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Abstract 

 

Emotions are an integral part of human daily life as they can influence behaviour. A reliable 

emotion detection system may help people in varied things, such as social contact, health care 

and gaming experience. Emotions can often be identified by facial expressions, but this can be 

difficult to achieve reliably as people are different and a person can mask or supress an 

expression. Instead of analysis on static image, the computing of the motion of an expression’s 

occurrence plays more important role for these reasons. The work described in this thesis 

considers an automated and objective approach to recognition of facial expressions using 

extracted optical flow, which may be a reliable alternative to human interpretation. The 

Farneback’s fast estimation has been used for the dense optical flow extraction. Evolutionary 

algorithms, inspired by Darwinian evolution, have been shown to perform well on complex, 

nonlinear datasets and are considered for the basis of this automated approach. Specifically, 

Cartesian Genetic Programming (CGP) is implemented, which can find computer programme that 

approaches user-defined tasks by the evolution of solutions, and modified to work as a classifier 

for the analysis of extracted flow data. Its performance compared with Support Vector Machine 

(SVM), which has been widely used in expression recognition problem, on a range of pre-recorded 

facial expressions obtained from two separate databases (MMI and FG-NET). CGP was shown 

flexible to optimise in the experiments: the imbalanced data classification problem is sharply 

reduced by applying an Area under Curve (AUC) based fitness function. Results presented suggest 

that CGP is capable to achieve better performance than SVM. An automatic expression 

recognition system has also been implemented based on the method described in the thesis. The 

future work is to propose investigation of an ensemble classifier implementing both CGP and 

SVM. 
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1 Introduction 

1.1 Emotions and Expressions 

Emotions are very important for humans in their daily lives. People’s behaviour can be influenced 

by emotions. With an angry emotion, we may do something that we would not normally do. 

When we feel sad, we want somebody to talk to. The decisions we make are greatly affected by 

our current emotions: they will be different when we feel happy, sad, angry or fear. It is obviously 

important for others as well as the individual to recognise these emotions, if the consequences 

may be far reaching. 

Affective Computing[1] is the concept that the computer has the intelligent to understand, 

recognise and interpret human emotions. The applications can be useful in (many) areas and 

possibly changing (the industry). An application in game industry will not only wait the intentional 

facial expression as an input method or a desired appearance to perform, but also detect the real 

emotion of the player during the game and the game process or ending may change based on it in 

order to bring the player special experience. In daily life, a wearable device that can read emotion 

during communication will help people has problem to sense other’s affects or even give expert’s 

advice to less experience people, for example, the notice of unnatural or suspect expressions. 

Such device can be also used for monitoring the user’s emotion. It can aware the user when 

he/she is in an extreme emotion, in case he/she would do regretful things. The everyday emotion 

data may be also saved together with other data, like heart rate and blood pressure, for 

healthcare.  

In order to begin to apply technology to this problem, we first need to understand some of the 

underlying theory of emotion in more fully. In Scherer's Component Process Model of emotion[2], 

five crucial elements of emotion are identified: (i) an evaluation of events and objects – the 

cognitive component of appraisal; (ii) system regulation – the neuropsychological component of 

bodily symptoms of emotional experience; (iii) preparation and direction – which is a motivational 

component for the preparation and direction of motor responses; (iv) communication of reaction 

and behavioural intention expression – in which facial and vocal expressions almost always 

accompanies an emotional state; and (v) monitoring of internal state and organism–environment 

interaction - feelings or the subjective experience of emotional state once it has occurred. For 

many of us facial expression is one of the most recognisable elements of emotion. We read facial 

expression to know one’s emotion and predict the behaviour under that emotion. This is actually 

the purpose of emotion as Charles Darwin explained it in his book “The Expression of the 



2 

 

Emotions in Man and Animals” [3]. Darwin argued that emotions served a purpose for humans 

and other mammals, in communication and also in aiding their survival.  

How do facial expressions happen? There are two brain pathways associated with facial 

expression; the first is voluntary expression, which is made consciously. The second type of 

expression is emotional, which is often made unconsciously[4]. Either path controls the muscles 

on face to contract or expand. The movement of the muscles also moves the skin that connects to 

them. This causes the changes of appearances of one’s face. People read expressions from the 

appearance or the movement of the face to know one’s emotion[5].  

Are expressions universal? People have many expressions and emotions but do different people 

have same type of expression for one emotion? The universality of expressions was first 

suggested by Darwin in 1872[3], under his theory of evolution. After much subsequent research it 

has been suggested that several expressions are universal among people, even when living in 

different cultures and environments[6]. This universality of expressions provides us with a basis 

for expression recognition.  

 

1.1.1 Differences in Individuals’ Expressions 

Although many accept expressions are universal, there are still some differences between people 

and in specific cases. People have different appearances, and even though they use the same 

muscles for forming an expression, it may look different. Equally, for just one individual, it is 

unlikely they will have exactly the same expression for one emotion all the time. First of all, the 

strength of expression may be different for same emotion.  Secondly, in different environments, 

situations and conditions, one may act differently. For example, our expression when talk with 

someone familiar may be different from when we talk with a stranger, for the same emotion. 

Furthermore, there are more complicated cases that make the expressions vary. People may 

intentionally fake expressions for the purpose of hiding real emotion. For example, we have all 

experienced someone with a fake smile to prevent others worrying, when there is really sadness 

and reluctance to share the reason. One may pretend to be sad when listening to another’s 

misfortune, but actually this emotion may not necessarily be shared. As mentioned above, the 

expressions controlled by the second brain pathway will occur unconsciously, so making another, 

different expression to hide the real emotion will cause a subtle change on face appearance. 

These are called micro expressions[7], and can occur in a very short time, and so are easy to miss.  

However, they provide a very useful ability to differentiate expressions and underlying emotions. 
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1.2 Automatic Recognition of Human Expression 

Automatic expression recognition has always been a popular problem in image processing and 

has attracted a great amount of research. There are many potential benefits of such systems as 

automated recognition of human facial expressions by computer can reduce the workload of 

humans. Machines can work continuously without rest and variability, unlike their human 

counterparts. Not only do automated systems offer objectivity, reliability and reproducibility of 

results, but can also discover information that may be difficult or impossible to observe with the 

human eyes. With the rapidly developing technology, high-resolution cameras are inexpensive 

and commonly available, as is the supporting software and related techniques for processing of 

images and video. This makes such complex tasks such as recognising human expression more 

practical and realisable.  

There is currently a number of approaches that are used to recognise facial expressions 

automatically, including the analysis of facial appearance[8], and location and tracking of 

landmarks[9] and flows[10] of the face for extracting facial information. The information gained 

from these techniques can then be used to train a decision making machine to identify or classify 

the expression detected. First of all, a predetermined set of data is entered into the machine 

together with appropriate class labels describing the expressions exhibited (such as fear or 

happiness). The machine will analyse the input data and labels and is trained develop the 

knowledge of finding relations between data and different labels. After this has been 

accomplished, the machine will give its response based on the pre-trained experience to new 

data input. This process is called machine learning.  

Many types of classifiers have been applied to expression recognition with some success, such as 

Support Vector Machine[11-15], Bayesian Networks[16-18] and Neural Networks[19-22]. But 

Evolutionary Algorithms[74-92], which have been shown to be effective for other classification 

applications, have yet to be investigated for expression recognition. 

 

1.3 Evolutionary Algorithms 

Evolutionary algorithms (EAs) are stochastic search techniques inspired by Darwin’s theory of 

evolution[3]. Throughout history, individuals who are best suited to the environment are most 

likely to survive and produce the next generation. Their offspring also inherits traits that will 

propagate this fitness; termed natural selection, it will continue to influence future generations. 
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This repeated process leads to increased fitness, permitting the population to become stronger 

and survive in the environment. Evolutionary algorithms simulate this process with the purpose 

of finding the best individual of solutions for a particular problem, in this case a classifier for 

recognising expressions. 

 

1.3.1 Advantages of Evolutionary Algorithms  

Due to their specific characteristics, EAs can be more effective than conventional, statistically 

based approaches for solving highly complex, non-linear and discontinuous search problems[23]. 

Consequently, they are gaining considerable popularity, not least of all, because they can solve 

problems requiring multiple solutions and are well suited to parallel processing[24]. 

 

1.4 Hypothesis  

The potential benefits of automating the recognition and classification of facial expressions and 

the implementation of an evolutionary algorithm to achieve this forms the basis of this thesis and 

has been summarised in the following hypothesis: 

“Evolutionary Algorithms are an effective means of recognising and classifying human facial 

expression.” 

EAs have been chosen as they have been shown to have several distinct advantages over other 

learning algorithms. Their application to the classification of facial expressions will be compared 

with SVM - a popular, competitive classifier. Sample expressions will be taken from several video 

databases.  

 

1.5 Thesis Structure 

The structure of this thesis is based on the routine of the research on expression recognition and 

evolutionary algorithms. It starts at the literature reviews on the background of image processing 

on expression recognition and Evolutionary Algorithms. Suitable image processing techniques for 

the facial expression recognition problem are studied. Then the method used for extracting 

features is applied on both conventional classifier and Evolutionary Algorithm based classifier. In 

the end, the comparison of the two classifiers (SVM and CGP) is made.  
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Chapter 2 introduces the background of facial expression recognition and evolutionary algorithms. 

In 2.1, literatures of past works on this problem are reviewed and important methods and 

techniques are introduced. In 2.2 Evolutionary Algorithms are introduced including the concept, 

structure and algorithms. Then Genetic Programming is on focus, the algorithms are discussed 

and related literatures are reviewed.  

Chapter 3 is mainly discussing how the feature is extracted for the expression recognition. Firstly 

the database is introduced in 3.2. In 3.3 the details of Optical Flow algorithm are studied. The 

video data will be pre-processed and the method is in 3.4. Then three ways of reduction on 

extract Optical Flow feature are discussed. The comparison is made by the classification results 

with SVM classifier.  

Chapter 4 introduces the CGP and experiments on recognition by using the features from chapter 

3 for a comparison to SVM. The CGP structure and evolutionary strategy are described in 4.2. 

Then the classifier based on CGP is introduced in 4.3 together with a series of experiments and all 

the experimental results of CGP classifier are compared with those of SVM. This CGP classifier is 

applied to the expression flow data from chapter 3 in 4.4. In 4.5 the fitness function is discussed 

and the AUC based fitness function is applied to improve the recognition rates. In 4.6 the 

overfitting of the classifier training is discussed and tried to avoid by adjusting the CGP classifier. 

Then this optimised CGP classifier is compared with the SVM classifier by the classification results 

on the facial expression recognition. In 4.7 an introduction of the implementation of the 

automatic recognition system is made. 

Chapter 5 is the conclusion. It summarises the works have been done and discoveries from all the 

experiments in this research. The conclusions and recommendations for future work are given in 

this chapter.  
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2 Background  

2.1 Previous Work on Expression Recognition 

Facial expression recognition is an important topic in image processing, and has attracted 

considerable attention from the research community. To evaluate an expression recognition 

method, the speed and accuracy should be considered, but in the literature, many different 

databases have been used and so experimental results cannot be easily compared using different 

technologies. Some methods also require manual land marking of feature points, making a direct 

comparison unfair. Additionally, the difference between using static image data and dynamic 

image data is also a factor that makes comparison unrealistic. Finally, only a few papers mention 

the processing speed of their systems when reporting system performance. 

A typical expression recognition system consists of three procedures: (i) face detection, (ii) feature 

extraction and (iii) classification. Face detection is essential to locate the appropriate area of the 

image on which pre-processing and feature extraction can be undertaken ahead of the 

recognition phase. The data representing a face image is usually too large for further immediate 

processing and feature extraction is used to reduce the dimensionality of data to be processed. 

Classification is used to identify which category the input features (or expression in this case) 

belong to. If the features are too many, the learning process of the classifier becomes 

computationally and analytically demanding. This often results in a rise of classification error, 

because of the interference of less relative data or even noise. Hence, feature extraction and 

selection are very important to reduce the dimensionality of the feature space before 

classification[25]. 

 

2.1.1 Face Detection 

Face detection is the very first step of processing and used to acquire the location of the face in 

the image or video frame being analysed and, as such, is an essential part of expression 

recognition. Many face detection techniques have been proposed which are often integrated with 

feature extraction in order to save computation time. Since Viola and Jones proposed their robust 

and fast face detection method in 2002, it has become possible to build real-time facial 

expression recognition systems in practical, typically achieving a speed of 25 Frames per Second 

(FPS) on a Pentium III computer[26]. Consequently, the Viola and Jones’ algorithm has become 

one of the most widely used face detection techniques and even today attracts much attention 

from researchers.  T. Ephraim et al. optimised the Viola and Jones’ algorithm to make it suitable 
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for working from within a web browser[27]. L. Lang and W. Gu improved the original algorithm 

that avoids the over training phenomenon occurred in original algorithm[28]. R. Liu et al. applied 

a continuously adaptive mean shift algorithm to track the face after detection by the Viola and 

Jones’ algorithm[29]. O. Bilaniuk et al. applied a fast face detection method on Single Instruction 

Multiple Data architectures replacing the Haar feature by Local Binary Patterns feature[30]. 

 

2.1.1.1  The Viola and Jones’ Algorithm 

The Viola and Jones algorithm applies a cascade AdaBoost learning algorithm to select Haar-like 

features in the detection of faces. 

Haar features consider the difference between two or more adjacent rectangles within an image. 

The rectangles can be of any size and any position within the searching window, but a Haar 

feature only considers the adjacent rectangles which are of the same size, as shown in figure 2.1. 

The rectangles can comprise of two to four regions and they can be adjacent horizontally or 

vertically with the same size and shape. The Haar feature computes the sum of the pixels’ 

grey-scale values in white rectangles subtracted from the sum of those in dark rectangles. The 

integral image[26], which is the summation of the pixels above and to the left of one point in the 

image, is used for computing the value of all the pixels within a rectangle based on four vertices. 

For example, in the figure 2.1, the sum of pixels in dark rectangle in B and B’ can be calculated 

from four integral images of points 1, 2, 3 and 4, which is equal to:  

integral image 4 - integral image 2 - integral image 3 + integral image 1.  

Similarly, in B and B’, the sum of pixels in white rectangle is equal to: 

integral image 6 - integral image 4 - integral image 5 + integral image 3.  

Because each rectangular area in a feature is always adjacent to at least one other rectangle, it 

follows that any two-rectangle feature can be computed in six array references, any 

three-rectangle feature in eight, and any four-rectangle feature in just nine. Although the Haar 

feature is a simple integral and subtraction of arrays, the number of features is too large. A 24 by 

24 pixel scan window comprises 576 pixels, but 45,396 possible features and, consequently, the 

AdaBoost algorithm is used to select useful features in the training phase. 
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Figure 2.1: Haar features in original Viola and Jones algorithm[26] and the integral images for 

computing the features 

 

 

 

Figure 2.2: Architecture of the cascade classifier[26] 

 

A predetermined number of features is selected and weighted according to the error obtained 

when each feature is used for detecting an object. Each feature is considered a weak classifier but, 

in combination, all features form a strong classifier. However, this method is not considered fast 

enough by the authors and they propose a cascade architecture which increases the classification 

speed to work in real-time. This architecture cascades several levels of weak classifiers together, 
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as shown in figure 2.2. If the input passes all the levels, the classifier will give a positive answer; if 

any weak classifier gives a negative result, the input will not go through to the next level and the 

classifier will process a new input from the next scan window. Every level should let all the face 

images pass, but have a high false positive rate as a consequence. The features in next level are 

always stronger than the previous level and can distinguish more difficult cases which upper 

levels cannot do.  Even though there is a high false positive rate in each weak classifier, a strong 

classifier can still be achieved at a very low false positive rate, due to the cascade structure. 

 

2.1.2 Feature Extraction 

Feature extraction is a very important component of the recognition process and involves 

extracting the most important information for discriminating different classes. The process 

reduces the dimensionality of the feature data and can help classifiers to have better 

performance. There are various types of feature extraction techniques that have been applied for 

expression recognition, some of which are considered below. 

Ekman and Friesen developed the Facial Action Coding System (FACS)[31]. This encodes a single 

muscle or a group of muscles from the face to 46 predefined action units. It is proposed that all 

facial movements can be described by the combination of these action units, and further, it is 

suggested that through analysing these action units, psychologists can not only determine a 

particular facial expression, but also the state of mind or emotion of the subject. Several 

automated implementations of FACS have been proposed that exploit facial action units to 

analyse facial expressions[8, 16, 18, 32-34].  

John Robinson proposed covariance matrix estimation for face description[35-37]. G. R. S. Murthy 

and R. S. Jadon introduced an expression recognition method based on eigenfaces – the term 

given to a set of eigenvectors when used for human face recognition[38]. The eigenface technique 

is still sensitive to shape changes, especially when used for rigid object recognition, but the 

technique is popular with many researches concerned with analysing human emotion through 

the use of multiple modalities[39-41]. There are also some approaches for expression recognition 

using a 3D model[42-46]. I. Cohen et al and A. Azcarate et al proposed two expression recognition 

systems[44], both of which were based on the Piecewise Bezier Volume tracker[43], increasing 

the performance of the recognition system by using manifold learning[17, 47, 48]. 

In addition to these methods, Gabor Filters[49-52], Local Binary Patterns[12-14, 53], Active 

Appearance Model[19, 32, 54, 55] and Optical Flow[9-11, 56] are amongst the most popular 

feature extraction techniques employed. The following sections consider these feature extraction 

algorithms in some detail.  
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2.1.2.1  Gabor Filters 

A Gabor filter[49], named after Dennis Gabor, is a linear filter used for edge detection. Frequency 

and orientation representations of Gabor filters are similar to those of the human visual system, 

and they have been found to be particularly appropriate for texture representation and 

discrimination. In the spatial domain, a 2D Gabor filter is a Gaussian kernel function modulated by 

a sinusoidal plane wave. The complex sinusoid is known as the carrier and Gaussian function is 

known as the envelope. The Gabor filters are self-similar: all filters can be generated from one 

mother wavelet by dilation and rotation.  

A 2D Gabor kernel can be mathematically defined as (real part): 
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    (2.1) 

where 

𝑥′ = 𝑥 cos 𝜃 + 𝑦 sin 𝜃     (2.2) 

𝑦′ = −𝑥 sin 𝜃 + 𝑦 cos 𝜃     (2.3) 

and λ is the wavelength of the sinusoidal function, θ  is the orientation of the Gaussian function, 

σ is the standard deviation of the Gaussian envelope. 

An example transformation from the original image to a Gabor kernel bank is shown in figure 2.3. 

The result after Gabor filtering is shown in figure 2.4. 
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(a)                                  (b)  

Figure 2.3: (a) Original face image (b) Gabor kernel bank  

 

 

Figure 2.4: Results after applying Garbor filter 
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The Gabor wavelet is a useful technique in image processing and especially strong for rigid object 

recognition, but it can also be used for facial expression recognition. I. R. Fasel and M. S. Bartlett 

applied the Gabor filter for automatically marking pupils and the philtrum (the vertical groove in 

the middle of the upper lip) in face images[49]. B. Oshidari and B. N. Araabi proposed an adaptive 

Gabor wavelet for expression recognition[50]. They applied a fuzzy controller in the system to 

determine the parameters of Gabor wavelet. P. Wu et al introduced an expression recognition 

system combining the Gabor feature and Active Shape Model (ASM)[51]. Firstly, the ASM was 

fitted to the face in the image, and then the features of the ASM points were extracted using a 

Gabor wavelet. The final feature set, a combination of the two (ASM and Gabor feature) was then 

used for recognition. In a further development, J. Yu and B. Bhanu applied genetic programming 

to synthesise new features based on Gabor wavelets for expression recognition[52].  

 

2.1.2.2  Local Binary Patterns 

The original concept of Local Binary Patterns (LBP) was introduced by Ojala in 1994 for texture 

analysis [57]. This method compares one pixel in an image with all 8 surrounding pixels. Each 

surrounding pixel which is smaller than the centre pixel is given a value of “0” at its position, 

otherwise it is given a value of “1”.  Following this, an 8-bit binary number is obtained by 

following a clockwise sequence from the upper-left corner and forms the LBP code. The resulting 

256-bin histogram using this code describes the texture of the image. The original LBP only used 3 

by 3 neighbourhood pixel windows, but later LBP implementations extended this to calculate the 

pixels of a specified radius. Indeed, the number of pixels and the radius can be set to meet the 

application requirement. Instead of just describing the texture of the surrounding pixels, this 

improved method can describe the relationship between more distance pixels within the image, 

as shown in figure 2.5. 

 

Figure 2.5: Local binary pattern (LPB) algorithm (based on[12]) 

Where P stands for the number of points, R is the radius of the circle of points. 
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The number of possible LBP values in an 8 point situation is 28 or 256. It has been demonstrated 

by Ojala et al.[57] that some patterns carry more useful information than others and so LBP only 

uses these patterns to describe texture and are named uniform patterns. Consider the very left 

and the right bits are connected in the 8 bits string as they are from the circle around the centre 

pixel. Then if there are two transitions of bit value in the string (value of one bit is not equal to 

the bit on the right/left), this pattern is called uniform pattern. In the 8 points string, there are 58 

uniform patterns of all 256 patterns. Each uniform pattern is in a unique bin and the rest 198 

patterns are in one bin, so there are totally 59 bins for the LBP histogram.  

This LBP histogram contains information about the distribution of the local micro-patterns, such 

as edges, spots and flat areas, over the whole image, so can be used to statistically describe image 

characteristics. But the histogram does not indicate any information about their locations. To 

overcome this problem, the image is divided into equal regions and histogram of each region is 

used for texture analysis.  

 

Figure 2.6: Textures describe in LBP[53] 

 

Figure 2.6 shows how LBP describes the textures. The line end, edge and corner textures in the 

figure are the uniform patterns in LBP.  

LPB is a texture description technique. Compared with the Gabor wavelet, it requires less 

computation time. Caifeng Shan et al applied LBP in their facial expression recognition system[12]. 

They divided face images, which are normalised by fixing the distance between eyes into 6 by 7 

sub-regions and connected LBP histograms of each sub-region together as the feature vector. 

These sub-regions had their corresponding weights for classification. Subsequently, they 

introduced a method that selected features by Adaboost[53]. It was different from the method in 

[12], sub-regions that were extracted by shifting and scaling a sub-window of 16,640 pixels. 

Adaboost was then used for selecting 50 histograms, which included more discriminating 

information. G. Zhao and M. Pietikainen proposed two LBP based dynamic texture extraction 

techniques for expression recognition: volume local binary patterns and local binary patterns 

from three orthogonal planes[13]. These two LBP based methods calculated the LBP value not 
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only in current (single) image but include previous and posterior frames to describe the dynamic 

texture. Ruo Du et al. proposed Histogram Variance Face (HVF)[14] which is an LBP-based method 

including temporal information for expression recognition.  

 

2.1.2.3  Active Shape and Active Appearance Models 

 

The Active Shape Model (ASM), proposed by T. Coots[58], is used for representing the shape of 

face by the position of a group of points and the curves they describe. 

First, the contours of all the features on the image of a face are marked by hand using a set of 

landmark points. These labelled face images are used as a training set. In every training image, 

the numbers of points are same and the position that each point should locate at. A vector X is 

formed using the position of all the points whose number and order are confirmed in one image 

as shown below:  

]...,,,...,,[ 321321 nn yyyyxxxxX 
           (2.4) 

Where n is the number of points, x and y are the pixel coordinates. The rotation and scale of the 

shape should be normalised to minimise the square error of points. Then Principal Component 

Analysis[17] is applied to all the vectors to describe the majority variations. Only a few 

eigenvectors remain which correspond to higher eigenvalues. Then a statistical shape model 

called Point Distribution Model(PDM)[58] is: 

ss bPxX *
     (2.5) 

Where Ps = (p1,p2,p3…pt) is the matrix of remaining t eigenvectors, bs = (b1,b2,b3…bt) is the weights. 

