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Abstract

Computer-Aided Surgery (CAS) technology enables the use of computers to generate 3D

virtual environments of body parts slated for operation. In these virtual environments,

surgeons enjoy the benefits of visualization, pre-operative planning, simulation and real-

time navigation. All these translate into better surgical treatments, reduced complications,

improved patient safety and lower health-care costs.

CAS applications, like model-based segmentation, real-time navigation, simulation and

modeling of orthopedic implants, require an essential technique for medical image analysis

which is the registration of an anatomical model to medical images. Existing registration

approaches include geometry-based and intensity-based approaches which have some short-

comings. Intensity-based approach generates a lot of irrelevant details which can obscure

relevant features. Hence, it is susceptible to getting trapped at local minima. It is also

computationally expensive. On the other hand, geometry-based approach needs to extract

features from the images. Feature extraction algorithms generally cannot distinguish be-

tween relevant and irrelevant features. Thus, it is difficult to automate this approach with

accuracy and reliability.

There are three critical components in accurate and robust model-based medical image

registration: the model, the objective function and the optimization algorithm. This thesis

shall focus on the modeling of 3D data for registration. It proposes a hybrid approach

that can combine the strengths of the two registration approaches while mitigating their

weaknesses. It uses a 3D wall model of an anatomical part such that the wall surfaces capture

surface shape, the solid wall captures intensity information, and the interior is hollow. In a

digitally reconstructed radiograph of the wall model (DRWR), high-contrast features similar

to edges and contours are produced only by the wall. DRWR can be registered to an x-ray

image using intensity-based approach without the need for feature extraction.
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Chapter 1

Introduction

1.1 Motivation

With the advent of sophisticated hardware and software, computer technologies are in-

creasingly being used to aid medical practitioners in their tasks. Applications of computer

technologies range from the storage of medical images in digital image formats for easy

storage and manipulation, to the visualization of the various body parts of patients that

require treatment. Of particular interest is the area of Computer-Aided Surgery (CAS).

CAS technology enables the use of computers to generate 3D virtual environments con-

taining body parts slated for operation (Figure 1.1). In these virtual environments, sur-

geons can observe the problem and perform pre-operative planning. Furthermore, tools

can be provided such that surgeons can run through a simulation of the operation before

actually performing it. Therefore, CAS provides surgeons with more accurate diagnostic

capabilities as well as visualization via the 3D virtual environment and simulation, thus

allowing for greater precision during the procedure and hence higher chances of success.

CAS also provides surgeons with real-time navigation tool which is both fast and accu-

rate [BLH07, GKBT98, LYJ03, ZGW01, LCJ+00] (Figure 1.2). Furthermore, procedures

involving CAS are often minimally invasive, meaning faster patient recovery. All these ad-

vantages translate into better surgical treatments, reduced complications, improved patient

safety and lower health-care costs.

An important component of CAS technology is the registration of an anatomical model to
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Figure 1.1: Surgical simulation in 3D virtual environment. (Adapted from Institute for
information and computing sciences, Utrecht University [sim].)

medical images. Registration is the process of determining a mapping between a model

in one coordinate space to an input object in another coordinate space for the purpose of

aligning the model to the object. One example that needs registration is the hip replacement

surgery (Figure 1.2(b)). Using flouroscopic images of the hip implant taken during the

surgery, the hip implant can be registered to the hip joint to retrieve its relative orientation.

This allows better visualization of the surgery, resulting in higher accuracy of the hip implant

placement.

There are two approaches for solving registration problems: geometry-based and intensity-

based. Both approaches have their strengths and weaknesses. Geometry-based approach

relies on the presence and identification of natural landmarks or fiducial markers in the input

datasets in order to determine the best alignment. Natural landmarks such as edges and

contours can be used for comparison between 2D medical images and usually a 3D surface

model [BLH07,GKBT98,LS95] (Figure 1.3). However, it is also possible to use a 3D volume

model for registration [LS95]. The small number of features to be registered makes this

approach computationally efficient. However, this approach needs to extract features from

the images for matching with the model. In general, feature extraction algorithms cannot

distinguish between relevant and irrelevant features. So, it is very difficult to automate
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(a) (b)

Figure 1.2: More precise real-time targeting of anatomical sites for Computer-Aided Surgery.
(a) Knee Arthroplasty. (b) Hip Replacement. (Adapted from Smith & Nephew Or-
thopaedics [CAS].)

geometry-based methods with accuracy and reliability in real applications.

On the other hand, intensity-based approach operates on the pixel or voxel intensities

directly (Figure 1.4). It calculates various statistics using the raw intensity values of the

inputs which are then compared to the images to be aligned. Often, 3D volume data

such as 3D CT or MR volume, is used to synthesize a digitally reconstructed radiograph

(DRR) [ZGW01,LCJ+00,vdKPT+05] and the pixel intensities of the DRR (Figure 1.5) are

matched with those in the images. Although this approach is computationally expensive

due to the greater number of points to be registered than in the case of the geometric-

based approach, no feature extraction step is required. It also can generate more details,

both relevant and irrelevant, but some relevant features may be obscured by the abundant

details. Hence, it is susceptible to getting trapped at local minimal solutions because of the

large amount of irrelevant features in the images.

A hybrid approach has been proposed [LYJ03,TLP02] that matches the intensity gradient

images of CT volume and x-ray image. In this way, high-contrast features that correspond

to edges are matched in an intensity-based approach without performing explicit feature
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(a) (b) (c)

Figure 1.3: Geometry-based registration using contour. (a) 3D surface model. (b) 2D
contour generated from (a). (c) Result of registration between (b) (white) and the image
contour (black). (Adapted from [BLH07])

Figure 1.4: Intensity-based registration.(Adapted from [LCJ+00])
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Figure 1.5: DRR generated from a 3D volume model of femur.

extraction. Actually, this approach is very close to the geometry-based approach that

extracts edges because edges are just thresholded intensity gradients. So, it can still be

affected by irrelevant or extraneous gradients.

There are three critical components in the registration of a model to an image, namely

the model, the objective function and the optimization algorithm. The objective function

and the optimization algorithm are usually studied together and is, in general, a difficult

and challenging topic in medical image analysis. Hence, this thesis focuses only on the

modeling of 3D data in registration. This thesis proposes a hybrid approach that can

combine the strengths of the geometry- and intensity-based approaches while mitigating

their weaknesses. It uses a 3D wall model of an anatomical part: the inner and outer wall

surfaces capture surface shape, the interior between the wall surfaces captures intensity

information, and the interior within the inner wall surface is hollow. When a digitally

reconstructed wall radiograph (DRWR) of the wall model is synthesized, high-contrast

features similar to edges and contours are produced only by the wall. Therefore, it produces

clearer features and less noise than conventional DRR (Figure 1.5) and intensity gradient

maps. DRWR can be registered to an x-ray image using intensity-based method without

feature extraction.

In principle, the approach of DRWR can be applied to the registration of any anatomical

part with thick walls such as large bones and the heart. In this thesis, the approach shall

be illustrated for long bones, specifically the femur.
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1.2 Research Objectives

The main objective of this thesis is to develop an algorithm for constructing a hybrid 3D

volume model, known as 3D wall model, given the 3D CT volume of the anatomical part of

interest. It combines the strengths of both volumetric and surface models while alleviating

their weaknesses. The 3D wall model will capture both the surface shape features and

relevant 3D intensity data of the wall. The interior of the inner wall surface is hollow to

remove irrelevant volume data.

The DRWR of the 3D wall model is synthesized by simulating the attenuation of x-rays as

they pass through the 3D wall model. It naturally contains high contrast features, corre-

sponding to the wall, which are similar to edges and contours without irrelevant features.

1.3 Organization of Thesis

In order to provide a better understanding of the problem discussed earlier, medical knowl-

edge about bone anatomy and characteristics of x-ray imaging process will be explained in

Chapter 2. There are three parts to the application of DRWR namely, 3D model recon-

struction, synthesis of DRWR and 3D-2D registration of rigid objects. Hence, related work

done in the areas of DRWR synthesis and registration are discussed in Chapter 3. Based

on the previous chapters, the algorithm for constructing the 3D wall model is presented

in Chapter 4, followed by the algorithm for DRWR synthesis in Chapter 5. To prove the

viability of DRWR and to evaluate its performance against the DRR in terms of robustness,

tests determining the degree of match between each model and the x-ray image are carried

out. These results are then discussed in Chapter 6. Lastly, the thesis is concluded with a

summary and possible future work in Chapter 7.



Chapter 2

Background Knowledge

2.1 Bone Anatomy

A long bone such as the femur has a very unique shape. Its shaft is cylindrical but its

extremities differ in shape when viewed from different viewing angles. The wall of the

bone, categorized as cortical bone, is a dense deposit of calcium phosphate, which shows

up as bright regions in an x-ray image (Fig. 2.1(a)). It is thickest along the shaft and

decreases smoothly towards the extremities. The bone’s interior contains a honey-comb

structure called trabeculae, which shows up as a textured pattern of densely packed fine

lines (Fig. 2.2). However, not all of the lines correspond to trabeculae. Some of them are

due to the complex surface shape of the bone extremities (Fig. 2.1(b, c)).

The distribution and density of the trabeculae differ significantly among patients, especially

for those suffering from osteoporosis. Moreover, the bone is a living tissue which undergoes

continuous degradation and regeneration. Delicate structures like trabeculae are therefore

more prone to changes induced by this process. This means that the trabecular network

can even change over time for the same individual. So, the trabeculae are not useful for

registration.

