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Abstract

The present work is focused on dynamic intuitionistic fuzzy multi-attribute decision making
(DIF-MADM) problem, while dynamic means the decision-related information may be collect-
ed at different periods, a situation commonly happened in many of real world MADM problems.
After the review and analysis of some drawbacks on the existing DIF-MADM methods, on the
one hand, we propose a new DIF-MADM methods based on the evidential reasoning algorithm
in order to address some of those limits; on the other hand, and a new dynamic intuitionistic
fuzzy weighted geometric operator is introduced, named modified dynamic intuitionistic fuzzy
weighted geometric (MDIFWG) operator, then a MDIFWG-based DIF-MADM method is al-
so proposed to address some other limits of the existing methods. Some numerical examples
are provided to illustrate the practicality and feasibility of the proposed two methods through,
the comparative analysis with the existing DIF-MADM methods, along with some sensitivity
analyses also carried out to analyse the distinct features of the proposed methods.

Keywords: Dynamic intuitionistic fuzzy multi-attribute decision making (DIF-MADM),
Modified dynamic intuitionistic fuzzy weighted geometric (MDIFWG) operator, Evidential
reasoning algorithm

1. Introduction

As an important extension of fuzzy set, Intuitionistic Fuzzy Set (IFS) [1, 2, 3] is characterized
by three parameters at the same time, namely, a membership degree, a nonmembership degree
and an indeterminacy degree are adopted at the same time. Therefore, IFS is considered to
be more appropriate to represent and deal with imprecise, uncertain and vague information in5

some decision making problems. In last few years, some fuzzy multi-attribute decision making
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methods based on IFS have been proposed, e.g., [5, 7, 10, 11, 16, 21, 30, 31, 32, 33, 36, 37, 42,
45, 46], among others. All these studies are focused on the decision making problems where
all the decision-related information are provided at the same period, however, those information
are usually collected at different periods in many real decision problems. To handle this type10

of situation, Xu and Yager [39] investigated dynamic intuitionistic fuzzy multi-attribute decision
making (DIF-MADM) problems where all the attribute values are expressed as intuitionistic
fuzzy numbers (IFNs) collected at different periods.

Regardless of the MADM problem based on IFS or DIF-MADM problem, aggregation of
intuitionistic fuzzy information is always one of key research issues. Accordingly, many ag-15

gregation operators have been introduced under intuitionistic fuzzy environment and applied to
different MADM problems, e.g., as far as IFS is concerned, intuitionistic fuzzy weighted aver-
aging (IFWA) operator [34], intuitionistic fuzzy ordered weighted averaging (IFOWA) operators
[34], intuitionistic fuzzy hybrid aggregation (IFHA) operator [40], intuitionistic fuzzy weighted
geometric (IFWG) operator [28, 38], intuitionistic fuzzy ordered weighted geometric (IFOWG)20

operators [38], intuitionistic fuzzy hybrid geometric (IFHA) operators [38] and other induced
aggregation operators [17, 20, 29, 35, 43, 44]. In addition, different aggregation operators have
been also introduced and applied into different DIF-MADM methods [4, 8, 12, 18, 19, 25, 27, 52],
e.g., dynamic intuitionistic fuzzy weighted averaging (DIFWA) operator [39], uncertain dy-
namic intuitionistic fuzzy weighted averaging (UDIFWA) operator [39], dynamic intuitionistic25

fuzzy weighted geometric (DIFWG) operator [26, 32, 41], uncertain dynamic intuitionistic fuzzy
weighted geometric (UDIFWG) operators [26, 32, 41], dynamic intuitionistic fuzzy weighted
averaging Einstein (DIFWAϵ) operator and dynamic intuitionistic fuzzy weighted geometric E-
instein (DIFWGϵ)operator [15].

Although different aggregation operators have been introduced, they still cannot help to over-30

come the drawback of some existing DIF-MADM methods which result in unreasonable prefer-
ence orders of alternatives in some decision situations [15, 26, 32, 39]. Motivated by this lim-
itation in some existing DIF-MADM methods, this paper aims at proposing new DIF-MADM
strategy and new aggregation operators and evaluates their feasibility and performance compared
with the existing work.35

In order to improve the DIF-MADM method, we proposed to use new strategy based on
evidential reasoning (ER) methodology. On the basis of Dempster-Shafer Theory [13, 14],
Yang and Xu [47, 48] proposed an ER algorithm for MADA under uncertainty. Since then,
ER methodology/algorithms have been successfully used in different decision making problems
[9, 22, 23, 24, 49, 50, 51, 53]. Specially, Yang et al. [51] presented an ER approach for MADA40

under both probabilistic and fuzzy uncertainties. Chen et al [10] took the advantage of the ER
methodology and the representation capability of IFSs to propose a new fuzzy MADM method
based on the ER methodology. Chen et al. [11] also proposed a new method for fuzzy MADM
based on the transformation techniques between IFN and rightangled triangular fuzzy numbers
along with a new intuitionistic fuzzy geometric averaging operators of IFNs. The ER methodol-45

ogy has shown its potential capability in MADM and the likability to be incorporated with the
DIF-MADM method, this is one of main focus of the present work.

Now that aggregation operators plays the key role in DIF-MADM method, in order to over-
come the drawbacks of some existing DIF-MADM methods, the second focus of the present
work is on introducing and evaluating the new aggregation operators. Accordingly, a new dy-50

namic intuitionistic fuzzy weighted geometric aggregation operators (MDIFWG) is proposed
along with the corresponding DIF-MADM method. The remaining of the paper is organized
as follows: Section 2 includes preliminary concepts and definitions relevant, such as IFS and
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intuitionistic fuzzy variable, score function, and evidential reasoning algorithm. In Section 3,
we provide the formal description of DIF-MADM problems and review and analyse some draw-55

backs of existing DIF-MADM methods. In Section 4, a new DIF-MADM methods based on the
ER algorithm is proposed first (denoted as Method I) and then a new DIFWG operator named
MDIFWG operator introduced along with the MDIFWG-based DIF-MADM method (denoted as
Method II). In Section 5 focuses on the evaluation of the feasibility and validity of the proposed
DIF-MADM methods through some numerical examples and comparative analysis with some60

existing DIF-MADM method, along with some sensitivity analysis. This paper is concluded in
Section 6.

2. Preliminaries

In this section, firstly some basic concepts related to intuitionistic fuzzy set and dynamic
intuitionistic fuzzy set are reviewed, along with an overview of the evidential reasoning algorithm65

[47, 48, 50], which are the basis of the present work.

2.1. Intuitionistic fuzzy set and intuitionistic fuzzy variable

Definition 1. [1] Let X = {x1, x2, · · · , xn} be a finite universe of discourse, an intuitionistic fuzzy
set (IFS) A in X characterized by a membership function µA : X → [0, 1] and a non-membership
function νA : X → [0, 1], which satisfies the condition 0 ≤ µA(x) + νA(x) ≤ 1. An IFS A can be
expressed as

A = {⟨x, (µA(x), νA(x))⟩|x ∈ X}.

πA(x) = 1 − µA(x) − νA(x) is called the degree of indeterminacy, πA(x) represents the degree of
hesitance of x to A and is also called intuitionistic index. For convenience, called (µA(x), νA(x))
is an intuitionistic fuzzy number (IFN) and denoted by (µA, νA).70

For an IFS A on the universe X, A will be reduced to a fuzzy set under the condition that intu-
itionistic index πA(x) = 0 for any x ∈ X.

Refer to [41], the intuitionistic fuzzy number (νA(xi), µA(xi)) is the complement of a intu-
itionistic fuzzy number (µA(xi), νA(xi)), denoted as (µA(xi), νA(xi))C = (νA(xi), µA(xi)).

In MADM problem, aggregation operator plays an important role in combining relevant in-75

formation from multiple sources. Xu and Yager [41] developed some aggregation operators to
aggregate IF information. However, these operators can only be used to deal with time inde-
pendent arguments. If time is taken into account, for example, the argument information may
be collected at different periods, then these aggregation operators will not work effectively. Ac-
cordingly, Xu and Yager [39] proposed the concept of intuitionistic fuzzy variables, as shown80

below:

Definition 2. [39] Let t be a time variable, then α(t) = (µα(t), να(t)) is called an intuitionistic
fuzzy variable, where µα(t) ∈ [0, 1], να(t) ∈ [0, 1] and µα(t) + να(t) ∈ [0, 1].

For an intuitionistic fuzzy variable α(t), if t = t1, t2, · · · , tk, then αt1 , · · · , αtk indicate k IFNs
collected at p different periods.85
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2.2. Score function of decision-making problem

Given a finite set of alternatives, an intuitionistic fuzzy MADM problem is a kind of problem
in which the evaluation of each alternative with respect to a set of attributes is expressed by IFNs,
and the most desirable alternative is selected based on the degree of suitability to which each al-
ternative satisfies the decision-makers requirements. However, the size relations or the inclusion90

relations does not exist in IFS under ambient conditions, some comparison technologies of IFNs
have been developed to determine the order relations of IFNs. Score function, an important tool
to evaluate IFNs in order to obtain the best alternative in decision making problem, is needed to
convert IFNs into real numbers in order to become easier to compare with each other.

In the intuitionistic fuzzy MADM problem, as far as the score function is concerned, an95

effective score function has the following properties [29]: (1) the degree of membership, non-
membership and indeterminacy (hesitation) of IFS should be considered; (2) it should have high-
er precision; and (3) it should also have stronger selection ability.

