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Abstract. Water inrush risk is a bottleneck problem affecting the safety and smooth construction of tunnel engineering 
works, so the risk control of water inrush is important, however, geological uncertainty and artificial uncertainty always 
accompany tunnel construction. Uncertainty will not only affect the accuracy of water inrush risk assessment results, but 
also affect the reliability of water inrush risk decision-making results. How to control the influence of uncertainty on water 
inrush risk is key to solving the problem of water inrush risk control. Based on the definition of improved risk, a risk analy-
sis model of water inrush based on a fuzzy Bayesian network is constructed. The main factors affecting the risk of water 
inrush are determined by sensitivity analysis, and possible schemes in risk control of water inrush are proposed. Based on 
the characteristics of risk control of water inrush in a tunnel, a multi-attribute group decision-making model is constructed 
to determine the optimal water inrush risk control scheme, so that the optimal scheme for reducing uncertainty in risk 
control of water inrush is determined. Finally, this system is applied to Shiziyuan Tunnel. The results show that the pro-
posed risk control system for reducing uncertainty of water inrush is efficacious. 

Keywords: water inrush risk, uncertainty, risk control system, fuzzy Bayesian network, multi-attribute decision making.

Satisfied

Introduction 

The importance of tunnel engineering for urban under-
ground space development and infrastructure construc-
tion in remote areas is self-evident. Tunnel construction 
is developing in the direction of large burial depths, longer 
tunnel lines, more complex geological conditions (high 
water pressure, high stress, karst topographies, etc.), and 
facing the challenges of water inrush, collapse, and rock 
bursts under such complex conditions (S. C. Li, Wu, Xu, 
& L. P. Li, 2017; Fraldi & Guarracino, 2010; Tang, Wang, & 
Zhang, 2010). Central and western China are typical areas 
where karst landforms and distribution of fault zones are 
developed and widespread. Water inrush accidents occur 
frequently during construction of various tunnels. It has 
become one of the most frequent geological disasters af-
fecting the construction of tunnels and causes significant 
economic loss, therefore, it is of practical engineering sig-
nificance to control water inrush risk and minimise the 
risk of water inrush during tunnel construction (Li et al., 
2013; Staveren, 2009).

Risk control mainly includes risk assessment and risk 
decision-making. Risk assessment is the basis of risk con-
trol, and its purpose is to provide reliable decision support 
information. Traditional risk is defined as the combination 
of the consequences of risk events and their probability of 
occurrence. The risk assessment of water inrush based on 
traditional risk definition is equivalent to the assessment 
considering the risk of water inrush alone (Kaplan & Gar-
rick, 1981; Ale, 2002; X. Li & Y. Li, 2014) tunnelling entails 
large-scale, complex geotechnical engineering operations. 
Geological uncertainty, artificial uncertainty, and model 
uncertainty always accompany tunnel construction. Due 
to the unreasonable disposition of uncertainty, risk con-
trol schemes may fail, which may lead to water inrush dis-
asters: risk control schemes may be too conservative thus 
resulting in a waste of human resources, time, and cost. 
Aven and Renn (2009) discuss the essence of risk based 
on problems in engineering application, and conclude 
that both risk and uncertainty should be considered in the  
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improved definition of risk. On the basis of the definition 
of improved risk, many scholars have proposed risk assess-
ment methods for water inrush considering uncertainty. 
For example, Wang, Jing, Yu, Su, and Luo (2017) estab-
lished a risk assessment model for water inrush in karst 
tunnels, and used the correlation coefficients therein to de-
scribe the uncertainty caused by random, fuzzy, and grey 
information. Hao, Rong, Ma, Fan, and Lu (2016) proposed 
an improved attribute recognition method based on Mon-
te Carlo technology to evaluate the uncertainty in the pro-
cess of risk analysis of tunnel water inrush, however, the 
aforementioned risk studies only describe the uncertainty 
in a qualitative manner, without considering artificial un-
certainty, and without the basis, and measures, to reduce 
the uncertainty.

The study on risk control related to tunnel engineer-
ing provides a reference for describing, quantifying, and 
reducing the impact of uncertainty in risk control of water 
inrush. Yang and Qiu (2005) proposed an expected utility-
entropy decision-making model (EU-E) to consider the 
effects of uncertainty. The risk attitude, expected conse-
quences, and information uncertainty of decision makers 
can be taken into account in this model, but the model 
lacks effective judgement criteria (Yang & Qiu, 2005; Fis-
cher & Kleine, 2007). Aiming at this problem in the EU-E 
model, Dong, Lu, Xia, and Xiong (2016) proposed an en-
tropy-hazard model, which uses the concept of tolerance 
cost to analyse and control the impact of uncertainty on 
risk, however, the computational efficiency of the model is 
low, and it is difficult to determine a reasonable scheme of 
uncertainty control. Xia, Xiong, Dong, and Lu (2017) and 
Xia, Xiong, Wen, Lu, and Dong (2018) conducted sensitiv-
ity analysis based on the entropy-hazard model to narrow 
the scope of alternatives offered, improve computational 
efficiency, and selected the optimal risk control scheme 
based on stochastic decision theory; however, because 
the mechanism of water inrush during tunnel construc-
tion is complex and there are many factors influencing it, 
determining the exact relationship between risk factors 
and the probability of water inrush disaster is difficult, so 
the above method cannot be directly applied. In addition, 
risk assessment and decision-making usually require the 
participation of expert groups. It is necessary not only to 
quantify the initial linguistic information of experts ac-
curately, but also to consider the subjective reliability of 
experts. In addition, a multi-attribute group decision-
making process is then needed to optimise the risk control 
scheme of tunnel water inrush by taking into account the 
evaluation information of multiple experts in cost, dura-
tion, and safety terms (Kahraman, Onar, & Oztaysi, 2015; 
Ying & Rui-Hua, 2008).

In view of the lack of an advanced theoretical system 
with which to reduce uncertainty in risk control of water 
inrush during tunnel construction, we propose a risk con-
trol system for water inrush during tunnel construction to 
reduce uncertainty. In Section 1, based on the characteris-
tics of water inrush risk during tunnel construction, com-
bined with the advantages of Bayesian network (BN) and 

MAGDM, the overall framework of water inrush risk con-
trol system to reduce uncertainty is proposed. In Section 2, 
the risk assessment theory based on Fuzzy Bayesian Net-
work (FBN) is introduced and the multi-attribute group 
decision-making theory for constructing this decision-
making system is established. In Section 3, taking Shiziyu-
an Tunnel of Chenglan Railway Section as the engineering 
background, we applied the risk control system of water 
inrush during tunnel construction, which was proposed in 
this paper, and verified the validity of the system, and last 
Section concludes.