On the other hand, cortical bone at the shaft and the extremities produce high-contrast

features, such as edges and contours (Fig. 2.1(b, c)), that are quite consistent among pa-

tients if these parts are not fractured or diseased. So, they can potentially provide more

information for accurate registration.

7



8

(a) (b) (c)

Figure 2.1: Structure of femur. (a) The shaft is cylindrical and its wall (solid white)
decreases in thickness smoothly towards the upper extremity. (b) The distribution of the
trabeculae (dense fine lines) differ among patients but the edges (arrows), due to the surface
structure, are consistent among patients. (a, b) X-ray images. (c) 3D mesh model.

Figure 2.2: Trabecular network in a femur.
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(a) (b)

Figure 2.3: Comparison between (a) an x-ray image and (b) an optical image of the same
bone.

2.2 Characteristics of X-ray Imaging

As a beam of x-ray passes through matter, x-ray photons are removed from the x-ray

beam by absorption and scattering, resulting in the attenuation of the incident x-ray. X-

ray imaging captures the attenuation of the x-ray as it passes through the object whereas

normal optical imaging captures light reflection when the ray hits the surface of the object

and is reflected according to the surface property. Therefore, the images formed by these

two modalities are totally different (Figure 2.3).

The diagnostic x-ray imaging process can be modeled as a linear attenuation of x-rays as

they pass through the patient’s body [LaR01]. Under the linear attenuation model, each

type of tissue has an associated linear attenuation coefficient µ that describes the likelihood

of a photon being attenuated as it passes through the tissue. If the tissue has uniform linear

attenuation coefficient µ, the attenuation through the slab can be described as

Nout = Nine−µx (2.2.1)

where a number of photons Nin enter a slab of tissue of uniform thickness x. Only some

unattenuated photons Nout will exit the tissue and reach the x-ray sensor (Figure 2.4). This
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Figure 2.4: Attenuation of x-ray photons through a slab of tissue.

is also known as the Lambert-Beer’s Law.

Human tissues are not of uniform thickness and an x-ray can pass through different types of

tissues with different attenuation coefficients. Therefore the quantity µx in Equation 2.2.1

should be replaced by a line integral:

Nout = Nine−
∫

µ(x)dx (2.2.2)

where µ(x) is the attenuation coefficient at position x along the x-ray path. Taking loga-

rithm of Equation 2.2.2 yields the log total attenuation:

log Nout = log Nin −
∫

µ(x)dx (2.2.3)

For more details on the derivation of the formulae, please refer to the medical handbook

[BKM00].

2.3 Tomographic Imaging

Tomographic imaging is an enhancement of x-ray imaging to produce cross-sections of

interest. Computed Tomography (CT) is a technique in which transmission measurements
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Figure 2.5: CT scanning. (Adapted from Pauls Valley General Hospital [CTs].)

of a narrow beam of x-rays, made at constant intervals of angles around an object, are used

to synthesize slices of interest within the object (Figure 2.5). The synthesis of the slices

of interest is done by back-projection whereby every point on the series of x-ray images is

projected back along the x-ray path to form an image. As a result, simple back-projection

renders a crude central image with blurred radial spokes, known as the star artefact (Figure

2.6). This greatly degrades the spatial information in the CT image. However, this artefact

can be solved by simply filtering each projection in the frequency domain, followed by

inverse Fourier transform before the original back-projection process.

A CT volume is acquired as a sequence of CT slices in the axial (z) direction. The CT

volume is rarely taken in isotropic resolution because of the health-damaging radiation that

patients are exposed to. Therefore, the CT slice thickness is usually of lower resolution

compared to the x and y resolution.

There are some common artefacts associated with CT imaging such as Partial Volume

Effect (PVE) and cupping artefact due to beam hardening. PVE arises when a voxel

contains more than one tissue type which results in averaging of the densities (Figure

2.7). PVE often causes blurring outside the surface boundary of the object which can

distort the spatial information of the surface boundary. However, partial volume effect is
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Figure 2.6: Re-synthesis of CT by simple back-projection with star artefact. (Adapted from
the MRC Human Genetics Unit Edinburgh UK [bac].)

considered insignificant most of the time and can also be reduced by increasing the axial

resolution. There is also a phenomenon known as beam hardening in x-ray imaging which

can cause artefact in CT. In diagnostic x-ray imaging, the x-ray beam has a moderately

broad energy spectrum. X-rays in energy ranges that are more easily attenuated are known

as soft x-rays whereas those that are more penetrating are known as hard x-rays. Beam

hardening is the process of the progressive removal of the soft x-rays as the x-ray beam

passes through body tissues. The amount of beam hardening depends on the initial x-

ray spectrum and the composition and thickness of the tissue traversed. Beam hardening

can result in cupping artefact in CT (Figure 2.8) where the reconstructed attenuation

coefficients decrease towards the centre of a large uniform object. This cupping artefact

should not affect the construction of the 3D wall model because it contains only the wall

of the femur. Therefore, the effects of these artefacts on 3D wall modeling are negligible as

explained.
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Figure 2.7: Partial volume effect in CT.

Figure 2.8: Cupping artefact in CT. (Adapted from the ImPACT group [cup].)



Chapter 3

Related Work

The problem of generating a DRWR comprises three main steps. A 3D wall model has to be

first reconstructed from 3D medical images such as Computed Tomography (CT), Magnetic

Resonance Imaging (MRI), 3D ultrasound, Single-Photon Emission Computed Tomography

(SPECT) and other cross-sectional images. After a 3D wall model is reconstructed, the

next step will be the synthesis of the DRWR. Existing methods of DRR synthesis related to

synthesis of DRWR will be brought forth and discussed in Section 3.1. Lastly, registration

of the projection of DRWR to input images is required for image analysis. Algorithms for

3D-2D registration of rigid objects will therefore be reviewed in Section 3.2.

3.1 DRR Synthesis

Many volume rendering techniques have been applied for the synthesis of DRR. They can be

categorized into ray casting, splatting, shear-warping, Fourier volume rendering and Monte

Carlo volume rendering. Ray casting is an image order algorithm which allows direct sim-

ulation of x-ray attenuation through an object while splatting is an object order technique.

Both methods produce comparable results. Shear warping simplifies the projection from

a viewpoint to a shear followed by a warp, which is faster than the previous two methods

but image quality is compromised. Fourier volume rendering provide only direct integra-

tion along the line of projection to produce x-ray-like images at a faster speed. Monte

Carlo is recommended for processing large volume data at a faster speed by sampling. In

the following sections, these techniques together with their variants for optimization and

14
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improvement will be further discussed.

3.1.1 Ray Casting

Ray casting [Lev88] is a straight-forward, image-order algorithm whereby a ray is shot from

the eye through each pixel of the image into the volume. Along the ray’s intersection with

the volume several operations can be performed to obtain the color of the pixel. Therefore,

ray casting allows for the direct simulation of x-ray attenuation as described in Section 2.2.

However, perspective ray casting with trilinear interpolation is a rather time consuming

method of volume rendering. Moreover, the stepping and summing of the integrals may

lead to inaccuracies.

Performance of ray casting algorithms can be significantly improved without affecting image

quality if regions which do not contribute to the image are skipped from rendering. How-

ever, the nature of ray casting needs a traversal of the data structure once every ray which

results in many redundant computations. Many methods have been proposed by exploiting

coherence in the data set. These methods rely on spatial data structures that encode the

presence or absence of high-opacity voxels so that computations can be omitted in trans-

parent regions of the volume. These data structures are built during preprocessing after

applying an opacity transfer function to the volume. Such spatial structures include pyra-

mids [DH92,Lev90], k-d trees [SF90] and distance transforms [SK00,ZaAHKV92]. Although

this optimization is data dependent, researchers have reported that in typical classified vol-

umes around 70 − 90% of the voxels are transparent [Lev90, SF90]. Early ray termination

is also another efficient optimization [Lev90]. By keeping track of the opacity of the data

encountered so far, the ray can be stopped as soon as the cumulative opacity is close to

total.

Another class of optimization methods for ray casting pre-compute projection values, which

can then be accessed and interpolated during the registration phase. Similar data structures

have been proposed to store such projection values, like the Transgraph by Larose [LaR01],

the Direction Dependent Projection Fields by Freund et al. [FHR04] and the Attenuation

Field (AF) by Russakoff et al. [RRM+05]. These data structures have been extended from

the Light Field [LH] and the Lumigraph [GGSC] in computer graphics. A variant of AF is

Progressive Attenuation Field (PAF) by Rohlfing et al. [RRD+04] which computes the AF

on the fly. These methods trade-off image quality for speed improvement. Except for PAF,
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the other methods all require a one-time pre-computation for an exchange of interactive

rendering rates, and assumptions have to be made regarding expected viewing angles for

memory efficiency.

Attenuation Field (AF)

Light fields are proposed by Levoy and Hanrahan [LH]. A similar idea called the Lumigraph

was simultaneously and independently presented by Gortler et al. [GGSC]. Essentially, light

fields provide a method of parameterizing all the rays that emanate from a static scene. Each

ray is represented by its intersection with two arbitrary planes in space. These two planes

form a light slab where all light rays enter and exit. If all the rays within this light slab can

be calculated, almost any image with a focal point inside the light slab can be recreated

simply by determining the rays involved and associating them with their corresponding pixel

values. Practically, a large number of them can be generated provided that a reasonably

dense coverage of the space is known. The missing values are then generated by interpolating

quadrilinearly among existing discrete samples. AF implements a virtual image plane in

between the volume and focal plane for the same two-plane parameterization in light field.