Wang [29] analysed limitations of existing score functions for IFS, an effective score function
is given based on the cross entropy of membership degree from the non-membership degree, it is100

used to determine the absolute value of influence difference that the membership degree and the
non-membership degree responded to the hesitation degree. The cross-entropy [29] of the degree
of membership from the non-membership based on IFS is defined as follows.

Definition 3. [29] Let α = (µ, ν) be an IFN of an IFS, the cross-entropy of the degree of member-
ship µ from the degree of no-membership ν is called cross-entropy based on IFS, which measures
the divergence between µ and ν:

H(α) = H(µ, ν) =


log2

2
2−ν , µ = 0

log2
2

1+ν , µ = 1
µlog2

2µ
(µ+ν) + (1 − µ)log2

2(1−µ)
2−(µ+ν) , 0 < µ < 1

(1)

From Definition 3, it is obvious that H(µ, ν) , H(ν, µ), that is, H(µ, ν) is not symmetric.
Therefore, Definition 3 should be modified as:105

HM(α) =
H(α) + H(αC)

2
. (2)

Theorem 1. [29] Let α = (µ, ν) be an IFN, then HM(α) satisfies the following properties:
(1) HM(α) ∈ [0, 1];
(2) HM(α) = HM(αC);
(3) If α = (1, 0) or α = (0, 1), then HM(α) = 1;
(4) If α = αC , then HM(α) = 0.110

Entropy is very important for measuring uncertain information. As far as the cross-entropy
defined in Eq. (2) is concerned, for a given IFN α = (µ, ν), if HM(α) = 0, then the divergence
between µ and ν responding to the degree of hesitation πi is the smallest; if hM(α) = 1, then the
divergence between µ and ν responding to the degree of hesitation πi is the largest.

In order to determine the best alternative in decision making problem, an effective score115

function is defined as follows to measure the degree of suitability to which the alternative satisfies
the DM’s requirement.
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Definition 4. Let α = (µ, ν) be an IFN. The new score function of α is defined as

S (α) =


µ − ν + HM(α)π µ > ν

µ − ν − HM(α)π µ < ν

0∗ µ = ν

(3)

where π = 1 − µ − ν and 0∗ means that S is close to 0.

For an IFN α = (µ, ν), the value of unknown degree π = 1 − µ − ν is moderate under the
condition µ = ν. As π denotes degree of indeterminacy, hence the degree of accuracy of IFN α120

will change with π change and indeterminacy of π almost have little influence on score value of
α, so the value is close to 0 rather than equal to 0. Only if π = 0, i.e. µ = ν = 0.5, the value
of score equal to 0, that is, the degree of indeterminacy is the smallest and the value of accuracy
is the largest. For example, there are two alternatives: α1 = (0.5, 0.5) and α2 = (0.3, 0.3), it is
obvious that π1 < π2. Therefore, S (α2) < S (α1)=0, it follows that the alternative α1 is better than125

the alternative α2.

Theorem 2. Let α = (µ, ν) be an IFN. Then S (α) satisfies the following properties:
(1) S (α) ∈ [−1, 1];
(2) S (α) = 1 if and only if α = (1, 0);
(3) S (α) = −1 if and only if α = (0, 1);130

(4) If S (α) = 0 if and only if α = (0.5, 0.5).

For any two IFNs α1, α2,
(1) if S (α1) < S (α2), then α1 ≺ α2;
(2) if S (α1) > S (α2), then α1 ≻ α2;
(3) if S (α1) > S (α2), then α1 ∼ α2.135

Example 1. Let α1 = (0.52, 0.2), α2 = (0.7, 0.3), α3 = (0.12, 0.68) be three IFNs. By Eq. (2), we
have

HM(α1) = 0.1519,HM(α2) = 0.1959,HM(α3) = 0.0841,

and so

S (α1) = 0.3625, S (α2) = 0.4, S (α3) = −0.5432.

Therefore α3 ≺ α1 ≺ α2.

2.3. Evidential reasoning algorithm for MADM140

In this subsection, we review the ER algorithm for MADM under uncertain environment
[50, 49, 51]. Let X = {x1, x2, · · · , xm} be a set of alternatives and A = {a1, a2, · · · , ap} be a set of
attributes. Assume that there are N evaluation grades θ1, θ2, · · · , θN for assessing the attributes
of alternatives and denoted by Θ = {θ1, θ2, · · · , θN}, wi refer to the weight of attribute ai(i =
1, 2, · · · , p), respectively, with wi ∈ [0, 1] and

∑n
i=1 wi = 1. Let S (ai(x j)) denote the evaluation145

value of attribute ai of alternative x j and be defined as follows:

S (ai(x j)) = {(θn, βn,i)(x j), n = 1, 2, · · · ,N}, (4)
5



where i = 1, 2, · · · , p and j = 1, 2, · · · ,m.
The assessments of the attributes of the alternatives are represented by a decision matrix

D = (S (ai(x j)))p×m. Now we aggregate the assessment values of attributes for all alternatives.
According to Eq. (4), the belief of degree βθn,i(x j) regarding to the ith attribute ai of alternative150

x j can be transformed into bps mθn,i(x j) as follows:

mn,i(x j) = wiβn,i(x j); (5)

mΘ,i(x j) = 1 −
N∑

n=1

mθn,i(x j) = 1 − wi

N∑
n=1

βθn,i(x j), (6)

where n = 1, 2, · · · ,N, i = 1, 2, · · · , p and j = 1, 2, · · · ,m.
Below is the results aggregating the criteria (or attribute) by combining the basic probability

masses generated above, where mn,I(1)(x j) = mn,1(x j), mΘ,I(1)(x j) = mΘ,1(x j),

{θn} : mn,I(i)(x j) = K[mn,I(i−1)(x j)mn,i(x j) + mn,I(i−1)(x j)mΘ,i(x j) + mΘ,I(i−1)(x j)mn,i(x j)] (7)
{Θ} : mΘ,I(i)(x j) = K[mΘ,I(i−1)(x j)mΘ,i(x j), (8)

K = 1 −
N∑

r=1

N∑
t=1,t,r

mmr ,I(i−1)(x j)mt,i(x j)

{θn} : βn(x j) =
mn,I(p)(x j)

1 − mΘ,I(p)(x j)
. (9)

From Eq. (6), we can obtain another equivalent form:155

βn(x j) =
(1 − βΘ(x j))mn,I(p)(x j)

1 − mΘ,I(p)(x j)
, (10)

where βΘ(x j) =
∑p

i=1 wi(1 −
∑N

n=1 βn,i(x j)).

3. Analysis of the existing DIF-MADM methods

In this section, we will review the formal representation of the typical DIF-MADM problem,
and analyse their drawbacks, then in Section 4, we will introduce methods in order to overcome
those drawbacks.160

3.1. Formal representation of DIF-MADM
In general, MADM has always been used to find the most desirable one from a finite set

of alternatives with respect to the predefined attributes. DIF-MADM methods aim at handling
the MADM problems under dynamic intuitionistic fuzzy environment, especially on MADM
problems with the subjective information and the attitudinal character of the decision makers. A165

DIF-MAGDM problem can be formally described as follows:
(1) X = {x1, x2, · · · , xm} a set of m alternatives;
(2) A = {a1, a2, · · · , an} the set of n attributes whose weight vector is w = (w1, · · · ,wn) with

wi > 0 and
∑n

i=1 wi = 1;
(3) There are p periods P = {t1, t2, · · · , tp}, whose weight vector is ω(t) = (ω(t1), · · · , ω(tp))170

with ω(tk) > 0(k = 1, 2, · · · , p) and
∑p

k=1 ω(tk) = 1.
6



(4) The decision makers provide the attribute values of alternative xi ∈ X(i = 1, 2, · · · ,m)
with respect to attribute a j( j = 1, 2, · · · , n) at period tk(k = 1, 2, · · · , p) and construct the intu-
itionistic fuzzy decision making matric

Dtk = (αi j,tk )m×n =


(µ11,tk , ν11,tk ) (µ12,tk , ν12,tk ) · · · (µ1n,tk , ν1n,tk )
(µ21,tk , ν21,tk (µ22,tk , ν22,tk ) · · · (µ2n,tk , ν2n,tk )

...
...

...
...

(µm1,tk , νm1,tk ) (µm2,tk , νm2,tk ) · · · (µmn,tk , νmn,tk )


where (µi j,tk , νi j,tk ) is an IFN, µi j,tk is the degree that alternative xi should satisfy the attribute a j at
period tk, νi j,tk is the degree that alternative xi should not satisfy the attribute a j at period tk, and
0 ≤ µi j,tk , νi j,tk ≤ 1, 0 ≤ µi j,tk + νi j,tk ≤ 1.