New models can be generated by changing the parameters in bs. The range of parameters in bs is 

learnt from the training set. 𝑥̅ is the mean shape of the training data. 

When a new image is considered, the model is required to fit the new face by changing the shape 

and pose parameters. The pose parameters include rotation and scale, the shape is changed by 

adjusting the parameters in bs. First, a very rough initial parameter is set, then a better parameter 

is obtained and updated, if found. This is repeated until it converges. There are several methods 

to achieve this - one is to find edges along the normals through each point and then move the 

points towards the edges, as this is where the points are supposed to sit.  



15 

 

Texture information is added to the ASM points to form an Active Appearance Model (AAM).  

Proposed by Coots et al.[59], AAM can synthesis new face images, not only the shape points, but 

also the appearance. The way texture information is added is similar as that used in the PDM. 

This technique can match the appearance and shape model to a new image from training data. H. 

Choi and S. Oh introduced AAM with efficient second order minimisation for face identification 

and expression recognition[54]. This method avoids a large error in classification, but is 

computationally intensive. L. Zalewski and S. Gong extended the AAM and proposed mixture of 

probabilistic and principal component analysis algorithms for expression recognition[55]. This 

method can generate side views automatically from near frontal images. N. Neggaz et al. 

proposed a facial expression recognition system based on improved AAM[19]. They applied a 

differential evolution algorithm to optimise the AAM parameters. A. Ryan et al. gave a definition 

of constrained local models which included AAM and discussed automated facial expression 

recognition systems[32]. J. Sung et al. proposed a stereo active appearance model for expression 

analysis[60]. This method required two cameras in a fixed angle to get the input data. It increased 

the accuracy and speed of face matching over the original AAM. T. Robin et al. proposed a 

discrete choice model based method for expression recognition[61]. They applied AAM in their 

method for feature extraction.  

 

2.1.2.4  Optical Flow 

Optical flow is a popular computer vision technique and commonly used for motion detection, 

object tracking and object segmentation[62]. It describes the movement of an object by the 

velocities of points on its surfaces and edges, projected on a scene between the observer and the 

object. In a practical case, it is used for estimating the velocity of a point moving in two 

consecutive video frames. With these velocities known, the movement of an object, or observer, 

in image sequences can be calculated. For example, points with similar velocity can be considered 

as a moving object. i.e. objects can be tracked by calculating the velocities of the points on the 

object.  

Optical flow assumes that the intensity of pixels do not change while the pixel moves through 

frames, where intensity means the colour or grey level value of a pixel. Therefore, the intensity of 

a pixel in location (x, y) at time t and in a different location (x+Δx, y+Δy) after Δt time, can be 

described as: 

),,(),,( ttyyxxItyxI     (2.6) 

Where I(x, y, t) represents the intensity of the pixel in x,y at time t. 
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An expansion of this equation can be written in terms of Taylor’s series: 
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Assuming the movement is small, so that the second and higher order terms can be ignored, from 

equations 2.6 and 2.7 we can arrive at the following: 
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Multiply 1/Δt at both side of the equation produces: 
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Then Δx/Δt can be presented by Vx means the x component of velocity and Δy/Δt is shown as Vy: 
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Where x

I


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, y
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and t

I
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

are the derivatives of the image at (x,y,t) in the corresponding directions. 

In equation 2.10 there are two unknowns which cannot be solved. As shown in figure 2.7, we 

cannot tell the displacement is on x, y or both axes from the shift of the line. This problem in an 

optical flow algorithm context is called the aperture problem. An additional set of equations is 

required for solving this problem which is generated by applying additional constraints. All optical 

flow algorithms have the possibility of additional conditions which provide constraint equations. 

The Lucas-Kanade (LK) method[63] and Horn-Shrunk method[62] are used most frequently. The 

Lucas-Kanade method assumes that the locations of pixels in a small region do not change or that 

their displacement is small between two adjacent frames, making this a suitable method for 

object tracking.  
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Figure 2.7: The motion constraint line[62] 

 

Optical flow is well known technique for motion estimation and tracking. Kun He et al applied 

Lucas-Kanade-Tomasi optical flow for the facial feature tracking[56]. They aligned a set of points 

at carefully selected positions according to the facial action coding system (FACS) on the first 

frame of the input stream as the features to track. Ren C. Luo et al. proposed a real-time facial 

feature tracking method based on AAM and optical flow[9] and Byungsung Lee et al. proposed a 

facial expression classification method[11]. They applied the Lucau-Kanade optical flow in their 

system to track 18 feature points on the face. Then the traces were used for classifying 

expressions by support vector machine. X. Peng et al. applied Horn-Schunck optical flow for 

expression recognition[64]. B. K. Dehkordi and J. Haddadnia proposed a method for facial 

expression recognition[10]. They characterized the main components on the face by using a 

Gabor filter on the first frame. Then Iterative LK algorithm was applied and the first 1000 vectors 

of points in which movements were bigger than others were extracted for classification. Kong Jian 

et al. introduced a system for expression recognition[65]. They applied two different methods for 

feature extraction in their method. Volume Local Binary Pattern was used to extract the features 

of eye region and LK optical flow was used to track the automatically detected feature points of 

mouth region. G. Wang applied a novel optical flow algorithm with the additional constrains of 

first-order and second-order div-curl splines for expression recognition[66]. K. Anderson and P. W. 

McOwan proposed an expression recognition system in which optical flow was used for feature 

extraction[67]. They integrated a modified ratio template algorithm based face tracker, the 

multichannel gradient model for optical flow estimation and Support Vector Machines for 

expression classification. M. Shreve et al. introduced a method for detecting macro- and 

micro-expression by analysing optical flow based strain patterns[68]. Chao-Kuei Hsieh et al 

applied optical flow algorithm for cancelling the variations caused by expressions in their face 

recognition system[69]. 
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2.1.3 Classification 

Classification in machine learning is the process that assigns new input data into different 

categories or classes based on the analyses of the previously provided training data. Usually, 

instead of the raw data, the features extracted in the previous section are the inputs of the 

classifier. There are two modes for a classifier: training mode and testing mode. Before a classifier 

is applied to previously unseen data, it must be trained. The feature vectors combined with 

expression labels are used for training the classifier and this is called supervised learning. After 

the classifier has been trained, it can predict which class or in our case, visual expression, new 

data belongs. Popular classifiers in facial expression recognition are the Support Vector Machine 

[11-15], Bayesian Networks[16-18] and Neural Networks[19-22]. Specifically, SVM is reviewed and 

applied as it usually achieves decent performance among types of classifiers and is most 

commonly used in this area. This makes it a suitable method to study and be used for 

comparison. 

 

2.1.3.1 Support Vector Machine 

Support vector machine[70, 71] creates a hyperplane in a high dimensional space (for binary 

classification). This hyperplane divides the two classes in terms of making it the largest distance to 

the nearest training points of both classes. So the classifier could generate less classification error 

as the margin is larger.  

Assume the training data D has n points: 

𝐷 = {(𝒙𝒊, 𝑦𝑖)|𝒙𝒊 ∈ ℝ𝑝, 𝑦𝑖 ∈ {−1,1}}𝑖=1
𝑛     (2.11) 

Where xi is training point as a p-dimensional real vector and yi is the corresponding class with the 

value of -1 or 1. Any hyperplane can be written as 

𝒘 ∙ 𝒙 − 𝑏 = 0    (2.12) 

Where w is denotes the normal vector to the hyperplane. The 
𝑏

‖𝒘‖
 determines the shift from the 

origin. Then the correct classification should satisfy the equations 

𝒘 ∙ 𝒙𝒊 − 𝑏 ≥ 1  for xi of the first class   (2.13) 

𝒘 ∙ 𝒙𝒊 − 𝑏 ≤ −1  for xi of the second    (2.14) 
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Figure 2.8: Margin for SVM trained on two class samples 

The distance between two classes, as shown in figure 2.8, is 
2

‖𝒘‖
. So minimise the ‖𝒘‖ to have  

𝑦𝑖(𝒘 ∙ 𝒙𝒊 − 𝑏) ≥ 1 for any i=1,2,…,n . (2.15) 

Substitute ‖𝒘‖ with 
1

2
‖𝒘‖2 to make the computation easier without changing the solution. 

Then minimising 
1

2
‖𝒘‖2  

min(𝑤,𝑏)  
1

2
‖𝒘‖2                     (2.16) 

with the constraint of equation 2.15 is a quadratic programming optimisation problem. By 

introducing Lagrange multiplier 𝛼, the constrained problem can be described as 

𝐿(𝒘, 𝑏, 𝛼) =  
1

2
‖𝒘‖2 − ∑ 𝛼𝑖(𝑦𝑖(𝒘 ∙ 𝒙𝒊 + 𝑏) − 1)𝑛

𝑖=1      (2.17) 

The "stationary" Karush–Kuhn–Tucker condition implies that the solution can be expressed as a 

linear combination of the training vectors 

𝒘 = ∑ 𝛼𝑖𝑦𝑖𝒙𝒊
𝑛
𝑖=1                   (2.18) 

Using the fact ‖𝒘‖2 = 𝒘 ∙ 𝒘 and equation 2.18, the Lagrange duel is 

𝐿(𝒘, 𝑏, 𝑎) = ∑ 𝛼𝑖
𝑛
𝑖=1 −

1

2
∑ 𝛼𝑖𝛼𝑗𝑦𝑖𝑦𝑗𝒙𝒊

𝑻𝒙𝒋
𝑛
𝑖,𝑗=1    (2.19) 

Subject to (for any i =1,2,…,n) 

𝛼𝑖 ≥ 0                                 (2.20) 

And to the constraint form the minimization in b 
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∑ 𝛼𝑖𝑦𝑖
𝑛
𝑖=1 = 0.                        (2.21) 

Now we can calculate w after obtaining 𝛼 term based on equation 2.21. 

In equation 2.19, 𝒙𝒊
𝑻𝒙𝒋 can be replaced by a kernel function with the same dot products 

𝒙𝒊 ∙ 𝒙𝒋 = 𝑘(𝒙𝒊, 𝒙𝒋).                      (2.22) 

With the kernel function, the data can be mapped into a higher dimension space. Then a suitable 

kernel function may help to solve a non-separable classification on the old dimension space. 

Some common used kernel functions are 

Polynomial (homogeneous):  𝑘(𝒙𝒊, 𝒙𝒋) = (𝒙𝒊 ∙ 𝒙𝒋)𝑑            (2.23) 

Polynomial (inhomogeneous): 𝑘(𝒙𝒊, 𝒙𝒋) = (𝒙𝒊 ∙ 𝒙𝒋 + 𝟏)𝑑           (2.24) 

Radial Basis Function (RBF):  𝑘(𝒙𝒊, 𝒙𝒋) = exp (
−‖𝒙𝒊 − 𝒙𝒋‖

2

2𝜎2
⁄ ).   (2.25) 

The RBF kernel is commonly used the in SVM. 
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2.2 Evolutionary Algorithms 

 

Evolutionary Algorithms are inspired by Darwin’s theory of evolution[72]. Darwin suggested 

species survived over time because they could adapt to the environment. The individuals that are 

fitter to the environment have a higher chance of survival, and only those individuals have the 

chance to produce offspring that carry on the genes to future generations. This is termed natural 

selection. It is difficult for the individuals with less fit genes to survive and so there is less chance 

the next generation will inherent these less fit genes, whilst the genes which enable creatures to 

survive will, over time, become more prevalent in the entire population.  

We may ask ourselves, from where do the good genes and bad genes originate? They are a 

combination of the parents’ genes but can also result from random changes or mutation. There is 

no influence on the mutation of gene and so the fitness of the resulting individual can be either 

good or bad. However, as stated above, natural selection favours fitter genes and so only those 

individuals with fitter genes will be selected and inhereted, causing evolution to take a certain 

direction towards better adaptation to the environment. The speed of evolution is typically slow 

and depends on the speed and quantity of reproduction and, hence, species may die out when 

the environment changes so suddenly that there is no time for evolution.  

Evolutionary Algorithms (EAs) are a generic population-based metaheuristic optimization 

algorithm[23]. In EAs, one individual represents a possible solution to a problem. There are a 

number of solutions in the population pool and a fitness function is used to evaluate how well 

these solutions can solve the problem at hand. Individuals with higher fitness are selected and 

used to produce offspring which are expected inherent high fitness. The offspring are produced 

by genetic operations such as crossover and mutation and will normally result in individuals with 

different fitness values. By repeating this selection and reproduction operation for each 

generation, the average fitness of population should gradually increase, and hence, the ability to 

solve the problem will improve.  After a number of generations (that can be determined by a 

number of factors) a solution is obtained which is the fittest so far of those evolved for the 

problem under consideration. A more detailed description of the structure and functioning of 

evolutionary algorithms follows in the next section. 
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2.2.1  General Structure of EAs 

This section will review the functioning of EAs in more detail and will consider the Genetic 

Algorithm (GA) as example. The GA is probably the most widely used and well known EA and has 

been well studied over the past decades. It is used for optimisation as well as solving general 

search problems.  

The solution expected from a GA comprises numerical parameters which are used to configure 

some other systems to have better performance. These numbers are usually converted to binary 

form in a fixed length string, which can be considered to be one individual.  

 

2.2.1.1 Initialisation 

At the start of the process, a population of solution individuals are generated, each individual 

typically a binary string is initialised randomly. The values assigned to these individuals are not 

significant but should be within a predetermined range, if appropriate to the problem under 

consideration. The generation of individuals continues until the required population has been 

achieved. The population size depends on the problem and processing resources available. A 

larger population size requires more computational resources but may achieve a satisfactory 

result in fewer generations, and vice versa.  

 

2.2.1.2 Evaluation 

Evaluation of an individual’s fitness requires the binary string to be evaluated in the following way. 

The individuals are converted back to numeric parameters, and then applied back to the original 

problem to calculate the error between the output obtained and expected result. This error can 

be used as the fitness value that represents how well the individual has performed. The way to 

evaluate the fitness value can vary, but is usually a simple and direct method to minimise 

computational effort. The function to evaluate the performance of an individual is called the 

fitness function. 

 

2.2.1.3 Selection 

After all the individuals in the population have had their fitness values evaluated, a number are 

selected to produce offspring, or individuals, for the next generation. A common selection 
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method favours individuals with higher fitness, whilst less fit individuals have a lower chance of 

being selected. To preserve diversity, it is better not to choose only the fittest individuals for 

reproduction as they may be genetically very similar, resulting in the search terminating 

prematurely on a local optimal.  

 

2.2.1.4 Crossover and Mutation 

This step is going to generate next generation from selected individuals. Individuals selected from 

last step are called. A pair of parents produces child solution by crossover and/or mutation. Cross 

over is a recombination of two parent solutions. Mutation is a random position of the binary 

string from the solution becomes another random number in a certain chance. Examples of 

crossover can be found in the figure 2.8 – 2.12. An example of mutation is also given in figure 2.12. 

The child solution is different from parents but comes from them and is considered inherent their 

characteristics. The child solutions will keep being created until the population pool is filled up 

with the new generation.  

 

Figure 2.9: Single point crossover 

 

Single point crossover is to choose one point in the chromosome. It divides the chromosome into 

two pieces. The offspring come from one piece of parent each. 

 

Figure 2.10: Two points crossover 

 

In figure 2.9 two points are selected and the chromosome is divided into three pieces. The first 

and last pieces are from one parent and the middle piece is from the other parent to form the 

new offspring. 
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Figure 2.11: Uniform crossover 

 

In uniform crossover, the bit on the chromosome is chosen from one of parents randomly at the 

same chromosome position.  

 

Figure 2.12: Arithmetic crossover 

 

In figure 2.11, the offspring does not copy the chromosome from parents directly but a new from 

arithmetic operation of parents’ chromosomes.  

 

Figure 2.13: Example of mutation 

 

Mutation is to invert a random gene on chromosome as shown in figure 2.12. 

 

2.2.1.5 Repeat and Terminating Condition 

The selection and reproduction process is repeated for every new generation. After many 

generations, the average fitness should increase, suggesting the evolved solutions will perform 

better. The process will stop when the terminating condition is reached. Terminating conditions 

can include: a satisfactory solution has found; no better solution can be found; the fixed number 
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of generations has reached. The individual with the best fitness is the solution obtained from one 

run of the GA. From the terminating condition, the solution is either the one that meets the 

requirement or the best one under a certain processing time.  

 

2.2.2  Types of Evolutionary Algorithms 

Evolutionary algorithms include Genetic Programming (GP), Evolutionary Programming (EP), 

Evolutionary Strategies (ES) and Genetic Algorithms (GAs). They all have a similar structure of 

evolution, but are applied to different applications due to variance in functionality and structure. 

GP and EP are both algorithms that generate solutions that represent a computer program. The 

fitness value is evaluated by how well the solution can solve a computational problem. The 

difference is that in EP only the numerical parameters can be evolved but the structure of the 

program is fixed, in GP both can change during evolution. GAs are the most popular and well 

known EAs and are often used for solving optimisation problems. ES is often used as the 

underlying evolution process of the above algorithms.  

 

2.2.3 Genetic Programming 

A computer is expected to follow explicit commands, rather than how to solve the problem and, 

consequently, computers still require human programming achieve this. Alan Turing was perhaps 

one of the first to provide an alternative point of view: “a computing machine could manipulate 

itself just as well as any other data”[73]. GP is a form of self-manipulating computing machine, as 

a member of EAs. 

 

2.2.3.1 What Can GP Do? 

GP has attracted a considerable researcher interest through its ability to automatically evolve 

programs. It has been applied to many fields, not only in assisting software programming and 

Artificial Intelligence (AI) game design, it has also been applied to areas such as image processing, 

classification, function optimisation, financial market prediction and medical diagnosis[74-92].  

Programming and Gaming Artificial Intelligence (AI): Westley Weimer et al. proposed a method 

that can automatically locate and repair bugs in software by GP[74]. It successfully repaired some 

6300 lines of code in ten different C programs within an average time of 200 seconds. GP is also 

suitable for developing AI. Yehonatan Shichel et al. developed AI by GP for the Robocode game 
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and the resulting bot was the only one entered in the tournament that not written by a 

human[75]. Ivan Tanev used GP for designing the locomotion gaits of a snake-like robot 

automatically[76]. There are also other work on GP based gaming - AI. Ami Hauptman and Moshe 

Sipper designed AI by GP for chess endgame[77]; Yaniv Azaria and Moshe Sipper used GP to 

evolve AI for the game backgammon[78]; David Jackson proposed a method that evolves defence 

strategies of games by GP[79].  

Image Processing and Machine Learning: Riccardo Poli proposed that GP had potential in image 

processing. He considered image enhancement, feature detection and image segmentation as 

filtering problem. Then GP was applied for discovering efficient optimising filters. He applied this 

method to brain image segmentation for medical use[80]. Jay F. Winkeler and B. S. Manjunath 

tried to use GP for detecting faces in images[81]. Jamie R. Sherrah et al. used GP for automatic 

feature extraction and tested it using different classifiers[82]. They found a phenomenon that a 

classifier with malleable decision boundaries will impede evolution of GP for feature extraction. 

GP had better optimisation performance when combined with a simple classifier. L. Guo et al. 

used GP to discriminate characters in damaged documents[83]. Aydın Akyol et al. applied GP to 

classify pollen cell images[84]. Hong Guo et al.[85], and Durga Prasad Muni et al.[86] also used GP 

for feature extraction in separate projects. 

Machine learning is another important application of GP. GP has been used as classifier for many 

fields. Thomas Mckee and Terje Lensberg proposed a GP model for bankruptcy prediction[87]. 

They achieved 80.3% classification accuracy which is significantly better than 67% classification 

accuracy achieved using the rough sets model. Liang Zhang and Asoke K. Nandi applied a GP 

classifier to roller bearing fault detection[88]. GP classifier can be also used for medical diagnose 

and disease prediction. Stephan Winkler et al. proposed enhanced GP classifier, which combined 

logical expressions and classical mathematical functions. They trained the classifier with five data 

sets that comprised medical measurements of patients potentially suffering skin cancer[89]. R. J. 

Nandi et al. applied GP to classify breast masses located in mammograms that indicate cancer[90]. 

Hong Guo and Asoke Nandi also proposed a method that used features generated by GP to 

diagnose breast cancer[85]. Jin-Hyuk Hong and Sung-Bae Cho applied GP for the classification of 

cancer based on DNA microarray data[91]. Topon Kumar Paul and Hitoshi Iba used GP for cancer 

prediction based on gene expression data[92]. 

 

2.2.3.2 GP Algorithm Discussions 

Chris Gathercole and Peter Ross discussed population size of GP in their paper[93]. They 

suggested a small population size over more generations was better than a large population size 
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over few generations, both in terms of speed and performance. The diversity of a population is 

important for GP because it is crucial to avoid premature convergence toward local optima. 

Edmund Burke et al. tried to find the correlation between diversity and best fitness of population 

in GP[94]. Code growth is one interesting feature of the program generated by GP. The programs 

invariably grow in size including a large number of non-functional codes which do not affect the 

program. Terence Soule et al. described this phenomenon and suggested adding a penalty for 

large solutions in the fitness function was a possible way to limit this behaviour.  Markus 

Brameier and Wolfgang Banzhaf proposed a new variant linear GP and deleted such 

non-functional codes that did not affect program behaviour[95]. By doing this, the length of the 

program was shortened and the speed was increased but did not change the result. W. B. 

Langdon and R. Poli under took similar work by analysing the MAX problem in GP[96].  

Sean Luke and Lee Spector compared crossover and mutation in GP. They finally found the 

crossover was slightly better than mutation (primarily larger population size), but the difference 

was surprisingly small[97]. William Punch considered the behaviour of multiple populations for 

parallel GP[98].  

 

2.2.3.3 GP Classifier 

The major application of GP is in machine learning and the classification problem is the most 

prolific of all applications. It has been studied over several decades and a large number of GP 

classifier techniques have been developed. Current GP classifiers not only vary in types of 

structure, but also have many variations in any step that try to solve any problems met during the 

classification process. 

Structure  

A parse tree is the basic structure of standard GP invented by Koza[99]. It is a tree-like structure 

which executes from leaves to root. The leaf nodes are the terminal arguments for the functions 

represented as internal tree nodes. Each function gets arguments from its child nodes. Follow this 

path and the output of program can be found at the root. One reason of choosing parse tree is 

the programming language LISP can be represented by parse tree by its natural structure. LISP 

was exactly the language Koza first used for GP. Then it is possible to have the class label by 

thresholding the output. 

Cellular GP has the structure of multiple layers[100]. The program represented by the tree of the 

first layer creates the structure of the tree in the next layer. The whole structure is not evaluated 

directly, but by stages, from one layer to the next. Each layer has its own input and output, the 
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output of one layer providing the input to the next layer. Linear GP is another important type of 

GP. It is represented by a list of machine language instructions.  

Celia Bojarczuka et al. applied a new constrained-syntax (GP) algorithm for discovering 

classification rules [101]. Jung-Yi Lin et al. introduced a novel method called FLGP for 

multi-population GP[102]. It had the multi-layer structure that one layer outputs features to the 

next layer as its input. Durga Prasad Muni et al. proposed a novel method that provided more 

opportunity to turn “unfit” trees to fit[103]. Also they introduced “OR-ing” chromosomes which 

made the classifier perform better. Athanasios Tsakonas compared the performances between 

four GP based classifiers including: decision trees, fuzzy rule-based systems, neural network (NN) 

and fuzzy Petri-nets with GP[104]. Waranyu Wongseree et al. compared the Thalassaemia 

classification performance between GP and NN[105]. Decision tree based GP with nonlinear 

fitness function had the similar performance as one hidden layer NN. Two hidden layers NN had 

better performance. 

