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Abstract 

Breast cancer is the leading cause of death in women in the western countries. The 

diagnosis of breast cancer at the earlier stage may be particularly important since it 

provides early treatment, this will decreases the chance of cancer spreading and increase 

the survival rates. The hard work is the early detection of any tissues abnormal and 

confirmation of their cancerous natures. In additionally, finding abnormal on very early 

stage can also affected by poor quality of image and other problems that might show on 

a mammogram.  

Mammograms are high resolution x-rays of the breast that are widely used to screen for 

cancer in women. This report describes the stages of development of a novel 

representation of Cartesian Genetic programming as part of a computer aided diagnosis 

system. Specifically, this work is concerned with automated recognition of 

microcalcifications, one of the key structures used to identify cancer. Results are 

presented for the application of the proposed algorithm to a number of mammogram 

sections taken from the Lawrence Livermore National Laboratory Database. 

The performance of any algorithm such as evolutionary algorithm is only good as the 

data it is trained on. More specifically, the class represented in the training data must 

consist of the true examples or else reliable classifications. Considering the difficulties 

in obtaining a previously constructed database, there is a new database has been 

construct to avoiding pitfalls and lead on the novel evolutional algorithm Multi-

chromosome Cartesian genetic programming the success on classification of 

microcalcifications in mammograms. 
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1 Introduction 

Each year, breast cancer accounts for one third of cancers in women in the western 

world. In 2005, it caused the death of 10,500 women in the UK and therefore is one of 

the most common cancers in women and the second most common death cancer. [1] 

In 1988, breast cancer screening was introduced and deaths caused by breast cancer 

have declined. The survival rate for people diagnosed as having breast cancer has 

increased, since detection of breast cancer in the early stages. Screening is therefore 

essential in reducing deaths from breast cancer and it is important to make this accurate. 

It has been shown in research that [2]screening could reduce the mortality rate of the 

regularly screened women by 35% in the UK.  

There are several modalities of screening patients, such as ultrasound, magnetic 

resonance imaging and mammograms, and the main method of screening patients is the 

mammogram, which is a high resolution X-ray of the breast. Refer to [2] [3] [4]the basis 

of several clinical trials, the World Health Organization announced in [5] in 2002 that 

screening mammography for women aged between 50 and 69 years reduced the rate of 

death from breast cancer by 25%. Mammography is X- ray imaging which allows the 

radiologist to see the details of the breast.  It uses does ironing radiation to create 

images with lower energy X-ray compared to regular radiography screening used in  

bones. This is high resolution, high contrast film and the goal of mammography is to 

achieve early detection of breast cancer. For the average woman, according to [5], the 

US Food and Drug Administration (FDA) pointed out that mammography could detect 

85 to 90 percent of breast cancer for women aged 50 and over, the FDA also showed the 

evidence that mammography could discover a lump up to 2 years before it could be felt. 
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[7] shows about 15% of cancers have not been detected on a mammogram film. There 

are several reasons for this, such as the differentiations of the tissue between the 

appearance of cancerous and normal parenchyma; the morphology findings which are 

not related with the cancer and possible miss diagnosis from radiologist caused by 

visual fatigue. Generally, each mammogram image is checked by one or two 

radiologists for improving the sensitivity. Nevertheless, double reading makes the 

process inefficient from a medical point of view because the cost to train a radiologist is 

high just to ensure a small group of specialists is available at each given medical 

institution, thus reducing productivity. Therefore several researchers have tried to use 

the Computer Aided Detection/Diagnosis System (CAD) to detect or classify cancer in 

digital mammograms as a second opinion for radiologists. CAD systems help scan 

digital mammograms to support preventive medical check-ups. Consequently, CAD 

systems focus on specific aspects of the diagnostic process, such as identification of 

microcalcifications clusters or the detection of irregular tissue structures, where either of 

these suggests the specific abnormalities. It is fundamentally based on pattern 

recognition, normally many images are required to optimize the algorithm, and digital 

mammograms are copied to a CAD server. Therefore, a mature mammogram data set is 

really important for CAD to analyse in several steps. 

The process of identifying and evaluating signs of cancer from mammograms is a very 

difficult and time consuming task, usually requiring skilled and experienced radiologists. 

Two fully trained radiologists are usually required for each diagnosis. However by its 

nature, this assessment is highly subjective and susceptible to errors and can easily lead 

to cancers being missed and patients being misdiagnosed. CAD systems have the 

potential to help in two main ways: (i) the detection of suspicious areas in the 
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mammogram that require further investigation and (ii) the classification of such areas as 

cancerous (malignant) or non-cancerous (benign) [5]. 

The radiologist is looking for several things when reviewing a mammogram such as 

clusters of white specks called microcalcifications, distortions, special patterns or tissue 

density, any mass and its shape, also the differences between the images of both breasts.  

The two most powerful indicators of cancer can be seen on mammograms are spiculated 

masses and microcalcifications. It is difficult to distinguish between malignant and 

benign and malignant microcalcifications. Although most processes are benign, it is also 

found that malignant processes could be identified easier by looking at 

microcalcifications that occur as a result of the malignant process.  