3.2. Analysis of the existing DIF-MADM methods175

Although with some interesting and solid results, there are still some drawbacks found in
the existing DIF-MADM methods presented in Gumus [15], Xu [39], Wei [32] and Park [26].
In these DIF-MADM methods, different aggregation operators were introduced. First of all, we
recall some operators defined on intuitionistic fuzzy variables [39]

Let α(t1) = (µα(t1), να(t1)), α(t2) = (µα(t2), να(t2)) be two IFNs, then180

(1) α(t1) ⊗ α(t2) = (µα(t1)µα(t2), να(t1) + να(t2) − να(t1)να(t2)),
(2) α(t1) ⊕ α(t2) = (µα(t1) + µα(t2) − µα(t1)µα(t2), να(t1)να(t2)),
(3) λα(t1) = (1 − (1 − µα(t1))λ, νλα(t1)),
(4) α(t1)λ = (µλα(t1), 1 − (1 − να(t1))λ).
Base on the above definitions, some aggregation operators are defined as follows:185

Let α(t1), α(t2), · · · , α(tp) be a collection of IFNs collected at p different periods tk (k =
1, 2, · · · , p), and λ(t) = (λ(t1), λ(t2), · · · , λ(tp)) be the weight vector of the periods tk(k = 1, 2, · · · , p)
with λ(ti) ≥ 0 and

∑p
i=1 λ(ti) = 1. Then a dynamic intuitionistic fuzzy weighted averaging (D-

IFWA) operator [39] is defined as follows:

DIFWA(α(t1), α(t2), · · · , α(tp)) = λ(t1)α(t1) ⊕ λ(t2)α(t2) ⊕ · · · ⊕ λ(tp)α(tp)

= (1 −
p∏

i=1

(1 − µα(ti))
λ(ti),

p∏
i=1

να(ti))
λ(ti));

(11)

A dynamic intuitionistic fuzzy weighted geometric (DIFWG) operator [32, 26] is defined as190

follows:

DIFWG(α(t1), α(t2), · · · , α(tp)) = α(t1)λ(t1) ⊕ α(t2)λ(t2) ⊕ · · · ⊕ α(tp)λ(tp)

= (
p∏

i=1

µλ(ti)α(ti)
, 1 −

p∏
i=1

(1 − να(ti)))
λ(ti)).

(12)

A dynamic intuitionistic fuzzy Einstein weighted geometric (DIFWGϵ) operator [15, 28] is de-
fined as follows:

DIFWGϵ(α(t1), α(t2), · · · , α(tp))

= (
2
∏p

i=1 µ
λ(ti)
α(ti)∏p

i=1(2 − µα(ti))λ(ti) +
∏p

i=1 µ
λ(ti)
α(ti)

,

∏p
i=1(1 + να(ti)))

λ(ti) −∏p
i=1(1 − να(ti)))

λ(ti)∏p
i=1(1 + να(ti)))λ(ti) +

∏p
i=1(1 − να(ti)))λ(ti)

).
(13)
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In the following, we analyse and illustrate some drawbacks about those aggregation opera-
tors:195

(Drawback A.) For Eq. (11), if there exist µα(t1) = 1, and µα(t2) = · · · = µα(tp) = 0, then
1 −∏p

i=1(1 − µα(ti))
λ(ti) = 1, which is incorrect because of the impact of the values µα(t2) = · · · =

µα(tp) = 0 on the aggregation result is not considered. For example, in a DIF-MADM problem, as
far as alternative x1 is concerned, if µα(t1) = 1 for the first attribute at the period t1, although the
degree of memberships and no-memberships of the first attribute regarding to the alternative x1200

at others periods changed, aggregation result of the first attribute regarding to x1 will be constant.
Therefore, DIFWA operator Eq. (11) is not well defined. Accordingly the DIF-MADM method
presented in [39] uses this ill-defined DIFWA operator will get an unreasonable preference order
of the alternatives in some situations.

(Drawback B.) Considering Eq. (12) and Eq. (13), if there is only one membership degree205

of IFNs is equal to 0, the aggregation membership degree of IFNs is 0 even if the membership
degrees of n−1 IFNs are not 0, this seems a rather extreme property. Therefore, the DIF-MADM
methods in [32] and [15] will again lead to inappropriate preference order of alternatives in some
situations.

(Drawback C.) besides Drawback B about, there is another drawback in the existing DIF-210

MADM methods presented in [15, 26, 32, 39]. The example below gives a better illustration.

Example 2. Suppose there is an investment company, which wants to invest a sum of money in
the best option (adapted from Ref.[32]). There is a panel with three possible alternatives to invest
the money: (1) x1 is a car company; (2) x2 is a food company; (3) x3 is a computer company.
The investment company must take a decision according to the following four attributes: (1) a1215

is the risk analysis; (2) a2 is the growth analysis; (3) a3 is the social-political impact analysis
and the environmental impact analysis. The three possible alternatives xi(i = 1, 2, 3) are to be
evaluated using the intuitionistic fuzzy information by the decision maker under the above four
attributes at the periods tk(k = 1, 2, 3), as listed in the following matrix, shown as Tabled 1 and
2. Let λ(t) = ( 1

3 ,
1
3 ,

1
3 ) be the weight vector of the periods tk(k = 1, 2, 3), and w = ( 1

3 ,
1
3 ,

1
3 ) be the220

weight vector of the attributes a j( j = 1, 2, 3, 4).

Table 1: Individual IF decision matrix Dtk (k = 1, 2, 3)

years a1 a2 a3

x1 (0.25,0.7) (0.5, 0.2) (0.7, 0.2)
t1 x2 (0.5, 0.2) (0.4, 0.5) (0.4, 0.1)

x3 (0.4, 0.3) (0.5, 0.3) (0.6, 0.3)
x1 (0.6, 0.3) (0.4, 0.1) (0.6, 0.1)

t2 x2 (0.7, 0.1) (0.25, 0.7) (0.5, 0.3)
x3 (0.5, 0.2) (0.7, 0.2) (0.4, 0.5)
x1 (0.4, 0.5) (0.7, 0.3) (0.5, 0.3)

t3 x2 (0.6, 0.3) (0.6, 0.3) (0.7, 0.2)
x3 (0.7, 0.1) (0.6, 0.1) (0.25, 0.7)

Calculate the distance between the alternative xi and the intuititonistic fuzzy positive ideal
solution (IFPIS) α+ = (1, 0) and the distance between the alternative xi and the intuititonistic
fuzzy negative ideal solution (IFNIS) α− = (0, 1) by the equations in [39], respectively, we have

8



Table 2: Complex intuitionistic fuzzy decision matrix by DIFWA operators

a1 a2 a3

x1 (0.4351, 0.4721) (0.5515, 0.1820) (0.6081, 0.1820)
x2 (0.6081, 0.1820) (0.4351, 0.4721) (0.5515, 0.1820)
x3 (0.5515, 0.1820) (0.6081, 0.1820) (0.4351, 0.4721)

d(x1, α
+) = d(x2, α

+) = d(x3, α
+) = 0.4684,

d(x1, α
−) = d(x2, α

−) = d(x3, α
−) = 0.7213.

According to [39], the closeness coefficient of each alternative is given by225

c(xi) =
d(xi, α

−)
d(xi, α−) + d(xi, α+)

.

It follows that c(x1) = c(x2) = c(x3) = 0.6063. Therefore x1 = x2 = x3, which is obviously
an incorrect preference orders of alternatives. The same results also can be obtained by using
Gumus’s [15] and Wei’s [32] DIF-MADM method based on the DIFWG operators defined in
Eqs. (12) and (13).

In Section 4 bellow, two new methods are proposed to overcome the above mentioned draw-230

backs of the existing DIF-MADM methods.

4. New methods for DIF-MADM problems

In this section, we propose two kinds of DIF-MADM methods to overcome the drawbacks
presented in Section 3. It shows that Method I can overcome the drawbacks A, B and C. And
Method II can overcome the drawbacks B and C.235

4.1. Method I: New DIF-MADM based on the ER methodology
Suppose that the alternatives are assessed on each attribute using the following two assess-

ment grades: H1 and H2, where H1 stands for satisfying the fuzzy concept ”excellence”, H2
stands for not satisfying the fuzzy concept ”excellence”, and H = {H1,H2} stands for the assess-
ment grade indeterminacy. The proposed method for intuitionistic fuzzy MADM based on IFSs240

and the ER algorithm is now presented as follows:
Step 1. Determine the belief matrix of decision maker w.r.t. attribute a j of alternative xi

regarding the evaluation grade H1,H2 as follows:

Dtk = (µi j,tk , νi j,tk )m×n = (β1 j,tk (xi), β2 j,tk (xi))m×n

=


(β11,tk (x1), β21,tk (x1)) (β12,tk (x1), β22,tk (x1)) · · · (β1n,tk (x1), β2n,tk (x1))
(β11,tk (x2), β21,tk (x2)) (β12,tk (x2), β22,tk (x2)) · · · (β1n,tk (x2), β2n,tk (x2))

...
...

...
...

(β11,tk (xm), β21,tk (xm)) (β12,tk (xm), β22,tk (xm)) · · · (β1n,tk (xm), β2n,tk (xm))


where (µi j,tk , νi j,tk ) = (β1 j,tk (xi), β2 j,tk (xi)) , β1 j,tk (xi) denotes the degree of belief of decision maker
dl w.r.t. attribute a j of alternative xi at period tk regarding evaluation grade H1 and β2 j,tk (xi)
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represents the degree of belief w. r. t. attribute a j of alternative xi at period tk regarding evaluation
grade H2, 0 ≤ β1 j,tk (xi), β2 j,tk (xi) ≤ 1 and 0 ≤ β1 j,tk (xi) + β2 j,tk (xi) ≤ 1( j = 1, 2, · · · , n; i =245

, 2, · · · ,m; k = 1, 2, · · · , p).
Step 1.1. Based on the above step, the intuitionistic fuzzy assessment (µi j,tk , νi j,tk ) can be

transformed into the ER belief distribution assessment profiled as

{(H1, β1 j,tk (xi)), (H2, β2 j,tk (xi)), (H, βH j,tk (xi))} (14)

Transform the degree of belief βq j,tk (xi) into basic probability mass m̃q j,tk (xi) and m̃H j (xi) by
the following formulae [49]:250

m̃q j,tk (xi) = w j(tk)βq j,tk (xi); (15)

m̃H j,tk (xi) = 1 −
n∑

j=1

m̃q j,tk (xi). (16)

We can then obtain the basic probability mass matrix:

Ptk =


(m̃11,tk (x1), m̃21,tk (x1)) (m̃12,tk (x1), m̃22,tk (x1)) · · · (m̃1n,tk (x1), m̃2n,tk (x1))
(m̃11,tk (x2), m̃21,tk (x2)) (m̃12,tk (x2), m̃22,tk (x2)) · · · (m̃1n,tk (x2), m̃2n,tk (x2))

...
...