F. J. Berlanga introduced a fuzzy rule-based system with GP-COACH, and it performed better than 

other well-known fuzzy rule-based classification systems[106]. Roberto R.F. Mendes et al. 

proposed a system using GP that evolved a population of fuzzy rule sets and a simple evolutionary 

algorithm evolving a population of membership function definitions[107]. The two populations 

co-evolved, so that the final result of the co-evolutionary process was a fuzzy rule set and a set of 

membership function definitions which were well adapted to each other. 

 

Function set  

The functions used in GP generally depend on the actual problem to solve. In the numeric 

problem, the elementary algebra is sufficient for the function set. But basically all kinds of 

functions and constructs can be used, not only logical operations like ‘and’, ‘or’ and ‘not’, 

conditional ‘if’, ‘then’, but also filters for image processing tasks, computer commands for 

program generating.  
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Table 2.1: Examples of primitives in GP function and terminal sets[23] 

Function Set 

Kind of Primitive Example(s) 

Arithmetic +, -, ×,  / 

Mathematical sin, cos, exp 

Boolean AND, OR, NOT 

Conditional IF-THEN-ELSE 

Looping FOR, REPEAT 

… … 

 

Fitness Function 

The fitness function is used to evaluate the performance of the algorithm on one aspect or 

measure in EAs, but many problems have more than one requirement which may be in conflict. In 

such multi-objective optimisation problems, it is usually not possible to obtain a single solution 

that has superior performance over all requirements, but a set of solutions that are 

nondominated, where there is no one solution that is better than another. In this case, any single 

solution cannot improve the performance of one requirement without decreasing the 

performances of another. This problem is also known as the Pareto front[108]. Kalyanmoy 

Deb[108], Daniel Parrott et al.[109], Mengjie Zhang and Urvesh Bhowan[110], Peter 

Lichodzijewski and Malcolm Heywood[111] have all published extensive work in this area.  

Output  

For a binary classification problem, a simple threshold function can be used to decide the 

assigned class from a real value. But for a multi-class classification problem, five methods are 

summarised by Thomas Loveard and Victor Ciesielski[112]. These methods are: binary 

decomposition, in which the problem is decomposed into a set of binary problems and standard 

genetic programming methods are applied; static range selection, where the set of real values 

returned by a genetic program is divided into class boundaries using arbitrarily chosen division 

points; dynamic range selection in which a subset of training samples are used to determine 

where, over the set of reals, class boundaries lie; class enumeration which constructs programs 

similar in syntactic structure to a decision tree; and, evidence accumulation which allows separate 

branches of the program to add to the certainty of any given class.  In further examples, Chi 

Zhou et al. treated the multi-class classification task as a multiple binary classification 

problem[113], whereas Mengjie Zhang and Will Smart used dynamic boundaries to discriminate 

classes instead of predefined static thresholds[114].  
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Training Strategy  

The imbalanced data classification problem, is a situation in which the amount of training data 

available for one class is significantly more (or less) than that of another class[115]. It usually 

results in a poor accuracy for minor class samples. To overcome this problem, the training data 

can be reorganised to be balanced by selecting a subset of the major class’s data or by 

interleaving extrapolated samples within the minor class’s data. Grant Patterson and Mengjie 

Zhang tried to modify the fitness function so that the minor class data and major class data were 

evaluated with comparable weightings instead of using a standard overall average recognition 

rate. This method increased the accuracy of the minor class but the rate of major class dropped 

considerably[116].  

J. K. Kishore et al. proposed an incremental learning method where the GP evolves part of the 

population for certain generations, and then increase the number of population for training for 

another number of generations[117].  

Over fitting occurs when a statistical model describes random error or noise instead of the 

underlying relationship[118]. The same concept can apply to evolutionary algorithms where the 

solution also describes random error or noise in the data[119]. Matthew Smith and Larry Bull 

indicated that randomly reordering the training data during the process may help to reduce the 

effect of over fitting[120]. 

 

2.2.3.4 Cartesian Genetic Programming 

Cartesian Genetic Programming (CGP) is a highly efficient and flexible form of Genetic 

Programming that represents a computer program as a graph matrix structure. It was invented by 

Julian Miller in 1999 and was developed from a representation of electronic circuits devised by 

Julian Miller and Peter Thomson[121]. CGP represents computational structures as a string of 

integers. These integers, known as genes determine the functions of nodes in the graph, the 

connections between nodes, the connections to inputs and the locations in the graph where 

outputs are taken from.  

CGP has been applied to many different areas and applications, including machine learning[122], 

neural networks[123], artificial intelligence[124], financial prediction[125], function 

optimization[126], classification[127], electronic circuit design[128, 129], medical 

diagnostics[130], evolutionary art[131] and music. The detail of CGP will be introduced in chapter 

4.  
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2.3 Summary 

In this chapter, the background of expression recognition and evolutionary algorithms is 

introduced and related literatures are reviewed.  

The process of the facial expression recognition normally includes three steps: face acquisition, 

feature extraction and classification. Viola and Jones’ algorithm is the most successful means of 

real time face detection. Feature extraction is usually essential for the system to reduce the 

dimensionality of data by transformation. The data of whole face area is suspected to be 

redundant and the discriminating information is expected to remain after the feature extraction. 

The common used feature extraction methods for recognising expressions includes: Gabor 

wavelet, Local Binary Pattern, Active Appearance Model and Optical Flow. The former two are 

mainly for static image analysis. The advantage of AAM is that it can detect human face and 

fiducial points at the same time. Then the tracking of fiducial points can be good representation 

of dynamic face information for expression recognition. Optical Flow estimates the displacement 

of each pixel in the image between frames so it is suitable for dynamic analysis. It can be used for 

tracking the fiducial points (sparse optical flow) extracted by other algorithms or extracting dense 

optical flows of all pixels on the face.  

The classification is the final step for telling the expression name based on the features input after 

supervised training process. Currently the classifiers used for expression recognition are mainly 

conventional or statistics classifiers, like Support Vector Machine, Bayesian Networks. There are 

also a number of methods used Neural Networks for classification. But not much research has 

been done on expression recognition by Evolutionary Algorithms. 

Evolutionary Algorithms follow the idea of Darwin’s theory of evolution. In the solution 

population the fitness values of individuals are evaluated based on the performance. The 

solutions have better performance will survive and produce offspring by crossover and/or 

mutation. Then the next generation is supposed to inherent high fitness from the parents. After 

many generations, the average fitness in the population is increasing. At last the best solution 

(with highest fitness value) is the final result. Genetic Programming is one of EAs for generating 

programs or computations automatically. Cartesian Genetic Programming is a flexible form of GP 

and it can be used for classification problem as well. Details of CGP will be introduced in the 

beginning of Chapter 4. 
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3 Optical Flow for Feature Extraction 

3.1 Introduction 

A large proportion of expression recognition research works with the static image[12, 33, 50-52]. 

Individual frames taken from a video stream or image sequence is analysed to give a prediction of 

the facial expression. This kind of expression recognition technique is based on the appearance at 

a single time point, but appearances may vary greatly between different people, even for the 

same expression. Also, it may be not reliable or practical to detect every frame separately. 

The transition of an expression, from neutral to a smile, for example, potentially contains much 

useful information and may be more reliable than just the expression itself. Recent research has 

turned from considering just static image analysis to the dynamic analysis of expressions. Ekman’s 

research indicates that muscles activated for one expression are the same for different 

people[132]. Therefore, the changing of appearance caused by these muscles could be very useful 

for expression recognition. An effective way to extract the transition of these muscles is to use 

optical flow, which estimates motion between two images or frames of a video.  In this chapter, 

a dynamic expression recognition method is proposed based on optical flow and investigated how 

to apply to sample videos. 

A database of suitable facial expressions is essential for undertaking this research, so identifying a 

suitable database is the first important task to solve. The requirement for a database set out for 

this research is a dynamic expression dataset from video or image sequences that has six 

universal expressions (happiness, anger, surprise, sadness, fear and disgust), which are naturally 

expressed and not acted. The creation of a custom database is also considered in this chapter. 

As previously discussed, dynamic analysis for expression detection has advantages over static 

image analysis. Optical flow is the technique chosen to estimate the motion between two frames 

of video which is suitable for extracting useful information in expression transition. Currently, 

most dynamic methods apply sparse optical flow on some fiducials (or reference points) within 

the image[9]. This type of method locates the most important points on the face, usually the eyes, 

corners of the eyes, eyebrows and mouth corners. It then tracks these points between frames 

using the optical flow algorithm. The movements of these points are taken and used for detecting 

facial expression, but these methods also have their limitations:  

1. The model and method for extracting fiducial points can cause additional errors. Although 

the same muscles used for one expression are the same for most individuals, the exact location of 

the muscles and appearances generated may differ. Therefore, additional algorithms are required 
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for locating these points and errors may confuse the true motion. This can be crucial because the 

differences in muscle movement between two expressions can be small. 

2. Sparse optical flow may lose important information. Although taking a limited number of 

points on the face will shorten the processing time, which can be important for real-time 

classification, loss of information can lead to greater error. The changing appearance due to 

muscles contracting or expanding relies on more than just these points, but they are often used 

because they are easy to locate as high contrast or corner points. Certainly, from a human 

perspective, recognising facial expressions involves more complex processing. 

To address these problems an alternative, dense optical flow was used. However, a problem 

associated with this technique is that the resulting vector length is too large, which makes the 

classification difficult, as much of the optical flow detected on the face contains redundant data. 

Therefore, additional feature selection or dimensionality reduction needs to be applied to dense 

optical flow data to make it usable. In this chapter, implementations of three such approaches are 

considered, the most effective of which is subsequently used for the comparison of classifier 

performance. 

 

3.2 Databases 

In order to study the human facial expression, a database of samples is essential. As this research 

is concerned with dynamic analysis of expression recognition, video or image sequence databases 

were considered instead of static image databases. A database should be constructed to 

accommodate as many conditions as possible to make it reliable and authentic. Users can also 

select the database that is most suitable for their research by studying these conditions and other 

characteristics. The research considered here requires video data of six universal expressions, 

preferably naturally expressed rather than intentionally exaggerated or acted. The MMI database 

and FG-NET databases are now considered along with a custom-developed database. 

 

3.2.1 MMI Database 

The MMI expression database was conceived in 2002 by Maja Pantic, Michel Valstar and Ioannis 

Patras[133]. It was created as a resource for building and evaluating facial expression recognition 

algorithms. Compared to other databases, it is easy to access through a web site, and convenient 

to search in terms of expression, gender and age, for example. It contains both static images and 

videos of expressions. Other properties are summarized below. 
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Face Pose 

Most research focuses on the front face analysis, because this contains the most information, but 

researchers are also working on other viewing angles to make the analysis more reliable. The 

video sequences in this database have two types of camera angle: frontal and profile-view. There 

are approximately 750 dual-view facial expression video clips. 

Candidates  

The MMI database has a great variety of candidates although in the beginning they are university 

students and staff members. Some 44% of them are female and the ages of candidates range 

from 19 to 62. They have either a European, Asian, or South American ethnic background. 

Expressions 

The database includes six universal and some other additional expressions. Initially, candidates 

were asked to intentionally produce an expression - later natural expressions were also added. 

For the intentional expressions, the video captures the complete transition from neutral to an 

expression, and then back to neutral. There are 39 video clips for happy, 28 for angry, 36 for 

surprise, 23 for fear, 19 for sad and 32 for disgust, from MMI used in this thesis. 

Labels  

Some data has been coded using the Facial Action Coding System (FACS)[31]. This can be the 

ground truth for training or testing of recognition system. It makes the user easier otherwise they 

have to mark Face Action Units themselves if necessary. 

 

3.2.2 FG-NET Database 

The FG-NET database[134] was constructed for collecting the natural expressions of real emotions. 

It records the entire head, while playing video examples to arouse a specific emotion. The 

candidates are asked not to act the expression and are free to move their head. With these 

strategies, they aim to generate an expression database that is as natural as possible.  

Face Pose 

The frontal face is recorded in this database, but because the candidates may move their head 

during recording, the camera frames the entre head in the picture instead of just the face. 
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Expressions 

The database has six universal expressions plus a neutral expression. Each expression is 

represented by three video clips for each candidate. There are 18 candidates in total and 324 

video clips used from FG-NET, exclude neutral expression, in this thesis.  

Labels  

The first frame of every video clip was labelled as the reference frame. The labels include the 

centre coordinates of the eyes, nose and the mouth.  

 

3.2.3 Custom-developed Database 

A custom-developed database was also generated. The aim was to obtain natural and acted 

expressions from the same person, to explore whether it is possible to automatically detect the 

difference between real and fake expressions. 

Recording Conditions 

To achieve high quality videos of facial expression, the following conditions were set for the 

recording: a constant and simple background, frontal face angle and good illumination. No other 

people were permitted in the room who might interfere with the candidate.  

Videos for Evoking Emotions 

The videos presented to candidates for evoking emotions should be simple and direct, to ensure 

candidates will exhibit the desired corresponding expression. Sadness is difficult to arouse, so the 

video needs to be longer to evoke this expression. However, a long video makes the transition of 

the sad expression longer as well, which makes it difficult to extract the optical flow data. Another 

difficult expression to motivate is anger. The corresponding video is difficult to achieve that 

satisfies the effect without causing undue offence. In total, 3 clips for happiness, 2 for scary, anger, 

surprise, fear, sadness and disgust are chosen for the generation of database.  

The clips are compiled in one video in a random order, but the happy videos follow sad and 

disgusting videos to avoid making the candidate feel uncomfortable. There is a five second break 

between each clip, during which the candidates expression is expected to relax from the previous 

emotion. After all the video clips have been presented, the candidates are asked to act out the 

expressions intentionally. Each expression is asked of the candidates twice and two different 

images with that expression are shown on the screen separately to guide the tester in case they 

do not know how to act that expression. The length of the whole video is made to be less than 15 
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minutes, because too much time will tire the candidates. The process consists of playing the 

whole video and recording the complete reaction of the candidate. In total 37 candidates took 

part, resulting in 37 videos of approximately 15 minutes length each. The candidates are mostly 

the university students in China.  

The resulting database is expected to use for studying the facial expressions and analyse the 

difference between real expressions and fake ones from same person. From the feedback of the 

candidates, the sad and disgust videos made some of them feel uncomfortable, so the videos 

with negative emotions should be carefully chosen. If the video is too strong, it will make the 

candidates feel uncomfortable, but if too weak, it will not evoke a satisfactory response from the 

candidates; this was particularly an issue experienced in the anger emotion recording.  

 

3.2.4 Databases Used in the Project 

Both the MMI and FG-Net databases are used in this project. Six universal expressions are used 

for training and testing. The video in the database was cropped around face area as this is the 

only part of the whole video which is required for these experiments. At the same time, the face 

size and position within the picture are controlled to be similar to the results of detection window 

by Viola and Jones’ algorithm. So the classifiers trained with the data can be used for the 

prediction on a new face from detection function later. Only the rising part of each expression is 

used for feature extraction. Time tags for the start of the expression and reaching the maximum 

or full expression are added to a file that contains the video name. These are used for processing 

the data at a later stage. 

Our own database is not taken for the experiments. The main reason is the expressions recorded 

are not obvious enough from the observer’s view. As not too much changing on face, the data is 

not suitable for this optical flow based experiment. Some candidates do not react to the evoking 

video at all. There are three possible reasons: they have watched the videos before; they have no 

sense about the video; they were evoked the emotion but not strong to show on face. Although 

the expressions evoked by our videos are not strong, they can be considered natural and may 

have other use in future. The second part is to let the candidates act expressions with hint of an 

example image shown on screen. The recorded expressions are not representative either. It is 

difficult to make a general people act an expression without training and a guide image is not 

enough. Some of candidates do not act at all, some others try to perform but the appearances do 

not make people understand the expected emotion.  

Actually, for an expression database, the ideal expressions are clear and representative, and for 

expression recognition, a plain face for training and testing does not help too much. Strategies 
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have been used in other existing databases including: teach the candidates which muscles to use 

to perform an obvious and ‘correct’ expression; hire professional actors to perform the 

expressions; encourage the candidates act as exaggerate as possible, then give the expressions 

marks by a group, the data with high scores will be used. These methods are help to obtain the 

videos with obvious expressions and letting observer know what expression it is. The drawback is 

they are not natural expressions. The best way possibly is to create brand new and high quality 

evoking videos; this may need psychologists’ help. Make sure the candidates fully cooperate and 

in a relax condition. The recording time should be as short as possible, this also require the 

evoking video can make people quick response. 

It was, however, invaluable for understanding the limitations of evoking natural expressions 

compared to acted expressions. The experiences on how to create an expression video database 

has been obtained, it also helps to understand and have good use of other databases. The video 

data is not useless and it can be used for other suitable experiments in the future.  
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3.3 Optical Flow 

Optical flow was introduced in Chapter 2, but an additional constraint is required to solve the 

aperture problem. Amongst the most common constraints applied are Horn and Schunck’s 

smoothness constraint for dense optical flow[62] and Lucas and Kanade’s constraint for sparse 

optical flow[63]. These methods, which are described in the following sections, are required for 

fast and accurate estimation of optical flow. 

 

3.3.1 Horn Schunck Optical Flow 

3.3.1.1 Smoothness Constraint 

If each point moves independently, it is not possible to estimate the velocities because of the lack 

of information to solve the equations. Horn and Schunck[62] introduced a method by using the 

smoothness constraint to address this issue. The movement of an object in vision is the motion or 

deformation of a certain area of points. Most of the time, a group of points’ movements are rigid, 

so the velocities of neighbouring points on the object are similar and, hence, the velocity field of 

points varies smoothly throughout the whole image. There is an exception - if one object blocks 

another, the flow will discontinue at the connection of objects. In this case, the smoothness 

constraint is unlikely to perform well.  

The constraint can be expressed as minimising the square of the magnitude of the gradient of the 

optical flow velocity: 

(
𝜕𝑢

𝜕𝑥
)

2
+ (

𝜕𝑢

𝜕𝑦
)

2
         (3.1) 

and 

(
𝜕𝑣

𝜕𝑥
)

2
+ (

𝜕𝑣

𝜕𝑦
)

2
        (3.2) 

Where “u” means the velocity on the x axis, “v” means the component of flow on the y axis. 

The Laplace operator is another expression used to measure the smoothness of the optical flow 

field: 

∇2𝑢 =
𝜕2𝑢

𝜕𝑥2 +
𝜕2𝑢

𝜕𝑦2       (3.3) 

and 
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∇2𝑣 =
𝜕2𝑣

𝜕𝑥2 +
𝜕2𝑣

𝜕𝑦2       (3.4) 

So the total error to be minimised is: 

𝐸(𝑢, 𝑣) = ∬[(𝐼𝑥𝑢 + 𝐼𝑦𝑣 + 𝐼𝑡)2 + 𝑎(∇2𝑢 + ∇2𝑣)]𝑑𝑥𝑑𝑦  (3.5) 

where (𝐼𝑥𝑢 + 𝐼𝑦𝑣 + 𝐼𝑡)2  is the error of the change of image brightness. 𝐼𝑥  is the partial 

derivative of image brightness with respect to x. It is the same situation with the other two: 𝐼𝑦 of 

y, 𝐼𝑡  of t.  Expression ∇2𝑢 + ∇2𝑣 measures the smoothness of optical flow field where “𝑎” is 

the weight of the two factors.  

By achieving the minimisation of equation 3.5, the optical flow velocity is the corresponding value 

of u and v. By applying the calculus of variation equation 3.5 can be transformed as follows: 

𝐼𝑥
2𝑢 + 𝐼𝑥𝐼𝑦𝑣 + 𝐼𝑥𝐼𝑧 − 𝑎∇2𝑢 = 0    (3.6) 

𝐼𝑥𝐼𝑦𝑢 + 𝐼𝑦
2𝑣 + 𝐼𝑦𝐼𝑧 − 𝑎∇2𝑣 = 0    (3.7) 

The way to estimate Ix, Iy and Iz can be found in section 3.3.1.2, the approximation of u and v is 

described in section 3.3.1.3.  

 

3.3.1.2 Estimating the Partial Derivatives 

The derivatives of brightness can be measured from the images. The value of 𝐼𝑥𝐼𝑦𝐼𝑧 should be 

estimated consistently by referring to the same point or pixel in the image each time. One 

method of estimation is by forming a cube specified by eight measurements. The structure of the 

cube and relationship of the measurements are shown in figure 3.1.  
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Figure 3.1: Cube structure adopted in the estimation of the derivatives of brightness 

 

The red point in the centre of the cube is the point at which the partial derivatives are to be 

estimated. Each derivative is estimated from the average of four parallel groups of differences 

between two adjacent measurements, where x and y are axes of the image, t axis is the frame of 

image sequence, means time. Indexes j, i, k are in x, y, t axes respectively. 

Then the partial derivatives of one point in the image can be estimated by the following 

equations: 

𝐼𝑥 ≈
1

4
[(𝐼𝑖,𝑗+1,𝑘 − 𝐼𝑖,𝑗,𝑘) + (𝐼𝑖+1,𝑗+1,𝑘 − 𝐼𝑖+1,𝑗,𝑘) + (𝐼𝑖,𝑗+1,𝑘+1 − 𝐼𝑖,𝑗,𝑘+1) + (𝐼𝑖+1,𝑗+1,𝑘+1 −

𝐼𝑖+1,𝑗,𝑘+1)]    (3.8) 

𝐼𝑦 ≈
1

4
[(𝐼𝑖+1,𝑗,𝑘 − 𝐼𝑖,𝑗,𝑘) + (𝐼𝑖+1,𝑗+1,𝑘 − 𝐼𝑖,𝑗+1,𝑘) + (𝐼𝑖+1,𝑗,𝑘+1 − 𝐼𝑖,𝑗,𝑘+1) + (𝐼𝑖+1,𝑗+1,𝑘+1 −

𝐼𝑖,𝑗+1,𝑘+1)]    (3.9) 

𝐼𝑡 ≈
1

4
[(𝐼𝑖,𝑗,𝑘+1 − 𝐼𝑖,𝑗,𝑘) + (𝐼𝑖+1,𝑗,𝑘+1 − 𝐼𝑖+1,𝑗,𝑘) + (𝐼𝑖,𝑗+1,𝑘+1 − 𝐼𝑖,𝑗+1,𝑘) + (𝐼𝑖+1,𝑗+1,𝑘+1 −

𝐼𝑖+1,𝑗+1,𝑘)]    (3.10) 

 

3.3.1.3 Estimating the Laplacian of the Flow Velocities 

The Laplacian of u and v can be estimated by using the discrete Laplacian operator[62], which is 

often used in image processing in edge detection and motion estimation applications. The 

discrete Laplacian is calculated as the sum of differences over the nearest neighbours of the 

central pixel. The weights of those neighbours are illustrated in figure 3.2. 
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(a) 

The weights used in Horn and Schunk’s paper[62] 

 

 (b)      (c) 

Other commonly used weights of Laplacian 

Figure 3.2: Examples of Laplacian weights 

 

Therefore, the Laplacians of u and v can be estimated based on the weights shown in figure 3.2 

(a): 

∇2𝑢 ≈
1

6
(𝑢𝑖−1,𝑗,𝑘 + 𝑢𝑖,𝑗+1,𝑘 + 𝑢𝑖+1,𝑗,𝑘 + 𝑢𝑖,𝑗−1,𝑘) +

1

12
(𝑢𝑖−1,𝑗−1,𝑘 + 𝑢𝑖−1,𝑗+1,𝑘 + 𝑢𝑖+1,𝑗+1,𝑘 +

𝑢𝑖+1,𝑗−1,𝑘) − 𝑢𝑖,𝑗,𝑘      (3.11) 

 

∇2𝑣 ≈
1

6
(𝑣𝑖−1,𝑗,𝑘 + 𝑣𝑖,𝑗+1,𝑘 + 𝑣𝑖+1,𝑗,𝑘 + 𝑣𝑖,𝑗−1,𝑘) +

1

12
(𝑣𝑖−1,𝑗−1,𝑘 + 𝑣𝑖−1,𝑗+1,𝑘 + 𝑣𝑖+1,𝑗+1,𝑘 +

𝑣𝑖+1,𝑗−1,𝑘) − 𝑣𝑖,𝑗,𝑘       (3.12) 
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3.3.2 Farneback’s Estimation 

Farneback[135] proposed a method that can estimate the optical flow between two frames and 

has been added to the OpenCV computer vision function library since version 2.4.0 for dense 

optical flow calculation[136]. The dense optical flow in the thesis is extracted based on 

Farneback’s algorithm. This method estimates the neighbourhood of the frame by quadratic 

polynomials. The displacement between two frames can be estimated by obtaining the 

polynomial expansion coefficients, as described in the following section. 

