materials. In John F. Hughes, editor, SIGGRAPH 2002, Computer

Graphics Proceedings, Annual Conference Series, pages 576–581, July 2002.

159

[72] H. W. Jensen, J. Legakis, and Julie Dorsey. Rendering of wet materials. In

D. Lischinski and G. W. Larson, editors, Rendering Techniques ’99, pages

273–282. Springer Verlag, 1999.

[73] H. W. Jensen, S. Marschner, M. Levoy, and P. Hanrahan. A practical model

for subsurface light transport. In Eugene Fiume, editor, SIGGRAPH 2001,

Computer Graphics Proceedings, Annual Conference Series, pages 511–518,

August 2001.

[74] J. T. Kajiya. Anisotropic reflection models. In Computer Graphics (SIG-

GRAPH ’85 Proceedings), volume 15(3), pages 15–21, July 1985.

[75] V. Karamcheti, C. Li, I. Pechtchanski, and C. Yap. A core library for robust

numeric and geometric computation. In 15th ACM Symp. on Computational

Geometry, pages 351–359, 1999.

[76] D. King and J. Rossignac. Optimal bit allocation in compressed 3D mod-

els. Journal of Computational Geometry, Theory and Applications, 14:91–118,

November 1999.

[77] T. E. Klein, C. C. Huang, E. F. Pettersen, G. S. Couch, T. E. Ferrin, and

R. Langridge. A real-time malleable molecular surface. J. Mol. Graphics,

8(1):16–24 and 26–27, 1990.

[78] J. T. Klosowski and C. T. Silva. The prioritized-layered projection algorithm

for visible set estimation. IEEE Transactions on Visualization and Computer

Graphics, 6 (2):108–123, 2000.

160

[79] J. T. Klosowski and C. T. Silva. Efficient conservative visibility culling using

the prioritized-layered projection algorithm. IEEE Transactions on Visualiza-

tion and Computer Graphics, 7(4):365–379, 2001.

[80] J. Kniss, G. Kindlmann, and C. Hansen. Interactive volume rendering us-

ing multi-dimensional transfer functions and direct manipulation widgets. In

T. Ertl, K. Joy, and A. Varshney, editors, IEEE Visualization ’01, pages 255–

262, 2001.

[81] J. Kniss, S. Premoz̆e, C. Hansen, P. Shirley, and A. McPherson. A model

for volume lighting and modeling. IEEE Transactions on Visualization and

Computer Graphics, 9(2):150–162, 2003.

[82] G. Knittel. Using pre-integrated transfer functions in an interactive software

system for volume rendering. In E. Fiume, editor, Eurographics 2002 Short

Presentations, Annual Conference Series, pages 119–123, September 2002.

[83] J. J. Koenderink and A. J. van Doorn. Shading in the case of translucent

objects. In Proceedings of SPIE, volume 4299, pages 312–320, 2001.

[84] O. Kreylos, N. Max, B. Hamann, S. N. Crivelli, and E. W. Bethel. Interactive

protein manipulation. In IEEE Visualization ’03, pages 581–588, 2003.

[85] P. Lacroute and M. Levoy. Fast volume rendering using a shear–warp factoriza-

tion of the viewing transformation. In A. Glassner, editor, SIGGRAPH ’94,

Computer Graphics Proceedings, Annual Conference Series, pages 451–458,

July 1994.

161

[86] A. R. Leach. Molecular Modelling: Principles and Applications. Prentice Hall,

second edition, 2001.

[87] B. Lee and F. M. Richards. The interpretation of protein structures: Estima-

tion of static accessibility. J. Mol. Biol., 55:379 – 400, 1971.

[88] J. Leech, J. F. Prins, and J. Hermans. SMD: Visual steering of molecular

dynamics for protein design. IEEE Computational Science & Engineering,

3(4):38–45, 1996.

[89] H. Lensch, M. Gosele, P. Bekaert, J. Kautz, M. Magnor, J. Lang, and H.-P.

Seidel. Interactive rendering of translucent objects. In Proc. IEEE Pacific

Graphics 2002, pages 214–224, 2002.

[90] M. Levoy. Display of surfaces from volume data. IEEE Computer Graphics

and Applications, 8(3):29–37, May 1988.

[91] J. Li and C. C. Kuo. Progressive coding of 3D graphics models. Proceedings

of the IEEE, 86(6):1052–1063, June 1998.