...
...

(m̃11,tk (xm), m̃21,tk (xm)) (m̃12,tk (xm), m̃22,tk (xm)) · · · (m̃1n,tk (xm), m̃2n,tk (xm))


where 0 ≤ m̃1 j,tk (xi), m̃2 j,tk (xi) ≤ 1 and 0 ≤ m̃1 j,tk (xi) + m̃2 j,tk (xi) ≤ 1( j = 1, 2, · · · , n; i =
1, 2, · · · ,m; k = 1, 2, · · · , p).

Step 1.2. Let the combined probability mass ñq1,tk (xi) of the decision maker dl w.r.t. attribute
a j of alternative xi at period tk be equal to m̃q1,tk (xi), that is, ñq1,tk (xi) = m̃q1,tk (xi)(q = 1, 2). Sim-
ilarly, ñH1,tk (xi) = m̃H1,tk (xi)(q = 1, 2). Now, calculate the combined probability mass ñq j,tk (xi)255

and ñH j,tk (xi) w. r. t. the attribute a j of alternative xi at period tk by the following equations:

ñq j,tk (xi) =
ñq j−1,tk (xi)m̃q j,tk (xi) + ñq j−1,tk (xi)m̃H j,tk (xi) + ñH j−1,tk (xi)m̃q j,tk (xi)

1 −∑2
r=1
∑2

h=1,h,r ñr j−1,tk (xi)m̃h j,tk (xi)

ñg
H j,tk

(xi) =
ñH j−1,tk (xi)m̃H j,tk (xi)

1 −∑2
r=1
∑2

h=1,h,r ñr j−1,tk (xi)m̃h j,tk (xi)

(17)

where j = 1, 2, · · · , n; i = 1, 2, · · · ,m; k = 1, 2, · · · , p.
Step 1.3. Aggregate the evaluating values of decision makers with respect to attribute a j of

alternative xi at period tk to obtain the belief:

βq,tk (xi) =
(1 − βH,tk (xi))ñqn,tk (x j)

1 − ñHn,tk (xi)
(18)

with βHn,tk (xi) =
∑n

j=1 w j(tk)(1 − ∑2
q=1 ñq j,tk (xi)). where

∑2
q=1 βq,tk (xi) + βHn,tk (xi) = 1. Let the260

aggregated value obtained by above equations β1,tk (xi), β2,tk (xi) form an intuitionistic fuzzy value
(β1,tk (xi), β2,tk (xi)), where β1,tk (xi) and β2,tk (xi) are the degree of decision maker dl w.r.t. alternative
xi at period tk regarding evaluation grades H1 and H2.
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Step 2. Based on Step 1, construct the aggregated decision making matrix Q as follows

Q = (β1,tk (xi), β2,tk (xi))m×p

=


(β1,t1 (x1), β2,t1 (x1)) (β1,t2 (x1), β2,t2 (x1)) · · · (β1,tp (x1), β2,tp (x1))
(β1,t1 (x2), β2,t1 (x2)) (β1,t2 (x2), β2,t2 (x2)) · · · (β1,tp (x2), β2,tp (x2))

...
...

...
...

(β1,t1 (xm), β2,t1 (xm)) (β1,t2 (xm), β2,t2 (xm)) · · · (β1,tp (xm), β2,tp (xm))


where (β1,tk (xi), β2,tk (xi)) is an IFN, β1,tk (xi) is the degree of belief with respect to alternative
xi at period tk regarding evaluation grade H1 and β2,tk (xi) represents the degree of belief w. r.265

t. alternative xi at period tk regarding evaluation grade H2, 0 ≤ β1,tk (xi), β2,tk (xi) ≤ 1 and 0 ≤
β1,tk (xi) + β2,tk (xi) ≤ 1(i = 1, 2, · · · ,m; k = 1, 2, · · · , p).

Step 2.1. Based on the above step, the intuitionistic fuzzy assessment (β1,tk (xi), β2,tk (xi)) can
be transformed into the ER belief distribution assessment profiled by

{(H1, β1(xi)), (H2, β2(xi)), (H, βH(xi))}. (19)

Transform the degree of belief βq,tk (xi) into basic probability mass m̃q,tk (xi) and m̃H,tk (xi) by270

the following formulae:

m̃q,tk (xi) = wkβq,tk (xi); (20)

m̃H,tk (xi) = 1 −
p∑

k=1

m̃q,tk (xi). (21)

We can obtain the basic probability mass matrix

Q =


(m̃1,t1 (x1), m̃2,t1 (x1)) (m̃1,t2 (x1), m̃2,t2 (x1)) · · · (m̃1,tp (x1), m̃2,tp (x1))
(m̃1,t1 (x2), m̃2,t1 (x2)) (m̃1,t2 (x2), m̃2,t2 (x2)) · · · (m̃1,tp (x2), m̃2,tp (x2))

...
...

...
...

(m̃1,t1 (xm), m̃2,t1 (xm)) (m̃1,t2 (xm), m̃2,t2 (xm)) · · · (m̃1,tp (xm), m̃2,tp (xm))


where 0 ≤ m̃1,tk (xi), m̃2,tk (xi) ≤ 1 and 0 ≤ m̃1,tk (xi)+ m̃2,tk (xi) ≤ 1(i = 1, 2, · · · ,m; k = 1, 2, · · · , p).

Step 2.2. Let the combined probability mass ñq,t1 (xi) w.r.t. alternative xi at period t1 be equal
to m̃q,t1 (xi), that is, nq,t1 (xi) = m̃q,t1 (xi)(q = 1, 2). Similarly, nC,t1 (xi) = m̃C,t1 (xi)(q = 1, 2). Now,
calculate the combined probability mass ñq,tk (xi) and ñC,tk (xi) w. r. t. alternative xi at period tk by275

the following equations:

ñq,tk (xi) =
ñq,tk−1 (xi)m̃q,tk (xi) + ñq,tk−1 (xi)m̃H,tk (xi) + ñH,tk−1 (xi)m̃q,tk (xi)

1 −∑2
r=1
∑2

h=1,h,r ñr,tk−1 (xi)m̃h,tk (xi)

ñH,tk (xi) =
ñH,tk−1 (xi)m̃H,tk (xi)

1 −∑2
r=1
∑2

h=1,h,r ñr,tk−1 (xi)m̃h,tk (xi)
,

(22)

where k = 2, · · · , p; i = 1, 2, · · · ,m.
Step 2.3. Aggregate the evaluating values of decision makers with respect to alternative xi to

obtain the belief:

βq(xi) =
(1 − βH(xi))ñq(x j)

1 − ñH(xi)
, q = 1, 2. (23)
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with βH(xi) =
∑p

k=1 wk(1 − ∑2
q=1 ñq,tk (xi)). where

∑2
q=1 βq(xi) + βH(xi) = 1. Let the aggregated280

value be obtained by above equations β1(xi), β2(xi) form an IFN (β1(xi), β2(xi)), where β1(xi) and
β2(xi) are the degree decision makers of alternative x j regarding evaluation grades H1 and H2,
respectively.

Step 3 Calculate the scores of IFN (β1(xi), β2(xi)) obtained by the aggregation result of Step
3. Let αi = (β1(xi), β2(xi))(i = 1, 2, · · · ,m).285

Step 3.1 According to Eq. (1), calculate H(αi) and H(αC
i ), where αC

i = (β2(xi), β1(xi)), (i =
1, 2, · · · ,m);

Step 3.2 Calculate the score of αi and denote as S (αi);
Step 4 Determine the ranking of alternatives according to Step 3.2. The larger the value

S (αi), the better the order of alternative xi(i = 1, 2, · · · ,m).290

Step 5 End.

4.2. Method II: New DIF-MADM method based on new aggregation operators

In this section, we propose new operators in IFNs and further propose the new DIFWG
operator, and then introduce a new DIF-MADM method which can overcome some drawbacks
analysed in Section 3.295

4.2.1. New aggregation operators for DIF-MADM problems
Before the new operator of IFNs are given, we firstly introduce a new definition of operation

on intuitionistic fuzzy variables.

Definition 5. Let α(t1) = (µα(t1), να(t1)), α(t2) = (µα(t2), να(t2)) be two IFNs. Then
(1) α(t1) ⊗ α(t2) = (µα(t1) + µα(t2) − µα(t1)µα(t2), να(t1)(1 − µα(t2) − να(t2)) + να(t2)(1 − µα(t1))),300

(2) α(t1)λ = (1 − (1 − µα(t1))λ, (1 − µα(t1))λ − (1 − µα(t1) − να(t1))λ).