 

3.3.2.1 Polynomial Expansion 

The neighbourhood of each pixel is estimated by the polynomial expansion[135]: 

𝑓(𝒙) ≈ 𝒙𝑻𝑨𝒙 + 𝒃𝑻𝒙 + 𝑐   (3.13) 

where A is a symmetric matrix, b a vector and c a scalar. The coefficients are estimated in terms of 

normalized convolution with the basis functions: 

{1, 𝑥, 𝑦, 𝑥2, 𝑦2, 𝑥𝑦}   (3.14) 

for the 2D case, which is exactly what is used here, but also generalises to higher dimensionalities. 

The relationship between the coefficients {ri}, which are obtained from normalized convolution, 

and polynomial expansion is straightforward: 

(𝑥 𝑦)𝑨 (
𝑥
𝑦) + 𝒃𝑻 (

𝑥
𝑦) + 𝑐 = 𝑟1 + 𝑟2𝑥 + 𝑟3𝑦 + 𝑟4𝑥2 + 𝑟5𝑦2 + 𝑟6𝑥𝑦   (3.15) 

Then we have: 

𝑐 = 𝑟1, 𝒃 = (
𝑟2

𝑟3
) , and 𝑨 = (

𝑟4
𝑟6

2⁄
𝑟6

2⁄ 𝑟5

),    (3.16) 

 

3.3.2.2 Displacement Estimation 

The ideal displacement can be estimated by polynomials of two frames. Consider the quadratic 

polynomial of one frame: 

𝑓1(𝒙) = 𝒙𝑻𝑨1𝒙 + 𝒃𝟏
𝑻𝒙 + 𝑐1            (3.17) 
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And the new frame f2 by a displacement of d, 

𝑓2(𝒙) = 𝑓1(𝒙 − 𝒅) = (𝒙 − 𝒅)𝑻𝑨1(𝒙 − 𝒅) + 𝒃𝟏
𝑻(𝒙 − 𝒅) + 𝑐1 

= 𝒙𝑻𝑨1𝒙 + (𝒃𝟏 − 2𝑨𝟏𝒅)𝑻𝒙 + 𝒅𝑻𝑨𝟏𝒅 − 𝒃𝟏
𝑻𝒅 + 𝑐1 

= 𝒙𝑻𝑨2𝒙 + 𝒃𝟐
𝑻𝒙 + 𝑐2                 (3.18) 

Let the corresponding coefficients be equal: 

𝑨𝟐 = 𝑨𝟏                   (3.19) 

𝒃𝟐 = 𝒃𝟏 − 2𝑨𝟏𝒅            (3.20) 

𝑐2 = 𝒅𝑻𝑨𝟏𝒅 − 𝒃𝟏
𝑻𝒅 + 𝑐1      (3.21) 

Then we can have d, if A1 is non-singular: 

2𝑨𝟏𝒅 = −(𝒃𝟐 − 𝒃𝟏)         (3.22) 

𝒅 = −
1

2
𝑨𝟏

−𝟏(𝒃𝟐 − 𝒃𝟏)        (3.23) 

Equation 3.19 shows that every frame has the same polynomial coefficients, which is not realistic. 

Under this assumption equation 3.23 is still valid for real problems, although errors are 

introduced when the assumption is relaxed. The problem to be addressed is how to limit these 

errors so that the algorithm performs adequately well.  Consequently, the polynomial 

coefficients of two frames are presented separately as A1 (x), b1(x), c1 and A2 (x), b2(x), c2. Ideally, 

as stated above, A1 should equal A2 according to equation 3.19, but in practice the approximation 

is: 

𝑨(𝒙) =
𝑨𝟏(𝒙)+𝑨𝟐(𝒙)

2
          (3.24) 

and 

∆𝒃(𝒙) = −
1

2
[𝒃𝟐(𝒙) − 𝒃𝟏(𝒙)]  (3.25) 

Then the primary constraint is: 

𝑨(𝒙)𝒅(𝒙) = ∆𝒃(𝒙)          (3.26) 

Where d(x) represents the displacement in equation 3.22 is replaced by a spatially varying 

displacement field. 
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3.3.2.3 Estimation over Neighbourhood 

By applying the equation above, the results achieved too noisy. The author, Farneback, added the 

assumption that the displacement field is slowly varying, which is very similar to Horn Schunk’s 

smoothness constraint. Then the integration of errors between neighbours I of x is minimized: 

𝑚𝑖𝑛 ∑ 𝜔(∆𝒙)|𝑨(𝒙 + ∆𝒙)𝒅(𝒙) − ∆𝒃(𝒙 + ∆𝒙)|2
∆𝒙∈𝑰     (3.27) 

Then the minimum is obtained for: 

d(x) = (∑ 𝜔𝐴𝑇𝐴)−1 ∑ 𝜔𝐴𝑇∆𝑏    (3.28) 

In practise, he computes ATA and ATΔb pointwise and average these with ω before calculating 

the displacement. 
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3.4 Expression Video Data 

Each expression video clip shows the process of changing appearance when an expression is 

made. The optical flow over this period is extracted as a feature for expression recognition. Video 

clips, at 25 FPS, are from 3 seconds to 6 seconds long and each video clip contains one person 

sitting in front of a simple background under good illumination. In the picture the face is clearly 

shown in a frontal direction without interruption. The clip usually consists of a transition from a 

neutral expression to one of the six universal expressions (happiness, sadness, anger, fear, disgust 

and surprise). Some clips also capture the transition from one expression back to a neural 

expression, but all videos include the complete transition to one expression, and this expression is 

what defines the class label of the clip. Every video clips is cropped so that only the face is shown 

and is resized to 120 by 120 pixels. Every expression video clip is then labelled with the time tag of 

the starting frame of the expression and the frame at which expression is fully expressed. The 

optical flow is calculated within these periods as the rising parts of the expression. Each frame 

within this time period is compared with a frame, N frames previously. The optical flow is 

extracted between these frames in preparation for future classification, as shown in figure 3.3. 

 

Figure 3.3: Example calculation of optical flow from a video clip 

 

The expression commences in the sixth frame and is fully expressed by the fifteenth frame. This 

frame is compared with the first frame and the optical flow is calculated between the two. Other 

frames between the sixth and fifteenth frame are also compared with the preceding fifth frame 

(for N = 5). Hence, from the sixth to the fifteenth frame, there are ten sets of optical flow to 

consider. The minimal value of N is 2, but the velocity of flow would be too small making the 

feature less distinguishing in this case. When N equals 5, the flows are more obvious due to more 

differences between two frames. The frames before the expression are no less than 6 frames in 

video clips from both databases. So the N is selected to be 5. 

In this way, the optical flow from the rising part of an expression is extracted. One such example is 

given in the following figures 3.4-3.6. 
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Figure 3.4: Optical Flow extracted using the Farnback algorithm 

 

Figure 3.5: Original two frames used to calculate optical flow 
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Figure 3.4 shows the original dense optical flow extracted from the pixel displacements between 

frame 10 and frame 15, as shown in Figure 3.5. The class label of the video is the expression 

angry. 

In this example of dense optical flow, considerable noise caused by illumination variance and 

head movement can be observed. One example is the small optical flows that occur throughout 

the image, even where no obvious displacement has taken place. To supress this kind of flow, a 

threshold has been applied, reducing the effect of noise. The threshold value used here is the 

magnitude of flow equal to 0.9 derived from sqrt(x^2+y^2). The flows with the magnitude less 

than 0.9 are made to 0, those equal or above 0.9 retain their original value: 

𝑇(𝑥, 𝑦) = {
[0,0], 𝑖𝑓 𝑀𝑎𝑔(𝑥, 𝑦) < 0.9
[𝑥, 𝑦], 𝑖𝑓 𝑀𝑎𝑔(𝑥, 𝑦) ≥ 0.9

      (3.29) 

This process improves the performance of the clustering algorithm described in the following 

section. Figure 3.6 shows how dense optical flow performs with and without thresholding applied. 

The value 0.9 for the threshold is selected from 0.7 to 1.0 with 0.1 steps and considered 

performing better on remove the unwanted noise flows while keeping useful flows.   

 

Figure 3.6: Effect of thresholding on dense optical flow 

 

The following samples are taken from the MMI and FG-NET databases. The numbers of selected 

samples are shown in the tables 3.1 and 3.2 below: 

Table 3.1: Details of samples taken from MMI database 

Expression Happiness Anger Surprise Fear Sadness Disgust 

Samples 304 213 224 162 165 271 
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Table 3.2: Details of samples taken from FG-NET database 

Expression Happiness Anger Surprise Fear Sadness Disgust 

Samples 365 371 303 113 29 292 
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3.5 Image Size Reduction 

As mentioned above, the image has been resized to a resolution of 120 by 120 pixels, totalling 

14400 pixels. Each pixel has a 2-dimension flow velocity of magnitude and direction, a two 

element vector in the x and y axis, represented by a two channel matrix with size of 120 by 120. 

The resulting vector contains 28800 elements, which is too long for a classifier to process 

effectively and therefore some form of pre-processing is required to reduce the vector’s size. 

Three methods for reduction are given in following sections. 

 

3.5.1 Clustering as a Means of Reducing Vector Size  

Facial movements associated with expression usually happen within a small area and the flows 

have similar velocities. If the velocity and location of each centre of the area of movement can be 

extracted, it may provide a good representation of the whole flow of the image. Centroid-based 

clustering algorithms were investigated to achieve such a representation. K-means Clustering 

algorithm[137] was applied for this purpose. 
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Figure 3.7: K-means Clustering Algorithm[138] 

 

However, some problems were experienced during implementation of the clustering algorithm. 

But centroid-based clustering algorithm initialises with random centres for each cluster, and 

therefore, it returns different results each time implemented, even when using the same data. 

The effect of this problem will be discussed in section 3.4.1.4 - experiments and results. Other 

discussions and comparisons are given in following paragraphs.  

 

3.5.1.1 Comparison of 3 Features Clustering and 4 Features Clustering 

Each pixel in the image is represented by its x, y position and x, y flow velocities of direction and 

magnitude. An attempt is made to cluster pixels based on all 4 values (as shown in Figure 3.8) and 

then use the centres of these clusters to form the reduced feature vector.  An attempt was also 

made using only 3 values (as shown in Figure 3.9): x, y and magnitude of flow, ignoring the 

direction of flow. In this way, the vector length reduces to 100 (25 clusters multiply 4) or 75 (25 

clusters multiply 3).  
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Figure 3.8: Clustering algorithm using 4 values (x, y, velocity x and velocity y). The arrows with 

same colour and velocity belong to one cluster. The thick arrows represent the centres of clusters. 
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Figure 3.9: Clustering algorithm using 3 values (x, y and magnitude of velocity). The number is the 

magnitude at the location where it shows. The numbers with same colour and value belong to 

one cluster. A bold number represents the centre of the cluster. 

 

In figure 3.8 and figure 3.9, the results for two ways of clustering data are presented. The method 

using 3 values has fewer vector elements than that with 4 values. If the cluster number is 25, then 

the 3-value method has in total 75 numbers in the vector. Of the 25 cluster centres, each has 3 

values: x, y coordinates and magnitude. Similarly, the 4-value method has 100 numbers 

representing 25 clusters. Each cluster centre has 4 values: x, y coordinates and x, y velocities. 

Clearly, the 3-value method one is 25% smaller than the 4-value method. This advantage is 

considerable, but also has drawbacks. The 3-value method lacks information of direction. If the 

mouth corner moves upwards or downwards, only the magnitude is extracted and the direction is 

unknown. In this case, it is not possible to distinguish the flows between each case. Therefore, it 

may be that directional information cannot be ignored for the sake of saving vector space and, 

therefore, 4 value feature method is retained. 
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3.5.1.2 Weights for Position Coordinates and Flow Velocity 

This section is going to discuss the effect of employing different weights for position coordinates 

and flow velocity. 

Consequently, the 4-value vector method was selected for the clustering algorithm. x and y 

coordinates are in same coordinate references, so the weight between x and y is simply 1:1. It is 

the same situation regarding the x and y velocities, but a weighting between location and velocity 

is required as it affects the clustering results considerably. If the velocity component is assigned a 

greater weight, flows with similar velocities are considered as one cluster, even if they are 

spatially set apart in the image; if values of location are assigned a greater weight, flows within an 

area will count as one cluster regardless of what velocities (magnitude and direction) they may 

have. Figures 3.11 to 3.13 show the results of clustering with different weightings applied to the 

optical flow shown in Figure 3.10. 
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Figure 3.10: Optical Flow extracted using the Farnback algorithm 
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Figure 3.11: Clustering resulting from equal weighting (1:1) of location and velocities (range of x 

and y coordinates: 0 - 120) 

 

In Figure 3.11, the location values and velocities have the same weight. The results pictured show 

that the clusters are generally arranged in blocks, indicating that the vector means have similar 

location values and are considered as one cluster, but the velocities have been largely ignored. 

The block size depends on the number of clusters - the more clusters the smaller the block size. 

The result of this weighting has placed too much emphasis on positional information, so when all 

elements in one cluster are replaced by the cluster centre value, the result is quite different from 

the original optical flow (as seen in figure 3.10) and arguablely not representative in a meaningful 

way. 
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Figure 3.12: Clustering resulting from a weighting of 1:120 for location and velocities (range of x 

and y coordinates: 0 - 1) 

 

In figure 3.12, the weighting of velocity is much higher than that for location information. The 

clustering algorithm therefore considers the flow velocity to be more important than its location. 

Consequently, flows that have similar velocity are grouped in the same cluster even if they are 

spatially apart. This means the cluster centre may be allocated in a position away from the 

contributing clusters, which arguably means the centres do not represent the flow distribution 

effectively. 
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Figure 3.13: Clustering resulting from a weighting of 1:24 for location and velocities (range of x 

and y coordinates: 0 - 5) 

 

This weighting of 1:24 for velocity and location (as shown in Figure 3.13) is used for all following 

experiments as it is considered to provide an optimal balance between location and velocities. 

The weight is derived from the proportion of magnitude values of optical flow and the coordinate 

values. From figure 3.9 the maximum magnitude for a cluster centre is 7.77 and other large flows 

range from 4 to 6. The weighting is taken from the number of pixels in one dimension (120) to the 

average major magnitude of optical flow (approximately 5). Clusters derived with this weighting 

are therefore dependent on both position and velocity in equal measure and the position of the 

cluster centre still sits within corresponding cluster. 
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3.5.1.3 Number of Clusters 

Flows in one cluster may be widely dispersed and yet the centre of cluster will be located at the 

average position of these flows. To avoid this problem, the number of clusters can be increased so 

widely dispersed flows will form separate clusters. There is still a trade off because additional 

clusters enlarge the vector length as a result. Figure 3.14 shows the original optical flow and 

figures 3.15 and 3.16 show the results of specifying 100 clusters and 20 clusters, respectively, 

from which the difference can be seen clearly. 

 

Figure 3.14: Optical flow extracted by Farnback algorithm 
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Figure 3.15: Clustering the optical flow using 100 clusters 

 

In the figure 3.15, the weighting between coordinate and flow velocity is chosen to be 1:24, which 

is the better weighting method described from the previous section - all following clustering uses 

this weighting. The results show the flows after clustering are very accurate and the centres of 

clusters are almost always within the corresponding clusters. The larger the cluster number, the 

better the representation of the original optical flow pattern. However, the drawback is also clear 

- the vector length is 400 (100 * 4), which is still too long for effective classification by the 

methods considered in this thesis. Especially for the EAs, the increasing dimensions of searching 

space results an exponential growth of the procedure time, and also the difficulty to find the 

optimal solution.  
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Figure 3.16: Clustering the optical flow using 20 clusters 

 

In Figure 3.16, the number of clusters is small and so the area of each cluster is comparatively 

large. The area is not always continuous and flows in one cluster can have a range of different 

velocities, or have similar velocity but are located far apart.  

The trade-off between vector length and clustering performance is a compromise between 

achieving a clustering result that adequately represents the original flow and a vector length that 

is acceptably small. To address this, the number of clusters was set to 50, which is chosen from all 

the tens between 20 and 100 and balanced clustering result and vector length. The length is 

further reduced by choosing 25 cluster velocities randomly for the subsequent classification stage. 

Although this achieves representative cluster results and desired vector length, accurate 

classification may still be compromised by the loss of information incurred in the process. 
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3.5.1.4 Experimentation and Results 

The following experiments are based on the K-means clustering algorithm[138] with a threshold 

set to 0.9, number of clusters to 50 from which 25 are selected for classification, a weighting 

between coordinates and flow velocity of 1:24, resulting in a vector length of 100. The classifier 

used is Support Vector Machine (SVM) (C_SVC, RBF)[70, 71] with the default setting of 

OpenCV[139]. The experiments are based on MMI database. Because of the random initial cluster 

centre, the clustering algorithm returns a different result each time it is run. This results in 

different cluster distributions, location and ordering of cluster centres, as well as the cluster 

centres selected for the classification stage. Therefore, to provide a more representative sampling 

of the original flow data, the clustering procedure is repeated a number of times.  

In order to investigate the classification of the six universal expressions, two sets of experiments 

were undertaken, all of which were binary classification tasks. The first set of experiments is 

designed to distinguish between any two expressions from the six on a pair-wise basis, making 15 

classification tasks in total. The second set of experiments compares each expression against all 

other expressions as a single set, making six classification tasks in total.  

When considering the number of samples for each expression, it is apparent that there are 

considerably fewer for sadness and fear, than for the other expressions. Specifically, the data for 

training the classifiers is imbalanced, by a factor of approximately 1:5, which will affect classifier 

performance. To address this imbalance, for some experiments, repeat samples were added to 

these two expression classes to bring the number of samples to that of other classes. Where this 

has been used, it is referred to as the balanced or oversampled dataset.  

In summary, two sets of experiments were performed – (i) pair-wise comparison of each 

expression and, (ii) the individual comparison of each expression against a set comprising all other 

expressions. For each, both original (imbalanced) and balanced datasets were used in different 

combinations for training and testing SVM classifiers. In all cases, the MMI database was used.  
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Experiment (i): Pair-wise comparison of each expression 

Table 3.3 shows the results of training the SVM classifier for pair-wise comparison of expressions 

using the original data set, and testing it using the balanced dataset. Table 3.4 shows the results 

of the SVM classifier trained original dataset and tested with re-clustered data, and Table 3.5 

results of the SVM classifier trained balanced dataset and tested with re-clustered data. This 

approach demonstrates good performance for some expression pairs, but is not effective for 

others. Although the training data and test data are different, because of the randomness of 

clustering algorithm, they originate from the same video clips and therefore is not a good test of 

how the classifiers will perform on unseen clips.  

 

Table 3.3: Pair-wise comparison of expressions trained with original dataset (imbalance) and 

tested with balance dataset 

Train with small set, test with big set (over sampled) 

       Negative 
Positive 

  Anger Surprise Fear Sadness Disgust 

Happiness 
TPR % 93.55 82.89 84.67 88.29 86.71 

TNR % 82.54 72.23 69.51 77.7 67.53 

Anger 
  TPR % 88.64 83.94 76.62 74.37 

  TNR % 75.98 78.02 60 72.92 

Surprise 
    TPR % 80.45 79.29 68.93 

    TNR % 53.95 77.09 76.83 

Fear 
      TPR % 63.95 53.47 

      TNR % 78.91 81.92 

Sadness 
        TPR % 45.33 

        TNR % 83.32 

 

Table 3.4: Pair-wise comparison of expressions trained with original (imbalance) dataset 

Test with re-clustered data, small set 

        Negative 
Positive 

  Anger Surprise Fear Sadness Disgust 

Happiness 
TPR % 94.74 98.68 97.7 100 91.45 

TNR % 84.98 91.96 93.21 100 72.69 

Anger 
  TPR % 89.67 96.71 94.37 96.24 

  TNR % 76.79 92.59 82.42 91.51 

Surprise 
    TPR % 95.09 87.05 91.07 

    TNR % 96.91 82.42 99.26 

Fear 
      TPR % 91.36 89.51 

      TNR % 97.58 99.63 

Sadness 
        TPR % 83.03 

        TNR % 97.42 
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Table 3.5: Pair-wise comparison of expressions trained balance dataset 

Test with re-clustered data, big set(over sampled) 

       Negative 
Positive 

  Anger Surprise Fear Sadness Disgust 

Happiness 
TPR % 93.16 98.03 97.96 92.57 96.64 

TNR % 86.85 90 87.16 75.39 90.11 

Anger 
  TPR % 100 100 93.62 95.68 

  TNR % 99.91 99.88 80.12 87.45 

Surprise 
    TPR % 85.63 100 99.46 

    TNR % 57.53 100 100 

Fear 
      TPR % 99.88 81.36 

      TNR % 100 99.19 

Sadness 
        TPR % 80.85 

        TNR % 98.3 

 

Results show that the performances of SVM are greatly affected by the ratio of training data. The 

results of imbalanced training data are much worse than those of balanced training data.   

 

Experiment (ii): Comparison of each individual expression against a set comprising all other 

expressions 

Table 3.6 shows results for each expression compared against the set of all other expressions with 

the original (imbalance) dataset. The first column reports the training fitness in terms of both true 

positives (positive or TP) and true negatives (negative or TN). The second column reports the 

performance of the trained classifier when tested with re-clustered data, again in terms of TP, TN 

and the respective true positive and true negative rates (TPR, TNR). Finally, the third column 

reports results for the trained classifier tested with the balanced (oversampled) dataset. The 

results are poor due largely to the imbalance of the training data. 
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Table 3.6: Individual comparison of expressions trained with original (imbalance) dataset 

Train with imbalanced data 

  
Training 

data 
Test with re-clustered data Test with oversampled data 

Happiness 
P 304 TP 251 TPR 82.57% P 7600 TP 3777 TPR 49.70% 

N 1035 TN 1021 TNR 98.65% N 5175 TN 4856 TNR 93.84% 

Anger 
P 213 TP 146 TPR 68.54% P 5325 TP 1643 TPR 30.85% 

N 1126 TN 1116 TNR 99.11% N 5630 TN 5433 TNR 96.50% 

Surprise 
P 224 TP 17 TPR 7.59% P 5600 TP 117 TPR 2.09% 

N 1115 TN 1115 TNR 100.00% N 5575 TN 5569 TNR 99.89% 

Fear 
P 162 TP 74 TPR 45.68% P 4050 TP 22 TPR 0.54% 

N 1177 TN 1177 TNR 100.00% N 5885 TN 5881 TNR 99.93% 

Sadness 
P 165 TP 0 TPR 0.00% P 4125 TP 0 TPR 0.00% 

N 1174 TN 1174 TNR 100.00% N 5870 TN 5870 TNR 100.00% 

Disgust 
P 271 TP 110 TPR 40.59% P 6775 TP 207 TPR 3.06% 

N 1068 TN 1068 TNR 100.00% N 5340 TN 5335 TNR 99.91% 

 

Table 3.7 shows results for a similar experiment, but with a small balance training set. The results 

are much improved over those using the original (imbalance) dataset, but results are still poor for 

some expressions. 