Over recent years, there has been much research into the application of CAD to breast 

cancer using numerous different approaches. However the CAD systems have a few 

limitations that are most CAD systems are based on classical image processing 

operations that are limited to the general understanding of how malignancies are found, 

the limitation of practical implementation and limitation of the classical image 

processing operations. One method to overcome these problems is to use an 

evolutionary algorithm. Evolutionary Algorithms have the great advantage that they are 

based on learning how to do a task rather than just following a sequence of orders. The 

ultimate aim of our work is to assess the potential benefit of a new representation of 

evolutionary algorithm called Multiple chromosomes Cartesian genetic programming in 

the classification of mammograms as part of a CAD system and determine whether 

further development of such algorithms will lead to a more confident diagnosis.   
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To support this investigation, there are 2 sets of data (mammograms) taken from the 

Lawrence Livermore National Laboratory database (LLNL) and York District Hospital 

(YDH). The set of data in LLNL is used to train and test the evolutionary algorithms, 

and then another set of data from YDH will be used to verify the multi-chromosome 

CGP network. This gives strong evidence in developing an algorithm that could reliably 

distinguish between those microcalcifications indicating cancer or those indicating 

benign. 

1.1 Thesis Organisation 

This thesis is organised into three main segments. Chapters 1 to 4 introduce the 

concepts of background, related work in computer detected system, and genetic 

programming. Chapters 6 to 7 describe the novel contributions of this research.  

Specifically: 

Chapter 1: Overall introduction 

Chapter 2: Reviews of breast cancer screening Modalities especially focusing on 

mammography 

Chapter 3: Reviews of related work in CAD system in past years  

Chapter 4: Introduces Cartesians Genetic Programming; discussing the motivation 

behind the approach and its implementation. 

Chapter 5: Reviews image data sets especially mammography data in research  

Chapter 6: Constructs a dataset and designed Multi chromosome Cartesian Genetic 

Programming network for automatic analysis of mammograms 



21 

 

Chapter 7: Presents experimental results on Multi-chromosome Cartesians Genetic 

Programming in two stages: detection of microcalcifications and classification of 

microcalcifications  

Chapter 8: summarises, draw conclusions, and offers some speculative suggestions 

for future research. 

1.2 Hypothesis 

The work presented in this thesis addresses the following hypothesis 

―Multi-chromosome Cartesian Genetic programming is an effective evolutionary 

algorithm to facilitate automatic analysis of mammograms.‖  

In this automatic analysis system, Multi-chromosome CGP network classify 

microcalcifications by using the raw pixel values, this self-learning algorithm has great 

advantages as they are based on learning how to do a task rather than just following a 

sequence of orders. This learning algorithm relies on its training dataset, therefore, a 

highly objective and dependable dataset has been constructed with standard protocol. 

1.3 Contribution 

The current study was based on these issues:  

 To show that Multi-chromosome Cartesian Genetic Programming as a 

representation of Evolutionary Algorithm has potential benefit on automated 

analysis of mammograms.  

 To propose a specified mammographic image database, containing clearly 

identified and verified cases of benign or malignant tumours.  All cases were 
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evaluated and annotated in relation to the previously defined mammographic 

dataset properties. 

 Therefore, a general reviews of properties of medical dataset for diagnosis of 

breast cancer will be organised, with disadvantages of the existing datasets , 

at the end, a suggestion of a new dataset for diagnosis and classification of 

microcalcifications will be provide.  
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2  Breast Cancer screening mammography 

Breast cancer is one of the leading causes of death of women in western countries, it is 

also one of the leading common malignant tumours found in women around the world.  

Based on statistics from the world Health organisation(WHO), cancer is becoming one 

of the leading causes of death worldwide, accounting for 7.6 million deaths which is 

about 13% of all deaths in 2008 [8]. And there is an estimated about 12 million people 

dying from cancer by 2030 [9] . In all known cancers, breast cancer is currently the top 

cancer in women world wise and one of the leading deaths among women in high 

income countries. According to published statistics around the world, breast cancer has 

become a major health problem in women worldwide. In 2008, it was estimated that 

about 1.38 million women worldwide were diagnosed with breast cancer. In the UK, 

there were 48,034 new cases of breast cancer diagnosed and 47,693 cases appears in 

women [3]. In 2008, there were 12.116 deaths from breast cancer and 12,047 deaths 

among women [3].   

The number of deaths was in a direct ratio with age-specific mortality rates for female 

breast cancer.  The majority of breast cancers are diagnosed in women over 50 years of 

age and in younger women aged from 35 to 54. Breast cancer is the most common cause 

of all deaths from cancer [3]. However, mortality rate fell by 44% in women aged 40 to 

49 between 1989 and 2008 in Britain [3]; by 44% in women aged 50-64[3]; by 37% in 

women aged 65-69[3]; by 39% in women aged 15-39[3]; and by 19% in women over 

70[3]. There are several different causes for the reduction of breast cancer mortality rate 

including NHS screening policy, personal education of specialisation of care and the 

widespread adoption of tamoxifen treatment since 1992[4]. So far, the exact cause of 
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breast cancer is unknown so there is no effective prevention for breast cancer. However,  

efficient diagnosis of breast cancer at an early stage could lead to better chances of 

survival rate for women. Therefore, an early detection of breast cancer could reduce 

breast cancer mortality and morbidity rate and increases the chance for successful 

treatment. There are two major components for early detection of breast cancer in 

Britain: screening and online personal education and risk assessment (OPERA) [5]. 

Those at risk increases with ages, all women aged between 50 and 70 are invited for 

breast cancer screening every 3 years and also women aged over 70 and over are 

entitled to be screened [5].  

2.1 Introduction of breast cancer 

2.1.1     The Breast 

Breast cancer is a type of cancer originating from breast tissue, it occurs in humans and 

other mammals, while in the majority of cases, it overwhelmingly occurs in women, 

although breast cancer can also occur in men. The breast lies on the upper ventral region 

of the torso of the primate, in both the left and right side. In women, the budding breasts 

is one of the secondary significant characteristics.  