1. Construction of water inrush risk control 
system 

Reasonable risk assessment not only needs to reflect all 
initial information objectively, but also needs to consider 
factors conducive to decision-making and reflect the level 
of trust in risk analysts. In view of the fact that the risk 
of water inrush during tunnel construction is influenced 
by many factors, dynamic updating of risk information, 
exchange and feedback, leads us to propose the use of a 
risk analysis method based on a BN. As a common tool 
for risk assessment, BNs have been widely used to solve 
practical problems such as diagnosis, prediction and risk 
management in large-scale engineering projects. It can not 
only make use of existing information for forward and 
backward reasoning, update dynamic information in real-
time, but also accurately determine the impact of differ-
ent factors on the evaluation results. It is often used in 
decision support system and is considered as an effective 
risk analysis tool in the field of underground engineer-
ing. In addition, due to the scarcity of data related to wa-
ter inrush disasters in tunnel engineering, it is important 
that a BN can effectively combine the characteristics of 
expert knowledge and empirical data, and has the ability 
to improve the model’s ability to deal with uncertainties 
through the fuzzification and imprecision of probability 
(Heckerman, Mamdani, & Wellman, 1995; Uusitalo, 2007; 
Špačková & Straub, 2012; Eleyedatubo, Wall, & Wang, 
2010). Risk control is essentially a dynamic balance be-
tween control cost and risk level. Based on the improved 
entropy-hazard model, the concept of tolerable cost can 
be used to determine a possible risk control scheme for 
water inrush, and determine whether, or not, the final 
risk control scheme after reducing the aforementioned 
uncertainty is reasonable. Under the conditions of cost 
limits, time limits, and safety requirements, this becomes 
a multi-attribute group decision-making problem: based 
on the analysis of different decision models and the char-
acteristics of water inrush risk control during tunnel con-
struction, we believe that a reasonable and reliable multi-
attribute group decision-making model must solve the 
following basic problems: 

1. Complete the description and quantification of un-
certain information. The processing of initial infor-
mation directly affects the construction of a decision 
model and the reliability of its results; 
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2. Provide a judgment of attribute weight under incom-
plete or insufficient decision information; 

3. Complete the aggregation and judgment of multi-
source attribute information. In recent years, the use 
of evidence reasoning to aggregate information has 
also attracted increasing attention (Liu, Liao, & Yang, 
2015); 

4. Consider the influence of decision maker subjectivity.
Based on the characteristics of water inrush risk dur-

ing tunnel construction, considering the advantages of 
BN applied to risk analysis of water inrush during tunnel 
construction and the four basic problems of multi-attrib-
ute group decision-making models, we proposed a risk 
control system for water inrush to reduce uncertainty as 
shown in Figure 1. The decision-making system for water 
inrush risk control to reduce uncertainty can be divided 
into two parts: a decision support system and a decision-
making system. First, we construct the risk analysis model 
for water inrush based on a BN, determine the risk fac-
tors that exert greatest influence on water inrush by way 
of a sensitivity analysis, and propose the possible uncer-
tainty control scheme. Then, based on the improved en-
tropy-hazard model, the tolerance cost shown in Figure 1 
is used to judge, in which the undetermined equilibrium 
coefficient α∈[0,1]  is used to indicate willingness to take 
measures to reduce uncertainty. If the relevant require-
ments are met, the corresponding preliminary risk warn-
ing will be carried out according to the risk assessment re-
sults determined by BN. To improve the decision-making 
quality of risk control of tunnel water inrush, based on the 
characteristics of tunnel engineering risk control, an in-
tuitive fuzzy number is used to describe the initial group 

decision-making information, and evidence theory is used 
to fuse information from different experts. Based on this 
triangular intuitive fuzzy multi-attribute decision-making 
model, a multi-attribute group decision-making model for 
risk control of tunnel water inrush is constructed, the op-
timal control scheme is finally determined, and the risk 
status is further clarified.

2. Analysis flow of water inrush risk control 
system 

To control, economically and effectively, the risk of water 
inrush during tunnel construction, a decision-making sys-
tem for risk control of water inrush to reduce uncertainty 
is established. The system can be further divided into a 
risk decision support system based on fuzzy Bayesian net-
work and a risk decision system based on multi-attribute 
group decision-making.

2.1. Risk decision support system based on a fuzzy 
Bayesian network 

BN mainly consists of directed acyclic graph (DAG) and 
related joint probability distribution (JPD). Building the 
Bayesian network model first requires construction of the 
DAG, which is a qualitative part of the model. There are 
two ways to determine the structure of the network: 

1. Structured learning, which requires data samples of 
all variables; 

2. Professional knowledge of the subject. 
The relationship between variables and their corre-

sponding states constitutes the quantitative part of Bayes-
ian network. Each root node is appended with a prior  

Figure 1. Risk control system for water inrush during tunnel construction considering uncertainty Unsatisfied

Sensitivity analysis and ratiocination
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probability table (PPT) and each non-root node is append-
ed with a conditional probability table (CPT) to repre-
sent the relationship between the variables. There are two 
methods to estimate these probability distributions: 

1. Parameter learning;
2. Expert judgment. 
In the traditional BN model, the probability of occur-

rence of root nodes is an exact value, but the uncertainty of 
geological information, artificial data, and the model is the 
most significant characteristic of risk analysis of water in-
rush during tunnel construction. Moreover, in many cases, 
it is not enough to support accurate probability analysis, so 
non-probabilistic methods have gradually come to be re-
garded as an important supplement to probabilistic meth-
ods. Fuzzy Set Theory (FST) was first proposed by Zadeh 
(1965) and attracted wide attention. The fusion model of 
BN and FST is applied to the water inrush risk control 
system during tunnel construction, which can provide ef-
fective information for the rapid diagnosis and control of 
causal factors of possible water inrush accidents. This anal-
ysis method based on fuzzy probability is called a fuzzy 
Bayesian network (FBN).

