243,978 research outputs found

    The Iron K Line Profile of IRAS 18325-5926

    Full text link
    IRAS 18325-5926 is an X-ray bright, Compton-thin, type-2 Seyfert galaxy and it was the first Seyfert 2 in which the presence of a broad Fe K-alpha emission line was claimed. However, although the structure of the Fe line appears broad, there is tentative evidence that it may comprise multiple lines. Nevertheless, previous analyses have only consisted of fitting standalone broad components to the Fe K band. Here, we have analyzed all available X-ray CCD data from Suzaku, XMM-Newton and ASCA to fully investigate the nature of the emission complex by testing broad-band physical models and alternative hypotheses. We find that both a model consisting of broad, blurred reflection from an ionized accretion disc and a model consisting of cold, neutral reflection plus narrow emission lines from highly-ionized photoionized gas (log \xi = 3.5) offer statistically comparable fits to the data although the true reality of the Fe line cannot currently be determined with existing data. However, it is hoped that better quality data and improved photon statistics in the Fe K band will allow a more robust distinction between models to be made.Comment: Accepted by MNRAS; 13 pages; 10 figures; 2 table

    Fitting an Equation to Data Impartially

    Get PDF
    © 2023 by the author. Licensee MDPI, Basel, Switzerland. This is an open access article distributed under the terms of the Creative Commons Attribution License (CC BY), https://creativecommons.org/licenses/by/4.0/We consider the problem of fitting a relationship (e.g., a potential scientific law) to data involving multiple variables. Ordinary (least squares) regression is not suitable for this because the estimated relationship will differ according to which variable is chosen as being dependent, and the dependent variable is unrealistically assumed to be the only variable which has any measurement error (noise). We present a very general method for estimating a linear functional relationship between multiple noisy variables, which are treated impartially, i.e., no distinction between dependent and independent variables. The data are not assumed to follow any distribution, but all variables are treated as being equally reliable. Our approach extends the geometric mean functional relationship to multiple dimensions. This is especially useful with variables measured in different units, as it is naturally scale invariant, whereas orthogonal regression is not. This is because our approach is not based on minimizing distances, but on the symmetric concept of correlation. The estimated coefficients are easily obtained from the covariances or correlations, and correspond to geometric means of associated least squares coefficients. The ease of calculation will hopefully allow widespread application of impartial fitting to estimate relationships in a neutral way.Peer reviewe

    The Gaia-ESO Survey: dynamics of ionized and neutral gas in the Lagoon nebula (M8)

    Get PDF
    We present a spectroscopic study of the dynamics of the ionized and neutral gas throughout the Lagoon nebula (M8), using VLT/FLAMES data from the Gaia-ESO Survey. We explore the connections between the nebular gas and the stellar population of the associated star cluster NGC6530. We characterize through spectral fitting emission lines of H-alpha, [N II] and [S II] doublets, [O III], and absorption lines of sodium D doublet, using data from the FLAMES/Giraffe and UVES spectrographs, on more than 1000 sightlines towards the entire face of the Lagoon nebula. Gas temperatures are derived from line-width comparisons, densities from the [S II] doublet ratio, and ionization parameter from H-alpha/[N II] ratio. Although doubly-peaked emission profiles are rarely found, line asymmetries often imply multiple velocity components along the line of sight. This is especially true for the sodium absorption, and for the [O III] lines. Spatial maps for density and ionization are derived, and compared to other known properties of the nebula and of its massive stars 9 Sgr, Herschel 36 and HD 165052 which are confirmed to provide most of the ionizing flux. The detailed velocity fields across the nebula show several expanding shells, related to the cluster NGC6530, the O stars 9 Sgr and Herschel 36, and the massive protostar M8East-IR. The origins of kinematical expansion and ionization of the NGC6530 shell appear to be different. We are able to put constrains on the line-of-sight (relative or absolute) distances between some of these objects and the molecular cloud. The large obscuring band running through the middle of the nebula is being compressed by both sides, which might explain its enhanced density. We also find an unexplained large-scale velocity gradient across the entire nebula. At larger distances, the transition from ionized to neutral gas is studied using the sodium lines.Comment: 26 pages, 31 figures, accepted on Astronomy and Astrophysics journa

    Clustering Students Based on Gamification User Types and Learning Styles

    Full text link
    The aim of this study is clustering students according to their gamification user types and learning styles with the purpose of providing instructors with a new perspective of grouping students in case of clustering which cannot be done by hand when there are multiple scales in data. The data used consists of 251 students who were enrolled at a Turkish state university. When grouping students, K-means algorithm has been utilized as clustering algorithm. As for determining the gamification user types and learning styles of students, Gamification User Type Hexad Scale and Grasha-Riechmann Student Learning Style Scale have been used respectively. Silhouette coefficient is utilized as clustering quality measure. After fitting the algorithm in several ways, highest Silhouette coefficient obtained was 0.12 meaning that results are neutral but not satisfactory. All the statistical operations and data visualizations were made using Python programming language.Comment: 9 pages, 3 figure