In human female breast anatomy, it belongs to the reproductive system. It is a porcine 

gland which can produce milk to feed babies or little children. The minor‘s breast shape 

is like a half ball, firm and persistently rich. During the latter half of gestation and 

lactation period, breasts enlarges due to hyperplasia of the mammary glands; after breast 

feeding, mammary gland starts to degenerate, while the breasts gets smaller. Older 

women have pendulous breasts due to loss of elastic fibre.   
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In women, the breast overlays the pectoralis major muscles and cover much of the chest 

area in front of the human rib cage from the level of the second rib to the sixth rib. 

Breast is also one of the significant organs of a woman. In women's breast, the breast 

has apocine glands which produce milk to feed babies. The centre of a breast is a nipple 

which is surrounded by an areola, the colour of that varies from pink to dark brown and 

it has many sebaceous glands. Women‘s breast is made up of connective tissues, fats, 

and many glands known as lobules. Lobules produces the fatty breast milk, which are 

then delivered through from the duct to nipple. From a functional aspect of breast, it is a 

gland that produces milk to feed offspring. The basic units of the breast are the terminal 

duct lobular units which could produce fatty breast milk as a mammary gland.  The 

mammary glands are situated in the breast in humans and in ruminants‘ udders 

Figure 2.1 shows the anatomic structure of a human female breast cross section scheme 

with the mammary gland. In women, the breast overlays the pectorals major muscles 

and cover much of the chest area in the front of the human rib cage from the level of the 

second rib to the sixth rib. One functional aspect of the breast is it is a gland that 

produces milk to feed offspring. The nipple of the breast is centred and surrounded by 

an areola. The basic units of the breast are the terminal duct lobular units which could 

produce fatty breast milk as a mammary gland. The basic components of a mammary 

gland are the alveoli, these alveoli join up together to form as lobules. Each lobule has a 

lactiferous duct which drains into the nipple. Nearly all breast cancer originates from the 

lobules or ducts of the mammary glands. One cause of a tumour in a mammary gland 

can be caused by an abnormal expression level of circulating hormones, or from a 

mechanical mammary stoma change. Under either of these two circumstances, 

mammary epithelial cells would grow out of control and eventually become as cancer.  
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Figure 2-1 Human female breast structure from [10] 

2.1.2 Symptoms of breast cancer 

There are several different types of cancer in the world and they all have in common a 

growth of abnormal cells, which grow out of control.  When the malignant tumour 

shows up in the breast, it forms breast cancer. Generally, patients are encouraged to do 

self-checking for lumps in the breast. Patients could also check for changes to the size 

and shape, or feel of their breasts to find whether there are any changes inside. The first 

noticeable symptom of breast cancer is a lump or mass which is painless, hard, uneven 

edge from the rest of the breast tissues. More than 80% of breast cancer cases are 

discovered when the woman feels a lump; however UK cancer research centre showed 

that although many women have breast lumps but around 90% are benign. Generally, 

benign breast lumps are: 

1. Chest wall 

2. Pectoralis muscle 

3. Lobules 

4. Nipple 

5. Areola 

6. Milk duct 

7. Fatty tissue 

8. Skin 
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 cysts : containing sacs of fluid in breast tissue;   

 Lumpiness: before a period, areas of breast cell changes causing the lumpiness to 

be more obvious, this could happen particularly in women over 35. 

 Fibro adenoma: it is a collection of fibrous glandular tissue and more common in 

young women.        

American Cancer Society [11]listed the following unusual changes with could be 

symptoms of breast cancer:  

 A lump or thickening in the underarm area. 

 A change in the size or shape of a breast. 

 Breast or nipple Pain. 

 Skin irritation or dimpling. 

 A change in the shape of nipple such as if it turns inward sinking into the breast 

or has an irregular shape 

 A redness, scaliness or thickening of the nipple or the surround area. 

 A nipple discharge other than breast milk, especially a blood.  

 Swelling of all or part of the breast. 

Like breast lumps, these symptoms do not necessarily mean cancer. Different types of 

breast cancer have different symptoms and patients are encouraged to see their GP once 

they find any of these symptoms.  
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2.1.3 Stages of cancer development 

Initially, breast cancer may not present any signs or symptoms or problems as the 

irregularities are too small to be noticed. A lump or any changes may be too small to 

cause any noticeable changes during the self-examination. Thus, mammography is 

successful if it finds out any irregularities earlier than a self examination. It is crucial for 

mammography needs to detect the tumour before it becomes palpable. 

 The source of breast cancer is as a cell which multiplies like a regular cell does, 

however the speed at which the cancer cell multiplies might be different because it 

depends on how the cell has been damaged. The process of growing a tumour could be 

divided into three stages.  Kopans [12] divides the whole process of growing a tumour 

into three stages. The first stage is called the occult stage. At this stage, cancer is not 

detectable, indicating that ―until there are well over a million cells‖ in a tumour, then 

the tumour enters  the second stage. During the second stage, the tumour starts to be 

recognised on mammograms; however it is still hard to be detected by self -examination. 

Therefore, at this time, the tumour is still in its preclinical phase and is not palpable. 

This period has been called the sojourn time. At the final stage, the tumour becomes big 

enough to be palpable and detectable in self-examination.  

Therefore, we need make sure we have  a screening programme which works well to 

detect tumours before they becomes palpable to enable the earlier treatment for patients. 

Having said the above, the time difference between finding the tumour by screening 

programme and finding the tumour by self examination is very little. And tumours do 

not have a fixed growth rate in their sojourn time, every tumour has its own growth rate 

and even change the growth rate during its development. This problem has become a 
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good discussion point for researchers who are concerned about the screening intervals. 