Generally, the attribute function ( )∈ [0,1 ]pF x


 is used 
to quantify the fuzzy variable X and the uncertain infor-
mation is transformed into a fuzzy number. However, it 
is usually difficult to give specific membership and non-
membership degrees in practical application. Therefore, 
improved interval intuitionistic fuzzy numbers and tri-
angular intuitionistic fuzzy numbers are proposed suc-
cessively (Atanassov, 1989; Chen & Han, 2018). Among 
them, triangular intuitionistic fuzzy numbers have at-
tracted more and more attention because they can give 
full consideration to affirmative, hesitant and negative be-
haviors when describing attribute information. Therefore, 
considering the convenience, reliability, and generality of 
calculation, triangular fuzzy numbers ( )=  ( , , )pF x a b c



 can 
be used, where a and c represent upper and lower bounda-
ries, and b represents the most probable value (Li et  al., 
2017). Fuzzy edge rules and fuzzy Bayesian rules can be 
expressed by the following formulae:

( ) ( ) ( )= = = ⊗ = =∑j i j iiP T t P X x P T t X x ; (1)

( )
( ) ( ) ( )
= = =

 = ⊗ = = ∅ =  ,
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i j i j

P X x T t

P X x P T t X x P T t  (2)

where T represents the leaf node, that is, the risk event, 
and X represents the root node. The construction of a risk 
decision support system based on FBN includes five steps, 
as shown in Figure 2.

Because different units and individuals are involved, 
although the basic objectives of risk control of water in-
rush during tunnel construction are the same, the focus 
of each party is different, and the theoretically feasible risk 
control scheme often has unsatisfactory effect in the ac-
tual process. Therefore, it is necessary to unify the views 
of all parties and formulate clear risk control objectives. 
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The ALARP principle (Melchers, 2001) can effectively 
integrate resources, take into account the interests of all 
parties, and unify the risk control objectives of tunnel wa-
ter inrush under the constraints of limited resources such 
as cost, time and operators. The greatest characteristic of 
ALARP is to adopt different risk control measures accord-
ing to different risk levels, and to achieve the best risk con-
trol effect by introducing benefit ratio. Therefore, we refer 
to the risk acceptability criterion (ALARP) to establish a 
risk early warning response mechanism for tunnel wa-
ter inrush, and classify the risk state of water inrush into 
four levels. It is also suggested that expert groups should 
be invited to participate in the formulation of risk control 
schemes or measures when the risk early warning of water 
inrush at levels III and IV is issued, as shown in Figure 2.

The risk decision support system based on FBN is 
shown in Figure 2. The identification of risk is mainly con-
ducted through preliminary analysis of the occurrence 
mechanism of tunnelling risk events, to identify poten-
tial risks, risk factors and their causal relationship, and to 
identify root nodes, intermediate nodes, and leaf nodes. 
Then the fault tree or event tree of risk events is construct-
ed and the Bayesian network structure of risk events is ob-
tained by mapping. Fuzzy probability evaluation mainly 
estimates the fuzzy probability of the root nodes by col-
lecting expert judgment information and fuzzification 
technology. Tunnelling risk control is a typical example of 
initial evaluation information scarcity and limited access 
to information. Language terminology is usually defined 
by group decision method; however, there are two main 
drawbacks in the process of fuzzy probability evaluation 
based on traditional group decision-making technology: 

1. Not taking into account both expert ability and sub-
jectivity;

2. Rough interval division (Zhang, Wu, Skibniewski, 
Zhong, & Lu, 2014).

For the two aforementioned problems, the pre-pro-
cessing of expert information is first carried out. Expert 
judgments (indicated by ζ) can affect reliability: for exam-
ple, project engineers with 30 years of work experience 
are more reliable than those with 5 years of work experi-
ence. The judgment ability level ζ mainly depends on pro-
fessional level and work experience, so experts’ judgment 
ability level is divided as shown in Table 1.

An expert’s subjective reliability level (indicated by ψ) 
affects their reliability, therefore, the subjective reliability 
is divided into five levels: {1, 0.9, 0.8, 0.7, 0.6}: the high-
er the score, the more reliable the judgement. The expert 
confidence index  can be determined by considering the 
expert’s judgment ability and subjective reliability level 
(Zhang, Skibniewski, Wu, Chen, & Deng, 2014):

f = ζ×ψ . (3)
To facilitate expert judgment, the fuzzy probability is 

usually divided into intervals and the corresponding lan-
guage terms are defined. In general, the smaller the inter-
val, the higher the precision of the estimated probabil-
ity, but too small an interval is not only unfavourable to  
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Figure 2. Flow chart through the risk decision support system based on a fuzzy Bayesian network

probability table (PPT) and each non-root node is append-
ed with a conditional probability table (CPT) to repre-
sent the relationship between the variables. There are two 
methods to estimate these probability distributions: 

1. Parameter learning;
2. Expert judgment. 
In the traditional BN model, the probability of occur-

rence of root nodes is an exact value, but the uncertainty of 
geological information, artificial data, and the model is the 
most significant characteristic of risk analysis of water in-
rush during tunnel construction. Moreover, in many cases, 
it is not enough to support accurate probability analysis, so 
non-probabilistic methods have gradually come to be re-
garded as an important supplement to probabilistic meth-
ods. Fuzzy Set Theory (FST) was first proposed by Zadeh 
(1965) and attracted wide attention. The fusion model of 
BN and FST is applied to the water inrush risk control 
system during tunnel construction, which can provide ef-
fective information for the rapid diagnosis and control of 
causal factors of possible water inrush accidents. This anal-
ysis method based on fuzzy probability is called a fuzzy 
Bayesian network (FBN).

Generally, the attribute function ( )∈ [0,1 ]pF x


 is used 
to quantify the fuzzy variable X and the uncertain infor-
mation is transformed into a fuzzy number. However, it 
is usually difficult to give specific membership and non-
membership degrees in practical application. Therefore, 
improved interval intuitionistic fuzzy numbers and tri-
angular intuitionistic fuzzy numbers are proposed suc-
cessively (Atanassov, 1989; Chen & Han, 2018). Among 
them, triangular intuitionistic fuzzy numbers have at-
tracted more and more attention because they can give 
full consideration to affirmative, hesitant and negative be-
haviors when describing attribute information. Therefore, 
considering the convenience, reliability, and generality of 
calculation, triangular fuzzy numbers ( )=  ( , , )pF x a b c



 can 
be used, where a and c represent upper and lower bounda-
ries, and b represents the most probable value (Li et  al., 
2017). Fuzzy edge rules and fuzzy Bayesian rules can be 
expressed by the following formulae:
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( )
( ) ( ) ( )
= = =

 = ⊗ = = ∅ =  ,

j j

i j i j

P X x T t

P X x P T t X x P T t  (2)

where T represents the leaf node, that is, the risk event, 
and X represents the root node. The construction of a risk 
decision support system based on FBN includes five steps, 
as shown in Figure 2.

Because different units and individuals are involved, 
although the basic objectives of risk control of water in-
rush during tunnel construction are the same, the focus 
of each party is different, and the theoretically feasible risk 
control scheme often has unsatisfactory effect in the ac-
tual process. Therefore, it is necessary to unify the views 
of all parties and formulate clear risk control objectives. 
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experts’ judgment, but also increases the difficulty of cal-
culation. In addition, many risk events in tunnelling are 
of the “low probability and high risk” disaster type, so the 
low probability interval should be encrypted. After com-
prehensive consideration, we adopt the method of 11 in-
terval divisions (Table 2).