[92] W. Lorensen and H. Cline. Marching cubes: a high resolution 3D surface

construction algorithm. Computer Graphics (SIGGRAPH ’87 Proceedings),

21(4):163–169, July 1987.

[93] D. Luebke and C. Erikson. View-dependent simplification of arbitrary polyg-

onal environments. In SIGGRAPH 97 Conference Proceedings (Los Angeles,

CA), Annual Conference Series, pages 198 – 208. ACM Press, August 1997.

162

[94] D. Luebke, M. Reddy, J. Cohen, A. Varshney, B. Watson, and R. Huebner.

Level of Detail for 3D Graphics. Morgan-Kaufmann, Inc, 2003.

[95] S. R. Marschner, S. H. Westin, E. P. F. Lafortune, K. E. Torrance, and D. P.

Greenberg. Image-based BRDF measurement including human skin. In Eu-

rographics Workshop on Rendering, pages 139–152, 1999.

[96] N. Max. Optical models for direct volume rendering. IEEE Transactions on

Visualization and Computer Graphics, 1(2):99–108, 1995.

[97] N. Max, P. Hanrahan, and R. Crawfis. Area and volume coherence for ef-

ficient visualization of 3D scalar function. San Diego Workshop on Volume

Visualization, Computer Graphics, 24(5):27–33, 1990.

[98] T. Mertens, J. Kautz, P. Bekaert, H.-P. Seidel, and F. Van Reeth. Interactive

rendering of translucent deformable objects. In Per Christensen and Daniel

Cohen-Or, editors, Proceedings of the 14th Eurographics Symposium on Ren-

dering, pages 130–140, 2003.

[99] V. Milenkovic and L. Nackman. Finding compact coordinate representations

for polygons and polyhedra. In Proceedings of the Sixth Annual Symposium

on Computational Geometry, pages 244–252. ACM Press, June 1990.

[100] K. Mueller, N. Shareef, J. Huang, and R. Crawfis. High-quality splatting on

rectilinear grids with efficient culling of occluded voxels. IEEE Transactions

on Visualization and Computer Graphics, 5(2), April 1999.

163

[101] J. D. Mulder, J. J. van Wijk, and R. van Liere. A survey of computational

steering environments. Future Generation Computer Systems, 15(1):119–129,

1999.

[102] M. Nulkar and K. Mueller. Splatting with shadows. In Volume Graphics 2001,

pages 35–50, 2001.

[103] H. Oberoi and N. M. Allewell. Multigrid solution of the nonlinear Poisson-

Boltzmann equation and calculation of titration curves. Biophys. J., 65:48 –

55, 1993.

[104] R. Pajarola and J. Rossignac. Compressed progressive meshes. IEEE Trans-

actions on Visualization and Computer Graphics, 6(1):79–93, January 2000.

[105] R. Pajarola and J. Rossignac. Squeeze: Fast and progressive decompression of

triangle meshes. In Proceedings Computer Graphics International CGI 2000,

pages 173–182, Los Alamitos, California, 2000. IEEE, Computer Society Press.

[106] A. Peleg and U. Weiser. MMX technology extension to the Intel architecture.

IEEE Micro, 16(4):42–50, August 1996.

[107] F. Pellacini, J. A. Ferwerda, and D. P. Greenberg. Toward a psychophysically-

based light reflection model for image synthesis. In Siggraph 2000 Conference

Proceedings, Annual Conference Series, pages 55–64. ACM Press, 2000.

[108] K. Perlin. An image synthesizer. In B. A. Barsky, editor, Computer Graphics

(SIGGRAPH ’85 Proceedings), volume 19(3), pages 287–296, July 1985.

164

[109] M. Pharr and P. Hanrahan. Monte carlo evaluation of non-linear scattering

equations for subsurface reflection. In Kurt Akeley, editor, SIGGRAPH 2000,

Computer Graphics Procedings, Annual Conference Series, pages 75–84, July

2000.

[110] B.-T. Phong. Illumination for computer generated pictures. CACM June

1975, 18(6):311–317, 1975.

[111] S. M. Pizer and V. L. Wallace. To Compute Numerically: Concepts and

Strategies. Little Brown Computer Systems Series, 1983.

[112] D. Pletinckx. Quaternion calculus as a basic tool in computer graphics. The

Visual Computer, 5(1/2):2–13, March 1989.

