75 research outputs found

    Probability Transform Based on the Ordered Weighted Averaging and Entropy Difference

    Get PDF
    Dempster-Shafer evidence theory can handle imprecise and unknown information, which has attracted many people. In most cases, the mass function can be translated into the probability, which is useful to expand the applications of the D-S evidence theory. However, how to reasonably transfer the mass function to the probability distribution is still an open issue. Hence, the paper proposed a new probability transform method based on the ordered weighted averaging and entropy difference. The new method calculates weights by ordered weighted averaging, and adds entropy difference as one of the measurement indicators. Then achieved the transformation of the minimum entropy difference by adjusting the parameter r of the weight function. Finally, some numerical examples are given to prove that new method is more reasonable and effective

    Information Volume of Mass Function

    Get PDF
    Given a probability distribution, its corresponding information volume is Shannon entropy. However, how to determine the information volume of a given mass function is still an open issue. Based on Deng entropy, the information volume of mass function is presented in this paper. Given a mass function, the corresponding information volume is larger than its uncertainty measured by Deng entropy. In addition, when the cardinal of the frame of discernment is identical, both the total uncertainty case and the BPA distribution of the maximum Deng entropy have the same information volume. Some numerical examples are illustrated to show the efficiency of the proposed information volume of mass function

    A systematic review on multi-criteria group decision-making methods based on weights: analysis and classification scheme

    Get PDF
    Interest in group decision-making (GDM) has been increasing prominently over the last decade. Access to global databases, sophisticated sensors which can obtain multiple inputs or complex problems requiring opinions from several experts have driven interest in data aggregation. Consequently, the field has been widely studied from several viewpoints and multiple approaches have been proposed. Nevertheless, there is a lack of general framework. Moreover, this problem is exacerbated in the case of experts’ weighting methods, one of the most widely-used techniques to deal with multiple source aggregation. This lack of general classification scheme, or a guide to assist expert knowledge, leads to ambiguity or misreading for readers, who may be overwhelmed by the large amount of unclassified information currently available. To invert this situation, a general GDM framework is presented which divides and classifies all data aggregation techniques, focusing on and expanding the classification of experts’ weighting methods in terms of analysis type by carrying out an in-depth literature review. Results are not only classified but analysed and discussed regarding multiple characteristics, such as MCDMs in which they are applied, type of data used, ideal solutions considered or when they are applied. Furthermore, general requirements supplement this analysis such as initial influence, or component division considerations. As a result, this paper provides not only a general classification scheme and a detailed analysis of experts’ weighting methods but also a road map for researchers working on GDM topics or a guide for experts who use these methods. Furthermore, six significant contributions for future research pathways are provided in the conclusions.The first author acknowledges support from the Spanish Ministry of Universities [grant number FPU18/01471]. The second and third author wish to recognize their support from the Serra Hunter program. Finally, this work was supported by the Catalan agency AGAUR through its research group support program (2017SGR00227). This research is part of the R&D project IAQ4EDU, reference no. PID2020-117366RB-I00, funded by MCIN/AEI/10.13039/ 501100011033.Peer ReviewedPostprint (published version

    The Pseudo-Pascal Triangle of Maximum Deng Entropy

    Get PDF
    PPascal triangle (known as Yang Hui Triangle in Chinese) is an important model in mathematics while the entropy has been heavily studied in physics or as uncertainty measure in information science. How to construct the the connection between Pascal triangle and uncertainty measure is an interesting topic. One of the most used entropy, Tasllis entropy, has been modelled with Pascal triangle. But the relationship of the other entropy functions with Pascal triangle is still an open issue. Dempster-Shafer evidence theory takes the advantage to deal with uncertainty than probability theory since the probability distribution is generalized as basic probability assignment, which is more efficient to model and handle uncertain information. Given a basic probability assignment, its corresponding uncertainty measure can be determined by Deng entropy, which is the generalization of Shannon entropy. In this paper, a Pseudo-Pascal triangle based the maximum Deng entropy is constructed. Similar to the Pascal triangle modelling of Tasllis entropy, this work provides the a possible way of Deng entropy in physics and information theory

    Study on risk control of water inrush in tunnel construction period considering uncertainty

    Get PDF
    Water inrush risk is a bottleneck problem affecting the safety and smooth construction of tunnel engineering works, so the risk control of water inrush is important, however, geological uncertainty and artificial uncertainty always accompany tunnel construction. Uncertainty will not only affect the accuracy of water inrush risk assessment results, but also affect the reliability of water inrush risk decision-making results. How to control the influence of uncertainty on water inrush risk is key to solving the problem of water inrush risk control. Based on the definition of improved risk, a risk analysis model of water inrush based on a fuzzy Bayesian network is constructed. The main factors affecting the risk of water inrush are determined by sensitivity analysis, and possible schemes in risk control of water inrush are proposed. Based on the characteristics of risk control of water inrush in a tunnel, a multi-attribute group decision-making model is constructed to determine the optimal water inrush risk control scheme, so that the optimal scheme for reducing uncertainty in risk control of water inrush is determined. Finally, this system is applied to Shiziyuan Tunnel. The results show that the proposed risk control system for reducing uncertainty of water inrush is efficacious. First published online 21 August 201
    corecore