However, the rays will extend beyond the volume to the image plane behind the volume so

that the attenuation along each ray can be calculated for each pixel.

Progressive Attenuation Field (PAF)

Unlike traditional attenuation fields, the PAF [RRD+04] is built on the fly as the regis-

tration proceeds. It does not require any pre-computation, nor does it make any prior

assumptions of the patient’s pose that would limit the permissible range of patient motion.

A cylindrical attenuation field parameterization is used which is better suited for rotating

imaging systems than the usual two-plane parameterization. Compared to the common

two-plane parameterization, the cylindrical coordinate space is capable of describing full

360o rotations around the cylinder axis. This cylindrical coordinate space is characterized

by the 4-tuple of real numbers (u, v, s, t). Attenuation values of rays are calculated at dis-

crete intervals of these parameters and stored in a hash table for time-efficient storage and

access. All other rays are then calculated using quadrilinear interpolation of the computed

rays. However, these benefits come at the cost of higher computational cost during the

actual registration.
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Transgraph

The Transgraph [LaR01] is very similar to the AF in concept. It has two parallel coordinate

planes C0 and C1, similar to the focal and image planes in AF, which lie across the CT vol-

ume. The two planes are only offset by a small amount. Therefore, any trajectory through

the CT volume can be parameterized by q0 and q1, the intersections with these coordinate

planes. The Transgraph is implemented as a nested data structure, a 2D array of 2D arrays.

The top-level 2D array indices correspond to C0 coordinates. Each element in the top-level

array is a 2D array and the indices in the sub-array correspond to the C1 coordinates. Each

element in a sub-array stores the total attenuation along the corresponding ray. The sub-

array describes only a region of the C1 coordinate plane because it is calculated based on

an expected range of the patient poses. During DRR synthesis, quadrilinear interpolation

is used.

Direction Dependent Projection Field

Direction Dependent Projection Field by Freund et al. [FHR04] uses a different parameter-

ization from the others. It stores pre-computed values of some rays in a four-dimensional

array called the projection field. Single pixel values are also generated by quadrilinear in-

terpolation between the values of the projection field. A projection field is a 2D array that

stores in each element another 2D array. It assigns each quadruple (x, y, ϕ, θ) the intensity

integral of the ray passing through the pixel at the location (x, y) with the direction (ϕ, θ).

The directional parameters ϕ and θ are simply the angles between the projections of the

ray onto two orthogonal planes normal to the projection field plane. The projection field is

selected to be parallel to the DRR plane.

Ray Casting in Wavelet Space

Progressive refinement is made possible by Lippert and Gross [LG95], and Gross et al.

[GLDH97], using ray casting in wavelet space, allowing adaptive trade-off between image

quality and speed. The initial RGB volume data set is decomposed by 3D wavelet transform

separately for each channel as a one-time process. The line integral along a ray can be

approximated by wavelet expansion as an accumulation of the line integrals of 3D wavelets

intersected by the ray. The intensity integral in wavelet space for each viewpoint is computed
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by slicing the 3D wavelet, perpendicular to the ray, in the frequency domain according to

the Fourier Projection-slicing Theorem (Section 3.1.4). Due to the self-similarity of the 3D

wavelets, the rendering process becomes an accumulation of scaled and shifted versions of

eight 2D intensity or color distributions, corresponding to the 3D wavelets of the RGBα

channels and their scaling functions. This results in eight different 2D textures, one for

each mother wavelet representing their ray intensity integrals in frequency space. Next, the

inverse FFT computes the intensity distribution in spatial domain. Superimposing these

distributions produces an image. The image is progressively refined by an accumulation of

more selfsimilar textures based on the basis functions.

3.1.2 Splatting

Splatting [Wes90], or footprint rendering, is an object-order algorithm which is the oppo-

site of ray casting. Object-order algorithms incrementally reconstruct the original signal

by spreading each data sample’s energy into space. As each voxel is projected onto the im-

age plane, the voxel’s energy is spread over the image raster using a reconstruction kernel

centered at the voxels projection point. This reconstruction kernel is called a splat. Con-

ceptually, the splat is a spherically symmetric 3D reconstruction kernel centered at a voxel.

However, since the splat is reconstructed into a 2D image raster, it can be implemented as

a 2D reconstruction kernel. The 2D kernel then becomes a circle if the volume has equal

spacing in each grid directions and the viewing transform is orthographic. Otherwise, the

2D kernel becomes an ellipse. This 2D kernel, called a footprint function, contains the inte-

gration of the 3D kernel along one dimension. The integration is usually pre-computed and

the footprint function is represented as a finely-sampled 2D lookup table. The 2D table is

centered at the projection point and sampled by the pixels which lie within its extent. Each

pixel composites the value it already contains with the new value from the footprint table.

If the volume grid has regular spacing, the viewing transform is orthographic and the splat

is symmetric, the footprint table can be computed once and used for all voxels. Otherwise,

the footprint function will vary. The table will need to be re-computed for each view if the

kernel is non-symmetric, and possibly for each voxel for perspective projection.

Splatting produces images of quality comparable to ray casting but at greater speed. This is

achieved by pre-computing the footprint table. Object-order algorithms are also more easily

made parallel. This is because each voxel only needs to know about a small neighborhood
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and, shading and transforming can be done in parallel for sub-sections of the volume.

However, it is hard to implement early ray termination as in ray casting. Integration of

the volume is only approximate in splatting because kernels must overlap in object space

to ensure a smooth image.

Hierarchical Splatting

Hierarchical splatting is a progressive refinement algorithm proposed by Laur and Hanrahan

[LH91], which stores an octree within the pyramidal volume. Data coherence has also been

used to build an octree to skip transparent regions as in ray casting. The pyramid is a

multi-resolutional representation of the volume allowing for volume rendering at different

resolutions at different speedups. The algorithm builds a set of footprints at different sizes,

one for each level in the pyramid. It does not just draw a reduced resolution version of the

volume, but determines the number of the splats by fitting a collection of cells at different

resolutions in the pyramid to the original data based on a user-supplied error criteria. A low

error in a large region indicates that it is homogeneous, and homogeneous regions can be

drawn efficiently using large splats. This makes real-time rendering possible with trade-off

in image quality.

Ray-driven Splatting

Mueller and Yagel [MY96] merge splatting with ray casting to yield a ray-driven splatting

approach to speed up perspective splatting, which complicates the mapping of the foot-

prints. Splats are imagined as being suspended in object space, a splat at every voxel. Rays

then traverse the space and intersect the splats. Hence, each pixel accumulates its color,

opacity, and density sums separately. Proper compositing is ensured by dividing the volume

into 2D slices parallel to the image plane. When a ray is shot, it stops at each slice and

determines the range of voxel kernels within the slice that are traversed by the ray. The

voxel contributions are then accessed from the respective footprint tables for composition

at the pixel. Ray-driven splatting is more efficient than perspective splatting as there is

no requirement to compute the expensive perspective viewing transform. Furthermore, it

offers acceleration methods such as early ray termination and bounding volumes, which

traditional splatting cannot benefit from. This results in better speed performance. Per-

spective ray casting also under-samples volume regions farther away from the eye-point due
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to the diverging nature of the rays. This problem is eliminated by utilizing summed area

footprint tables [Cro84] and tracing the volume by pyramidal ray beams.

Wavelet Splatting

Lippert and Gross [LG95], and Gross et al. [GLDH97] both modify the splatting algorithm

by using wavelets as reconstruction filters, so that data can be visualized at different levels of

detail. This scheme takes advantage of the self-similarity of the wavelet basis functions and

computes the required splats by Fourier projection slicing. Wavelet approximation of the ray

integration is a weighted accumulation of eight basis functions, a pair of scaling and wavelet

functions for each of the RGBα textures. The self-similarity property of wavelets enables

all other textures to be derived from these eight basis functions by scaling and translation.

Volume rendering is then an accumulation of scaled and translated versions of the RGB

textures i.e. the splats. The computation of the basis functions can be accomplished by

Fourier projection slicing. More details about Fourier projection slicing can be found in

Section 3.1.4. 3D FT of the 3D wavelet is first performed, followed by a 2D inverse FT of

the slice to obtain the wavelet-splat footprint. The wavelet splatting method progressively

refines the image when more and more footprints are used to build up the representation,

allowing real-time rendering.

3.1.3 Shear-warping

Shear-warp factorization, by Lacroute and Levoy [LL94], combines the advantages of image-

order and object-order algorithms. This method is based on three steps namely, factoriza-

tion of the viewing matrix into a 3D shear parallel to the slices of the volume data, a

projection to form a distorted intermediate image and a 2D warp to produce the final im-

age. Shear-warping is faster than ray casting and splatting. However, as two re-sampling

steps are required for the intermediate projection and during the warping step, images pro-

duced using this technique are more blurred as compared to the results of ray casting or

splatting.

For a perspective transformation, each slice must be scaled as well as sheared. The scan-

lines of the voxels in the volume data are always aligned with that of the pixels in the

intermediate image. Therefore, spatial data structures based on run-length encoding are
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used to skip runs of transparent voxels and opaque pixels. Each opaque (or occluded)

intermediate image pixel stores an offset to the next non-opaque pixel in the same scan-line

so as to skip runs of opaque pixels. Hence, work is only done for voxels which are both

non-transparent and visible. After the intermediate image is rendered, a general-purpose

affine image warper with a bilinear filter is applied to produce the final image in parallel

projection. The paper also implements a data structure for encoding spatial coherence in

unclassified volumes using octree and summed area table.