 

Table 3.7: Individual comparison of expressions trained with balanced training dataset 

Train with balanced data (over sampled) 

  
Training 

data 
Test with re-clustered data Test with oversampled data 

Happiness 
P 1520 TP 1414 TPR 93.03% P 7600 TP 6354 TPR 83.61% 

N 1035 TN 772 TNR 74.59% N 5175 TN 3696 TNR 71.42% 

Anger 
P 1065 TP 899 TPR 84.41% P 5325 TP 4209 TPR 79.04% 

N 1126 TN 891 TNR 79.13% N 5630 TN 4312 TNR 76.59% 

Surprise 
P 1120 TP 1114 TPR 99.46% P 5600 TP 3963 TPR 70.77% 

N 1115 TN 1115 TNR 100.00% N 5575 TN 4316 TNR 77.42% 

Fear 
P 810 TP 673 TPR 83.09% P 4050 TP 1947 TPR 48.07% 

N 1177 TN 1163 TNR 98.81% N 5885 TN 4907 TNR 83.38% 

Sadness 
P 826 TP 701 TPR 84.87% P 4125 TP 2145 TPR 52.00% 

N 1174 TN 1086 TNR 92.50% N 5870 TN 4564 TNR 77.75% 

Disgust 
P 1355 TP 1321 TPR 97.49% P 6775 TP 4662 TPR 68.81% 

N 1068 TN 1036 TNR 97.00% N 5340 TN 3345 TNR 62.64% 

 

Compare the results in table 3.6 and 3.7, the influence of imbalanced training data on SVM can be 
observed easily. The results in table 3.7, which are trained by balanced data, are much better than 
those in table 3.6, which are trained by imbalanced data. The true positive rates of surprise, fear, 
sadness and disgust are even lower than 5%. True positive rates increase significantly in table 3.7, 
but fear and sadness still have much lower rates than other expressions.  
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3.5.1.5 Summary 

The randomness affects the data. It is effective way to use the randomness to enlarge the data set 

for a balanced data set. This helps to overcome the problems that imbalanced data bring in 

classification. Simply repeat the data without randomly differences is not as good as randomness 

for balancing data set. But the randomness should be used in a proper way. It would be not a 

problem, if the randomness happens on the slightly changing of the magnitude value at a smiling 

mouth corner. Because the meaning does not change, it is still the magnitude of flow velocity. The 

slight difference on value will not change the fact of the man is smiling. But the order of how 

vectors are arranged is important for classification. Consider the K-means (or any other classifiers), 

the input data contains two elements which stand for x and y locations. If the order of x and y are 

randomly changed before passing to the classifier, it would definitely not return a good 

classification result. As discussed in the beginning of 3.4.1.4, the order of cluster centres will 

change during clustering algorithm. The locations of coordinates and velocities are confirmed not 

going to change. But the order of cluster centres will change; this is the reason why this method 

cannot have good testing results even on training data. So this cluster feature used here is not 

effective for expression recognition.  

Clustering algorithms other than K-means have also been considered like hierarchical clustering, 

but it does still not provide good results because the random order of the meaning of cluster 

centres for classification. The clustering algorithm is finally abandoned. 

A notable thing is in this experiment the same training data is used for testing. This is meaningless 

if it achieves excellent performance. However it is a way to disprove this method does not work 

well and the clustering algorithm is not used indeed.  
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3.5.2 Five Highest Regions of Flows Selection Method 

3.5.2.1 Introduction 

Following the disappointing performance of the clustering algorithm described in section 3.5.1, a 

closer examination of the flows and the centres of clusters from those results was conducted. The 

areas in which high optical flow occurred are small in number and certainly less than the 50 

clusters previously used. Although it was hypothesised that small optical flow may hold important 

and discriminating characteristics, it was decided to concentrate on the more prominent flows, 

from as few as five areas within the image.  Hence, the method proposed in this section is based 

on extracting simpler features comprising higher average flows, rather than attempting to cluster 

a large number of flows. 

To facilitate this method, the presentation of flow is converted from Cartesian to polar 

coordinates, which still results in four values for each pixel: x, y, magnitude and theta. Next a 

windowing operation is applied, to scan the whole image, storing the five sub-windows which had 

highest average flow magnitude. Because the flows have been thresholded in the preprocessing 

stage, large areas of small flows report as having zero flow. Consequently, when calculating the 

average magnitude of flow within a window, zero magnitude value flows are ignored so not to 

penalise sparse flow magnitude values that are reported.  

Next, each of five sub-windows are divided into 3 by 3 grids; each grid has an average magnitude 

and theta. The averages are obtained in the same way as for the average high magnitude as 

described above and shown in figure 3.17.  Features are formed from the values of magnitude 

and theta taken from the nine flows in each of the five windows. These are then ordered to form 

a feature vector from the largest average magnitude to the smallest. The vector length is 3*3*2*5 

= 90, but does not include location information.  
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Figure 3.17: Optical flow showing the five sub-windows having highest average flow magnitude. 

The arrows in the sub-windows on the right are the resulting features 

 

3.5.2.2 Experiments and Results 

The following experiments use both the MMI and FG-NET databases and include six binary 

classifications for each expression. As this method does not include random procedures, fixed 

features can be extracted from the same original flow data. No oversampling or down-sampling to 

increase minority class data or decrease majority data is applied, so the training data for this 

experiment is imbalanced. However, cross validation has been applied in the training phase of the 

SVM to obtain the best parameters. All training data was separated to K groups and each run 

takes K-1 groups of data as one sub-training fold and the rest is used for testing. This K-fold cross 

validation is run K times for each set of SVM parameters. The total error of all K runs with the 

resulting set of parameter is recorded, with each possible parameter combinations will do the 

cross validation separately. The parameters with lowest error on K-fold cross validation, and 

hence, that supposed to be most suitable for the problem, is used for final training of the whole 

training dataset. Each binary classification experiment, happiness to non-happiness etc., the 

training data are all from one database (MMI or FG-Net), and the testing data are from the very 
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other unused database. The numbers of samples for each experiment are shown in the following 

table, which is generated from table 3.1 and table 3.2. 

Table 3.8: Number of samples for binary classification experiments 

 Happiness Anger Surprise Fear Sadness Disgust 

Sa
m

p
le

s MMI 
P 304 213 224 162 165 271 

N 1035 1126 1115 1177 1174 1068 

FG-NET 
P 365 371 303 113 29 292 

N 1108 1102 1170 1360 1444 1181 

 

The SVM classifier was trained with each database by this method and then tested with the other. 

The accuracies for the six expressions are shown in table 3.9. The results include the best average 

error rate (Err. R, equation 3.30), true positive rate (TPR, equation 3.31) and true negative rate 

(TNR, equation 3.32) of the 10 groups (10-fold) in cross validation for the training set. Similarly, 

rates are also shown for the SVM classifier test results.  

Error rate = 1 - (TP+TN) / (P+N)    (3.30) 

True positive rate = TP / P     (3.31) 

True negative rate = TN / N     (3.32) 

where P and N are the numbers of positive and negative samples in an experiment. TP and TN are 

both correct predictions, but for positive and negative respectively.  
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Table 3.9: SVM trained and tested through the high flow sub-window method 

  

Train MMI Train FG-NET 

Group Ave. 
Test 
FG-NET 

Group 
Ave. 

Test 
MMI 

Happiness 

Err.R. 16.34% 20.71% 17.18% 23.53% 

TPR 47.29% 31.78% 52.46% 52.79% 

TNR 94.75% 94.95% 92.87% 83.21% 

Anger 

Err.R. 12.30% 24.85% 18.60% 18.45% 

TPR 35.47% 17.79% 43.50% 23.85% 

TNR 97.58% 94.46% 94.58% 92.41% 

Surprise 

Err.R. 12.86% 22.81% 18.33% 19.75% 

TPR 45.43% 11.55% 31.06% 14.78% 

TNR 95.64% 94.19% 94.76% 93.37% 

Fear 

Err.R. 11.02% 2.58% 6.92% 12.85% 

TPR 14.27% 6.90% 15.90% 0.00% 

TNR 100.00% 99.24% 99.78% 99.75% 

Sadness 

Err.R. 10.64% 2.58% 1.02% 12.49% 

TPR 17.60% 6.90% 37.83% 0.00% 

TNR 99.83% 99.24% 100.00% 100.00% 

Disgust 

Err.R. 17.49% 22.74% 16.98% 21.71% 

TPR 18.97% 2.74% 21.68% 2.52% 

TNR 98.66% 95.68% 98.19% 97.45% 

 

The SVM parameters used for training are selected from the one with lowest error after cross 

validation. The parameters for all 12 SVM classifier trainings are shown in table 3.10 below. 

 

Table 3.10: SVM parameters selected by best cross validation results 

SVM type: C-SVC 
 

Kernel: RBF 
   

    Happiness Anger Surprise Fear Sadness Disgust 

C MMI 0.25 0.25 1.25 0.25 0.25 0.25 

(10^1) FG-NET 1.25 0.25 1.25 1.25 0.25 1.25 

Gamma MMI 2.25 33.75 2.25 33.75 33.75 33.75 

(10^-3) FG-NET 2.25 33.75 2.25 33.75 33.75 33.75 

 

From the table of results, it can be seen that the imbalanced training data affects the results 

considerably, as the accuracies of majority classes are much higher than that for minority classes. 

Too few positive samples for training tends to a negative response from the classifier. Figure 3.18 

below illustrates how imbalanced training data can make the boundary of the SVM shift towards 

the smaller data region, Where (a) is the actual segmentation of two classes, (b) shows the 

samples available for training, (c) the boundary set by the SVM algorithm and, (d) the classifier 

result and ground truth. 
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Figure 3.18: The effect of training with an imbalanced dataset 

 

If red is negative, blue is positive, then the red area in 3.18 (d) is true negative, the blue area is 

true positive, the white area in the left half is false positive and the white area of right half is false 

negative. From the figure, false negative will be large when the positive sample for training is 

small. This is a simple linear example. In reality, most of the problems are non-linear, so the 

imbalanced classification will have more effect.  

Considering the average error rate of 10 groups in table 3.11, the true positive rates are not good 

at under, or around 50%, which is already the smallest error of results possible among other 

possible parameters. It suggests high flows used in this sub-windows method are not sufficiently 

effective. One reason could be that the features do not include the location information of the 5 

sub-windows. 

If the comparison is made between the group average error column and test with the other 

database values, the true positive rates drop sharply, except for classification of the happiness 

emotion. This means the differences between the two databases of the other five expressions are 

significant. It is not an easy task to train and test with different databases, because the differences 

between databases are likely to be too large. 
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3.5.2.3 Summary 

The results presented above suggest that lack of location information and imbalanced datasets 

significantly affect the accuracy and to train and test with different databases is another difficult 

task.  
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3.5.3 Average of Flows in Grid  

3.5.3.1 Introduction 

From the previous two feature selection methods, it was concluded that the features should 

contain both velocity and location information, and have the same meaning in the relative 

position within the resulting vector (i.e. ordered). This section introduces an algorithm to achieve 

these goals. 

The method divides the image (of 120 x 120 pixels) into a 6 x 6 grid, each cell consisting of 20 x 20 

pixels. Excluding the side columns, a 6 x 4 grid remains as shown in fig. 3.19. The average 

velocities of the remaining cells form the vector of length 48. (6 rows * 4 columns * 2 velocity x, 

velocity y = 48).  The results for this feature are obtained in the same way as for the previous 

method.  

 

Figure 3.19: Grid used in the average flows in grid method with first and last columns ignored 

 



73 

 

3.5.3.2 Experimentation and Results 

a) Six binary classifications for expressions 

The same experimental arrangements were used as for the previous method with a training set 

consisting of each expression as one set and the remaining five expressions making up the other 

set.  Consequently, the training sets are imbalanced (approximately 1:5, but expressions of 

sadness and fear of the FG-Net database are much smaller). The test set comprised data derived 

from the second database and cross validation was performed within each database.  

The classifier is SVM, C_SVC, RBF kernel; parameters are selected by 10-fold cross validation on 

training data. The results are shown in tables 3.11 and 3.12. 

 

Table 3.11: Test results of the FG-NET database for a classifier trained by the MMI database 

SVM cross validation on MMI data 

  Group average 
Test with 
FG-NET 

Happiness 

Err.R. 1.96% Err.R. 16.29% 

TPR 92.79% TPR 60.27% 

TNR 99.53% TNR 91.43% 

Anger 

Err.R. 2.61% Err.R. 24.64% 

TPR 89.45% TPR 30.73% 

TNR 98.88% TNR 90.38% 

Surprise 

Err.R. 2.69% Err.R. 16.36% 

TPR 87.39% TPR 47.85% 

TNR 99.30% TNR 92.91% 

Fear 

Err.R. 3.05% Err.R. 10.93% 

TPR 81.03% TPR 15.93% 

TNR 99.25% TNR 95.15% 

Sadness 

Err.R. 2.69% Err.R. 4.41% 

TPR 84.30% TPR 55.17% 

TNR 99.17% TNR 96.40% 

Disgust 

Err.R. 2.47% Err.R. 18.33% 

TPR 90.29% TPR 40.07% 

TNR 99.36% TNR 91.96% 
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Table 3.12: Test results of the MMI database for a classifier trained by the FG-NET database 

SVM cross validation on FG-NET data 

  Group average Test with MMI 

Happiness 

Err.R. 4.07% Err.R. 14.60% 

TPR 89.04% TPR 60.00% 

TNR 98.19% TNR 92.63% 

Anger 

Err.R. 5.97% Err.R. 19.90% 

TPR 88.68% TPR 49.54% 

TNR 95.82% TNR 85.85% 

Surprise 

Err.R. 5.23% Err.R. 18.88% 

TPR 80.20% TPR 37.39% 

TNR 98.55% TNR 89.89% 

Fear 

Err.R. 2.92% Err.R. 12.49% 

TPR 76.99% TPR 18.39% 

TNR 98.75% TNR 97.51% 

Sadness 

Err.R. 0.40% Err.R. 12.13% 

TPR 93.10% TPR 4.07% 

TNR 99.72% TNR 99.83% 

Disgust 

Err.R. 3.60% Err.R. 19.54% 

TPR 88.36% TPR 24.10% 

TNR 98.39% TNR 94.72% 

 

This experiment also used imbalanced training data as in the previous experiment, but as shown 

in tables 3.11 and 3.12, produced good results on the cross validation process. The rates are all 

above 80% for the same database cross validation as the best results with all combinations of 

parameters. This suggests the method is capable of achieving high accuracy when compared with 

previous methods. When the two databases have been used for training and testing respectively, 

the results drop sharply, as expected, but are still better than previous feature select methods. 

Due to the huge variance between the two databases and highly imbalanced dataset, it would be 

difficult to get good result when test with different databases. The expressions with more data 

imbalance, sadness and fear, have the worst results. 

Increasing the number of cells in the grid 

Increasing the number of cells within the grid was investigated as a means of improving classifier 

performance. The current vector length is 48 (24 grids with x and y velocities). This was increased 

by starting with 6 cells using a 6 by 6 division of the image as tier 1, then additional tiers of grids 

are obtained using the following formulae:  

Vertical      𝑇𝑛. y = 6 × (𝑛 + 1) × 1
2⁄                    (3.33) 

Horizontal    𝑇𝑛. 𝑥 = 𝑇𝑛. 𝑦 × 2
3⁄             , 𝑛 = 1,2,3 ….         (3.34) 
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Where 2/3 represents the effect of removing the two side columns to accommodate the 

windowing operation (1/6 each, 1/3 total). The same experiments were performed using different 

grid sizes, from T1 to T5. The grid size and vector length are shown in table 3.13. 

 

Table 3.13: Grids of varying tiers 

  T1 T2 T3 T4 T5 

Vertical 6 9 12 15 18 

Horizontal 4 6 8 10 12 

Vector length 48 108 192 300 432 

 

The results (TPR, FPR) of 5 tiers of grids and 6 expressions and 2 databases train and test each 

other are shown in table 3.14. 

 
Table 3.14: Classifiers trained by grids of varying tiers 

  Happiness Anger Surprise Fear Sadness Disgust 

T1 

Test on 
FG-NET 

TPR 60.27% 30.73% 47.85% 15.93% 55.17% 40.07% 

FPR 8.57% 9.62% 7.09% 4.85% 3.60% 8.04% 

Test on 
MMI 

TPR 60.00% 49.54% 37.39% 18.39% 4.07% 24.10% 

FPR 7.37% 14.15% 10.11% 2.49% 0.17% 5.28% 

T2 

Test on 
FG-NET 

TPR 62.74% 28.84% 48.84% 4.42% 6.90% 22.60% 

FPR 10.11% 4.90% 8.03% 0.44% 1.66% 3.47% 

Test on 
MMI 

TPR 55.08% 42.20% 17.39% 1.72% 0.00% 14.39% 

FPR 2.52% 9.66% 4.27% 0.91% 0.00% 2.37% 

T3 

Test on 
FG-NET 

TPR 62.19% 29.92% 52.15% 15.93% 24.14% 54.11% 

FPR 8.48% 9.35% 7.52% 3.16% 2.63% 10.84% 

Test on 
MMI 

TPR 67.87% 23.39% 34.78% 12.07% 0.00% 6.12% 

FPR 11.01% 5.69% 7.24% 2.24% 0.00% 0.64% 

T4 

Test on 
FG-NET 

TPR 61.92% 32.35% 54.13% 8.85% 37.93% 40.41% 

FPR 9.03% 8.98% 8.21% 3.46% 3.60% 10.41% 

Test on 
MMI 

TPR 72.13% 53.67% 35.65% 10.92% 0.00% 28.42% 

FPR 10.07% 15.36% 6.02% 2.08% 0.00% 3.64% 

T5 

Test on 
FG-NET 

TPR 64.93% 26.15% 48.18% 2.65% 27.59% 44.18% 

FPR 9.39% 7.44% 6.58% 1.76% 3.19% 8.47% 

Test on 
MMI 

TPR 69.84% 45.41% 33.04% 8.62% 0.00% 27.70% 

FPR 7.93% 15.01% 7.32% 1.66% 0.17% 5.46% 

 

Parameters for configuring SVM resulting from the best cross validation and respective 

classification results are shown in figure 3.15. 
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Table 3.15: SVM parameters of each experiment 

SVM type: C-SVC 
 

Kernel: RBF 
   

      T1 T2 T3 T4 T5 

 
Happiness MMI 1.25 6.25 1.25 6.25 1.25 

 
  FG-NET 1.25 1.25 6.25 1.25 1.25 

  Anger MMI 1.25 6.25 1.25 1.25 1.25 

    FG-NET 1.25 1.25 0.25 1.25 1.25 

  Surprise MMI 1.25 0.25 1.25 6.25 1.25 

 C   FG-NET 6.25 1.25 6.25 1.25 1.25 

(10^1) Sadness MMI 1.25 0.25 1.25 6.25 1.25 

    FG-NET 1.25 1.25 1.25 1.25 6.25 

  Fear MMI 1.25 0.25 6.25 1.25 1.25 

    FG-NET 6.25 0.25 1.25 1.25 1.25 

  Disgust MMI 1.25 1.25 6.25 31.25 6.25 

    FG-NET 1.25 1.25 1.25 1.25 1.25 

 
Happiness MMI 33.75 2.25 2.25 2.25 2.25 

 
  FG-NET 33.75 33.75 2.25 2.25 2.25 

  Anger MMI 33.75 2.25 2.25 2.25 2.25 

    FG-NET 33.75 33.75 33.75 2.25 2.25 

  Surprise MMI 33.75 33.75 2.25 2.25 2.25 

Gamma   FG-NET 33.75 33.75 2.25 2.25 2.25 

(10^-3) Sadness MMI 33.75 33.75 2.25 2.25 2.25 

    FG-NET 33.75 33.75 2.25 2.25 2.25 

  Fear MMI 33.75 33.75 2.25 2.25 2.25 

    FG-NET 33.75 33.75 2.25 2.25 2.25 

  Disgust MMI 33.75 33.75 2.25 2.25 2.25 

    FG-NET 33.75 33.75 33.75 2.25 2.25 

 

The difference between tiers is not extensive and can be irregular, but the increasing grid size 

does lead to an increase in vector length and a decrease in the size of each grid window. If the 

window is too small, then the noise of head movement and personal appearances in the video 

stream will affect the overall results. Consequently, for future experiments in Chapter 4 on tiers 

T1 - T3 will be used.  

 

b) Distinguish between pair wise of expressions 

 

A similar experiment to that applied to previous methods, considers evolving classifiers to 

distinguish between expressions on a pair-wise basis. 

Training set and test set: a similar arrangement to previous experiments. Each time has two 

expressions from 6, there are total 15 (6×5/2) sets of experiments for each database. The 

numbers of positive and negative results are more balanced except for sadness and fear in the 

FG-Net database.  
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Table 3.16: Cross validation of MMI database 

N 
P  

Anger Surprise Fear Sadness Disgust 

Happiness 
TPR Ave. 97.7% 97.38% 97.05% 98.03% 98.03% 

TNR Ave. 98.17% 97.83% 96.55% 97.67% 97.12% 

Anger 
  TPR Ave. 99.54% 96.33% 95.87% 96.33% 

  TNR Ave. 97.83% 97.7% 94.19% 95.68% 

Surprise 
    TPR Ave. 96.09% 97.39% 98.7% 

    TNR Ave. 91.38% 98.94% 98.92% 

Fear 
      TPR Ave. 96.55% 95.4% 

      TNR Ave. 97.09% 96.4% 

Sadness 
    

 
  TPR Ave. 98.84% 

    
 

  TNR Ave. 94.96% 

 

Table 3.17: Test results of the FG-NET database trained by the MMI database 

     N 
P  

Anger Surprise Fear Sadness Disgust 

Happiness 
TPR 87.67% 85.48% 86.03% 92.6% 77.26% 

TNR 82.48% 77.56% 83.19% 100% 82.53% 

Anger 
  TPR 89.22% 78.17% 69.54% 57.68% 

  TNR 91.42% 94.69% 65.51% 66.1% 

Surprise 
    TPR 74.92% 89.11% 78.55% 

    TNR 37.17% 89.66% 91.44% 

Fear 
      TPR 92.92% 90.27% 

      TNR 86.21% 88.01% 

Sadness 
    

 
  TPR 68.97% 

    
 

  TNR 85.96% 

 

This approach performs well on cross validation in same database as shown in table 3.16. When 

tested on the other database, the sadness and happiness pair has the highest accuracy rate; 

surprise fear pair, anger sadness pair and anger disgust pair have lower rates as shown in table 

3.17. 
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Table 3.18: Cross validation of FG-NET database 

      N 
P  

Anger Surprise Fear Sadness Disgust 

Happiness 
TPR Ave. 95.34% 95.34% 97.26% 100% 96.71% 

TNR Ave. 97.04% 95.71% 91.15% 86.21% 98.97% 

Anger 
  TPR Ave. 97.04% 99.19% 99.46% 95.42% 

  TNR Ave. 92.74% 93.81% 93.1% 91.78% 

Surprise 
    TPR Ave. 93.4% 99.34% 96.04% 

    TNR Ave. 87.61% 93.1% 98.97% 

Fear 
      TPR Ave. 97.35% 92.92% 

      TNR Ave. 100% 99.66% 

Sadness 
    

 
  TPR Ave. 93.1% 

    
 

  TNR Ave. 99.66% 

 

Table 3.19: Test results of the MMI database trained by the FG-NET database 

      N 
P  

Anger Surprise Fear Sadness Disgust 

Happiness 
TPR 91.48% 82.95% 91.8% 100% 95.41% 

TNR 86.7% 73.04% 38.5% 19.19% 52.88% 

Anger 
  TPR 90.37% 99.54% 99.54% 61.47% 

  TNR 92.17% 43.1% 5.23% 46.04% 

Surprise 
    TPR 83.91% 98.7% 96.96% 

    TNR 28.16% 8.72% 65.47% 

Fear 
      TPR 91.38% 40.23% 

      TNR 46.51% 90.65% 

Sadness 
    

 
  TPR 10.47% 

    
 

  TNR 99.28% 

 

 

Similar results are achieved when reversing the databases for training and testing, as shown in 

table 3.18 and 3.19. Pairs that involve the fear or sadness expression are all disappointing due to 

the extreme imbalance of training data for these two expressions in FG-Net. 
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3.6 Summary 

Past static analyses of expressions are not reliable due to the differences between people, both in 

their appearance and their expression. Therefore, a dynamic technique working on the transition 

of expression has been considered in this chapter. The databases were firstly discussed in the 

beginning of this chapter because it is the essential condition of the whole project.  