[113] W. H. Press, B. P. Flannery, S. A. Teukolsky, and W. T. Vetterling. Numerical

Recipes in C: The Art of Scientific Computing. Cambridge University Press,

second edition, 1992.

[114] R. Ramamoorthi and P. Hanrahan. A signal-processing framework for in-

verse rendering. In E. Fiume, editor, SIGGRAPH 2001, Computer Graphics

Proceedings, Annual Conference Series, pages 117–128, July 2001.

[115] R. Ramamoorthi and P. Hanrahan. Frequency space environment map ren-

dering. In John Hughes, editor, SIGGRAPH 2002, Computer Graphics Pro-

ceedings, Annual Conference Series, pages 517–526, July 2002.

[116] K. Riley, D. Ebert, C. Hansen, and J. Levit. Visually accurate multi-field

weather visualization. In IEEE Visualization ’03, pages 279–286, 2003.

165

[117] W. Rocchia, E. Alexov, and B. Honig. Extending the applicability of the non-

linear Poisson-Boltzmann equation: Multiple dielectric constants and multi-

valent ions. J. Phys. Chem. B, 105:6507–6514, 2001.

[118] J. Rossignac. Edgebreaker: Connnectivity compression for triangle meshes.

IEEE Transactions on Visualization and Computer Graphics, 5(1), January

1999.

[119] J. Rossignac and P. Borrel. Multi-resolution 3D approximations for render-

ing. In Modeling in Computer Graphics, pages 455–465. Springer-Verlag, June

1993.

[120] H. Samet. Applications of Spatial Data Structures: Computer Graphics, Image

Processing, and GIS. Addison-Wesley, Reading, MA, 1990.

[121] H. Samet. The Design and Analysis of Spatial Data Structures. Addison-

Wesley, Reading, MA, 1990.

[122] M. F. Sanner and A. J. Olson. Real time surface reconstruction for moving

molecular fragments. In R. B. Altman, A. K. Dunker, L. Hunter, and T. E.

Klein, editors, Pacific Symposium on Biocomputing ’97, pages 385–396, 1997.

[123] Y. Sato, M. D. Wheeler, and K. Ikeuchi. Object shape and reflectance model-

ing from observation. In Turner Whitted, editor, SIGGRAPH 97, Computer

Graphics Proceedings, Annual Conference Series, pages 379–388, August 1997.

[124] J. P. Schulze, M. Kraus, U. Lang, and T. Ertl. Integrating pre-integration

into the shear-warp algorithm. In I. Fujishiro, K. Mueller, and A. Kaufmann,

166

editors, Proceedings of the 2003 Eurographics/IEEE TVCG Volume Graphics

Workshop (VG-02), pages 109–118, July 7–8 2003.

[125] F. X. Sillion, J. R. Arvo, S. H. Westin, and D. P. Greenberg. A global il-

lumination solution for general reflectance distributions. Computer Graphics

(SIGGRAPH ’91 Proceedings), 25(4):187–196, July 1991.

[126] P. Sloan, J. Hall, J. Hart, and J. Snyder. Clustered principal components

for precomputed radiance transfer. In SIGGRAPH 2003, Computer Graphics

Proceedings, Annual Conference Series, page to appear, July 2003.

[127] P. Sloan, J. Kautz, and J. Snyder. Precomputed radiance transfer for real-

time rendering in dynamic, low-frequency lighting environments. In J. Hughes,

editor, SIGGRAPH 2002, Computer Graphics Proceedings, Annual Conference

Series, pages 527–536, July 2002.

[128] J. Stam. Diffraction shaders. In Alyn Rockwood, editor, SIGGRAPH 99,

Computer Graphics Proceedings, Annual Conference Series, pages 101–110,

August 1999.

[129] J. Stam. An illumination model for a skin layer bounded by rough surfaces.

In S. J. Gortler and K. Myszkowski, editors, Rendering Techniques ’01, pages

39–52. Springer Verlag, 2001.

[130] K. Sugihara. On finite-precision representations of geometric objects. Journal

of Computer and System Sciences, 39:236–247, 1989.

167

[131] S. Sukharev, S. R. Durell, and H. R. Guy. Structural models of the MSCL

gating mechanism. J. Biophys, 81(2):917–936, 2001.

[132] Y. Sun, F. D. Fracchia, M. S. Drew, and T. W. Calvert. Rendering iridescent

colors of optical disks. In Rendering Techniques ’00, pages 341–352, 2000.