In addition, only intervals   , k ka c  are often consid-
ered in the process of judging probability intervals by ex-
perts (ignoring the possibility of other intervals results 
in the loss of some information) and because of the large 
number of root nodes of water inrush risk events during 
tunnel construction, the accumulation of information loss 
in the calculation process may have a significant effect on 
the predicted results, therefore, we regard the confidence 
index f  of experts as the possibility of choosing the in-
terval   , k ka c . The possibility of other intervals being se-
lected is −f1 . Ajmani (2012) suggested that the probabil-
ity of occurrence of events tends to fluctuate around their 
expectations and gradually decreases as they move further 
from them:

−
−
=

+ −

= +

 − − f
× ≤ ≤ −

−


= θ =
 − − f × + ≤ ≤
 −


∑

∑

1
1

12
11

1

( ) 1 , 1 1
2( )

,
( ) 1 , 1 11

2( )

k k i
k

k jj

i

k i k

j kj k

a a
i k

a a

p i k
a a

k i
a a

. (4)

As shown in Figure 2, prior probabilities of root nodes 
at different risk levels need to be determined before fuzzy 
probability analysis, therefore, it is necessary to fuse the 
probabilistic intervals with different possibilities into a tri-
angular fuzzy number after obtaining the probability dis-
tribution associated with each expert. Assuming that there 
are S experts, the average probability of each probability 
interval being selected is:

==
∑

1

S

i
i

i

p
P

S
, (5)

where ip  is the possibility of each probability interval 

calculated according to Eqn (4). Using Eqn (5) to calcu-
late the probabilistic fuzzy numbers of different experts, 
combined with the confidence index  of each expert, ac-
cording to the operating rules between fuzzy numbers, 
the comprehensive fuzzy probabilities considering multi-
ple experts can be obtained. The operation rules between 
fuzzy numbers are as follows:

( )f = f f f1 , ,A a b c ; (6)

+ = + + +1 2 1 2 1 2 1 2( , , )A A a a b b c c  , (7)

where =1 1 1 1  ( , , )A a b c  and =2 2 2 2  ( , , ).A a b c

Fuzzy probability analysis mainly involves risk analy-
sis based on the functions of forward deductive reasoning, 
sensitivity analysis, and reverse fault diagnosis reasoning 
in the FBN model. Then, the fuzzy probability is convert-
ed to an exact value based on defuzzification technology. 
Finally, combined with the results of risk assessment, the 
sensitivity analysis of the root node is carried out as shown 
in the sensitivity formula in Figure 2. In the sensitivity for-
mula, T represents the risk state of leaf nodes, xi represents 
the risk influencing factors, and Qi represents the risk state 
of influencing factors. We then determine the most influ-
ential factors affecting the results of risk assessment, and 
further propose possible initial risk control programmes.

2.2. Risk decision support system based on a fuzzy 
Bayesian network 

In the process of risk control analysis of water inrush 
during tunnel construction as shown in Figure 1, prelimi-
nary risk warning is carried out according to the calcu-
lated results from the decision support system based on 
a fuzzy Bayesian network. When a high-level (level III or 
IV) risk early warning is issued, the expert group must 
be invited to the scene according to the risk acceptability 
criteria (ALARP) and the risk early warning mechanism, 
as shown in Figure 2. Working out a risk control plan with 
construction, design, supervisor, and owner, is a multi-
attribute group decision-making process.

 

Table 1. Experts’ judgment ability

Levels Descriptions ζ

I

1. Domain experts with more than 30 years’ working 
experience

2. Professors within the research field of tunnel 
construction.

1

II

1. Domain experts with 20–30 years’ working 
experience.

2. Associate Professors within the research field of 
tunnel construction.

0.9

III

1. Domain experts with 10–20 years’ working 
experience.

2. Assistant Professors within the research field of 
tunnel construction.

0.8

IV 1. Domain experts with 1–10 years’ working 
experience. 0.7

Table 2. Fuzzy probability interval division

Intervals 
(k)

Lower boundary 
(ak)

Mean 
(bk)

Upper boundary 
(ck)

1 0.0 0.005 0.01

2 0.01 0.03 0.05

3 0.05 0.075 0.10

4 0.10 0.15 0.20

5 0.20 0.25 0.30

6 0.30 0.35 0.40

7 0.40 0.45 0.50

8 0.50 0.55 0.60

9 0.60 0.65 0.70

10 0.70 0.775 0.85

11 0.85 0.925 1.0
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Assuming that K experts are involved in decision-
making, where kt  represents the kth expert. Assuming that 
there are m alternatives: { }= = … | 1, 2, ,iA a i m . Assuming 
that the decision attributes are n: { }= = … | 1, 2, ,jC c j n . 
Due to the influence of work experience and education-
al background, the reliability of experts is different, and 
the importance of corresponding experts is different, so 
the weight of experts is different in the process of multi-
attribute group decision-making. In engineering prac-
tice, it is generally believed that with the accumulation of 
educational background and work experience, individual 
judgment ability will become more and more mature and 
stable, and the level of judgment ability will be improved 
accordingly. Therefore, in the process of expert group in-
formation fusion, we determine the weight of experts ac-
cording to the level of experts’ judgment ability as shown 
in Table 1. The weights of experts under attribute jc  are 

{ }= λ = …| 1, 2, ,j
k k K , and < λ <0  1 k , 

=

λ =∑
1

1
K

k
k

. A risk 

decision-making system based on multi-attribute group 
decision-making is constructed as shown in Figure 3.

As shown in Figure 3, after preliminary warning based 
on risk assessment results, tolerance costs need to be cal-
culated according to hazard entropy, and the effect of sub-
jective factors of decision makers should be considered by 
utility theory (Blavatskyy, 2014). Firstly, the preliminary 
scheme is screened by tolerable cost considering util-
ity theory, and then the expert group is invited to make 
multi-attribute group decision considering cost, dura-
tion and safety.  For the multi-attribute decision-making 
problem of water inrush risk in tunnelling, much initial 
information cannot be quantified and can only be quali-
tatively described in linguistic terms. To quantify the 
fuzzy uncertain information, we construct an improved 
triangular intuitionistic fuzzy multi-attribute group de-
cision-making model based on triangular intuitionistic 
fuzzy numbers. The model can solve the problem that it 
is difficult to quantify the fuzzy uncertain information in 
the decision-making process of water inrush risk during 
tunnel construction, and improve the decision-making 
quality under uncertain conditions. The relationship be-
tween linguistic variables and triangular fuzzy numbers is 
constructed as shown in Table 3. Assuming the triangu-
lar fuzzy number corresponding to the language variable 
sx is ( )β = , , 

x x x xs s s sa b c . The triangular intuitive fuzzy 
number corresponding to the language variable [sx, sy] 

is ( ) ( )β = β β =
- - - -

, , , , , , 
x t y x x x t y t y t ys s s s s s s sa b c a b c . Where

=  9t  and -t ys  is the complement of ys . The expert’s ini-
tial language fuzzy information can be transformed into 
triangular intuitive fuzzy decision information in combi-
nation with the relationships listed in Table 3.