Base on the above operators, a modified DIFWG aggregation operator is defined as follows:

Definition 6. Let α(t1), α(t2), · · · , α(tp) be a collection of IFNs collected at p different periods
tk(k = 1, 2, · · · , p), and λ(t) = (λ(t1), λ(t2), · · · , λ(tp)) be the weight vector of the periods tk(k =
1, 2, · · · , p) with λ(ti) ≥ 0 and

∑p
i=1 λ(ti) = 1. Then a modified dynamic intuitionistic fuzzy305

weighted geometric (MDIFWG) operator is defined as follows:

MDIFWG(α(t1), α(t2), · · · , α(tp)) = α(t1)λ(t1) ⊕ α(t2)λ(t2) ⊕ · · · ⊕ α(tp)λ(tp). (24)

Based on (1), (2) in Definition 3, we have:

MDIFWG(α(t1), α(t2), · · · , α(tp))

= (1 −
p∏

i=1

(1 − µα(ti)))
λ(ti),

p∏
i=1

(1 − µα(ti))
λ(ti) −

p∏
i=1

(1 − µα(ti) − να(ti))
λ(ti)).

(25)

4.3. New DIF-MADM method based on MDIFWG operators

In this section, we design a new method for DIF-MADM based on the proposed MDIFWG
operator presented in Section 4.1.1. The details of this method are described as follows:310
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Step 1. Utilize the MDIFWG operator to aggregate all the intuitionistic fuzzy decision
matrices Dtk = (αi j,tk )m×n(k = 1, 2, · · · , p) into a complex intuitionistic fuzzy decision matrix
D = (αi j)m×n:

αi j = MDIFWG((µi j,t1 , νi j,t1 ), (µi j,t2 , νi j,t2 ), · · · , (µi j,tp , νi j,tp ))

= (1 −
p∏

k=1

(1 − µi j,tk ))
λ(tk),

p∏
k=1

(1 − µi j,tk )
λ(tk) −

p∏
k=1

(1 − µi j,tk − νi j,tk )
λ(tk)),

(26)

where αi j = (µi j, vi j) is an IFN obtained by Eq. (30) or Eq. (31).
Step 2- Step 6 are the same as Xu’s method [39].315

Step 2. Define the intuitionistic fuzzy ideal solution (IFIS) α+ = (α+1 , · · · , α+m) and the intu-
itionistic fuzzy negative ideal solution (IFNIS) α− = (α−1 , · · · , α−m), respectively, where α+i =
(1, 0)(i = 1, 2, · · · , n) are the n largest IFNs and α+i = (0, 1)(i = 1, 2, · · · , n) are the n s-
mallest IFNs. Furthermore, for convenience, we denote the alternatives xi(i = 1, 2, · · · ,m) by
xi = (αi1, αi2, · · · , αin), i = 1, 2, ...,m.320

Step 3. Calculate the distance between the alternative xi and the IFIS α+ and the distance
between the alternative xi and the IFNIS α−, respectively:

d(xi, α
+) =

∑n
j=1 w j(1 − µi j),

d(xi, α
−) =

∑n
j=1 w j(1 − νi j).

Step 4. Calculate the closeness coefficient of each alternative325

c(xi) =
d(xi, α

−)
d(xi, α+) + d(xi, α−)

.

Step 5. Determine the preference orders of all the alternatives xi(i = 1, 2, · · · ,m) accord-
ing to the closeness coefficients c(xi)(i = 1, 2, · · · , n), the greater the value c(xi), the better the
alternative xi.

Step 6. End.

5. Case study330

In this section, we use some examples to illustrate and compare the proposed methods with
some existing DIF-MADM methods.

5.1. Examples and comparative analysis

Example 3. A problem of evaluating university faculty for tenure and promotion (adapted from
Bryson and Mobolurin [26]) is used to illustrate the developed approach. A practical use of the335

proposed approach involves the evaluation of university faculty for tenure and promotion. The
attributes at some university are A1: teaching, A2: research, and A3: service. The committee
evaluates the performance of five faculty candidates (alternatives) xi(i = 1, 2, 3, 4, 5) in the three
years tk( j = 1, 2, 3). According to the attribute G j( j = 1, 2, 3), and construct, respectively, the
intuitionistic fuzzy decision matrices Dtk (k = 1, 2, 3). Let λ(t) = (0.2, 0.3, 0.5) be the weight340

vector of the years tk and w = (0.3, 0.4, 0.3) be the weight vector of the attributes A j( j = 1, 2, 3)

(1) Method I: We utilize the ER algorithm.
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Table 3: Individual IF decision matrix Dtk (k = 1, 2, 3)

years a1 a2 a3

x1 (0.8, 0.1) (0.9, 0.1) (0.7, 0.2)
x2 (0.7, 0.3) (0.6, 0.2) (0.6, 0.3)

t1 x3 (0.5, 0.4) (0.7, 0.3) (0.6, 0.3)
x4 (0.9, 0.1) (0.7, 0.2) (0.8, 0.2)
x5 (0.6, 0.1) (0.8, 0.2) (0.5 0.1)
x1 (0.9, 0.1) (0.8, 0.2) (0.8, 0.1)
x2 (0.8, 0.2) (0.5, 0.1) (0.7, 0.2)

t2 x3 (0.5, 0.5) (0.7, 0.2) (0.8, 0.2)
x4 (0.9, 0.1) (0.9, 0.1) (0.7, 0.3)
x5 (0.5, 0.2) (0.6, 0.3) (0.6, 0.2)
x1 (0.7, 0.1) (0.9, 0.1) (0.9, 0.1)
x2 (0.9, 0.1) (0.6, 0.2) (0.5, 0.2)

t3 x3 (0.4, 0.5) (0.8, 0.1) (0.7, 0.1)
x4 (0.8, 0.1) (0.7, 0.2) (0.9, 0.1)
x5 (0.6, 0.3) (0.8, 0.2) (0.7, 0.2)

Step 1.1: Based on the decision matrices Dt1 ,Dt2 and Dt3 . Based on the weight of attributes
and Eq. (15), Eq. (16), we can obtain the basic probability mass Pt1 , Pt2 and Pt3 :

Pt1 =


(0.24, 0.03) (0.36, 0.04) (0.21, 0.06)
(0.21, 0.09) (0.24, 0.08) (0.18, 0.09)
(0.15, 0.12) (0.28, 0.12) (0.18, 0.09)
(0.27, 0.03) (0.28, 0.08) (0.24, 0.06)
(0.18, 0.03) (0.32, 0.08) (0.15, 0.03)



Pt2 =


(0.27, 0.03) (0.32, 0.08) (0.24, 0.03)
(0.24, 0.06) (0.2, 0.04) (0.21, 0.06)
(0.15, 0.15) (0.28, 0.08) (0.24, 0.06)
(0.27, 0.03) (0.36, 0.04) (0.21, 0.09)
(0.15, 0.06) (0.24, 0.12) (0.18, 0.06)



Pt3 =


(0.21, 0.03) (0.36, 0.04) (0.27, 0.03)
(0.27, 0.03) (0.24, 0.08) (0.15, 0.06)
(0.12, 0.15) (0.32, 0.04) (0.21, 0.03)
(0.24, 0.03) (0.28, 0.08) (0.27, 0.03)
(0.18, 0.09) (0.32, 0.08) (0.21, 0.06)
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Step 1.2 We can obtain the combined probability based on Eq. (17)

ñ13,t1 (x1) = 0.5911, ñ23,t1 (x1) = 0.0686, ñ13,t1 (x2) = 0.457, ñ23,t1 (x2) = 0.1598,
ñ13,t1 (x3) = 0.4341, ñ23,t1 (x3) = 0.2053, ñ13,t1 (x4) = 0.568, ñ23,t1 (x4) = 0.0928,
ñ13,t1 (x5) = 0.5016, ñ23,t1 (x5) = 0.0896, ñ13,t2 (x1) = 0.5971, ñ23,t2 (x1) = 0.0755,
ñ13,t2 (x2) = 0.4891, ñ23,t2 (x2) = 0.0978, ñ13,t2 (x3) = 0.4754, ñ23,t2 (x3) = 0.1709,
ñ13,t2 (x4) = 0.5998, ñ23,t4 (x4) = 0.0814, ñ13,t2 (x5) = 0.4261, ñ23,t2 (x5) = 0.1576,
ñ13,t3 (x1) = 0.6128, ñ23,t3 (x1) = 0.0523, ñ13,t3 (x2) = 0.4953, ñ23,t3 (x2) = 0.1022,
ñ13,t3 (x3) = 0.48, ñ23,t3 (x3) = 0.1294, ñ13,t3 (x4) = 0.5742, ñ23,t4 (x2) = 0.0772,
ñ13,t5 (x3) = 0.5147, ñ23,t3 (x5) = 0.133

We can obtain the remaining combined probability based on Eq. (18)

ñH3,t1 (x1) = 0.34, ñH3,t1 (x2) = 0.3832, ñH3,t1 (x3) = 0.3606, ñH3,t1 (x4) = 0.3391, ñH3,t1 (x5) = 0.4087;
ñH3,t2 (x1) = 0.3275, ñH3,t2 (x2) = 0.4131, ñH3,t2 (x3) = 0.3537, ñH3,t2 (x4) = 0.3187, ñH3,t2 (x5) = 0.4163;
ñH3,t3 (x1) = 0.3349, ñH3,t3 (x2) = 0.4024, ñH3,t3 (x3) = 0.3905, ñH3,t3 (x4) = 0.3486, ñH3,t3 (x5) = 0.3522.