Splatting Shear-warp

The splatting shear-warp algorithm was originally used for Maximum Intensity Projections

(MIP) [CS98]. Cai and Sakas [CS00] adapted this algorithm for use in DRR rendering.

Splatting in shear-warp space uses 3D reconstruction filter and area sampling to produce

better quality images than standard projective shear-warp which uses only 2D reconstruc-

tion filters and point sampling. A cubic voxel consisting of points (i, j), (i+1, j), (i+1, j+1)

and (i, j + 1) is sheared to a parallelepiped. The parallelepiped voxel is then splatted to

pixel A along the principal viewing direction. The contribution of the parallelepiped voxel

to pixel A is integrated by its projection area i.e. area sampling. The footprint of the par-

allelepiped voxel is called the sheared footprint. All the voxels in the sheared object space

share the same general 2× 2 sheared footprint.

3.1.4 Fourier Volume Rendering (FVR)

FVR, by Dunne et al. [DNR90], is based on the Fourier Projection-slice Theorem which

states that a 2D projection of a function f(x, y, z) at an arbitrary angle may be computed

by taking the inverse 2D Fourier transform (FT) of a slice, of the 3D FT of f , that passes

through the origin and is normal to the direction of projection. FVR allows projections

of volume data to be generated in O(n2 log n) time for a volume of size n3 instead of

O(n3) in ray casting. A one-time preprocessing step of applying a 3D FT to the volume

data is first performed to obtain a 3D array of samples in the spatial-frequency space.

A plane slice through the centre of the new array is re-sampled and 2D inverse Fourier

transformed to produce an image. This image is a re-projection of the original 3D data

in a direction normal to the extracted plane. Therefore, a re-projection at any desired

angle can be computed quickly by simply extracting the appropriate slice and applying a
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2D FT. FVR can generate views at interactive rates. Progressive refinement is also easily

performed by limiting the sampling rate at low frequency, resulting in a smaller image

that can be interpolated up to arbitrary size. This reduces the complexity of both the

resampling and inverse transformation stages. However, FVR is a linear projection which

is order independent along the line of projection t. Therefore, hidden surface effects are not

present and limits FVR to transparent imagery which look like X-rays. Due to the complex

arithmetic associated with FT, the memory cost of FVR is much higher than spatial domain

algorithms.

Malzbender [Mal93] also propose a similar approach as Dunne et al., with the addition of a

filter design and spatial data preprocessing techniques to produce artefact-free renderings.

He also makes sure that the resampling rate used for the inverse FT is high enough, so that

aliasing in the spatial domain in the form of overlapping of copies of the original data set is

avoided. Resampling filter which is band-limited in both the frequency and spatial domains

is employed to reduce aliasing. This is made possible by using the Projection on Convex

Set technique [CN88], which allows constraints in both the frequency and spatial domains

to be optimized or satisfied, if possible. The filter is iteratively transformed back and forth

the frequency and spatial domains with truncation until the change between iterations is

below a threshold. In addition, common filters like the triangle and sinc functions lead

to an overemphasis of the central region of the data set due to their shapes. Malzbender

compensates this effect by spatial pre-multiplication, which multiplies the original data set

by 1/g(x, y, z) where g(x, y, z) is the filter function in spatial domain, before the 3D FT is

taken. Spatial zero-padding to the pre-multiplied data will reduce the distortion, further

reducing the aliasing problem.

Ntasis et al. [NCSN99] also implement FVR with a hybrid filter and spatial zero-padding

for real-time DRR rendering. The hybrid filter uses Hamming windowed sinc() function

for the central area of the spectrum and trilinear interpolation for the rest to improve the

quality of the result.

Fourier Wavelet Volume Rendering (FWVR)

Westenberg and Roerdink [WR00] make use of wavelets to progressively refine the FVR

to allow for real-time interaction. This technique is similar to the approach by Lippert

and Gross [LG95] which uses wavelets to progressively refine the ray casting and splatting
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Figure 3.1: Calculation of a pixel intensity Ii,j as a volumetric integral over the correspond-
ing pyramidal domain Vi,j [CSK03].

methods. However, the time complexity of FWVR is O(n2 log n) which is faster than the

time complexity of O(n3) for wavelet splatting and ray casting in wavelet space. The 3D

FT of the volume data is first computed. For each direction θ, resampling of the FT

is done in the slice plane normal to θ. The 2D Fourier-wavelet decomposition (FWD)

of depth M is performed on the resampled slice to obtain approximation coefficients and

detailed coefficients Dj respectively. A partial Fourier-wavelet reconstruction (FWR) from

the approximation coefficients without the detailed signals, followed by a 2D inverse FT

yields an initial approximation in the spatial domain. The image can be progressively

refined by partial FWR using Dj , 0 6 j 6 M , followed by a 2D inverse FT.

3.1.5 Monte Carlo Volume Rendering (MCVR)

Csébfalvi and Szirmay-Kalos [CSK03] present a novel volume-rendering technique based

on Monte Carlo integration. In MCVR, a pixel intensity Ii,j is calculated as a volumetric

integral of f(x) over a pyramidal domain Vi,j which is projected onto the given pixel (Figure

3.1). The calculation of such a volumetric integral can be interpreted as an evaluation of

infinitely many rays piercing through the rectangular pixel area. The volume data is first

convolved with a reconstruction kernel yielding a continuous 3D density function. A point
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cloud of random samples is then generated using this probability density function. This

point cloud is projected onto the image plane, and the normalized intensity of each pixel is

estimated as the number of samples projected onto the given pixel divided by the number

of all the samples in the point cloud. A DRR is then rendered by quantizing the estimated

normalized intensities onto L gray levels provided by the display device.

Theoretically, for a fixed image resolution, there exists M number of samples such that

the average standard deviation of the estimated pixel intensities is under the level of quan-

tization error regardless of the number of voxels. Therefore, MCVR is mainly proposed

to efficiently visualize large volume data sets. Furthermore, the trade-off between image

quality and speed can be controlled by progressive refinement where a subset of the point

samples can be interactively rotated, and after having the appropriate viewing direction

fixed, the rest of the samples are projected onto the image plane, progressively refining the

estimation. The time complexity of MCVR is O(n2). The accuracy of MCVR depends on

the sampling rate for point cloud generation.

3.2 3D-2D Registration of Rigid Objects

For a 3D-2D registration problem, there is a need to optimize an objective function that

measures the matching error between the 3D model and the 2D image. Some well-known

optimization techniques are the Iterative Closest Point (ICP) [BM92a], gradient descent,

Newton method, least square method and Levenberg-Marquad method [CZ96]. The corre-

spondence between the model and the image may be geometric- or image-based as elabo-

rated in the following sections.

3.2.1 Geometric-based Measures

Geometric-based approaches rely on the presence and identification of natural landmarks or

fiducial markers in the input datasets in order to determine the best alignment. The small

number of features to be registered could provide great computational efficiency. However,

major drawbacks include the need for careful planning of image acquisition, re-scanning of

the patient if the images do not contain the fiducial markers, the inconvenience of planting

artificial markers on the patient and possible introduction of more errors from segmentation.

Moreover, these solutions may also require some level of user interaction which generally is
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troublesome for medical procedures.

The contour-based algorithms [Low91,LS95,FAB97,GKBT98,CBRS99] try to match con-

tours of the 3D model with those in the image for the registration between them.

David Lowe proposed a registration algorithm for estimating the pose of a hand drill in

intensity image using a 3D parametric model of the object [Low91]. After a 3D rigid

transformation followed by a perspective projection of the model, this method computes

and matches the contours of the model with the corresponding contours in the image. In

this algorithm, the parameters of the 3D rigid transformation is computed by minimizing

the perpendicular distances between the edge points of the image from the tangent lines to

the 2D contour of the projected model. The minimization is performed by Newton method

and Levenberg-Marquads least square method [CZ96]. This algorithm produces a good

result in a few iterations. However, it requires a camera of known focal length and a good

initial estimate of the parameters for convergence to the global minimum.

Feldmar et al. proposed an algorithm for registering 3D curves such as blood vessels in the

3D MR or CT image to their counter parts in the 2D x-ray images [FAB97]. The goal of

this algorithm is to combine the information about the blood vessels in MRI with those in

the x-ray image of the same patient. Blood vessels are visible in MRI but they are generally

not visible in the x-ray image. To make them visible, an opaque liquid is injected into

the vessels before taking the x-ray image. The 2D curves in the x-ray image and the 3D

curves in MRI image are extracted before the registration. Then Iterative Closest Point

algorithm [BM92a] is applied to register the projected 2D curves and the target 2D curves

in the x-ray image.

Czof et al. proposed an algorithm to register a model of human bone (femur) to its x-ray

image [CBRS99]. They focused on how to compute a good initial pose of the object for

registration. They defined a set of primitive geometric features of the objects contour such

as corner points, curve segments, and a combination of them. The model of the object is

represented by a large number of 2D views known as aspect views. The predefined features

are extracted from each view of the model. The views containing similar contour features

are grouped together. Initial pose estimation is performed by comparing features extracted

from the input image with the features in the aspect views of the model. This method

produced descent result if the number of aspect views is large enough.