Let the triangular intuitive fuzzy number be 
( ) ( )β = , , ,  , ,  a b c d e f . The expected values of membership 

degree, non-membership degree, and hesitation degree 
are:

( ) ( ) ( )
( )

υ

π υ

β = + + β =

+ + β = − β − β

2 4,

2 4, ( ) 1 ( ) ( ).
u

u

E a b c E

d e f E E E

 

  

 (8)

In addition, the concept of score function is key to in-
tuitive fuzzy decision-making. The final decision result 
can be determined according to the score function (Ye, 
2007). It is suggested that the pessimistic scoring function 
be used as follows:

( ) ( ) ( )υβ = β − βuS E E   . (9)

Combining Eqn  (8), triangular intuitive fuzzy deci-
sion information can be transformed into an initial deci-
sion matrix ×=  [ ]ij m nD d  where = υ  , ij ij ijd u  represents the 
initial decision information of scheme ia  under attribute 

jc : because of the complex decision-making environment 
of water inrush risk in tunnelling, it is difficult for experts 
to maintain complete rationality in the decision-making 
process. Generally, the initial decision matrix ×=  [ ]ij m nD d  
is transformed into intuitive fuzzy prospect value matrix 

×=  [ ]ij m nV v  by using the value function of prospect the-
ory (Chen, Chin, Ding, & Li, 2016). The value function 
expression in the intuitive fuzzy environment is as follows:

( )( )
( )( )

α

β


≥= 

−σ <

, ,

, ,

T T
IFS ij j ij j

ij
T T

IFS ij j ij j

D d o d o
v

D d o d o
,  (10)

where ( )ο οο = υ, j j ju  is the reference point. T
ijd  and ο j  

are compared by using the scoring function and exact 
function (Xu, Wan, & Dong, 2016), ( )= ο, T

IFS ij jD d  is 
the intuitive fuzzy distance:

( ) ( ) ( )( )(
( ) ( )( ))

= −, 1 max , , , ,

min , , , ,

T T T
IFS ij j ij j ij j

T T
ij j ij j

D d o L d o H d o

L d o H d o
 (11)

where ( ) ( ) ( )=, min , max ,T o o
ij j ij j ij jL d o u u u u , 

Table 3. Nine-level language description and triangular fuzzy numbers

Level of fuzzy 
language

Description of fuzzy 
language

Triangular fuzzy 
numbers

Level of fuzzy 
language

Description of fuzzy 
language

Triangular fuzzy 
numbers

s1 Extremely low (0,0,1/9) s6 Slightly higher (4/9,5/9,6/9)
s2 Very low (0,1/9,2/9) s7 High (5/9,6/9,7/9)
s3 Low (1/9,2/9,3/9) s8 Very high (6/9,7/9,8/9)
s4 Slightly lower (2/9,3/9,4/9) s9 Extremely high (7/9,8/9,1)
s5 Generally (3/9,4/9,5/9)

calculated according to Eqn (4). Using Eqn (5) to calcu-
late the probabilistic fuzzy numbers of different experts, 
combined with the confidence index  of each expert, ac-
cording to the operating rules between fuzzy numbers, 
the comprehensive fuzzy probabilities considering multi-
ple experts can be obtained. The operation rules between 
fuzzy numbers are as follows:

( )f = f f f1 , ,A a b c ; (6)

+ = + + +1 2 1 2 1 2 1 2( , , )A A a a b b c c  , (7)

where =1 1 1 1  ( , , )A a b c  and =2 2 2 2  ( , , ).A a b c

Fuzzy probability analysis mainly involves risk analy-
sis based on the functions of forward deductive reasoning, 
sensitivity analysis, and reverse fault diagnosis reasoning 
in the FBN model. Then, the fuzzy probability is convert-
ed to an exact value based on defuzzification technology. 
Finally, combined with the results of risk assessment, the 
sensitivity analysis of the root node is carried out as shown 
in the sensitivity formula in Figure 2. In the sensitivity for-
mula, T represents the risk state of leaf nodes, xi represents 
the risk influencing factors, and Qi represents the risk state 
of influencing factors. We then determine the most influ-
ential factors affecting the results of risk assessment, and 
further propose possible initial risk control programmes.

2.2. Risk decision support system based on a fuzzy 
Bayesian network 

In the process of risk control analysis of water inrush 
during tunnel construction as shown in Figure 1, prelimi-
nary risk warning is carried out according to the calcu-
lated results from the decision support system based on 
a fuzzy Bayesian network. When a high-level (level III or 
IV) risk early warning is issued, the expert group must 
be invited to the scene according to the risk acceptability 
criteria (ALARP) and the risk early warning mechanism, 
as shown in Figure 2. Working out a risk control plan with 
construction, design, supervisor, and owner, is a multi-
attribute group decision-making process.
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Figure 3. Flow chart through the risk decision-making system based on multi-attribute group decision-making
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( ) ( ) ( )= − υ − υ − υ − υ, min 1 ,1 max 1 ,1T o o
ij j ij j ij jH d o .

In an intuitive fuzzy environment, 0.5, 0.5  is often used 
as a fixed reference point, but the fixed reference point 
cannot fully reflect the information of different attributes. 
Assuming that the triangular intuitive fuzzy number is

( ) ( )α = , , ,  , , ij ij ij ij ij ij ija b c d e f , the expected value range

of membership degree is ( ) ( ) ( )π
 α α + α ,u ij u ij ijE E E   .  