Step 1.3 Aggregate the evaluating values of with respect to attribute a1, a2, a3 of alternative345

x1, x2, x3 at the periods t1, t2, t3 to obtain the belief distributions based on Eq. (19) as follows:

β1,t1 (x1) = 0.8422, β2,t1 (x1) = 0.0978, β1,t1 (x2) = 0.6595, β2,t1 (x2) = 0.2305,
β1,t1 (x3) = 0.6381, β2,t1 (x3) = 0.3019, β1,t1 (x4) = 0.8251, β2,t1 (x4) = 0.1349,
β1,t1 (x5) = 0.6702, β2,t1 (x5) = 0.1198; β1,t2 (x1) = 0.8611, β1,t2 (x1) = 0.1089,
β1,t2 (x2) = 0.675, β1,t2 (x2) = 0.135, β1,t2 (x3) = 0.7061, β1,t2 (x3) = 0.2539,
β1,t2 (x4) = 0.8805, β1,t2 (x4) = 0.1195, β1,t2 (x5) = 0.5913, β1,t2 (x5) = 0.2187;
β1,t3 (x1) = 0.866, β1,t3 (x1) = 0.074, β1,t3 (x2) = 0.688, β1,t3 (x2) = 0.142,
β1,t3 (x3) = 0.6853, β1,t3 (x3) = 0.1847, β1,t3 (x4) = 0.82, β1,t3 (x4) = 0.1102
β1,t3 (x5) = 0.7469, β1,t3 (x5) = 0.1931

Let the aggregated value obtained by the belief distributions β1,tk (xi), β2,tk (xi) form the intu-
itionistic fuzzy values (β1,tk (xi), β2,tk (xi)) as follows:

(β1,t1 (x1), β2,t1 (x1)) = (0.8422, 0.0978), (β1,t1 (x2), β2,t1 (x2)) = (0.6595, 0.2305),
(β1,t1 (x3), β2,t1 (x3)) = (0.6381, 0.3019), (β1,t1 (x4), β2,t1 (x4)) = (0.8251, 0.1349),
(β1,t1 (x5), β2,t1 (x5)) = (0.6702, 0.1198); (β1,t2 (x1), β1,t2 (x1)) = (0.8611, 0.1089),
(β1,t2 (x2), β1,t2 (x2)) = (0.675, 0.135), (β1,t2 (x3), β1,t2 (x3)) = (0.7061, 0.2539),
(β1,t2 (x4), β1,t2 (x4)) = (0.8805, 0.1195), (β1,t2 (x5), β1,t2 (x5)) = (= 0.5913, 0.2187);
(β1,t3 (x1), β1,t3 (x1)) = (0.866, 0.074), (β1,t3 (x2), β1,t3 (x2)) = (0.688, 0.142),
(β1,t3 (x3), β1,t3 (x3)) = (0.6853, 0.1847), (β1,t3 (x4), β1,t3 (x4)) = (0.82, 0.1102)
(β1,t3 (x5), β1,t3 (x5)) = (0.7469, 0.1931)
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Step 2. Based on Step 1, construct the aggregation decision making matrix Q as follows

Q = (β1,tk (xi), β2,tk (xi))3×3

=


(β1,t1 (x1), β2,t1 (x1)) (β1,t2 (x1), β2,t2 (x1)) (β1,t3 (x1), β2,t3 (x1))
(β1,t1 (x2), β2,t1 (x2)) (β1,t2 (x2), β2,t2 (x2)) (β1,t3 (x2), β2,t3 (x2))
(β1,t1 (x3), β2,t1 (x3)) (β1,t2 (x3), β2,t2 (x3)) (β1,t3 (x3), β2,t3 (x3))
(β1,t1 (x4), β2,t1 (x4)) (β1,t2 (x4), β2,t2 (x4)) (β1,t3 (x4), β2,t3 (x4))
(β1,t1 (x5), β2,t1 (x5)) (β1,t2 (x5), β2,t2 (x5)) (β1,t3 (x5), β2,t3 (x5))



=


(0.8422, 0.0978) (0.8611, 0.1089) (0.866, 0.074)
(0.6595, 0.2305) (0.675, 0.135) (0.688, 0.142)
(0.6381, 0.3019) (0.7061, 0.2536) (0.6853, 0.1847)
(0.8251, 0.1349) (0.8805, 0.1195) (0.8198, 0.1102)
(0.6702, 0.1198) (0.5913, 0.2187) (0.7469, 0.1931)


Step 2.1. Based on Step 2 and Eq. (21), we can obtain the basic probability mass matrix

Q =


(0.1684, 0.0196) (0.2583, 0.0327) (0.433, 0.037)
(0.132, 0.04611) (0.2025, 0.0405) (0.344, 0.071)
(0.1276, 0.06037) (0.2118, 0.0762) (0.3426, 0.0924)

(0.165, 0.027) (0.26416, 0.0358) (0.41, 0.0551)
(0.134, 0.024) (0.1774, 0.0656) (0.3735, 0.0965)


Step 2.2. Based on Eq. (23) and Eq. (24), we can calculate the combined probability mass

ñq,tk (xi) and ñH,tk (xi) w.r.t. alternative xi at the period tk as follows:350

n1,3(x1) = 0.635, n2,3(x1) = 0.0465, n1,3(x2) = 0.5171, n2,3(x2) = 0.0959, n1,3(x3) = 0.5051,
n2,3(x3) = 0.1372, n1,3(x4) = 0.6169, n2,3(x4) = 0.0634, n1,3(x5) = 0.5214, n2,3(x5) = 0.1163,
nH,3(x1) = 0.3185, nH,3(x2) = 0.3871, nH,3(x3) = 0.3576, nH,3(x4) = 0.3197, nH,3(x5) = 0.3622.

Step 2.3. Aggregate the evaluating values of decision makers with respect to alternative xi to
obtain the belief distributions based on Eq. (25)

β1(x1) = 0.8842, β2(x1) = 0.0648, β1(x2) = 0.7053, β2(x2) = 0.1307, β1(x3) = 0.7163,
β2(x3) = 0.1947, β1(x4) = 0.8679, β2(x4) = 0.0891, β1(x5) = 0.7121, β2(x5) = 0.1589.

Let the aggregated value obtained by the belief distributions β1(xi), β2(xi) form the intuition-
istic fuzzy values (β1(xi), β2(xi)) as follows:

(β1(x1), β2(x1)) = (0.8842, 0.0648), (β1(x2), β2(x2)) = (0.7053, 0.1307),
(β1(x3), β2(x3)) = (0.7163, 0.1947), (β1(x4), β2(x4)) = (0.8679, 0.0891),
(β1(x5), β2(x5)) = (0.7121, 0.1589).

Step 3 Calculate the scores of IFN (β1(xi), β2(xi)) obtained by the aggregation result of Step355

3. Let αi = (β1(xi), β2(xi))(i = 1, 2, 3, 4, 5)
Step 3.1 According to Eq. (2), calculate HM(αi)(i = 1, 2, 3, 4, 5) as follows:
HM(α1) = 0.5665,HM(α2) = 0.2634,HM(α3) = 0.2085,HM(α4) = 0.5,HM(α5) = 0.2391.
Step 3.2 Calculate the score of αi and denote as S (αi)(i = 1, 2, 3) according to Eq. (3):

S (α1) = 0.8484, S (α2) = 0.6177, S (α3) = 0.5402, S (α4) = 0.8, S (α5) = 0.584360
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Step 4 Determine the ranking of alternatives according to Step 3. We can obtained the pref-
erence order of alternatives as x1 > x4 > x2 > x5 > x3, that is, x1 is the desirable one.

(2) Method II: We utilize the MDIFWG which is presented in Section 4.2.2.
Step 1. Utilize the MDIFWG operator to aggregate all the intuitionistic fuzzy decision matri-

ces Dtk = (αi j,tk )5×3(k = 1, 2, 3) into a complex intuitionistic fuzzy decision matrix D = (αi j)5×3
as follows, where αi j = (µi j, vi j) is an IFN obtained by Eq. (30).

D =


(0.801, 0.199) (0.8769, 0.1231) (0.8466, 0.1534)

(0.8466, 0.1534) (0.5723, 0.1815) (0.5898, 0.237)
(0.4523, 0.5477) (0.7551, 0.2449) (0.7186, 0.2814)
(0.8586, 0.1414) (0.7842, 0.2158) (0.8403, 0.1597)
(0.5723, 0.2545) (0.7538, 0.2462), (0.6378, 0.1998)


.

Step 2-3. Calculate the distance between the alternative xi and the IFPIS α+ and the distance365

between the alternative xi and the IFNIS α−, respectively:

d(x1, α
+) = 0.1549, d(x2, α

+) = 0.3402, d(x3, α
+) = 0.3467, d(x4, α

+) = 0.1766, d(x5, α
+) = 0.3355;

d(x1, α
−) = 0.8451, d(x2, α

−) = 0.8103, d(x3, α
−) = 0.6533, d(x4, α

−) = 0.8234, d(x5, α
−) = 0.7652.

Step 4. Calculate the closeness coefficient of each alternative

c(x1) = 0.8451, c(x2) = 0.7043, c(x3) = 0.6533, c(x4) = 0.8234, c(x5) = 0.6952.

Step 5. According to Step 4, we can obtain the preference order as x1 > x4 > x2 > x5 > x3,
which coincides with the order obtained by using Method I.

Table 4 shows a comparison of the preference order of the alternatives for different methods370

for Example 3.

Table 4: A comparison of preference order for different methos

methods preference order
DIFWA[39] x1 > x4 > x2 > x5 > x3
DIFWG[32] x1 > x4 > x2 > x5 > x3
DIFWGϵ[15] x1 > x4 > x2 > x5 > x3

Extended VIKOR based on DIFWG[26] x1 > x4 > x5 > x2 > x3
The proposed method based MDIFWG x1 > x4 > x2 > x5 > x3

The proposed method based ER algorithm x1 > x4 > x2 > x5 > x3

It follows from the Table 4 that the preference order of alternatives obtained by our proposed
method are the same with the preference order obtained by Xu’s [39], Gumus’s [15] and Wei’s
[32] methods. It is also shown that our proposed methods based on ER algorithm and MDIFWG
operators are valid.375

Now, the following two examples will be used to show the our proposed methods can over-
come effectively the Drawbacks A, B and C listed in Section 3.