Lavallée et al. proposed a method to register a 3D MR or CT model of a patients bone
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to two x-ray images simultaneously [LS95]. They extracted contours of the x-ray images

for registration. The two x-ray images are brought into the same 3D coordinate system to

find the 3D x-ray paths from the x-ray source to the corresponding contour pixels in the

x-ray images (Figure 2.1). Then, the 3D distance between these lines and the surface of

the model are computed. The error function of the registration is the sum of 3D signed

distances. The sign of a distance is negative if the corresponding line passes through the

surface, and positive if the corresponding line is either tangent to the surface or does not

intersect with the surface. The goal is to find the pose parameters such that these distances

become zero, i.e., the lines become tangent to the model surface. This method used two

x-ray images taken simultaneously using two x-ray sources. The error function is minimized

by Levenberg-Marquad method. This method also requires a good initial estimate of the

pose of the model to get desired registration.

Guéziec et al. proposed an improved algorithm by computing the 3D distances of the x-ray

paths from an apparent contour of the model [GKBT98]. For 3D distance computation,

there is no need to perform a search for the surface of the model and hence this algorithm

requires fewer computations than the algorithm proposed by Lavallée et al..

3.2.2 Image-based Measures

Image-based measures operate on the pixel or voxel intensities directly. They calculate

various statistics using the raw intensity values of the inputs which are then compared in

the images to be aligned. Though the number of points to be registered is much greater

than in the case of the geometric-based approaches, no feature extraction step is required.

An extensive study of intensity-based similarity measures for 2D-3D applications has evalu-

ated the performance of six different objective functions in matching X-ray fluoroscopy and

CT images [PWL+98]. The imaged organ is a phantom spine, and only a user-defined

small region of interest is registered at a time. The objective functions evaluated are

normalized cross-correlation [LJF+94], entropy of the difference image [BWFL], pattern

intensity [WBLF97], mutual information [MCV+97,SHH96,SHH97,VW95], gradient corre-

lation [LJF+94,BB96] and gradient difference. These measures are ranked based upon their

accuracy and robustness. The best objective functions are pattern intensity and gradient

difference which proved to be the most robust in the presence of soft tissue and surgi-

cal instruments. Mutual Information (MI) performed poorly in these experiments. It did
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not handle partial occlusions and truncations well and its performance further deteriorated

when soft tissue was present. The study found two possible explanations for the failures

of this similarity measure that has been very successful in the 3D-3D domain. First, MI

requires a large set of samples to obtain a good probability density estimate for the under-

lying entropy calculations, which is lacking in the 2D-3D application. Second, the search

space of MI is much larger than what the problem requires and therefore, it is more difficult

to recover the required parameters in it.

David LaRose proposed an iterative intensity-based algorithm for registering CT-volume

of the pelvis to the x-ray images of a patient to compute the patients pose (i.e., pose of

patients hip) [LaR01]. He modeled x-ray attenuation in the imaging process with per-

spective projection to produce 2D synthetic images of the pelvis from CT-volume. These

synthetic images are called digitally reconstructed radiograph (DRR). The patients pose is

computed by maximizing the correlations between the input x-ray image and the DRRs by

an optimization method known as quasi-Newton method. The correlation measures used for

optimization are Sum of Local Normalized Correlation (SLNC) and Variance-weighted sum

of Local Normalized Correlation (VLNC). Starting with an approximate values of the pa-

rameters (rotational angles and translations), the algorithm produces a single DRR if there

is only one input image or multiple DRRs for multiple input images. Then, it compares

the similarity by computing the correlation between the x-ray image and the correspond-

ing DRR. If the similarity is small, the parameter values are updated by the optimization

method to produce another DRR (or, a set of DRRs), and this process is repeated. The

DRR generation is a time-consuming process. He also proposed a method to produce the

DRR efficiently by programming a computer graphics card.

Another intensity-based registration algorithm was proposed by Zöllei et al [ZGW01]. They

registered a CT-volume of human head and spine to two x-ray images simultaneously by

optimizing mutual information between the x-ray image and the DRR generated from CT

image. They used gradient descent method for maximization of the mutual information to

compute the pose parameters.

Intensity-based method (Chan et al, 2003 [CCY+03]) is also used for the registration of

functional image modalities such as magnetic resonance angiography (MRA) and digital

subtraction angiography (DSA). Note that this method does not estimate the pose, but it

combines the visual information available in the two images.
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Construction of 3D Wall Model

The first part in the generation of DRWR is the construction of the 3D wall model of the

femur from volume images. One of the most commonly used volume image is the CT volume.

Even though isotropic scans are now possible with newer machines, they are not routinely

performed. Typically, the doctor acquires a CT volume with large slice thickness in order to

reduce the scanning time and the radiation dosage of the patient. With anisotropic volume,

it is necessary to either (1) interpolate the slices to generate isotropic slices for constructing

the 3D wall model, or (2) deform a known 3D mesh model to register with the slices. For

the first approach to work, additional constraints based on the femur’s surface shape need

to be imposed during interpolation. Otherwise, the interpolation will produce incorrect

surfaces. But, surface shape is inherent in the known 3D mesh model. Therefore, we adopt

the second approach which directly uses the 3D mesh model.

The 3D wall model is constructed using a generic 3D surface mesh model and patient-

specific CT volume image of femur. The use of a generic 3D mesh model solves the problem

of anisotropy of typical CT volume images. The construction of 3D wall model consists of

four stages:

1. Extraction of 2D inner and outer wall contours from the CT slices.

2. Registration of 3D surface model to 2D outer wall contours to obtain 3D outer wall

surface.

3. Interpolation of the 2D inner wall contours with minimum wall thickness constraint

28
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to obtain 3D inner wall surface.

4. Conversion of 3D wall surfaces to hybrid 3D wall model.

The following sections describe these stages in more details.

4.1 Extraction of 2D Wall Contours

At first glance, it may seem that the 3D wall model can be produced by thresholding a CT

volume image with appropriate thresholds. Our investigation shows that this method is not

satisfactory (Figure 4.1). If the threshold is low enough for the boundary wall contours to

show up clearly, many trabeculae will remain in the CT volume, resulting in the blurring of

the shape features in the DRWR (Figure 4.1a). On the other hand, if the threshold is too

high, some boundary contours and shape features will be removed before all the trabeculae

can be removed (Figure 4.1b). There is no single threshold that is appropriate for the entire

CT volume and it is impractical to manually select different thresholds for different parts

of the CT volume.

The inner and outer wall contours need to be extracted from the CT slices before registration

to the 3D surface model to create the 3D wall surface. The whole process of 2D wall contours

extraction can be split into 3 main steps:

1. Extraction of edges from CT slices using Canny’s edge detection algorithm.

2. Extraction of outer and inner wall contours separately using the GVF snake.

3. Stacking of 2D wall contours in the 3D space.

The first step applies a modified Canny’s edge detection algorithm by Tian [TCL+] to

the images to detect edges. Although Canny’s edge detector works well in detecting the

outline of the outer and inner walls, it also detects a large number of spurious edges. Such

spurious edges will affect the snake’s convergence onto the outline of the walls and have

to be removed. Increasing smoothing effect to remove the spurious edges will cause loss

of edge information at regions with low edge magnitudes such as the femoral head, while

simple thresholding based on edge magnitude will also fail. Therefore, a modified Canny’s

edge algorithm is used.
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(a) (b) (c)

Figure 4.1: Comparison with thresholding method. (a) Low threshold results. (b) High
threshold results.
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Modified Canny’s edge algorithm uses information from the intensity image to help distin-

guish between spurious edges and the edges at the femoral head. Areas in an x-ray image

that contain bones have higher intensity than non-bone regions. Hence, a pixel p is marked

as a non-edge pixel if

1. p is detected by Canny’s edge detector

2. p has an intensity < threshold Γ1

3. p has an edge magnitude < threshold Γ2

Further details of the algorithm can be found in [TCL+].

The second step uses GVF snakes [XP98] to extract the outer and inner wall contours.

There are a few common segmentation algorithms used for medical imaging like active

shapes, active contours (snakes), region-growing and level set. Active shape [SFE00], which

is usually used for shape recognition, can also be used for extracting contours. However, it

requires a lot of training samples to work well. Region-growing method is easily distorted

by the dense trabeculae network in CT images whereas level set [CZ05] adds unnecessary

complexity to the problem. On the other hand, active contours perform generally well for

medical imaging as long as the initialization is close to the desired object. The original snake

formulation has poor convergence to concave regions which is overcome by the incorporation

of Gradient Vector Flow.

Active contour (i.e., snake) [KWT87] with Gradient Vector Flow (GVF) [XP98] is manually

initialized to extract the inner and outer wall contours separately (Figure 4.2). The GVF

field creates forces to attract the snake towards the edges and concave areas, making it less

sensitive to initialization. Details about the snake formulation can be found in Sections

4.1.1 and 4.1.2. Thus, sparse initialization points are enough for the contour extraction of

the complex shapes of the femur cross-sections. The initial GVF snakes converge to the

respective wall boundaries after a few iterations, at interactive speeds. The GVF snake is

able to extract the contours of both the outer and inner walls despite the presence of noise

and the dense trabeculae (Figure 4.3). However, the GVF extracted inner wall contours

may overlap with the outer wall contours at areas where the walls are thin (Figure 4.4).