Combining this with Eqn (8), the expectation matrix of 
triangular intuitive fuzzy numbers can be transformed 
into interval decision matrix ×= β  ( )ij m nB  . The inter-
val information of all schemes under attribute jc  is 
{ } β = ∈ , |   ij ij ija b i m . The mean and variance of the end-
point values of each interval can be calculated by the fol-
lowing formula:
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1
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1 .
1
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Assuming that the attribute information is orthogo-
nally distributed, the corresponding probability density 
function is:

( ) − θ 
= − σπσ  

 

2

2
1( ) exp

22
j

j
jj

x
f x , (13)

where  θ = +  ( ) / 2j j ja b , σ = +  ( ) / 2j j jc d , Then the prob-
ability of occurrence of attribute interval  

 , ij ija b  is:

( )−υ
= =∫ ∫

1
( )ij ij

ij ij

a
ij j jb u

p f x dx f x dx ; (14)

=

= = =

∑
1

; 1,2, , ; 1,2, ,ij
ij m
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i

p
p i m j n

p
  . (15)

Therefore, the reference point of intuitionistic fuzzy at-
tribute jc  can be determined by the following formula:

=
= ⋅ = …∑

1
, 1,2, ,

m

j ij ij
i

U p u i m ),  
 

=
= ⋅υ =∑

1
, 1,2, ,

m

j ij ij
i

V p i m .
 (16)

After obtaining the foreground value matrix 
×=  [ ]ij m nV v  of different experts, it is necessary to fuse the 

information from different experts. Evidential reasoning 
is commonly used in the field of multi-attribute decision-
making at present. There are two main methods:

1. Pre-treatment of evidence sources;
2. Modification of evidence combination rules (Sma-

randache, Dezert & Tacnet, 2011). 
Modifying the combination rules may not only destroy 

the original rules, but also cause information loss, so it is 
more inclined to modify the sources of evidence and rea-
sonably reduce information conflicts. Bao, Xie, Long, and 
Wei (2017) and Shang and Jiang (1997) find that the dis-
tance of evidence cannot represent conflict between bits 

of information: using the concept of fuzzy cross-entropy, 
an improved conflict measurement method based on dis-
tance and divergence was proposed by using the concept 
of probability distribution (BPA). Firstly, assuming that 
the scheme set is a recognition framework, the foreground 
value information of attribute jc  of expert kt  can be  
regarded as evidence as shown in Figure 3.

( )
( )( )
( )

=

=


δ =


δ = δ =

− υ

 − δ = Θ

∑
∑
1

1

0 , 0

( ) ,
1

1 ,

ij k
j im

ij kt
m

j ii

u t
e a

t

m a

. (17)

Assuming that there are two independent pieces of evi-
dence 1e  and 2e  in the recognition framework, the con-
flict measure coefficient (CM) can be expressed as:

γ γ= ( )( ) ( ) ( )
1 2( , ) ( ( , ), )FD r

BPAJCM e e S S d DiffP CE , (18)

where ( )FD
Jd  is Jousselme evidence distance (Jousselme, 

Grenier, & Bossé, 2001), BPACE  represents the cross-en-
tropy of BPA (Zhang & Jiang, 2008), and ( )rDiffp  is an 
improved probabilistic distance:

θ∈Θ= − θ θ∑( )
1 2 1 2( , ) [1 ( ) ( )]r r

i iDiffP e e P P , (19)

where >   0r , 1P  and 2P  represent the BPA transition 
probabilities of pieces of evidence 1e  and 2e . Specific ex-
pressions are available for reference (Ma & Jiyao, 2015).

After determining the conflict measure coefficient 
(CM), expert information is aggregated by evidential rea-
soning to calculate the mutual support between expert kt  
and expert lt  under attribute jc , and further calculate the 
reliability of information about attribute jc  provided by 
expert kt  as shown in Figure 3 (Yang & Xu, 2013). Then, 
according to the information aggregation rules, the in-
formation from all experts in scheme ia under attribute 

jc  can be fused. The decision information of the expert 
group, as based on evidential reasoning, can then be fused 
(fusion calculation formulae are available for reference 
Karwowski & Mital, 1986).

Finally, multi-source information aggregation based 
on evidence reasoning (ER) is carried out on the ba-
sis of expert group decision information fusion. The 
fused intuitive fuzzy prospect value matrix is obtained: 

( )× ×
= υ ( ) , v v

ij m n ij ij m n
V v u  (Figure 3). The main process of
multi-source information aggregation based on evidence 
reasoning is discussed elsewhere (Rassafi, Ganji, & Pour-
khani, 2017), and is not repeated here. The first-pass opti-
mal scheme can then be determined by using the scoring 
function shown in Eqn (7).

3. Application and analysis of engineering cases

The main uncertainty of water inrush risk during tunnel 
construction comes from inadequate geological informa-
tion. Taking Shiziyuan Tunnel of Chenglan Railway as 
the engineering background, based on the risk control  
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system of water inrush during tunnel construction pro-
posed in Sections 2 and 3, we select chainages D3K87+440 
to D3K87+550 for case analysis, and only consider hydro-
geological factors when constructing the fuzzy Bayesian 
network.

3.1. Construction of the Bayesian network

Chainages D3K87+440 to D3K87+550 in Shiziyuan Tun-
nel on the Chenglan Railway mainly suffers karst water 
inrush, and is affected by the Wangjiaping fault zone. Ac-
cording to the pre-semi-quantitative risk assessment, the 
risk of water inrush in this area is grade III. The cause of 
tunnel water inrush disaster is analysed by accident tree, 
and the factors related to water inrush are determined as 
nodes. Combining the experience of experts in the field 
and historical data to determine the relationship between 
nodes, Bayesian network risk analysis model for water in-
rush is constructed as shown in Figure 4.

The Bayesian network model consists of seven root 
nodes, three intermediate nodes, and one leaf node (Fig-
ure  4). Leaf node T represents tunnel water inrush, and 
the corresponding variables of the root node are listed in 
Table 4. To adapt to the risk status of tunnel water inrush, 
we divide the risk level of root node water inrush into four 
levels: the higher the level, the higher the risk.

3.2. Estimation of fuzzy probability

It is known that the risk level of water inrush in this area is 
level III. According to risk acceptability criteria (ALARP) 
and risk early warning mechanism, expert groups must 
be invited to participate in the formulation of risk control 
programs as shown in Figure 2. Five experts are invited to 
form an expert group. According to the method of Section 
3, the confidence index of statistical experts is summa-
rised in Table 5. Experts judge the possible state of root 
node variables based on the method of fuzzy probability 
interval partition shown in Table 2 and the existing data 
of Shiziyuan Tunnel, as shown in Figure 5. 