In order to analyse the transition of expression dynamically, analysis of optical flow was applied 

estimating the displacements of every pixel between two frames of video. Two ways to calculate 

dense optical flow were introduced and the Farneback’s fast estimation was used in the thesis. 

But the dense optical flow contains too much making the vector length too long for the following 

classification process, so a reduction or selection of the dense optical flow is required. 

Three types of features extraction were applied to the dense optical flow data in preparation for 

subsequent classification. The first approach applied a clustering algorithm, taking the centres of 

the clusters as feature vectors. This method did not perform well, even when tested with the 

training video stream, due to the randomness of the clustering algorithm which made the feature 

vector different each time it was applied to the same flow data. Additionally, the order of the 

cluster centres was not fixed. 

The second approach required picking out the five sub-windows with the highest average flow 

magnitude, and dividing these sub-windows into nine grids, using the average flow of every grid 

as a feature vector. This did not perform well in cross validation and the results showed it was 

greatly affected by the imbalanced training data. This method orders the points from highest flow 

magnitude sub-window the lowest, but does not include location information. Additionally, the 

five sub-windows often overlap within one or two areas with high flows. 

The third approach segmented the image into a 6 x 6 grid and 36 cells, but ignoring cells in the 

first and last columns. The average flows velocities of the 24 cells are used as feature vector, 

resulting in good performance within same database, even when trained with imbalanced data. 

The method was then evaluated using two different databases for training and testing 

respectively, and vice versa. The imbalanced dataset still affects classification results, particularly 

expressions: sadness and fear.  

The outcome of the work described in this chapter is a feature extraction method for constructing 

a vector from optical flow data that is both effective and in a form that can facilitate investigation 

of genetic programming as a classifier of facial expression. 
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4 Classification 

4.1 Introduction 

Chapter 3 introduced a feature extraction method based on dense optical flow and several 

reduction methods have been discussed. In the end of Chapter 3, results showed the average flow 

in grids method is better than others. This method is applied in this chapter for comparison of the 

classifier performances on expression recognition. 

This chapter will introduce the CGP based classifier. CGP is very convenient to become a classifier. 

CGP is used to find the program or computation for given input and output. It can be used to find 

the network of calculations from the given samples and corresponding class labels. This network 

of CGP is the classifier for prediction of new input data. 

While implementing CGP classifier, many problem need to consider. Such as CGP parameters 

(mutation rate, number of columns, function set), fitness function, multi-class problem. The CGP 

parameters will be discussed with a set of 2 dimensional points’ classification problems.  

Then CGP classifier is used for expression recognition, the feature vector are from previous 

chapter. Six expressions are recognised by six binary classification processes as in Chapter 3. So 

the training data is ultra-imbalance. The fitness function should be studied to overcome this 

problem. The Area under Curve (AUC) is used as the new fitness function.  

Overfitting is another problem in classification. Two attempts are made in this chapter to reduce 

the negative effect: decrease generations of evolution, loose the fitness condition in terminal 

conditions. Both ways are trying to stop the evolution on CGP classifier earlier than before. 

The comparison of expression recognition results is also made between SVM and the CGP 

classifier. At the end of the chapter, an introduction of the implementation of recognition system 

is made. 

 

4.2 Cartesian Genetic Programming 

CGP has been introduced in Chapter 2. The flexibility and the mechanism makes it can be used in 

many applications. One of them is to use CGP as a classifier.  
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4.2.1 CGP Structure 

In its original representation, the program compromises a 2 dimensional matrix of cells, each of 

which is a computational node.  Each node can be represented by an n-tuple of integers, 

representing the input node numbers and an index to a function list identifying the function 

defining the computation activity. Every node has a unique number identifier determined by its 

location in the graph. Input node numbers identify which previous nodes provide the input data 

for the current node. The function list can be any set of computational functions, such as 

mathematical equations, circuits and computer programs. The n-tuples for each node form the 

genotype that represents a CGP or solution computation. From the genotype, a directed 

connected graph of computation and data can be obtained. There may be a number of nodes in 

the program that are not connected and therefore have no direct role in the computation.[121] 

An example of the structure can be found in figure 4.1. 

 

Figure 4.1: Example CGP graph 

 

In the Figure 4.1, circles on the left denoted ‘Ix’ represent data inputs, rectangles in the middle are 

nodes and ‘O’ on the right are outputs. Each of these is uniquely numbered from 0 to 13. The 

numbers to the left of the boxes are the nodes from which this node obtains its input data. Red 

nodes are active nodes; those in black are inactive. The arrows show how the computation is 

directed from input to output. The graph can be coded into a fixed length integer string genotype. 

Figure 4.2 shows the formation of the program in such a genotype representation. 
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Figure 4.2: Formation from an example CGP graph 

 

A genotype is given and also the number of inputs, number of outputs, rows and columns of 

nodes are known. Then the active nodes can be found: firstly the entire output nodes must be 

active; then the nodes connected to output are active; at last all the nodes that link to an active 

node are active. Once the active nodes are known, each output of these nodes can be calculated. 

The output of the full computation is then complete. 

4.2.2 Genetic Operation 

In CGP new individuals are generated using individual (usually the fittest) from the previous 

generation through mutation. Each number or gene forming the individual or genome is subject 

to mutation at a predetermined mutation rate. Should mutation be performed, the value of the 

gene is changed to another random number within the legal range for the gene as shown in figure 

4.3. 

 

Figure 4.3: Mutation applied to a CGP genome 

 

Depending on its position, the muted gene can be responsible for the input or function of the 

node. Mutation may also occur at inactive nodes, in which case, the output of the computation 

will not be affected. However, it is still important to perform these mutations in such nodes as 

they may be used in future generations. Figure 4.4 shows how the mutation changes the 

connection and functioning of the program. 
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Figure 4.4: The effect of mutation applied to a CGP program 

 

In figure 4.4, red lines and nodes are active the black lines are active connection before mutation. 

The items in blue are mutated, including the function type, connected node and unconnected 

node. Anything inactive will not affect the output, so the mutation on those does not show 

difference in results. 

 

4.2.3 Evolution Strategy 

A 1+λ evolution strategy is widely used for CGP, where λ is usually chosen to be 4. This means the 

population size is 5, and one, the fittest individual is selected and copied or cloned to generate 5 

new individuals, 4 of which are subject to mutation, as the next generation.[121] 

 Initialisation: generate 5 individual solutions randomly. 

 Evaluate fitness of all individuals: because CGP is to find the computation with known input 

and output. The fitness is usually the error between CGP output and desired output. The 

lower is better. 

 Select fittest individual as the parent. 

 If this parent’s fitness satisfied, then Break. 

 Otherwise generate new individuals by mutating from the parent 

 Repeat the process until maximum generations reached. 
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4.3 CGP classifier 

The CGP is finding the connection of operations that fills the black box between the known input 

and output.  

For a classifier, the vector for classifying is the input and then it returns the class label as output in 

the testing phase. For the training phase, the input and its class label, which should be the 

desired output, is known. Then the classifier learns all the training data and develops itself to find 

the best internal parameters for the relationship between input and output. This procedure leads 

classifier divides input samples into their categories. After the classifier is well trained, in another 

word best parameters are found, usually a file with full internal setting is generated. With these 

well-trained setting, the classifier can predict the output from an unknown input sample. The 

solution that CGP works out can be such relationship from input to output. Once CGP finds the 

best solution of relationship between all the samples and their labels, this specific connection of 

CGP network will be used for prediction of which class a new input sample belongs.  

 

4.3.1 Classifier Algorithm 

4.3.1.1 Input and Output 

For a CGP classifier, the input is samples in the form of a fixed length vector. For one classification 

problem, the length of the input should be fixed, which is same as other classifiers. Each sample 

has a label indicated the class it belongs. The label is usually integer number, like 1, 2 and/or more 

depends how many classes there are. If the number of classes is two, also known as binary 

classification problem, then a threshold on output can be set to divide the two classes. That is, if 

the output is above the threshold, then the input sample belongs to one class, vice versa.  

In the training phase, two matrixes are required: a matrix of training data and a one column 

matrix with corresponding class labels. One row in training data matrix is one sample vector. The 

number of the matrix rows is the number of samples. The number of matrix columns is the length 

of sample vector, and the length is fixed. The number of label matrix rows is equal to the row 

number of training matrix, and the labels are corresponding to the vectors that are at the same 

rows.  
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4.3.1.2 Fitness Function 

A major part in the evolution process is evaluating the fitness of the solution. One solution is a 

specific connection between CGP nodes, and with this network CGP can predict class labels of 

samples. Fitness of one solution should indicate how well the solution can classify the training 

data. The method to evaluate the fitness, fitness function, should be simple and straight forward. 

One fitness function could be count the number of correct prediction on training data. 

 

4.3.1.3 Procedure of CGP Classifier 

The process is almost same as standard CGP. In the “evaluating fitness of individual solution” step, 

each row of the training data matrix is compared the CGP output from this chromosome and its 

true label from label matrix. For every chromosome, all the training samples should be examined 

the output and the desired class label. Then the number of correct classification is the fitness 

value of this chromosome. After generations, the fitness value is supposed to grow, means the 

solution gets better and can classify more training samples correctly.  

 

4.3.2 Experiments 

In this section, a set of experiments are introduced based on CGP classifier. The samples are two 

dimensional data (points on 2D coordinate). The classes or segmentations are decided by one or 

more functions.  

 

4.3.2.1 Simple Sinusoidal Wave 

The test data is randomly generated points in 100 by 100 (10,000 total) data space. The classes 

are divided by two functions: 

y < 10*sin(x/10) + 50 class 1 

else x < 50   class 2 

else (x > 50)   class 3       (4.1) 

 

The outputs of CGP have the even threshold for three classes (1/3 of output range).  
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The samples are shown in the figure. Different colours mean three classes.  

a) 1000 points for training 

 

Figure 4.5: 1000 training samples of simple sinusoidal wave segmentation 

Training data 

Firstly, 1000 samples are generated and they take 10% of the whole data space as the training 

data. From the figure above, the points are quite dense and it is not difficult to find the boundary 

between classes. 

 

 

Figure 4.6: Ground truth of simple sinusoidal wave segmentation 

Ground truth 

The two functions divide the three classes, a sinusoidal wave and a straight line. It is a simple 

classification problem. 
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Figure 4.7: SVM result. Accuracy of the whole space (100*100) is 98.57% 

 

The classification result by SVM is shown in the figure. The three colours are the predictions from 

the SVM classifier. The solid dots (darker colour) mean the correct recognitions and the crosses 

(lighter colour) mean the misclassifications. The segmentation is very close to the ground truth. 

SVM performs always better than CGP classifier in the following segmentation problems. This is 

because the nature advantage of SVM on segmentation problems. 

CGP results 

All the CGP classifier experiments run 100,000 generations. Other parameters: columns 200 or 

1000, mutation rates 0.1 or 0.008. The evolution process takes from 2 minutes(less columns, less 

samples) to 20 minutes. The computation time of CGP classifier costs much more than SVM. The 

CGP algorithm depends on heavy randomness, so the results are different when repeat the same 

experiment. Every experiment runs 10 times, then the fitness of training data and the accuracy of 

the whole data space are compared.  
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CGP: 200 columns, 0.1 mutation rates   1000 columns, 0.1 mutation rates 

 

  

200 columns, 0.008 mutation rates   1000 columns, 0.008 mutation rates 

 

Figure 4.8: Plot of fitness and accuracy in ten runs of simple sinusoidal wave segmentation (1000 

training points) 

 

Figures 4.8 are the relations of training fitness and accuracies among ten runs. The horizontal axis 

has ten points and they stand for the ten runs of the CGP procedure. The left vertical axis is the 

final fitness on training data, the smaller is better. The right vertical axis is the accuracy on the 

whole data space (100 * 100 points), the larger is better. Four figures are each combination of two 

mutation rates and two columns. 

From the figures, the line of accuracies follows the training fitness nearly perfect. The axis scales 

of fitness values and accuracies are different among figures. As the scale changing, the distance of 

the two lines will be apart. But the shapes of the lines, which connect the 10 points and show the 

relations of points, have similarities. In another word, the fitness function, which counts the 

correct classification of training data, can evaluate the classification performance on new data. 
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The comparison between four combinations of CGP parameters is in the following table. 

 

Table 4.1: Performance of different CGP parameters on simple sinusoidal wave segmentation 

(1000 training points) 

Samples, 
Mutation R. 

Accuracy Fitness 

Ave. Max. Min. Ave. Max. Min. 

200,0.1 0.90419 0.9539 0.8663 83.9 114 49 

1000,0.1 0.88809 0.9579 0.8164 94.6 180 33 

200,0.008 0.89066 0.9636 0.7941 86.8 175 12 

1000,0.008 0.90539 0.9599 0.7295 68.2 218 18 

 

The performances of the four combinations are very close. The result of 1000 columns and 0.008 

mutation rates is slightly better than others on the average of recognition rates and fitness value. 

The individual of highest accuracy is obtained by the parameter of 200 columns and 0.008 

mutation rates, and is shown in the following figure (accuracy is 96.36%). 

 

  

200 columns, 0.008 mutation rates   1000 columns, 0.008 mutation rates 

 (96.36% accuracy)       (95.99% accuracy) 

Figure 4.9: CGP results of the simple sinusoidal wave segmentation (1000 training points) 
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b) 200 samples for training 

In the previous experiment, the training data set is very large which takes 10% of the whole data 

space. Then the next experiment is reducing the number of training samples to 200, which is 2% 

of the whole data space. The fewer training data makes the classification more difficult. 

 

 

Figure 4.10: Training samples (200 points) for simple sinusoidal wave segmentation 

 

Figure 4.10 are 200 points of training samples. Three colours mean different classes. 

 

 

Figure 4.11: Ground truth of, same as the previous experiment 

 

The training data are randomly selected from the ground truth of the data space. The ground 

truth will not change as training data. 
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Figure 4.12: SVM result of simple sinusoidal wave segmentation with 200 training points (96.23%) 

 

From figure 4.12, cross (lighter colour) is misclassification, solid dot (darker colour) is correct 

recognition. SVM is very strong to this kind of problem. The SVM result is still close to the ground 

truth. 

 

CGP results: 

Ten runs of CGP classifier training are made. The following figure shows the relations between 

final fitness value of training process and the accuracies on testing data. 
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CGP: 200 columns, 0.1 mutation rates   1000 columns, 0.1 mutation rates 

 

 

200 columns, 0.008 mutation rates   1000 columns, 0.008 mutation rates 

 

Figure 4.13: Plot of fitness and accuracy in ten runs on simple sinusoidal wave segmentation (200 

training points) 

 

The horizontal axis is the run number of CGP. The left vertical axis is the final fitness on training 

data, the smaller is better. The right vertical axis is the accuracy on the whole data space (100 * 

100 points), the larger is better. Four figures are each combination of two mutation rates and two 

columns. 

From figures 4.13, the accuracies generally follow the training fitness. In the figure of 1000 

columns and 0.008 mutation rates, the fitness is very close (7 of 10 runs have less than 5 fitness 

value differences), and two lines do not follow each other very well. The conflict is on the 4th and 

6th runs, the fitness values are high among 10 points, but the accuracies are low in 10 percentage 

points. 
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The comparison between the four combinations of CGP parameters are shown in the following 

table. 

Table 4.2: Performance of different CGP parameters on simple sinusoidal wave segmentation (200 

training points) 

Samples, 
Mutation R. 

Accuracy Fitness 

Ave. Max. Min. Ave. Max. Min. 

200,0.1 0.85325 0.9059 0.7423 14 38 3 

1000,0.1 0.88698 0.9361 0.731 9.5 38 3 

200,0.008 0.86323 0.9231 0.7033 14.6 46 1 

1000,0.008 0.89472 0.9293 0.8018 5 11 0 

 

From the averages of the accuracies, the results of 1000 columns are better than 200 columns. 

And the smaller mutation rates have better average performance with same columns. The 1000 

columns and 0.008 mutation rates parameters has the best average performance, just a slightly 

lower maximum accuracy than parameters of 1000 columns and 0.1 mutation rates. 

Best accuracy of 93.61% is achieved by the third run with 1000 columns and 0.1 mutation rates. 

The second best is by parameter of 1000 columns and 0.008 mutation rates. The result of this 

classifier is shown in the following figure. 

 

  

1000 columns, 0.1 mutation rates    1000 columns, 0.008 mutation rates 

 93.61% accuracy       92.93% accuracy 

Figure 4.14: CGP result on 200 training data simple sinusoidal wave segmentation experiment 
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4.3.2.2 Third Order Polynomial 

The next experiment is a more complex region segmentation problem on a 2D space. The 

function is: 

𝑧 = 𝑥2 − 3𝑥 + 𝑦3 − 3𝑦          𝑥, 𝑦 ∈ [−2,2], 𝑧 ∈ [−4,4]   (4.2) 

Classes are divided by the following threshold: 

Class 1: 𝑧 ∈ [−4, −1) 

Class 2: 𝑧 ∈ [−1,0.5) 

Class 3: 𝑧 ∈ [0.5,4]        (4.3) 

The data space is still 100 by 100, but scale the x and y to the range in the equation before 

processing. The experiments are the same as the previous one, first train with 1000 samples (10% 

of data space) then 200 samples (2%). The parameters are the same combination as previous 

experiment. 

 

a) 1000 samples for training 

 

  

 (a)Training data       (b)Ground truth 

Figure 4.15: (a)Training data (1000 points) and (b) ground truth of segmentation based on third 

order polynomial 
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Figure 4.16: SVM result: 96.34% accuracy of segmentation recognition based on third order 

polynomial (1000 training points) 

  



96 

 

CGP results 

  

200 columns, 0.05 mutation rates   200 columns, 0.008 mutation rates 

  

1000 columns, 0.05 mutation rate   1000 columns, 0.008 mutation rates 

 

Figure 4.17: Plot of fitness and accuracy of segmentation problem based on a third order 

polynomial equation (1000 training points) 

 

Ten points on the horizontal axis mean ten runs of CGP classifier. The left vertical axis is the final 

fitness on training data, the smaller is better. The right vertical axis is the accuracy on the whole 

data space (100 * 100 points), the larger is better. Four figures are each combination of two 

mutation rates and two columns.  
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Table 4.3: Performance of different CGP parameters on the third order polynomial equation based 

segmentation problem (1000 training points) 

Samples, 
Mutation R. 

Accuracy Fitness 

Ave. Max. Min. Ave. Max. Min. 

200,0.1 0.7294 0.8054 0.6843 242.7 296 178 

1000,0.1 0.7065 0.7431 0.6421 264.7 319 227 

200,0.008 0.75006 0.8197 0.6896 209.3 282 147 

1000,0.008 0.76521 0.8605 0.6706 175.5 250 97 

 

The result with 1000 columns, 0.008 mutation rates performs better among other CGP classifier 

parameters. The smaller mutation rates have better performance when the column number is the 

same. 

 

 

Figure 4.18: Best CGP classifier result (86.05%, 1000 columns and 0.008 mutation rate) on third 

order polynomial equation based segmentation recognition (1000 training points) 
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b) 200 samples for training 

  

(a)Training data    (b)Ground truth, same as 1000 samples 

Figure 4.19: (a)Training data (200 points) and (b) ground truth of segmentation based on third 

order polynomial 

 

 

Figure 4.20: SVM result is at 88.6% accuracy on the third order polynomial equation based 

segmentation problem (200 training points) 

 

In figure 4.20, the three colours mean the class prediction given by SVM, the cross marks (lighter 

colour) are the misclassifications, solid dots (darker colour) are correct recognition. 
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CGP classifier performance 

  

200 columns, 0.05 mutation rates    200 columns, 0.05 mutation rates 

  

1000 columns, 0.05 mutation rates   1000 columns, 0.008 mutation rates 

 

Figure 4.21: Plot of fitness and accuracy of segmentation problem based on a third order 

polynomial equation (200 training points) 

 

Ten points on the horizontal axis mean ten runs of CGP classifier. The left vertical axis is the final 

fitness on training data, the smaller is better. The right vertical axis is the accuracy on the whole 

data space (100 * 100 points), the larger is better. Four figures are each combination of two 

mutation rates and two columns.  
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Table 4.4: Performance of different CGP parameters on the third order polynomial equation based 

segmentation problem (200 training points) 

Samples, 
Mutation R. 

Accuracy Fitness 

Ave. Max. Min. Ave. Max. Min. 

200,0.1 0.68436 0.7489 0.6384 40.2 51 27 

1000,0.1 0.6715 0.7241 0.6304 40.6 49 30 

200,0.008 0.67329 0.7281 0.6442 31.4 40 19 

1000,0.008 0.68548 0.7418 0.5657 24.5 54 11 

 

In the table 4.4, the fitness values of smaller mutation rates are better than others with same 

column number. But the differences of accuracies between them are very small.  

 

  

Best CGP classifier result: 200 C, 0.1 MR (74.89%)    1000 C, 0.008 MR (74.18%) 

Figure 4.22: CGP results on third order polynomial equation based segmentation recognition (200 

training points) 

 

4.3.2.3 Complex Sinusoidal Wave 

Sinusoidal function: 

𝑧 = sin(4𝑥𝑦)           𝑥, 𝑦 ∈ [−1,1], 𝑧 ∈ [−1,1]   (4.4) 
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Classes are divided by the thresholds: 

Class 1: 𝑧 ∈ [−1, −0.7) 

Class 2: 𝑧 ∈ [−0.7,0.2) 

Class 3: 𝑧 ∈ [0.2,1]        (4.5) 

 

Other settings are same as previous experiment. 

a) 1000 samples 

  

(a)Training data      (b)Ground truth 

Figure 4.23: (a)Training data (1000 points) and (b) ground truth of segmentation based on 

complex sinusoidal wave 
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Figure 4.24: SVM result 97.55% accuracy of complex sinusoidal wave based segmentation 

recognition (1000 training points) 
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CGP classifier performance 

  

200 columns, 0.05 mutation rates    200 columns, 0.008 mutation rates 

  

1000 columns, 0.05 mutation rates  1000 columns, 0.008 mutation rates 

 

Figure 4.25: Plot of fitness and accuracy in ten runs of complex sinusoidal wave segmentation 

(1000 training points) 

 
Ten points on the horizontal axis mean ten runs of CGP classifier. The left vertical axis is the final 

fitness on training data, the smaller is better. The right vertical axis is the accuracy on the whole 

data space (100 * 100 points), the larger is better. Four figures are each combination of two 

mutation rates and two columns.  
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Table 4.5: Performance of different CGP parameters on complex sinusoidal wave segmentation 

(1000 training points) 

Samples, 
Mutation R. 

Accuracy Fitness 

Ave. Max. Min. Ave. Max. Min. 

200,0.1 0.83905 0.8971 0.7709 138.9 201 86 

1000,0.1 0.82725 0.9218 0.6784 150.7 286 63 

200,0.008 0.83464 0.9349 0.6952 136.3 261 47 

1000,0.008 0.88551 0.9307 0.8277 81.9 154 34 

The classifier with 1000 columns and 0.008 mutation rates has the best average performance. The 

results of first and second high accuracy are shown in the figure below. They are with the 200 

columns, 0.008 mutation rates and 1000 columns, 0.008 mutation rates. 