Example 4. Considering Example 2, we illustrate how this example can be solved by using the
proposed two methods in Section 4.
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(1) Method I. Utilizing the ER algorithm. The specific steps are detailed as follows:380

Step 1. Based on the decision matrices Dt1 ,Dt2 and Dt3 , as well as the weights of attributes
and Eq. (15), Eq. (16), we can obtain the basic probability mass Pt1 , Pt2 and Pt3 :

Pt1 =

(0.0833, 0.2333) (0.1667, 0.0667) (0.2333, 0.0667)
(0.1667, 0.0667) (0.1333, 0.16665) (0.1333, 0.0333)

(0.1333, 0.1) (0.1667, 0.1000) (0.2, 0.1)


Pt2 =

 (0.2, 0.1) (0.1333, 0.0333) (0.20.0333)
(0.2333, 0.0333) (0.0833, 0.2333) (0.1667, 0.1)
(0.1667, 0.0667) (0.2333, 0.0667) (0.1333, 0.1667)


Pt3 =

(0.1333, 0.1667) (0.2333, 0.1) (0.1661, 0.1)
(0.2, 0.1) (0.2, 0.1) (0.2333, 0.0667)

(0.2333, 0.0333) (0.2, 0.0333) (0.08333, 0.2333)


Step 1.2. We can obtain the combined probability based on Eq. (17):

ñ13,t1 (x1) = 0.3396, ñ23,t1 (x1) = 0.2467, ñ13,t1 (x2) = 0.3273, ñ23,t1 (x2) = 0.1920,
ñ13,t1 (x2) = 0.3673, ñ23,t1 (x3) = 0.2017, ñ13,t2 (x1) = 0.4152, ñ13,t2 (x1) = 0.1133,
ñ13,t2 (x2) = 0.3384, ñ13,t2 (x2) = 0.2465, ñ13,t2 (x3) = 0.3874, ñ13,t2 (x3) = 0.1969,
ñ13,t3 (x1) = 0.3754, ñ13,t3 (x1) = 0.2385, ñ13,t3 (x2) = 0.4570, ñ13,t3 (x2) = 0.1634,
ñ13,t3 (x3) = 0.3714, ñ13,t3 (x3) = 0.1990.

We can then obtain the remaining combined probability based on Eq. (18):

ñH3,t1 (x1) = 0.4136, ñH3,t1 (x2) = 0.4806, ñH3,t1 (x3) = 0.431;
ñH3,t2 (x1) = 0.4716, ñH3,t2 (x2) = 0.4152, ñH3,t2 (x3) = 0.4156;
ñH3,t3 (x1) = 0.3861, ñH3,t3 (x2) = 0.3796, ñH3,t3 (x3) = 0.4296.

Step 1.3. Aggregate the evaluating values with respect to attribute a1, a2, a3 of alternative
x1, x2, x3 at the periods t1, t2, t3 to obtain the belief distributions based on Eq.(19):

β1,t1 (x1) = 0.4922, β2,t1 (x1) = 0.3578, β1,t1 (x2) = 0.4412, β2,t1 (x2) = 0.2588,
β1,t1 (x3) = 0.5164, β2,t1 (x3) = 0.2836, β1,t2 (x1) = 0.55, β1,t2 (x1) = 0.1501,
β1,t2 (x2) = 0.4918, β1,t2 (x2) = 0.3582, β1,t2 (x3) = 0.5525, β1,t2 (x3) = 0.2808,
β1,t3 (x1) = 0.5503, β1,t3 (x1) = 0.3497, β1,t3 (x2) = 0.663, β1,t3 (x2) = 0.237,
β1,t3 (x3) = 0.5317, β1,t3 (x3) = 0.285.

Let the aggregated values be obtained by the above belief distributions β1,tk (xi), β2,tk (xi) form the385

intuitionistic fuzzy values (β1,tk (xi), β2,tk (xi)) as follows:

(β1,t1 (x1), β2,t1 (x1)) = (0.4922, 0.3578), (β1,t2 (x1), β1,t2 (x1)) = (0.55, 0.1501),
(β1,t3 (x1), β1,t3 (x1)) = (0.5503, 0.3497), (β1,t1 (x2), β2,t1 (x2)) = (0.4412, 0.2588),
(β1,t2 (x2), β1,t2 (x2)) = (0.4918, 0.3582), (β1,t3 (x2), β1,t3 (x2)) = (0.663, 0.237),
(β1,t1 (x3), β2,t1 (x3)) = (0.5164, 0.2836), (β1,t2 (x3), β1,t2 (x3)) = (0.5525, 0.2808),
(β1,t3 (x3), β1,t3 (x3)) = (0.5317, 0.285).
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Step 2. Based on Step 1, construct the aggregation decision making matrix Q as follows:

Q = (β1,tk (xi), β2,tk (xi))3×3

=

(β1,t1 (x1), β2,t1 (x1)) (β1,t2 (x1), β2,t2 (x1)) (β1,t3 (x1), β2,t3 (x1))
(β1,t1 (x2), β2,t1 (x2)) (β1,t2 (x2), β2,t2 (x2)) (β1,t3 (x2), β2,t3 (x2))
(β1,t1 (x3), β2,t1 (x3)) (β1,t2 (x3), β2,t2 (x3)) (β1,t3 (x3), β2,t3 (x3))


=

(0.4922, 0.3578) (0.55, 0.1501) (0.5503, 0.3497)
(0.4412, 0.2588) (0.4918, 0.3582) (0.663, 0.237)
(0.5164, 0.2836) (0.5525, 0.2808) (0.5317, 0.285)


Step 2.1. Based on Step 2 and Eq. (21), we can obtain the basic probability mass matrix:

Q =

 (0.164, 0.119) (0.1833, 0.05) (0.1834, 0.1166)
(0.1471, 0.0863) (0.1639, 0.1194) (0.221, 0.07901)
(0.1721, 0.09453) (0.18415, 0.0936) (0.17723, 0.095)


Step 2.2. Based on Eq. (23) and Eq. (24), we can calculate the combined probability mass

ñq,tk (xi) and ñC,tk (xi) w.r.t. alternative xi at period tk as follows:

n1,3(x1) = 0.3887, n2,3(x1) = 0.1895, n1,3(x2) = 0.3908, n2,3(x2) = 0.1874,
n1,3(x3) = 0.3913, n2,3(x3) = 0.1865;
nH,3(x1) = 0.4218, nH,3(x2) = 0.4218, nH,3(x3) = 0.4222

Step 2.3. Aggregate the evaluating values of decision makers with respect to alternative xi to
obtain the following belief distributions based on Eq. (25):390

β1(x1) = 0.549, β2(x1) = 0.2677;
β1(x2) = 0.552, β2(x2) = 0.2647;
β1(x3) = 0.5531, β2(x3) = 0.2636.

Let the aggregated values obtained by the above belief distributions β1(xi), β2(xi) form the intu-
itionistic fuzzy values (β1(xi), β2(xi)) as follows:

(β1(x1), β2(x1)) = (0.549, 0.2677);
(β1(x2), β2(x2)) = (0.552, 0.2647);
β1(x3), β2(x3)) = (0.5531, 0.2636).

Step 3. Calculate the scores of IFN (β1(xi), β2(xi)) obtained by the aggregation result of Step
3.

Let αi = (β1(xi), β2(xi))(i = 1, 2,m).395

Step 3.1. According to Eq. (2), calculate HM(αi)(i = 1, 2, 3) and shown as follows:
HM(α1) = 0.06,HM(α1) = 0.06266,HM(α1) = 0.06367.
Step 3.2. Calculate the score of αi and denote S (αi)(i = 1, 2, 3) according to Eq. (3):

S (α1) = 0.2923, S (α2) = 0.2988, S (α3) = 0.3013.
Step 4. Determine the ranking of alternatives according to Step 3. We can obtain the prefer-400

ence order of alternatives is x3 > x2 > x1, that is, x3 is the desirable one.
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We can see from Exa. 2 that the DIF-MADM methods proposed by Xu [39], Gumus [15] and
Wei [32] can not distinguish the preference order of alternatives x1, x2, x3. However, we can see
from above Method I that our DIF-MADM method based on ER algorithm can distinguish the
preference order of alternatives x1, x2, x3. It is also shown that our method based on ER algorithm405

can overcome the Drawback C. That is, Drawback C is not the drawback anymore in this new
method based on ER algorithm.

(2) Method II. We utilized the MDIFWG which is presented in Section 4.2.2. for Example
2.

Step 1. Utilize the MDIFWG operator to aggregate all the intuitionistic fuzzy decision matri-
ces Dtk = (αi j,tk )3×3(k = 1, 2, 3) into a complex intuitionistic fuzzy decision matrix D = (αi j)3×3
as follows, where αi j = (µi j, vi j) is an IFN obtained by Eq. (30).

D =

(0.3926, 0.5279) (0.796, 0.204) (0.614, 0.204)
(0.614, 0.204) (0.3926, 0.5279) (0.5802, 0.204)
(0.5336, 0.204) (0.614, 0.204) (0.3926, 0.5279)

 .
Step 2-3. Calculate the distance between the alternative xi and the IFPIS α+ and the distance410

between the alternative xi and the IFNIS α−, respectively:

d(x1, α
+) = 0.5768, d(x2, α

+) = 0.5191, d(x3, α
+) = 0.5048;

d(x1, α
−) = d(x2, α

−) = d(x3, α
−) = 0.3309.

