27 research outputs found

    Automated Analysis of Mammograms using Evolutionary Algorithms

    Get PDF
    Breast cancer is the leading cause of death in women in the western countries. The diagnosis of breast cancer at the earlier stage may be particularly important since it provides early treatment, this will decreases the chance of cancer spreading and increase the survival rates. The hard work is the early detection of any tissues abnormal and confirmation of their cancerous natures. In additionally, finding abnormal on very early stage can also affected by poor quality of image and other problems that might show on a mammogram. Mammograms are high resolution x-rays of the breast that are widely used to screen for cancer in women. This report describes the stages of development of a novel representation of Cartesian Genetic programming as part of a computer aided diagnosis system. Specifically, this work is concerned with automated recognition of microcalcifications, one of the key structures used to identify cancer. Results are presented for the application of the proposed algorithm to a number of mammogram sections taken from the Lawrence Livermore National Laboratory Database. The performance of any algorithm such as evolutionary algorithm is only good as the data it is trained on. More specifically, the class represented in the training data must consist of the true examples or else reliable classifications. Considering the difficulties in obtaining a previously constructed database, there is a new database has been construct to avoiding pitfalls and lead on the novel evolutional algorithm Multi-chromosome Cartesian genetic programming the success on classification of microcalcifications in mammograms

    The application of evolutionary computation towards the characterization and classification of urothelium cell cultures

    Get PDF
    This thesis presents a novel method for classifying and characterizing urothelial cell cultures. A system of cell tracking employing computer vision techniques was applied to a one day long time-lapse videos of replicate normal human uroepithelial cell cultures exposed to different concentrations of adenosine triphosphate (ATP) and a selective purinergic P2X antagonist (PPADS) as inhibitor. Subsequent analysis following feature extraction on both cell culture and single-cell demonstrated the ability of the approach to successfully classify the modulated classes of cells using evolutionary algorithms. Specifically, a Cartesian Genetic Program (CGP) network was evolved that identified average migration speed, in-contact angular velocity, cohesivity and average cell clump size as the principal features contributing to the cell class separation. This approach provides a non-biased insight into modulated cell class behaviours

    Exploring variability in medical imaging

    Get PDF
    Although recent successes of deep learning and novel machine learning techniques improved the perfor- mance of classification and (anomaly) detection in computer vision problems, the application of these methods in medical imaging pipeline remains a very challenging task. One of the main reasons for this is the amount of variability that is encountered and encapsulated in human anatomy and subsequently reflected in medical images. This fundamental factor impacts most stages in modern medical imaging processing pipelines. Variability of human anatomy makes it virtually impossible to build large datasets for each disease with labels and annotation for fully supervised machine learning. An efficient way to cope with this is to try and learn only from normal samples. Such data is much easier to collect. A case study of such an automatic anomaly detection system based on normative learning is presented in this work. We present a framework for detecting fetal cardiac anomalies during ultrasound screening using generative models, which are trained only utilising normal/healthy subjects. However, despite the significant improvement in automatic abnormality detection systems, clinical routine continues to rely exclusively on the contribution of overburdened medical experts to diagnosis and localise abnormalities. Integrating human expert knowledge into the medical imaging processing pipeline entails uncertainty which is mainly correlated with inter-observer variability. From the per- spective of building an automated medical imaging system, it is still an open issue, to what extent this kind of variability and the resulting uncertainty are introduced during the training of a model and how it affects the final performance of the task. Consequently, it is very important to explore the effect of inter-observer variability both, on the reliable estimation of model’s uncertainty, as well as on the model’s performance in a specific machine learning task. A thorough investigation of this issue is presented in this work by leveraging automated estimates for machine learning model uncertainty, inter-observer variability and segmentation task performance in lung CT scan images. Finally, a presentation of an overview of the existing anomaly detection methods in medical imaging was attempted. This state-of-the-art survey includes both conventional pattern recognition methods and deep learning based methods. It is one of the first literature surveys attempted in the specific research area.Open Acces

    The Application of Evolutionary Algorithms to the Classification of Emotion from Facial Expressions

    Get PDF
    Emotions are an integral part of human daily life as they can influence behaviour. A reliable emotion detection system may help people in varied things, such as social contact, health care and gaming experience. Emotions can often be identified by facial expressions, but this can be difficult to achieve reliably as people are different and a person can mask or supress an expression. Instead of analysis on static image, the computing of the motion of an expression’s occurrence plays more important role for these reasons. The work described in this thesis considers an automated and objective approach to recognition of facial expressions using extracted optical flow, which may be a reliable alternative to human interpretation. The Farneback’s fast estimation has been used for the dense optical flow extraction. Evolutionary algorithms, inspired by Darwinian evolution, have been shown to perform well on complex,nonlinear datasets and are considered for the basis of this automated approach. Specifically, Cartesian Genetic Programming (CGP) is implemented, which can find computer programme that approaches user-defined tasks by the evolution of solutions, and modified to work as a classifier for the analysis of extracted flow data. Its performance compared with Support Vector Machine (SVM), which has been widely used in expression recognition problem, on a range of pre-recorded facial expressions obtained from two separate databases (MMI and FG-NET). CGP was shown flexible to optimise in the experiments: the imbalanced data classification problem is sharply reduced by applying an Area under Curve (AUC) based fitness function. Results presented suggest that CGP is capable to achieve better performance than SVM. An automatic expression recognition system has also been implemented based on the method described in the thesis. The future work is to propose investigation of an ensemble classifier implementing both CGP and SVM