Table 5. Expert confidence index

Expert group
Expert confidence index

ψ ζ f

A 0.7 0.9 0.63
B 0.8 0.8 0.64
C 0.7 0.9 0.63
D 0.8 0.9 0.72
E 0.7 0.8 0.56

The probability fuzzification is performed as shown in 
Figure 2. Taking the root node 1x  (the scale of karst cave) 
as an example, the confidence index of expert A is 0.63, 
which means that there is a possibility of 0.37 of choos-
ing the 10 other probability intervals, and the possibility 

Figure 4. Bayesian network model of water inrush risk during 
tunnel construction

Table 4. Risk classification of root nodes

Numbers Variables
Risk levels

I II III IV

x1 Cave size (cave radius/tunnel radius) < 1
(Small)

1~3
(Medium)

3~6
(Large)

> 6
(Super large)

x2
Relative distance between karst cave 
and fault zone

> 30 m
(Very far)

30~20 m
(Far)

20~5 m
(Near)

< 5 m
(Very near)

x3 Integrity of surrounding rock > 75%
(Complete)

75%~50%
(Relatively complete)

50%~25%
(Relatively fracture)

< 25%
(Fracture)

x4 Strength of rock mass > 60 MPa
(Hard)

35~60 MPa
(Relatively hard)

15~35 MPa
(Relatively soft)

< 15 MPa
(Soft)

x5
Water pressure ((tunnel depth + 
tunnel height) / groundwater depth)

< 5
(Low)

5~15
(Relatively low)

15~25
(Relatively high)

> 25
(High)

x6
Water inflow (seepage of 5 m long 
tunnel) < 90 m3/h 90~180 m3/h 180~360 m3/h > 360 m3/h

x7
Relative distance between karst cave 
and palm surface

> 150 m
(Very far)

150~80 m
(Far)

80~30 m
(Near)

< 30 m
(Very near)
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of each interval can be calculated by Eqn (4). Similarly, the 
probability distribution of root node 1x  at risk level I is 
calculated by four other experts. Then, the average prob-
ability of each probability interval is calculated by formula 
(5), and normalised as shown in Figure 6. Then according 
to Eqns (6) and (7), the probabilistic fuzzy number of root 
node 1x , which takes into account five experts’ informa-
tion, is obtained: ( ) =1 (0.0798,0.1063,0.1328)F x . Simi-
larly, the fuzzy probability of each root node at different 

risk levels is calculated as shown in Figure 7 (the specific 
calculation process is not described here).

3.3. Risk assessment based on a fuzzy Bayesian 
network

According to the maximum likelihood estimation meth-
od, we determine the fuzzy conditional probability table 
(FCPT) of the intermediate nodes and leaf nodes in the 
Bayesian network risk assessment model for water inrush 
as shown in Figure 2. Taking the leaf node (water inrush 
event) as an example, as shown in Table 6, leaf nodes and 

Figure 5. Expert group’s initial judgment information on root nodes

(a) Level I risk (b) Level II risk

(c) Level III risk (d) Level IV risk

Figure 6. Possibility distribution of normalised probability interval Figure 7. A priori probability of root nodes under all risk levels
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risk factors are also divided into four states, which are 
compatible with the results of probability fuzzification of 
root nodes.

Table 6. Expert confidence index

1 y 2y 3y x7

( )= =1 2 3 7   | , , , ,  1 , 2, 3, 4P T t y y y x t

T = 1 T = 2 T = 3 T = 4
1 1 1 1 1 0 0 0

1 1 1 2 0.4 0.6 0 0

1 1 1 3 0.2 0.2 0.6 0

1 1 1 4 0.1 0.1 0.2 0.6

... ... ... ... ... ... ... ...

4 4 4 1 0 0.1 0.2 0.7

4 4 4 2 0 0 0.2 0.8

4 4 4 3 0 0 0.1 0.9

After determining the conditional probability ta-
ble of each node, the probability of each level of risk 
occurrence can be calculated by using BNT toolbox 
in MATLAB™ according to Eqns  (1) and (2): P ( )= = 1   T  
(0.096, 0.141, 0.172),  P ( )= =  2   (0.206, 0.253, 0.307),T   
P ( )= =  3   (0.375, 0.429, 0.478)T , and P ( )= =  4   (0.181, 0.237, 0.293)T  ( )= =  4   (0.181, 0.237, 0.293)T . Defuzzification and normali-
sation are then carried out, giving: P ( )= = 1   0.112T ,  
P ( )= =  2   0.246T , P ( )= =  3   0.413T , and P ( )= =  4   0.229T . 
Therefore, water inrush is most likely to be a level III risk, 
which is consistent with previous risk assessment results: 
however, the possibility of other risk levels is also signifi-
cant, so the results of current risk assessment of water in-
rush are highly uncertain. To improve the reliability of de-
cision-making, it is necessary to reduce the uncertainty of 
evaluation results further.

Considering such factors as cost, human resources, 
time limitations, and so on, we first carry out information 
supplementation for risk factors with greater sensitivity. 
According to the sensitivity formula given in Figure 2, the 
sensitivity values of seven risk factors at three higher risk 
levels of II, III, and IV were calculated, and the mean val-
ues are shown in Figure 8.

From Figure  8, it can be seen that the scale of karst 
caves present (X1) has the greatest impact on the risk of 
water inrush. In addition, the integrity of the surround-
ing rock (X3), water pressure (X5), water inflow (X6), and 
the relative distance between any karst cave and the tunnel 
face (X7) also exert a significant influence on the risk of 
water inrush, while the relative distance between a karst 
cave and a fracture zone (X2) and the rock mass strength 
(X4) have relatively low risk of water inrush.

3.4. Identify possible risk control schemes

Based on the sensitivity analysis results and the field in-
vestigation of the tunnel, the size, water pressure, and the 
distance between the cave and the face of the tunnel are 
the most important information. Candidates are selected 
based on these risk factors as shown in Table 7.

According to the hazard entropy calculation formula 
shown in Figure 3, combined with the calculated results 
from Section 4.3, we can get: =1 ( ) 1 .293H R . After stand-
ardisation: =1 ( )  0.9326H R . According to information 
from all parties, the maximum loss caused by inrush disas-
ter is 10 million yuan (including the monetisation of direct 
and indirect economic losses). Water inrush risk is most 
likely to belong to level III risk: P ( )= =  3   0.413T . The toler-
able cost is ='   385.2HT  thousand yuan without considering 

Figure 8. Mean sensitivity of root node

Table 7. Candidate scheme

Schemes Estimated cost
(thousand yuan) Schemes Estimated cost

(thousand yuan)

1 1 3 5 6( , , , )a x x x x  405 6 1 3 5 6 7( , , , , )a x x x x x  510

2 1 3 5 7( , , , )a x x x x  460 7 1 5 7( , , )a x x x  385

3 1 3 6 7( , , , )a x x x x  400 8 1 5 7( , , )a x x x  540

4 1 5 6 7( , , , )a x x x x  390 9 1 6 7( , , )a x x x  380

5 3 5 6 7( , , , )a x x x x  430
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the risk attitude of decision makers. In addition, according 
to the investigation, the decision-maker at Shiziyuan Tun-
nel is of a risk-averse type, using the utility function to get 

='( )  393Hu T  thousand yuan, in which α = 0.1.   Therefore, 
according to the judgment shown in Figure 9, the possible 
risk control schemes are: 4 1 5 6 7( , , , )a x x x x , 7 1 5 7( , , )a x x x , 
and 9 1 6 7( , , )a x x x .