[12] describe a model to for better understanding of screening intervals. He mentioned 

that although the speed of at which the tumour grow varies and is never the same for 

different tumours, but it is generally possible to assume that tumours constantly start 

growing and assume that the speed of growth is same for all tumours. This means that 

mammography could only be used as an appropriate method of diagnosis when it is 

performed at regular interval. The intervals not only should be short enough that no 

tumour could grow from its occult stage to palpable stage without being detected but 

also should be long enough to avoid any unnecessary radiation [13] pointed out 

especially that there is another benefit that mammographic screening will especially 

save unnecessary cost.  

In fact the  breast cancer does not kill the patient, instead it is the metastatic spread to 

other vital organs which results in possible deaths. Metastasis means ―next placement‖, 

it means the spread of cancer from the affected part to unaffected part, most used for the 

spread of cancerous cell to other organs in the body. The spread of cancer typically 

happens through lymphatic or blood vessels [3]. There is an area of breast tissue which 

leads into the armpit. The armpit contains a lot of lymph glands known as lymph nodes. 

These lymph glands around the breast form as a network and are connected by tiny 

tubes, all of these together are known as part of the body's lymphatic system. One of the 

chains of the lymph gland goes into the centre of chest, known as the internal mammary 

chain.  Lymphatic system helps to get rid of waste products from the body. Lymph 

glands are important for breast cancer, based on the characteristic that lymph glands 

drain into the lymphatic system and goes into circulation. If any cancer cells have 

broken off from the tumour they could be carried out by the lymph fluid to the nearest 
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lymph glands. The general problem of metastatic spread is it makes the treatment even 

harder because cancerous cells  could go to anywhere over the body. The single 

metastases may only be discovered when they are already affecting the organ. In order 

to increase the likelihood of successful treatment, we need mammography to find the 

likelihood of tumours as soon as possible before metastatic spread occurs.  [14] stated 

that when the tumour has been detected, the diameter is about 1cm. However [4] 

explained that once a tumour is in its occult stage ―until there are well over a million 

cells‖ that would be a diameter about 0.5cm. Also, he mentioned  that we should be 

trying to find  the invasive cancer before it goes to 1cm and ―Invasive cancers are 

potentially lethal, and prognosis is improved if they can be treated while they are 

smaller than 1cm in size‖, that is because the metastasis begins to grow faster and 

spreads when they are bigger than 1 cm. Detection needs to be noticed  early because 

[15] states  when a tumour goes into the palpable stage, it has an average size of about 

2cm and approximately 50% of these cases have turned to metastases.  

2.1.4 Diagnosis methods for breast cancer 

There are different methods about how to  detect breast cancers, all these methods have 

their advantages and disadvantages. There is no one perfect method which is suitable for 

all the patients with all the conditions. However, all these used methods have given their  

advantages which   can result in  relatively accurate diagnosis.  

Firstly, for detection of breast cancer, this would mean that to find a cancer by self 

examination when the tumour is palpable. Self-examination is firstly recommended as 

the first breast cancer screening in 1930 [16]. The major problem about this method is 
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that the cancer may have already caused metastasis and started  to  spread to other part 

of the body.  

The second method is called lymphography. It is shown on radiography of the 

lymphatic channels after a radiopaque material has been injected. This method is rather 

old and the effect is not really successful when comparing with other methods. 

Therefore, lymphography is rarely used in recent time. 

The third method is Computer Tomography (CT), which is an x-ray technology and 

gives information about the internal organs or cross-section in 2-dimensional slice. 

Currently, it is out of the market for breast cancer detection. CT scan is not used 

routinely to evaluate the breast currently or for an early detection of breast cancer. This 

is because the CT scan could not give information about the internal structures of the 

glands. However, if the patients have large breast cancer, doctors still order CT scans to 

check whether the cancer has spread to other parts of the body such as the lymph nodes, 

lungs, liver, brain or spine.  There are other advantages of using a CT scan during the 

treatment. This allows the doctor to see whether the treatment is working or not, or to 

see  if there is the breast cancer and if it  has spread or recurred outside of the breast. 

Some researchers are investigating whether CT scan could do better or as good as 

traditional mammography as a screening tool. CT scan uses higher energy X-ray which 

gives it an ability to indicate microcalcifications for breast cancer.  [2] also indicated 

during the breast CT, if the patients lie face down on the table to let the CT scanner 

rotate around the breast, there would be less compression to the breast than 

mammography and the total dose of radiation is the  same as mammogram. However, 

research on breast CT scanning for screening is still in its an early stage. 
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2.1.4.1 Magnetic Resonance Imaging (MRI) 

Another method which has been used for detection and distinction between breast 

cancer which is Magnetic Resonance Imaging (MRI). MRI is a technology which uses 

magnets and radio waves to produce cross-sectional images in details of the body. It 

does not use X-rays, so there is no radiation exposure worries. As figure 2-2 shows, 

patients need to lie on the stomach on a padded platform with cushioned opening for the 

breasts, so the breasts hang down. This position gives a better picture and reduces the 

negative effect of breathing. Before the test, patients need to have a contrast solution 

which is called dye injected into their arm. The dye could give the contrast solution 

which help any potential cancerous breast tissue show up more clearly. The best 

advantage for MRI breast scan is that it can show scars, cysts, and even invasive 

tumours well. And MRI could perform really well on women with really dense breast 

tissue; it could get more accurate information than mammograms. Also, doctors use 

MRI scans for women with lobular breast cancer to help them decide whether 

lumpectomy is an option.  However, there are also disadvantages of this method. 