The last step stacks up these extracted 2D wall contours in the 3D space along the vertical

z-axis according to the CT slice thickness (Figure 4.5). As can be seen, shape information in
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(a) (b)

(c) (d)

(e) (f)

(g)

Figure 4.2: Extraction of the outer and inner wall contours using the GVF snake. (a) A
CT slice. (b) Edge-map of (a). (c) Initialization of the GVF snake for the outer contour
(17 points). (d) GVF snake converged to the outer wall boundary (denoted in green). (e)
Initialization of the GVF snake for the inner contour (26 points). (f) GVF snake converged
to the inner wall boundary (denoted in red). (g) Extracted inner and outer wall contours
overlap at some places.
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(a) (b)

(c) (d)

Figure 4.3: Part 1 - Outer and inner wall contours of CT slices extracted by GVF snake.
(a,c) Outer wall contours (green). (b,d) Inner wall contours (red).
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(a) (b)

(c) (d)

(e) (f)

Figure 4.4: Part 2 - Outer and inner wall contours of CT slices extracted by GVF snake.
(a,c,e) Outer wall contours (green). (b,d,f) Inner wall contours (red). Note that the inner
wall contours overlap with the outer wall contours at areas where the walls are thin.
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Figure 4.5: A stack of 2D outer wall contours.

between adjacent CT slices is lost. Hence, the next stage in the 3D wall model construction

is the construction of the 3D wall surfaces by making use of a 3D generic surface mesh

model.

4.1.1 Active Contours (Snakes)

The original snake was first introduced by Kass, Witkin and Terzopoulos in 1987 [KWT87].

The snake model represents a contour v parametrically as

v = v(s) = (x(s), y(s)), 0 ≤ s ≤ 1 (4.1.1)

The snake is formulated as an energy-minimizing contour controlled by two types of energies:

1. Internal energy which enforces smoothness constraint.

2. Image energy which attract the contour to the desired features like the edges.

The internal energy, Eint, composes of a first-order term controlled by α(s) and a second-

order term controlled by β(s) (Equation 4.1.2). α(s) characterizes the stretching while β(s)



36

characterizes the bending of the contour.

Eint =
1
2
(α(s)|v′(s)|2 + β(s)|v′′(s)|2) (4.1.2)

The image forces that attract the snake are the edges in the input images. The resultant en-

ergy from the edges are denoted by Eedge. Therefore, the image energy, Eimage, corresponds

to Eedge which will be weighted appropriately by a negative weight, −wedge to attract the

snake towards the edges.

Eimage = −wedgeEedge (4.1.3)

Therefore, the total energy of the snake, Esnake is the integral of the sum of the internal

energy, Eint, and the image energy, Eimage, in Equations 4.1.2 and 4.1.3.

Esnake =
∫ 1

0
Eint(v(s)) + Eimage(v(s)) ds (4.1.4)

When Esnake is minimized [KWT87], the snake has snapped onto the desired feature.

4.1.2 Gradient Vector Flow (GVF)

GVF [XP98] is created to overcome two key shortcomings of the original snake formulation

namely, poor convergence to concave boundaries (Figure 4.6) and sensitivity to initialization

respectively. GVF is computed as a diffusion of the gradient vectors, ∇E, normal to the

edges of a gray-level edge-map, E(x, y), derived from the image, I(x, y). The GVF creates

forces to attract the snake towards the edges of concave areas (Figure 4.7).

Fewer initialization points are needed to run the GVF snake as compared to the original

snake (Figure 4.8). An accurate outline of the femur can be obtained using the GVF snake

(Figure 4.8(c)) whereas it is difficult for the traditional snake to snap onto the concave

structure at the femoral neck (Figure 4.8(b)).

4.2 Construction of 3D Outer Wall Surface

After extracting the 2D outer wall contours, this stage makes use of a generic 3D surface

mesh model to construct the 3D outer wall surface. The 3D outer wall surface is constructed

as the 3D envelop of the stack of 2D outer wall contours extracted by registering the
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(a) (b) (c)

Figure 4.6: Behaviour of traditional snake. (a) Convergence of contour. (b) Traditional
potential force. (c) Close-up at concavity: no force to attract the snake towards the bottom.
(Adapted from [XP98].)

(a) (b) (c)

Figure 4.7: Behaviour of the GVF snake. (a) Convergence of contour. (b) GVF external
force. (c) Close-up at concavity: forces exist to attract the snake towards the bottom.
(Adapted from [XP98].)
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(a) (b) (c)

Figure 4.8: Comparison of the performance of the traditional and GVF snakes. (a) Initial-
ization of the snake. (b) The traditional snake result. (c) The GVF snake result. (Adapted
from [TCL+].)

generic 3D surface mesh model to the stack of 2D contours. First, an optimal similarity

transformation is computed using Iterative Closest Point (ICP) [BM92b] to scale, translate,

and rotate the 3D surface model to globally align to the stack of outer wall contours. The

main ideas behind ICP are:

Given two sets of 3D points M and O

1. For every point pi in M , find the closest point p′k in O using k-d tree.

2. Find the similarity transformation that best maps pi to p′k.

3. Apply that transformation to all points in M .

4. Iterate above three steps until convergence.

Although simple, the algorithm works quite effectively when given a good initial estimate.

The distance function used in the first step is the Euclidean distance. Given a point pi in

M , the closest point p′k in O to pi satisfies

d(pi, p
′
k) = min

p′j∈O
d(pi, p

′
j) (4.2.1)
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where d is the Euclidean distance function.

Let f(pi) denote the closest point in O to pi where f is the closest point function. Therefore,

each point pi in M is matched to a point f(pi) in O. Registration is performed with point

correspondence to find the best similarity transformation that register M with O. The error

function is given by

E(t) =
∑

pi(t)∈M(t)

[s(t)R(t)pi(t) + T (t)− f(pi(t))]2 (4.2.2)

where s, R and T are the scaling, rotation and translation respectively. These steps are

repeated until E(t) or E(t)−E(t− 1) is small enough. The registered deformed 3D model

then becomes the 3D outer wall surface.

In principle, the envelop of the outer wall contours can also be computed using existing

algorithms such as “balloon” (3D version of snake) and level set method [Set96]. However,

in practice, these algorithms are not suitable for this problem. The balloon algorithm

requires the inversion of an n×n matrix where n is the number of points in the mesh,

which is computationally very expensive for large n. On the other hand, the 3D surface

deformed by the level set method tends to be too flexible and can easily fold into the gaps

between slices, especially when the slice thickness is large. Therefore, it is computationally

more efficient and robust to deform the 3D mesh model using ICP as discussed above. In

this way, the deformed model still retains the overall shape of the original model, implicitly

imposing shape constraint on the entire model.

Both correspondences from the contours to the mesh model (Figure 4.9) and from the mesh

model to the contours (Figure 4.10) are used in the ICP registration. The registration

results from using these two correspondences are comparable, and hence either result can

be used to form the outer wall surface and to refine the extracted inner wall contours.

4.3 Construction of 3D Inner Wall Surface

3D inner wall surface is constructed as the 3D envelop of the stack of 2D inner wall contours.

The algorithm is similar to that used for constructing 3D outer wall surface except that

the minimum wall thickness constraint is imposed. This is required because the inner and

outer wall contours are extracted separately without any constraint between them. As a

result, when the wall of the bone is very thin as at the upper and lower extremities of the
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(a)

(b)

(c)

Figure 4.9: ICP registration of extracted outer wall contours (blue) to 3D mesh model (red).
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(a)

(b)

(c)

Figure 4.10: ICP registration of 3D mesh model (red) to extracted outer wall contours
(blue).
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Figure 4.11: A polygon and one of its two normal vectors.

femur, the two contours may overlap and cross over (Figures 4.2(g) and 4.4). The constraint

ensures that the inner wall surface always lie inside the outer wall surface.

The algorithm for constructing 3D inner wall surface is as follows:

1. Deform the outer wall surface by moving each mesh point inward by a constant amount

equal to the minimum wall thickness w. Call the deformed surface the initial inner

wall surface.

2. For each CT slice, determine the inner wall contour points that satisfy the minimum

wall thickness constraint.

3. Interpolate the inner wall contours to form the inner wall surface.

Step 1 is performed by deforming the 3D outer wall surface obtained in Section 4.2 such

that each point pi is moved to p′i defined as the point on the surface normal ui in the inward

direction (Figure 4.11) and at a distance w from pi. The outer wall surface deformed in

this manner becomes the initial inner wall surface.

The initial inner wall surface lies strictly inside the outer wall surface. But, parts of the

inner wall contour extracted using snake algorithm may lie outside the initial inner wall
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Figure 4.12: Refined inner wall contour that lies strictly within the outer wall contour. For
each inner wall contour point q′j on the extracted snake contour (dashed red), the closest
corresponding points pk and qi on the outer wall surface (solid green) and initial inner wall
surface (dashed green) are found respectively. The point further from pk is chosen to be
the refined inner wall contour point q∗j .

surface. Step 2 resolves this problem by choosing the points that are further from the outer

wall as the refined inner wall contour points (Figure 4.12):

For each inner wall contour point q′j of each CT slice,

a. Find the closest point qi on the initial inner wall surface and the closest point pk on

the outer wall surface.

b. Determine whether q′j or qi is further from pk.

c. Use the point further from pk as the refined inner wall contour point q∗j .

Results of this refinement stage show that a minimum wall thickness of the 3D wall model

is maintained (Figure 4.13). More examples at of other parts of the femur bone are shown

(Figures 4.14 and 4.15).

After determining the refined inner wall contour points q∗j , the final wall contours are then

stacked up accordingly (Figure 4.16). Step 3 linearly interpolates the refined inner wall
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(a) (b)

(c) (d)

Figure 4.13: Refinement of the inner wall contours. (a, b) Extracted wall contours. (c,d)
Refined wall contours.

contours to form the inner wall surface.