3.5. Scheme optimisation based on multi-attribute 
decision making

The screening of tolerable cost cannot directly determine 
the most reasonable scheme. We make multi-attribute 
group decisions from five perspectives: 1c  (cost), 2c  (con-
struction period), 3c  (environment), 4c  (safety), and 5c  
(implementation effect). The estimated cost of the initial 
information on cost factors is shown in Table 7.

Then, the initial fuzzy information is transformed into 
the initial decision matrix ×=  [ ]ij m nD d  according to Ta-
ble 3 and Eqn (8). The dynamic reference points are cal-
culated by using Eqns  (12) to (16) as shown in Table  8. 
For the convenience of subsequent calculation and expres-
sion, schemes 4a , 7a  and 9a  are recorded as 1a , 2a , and  

3a , respectively. Then, according to Eqns  (10) and (11), 
the intuitive prospect value decision information is calcu-
lated as shown in Figure 10.

Then, taking attribute 1c  as an example, the con-
flict measure coefficient (CM) is calculated according to 
the conflict quantification method in Section 3 (Table 9), 
where parameters =  0.5r  and = 1 t  are included. The com-
putational process between other attributes 2 5~c c  is sim-
ilar to that described above, and is not discussed here.

The information fusion of the expert group is then 
carried out as shown in Table 10. The weights of experts 

(b) – a
7

(a) – a4 (b) – a7

(c) – a9

Figure 9. Initial fuzzy information

(b) – a7(c) – a9

Table 8. Dynamic attribute reference points

Attribute Scheme 1c 2c 3c 4c 5c

=(  1 , 2, 3)ia i  
0.4231,0.268 0.4407,0.2295 0.3763,0.2887 0.3786,0.2778 0.4778,0.2003
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can be determined according to the level of judgement 
ability of experts: λ1= 0.2093 , λ2 = 0.186 , λ3 = 0.2093 , 
λ4 = 0.2093 , and λ5 = 0.186 .

The evidence reasoning method is then used as shown 
in Figure 3. The attribute information of each scheme in 
Table  10 is aggregated and sorted: =1( )  0.2628, 0.4213,V a

=1( )  0.2628, 0.4213V a , ( ) =2 0.3615, 0.5895V a , and

( ) =3 0.2172, 0.4517V a . These results arise from the use of
formula (9) where: =−1 ( )  0.1585S a , =−2(  )  0.228S a , and

=−3( )  0.2345S a . Therefore, scheme 1a  (original alterna-
tive 4a ) is more reasonable. The implementation of the 
water inrush risk control scheme 4a  is shown in Figure 1. 
Combined with supplementary information, the risk as-
sessment of water inrush is carried out again by using a 
fuzzy Bayesian network, and the results are as follows:  
P ( )= = 1   0.022T , P ( )= =  2   0.07T , P ( )= =  3   0.79T , and  
P ( )= =  4   0.118T .

The probability of occurrence of each risk level before, 
and after, information supplementation is shown in Fig-
ure 11: the risk status of water inrush becomes clear after 
information supplementation, and the risk control scheme 

Figure 10. Intuitive prospect value decision information

Table 9. Quantitative results of conflict between pieces of 
evidence under attribute 1c

Evidence 
combination

( )FD
Jd

 
( )rDiffp BPACE CM

m1,m2 0.2777 0.1616 0.0721 0.4172
m1,m3 0.1879 0.1115 0.0335 0.2920
m1,m4 0.5974 0.3555 0.3008 0.7714
m1,m5 0.1776 0.1109 0.0365 0.2850
m2,m3 0.0969 0.0523 0.0077 0.1481
m2,m4 0.4452 0.1999 0.0753 0.5615
m2,m5 0.3951 0.2493 0.1778 0.5882
m3,m4 0.4606 0.2465 0.1348 0.6123
m3,m5 0.3155 0.2077 0.1236 0.4949
m4,m5 0.6125 0.4433 0.4850 0.8429

Table 10. Integration of expert group information

Attribute Scheme 1c 2c 3c 4c 5c

1a 0.3536,0.4244 0.2236,0.6704 0.3537,0.5487 0.1918,0.7544 0.1115,0.8453

2a 0.1993,0.6631 0.0933,0.8404 0.3188,0.6135 0.3207,0.6073 0.5772,0.2574

3a 0.1339,0.8227 0.0481,0.9153 0.1295,0.8322 0.3387,0.3762 0.5262,0.3786
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of water inrush is thus elucidated. We continue to calcu-
late the tolerance cost ='   370HT  thousand yuan using the 
probability of occurrence of each updated risk level as 
shown in Figure 1: there is no need to reduce the uncer-
tainty further.

Conclusions

Water inrush has become a key problem affecting the 
safe construction of tunnels, and has received extensive 
attention, however, due to the uncertainties of geological 
and hydrological conditions and artificial uncertainties, 
the accuracy of water inrush risk assessment and the reli-
ability of water inrush risk control schemes during tunnel 
construction are usually difficult to guarantee. Here, com-
bined with data from an actual tunnel project, the meth-
ods of reducing uncertainty in the process of risk control 
of water inrush are analysed. The main conclusions are 
as follows:

1. Based on the characteristics of water inrush risk dur-
ing tunnel construction, and the definition of im-
proved risk, a risk control system for reducing uncer-
tainty of tunnel water inrush is constructed by using 
improved entropy-hazard model, fuzzy Bayesian the-
ory and multi-attribute group decision-making theory.

2. In this system, not only is the artificial uncertainty in 
the decision-making process of water inrush risk by 
introducing expert confidence index considered, but 
also the probability interval according to the charac-
teristics of water inrush risk during tunnel construc-
tion is divided. Meanwhile, the possibility of all prob-
ability intervals is reasonably considered and the loss 
of judgment information is reduced in this system.

3. By constructing an improved triangular intuitive 
fuzzy multi-attribute group decision-making model, 
the decision-making quality under uncertain condi-
tions is improved.

4. The application of a case study from the Shiziyuan 
tunnel project shows that the system is feasible and 
effective, which provides ideas and suggestions for 
solving the risk of water inrush in tunnel projects 
both economically and effectively.
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