 

  

Best CGP result: 200 C, 0.008MR (93.49%)          1000 C, 0.008MR (93.07%) 

Figure 4.26: CGP results of the complex sinusoidal wave segmentation (1000 training points) 

 

In figure 4.26, the results are above 90% accuracy. The difference between the two is that the 

segmentation result with 200 columns has simpler line type than the 1000 columns one.  
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b) 200 samples 

  

(a)Training samples      (b)Ground truth, same as 1000 samples 

Figure 4.27: (a)Training data (200 points) and (b) ground truth of segmentation based on complex 

sinusoidal wave 

 

 

Figure 4.28: SVM result 91.73% accuracy of complex sinusoidal wave based segmentation 

recognition (200 training points) 
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CGP performance 

 

200 columns, 0.05 mutation rates   200 columns, 0.008 mutation rates 

 

 

1000 columns, 0.05 mutation rates   1000 columns, 0.008 mutation rates 

 

Figure 4.29: Plot of fitness and accuracy in ten runs of complex sinusoidal wave segmentation 

(200 training points) 

 

Ten points on the horizontal axis mean ten runs of CGP classifier. The left vertical axis is the final 

fitness on training data, the smaller is better. The right vertical axis is the accuracy on the whole 

data space (100 * 100 points), the larger is better. Four figures are each combination of two 

mutation rates and two columns.  
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Table 4.6: Performance of different CGP parameters on complex sinusoidal wave segmentation 

(200 training points) 

Samples, 
Mutation R. 

Accuracy Fitness 

Ave. Max. Min. Ave. Max. Min. 

200,0.1 0.726656 0.8395 0.6193 33.33333 45 21 

1000,0.1 0.797011 0.8523 0.6783 22.77778 42 16 

200,0.008 0.771356 0.8493 0.6909 21.11111 31 14 

1000,0.008 0.720567 0.8752 0.514 20.11111 42 2 

 

The 0.008 mutation rates experiments have better fitness value and maximum accuracy. But the 

average accuracy does not in this experiment. The best CGP classifier result is shown below.  

 

Figure 4.30: 1000 columns, 0.008 mutation rates (87.52% accuracy) on complex sinusoidal wave 

segmentation (200 training points) 

 

Figure 4.30 is the best accuracy on the complex sinusoidal wave segmentation problem with 200 

training points. The classifier has the setting of 1000 columns and 0.008 mutation rates and 

achieves 87.52% accuracy. The cross mark (lighter colour) means on that point the classifier gives 

the wrong prediction; the solid dot (darker colour) means the correct recognition. 
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4.3.3 Conclusion  

This fitness function, counting the correct classifications of each individual solution, cannot only 

evaluate the performance on training data, but also reflect the classifier performance on new 

data or the whole data space. From the figures in this section, the overall accuracy is nearly 

always following the wave of training fitness values. By using the fitness function of counting the 

correct classifications, CGP classifier can achieve good classification performance. But the 

experiments show the SVM is stronger than CGP on the segmentation problem. SVM is finding 

the boundary between classes that has the largest distances to the classes. It is suitable for this 

kind of problems in theory. 

The CGP evolution process is highly random numbers based. The result of one experiment can be 

very different when repeating with different random seeds. So each experiment is done 10 times 

and comparison is made on average, maximum and minimum fitness values and accuracies in 

order to get the general effect of the parameters and avoid the effects of randomness. From the 

results in this section, larger columns and smaller mutation rates usually have the better fitness 

value and are suggested having better performance according to the relation between fitness 

value and classification performance. The parameter of 1000 columns and 0.008 mutation rate 

has the best average accuracy in five of all six experiments and the best average fitness value in all 

experiments. This setting is also suggested in Julian Miller’s book[121].  
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4.4  Application to Optical Flow 

The CGP classifier, with the fitness function of counting correct classification, is applied to 

following experiments for expression recognition.  

The training and testing data are from two databases: MMI and FG-NET. The video clips are 

cropped manually that only the face area remains. The rising parts of expressions are cut and 

dense optical flows are extracted between one frame and the fifth after. Each whole picture’s 

dense optical flow is one sample and the total numbers of samples are in table 3.1 and 3.2. Then 

the flow data are reduced by averaging the grids, the image is divided into 24 equal grids. There 

are six binary classification experiments for six expressions. Each experiment requires the positive 

samples, the samples of corresponding expression, and the negative samples, samples of all other 

five expressions. The numbers of samples for experiments are shown in table 3.8. Every 

experiment is done twice: training with data from MMI and testing with data from FG-NET; then 

training with data from FG-NET and testing with data from MMI database.  
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4.4.1 Function Set 

𝑥 

𝑦 

√𝑥 + 𝑦 

|𝑥 + 𝑦|(𝑚𝑜𝑑 255) 

|𝑥 − 𝑦|(𝑚𝑜𝑑 255) 

{
𝑥      𝑥 > 𝑦
𝑦      𝑥 <  𝑦 

{
𝑦      𝑥 > 𝑦
𝑥      𝑥 <  𝑦 

255 × 𝑠𝑖𝑛 (𝜋 ×
𝑥 + 𝑦

255
) 

255 × 𝑐𝑜𝑠 (𝜋 ×
𝑥 + 𝑦

255
) 

{
𝑥                               𝑦 = 0

𝑥 𝑦⁄ (𝑚𝑜𝑑 255)   𝑦 ≠ 0
 

𝑥 + 𝑦

2
 

0 

1 

255 

The values are all in float type with range of [0,255). So the input values must be within this range 

and better evenly distribute. The magnitudes of the flows are usually smaller than 10 pixels with 

sign. So the flows are truncated by 10 pixels and shift by 10 to make the range to [0, 20]. Then 

scale to 255 range. The code for this transformation is: 
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   if (in > 10) 

    in = 10; 

   else if (in < -10) 

    in = -10; 

   in += 10;  

   CGPin = in/20.0*255.0; 

 

The CGP parameters are same as previous segmentation problem’s best setting: 1000 columns, 

0.008 mutation rates. Terminal condition: over 1 million generations or fitness value is under 0.1. 

The fitness value is always integer by this fitness function. Only the value is 0 that can terminate 

the evolution early than one million generations. And 0 means correctly recognised all input 

samples, but this is never reached. 

 

4.4.2 The Fitness in Training Process  

Figure 4.31, 4.32 show the training fitness for each of the expressions in two databases over 1 

million generations.  
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(b) Anger 

 
(c) Surprise 

 
(d) Fear 
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(e) Sadness 

 
(f) Disgust 

Figure 4.31: The fitness growing in the evolution process (the lower the better), train on MMI 

database 
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(b) Anger 

 
(c) Surprise 

 
(d) Fear 
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(e) Sadness 

 
(f) Disgust 

Figure 4.32: The fitness growing in the evolution process (the lower the better), train on FG-NET 

database 

 
 
Follow expected evolution of exponential improvement of fitness, the curves of sadness and fear 

has significant speed at first few generations. The fact is these two expressions have the most 

imbalanced dataset and the fitness of the point that evolution goes slow is equal to the number 

of minority class data. This can be achieved simply full pass all the majority class training data. 

After that point, the classifier evolves slowly by giving correct minority class classifications.  

 

4.4.3 Experiment Results  

Classification results of the CGP classifier, which is trained by MMI database and tested with 

FG-Net database, are shown in the following table. 
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Table 4.7: CGP results with fitness function to have most correct recognitions in training (train 

with MMI, test with FG-NET) 

Expression Happiness Anger Surprise Fear Sadness Disgust 

Train 
with MMI 

Positive 305 218 230 174 172 278 

Negative 1072 1159 1147 1203 1205 1099 

Fitness 30 107 71 109 69 102 

Percentage 97.82% 92.23% 94.84% 92.08% 94.99% 92.59% 

TP 279 114 162 66 104 178 

TPR 91.48% 52.29% 70.43% 37.93% 60.47% 64.03% 

TN 1068 1156 1143 1202 1204 1097 

TNR 99.63% 99.74% 99.65% 99.92% 99.92% 99.82% 

Test by 
FG-NET 

Positive 365 371 303 113 29 292 

Negative 1108 1102 1170 1360 1444 1181 

TP 200 54 58 5 1 44 

TPR 54.79% 14.56% 19.14% 4.42% 3.45% 15.07% 

TN 992 1059 1088 1339 1362 1122 

TNR 89.53% 96.10% 92.99% 98.46% 94.32% 95.00% 

 

The training strategy is: the positive samples are the expression to detect; the negative samples 

are all other five expressions together. If the numbers of samples are even for every expression, 

the ratio between two classes in training data would be 1:5 (imbalanced). The movement of 

natural sad expression is very tiny, so the flows are not obvious. This leads frames for training. The 

difficulty on cutting transaction of sadness makes the situation worse, the shortage of sadness 

samples makes the ratio 1:30 in FG-NET. The testing results show the more the data is imbalanced 

the lower true positive rates are. The happiness is easier to classify than other expressions, the 

TPR achieves 91% on training and 55% on testing. Other expressions also have about 50% rate 

drop of TPR from training to testing. In the experiments, the higher training fitness is not related 

to better performance.  
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Table 4.8: CGP results with fitness function to have most correct recognitions in training (train 

with FG-NET, test with MMI) 

Expression Happiness Anger Surprise Fear Sadness Disgust 

Train 
with 
FG-NET 

Positive 365 371 303 113 29 292 

Negative 1108 1102 1170 1360 1444 1181 

Fitness 74 118 175 78 7 83 

Percentage 94.63% 91.43% 87.29% 94.34% 99.49% 93.97% 

TP 306 292 132 35 22 209 

TPR 83.84% 78.71% 43.56% 30.97% 75.86% 71.58% 

TN 1093 1063 1166 1360 1444 1181 

TNR 98.65% 96.46% 99.66% 100.00% 100.00% 100.00% 

Test by 
MMI 

Positive 305 218 230 174 172 278 

Negative 1072 1159 1147 1203 1205 1099 

TP 190 112 19 7 8 76 

TPR 62.30% 51.38% 8.26% 4.02% 4.65% 27.34% 

TN 955 908 1070 1188 1167 991 

TNR 89.09% 78.34% 93.29% 98.75% 96.85% 90.17% 

 

The similar thing happens when training with FG-NET database and testing with MMI database. 

The training fitness is around 90%, four of TPRs of training data are above 70%, but the testing 

TPR drops badly. Two of them, which are the most imbalanced, have the true positive rates under 

5%.  

In the imbalanced training process, the fitness just relies on the correct classification number. The 

correct numbers on major class and minor class have the same weight. The classifier does not 

consider the accuracy of minor class. Assume the case if there is one positive sample in the 

training data set, then the training classification result will be easily 99% by returning full negative 

signals. The TNR is 100%, but the TPR is 0%. So for the imbalanced training problem, the accuracy 

should be considered during the training phase. Otherwise the classifier is not likely to have good 

performance. 

The fitness can achieve a quite high value. When the experiments in previous section reach high 

fitness, the classification result should achieve a corresponding high rate. However the results in 

table 4.7, 4.8 show that the performances are rather poor, except the happiness, even on the 

training data. Because the ultra-imbalanced dataset makes that the accuracy is very low on minor 

class. Classification on imbalanced data is an existing problem to classifiers. It is common that 

they all perform worse on imbalanced data than balanced ones. There are several ways to deal 

with this problem. One way possible way is working on the number of data, to make the data 

balance: down sample the data of majority class, resample the data of minority class. But for CGP, 

the fitness function can be adjusted to solve this problem.  
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4.5   Fitness Function of AUC 

The fitness function can be studied to solve the imbalanced data classification problem. It should 

also be simple and straight forward, easy to get better a small bit every time, this means the 

direction should be simple, clear and specific, instead of tough or abstract conditions. Then the 

area under curve (AUC) is considered (because of its easy to evolve/improve and not affect by the 

number of data). 

 

4.5.1 Receiver Operating Characteristic 

The receiver operating characteristic is the graph to describe the performance of a binary 

classification. The point on the graph means a state under a certain threshold of the classifier. The 

location of one point is decided by the true positive rate and the false positive rate. 

Let us consider a two-class prediction problem (binary classification). The outcomes are labelled 

either as positive (p) or negative (n). There are four possible outcomes from a binary classifier. If 

the outcome from a prediction is p and the actual value is also p, then it is called a true positive 

(TP); however if the actual value is n then it is said to be a false positive (FP). Conversely, a true 

negative (TN) has occurred when both the prediction outcome and the actual value are n, and 

false negative (FN) is when the prediction outcome is n while the actual value is p. 

Table 4.9: The possible outcomes of binary classification 
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True positive rate (TPR) = TP/P = TP/ (TP+FN)   (4.6) 

False positive rate (FPR) = FP/N = FP/ (FP+TN)   (4.7) 



119 

 

 

Figure 4.33: The ROC curve [140] 

 

The (0,0) point is non-pass classifier, always return negative label. And (1,1) point means all pass 

classifier, so all data will be recognised as positive. The (0,1) point on the top left corner means 

perfect classification. The diagonal line means the classifier give the result by a randomly 50% 

chance. The points above the diagonal line indicate the classifier is better than guessing. The 

points under the diagonal line can simple switch the classification results to make it better than 

random. The ROC curve is obtained by shifting the threshold from non-pass to all-pass, the points 

of TPR and FPR of each thresholding form the curve. It is noticeable that the TPR and FPR are not 

related to the training sample numbers or the balance of samples of two classes. 
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4.5.2 Area under Curve 

Area Under the Curve[141]: as the points higher than the diagonal line are better, the bigger area 

under the curve the better classifier performance is. So the AUC is possible to evaluate the 

performance of the classifier based on two major reasons: 

a) AUC is not affected by the imbalanced data. 

b) The area is easy to improve a small step every generation. 

 

4.5.2.1 Trapezoidal Rule for AUC Calculation 

The calculation of AUC is actually the important thing. The area is within a square with length of 1 

stands for the rate between 0% and 100%. The area of a perfect classification is always 1. The 

random guess has the area of 0.5 (diagonal line, half of the whole area). The AUC of a classifier 

should be within 0.5 and 1. The real ROC curve is continuous but finite points are used to 

estimate the AUC, the number of points is no more than number of sample data.  

Trapezoidal rule is often used for the estimation as shown in the following figure.  

 

 

Figure 4.34:  Trapezoidal rule for estimating AUC 

 

The black curve is the real ROC, we have two points (x1,y1) and (x2,y2) where x means false 

positive(FPR) rate and y stands for true positive rate(TPR). One point on the curve means the 
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performance at the unique classifier threshold. If connect the adjacent point with straight lines 

(red lines in figure), then the AUC is estimated from the sum of trapezoidal areas.  

𝐴𝑈𝐶 ≈ ∑ (𝑥𝑖+1 − 𝑥𝑖)(𝑦𝑖+1 + 𝑦𝑖)/2𝑖=0,𝑛−1   (4.8) 

4.5.3 Results by Using AUC Fitness Function 

Parameters: 1000 columns, 0.008 mutation rates, 1 million generations, fitness 0.01 (never 

reached). Here is the ROC curve of CGP classifier results on testing FG-NET data after trained by 

MMI database. The video clips are cropped manually that only the face area remains. The rising 

parts of expressions are cut and dense optical flows are extracted between one frame and the 

fifth after. Each whole picture’s dense optical flow is one sample and the total numbers of 

samples are in table 3.1 and 3.2. Then the flow data are reduced by averaging the grids, the image 

is divided into 24 equal grids (T1). There are six binary classification experiments for six 

expressions. Each experiment requires the positive samples, the samples of corresponding 

expression, and the negative samples, samples of all other five expressions. The numbers of 

samples for experiments are shown in table 3.8. 

The results of CGP classifier with AUC based fitness function (CGP-AUC) are shown by the ROC 

curves and compared with previous experiments curves, which are trained with the fitness 

function of counting the correct classifications (CGP-CC). 

 
(a) Happiness 
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(b) Anger 

 
(c) Surprise 
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(d) Fear 

 
(e) Sadness 
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(f) Disgust 

Figure 4.35: Comparison of two fitness functions’ results 

 

Where the blue curves are ROC of the CGP classifier trained by AUC fitness, the red curves are 

from the performances of classifiers with counting correct classification fitness function. 

Each point on the curve is a classification performance with the location of TPR and FPR. The AUC 

fitness function helps the classifier performs much better than the other fitness function in this 

imbalanced dataset. The results show the counting correct classifications fitness function may 

have worse performance than random guess on this problem. 

The actual threshold is selected by user depends on the situation. The curve of sadness is not 

smooth, that is because the samples for testing are very few. All the AUCs of training samples are 

above 0.98, but the testing results of another database are not good enough. The reasons 

include: 

a. The differences between two database 

b. The way of sampling data used for training and testing (this will be discussed at the end of 

this chapter) 

c. And the possibly overfitting caused by the long evolution process. 

 



125 

 

4.6 Overfitting 

4.6.1 Introduction 

In the training process, a classifier learns from the samples with known labels. But in the realistic 

problem, samples are not possible to be perfect, but will contain errors or noises. If the classifier 

fits the training data too well, then it will not perform well on unseen test data. 

To reduce the overfitting on CGP classifier, the evolution process should be finished before the 

classifier goes to overfit. There are two ways to shorten the training process: 

a. Reduce the generation 

b. Reduce the restriction of terminal fitness  

They are both loose the terminal conditions to let the evolution finish earlier. A series of 

experiments on the terminal conditions have been made including generations: 3,000, 6,000, 

10,000, fitness: 0.05, 0.1, 0.15, 0.2. Then the data is massive that is not convenient to show all of 

them here. Instead, the 10K generations and 0.1 fitness terminal conditions are used here as the 

comparison to 1 million generation evolution. They have run 10 times and the AUC values on the 

testing data, which is the different database from the training data, are used for the comparison. 

They include 24 grids, 48 grids, and 96 grids (shown as T1, T2 and T3). The results will be 

presented in box plots; therefore the next section explains the box plot in first. 

4.6.2 Box Plot 

Box plot[142] is commonly used in statistic for the analysis of data distribution. There are four 

kinds of points on a box plot: 

a. Bottom of box(first quartile, split the lower 25% of data) 

b. Median(second quartile, split the 50% of data) 

c. Top of box(third quartile, split the higher 25% of data) 

d. Maximum or minimum value within 1.5 IQR 

e. Points outside 1.5 IQR (denoted as a circle) 
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Figure 4.36: Explanation of box plot [143] 

The percentage for quartile splitting is not the value of data but the number of data. IQR is 

interquartile range, which is the value of distance between first and third quartile.  

Box plot of 24 Grids (T1) 

 

 

Figure 4.37: Box plot of accuracies when test on the other database in ten runs (T1) 
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Box plot of 48 Grids (T2) 

 

 

Figure 4.38: Box plot of accuracies when test on the other database in ten runs (T2) 
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Box plot of 96 Grids (T3) 

 

 

 

Figure 4.39: Box plot of accuracies when test on the other database in ten runs (T3) 

 

Figures 4.37-4.39 are the box plot of the accuracies of CGP classifier with different terminal 

conditions in ten runs. One figure is a series of experiments with one grid setting, from 24 (T1), 48 

(T2) to 96 (T3). Each figure has two rows, the upper row is the box plot of the results when train 

by MMI database and test with FG-NET database. The lower row is the opposite, train by FG-NET 

and test by MMI. The three colours mean three different terminal conditions: red is 1 million 

generations, green is fitness reach 0.1 and blue is 10,000 generations maximum evolution. 

From figures 4.37-4.39, the blue boxes are higher than red ones approximately 66% of the time. 

So the shorter generation is better than the very long generation (one million generations). Not 

only the 10K generations, but 3K and 6K generations’ results are also not weaker than 1 million 

generations’ result. The running time also has 100 to 300 times differences. The 0.1 fitness 

terminal condition has 1/3 time higher boxes than one million generation results, but also 1/3 

time worse than them. When test on MMI database T3 grids and test on FG-NET T1, the 10K 
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generations result is obviously better than 0.1 fitness terminal condition. In other cases, one 

could not win the other, so overall blue boxes are slightly better than green boxes. In other 

experiments, which results are not listed here, 0.01 fitness results are not too much different 

from 1 million generations’ results and they usually finish at around 2K to 5K generations. 0.2 

fitness results are worst among all the experiments, they usually finish under 1.5K generations. So 

shorten the generations for evolution is efficient and can achieve good results. Setting a larger 

terminal condition of fitness value is not stable. Sometimes it has superior performance, but 

sometimes result is too bad. 

 

4.6.3 Comparison between CGP and SVM 

Then the comparisons between CGP and SVM are going to make in this section. The comparison 

will be on the value of AUC and ROC from previous experiments’ results. The results of CGP 

classifier are from section 4.6.2 and the SVM results are from section 3.5.3.2 a). Three CGP 

classifiers are selected for the comparison, they are CGP with 1 million generations (CGP-1M), 

CGP with terminal condition of fitness less than 0.1 (CGP-F01) and CGP with 10 thousand 

generations (CGP-10K). The curves of different classifiers will be printed at their own colours: SVM 

is black; CGP-1M is red; CGP-F01 is green; CGP-10K is blue. 
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4.6.3.1 AUC Graph of 24 Grids (T1) 

a) Trained by MMI, test with FGNET 
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Figure 4.40: Comparison of ROC curve trained by MMI test with FG-NET (T1)  

 

This figure shows the AUC of SVM and three CGP classifiers on testing FGNET expression data by 

24 grids. The comparison shows: they have the similar performance on detecting happiness and 
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anger. In the figure of fear recognition, the fitness 0.1 and 10k generations CGP classifier have the 

larger area, but for practical use the point to the left should be selected, especially to the minority 

class. So the SVM classifier has good performance on sadness detection but poor in disgust 

recognition.  

 

b) Trained by FGNET, test with MMI 
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Figure 4.41: Comparison of ROC curve trained by FG-NET test with MMI (T1) 

 

This experiment is training the classifier with FGNET database then test the classifier with MMI 

expressions. CGP classifiers are better than SVM on surprise and disgust recognition. The 10K 

generations CGP classifier is better except on fear and sadness which has too few samples in 

FG-NET. 
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4.6.3.2 AUC Graph of 48 Grids (T2) 

a) Trained by MMI, test with FGNET 
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Figure 4.42: Comparison of ROC curve trained by MMI test with FG-NET (T2) 

 

This experiment divides the face image into 48 grids. The CGP classifier after one million 

generations’ evolution has better performance on sadness and angry detection, but worse at fear 
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and disgust classification. The 10K generation CGP classifier performs well at fear detection but 

lose in sadness recognition. The SVM classifier is in the middle of CGP classifiers, it does not have 

the best or worst result on any expression in this experiment. 

 

b) Trained by FGNET, test with MMI 
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Figure 4.43: Comparison of ROC curve trained by FG-NET test with MMI (T2) 

 

 

In this experiment, SVM is better on fear detection and all the CGP classifiers are concave at the 

left part. SVM also performs well on happiness but is the worst in surprise, sadness and disgust. 

Red line is the one million generation CGP classifier. It has very good performance on happy but 

bad in surprise and disgust.  
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4.6.3.3 AUC Graph of 96 Grids (T3) 

a) Trained by MMI, test with FGNET 
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Figure 4.44: Comparison of ROC curve trained by MMI test with FG-NET (T3) 

 

This experiment increases the girds number further to 96. The corresponding feature length is 

192 (each grid has x and y velocity). This time the CGP classifier with 10K generation evolution 
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always performs well. Red line is weak on fear expression and green line on sadness. Other 

classifiers do not have too many differences. 

 

b) Trained by FGNET, test with MMI 
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Figure 4.45: Comparison of ROC curve trained by FG-NET test with MMI (T3) 

 

 

SVM classifier has the smallest AUC in this set of experiments, although it is not bad on angry, fear 

and sadness expression recognition. The red line and blue one have the better overall 

performance, but green and blue cave in again at fear expression classification. 