Step 4. Calculate the closeness coefficient of each alternative

c(x1) = 0.3646, c(x2) = 0.3893, c(x3) = 0.396.

Step 5. According to Step 4, we can obtain the preference order is x3 > x2 > x1, which
coincided with the order obtained by using Method I as detailed above.

Table 5 shows a comparison of the preference order of the alternatives for different methods415

for Example 4.

Table 5: A comparison of preference order for different methods for Example 3

Methods Preference order
DIFWA[39] x1 = x2 = x3
DIFWG[32] x1 = x2 = x3
DIFWGϵ[15] x1 = x2 = x3

Extended VIKOR based on DIFWG[26] x1 = x2 = x3
The proposed method based on MDIFWG x1 < x2 < x3

The proposed method based on the ER algorithm x1 < x2 < x3

We can see from Table 4 that the DIF-MADM methods proposed by Xu [39], Gumus [15]and
Wei [32] can not distinguish the preference order of alternatives x1, x2, x3. The same problem is
also obtained by extend VIKOR method based on DIFWG, the root of this problem is the related
aggregation operators (or the definition of operation of dynamic intuitionistic fuzzy numbers).420

However, we can see from above Table 5 that our DIF-MADM methods based on ER algorithm
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and MDIFWG operator can distinguish the preference order of alternatives x1, x2, x3. It is also
shown that our methods based on ER algorithm and MDIFWG operator can overcome effectively
the Drawback C.

The following example can show the proposed methods can overcome the drawbacks A and425

B of existing methods analysed in Section 3.

Example 5. A company wants to invest in one of renewable energy sources, Geothermal, solar,
biomass among renewable energy sources have been determined as alternatives. The company
has determined three criteria for the evaluation of renewable energy resources: risk factor, the
growth rate in the sector, payback reliability. The company thinks that these evaluations need to430

be done in a dynamic process due to the increasing energy demand, environmental awareness and
government support for energy projects in recent three years. The three alternative xi(i = 1, 2, 3):
(1) x1 is Geothermal; (2) x2 is solar; (3) x3 is biomass. The investment company must take a
decision according to the following three attributes: (1) A1 is risk factor; (2) A2 is the growth
rate in the sector; (3) A3 is the payback reliability. The three possible alternatives xi(i = 1, 2, 3)435

are to be evaluated using the intuitionistic fuzzy information by the decision maker under the
above four attributes at the periods tk(k = 1, 2, 3), as listed in the following matrix, shown as
Table 6. Let λ(t) = ( 1

3 ,
1
3 ,

1
3 ) be weight vector of the periods tk(k = 1, 2, 3), and w = ( 1

3 ,
1
3 ,

1
3 ) be

weight vector of the attributes A j( j = 1, 2, 3).

Table 6: Individual IF decision matrix Dtk (k = 1, 2, 3)

years A1 A2 A3

x1 (0.6, 0.1) (0.5, 0.2) (0.7, 0.2)
t1 x2 (0, 0.1) (0.4, 0.5) (0.4, 0.1)

x3 (0.4, 0.3) (0.5, 0.1) (0.6, 0.3)
x1 (0.6, 0.3) (0.7, 0.1) (0.6, 0.1)

t2 x2 (0.7, 0.2) (0.1, 0.3) (0.5, 0.3)
x3 (0.5, 0.2) (0.7, 0.2) (0, 0.1)
x1 (0.4, 0.5) (0.6, 0.3) (0.5, 0.4)

t3 x2 (0.5, 0.4) (0.6, 0.1) (0.7, 0.2)
x3 (0.7, 0.1) (0.5, 0.4) (0.1, 0.5)

The results obtained by the proposed methods based on Method I and Method II are listed in440

Table 7. The details of process are the same as the ones in Example 3 and Example 4, so skipped.
Whilst, Table 7 also shows the comparisons with some existing methods.

We can see from Table 7 that the DIF-MADM methods Gumus [15] and Wei [32] can not
distinguish the preference order of alternatives x2, x3. The reason is that there is only one mem-
bership degree of IFNs is equal to 0, the aggregation membership degree of IFNs is 0 even if445

the membership degrees of n − 1 IFNs are not 0, which leads to inappropriate preference order
of alternatives in this situation. However, we can see from above Table 7 that our DIF-MADM
methods based on ER algorithm and MDIFWG operator can distinguish the preference order of
alternatives x1, x2, x3. It is also shown that our methods based on ER algorithm and MDIFWG
operator can overcome effectively the Drawback B.450

In Exa 5., if µα(t1)(x2) = 1 at the period t1, µα(t2)(x2) = µα(t3)(x2) = 0, the modified decision
matrix is shown as follows:
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Table 7: A comparison of preference order for different methods for Example 5

Methods Preference order
DIFWA[39] x1 > x3 > x2
DIFWG[32] x2 = x3 > x1
DIFWGϵ[15] x2 = x3 > x1

The proposed method based MDIFWG x1 > x3 > x2
The proposed method based ER algorithm x1 > x3 > x2

Table 8: Modified individual IF decision matrix Dtk (k = 1, 2, 3)

years A1 A2 A3

x1 (0.2, 0.6) (0.5, 0.2) (0.7, 0.2)
t1 x2 (1, 0) (0.4, 0.5) (0.4, 0.1)

x3 (0.4, 0.3) (0.5, 0.1) (0.6, 0.3)
x1 (0.4, 0.3) (0.7, 0.1) (0.6, 0.1)

t2 x2 (0, 0.2) (0.1, 0.3) (0.5, 0.3)
x3 (0.5, 0.2) (0.7, 0.2) (0, 0.1)
x1 (0.2, 0.5) (0.6, 0.3) (0.5, 0.4)

t3 x2 (0, 0.4) (0.6, 0.1) (0.7, 0.2)
x3 (0.5, 0.4) (0.5, 0.4) (0.1, 0.5)

The results obtained by the proposed methods based on Method I is x2 > x1 > x3. The
preference order of alternatives is the same with order obtained by Xu’s method based on DIFWA
[39]. However, the preference order of alternatives obtained by Xu’s method [39] will be the455

same no matter how the non-membership degrees of A1 regarding on x2 change at period t2, t3,
this situation is shown in Fig .1. Obviously, it is unreasonable.

As far as our proposed method I is concerned, the preference order will be changed with the
non-membership degree of A1 regarding on x2 change. For example, when the non-membership
degrees of A1 regarding on x2 change at period t2, t3 , the preference order of alternatives obtained460

by our proposed method I is shown in Fig. 2.
We can see from the above analysis, Fig. 1 and Fig. 2 that our proposed method I can

overcome the Drawback A.

5.2. Sensitivity analysis

Baird [6] pointed out that sensitivity analysis (SA) is the investigation of some potential465

changes and errors of rating values and their impact on the final ranking order. In this sub-
section, we conduct some sensitivity analyses to analyze the impact of changing the membership
and non-membership degrees of the rating values on the alternatives ranking order based on
Method I (DIF-MADM based on the ER algorithm).

For the original membership and non-membership degrees αtk = (µi j,tk , νi j,tk ), because the sum470

of membership degree and the non-membership degree of a intuitionistic number is not more than
1, so we can assume it is updated as (µi j,tk + ∆i j,tk , νi j,tk − ∆i j,tk ), where µi j,tk + ∆i j,tk , νi j,tk − ∆i j,tk ∈
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Figure 1: Ranking order sensitivity to the non-membership degrees of x2 with respect to the first attribute A1 by Xu’s
Method [39]
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Figure 2: Ranking order sensitivity to the non-membership degrees of x2 with respect to the first attribute A1 by our
Method I
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Figure 3: Ranking order sensitivity to the membership and non-membership degrees with respect to the first attribute A1

[0, 1]. Therefore, we can determine the step size∆i j,tk according to the condition µi j,tk+∆i j,tk , νi j,tk−
∆i j,tk ∈ [0, 1].

Now, we take Example 5 (Section 5.1) as an example, we can obtain the preference order of475

the alternatives by changing the membership and non-membership degrees of three attributes, the
details are shown in Figures 3-5, which also show the desirable alternatives will remain constant
when the variation values of the membership and non-membership degrees with respect to the
three attributes vary in the range from 0.1 to 1. But regarding the range of membership degree
and non-membership degree, the ranking order of the two alternatives A2 and A3 will change480

with the membership and non-membership degrees. It demonstrates that the alternatives A2 and
A3 are more sensitive to membership and non-membership degrees than A1.

6. Conclusions

In this paper, we have proposed two kinds of dynamic fuzzy multi-attribute decision making
(DIF-MADM) methods in order to overcome the drawback of the existing DIF-MADM methods:485

the first one is using the ER methodology; the other one is based on the modified dynamic in-
tuitionistic fuzzy weighted geometric aggregation (MDIFWG) operator. From the experimental
results of several examples shown in Tables 3, 5, 7 and the comparative analysis, we can con-
cluded that the proposed methods can overcome the drawbacks of some existing DIF-MADM
methods, the details are shown in Table 9, so have shown the good potential in handling DIF-490

MADM problem.
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Figure 4: Ranking order sensitivity to the membership and non-membership degrees with respect to the second attribute
A2
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Figure 5: Ranking order sensitivity to the membership and non-membership degrees with respect to the third attribute A3

Table 9: Corresponding Drawbacks and solutions by proposed methods

Method I Method II
Drawback A Y N/A
Drawback B Y Y
Drawback C Y Y
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