 Not only is that MRI a very expensive method and requires highly specialized 

equipment and highly trained experts  it could also could miss out some cancers that 

would be detected by mammography. The dye could affect the kidneys, so the doctor 

may perform kidney function tests before injecting dye. There are certain conditions to 

the dye being absorbed better like a tumour in the duct lead to the dye being stopped 

from going further and the dye builds up in one spot. This means that the general 

procedure of an MRI is rather a time consuming. The patients need to stay still during 

the test while takes around 30 to 45 minutes. Plus an MRI is expensive compared to the 

other methods which makes MRI less attractive than other mass screening programmes.  
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An MRI is better for distinguishing between scars and a malignant tumour and could be 

used for more detailed examination of cysts. After treatment, MRI can be used for 

checking scar tissues in women who have undergone lumpectomy and any significant 

changes could be noticed by MRI, suggesting a return of breast cancer. This means that 

MRI is suitable for additional examination. However, MRI is not recommended as a 

routine screening tool for all women due to its high cost, and limitations about 

dislodging certain metal devices. Even at its best, MRI produces many uncertain 

findings which are called unidentified bright objects (UBOs) by radiologists. Finally, 

MRI cannot detect calcifications which is one of the main indicators  for breast cancer.  

 

Figure 2-2 MRI breast screening from  

2.1.4.2 Ultrasound 

The Ultrasound method has been used for detection of breast cancer as well. Its main 

advantage is that Ultrasound is widely used for other examination and it is considered to 
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be more economical. This makes ultrasound very attractive for mass screening. [17] 

showed about 90% of small tumours which can be monitored by ultrasound have a size 

of about 8mm in diameter, therefore ultrasound works just as good as mammography 

with the tumours‘ size about 1cm. Ultrasound works very well on detection of cysts. 

When the patient has been suspected of  having a cyst during mammography, the patient 

is sent to have an ultrasound examination to confirm the diagnosis of a cyst or to exam 

the wall around the cyst to have a look whether the cyst is in a dangerous condition. 

Ultrasound is also a main method for examination of younger women. Younger women 

usually have very dense breast tissue which joins together as a big white mass on 

mammogram. Research by  [18] showed that mammograms caused high ―false positives‖ 

that require follow-up to rule out cancer for women under the age of 40 and did not 

detect any tumours among women under the age 25. There are  two strong evidences 

that breast ultrasound is very good at distinguishing between lumps and cancer in 

women aged younger than 40. It showed that ultrasound was 100% effective at 

classifying a lump as benign without a biopsy for women aged younger than 39. The 

studies suggest that ultrasound monitoring of the breast is really good at distinguishing 

between benign lumps and cancer in women younger than 40. There is another useful 

point about breast ultrasound for the radiologist to help perform a biopsy. In order to 

take a sample from a suspicious area of the breast, the radiologist needs ultrasound to 

guide the positioning of the needle, this is because ultrasound is a very safe, easy and 

quick method. The disadvantage about ultrasound is it cannot show microcalcifications 

which could be seen as a strong indicator for breast cancer.  Additionally, the 

visualization of ultrasound is relatively poorer than in mammograms, therefore it 

requires the highly skilled and really careful experts to work on in order to avoid any 

missing indicators.  
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2.1.4.3 Mammography 

The most important method of diagnosis for breast cancer is mammography. It is an 

imaging technique which uses low-doses of amplitude-X-rays (usually around 0.7 mSv) 

to examine the human breast. Mammogram is the examination of mammography and it 

is used as a diagnostic and a screening tool in the early detection of breast cancer, in 

order to reduce the death rate. It goes through the detection of characteristic masses or 

microcalcifications. The x-rays are a form of radiation; it passes through most objects 

including the body. Different parts of the body absorb the x-rays in varying degrees. 

Bone absorbs much of the radiation while soft tissue allows more of the x-rays to pass 

through. As a result, bones appear white on the x-ray, soft tissue shows up in shades of 

grey and air appears black. It is important for mammography to distinguish between the 

different structures within the tissue. Research in [19] showed that typically 28-30kV on 

does for a mammography X-ray system could increase the contrast by 5-10%.   

 

Figure 2-3 The Process of mammography from [2] 

There are reasons to choose mammography as a main screening for early detection of 

breast cancer. The main advantage is it is a very economical method that is easily and 

http://en.wikipedia.org/wiki/Sievert
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quickly carried out without any injection compared to other methods. Additionally, 

mammography gives a good image of the breast and it is the only examination method 

showing both microcalcifications and mass which are two main important indicators for 

malignant cancer. However in some cases, the radiologists cannot be sure whether the 

condition is benign or malignant, therefore an extra call back mammography or other 

methods of examinations like ultrasound or MRI will be used. In the past several years, 

some women may have areas of concern which cannot be resolved with the only the 

information available from the mammogram. They would be called back for a 

diagnostic mammogram. At this stage, radiologist will monitor each of the additional 

films as they are taken from the technologist. Generally, the unusual appearance is 

found to be benign, if the cause cannot be determined certainly, a biopsy will be 

recommended, and it will be used to get the real tissue from the site of pathology to 

examine microscopically. Depending on the nature of the findings; an ultrasound may 

be applied at this stage as well. 

The mammography examination process will take approximately 30 minutes and it is 

usually performed on an outpatient basis. During examination, a qualified radiological 

technologist will position one breast in a mammography unit which looks like a 

rectangular box that contains a tube for producing x-ray. The breast will be placed on a 

special platform and compressed with a paddle. Breast compression is then operated by 

the technologist, it is necessary in order to: 

 Even out the thickness of the breast, so all the tissue can be pictured. 

 Hold the breast, so the blurring of the image caused by motion is minimized. 
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 Spread out the tissue so that small abnormalities are less likely to be obscured by 

overlying the breast tissue. 