[133] J. A. Tainer, E. D. Getzoff, J. Sayre, and A. J. Olson. Modeling intermolec-

ular intractions: topography, mobility and electrostatic recognition. J. Mol.

Graphics, 3:103–105, 1985.

[134] C. Tanford and J. G. Kirkwood. Theory of protein titration curves. I. General

equations for impenetrable spheres. J. Am. Chem. Soc., 79:5333 – 5339, 1957.

[135] G. Taubin, A. Guéziec, W. Horn, and F. Lazarus. Progressive forest split

compression. In SIGGRAPH 98 Conference Proceedings, Annual Conference

Series, pages 123–132. ACM SIGGRAPH, 1998.

[136] G. Taubin, A. Guéziec, W. Horn, and F. Lazarus. Progressive forest split

compression. In SIGGRAPH 98 Conference Proceedings, Annual Conference

Series, pages 123–132. ACM SIGGRAPH, 1998.

[137] G. Taubin and J. Rossignac. Geometric compression through topological

surgery. ACM Transactions on Graphics, 17(2):84–115, April 1998.

[138] B. Taylor and C. E. Kuyatt. Guidelines for evaluating and expressing the

uncertainity of NIST measurement results. Technical Report Technical Note

1297, National Institute of Standards and Technology, Gaithersburg, MD,

January 1993.

168

[139] G. Turk. Re-tiling polygonal surfaces. In Edwin E. Catmull, editor, Com-

puter Graphics (SIGGRAPH ’92 Proceedings), volume 26(2), pages 55–64,

July 1992.

[140] F.-Y. Tzeng, E. Lum, and K.-L. Ma. A novel interface for higher-dimensional

classification of volume data. In G. Turk, J. J. van Wijk, and R. Moorhead,

editors, IEEE Visualization ’03, pages 505–512, 2003.

[141] A. Varshney, F. P. Brooks, Jr., and W. V. Wright. Computing smooth molec-

ular surfaces. IEEE Computer Graphics & Applications, 15(5):19–25, Septem-

ber 1994.

[142] G. J. Ward. Measuring and modeling anisotropic reflection. In Edwin E.

Catmull, editor, Computer Graphics (SIGGRAPH ’92 Proceedings), volume

26(2), pages 265–272, July 1992.

[143] J. Warwicker and H. C. Watson. Calculation of electrostatic potential in the

active site cleft due to α-helix dipoles. J. Mol. Biol., 155:53 – 62, 1982.

[144] R. Westermann and T. Ertl. Efficiently using graphics hardware in volume ren-

dering applications. In M. Cohen, editor, SIGGRAPH ’98, Computer Graphics

Proceedings, Annual Conference Series, pages 169–178, July 1998.

[145] L. Westover. Footprint evaluation for volume rendering. Computer Graphics

(SIGGRAPH ’90 Proceedings), 24(4):367–376, August 1990.

[146] P. Wonka, M. Wimmer, and F. Sillion. Instant visibility. Computer Graphics

Forum, 20(3) (EG 2001 Proceedings):411–421, 2001.

169

[147] J. Xia, J. El-Sana, and A. Varshney. Adaptive real-time level-of-detail-based

rendering for polygonal models. IEEE Transactions on Visualization and

Computer Graphics, 3, No. 2:171 – 183, June 1997.

[148] Z. Xiang. Color image quantization by minimizing the maximum intercluster

distance. ACM Transactions on Graphics, 16(3):260–276, July 1997.

[149] S. Yoon, B. Salomon, and D. Manocha. Interactive view-dependent render-

ing with conservative occlusion culling in complex environments. In IEEE

Visualization ’03, pages 163–170, October 2003.

[150] Y. Yu, P. Debevec, J. Malik, and T. Hawkins. Inverse global illumination:

recovering reflectance models of real scenes from photographs. In Alyn Rock-

wood, editor, SIGGRAPH 99, Computer Graphics Proceedings, Annual Con-

ference Series, pages 215–224, August 1999.

[151] H. Zhang and K. E. Hoff. Fast backface culling using normal masks (color

plate S. 189). In Proceedings of the Symposium on Interactive 3D Graphics,

pages 103–106, New York, April27–30 1997. ACM Press.

[152] H. Zhang, D. Manocha, T. Hudson, and K. Hoff. Visibility culling using

hierarchical occlusion maps. Proceedings of SIGGRAPH’97, pages 77–88, 1997.

170