    Evolving Artificial Neural Networks using Cartesian Genetic Programming

    Get PDF
    NeuroEvolution is the application of Evolutionary Algorithms to the training of Artificial Neural Networks. NeuroEvolution is thought to possess many benefits over traditional training methods including: the ability to train recurrent network structures, the capability to adapt network topology, being able to create heterogeneous networks of arbitrary transfer functions, and allowing application to reinforcement as well as supervised learning tasks. This thesis presents a series of rigorous empirical investigations into many of these perceived advantages of NeuroEvolution. In this work it is demonstrated that the ability to simultaneously adapt network topology along with connection weights represents a significant advantage of many NeuroEvolutionary methods. It is also demonstrated that the ability to create heterogeneous networks comprising a range of transfer functions represents a further significant advantage. This thesis also investigates many potential benefits and drawbacks of NeuroEvolution which have been largely overlooked in the literature. This includes the presence and role of genetic redundancy in NeuroEvolution's search and whether program bloat is a limitation. The investigations presented focus on the use of a recently developed NeuroEvolution method based on Cartesian Genetic Programming. This thesis extends Cartesian Genetic Programming such that it can represent recurrent program structures allowing for the creation of recurrent Artificial Neural Networks. Using this newly developed extension, Recurrent Cartesian Genetic Programming, and its application to Artificial Neural Networks, are demonstrated to be extremely competitive in the domain of series forecasting

    Objective Assessment of Neurological Conditions using Machine Learning

    Get PDF
    Movement disorders are a subset of neurological conditions that are responsible for a significant decline in the health of the world’s population, having multiple negative impacts on the lives of patients, their families, societies and countries’ economy. Parkinson’s disease (PD), the most common of all movement disorders, remains idiopathic (of unknown cause), is incurable, and without any confirmed pathological marker that can be extracted from living patients. As a degenerative condition, early and accurate diagnosis is critical for effective disease management in order to preserve a good quality of life. It also requires an in-depth understanding of clinical symptoms to differentiate the disease from other movement disorders. Unfortunately, clinical diagnosis of PD and other movement disorders is subject to the subjective interpretation of clinicians, resulting in a high rate of misdiagnosis of up to 25%. However, computerised methods can support clinical diagnosis through objective assessment. The major focus of this study is to investigate the use of machine learning approaches, specifically evolutionary algorithms, to diagnose, differentiate and characterise different movement disorders, namely PD, Huntington disease (HD) and Essential Tremor (ET). In the first study, movement features of three standard motor tasks from Unified Parkinson’s Disease Rating Scale (UPDRS), finger tapping, hand opening-closing and hand pronation-supination, were used to evolve the high-performance classifiers. The results obtained for these conditions are encouraging, showing differences between the groups of healthy controls, PD, HD and ET patients. Findings on the most discriminating features of the best classifiers provide insight into different characteristics of the neurological disorders under consideration. The same algorithm has also been applied in the second study on Dystonia patients. A differential classification between Organic Dystonia and Functional Dystonia patients is less convincing, but positive enough to recommend future studies

    Potential of modern circulating cell-free DNA diagnostic tools for detection of specific tumour cells in clinical practice

    Get PDF
    Personalized medicine is a developing field of medicine that has gained in importance in recent decades. New diagnostic tests based on the analysis of circulating cell-free DNA (cfDNA) were developed as a tool of diagnosing different cancer types. By detecting the subpopulation of mutated DNA from cancer cells, it is possible to detect the presence of a specific tumour in early stages of the disease. Mutation analysis is performed by quantitative polymerase chain reaction (qPCR) or the next generation sequencing (NGS), however, cfDNA protocols need to be modified carefully in preanalytical, analytical, and postanalytical stages. To further improve treatment of cancer the Food and Drug Administration approved more than 20 companion diagnostic tests that combine cancer drugs with highly efficient genetic diagnostic tools. Tools detect mutations in the DNA originating from cancer cells directly through the subpopulation of cfDNA, the circular tumour DNA (ctDNA) analysis or with visualization of cells through intracellular DNA probes. A large number of ctDNA tests in clinical studies demonstrate the importance of new findings in the field of cancer diagnosis. We describe the innovations in personalized medicine: techniques for detecting ctDNA and genomic DNA (gDNA) mutations approved Food and Drug Administration companion genetic diagnostics, candidate genes for assembling the cancer NGS panels, and a brief mention of the multitude of cfDNA currently in clinical trials. Additionally, an overview of the development steps of the diagnostic tools will refresh and expand the knowledge of clinics and geneticists for research opportunities beyond the development phases

    Proceedings - 30. Workshop Computational Intelligence : Berlin, 26. - 27. November 2020

    Get PDF
    Dieser Tagungsband enthält die Beiträge des 30. Workshops Computational Intelligence. Die Schwerpunkte sind Methoden, Anwendungen und Tools für Fuzzy-Systeme, Künstliche Neuronale Netze, Evolutionäre Algorithmen und Data-Mining-Verfahren sowie der Methodenvergleich anhand von industriellen und Benchmark-Problemen

    Proceedings - 30. Workshop Computational Intelligence : Berlin, 26. - 27. November 2020

    Get PDF
    The proceedings of the 30th workshop on computational intelligence focus on methods, applications, and tools for fuzzy systems, artificial neural networks, deep learning, system identification, and data mining techniques
    corecore