 Allow the use of a lower does of x-ray for imaging the thinner part of breast 

tissue  

 Reduce X-ray scatter in order to increase the sharpness of the image. 

The patient will be asked to change positions between images. The routine views are 

from top to bottom and side angle. 

Views of screening mammograms are done as a regular screening to get an overview 

picture of the breasts and make sure that everything is well. Different views increase the 

likelihood of detection.  The X-ray mammograms are typically made in medio-lateral 

oblique (MLO) view and cranio-caudal (CC) views. The names of the directions are 

from Latin and are used worldwide.  The term of ' medio-lateral ' means x-ray direction 

is from the medial (inner) part of the breast to the lateral (side) part of the breast.  This 

is to give a horizontal orientation view. The term of ' cranio-caudal' means the radiation 

goes from the cranium (head) to cauda (feet). This means a vertical direction of the 

radiation coming from the top.  
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Figure 2-4 Screening orientations for mammograms 

 

Abbreviation Position Direction from X-ray 

MLO Medio-Lateral Oblique From the medial (inner) part 

to the lateral (side)  

CC Cranio-Caudal From the cranium (head) to 

cauda (feet) 

Table 2-1 views of screening mammograms 

 

MLO 

MLO 

CC 
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However, different areas have different protocols which are dependent upon the specific 

facilities. In America, there are four films which are required for breast, two for each 

breast. In Europe, most countries do one view of each breast, if a suspicious area is 

noticed, then  additional views are taken. 

A radiologist, a physician specially trained to supervise and interpret radiology 

examinations, will analyze the images and send a signed report back. Figure 2-4 and 2-5 

shows the example of the mammography images, on the left is a benign case versus a 

malignant case on the right. When evaluating an image the radiologist would first get 

old images as reference to see if there is any change in the overall structure of the breast. 

If radiologists find anything of concern in the images, then they could see whether the 

conditions have appeared during the last screening. If it has, then the radiologists are 

able to compare the images to state the change of the size and to give a report about the 

rate of growth of the tumour. When the radiologists are evaluating the new image, they 

will first step back to look through asymmetries. Then they could get a bit closer and 

look for masses. After that, the radiologists will zoom in on the image to examine the 

mammogram. This means they are looking for microcalcifications which could indicate 

a malignancy. They even need a magnifying glass if the condition is not that clear.  
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Mammography is believed to reduce the modality; there are several benefits for the 

patient: 

 Imaging the breast improves the ability of physicians to detect small tumour, 

therefore if the cancers are smaller, the women have more treatment options 

and a higher cure rate.  

 No radiation remains in the patient‘s body after an x-ray examination. 

 X-ray usually has no side effects in the diagnostic range. 

The use of screen mammography increase the ductal carcinoma in situ (DCIS), which is 

the small abnormal tissue growths confined to the milk ducts in the breast. These early 

tumours will not harm the patient if they are removed at the early stage and 

mammography is the only proven method that  reliably detects these tumours. 

Figure 2-5 mammogram with a spiculated mass 

(Ozekes S, Osman O, Camurcu AY, 2005) from 

Figure 2-6 mammogram containing microcalcifications (J. 

Suckling, J. Parker, D.R. Dance, S.M. Astley, I. Hutt, C.R.M. 

Boggis, I. Ricketts, E. Stamatakis, N. Cerneaz, S.L. Kok, P. 

Taylor, D. Betal, J. Savage,, 1994) 
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While mammography is the only breast cancer screening method that has been proved 

to save lives, however it is not perfect.  

 The radiation exposure is a potential risk of screening.  

The effective radiation dose from a mammogram is 0.7 mSv, this is the  same as the 

average person receiving from radiation  in the background for three months, and it 

appears to be greater in younger women. There are a lot of studies about radiation from 

mammogram which shows that the women aged 40 years or older have a small risk of 

radiation induced breast cancer. Therefore, special care is taken during x-ray 

examination to use the lowest radiation dose possible while producing the best images 

for evaluation. Organizations such as the national cancer research institute take such 

risk into account and update the technical standards when formatting screening 

guidelines. [20]  

 False Positives  

The screening exam is intended to have a high sensitivity to make sure it does not miss 

any cancers, the cost of this high sensitivity is that a large number of results which  

would be regarded as suspicious in patients without cancer. The patient is called back 

for further testing and are sometimes referred to as ―false positives‖, implying an error. 

Also, paper [21]shows that women who receive false positive results may be affected in 

their well-being and behaviour. Some of them may intend to return for routine screening 

more frequently, and some of them become anxious, worried about the possibilities of 

having breast cancer.  

 False negatives 
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  Mammograms also have a rate of missed tumours – ―false negative‖. This is     partly 

due to dense tissues obscuring the cancer and the fact that the appearance of cancer on 

mammograms have a large overlap with the appearance of normal tissues. [22]for this 

reason, in the UK, the screening program does not start calling women for screening 

mammograms until the age of 50. Dr Samuel S. Epstein reported in ‗the politics of 

cancer‘ that in women aged 40 to 49; a quarter of instances of cancer are missed at each 

mammography [23].  

There is always a slight chance of cancer from inordinate exposure to radiation, 

however the benefits of an accurate diagnosis far outweighs these risks. 

 

2.1.5 Mammogram Indicators 

When examining a mammogram, there is a recommendation to examine the 

mammogram in three steps which  include to look at the mammogram at a  certain 

distance.  Radiologists are typically looking for asymmetries or architectural distortion, 

mass and clusters of calcifications which are the main indicators for mammograms.  