 

4.6.3.4 Results Analysis 

 

Table 4.10: Comparison of AUC between CGP and SVM classifier (T1)  

T1 Train MMI Test FG-NET Train FG-NET Test MMI 

  SVM CGP-M CGP-F0.1 CGP-10K SVM CGP-M CGP-F0.1 CGP-10K 

Happiness 0.8709 0.8388 0.8528 0.8514 0.8665 0.8783 0.888 0.905 

Anger 0.775 0.7989 0.8025 0.8023 0.751 0.8131 0.8416 0.8297 

Surprise 0.8467 0.8489 0.8667 0.8662 0.7815 0.8222 0.8822 0.8984 

Fear 0.7515 0.73 0.7906 0.7993 0.7542 0.7422 0.7307 0.6809 

Sadness 0.8942 0.7876 0.7882 0.7925 0.6573 0.7153 0.6888 0.6391 

Disgust 0.7307 0.8121 0.8145 0.8464 0.6819 0.7615 0.7794 0.794 
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Table 4.11: Comparison of AUC between CGP and SVM classifier (T2) 

T2 Train MMI Test FG-NET Train FG-NET Test MMI 

  SVM CGP-M CGP-F0.1 CGP-10K SVM CGP-M CGP-F0.1 CGP-10K 

Happiness 0.8343 0.8584 0.82 0.8419 0.9067 0.9242 0.8867 0.9008 

Anger 0.8067 0.8106 0.8175 0.8103 0.80493 0.80491 0.8375 0.8221 

Surprise 0.8438 0.8649 0.8421 0.8366 0.8369 0.8093 0.8915 0.9047 

Fear 0.7919 0.7277 0.7941 0.8278 0.7209 0.7018 0.7377 0.7125 

Sadness 0.8013 0.9122 0.8268 0.7571 0.5465 0.7057 0.7183 0.6465 

Disgust 0.7613 0.7769 0.8231 0.8446 0.6732 0.6848 0.7631 0.7806 

 

Table 4.12: Comparison of AUC between CGP and SVM classifier (T3) 

T3 Train MMI Test FG-NET Train FG-NET Test MMI 

  SVM CGP-M CGP-F0.1 CGP-10K SVM CGP-M CGP-F0.1 CGP-10K 

Happiness 0.8742 0.8367 0.8111 0.8556 0.8684 0.8964 0.8873 0.9102 

Anger 0.7922 0.813 0.8057 0.7973 0.7829 0.7885 0.8175 0.8348 

Surprise 0.8604 0.8487 0.8627 0.8393 0.7992 0.8381 0.8823 0.8863 

Fear 0.7424 0.741 0.7545 0.7958 0.6716 0.731 0.7246 0.7219 

Sadness 0.8479 0.7963 0.6859 0.7982 0.6665 0.689 0.6084 0.6638 

Disgust 0.8022 0.7913 0.8167 0.8502 0.6729 0.7575 0.7989 0.7863 

 

Tables 4.10-4.12 show the results of SVM and three different CGP classifiers on AUC of expression 

recognition. The numbers in bold indicate they the highest among the four classifier on that 

experiment. The numbers in Italic type are the lowest AUC in the four classifiers. Then another 

comparison can be obtained.  

Table 4.13: Times of the classifier have the best/worst AUC 

Times of SVM CGP-M CGP-F0.1 CGP-10K 

Best 5 8 9 14 

Worst 17 9 5 5 

Compare 
with SVM 

Higher 23 27 24 

Lower 13 9 12 

 

After the comparison of 36 plots, in five figures the four classifiers do not have much difference. 

The SVM classifier in 1/5 time has the worst performance, and leads the AUC four times. The CGP 

classifier with 10K training generations is slightly better in the series of experiments. But there is 

no single classifier has the overall best performance, the most common case is strong in some 

expressions but weak than others in another expression. For fear and sadness expression, the 

number of samples is too small, the SVM and CGP with one million generation evolution have 

better performance.  

Another interesting point is the imbalanced training data makes the false positive rate easily low 

and the true positive is difficult to achieve a high rate. In practical application, the low pass or 
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high pass of the positive samples is fixed. So the opposite side is not important, but still 

considered in the AUC fitness function. Although with the characteristic of AUC, the threshold can 

be select freely on the curve, it is still possible to evolve a better classifier if the low pass or high 

pass is predefined.  

The accuracy is still very low except happiness detection. Obvious reasons are certainly the 

ultra-imbalanced data set and the differences between the two databases. The worst imbalanced 

case is 29:1444 of sadness in FGNET database. Another reason is: the feature is taken from frames; 

each frame is one sample for classification. The rising part of one expression is usually 10-20 

frames period. The accuracy is counted by each frame sample from one expression procedure. 

This means only correctly classify each frame during the expression can achieve a good 

recognition rate, which is a tough task. The very beginning of expression (first few frames) has tiny 

movement and difficult to distinguish. The ROC curve on a test data is very difficult to be perfect 

with the start of an expression is counted in the data set. In the practical used in an expression 

recognition system, the low pass threshold and a stack of positive respond in a short period are 

capable to do the job. 

 

4.7 Implementation 

The binary classifiers together with face detection technique are used for building the facial 

expression recognition system. The system implemented by C++ with OpenCV library[139] in 

visual studio 2010. The most trainings of CGP classifier are done in Unix with Intel compiler[144] 

on the high performance computer, N8 HPC[145]. Viola and Jones’ method is used for detecting 

human face. Then the flow features are extracted within the face area and passed to six binary 

classifiers at the same time. The binary classifiers give the results separately on its expression. 
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Figure 4.46: Flow chart of the expression recognition system 

 

4.7.1 Input  

The system works with a video stream which can feed from camera or a video file. Then the 

option to use face detection or not can be selected and switching by user. If turn on the face 

detection, the face area will be extracted in the picture by Viola and Jones’ algorithm (introduced 

in Chapter 2). The resolution of the video affects the face detection speed, a scale factor can be 

set when input the video to resize the picture to process. If the face detection is turned down for 

the case that face cannot be detected stably, a fixed square area in the centre of the picture is 

applied the optical flow feature extraction and then to classifier. The centre area is a square with 

1/3 length of the shorter side of the picture.  
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Figure 4.47: Flow chart inside face detection box 

 

4.7.2 Feature Extraction 

Image extracted from last step each frame is stored in an image array and the size of the array is 5 

by default. When the array is full, the dense optical flow will be extracted between the first 

element and the last. Then the flow will be divided into 24 grids and the average flow of each grid 

forms the final feature vector as written in Chapter 3. The next frame a new image will push into 

the array, and all the elements in the array move one position and the first element will be 

deleted. 
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Figure 4.48: Flow chart inside Optical flow extraction box 

 

4.7.3 Classification and Output 

The feature vector of previous step is passing to the classifiers and the prediction will be given. 

One set of classifiers include six binary classifiers for six universal expressions. The feature vector 

will be feed into every classifier at the same time and every classifier gives a prediction of that 

expression. The results of one classifier will stack. Only more than one of past ten results are 

positive the expression will be shown on the expression indicator panel. The results of six 

classifiers are separate and will rank by the number of positive results and list in the panel. Two 

sets of classifiers can be used: CGP classifiers and SVM classifiers. They can be switched freely and 

active both or none of them.  
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Figure 4.49: Flow chart inside classification box 

 

The CGP classifier is AUC based, so no exact threshold is suggested by classifier. Instead the 

threshold can be selected freely by user. The strategy depends on the requirement of real 

applications. In this problem, a low pass classifier is better. The point selected on ROC is around 

95% of TNR and 30% to 70% of TPR. 

The GUI of the system is shown in figure 4.46 and 4.50. Press ‘F’ key to switch face detection on 

and off. The figure 4.46 is the non-face-detection mode; user should move the head or camera to 

make the face show within the blue square. Figure 4.51 is the system with face detection; this 

mode allows one user face appearing in the image and tracks the face. The face tracking is 

actually detecting face every frame which leads an unstable face position and size within the scan 

window. To address this, the old window size and position is stored and updated only when the 

new face scan window has more than 10% differences. The default scale of the video input is 2, so 

the system is processing the video stream at the resolution of 320 by 240 pixels. Press ‘B’ to active 

two classifier windows thus enter the expression detection mode. Pressing ‘S’ key will active the 

window of SVM classifier and close the window of CGP. ‘C’ key is for acting CGP window and 

shutting down SVM window. ‘ESC’ is the key to exit the programme. The system runs on the 

laptop purchased in 2009 with Intel Core 2 Duo 2.27 GHz CPU, 3.00 GB RAM and the Window 

7-32bits. The FPS is around 17 without face detection and around 13 when face detection is on. 
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Figure 4.50: Expression recognition system (face detection is turned off) 

 

Figure 4.51: Expression recognition system with face detection 

 

Another phenomenon is the offset of expression will be recognised as another expression. For 

example a face from neutral to smile will be recognised as happiness and from smile back to 

neutral will be misclassified as sadness. Then the flows of offset of expression are added in 

training data as the negative samples. Classifiers are trained by these data again and the new 

results reduce the phenomenon greatly. 
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4.8 Summary  

In this chapter, Cartesian Genetic Programming (CGP) is introduced and proposed as a suitable 

structure for a classifier. The feature vector obtained from the optical flow, as described in 

chapter 3, is used as the input to CGP, and the output is converted to a predicted class label. In 

the training phase, the feature vector of the sample and its class label are already known. The 

count of correct classifications can be used to form the fitness function. The evolution of CGP is 

designed to find the solution that makes the most correct classifications on the training data. The 

test phase will use the network relating to the best solution obtained in the training phase, and 

predicts the class label from new input feature vectors. 

This classifier is used to solve a series of segmentation problems. The figures show that the better 

the fitness of the training phase, the higher the accuracy on testing data. Therefore, the strategy 

of evolution that finds the solution with the best fitness is able to evolve a good classifier and 

give good classification results. But compared with SVM, it could not achieve better results, 

because SVM is naturally strong at this kind of problem. During these experiments, different 

combinations of CGP parameters have been tested. The parameters are also used for the 

following experiments.  

A CGP classifier is then applied to expression recognition using optical flow based features. 

However, the imbalanced data set results in poor performance of the minority class accuracy. This 

is because the fitness function is guided by the number of correct classifications and does not 

take account of the accuracy of a minority class. Consequently, the AUC is considered as a more 

suitable fitness function. The results of AUC based CGP classifier are much better than that simply 

counting correct classifications on the imbalanced expression recognition problem. 

The terminal condition of evolution process is also discussed. Longer evolution may make the 

classifier suffer from overfitting. Stopping evolution early may prevent overfitting to a certain 

extent. Box plots of 10 runs of results show that the median of 10,000 generations training is 

better than that of 1 million generations in 66% of the cases. 

The results of the CGP classifier are then compared with the SVM classifier. The results show the 

CGP classifier can perform better than SVM because of the flexibility of CGP - it can apply a 

suitable fitness function for different situations with ease, which SVM cannot. Also, by adjusting 

the parameters of CGP can also lead to better performance in this problem.  

The final accuracy is still not high enough and is probably due to the differences between two 

databases.  An imbalanced training dataset and also the way in which sample data was obtained 

for this problem are probably relevant factors. The rising part of an expression is suitable for 

extracting optical flow and this flow information may be better than still image. However, because 
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of the different appearances of people and actions they make for an expression result in the static 

image analyse being unstable. The movement trend of expression from different people should 

be similar because the muscles that initiate a genuine expression are not controlled consciously. 

However, this method also causes some problems. It takes the optical flow between frames and 

each flow data is taken as one sample with one rising expression containing 10-20 frames. Only 

correctly recognised expressions in every frame over this period will result in a high recognition 

rate. As the beginning of an expression is very weak and hard to distinguish, if it is included in the 

recognition period, then it is understandable that the resulting recognition rate is not high.  

An expression recognition system has been introduced and implemented based on the 

experiments. It can work automatically with the face detection function on. If the face detection 

function does not perform well, e.g. poor illumination condition or multiple faces presented, the 

system can be switch to non-face-detection mode (not automatic). Then the analysis will only 

focus on the centre area of the input stream, no matter if faces are there. This requires the user 

move the head or camera to make sure face is within the blue square in the centre. The 

recognition of expressions is from both SVM and CGP classifiers. 6 binary classifiers are used for 

detecting the appearance of corresponding expression, 12 classifiers if both SVM and CGP are 

active. The predictions are showed as the stack of previous 10 frames for each classifier and the 

results, counting of the positives of each classifier, are showed in a descending order.  
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5 Conclusion  

Expression Recognition 

Expression recognition is an important topic in image processing. The main techniques have been 

reviewed and introduced in the background chapter and it was noted that dynamic analysis has 

become more and more popular, in place of static image analysis. The dynamic techniques are not 

only focused on the appearances of the final state of expressions but also the transition between 

neutral and formed expressions. These methods achieved better performance because they 

reduced the variation in appearance of expressions between different people. The transition of 

expression should be similar because the genuine expression is generated by unconscious muscle 

actions. Therefore, dynamic analysis using the rising part of an expression should be more 

reliable.  

 

Databases 

The experiments used two expression video data sources: the MMI database and the FG-NET 

database. They provide a frontal face camera angle, a stable and fine illumination condition and 

good video quality. They both have a sufficient number of male and female candidates, but the 

MMI database has better diversity in the age and ethnicity of the candidates. They all provide at 

least six universal expressions (happiness, anger, surprise, fear, sadness and disgust [by Paul 

Ekman]). The FG-NET database attempts to record natural expressions instead of acted 

expressions. The MMI database initially consists of candidates’ deliberate expressions but is 

supplemented by more natural expression videos.  

A custom database was also created. The strategy adopted was to record video of the candidate’s 

face while playing a series of short video clips to evoke a desired emotion.  The candidate’s facial 

transition was then recorded for use in subsequent expression research. In total 15 short clips 

were used for the whole process, including three clips for happy, two for scary and five other 

expressions. There is a five second rest between each clip to let the candidates recover to a 

normal emotion from the previous evoke expression. At the end of the video, candidates were 

asked to act the six expressions intentionally and were provided with an image of the 

corresponding expression in case they did not know how to perform the expression. The whole 

procedure is limited to within 15 minutes to avoid making people tired. In total 37 expression 

videos of the whole procedure from different candidates have been recorded, mostly university 

students in China. Although the video data is suitable for use in expression analysis, including the 

comparison between a real emotion and acting the expression, it has not been used in the 
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experimentation described in this thesis because the expressions recorded are too weak. It was, 

however, invaluable for understanding the limitations of evoking natural expressions compared to 

acted expressions. The existing databases tried several methods to make the expression 

performance better. However to generate strong and natural expression video is still a proble. The 

best way possibly is to create brand new and high quality evoking videos with psychologists’ help; 

make sure the candidates fully cooperate and in a relax condition; the recording time should be as 

short as possible, this also require the evoking video can make people quick response. However 

the experience on how to create an expression video database has been obtained, it also helps to 

understand and have good use of other databases. The video data is weak but natural and it can 

be used for other suitable experiments in the future.  

 

Analysis of Feature Extraction 

The use of the Active Appearance Model (AAM) using sparse optical flow tracking on facial 

feature points is a popular technique; the feature points usually contain a mouth contour, eye 

corners and eye brows. However, it has limitations - the error of AAM matching feature points due 

to differences in people’s appearance means that tracking only those feature points may not be 

sufficient. To address this issue, dense optical flow has been used for the experiments described 

in this thesis. Compared with optical flow, it is not necessary to know the exact feature points and 

flows of those feature points, which may contain useful information and can be caught. However, 

dense optical flow has its drawback - it contains too much data to be processed by the classifier, 

so an additional process is required to reduce it to a manageable size. Several methods have been 

investigated in this thesis including clustering flows, identifying the five highest regions of flow 

and the average grid flow. The average grid flow method worked better than the others, the 

main reason being that this feature selection method does not lose essential information, such as 

the location of the flows, and has an ordered feature vector which is fixed and therefore has clear 

meaning.  

An evaluation of these data reduction methods was made by using them to train and test an SVM 

classifier as described in Chapter 3. The experiments consisted of six binary classifications for 

each expression, meaning that the two classes in the dataset are imbalanced, by approximately a 

1:5 ratio. The data are the optical flow between frames in the rising period of expression. Each 

estimated dense optical flow between two frames is one sample in the dataset. The training of 

SVM with a RBF kernel is firstly achieved using 10-fold cross validation on the training data for 

determining the C and Gamma parameters. These parameters are then used for final training of 

the SVM using all training data. The average grid flow method achieves over 80% true positive 

rates and over 90% true negative rates on cross validation using the same database. As this 
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method is able to achieve high rates of expression recognition, it was used for subsequent 

experiments to compare CGP and SVM classifier performance. 

 

Analysis of Classification 

CGP is a highly efficient and flexible form of Genetic Programming, which has the ability to 

automatically evolve programs and was implemented as a classifier to investigate the hypothesis 

of this thesis. The inputs are feature vectors obtained from the pre-processing of the dense 

optical flow and the output is thresholded to represent one of two classes (although this is just 

one way of transforming the output value to a particular class). The training phase is the process 

of connecting CGP nodes through evolution to map input samples to their respective class labels. 

A fitness function evaluates the performance of the evolved solution after each generation until 

the best individual is obtained after the evolution process is completed. This best solution is then 

tested using unseen data, giving a class prediction.  

The fitness function should be simple calculation, with clear meaning and aim, that allows 

improved in small steps during evolution. The fitness function first considered the number of 

correct recognitions in the training data. In 10 different runs of evolution in the segmentation 

experiments of Chapter 4, a higher fitness of counting correct classifications in the training has a 

higher accuracy on testing data. So the strategy of evolution that finds the solution with the best 

fitness is able to evolve good classifiers and give good classification results.  

However, it did not perform well on the expression recognition which is a highly imbalanced data 

classification problem. Consequently, the Area Under the Curve (AUC) of the Receiver Operating 

Characteristic (ROC) curve was used as the fitness function. This technique considers the 

recognition rates of both classes and aims to have the best overall ROC after multiple  

thresholding. After training, the classifier can be set at any threshold to achieve the 

corresponding TPR and TNR. The results show that the accuracy and ROC curve of AUC-based CGP 

classifier are much better than counting correct responses on the imbalanced expression 

recognition problem.  

Overfitting is the phenomenon where a classifier is mislead by the noise and error of data that 

does not describe the underlying relationship. This leads to poor predictive performance. To avoid 

overfitting, one possible method is stop the evolution process early. Two methods have been 

investigated in this thesis: reducing the number of generations used for evolution and increasing 

the final fitness as the terminal condition. The box plots for AUC test data over 10 runs showed 

that the median of the CGP classifier, trained after 10,000 generations, is higher than that 

achieved after 1 million generations in 66% of the time.  
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These show the flexibilities of CGP; it can be set different fitness functions to fit the specific 

problem, which conventional classifiers are not able to do. With these optimisations and 

adjustments, the CGP classifier is able to have better performance than SVM in this expression 

recognition task. From the results in Chapter 4, it can be seen that SVM has inferior performance 

compared to CGP, typically having a lower AUC.  The CGP classifier train over 10,000 generations 

was found to have optimum performance. All CGP classifiers, trained over 1 million generations, 

10,000 generations and terminated with a fitness of 0.1, have higher AUC than SVM in 64% to 75% 

of cases. However, in this application, left part of the ROC curve is more important than the top of 

the ROC curve, i.e., the area of the curve has a different weighting, meaning that the AUC cannot 

always represent the performance in this specific problem. The comparative performance of SVM 

has in two cases been underestimated due to this issue, but does not adversely affect the 

assessment of performance overall.  

The results of training and testing using different databases is still disappointing. There are three 

reasons why such classification is difficult: the imbalanced nature of the datasets, inherent 

differences between two databases, and the way the training data is generated. The samples are 

taken from the optical flow between two frames in the transition of expressions. Each sample is 

one set of dense optical flow between two frames and one expression video clip contains many 

such samples. Only if almost all these samples are correctly recognised, can high classification 

rates be achieved. Obviously, this is not easy, especially at the very beginning of the transition as, 

at this time, it does not have enough discriminate information.  

 

An Automatic Expression Recognition System  

An expression recognition system has been implemented. The system takes a video stream from a 

camera or video file and tracks the face area and extracts features by the method described in 

Chapter 2. The expression will be estimated and shown in another window. The results are 

presented for six binary classifiers, each trained to recognise the six expressions separately. The 

type of classifier can be selected and switched during the video stream. If both types of classifier 

are active (CGP and SVM), there will be 12 binary classifiers working at the same time. The 

recognised expression will be reported if more than 2 frames of past 10 are indicated from the 

corresponding binary classifier. The AUC method gives a series of TPR and TNR pairs. Alternatively, 

a fixed threshold can be applied that provides the option to users to choose the settings most 

suitable one for a particular situation. The imbalanced datasets used in the training of the 

classifiers means that the minority class, also the expression to be detected, should be subject to 

a low pass rate to make the operation of the system more reliable. 
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Contribution 

The work introduced a dense optical flow based dynamic expression recognition method. 

Compared with the popular sparse optical flow methods at the moment, it may require more 

processing time due to the higher computation, but it is able to extract flow information which 

may be important for recognition and is difficult for sparse optical flow to track.  

CGP has been applied on expression recognition for the first time. The flexibility makes it easy to 

adjust and tuned for a better performance on specific problem. In the thesis, CGP classifier 

reduced the influences of imbalanced data by adjusting the fitness function to an AUC based one. 

The overfitting phenomenon was also reduced by tuning the parameters of CGP. Then the CGP 

based classifier can achieve better performance than SVM on the expression recognition 

experiments in this thesis. An automatic expression recognition system has also been built based 

on previous experiments. It runs 17/13 FPS without/with face detection function on a laptop, 

which has Intel Core 2 2.27GHz CPU. 
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Future Work 

 

Ensemble Learning 

The CGP classifier is flexible and has been optimised for this particular application. This is a 

distinct advantage of CGP over other conventional classifiers, such as SVM. Not only can the 

fitness function be changed for optimising the results, but also other parameters that determine 

the structure and operation of the network.  The training strategy can be easily adapted to the 

specific problem. The result of this project has shown how an optimised CGP classifier can 

outperform SVM in more than one case, but the SVM classifier is also stronger in several 

experiments due to its own special characteristics. Since no single classifier has the best 

performance at all times, an ensemble classifier[146] could be used to combine the output from 

both classifier methods in order to achieve better overall results. Although the ensemble learning 

will increase computational effort, it will have the both weak classifiers’ prediction, and then 

combine these to achieving a better performance. 

 

Hypothesis Revisited 

The hypothesis proposed in chapter 1 can now be reconsidered in the light of the experimental 

investigations presented in this thesis:  

“Evolutionary Algorithms are an effective means of recognising and classifying human facial 

expression.” 

It is asserted that the work presented in this thesis does support the hypothesis and that the use 

of evolutionary algorithms such as CGP in the recognition of human facial expressions should be 

investigated further.  
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6 Definitions  

 

ASM : Active Shape Model 

AAM: Active Appearance Model  

PDM: Point Distribution Model 

FACS: Facial Action Coding System 

FPS: Frames per Second 

LK: Lucas – Kanade 

LBP: Local Binary Pattern  

SVM: Support Vector Machine 

RBF: Radial Basis Function 

NN: Neural Network 

EAs: Evolutionary Algorithms 

GP: Genetic Programming 

CGP: Cartesian Genetic Programming 

EP: Evolutionary Programming 

ES: Evolutionary Strategies 

GAs: Genetic Algorithms  

AI: Artificial Intelligent 

ROC: Recursive Operating Characteristic 

AUC: Area under Curve 

CGP-CC: CGP classifier with fitness function of counting correct classifications 

CGP-AUC: CGP classifier with AUC as the fitness function  

CGP-1M: CGP classifier trained with the terminal condition of reaching 1 million generations 

CGP-10K: CGP classifier trained with the terminal condition of reaching 10,000 generations 

CGP-F0.1: CGP classifier trained with the terminal condition of fitness reaching 0.1 (AUC value) 
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