4.4 Conversion to Hybrid 3D Model

The final stage converts the 3D wall surfaces to a hybrid 3D wall model. First, a minimum

bounding volume of the 3D wall surfaces is determined. The volume is discretized into

square voxels, and values representing x-ray attenuation coefficients are assigned. The

voxels outside the outer wall surface and inside the inner wall surface are assigned zero

values. The voxels between the inner and outer wall surfaces are assigned a constant non-

zero value by flood-filling. 4-way flood-fill is used because the 8-way flood-fill will leak

through slopes of one pixel thick (Figure 4.17). The cross-sections of the 3D wall model are

shown (Figure 4.18).

Due to the thick shaft wall, shaft region in the DRWR is very bright and obscures the shape

features near it (Figure 4.19). So, a refinement process can be applied as follows. If the

sum of the voxel values in a small local volume centered at voxel v exceeds a pre-defined
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(a) (b)

(c) (d)

Figure 4.14: Part 1 - Comparison of GVF extracted and refined contours. (a,c) GVF
extracted contours (green solid and red dashed). (b,d) Refined inner wall contours (green
and red solid).
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(a) (b)

(c) (d)

(e) (f)

Figure 4.15: Part 2 - Comparison of GVF extracted and refined contours. (a,c,e) GVF
extracted contours (green solid and red dashed). (b,d,f) Refined inner wall contours (green
and red solid). The refinement has removed the overlapping of the outer and inner wall
contours.
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(a) (b)

(c) (d)

Figure 4.16: Stacks of final outer and inner wall contours. (a, c) Stack of outer wall contours
(green). (b, d) Stack of refined inner wall contours (red).
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Figure 4.17: Both blue pixels are neighbours in the 8-way flood-fill, resulting in leakage out
of the one-pixel thick slope (denoted in black).

threshold, voxel v is assigned a very small value. This normalization process lowers the

voxel values of the shaft region without changing the voxel values at the other parts.

To generate DRWR with smooth edges, anti-aliasing should be applied to the voxels at

the wall surfaces. In the current implementation, a simple approximation is adopted by

Gaussian smoothing the voxel values in 2D (Figure 4.18). Gaussian smoothing is a filter

that uses a normal distribution, also called Gaussian distribution, for calculating the trans-

formation to apply to each pixel in an image (Figure 4.20). The Gaussian distribution in

1D is given by

G(x) =
1√

2πσ2
e−x2/(2σ2) (4.4.1)

The 2D Gaussian distribution is given by

G(x, y, z) =
1

2πσ2
e−(x2+y2)/(2σ2) (4.4.2)

Each voxel value is a weighted average of its neighborhood. The voxel at the center of the

Gaussian receives the heaviest weight, and the further the distance of the neighboring voxels

to the center voxel, the smaller the weights assigned to them. This results in a smoothing

that preserves boundaries and edges better than other more uniform smoothing filters.
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(a) (b)

(d) (e)

(f) (g)

Figure 4.18: Cross-sections of the 3D wall model.
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Figure 4.19: Shape features obscured by overly bright shaft region in DRWR.

Figure 4.20: 1D Gaussian distribution with mean = 0 and σ = 1.



Chapter 5

Rendering of DRWR

The standard rendering technique used to generate DRRs involve conventional ray casting

which simulates the actual x-ray imaging process. Time efficiency is not an issue in this

case because hardware acceleration of the rendering algorithm is applied. The accuracy

of the algorithm is of more importance. Therefore, the conventional ray casting technique

without any optimization is the choice here.

5.1 The Ray Casting Technique

The x-ray interactions involved in diagnostic x-ray imaging are as mentioned earlier in

Section 2.2. Each ray starts at the radiation source P0, and passes through space to a

particular point on the imager P3 (Figure 5.1). P1 and P2 represent the points at which the

ray enters and exits the volumetric model. The total attenuation of the radiation incident

on each point on the imager can be calculated by summing up the ray attenuation along

the line joining that point and the radiation source.

Assume that the position and orientation of the volume is given by a vector γ. The synthetic

x-ray image is basically produced by considering each pixel independently and computing

the log total attenuation along the ray which traces from the corresponding point on the

surface of the imager back to the x-ray source. This process comprises four steps as follows:

1. Select a point on the imager P3 which corresponds to the center of the current pixel.

51
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Figure 5.1: Path of x-ray from the source to the imager.

2. Compute the ray which connects P3 to the x-ray source P0.

3. Find points P1 and P2 at which the ray enters and exits the CT volume. This can be

done by first creating a bounding box around the CT volume. P1 and P2 can then

be determined as the intersection points of the ray equation with the planes of the

bounding box. Note that these points depend on γ, P0 and P3.

4. Perform summation along the length of the computed ray R(P0, P3). The quantity

integrated is the linear attenuation coefficient at each point.

When performing the last step, the linear attenuation coefficient of air should be used for

points outside the volume. Therefore, the log total attenuation UT along the ray R(P0, P3)

from P0 to P3 will be

UT (R(P0, P3)) = ‖P1 − P0‖µ0 + ‖P3 − P2‖µ0 + U(P1, P2) (5.1.1)

U(P1, P2) =
∑

PεR(P1,P2)

µ(P ) (5.1.2)

The constants µ0 and µ(P ) are the linear attenuation coefficient of air and linear attenuation

coefficient derived from the 3D wall model’s intensity value at point P respectively.
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For nearly all practical cases, µ0 is equal to zero [LaR01]. Therefore, Equation 5.1.1 becomes

UT (R(P0, P3)) = U(P1, P2) =
∑

PεR(P1,P2)

µ(P ) (5.1.3)

The 3D wall model is fixed while the x-ray source and image plane are rotated and trans-

lated for generating DRWRs from varying viewpoints, using the above-mentioned algorithm.

This is different from Larose’s volume rendering algorithm whereby he has implemented an

additional 4D data structure called the Transgraph for software speedup [LaR01]. Details

are already discussed in related work (Section 3.1). Software speedup is not implemented

in this thesis because the ray-casting technique can be accelerated via hardware as follows,

which will greatly improve the performance of the algorithm.

5.2 Hardware Acceleration by GPU

The ray-casting method described in the previous section can be hardware-accelerated by

the Graphics Processing Unit (GPU) to generate DRWR. In the current implementation by

our project team member [Cha06], an AMD Athlon(tm) 64 Processor, CPU 2.04 GHz with

1GB of RAM and an Nvidia GeForce 7600GS Sonic graphics card with G73 GPU is used.

The Cg language is used to code the GPU shader programs while C++ and OpenGL are used

to organize the data pipeline in the CPU. The whole ray-casting process is encapsulated in

the GPU. This implementation takes advantage of the new characteristics of the G73 GPU,

such as reading texture data in vertex programs and supporting longer lengths for shader

programs, to implement volume rendering. With GPU implementation, the generation of

DRWRs at varying viewpoints can be achieved in real-time.

Using the above system, a 512 × 512 DRWR is rendered via software ray-casting im-

plemented in Java. Another DRWR is hardware-rendered using the GPU-based volume

rendering. The DRWRs rendered by both methods are comparable in terms of image qual-

ity (Figure 5.2). The respective execution times are also shown below in Table 5.1. The

time taken to render a DRWR from one viewpoint using the software approach needs an

average of 130.6s which is very slow if used for registration purposes. On the other hand,

the GPU-based volume rendering renders each pose at interactive rate of 0.324s on the

average which is about 400 times faster. Hence, the GPU-based volume rendering is chosen
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(a) (b)

Figure 5.2: Comparison of (a) software-rendered DRWR and (b) GPU-rendered DRWR.

Table 5.1: Comparison of execution times of both software and GPU-based ray-casting

Execution times ti (sec) Mean Standard Deviation
t1 t2 t3 t4 t5 t̄ σ

Software 123 126 133 146 125 130.60 8.41
GPU 0.316 0.333 0.299 0.252 0.418 0.32 0.05

to generate the DRWRs of the 3D wall model because of the remarkable improvement in

time efficiency.

For comparison, the trilinearly-interpolated isotropic CT volume was obtained and DRR

of the volume was also synthesized. Figure 5.3(c) shows that the shape features in the

conventional DRR are blurred and obscured by the trabeculae. The solid-wall DRWR

(Figure 5.3(b)) shows clearer shape features than the DRR but the bright shaft region still

obscures some features around it. The hollow-wall DRWR (Figure 5.3(e)) obtained after

normalization, as described in Section 4.4, shows the clearest and most distinctive shape

features. The DRWRs are accurate in the sense that the position and structures of the shape

features are accurately reproduced. The absolute intensities are not important because the

aim is to highlight only the shape features in the DRWR without the other irrelevant details

as in x-ray or DRR.
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(a) (b) (c)

(d) (e)

Figure 5.3: Comparison of results. (a) X-ray image. (b) Solid-wall DRWR. (c) Conventional
DRR. (d) Intensity gradient image of (a). (e) Hollow-wall DRWR.
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In practice, the solid-wall DRWR can be directly registered to an x-ray image (Figure 5.3(a)).

On the other hand, the hollow-wall DRWR should be registered to an x-ray image’s intensity

gradient image (Figure 5.3(d)) because they are similar in image characteristics.

Weighting is often used in image comparison to emphasize areas of importance. For ex-

ample, Larose et al. [LCJ+00] used a local semi-normalized correlation measure for image

comparison. In contrast, weighting is not necessary for DRWR because the shape features

are already emphasized in the DRWR, especially the hollow-wall DRWR.