First step the radiologists will look for is the distance to allow them to recognise any 

large structural changes.  In this step it is important to look out for asymmetries of the 

two breasts. Asymmetries are normally being seen as differences in structure between 

two equal views of the breasts. They do not contain any information about cancerous 

tissue, however they provide an indication about whether there are any structural 

changes in the breast so the radiologists could take a closer look into the changed areas 

to see if the structure has changed and is part of a benign process or if the change 

http://en.wikipedia.org/wiki/Optical_density
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indicates a malignant process. [24] gave some cases that symmetries are closely 

measured as they present a likelihood of cancerous changes than normal tissue.  

Two of the powerful indicators: masses and microcalcifications are commonly used in 

evaluating mammograms.  

2.1.5.1 Spiculated Masses 

Masses are the larger of the two indicators and can be either benign or malignant. 

Characteristics such as the borders and density of the mass are greater for malignant 

cases; this could be used as classifications. Comparing to asymmetry, masses don‘t just 

have structure changes in the breast tissue, but they also have dense irregular lumps. On 

mammograms, the denseness masses will exist as bright lumps and are not easy to 

identify. An example of a mass is shown in Figure 2-7.Mass is the larger of the two 

indicators and can be either benign or malignant. Characteristics such as the border and 

density of the mass, which is greater for malignant examples, can be used for 

classification. 

 

Figure 2-6 mammogram showing a mass from [137] 
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2.1.5.2 Microcalcifications 

Only mammography screening could show the microcalcifications in cluster, they look 

like a small group of white dots and look like almost noise, and to organize them will 

depend on their size, shape, distributions and texture and of course the quality of 

mammogram.   

Generally, masses are more difficult to classify than microcalcifications. 

Microcalcifications are small calcium deposits which occur as secretion from the ducal 

structures which have been thickened and dried. They can have the most benign cases 

but also can indicate a malignancy. They are common on mammograms and their 

appearance increases with age so that they could be found in 8% of mammograms of 

women in their 20s and 86% in late 70s. (D.B.KOPANS, Third Edition,2007)  

One condition that is often not recognized as a cancer but is thought to be a preliminary 

stage to invasive cancer is DCIS which will be mentioned in Section 5. The only 

indication of DCIS leaves on a mammogram are the typical clusters of 

microcalcifications. [12]introduced that DCIS is virtually only found by finding 

calcifications on a mammogram.  

Microcalcifications could be commonly to seen depending on the age group. [12] states 

that there is a likelihood of having increased microcalcifications during the life, women 

in their late 20s have 8% chance of having microcalcifications, while women in their 

late 70s, have 86% chance to have microcalcifications.  However, calcification found in 

the breast is due to a benign process, therefore, microcalcifications can be an indication 

for malignancy but mostly they are benign.  
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The literature available to help successfully classify microcalcifications gives different 

results. Other showed that about half of malignant tumours were found by 

mammography because of the presence only of suspicious calcifications. [12] gave an 

opposite result that ―17% of invasive cancers were found by mammography only 

because of the calcifications that had in the intraductal portion of these cancers‖.   

The main criteria of microcalcifications can be classified Microcalcifications which 

indicate malignancy are usually less than 0.5mm in size and often grouped into clusters 

of five or more, any microcalcifications larger than 1mm are almost always benign.  

Therefore, the smaller the microcalcifications are, the harder to see them on 

mammograms. There are several researches that talk about how large the 

microcalcifications are to make them visible in mammograms. mentioned about 0.1mm-

0.2mm microcalcifications are the smallest range that could be seen in mammograms. 

[25] mentioned that the limited detect ability is 0.2mm to 0.3mm. Since the maximum 

size for calcification can indicate a malignancy is 0.5mm, it could be said that 

microcalcifications that indicate a malignancy can be seen on a mammogram are 

between 0.2mm and 0.5mm.  

The distribution of microcalcification is important as the size. Microcalcifications only 

appear in or around the centre of the malignancy. Therefore, it will be many tumours 

that would go along with other structure changes in the breast. When 

microcalcifications have been found in clusters in mammogram, it will request a further 

investment. [12] says that if a cluster of microcalcifications is considered to be 

malignant, the number of calcifications has to be 5 or above per cm
3
. The clusters 

contain microcalcifications less than 5 will be considered as benign. This regularly 

happens on routine checking for the mammogram. 
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The morphology would include the attribution of shape, texture or density  . All those 

attributes hold some important information to be able to a correct classification. It can 

only be sais that round microcalcifications with a smooth surface are typically benign 

while rough surfaces as well as irregular shapes are typically malignant. [25]described 

malignant microcalciofications as wild, unordered or with fine linear branching, while 

benign microcalcifications are rounds solid rods or with lucent centres.  

The location can be important as calcifications due to cancer usually build up in around 

a malignancy. They keep around a certain centre and that centre can possibly tell us the 

point of origin. In addition, microcalcifications that are caused by malignant processes 

are almost always located in ducts

2.2 Screening Mammography 

2.2.1 Breast Cancer Screening 

The aim of breast cancer screening is to detect any cancerous tumours before they 

become palpable and clinical evidence, which means in their sojourn time. Generally, 

most statistics show a steady increase of occurrence with most cases in the group of 

women aged from 50 to 70. EU recommends breast cancer screening for women 

between 50 and 69. Breast screening was first introduced in UK in 1988 and now offers 

tests to women over the age of 50 in every 3 years. Older women could also apply the 

screening, and the National Health Service (NHS) says that if a women who has reached 

their upper age of routine invitation, they are encouraged to make their own 

appointment [26]. If the women are over 70, they do get an invitation to attend 

screening, but they may go if they want to. These ages limits are about to change. The 
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UK government has decided to extend the screening programme to women aged from 