    Nuclear gas dynamics in Arp 220 - sub-kiloparsec scale atomic hydrogen disks

    Full text link
    We present new, high angular resolution (~0.22") MERLIN observations of neutral hydrogen (HI) absorption and 21-cm radio continuum emission across the central ~900 parsecs of the ultraluminous infrared galaxy, Arp220. Spatially resolved HI absorption is detected against the morphologically complex and extended 21-cm radio continuum emission, consistent with two counterrotating disks of neutral hydrogen, with a small bridge of gas connecting the two. We propose a merger model in which the two nuclei represent the galaxy cores which have survived the initial encounter and are now in the final stages of merging, similar to conclusions drawn from previous CO studies (Sakamoto, Scoville & Yun 1999). However, we suggest that instead of being coplanar with the main CO disk (in which the eastern nucleus is embedded), the western nucleus lies above it and, as suggested by bridge of HI connecting the two nuclei, will soon complete its final merger with the main disk. We suggest that the collection of radio supernovae (RSN) detected in VLBA studies in the more compact western nucleus represent the second burst of star formation associated with this final merger stage and that free-free absorption due to ionised gas in the bulge-like component can account for the observed RSN distribution. (Abridged)Comment: 26 pages including 8 figures and 1 table; accepted for publication in Ap

    Interstellar abundances in the neutral and ionized gas of NGC604

    Full text link
    We present FUSE spectra of the giant HII region NGC604 in the spiral galaxy M33. Chemical abundances are derived from far-UV absorption lines and are compared to those derived from optical emission lines. We derived the column densities of HI, NI, OI, SiII, PII, ArI, and FeII, fitting the line profiles with either a single component or several components. Our net results, assuming a single component, show that N, O, Si, and Ar are apparently underabundant in the neutral phase by a factor of 10 or more with respect to the ionized phase, while Fe is the same. However, we discuss the possibility that the absorption lines are made of individual unresolved components, and find that only PII, ArI, and FeII lines should not be affected by the presence of hidden saturated components, while NI, OI, and SiII might be much more affected. If N, O, and Si are actually underabundant in the neutral gas of NGC604 with respect to the ionized gas, this would confirm earlier results obtained for the blue compact dwarfs. However, a deeper analysis focused on P, Ar, and Fe mitigates the above conclusion and indicates that the neutral gas and ionized gas could have similar abundances.Comment: Accepted for publication in A&

    Dense 3D Face Correspondence

    Full text link
    We present an algorithm that automatically establishes dense correspondences between a large number of 3D faces. Starting from automatically detected sparse correspondences on the outer boundary of 3D faces, the algorithm triangulates existing correspondences and expands them iteratively by matching points of distinctive surface curvature along the triangle edges. After exhausting keypoint matches, further correspondences are established by generating evenly distributed points within triangles by evolving level set geodesic curves from the centroids of large triangles. A deformable model (K3DM) is constructed from the dense corresponded faces and an algorithm is proposed for morphing the K3DM to fit unseen faces. This algorithm iterates between rigid alignment of an unseen face followed by regularized morphing of the deformable model. We have extensively evaluated the proposed algorithms on synthetic data and real 3D faces from the FRGCv2, Bosphorus, BU3DFE and UND Ear databases using quantitative and qualitative benchmarks. Our algorithm achieved dense correspondences with a mean localisation error of 1.28mm on synthetic faces and detected 1414 anthropometric landmarks on unseen real faces from the FRGCv2 database with 3mm precision. Furthermore, our deformable model fitting algorithm achieved 98.5% face recognition accuracy on the FRGCv2 and 98.6% on Bosphorus database. Our dense model is also able to generalize to unseen datasets.Comment: 24 Pages, 12 Figures, 6 Tables and 3 Algorithm

    The Hard X-Ray View of Reflection, Absorption, and the Disk-Jet Connection in the Radio-Loud AGN 3C 33

    Get PDF
    We present results from Suzaku and Swift observations of the nearby radio galaxy 3C 33, and investigate the nature of absorption, reflection, and jet production in this source. We model the 0.5-100 keV nuclear continuum with a power law that is transmitted either through one or more layers of pc-scale neutral material, or through a modestly ionized pc-scale obscurer. The standard signatures of reflection from a neutral accretion disk are absent in 3C 33: there is no evidence of a relativistically blurred Fe Kα\alpha emission line, and no Compton reflection hump above 10 keV. We find the upper limit to the neutral reflection fraction is R<0.41 for an e-folding energy of 1 GeV. We observe a narrow, neutral Fe Kα\alpha line, which is likely to originate at least 2,000 R_s from the black hole. We show that the weakness of reflection features in 3C 33 is consistent with two interpretations: either the inner accretion flow is highly ionized, or the black-hole spin configuration is retrograde with respect to the accreting material.Comment: 12 pages, 11 figures, 4 tables. Accepted for publication in Ap
    corecore