Chapter 6

Evaluation and Comparison

This chapter focuses on the experiments carried out to address the two main objectives of

this thesis. The first objective is to evaluate the viability of using DRWRs in registration.

The next objective is to compare the degree of match of the solid-wall DRWR to x-ray

image with that of both the conventional DRR and the hollow-wall DRWR.

6.1 Viability of using DRWR in registration

The data used in this experiment includes the dry femur from Singapore General Hospital

(SGH), its 3D mesh model and its CT images (also provided by SGH). The 3D surface mesh

model (Figure 6.1) was captured by a project team member by scanning a dry femur using

the Minolta 3D laser scanner. Twelve different views of the femur were captured by the

scanner, and merged using the software, Polygon Editing Tool, provided by Minolta. The

3D mesh model of the femur contains approximately 142,000 points and 286,000 triangles.

For algorithmic efficiency, the 3D mesh model was down-sampled by reducing the number of

points without significant loss of geometry of the model. The dry femur was also scanned in

SGH to produce a CT volume with a slice thickness of about ten pixels (3mm) in the image

plane. When stacked in an isotropic manner, only one-tenth of the slices were present.

Given the x-ray image of the dry femur taken at a particular pose, a DRWR at a similar pose

is rendered (Figure 6.2). The pose parameters of the DRWR are 132◦, 2◦ and 96◦ about the

x, y and z axes respectively. More DRWRs are taken at varying poses, changing only one

57
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Figure 6.1: 3D surface mesh model of a dry femur at varying viewpoints.

(a) (b)

Figure 6.2: X-ray and solid-wall DRWR images of the dry femur. (a) X-ray image. (b)
Solid-wall DRWR.
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parameter at a time. These DRWRs are then compared to the x-ray image shown in Figure

6.2(a) using three metrics written in Matlab code for determining the degree of match:

the Root Mean Square (RMS) of the difference (Equation 6.1.1), the Mutual Information

(MI) (Equation 6.1.2) and the Variance-weighted Local Normalized Correlation (VLNC)

(Equation 6.1.3) used by Larose [LCJ+00]. Given two 2D images I0 and I1 where I1 is the

control image, the RMS value is given by:

RMS(I0, I1) =

√√√√ 1
m× n

m∑

i=1

n∑

j=1

(I0(i, j)− I1(i, j))2 (6.1.1)

Similarly, the MI value [PMV03] will be:

MI(I0, I1) = H(I1)−H(I1|I0) (6.1.2)

where H(I) measures the entropy of image I.

Lastly, the VLNC value is computed as:

V LNC(I0, I1) =

∑
pεQ C(I1, I1, P (p)) ∗NC(I0, I1, P (p))∑

pεQ C(I1, I1, P (p))
(6.1.3)

where the function C(I1, I1, P (p)) measures the variance of the control image within the

neighbourhood P (p).

C(Ii, Ij , P (p)) =
1

|P (p)|
∑

qεP (p)

Ii(q)Ij(q)− 1
|P (p)|2

∑

qεP (p)

Ii(q)
∑

qεP (p)

Ij(q) (6.1.4)

Function NC(I0, I1, P ) calculates the normalized correlation coefficient between the region

P in the two images.

NC(I0, I1, P ) =

∑
pεP I0(p)I1(p)− 1

|P |
∑

pεP I0(p)
∑

pεP I1(p)
√

(
∑

pεP I0(p)2 − 1
|P |(

∑
pεP I0(p))2)(

∑
pεP I1(p)2 − 1

|P |(
∑

pεP I1(p))2)

(6.1.5)

From all three sets of graphs (Figures 6.3 - 6.5), it is clear that the registration will converge

and there is a clear maxima or minima, despite using three very different functions to

measure the degree of match. This shows the viability of using DRWRs for registration.

Local maxima are observed in Figure 6.5(b), but the values are low compared to the global

maxima, and can be handled with a robust optimization algorithm.
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Figure 6.3: RMS degree of match curves. (a) Translation along x-axis. (b) Translation
along y-axis. (c) Rotation about x-axis. (d) Rotation about y-axis. (e) Rotation about
z-axis.
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Figure 6.4: MI degree of match curves. (a) Translation along x-axis. (b) Translation along
y-axis. (c) Rotation about x-axis. (d) Rotation about y-axis. (e) Rotation about z-axis.
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Figure 6.5: VLNC degree of match curves. (a) Translation along x-axis. (b) Translation
along y-axis. (c) Rotation about x-axis. (d) Rotation about y-axis. (e) Rotation about
z-axis.
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(a) (b)

Figure 6.6: DRR and hollow-wall DRWR images of the dry femur. (a) Conventional DRR.
(b)Hollow-wall DRWR.

6.2 Comparison of solid-wall DRWR, conventional DRR and

hollow-wall DRWR

To make comparison among the solid-wall DRWR, the DRR and the hollow-wall DRWR,

the DRR and the hollow-wall DRWR at the same pose are also rendered (Figure 6.6).

Similarly, more images are taken at varying poses and the degree of match between each

model and the x-ray image are measured using the three functions (Figures 6.7 - 6.11).

Of the three models, local maxima are observed in only one of the degree of match graphs

of the solid-wall DRWR (Figure 6.8(h)) whereas local maxima are observed more often in

these graphs of the other two models. This shows that the solid-wall DRWR is more robust

than the conventional DRR and hollow-wall DRWR. Therefore, the solid-wall DRWR is

the best performer. The hollow-wall DRWR performs below expectation despite being a

variant of the solid-wall DRWR. However, it had already been suggested in Section 5.2 that

the hollow-wall DRWR may be more suited to an edge-based similarity function.



64

−20 −15 −10 −5 0 5 10 15 20
20

25

30

35

40

45

50

55
DRR − RMS

Translation along x−axis

R
M

S
 V

al
ue

−20 −15 −10 −5 0 5 10 15 20
20

25

30

35

40

45

50

55
Solid−wall DRWR − RMS

Translation along x−axis

R
M

S
 V

al
ue

−20 −15 −10 −5 0 5 10 15 20
20

25

30

35

40

45

50

55
Hollow−wall DRWR − RMS

Translation along x−axis

R
M

S
 V

al
ue

(a) (b) (c)

−20 −15 −10 −5 0 5 10 15 20
0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

1.1
DRR − MI

Translation along x−axis

M
I V

al
ue

−20 −15 −10 −5 0 5 10 15 20
0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

1.1
Solid−wall DRWR − MI

Translation along x−axis

M
I V

al
ue

−20 −15 −10 −5 0 5 10 15 20
0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

1.1
Hollow−wall DRWR − MI

Translation along x−axis

M
I V

al
ue

(d) (e) (f)

−20 −15 −10 −5 0 5 10 15 20

−0.2

−0.1

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8
DRR − VLNC

Translation along x−axis

V
LN

C
 V

al
ue

−20 −15 −10 −5 0 5 10 15 20

−0.2

−0.1

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8
Solid−wall DRWR − VLNC

Translation along x−axis

V
LN

C
 V

al
ue

−20 −15 −10 −5 0 5 10 15 20

−0.2

−0.1

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8
Hollow−wall DRWR − VLNC

Translation along x−axis

V
LN

C
 V

al
ue

(g) (h) (i)

Figure 6.7: Comparison of the degree of match curves for translation along x-axis.
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Figure 6.8: Comparison of the degree of match curves for translation along y-axis.
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Figure 6.9: Comparison of the degree of match curves for rotation around x-axis.
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Figure 6.10: Comparison of the degree of match curves for rotation around y-axis.
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Figure 6.11: Comparison of the degree of match curves for rotation around z-axis.



Chapter 7

Conclusion

Registration is an essential component of CAS. In particular, 3D-2D registration is rapidly

gaining in importance as more and more medical applications make use of it. However,

the two approaches to 3D-2D registration, intensity-based and geometry-based approaches,

have their shortcomings. A hybrid approach would be to combine the strengths of these

two approaches while alleviating their weaknesses. The first step would be the design of

a hybrid 3D model that incorporates both intensity and shape information. This is the

DRWR, a hybrid 3D wall model that has been proposed for intensity-based registration to

x-ray images in this thesis. The inner and outer wall surfaces capture the surface shape

whereas the interior between the wall surfaces captures intensity information. Noises and

irrelevant features such as the trabeculae are removed so that relevant features will not be

obscured.

The 3D wall model is constructed using a 3D surface mesh model and CT volume. The

generation of DRWR is done by simulating the attenuation of X-rays through the 3D wall

model. Real-time rendering is made possible by hardware acceleration. When the DRWR

of the wall model is synthesized, high-contrast features similar to edges and contours are

produced only by the wall without the noise and trabeculae. Therefore, it produces clearer

features and less noise than conventional DRR and intensity gradient maps. The relevant

features are naturally highlighted without the need for feature extraction. The DRWR can

be registered to an x-ray image or its intensity gradient image using intensity-based method

without feature extraction. The results show that the DRWR is indeed a viable model for

registration and can outperform the standard volumetric model in terms of robustness. This
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will translate to higher accuracy in registration, and thus improve the chances of success in

medical procedures.

7.1 Future Work

Intensity-based similarity functions are used to evaluate the performance of these three

models in this thesis. The next step would be to evaluate these models’ performance using

geometric-based functions. Another possible future work is to test the DRWR on real femur

x-ray images. Concurrently, there is a need to derive a DRWR-specific similarity function

which can be used to improve registration results.
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