47 to 73 by 2012. For the average women, according to , the US Food and Drug 

Administration (FDA) pointed out that mammography could find 85 to 90 percent of 

breast cancer for women aged 50 and over, FDA also showed the evidence that 

mammography could discover a lump up to 2 years before it can be felt. According to 

[27]in 2009 that the US Preventive Services Task Force recommended mammography 

every two years for women from the age of 50 to 74. In [28], the U.S. Food and Drug 

administration (FDA) has approved that mammography is the only exam to screen 

breast cancer in women who cannot be tested for  any signs or symptoms of the disease 

by physical examination. [29] Also pointed out that in 2010 the European Cancer 

Observatory suggested mammography every 2-3 years between 50 and 69. In UK, the 

early detection of breast cancer is often done by mammogram, it forms the basis of a 

NHS breast screening programme [20]. The NHS Breast Screening programme provides 

free mammography every three years for women aged between 50 and 70 and it is 

expected that in 2016 the age extension range of women for mammography is from 47 

to 73. 

As already mentioned in Section 2.1, mammography is the perfect method for screening 

as an early detection of breast cancer. It is reliable, cheap, accurate, relatively 

comprehensive, not very time consuming and the images are reproducible. All these 

could make mammography appear attractive and to be taken into account for 

governments implementing a screening programme.  
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2.2.2 Mammography Screening 

In many countries routine mammography for older women is encouraged as a screening 

method to diagnose early breast cancer, as risk of breast cancer increases with age. In 

UK, all women aged from 50 to 70 have been routinely invited to have a test to look for 

early breast cancer [30]; in US, the USPSTF (United States Preventive Services Task 

Force) recommends screening mammography, with or without clinical breast 

examination, every 2 years for women aged 50 to 74 [31].  

In 1913, Albert Salomon who is a surgeon reported his investigations; he had used 

radiography of mastectomy specimens to demonstrate the spread of tumour to the 

axillaries lymph nodes. [20] In Europe, in the 1950s and 1960s, Charles Gros pointed 

out the value of mammography in the diagnosis of breast disease and its potential for 

screening asymptomatic women. From 1963 to 1966, Philip Strax, Louis Venet and 

Sam Shapiro under the sponsor of the Health Insurance Plan of new York, they 

organized the first randomized physical examination and mammography to determine 

whether it could reduce breast cancer death rate. After 5 years, the results showed that 

compared with the control group, the mortality rate was reduced by almost one third for 

the women who took screening mammography.  The decrease remained a significant 

level which was through 18 years of follow-up. [32]They proved that combined 

mammography and physical examinations of asymptomatic women could significantly 

reduce the breast cancer mortality rate.  

http://en.wikipedia.org/wiki/United_States_Preventive_Services_Task_Force
http://en.wikipedia.org/wiki/United_States_Preventive_Services_Task_Force
http://en.wikipedia.org/wiki/United_States_Preventive_Services_Task_Force
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2.2.2 Film mammography and digital mammography 

Conventional film screening mammography uses low energy x-rays that pass through a 

compressed breast during a mammographic examination. The exiting x-rays are 

absorbed by film which is then developed into a mammographic image that can be held 

and looked at by the radiologist. With digital mammography, low energy x-rays pass 

through the breast exactly like conventional mammograms but are recorded by means of 

an electronic digital detector instead of the film. This electronic image can be displayed 

on a video monitor like a TV or printed onto film. Again, this is similar to digital 

cameras that produce a digital picture that can be displayed on a computer screen or 

printed on paper. The radiologist can manipulate the digital mammogram electronically 

to magnify an area, change contrast, or alter the brightness.  Mammography remains the 

best method of early breast cancer detection. However, traditional film-screen 

mammography is limited in its ability to detect some cancers, especially those occurring 

in women with radiographically "dense" breasts. For this reason, extensive research 

efforts to improve mammography have occurred. Digital mammography offers 

theoretical advantages compared to film-screen mammography for cancer detection. [33] 

The differences are in the way the image are recorded, viewed by a doctor and stored. 

Several studies [34] showed that digital mammograms have no significant differences .                  

Equipment costs for digital mammography systems is 3-5 times the cost of film screen 

mammography. Additional on-going costs of maintenance and image storage compound 

the price differential. Some insurers, such as the federal government, have recognized 

these cost differences and reimburse digital mammography at a slightly higher rate than 

film screen mammography.   Different researches [35] [36] have shown no significant 
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difference in cancer detection between film screen mammography and digital 

mammography. While some critics have considered these similar results to be a 

"negative" for digital mammography, one must remember that to achieve similar cancer 

detection performance with first generation equipment is a major accomplishment. One 

study showed the call-back rate from screening, needing to return for additional 

diagnostic mammography after a screening mammogram. It was better with full field 

digital mammography than screen-film systems.                                                                                                                                                                                                   

3  Computer Aided Diagnosis System 

Over the last decade there have been a lot of researches in computer aided diagnosis 

system (CAD), it contains numerous different ways to achieve an operation. The 

different methods are designed specifically for the task range from the classical image 

processing to biological inspired evolutionary methods such as neural network. The aim 

of this chapter is to highlight the differences between widely used techniques and 

compare them in the area of the classification of microcalcifications in medical imaging 

in particular.  
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3.1 Overview of Computer Aided Diagnosis System 

At the beginning of this century, early detection mammography increases breast cancer 

treatment options and reduced the breast cancer mortality rate by approximately 30% 

[37]. However, mammography is not perfect, on a screening mammogram leading to 

further recall are identified in approximately 5% - 10% of patients in America , even 

though breast cancer is confirmed  at only 3 to 10 cases in every 1000 women screened 

[38,39]. To identify and evaluate the signs of cancer requires a skilled and experienced 

radiologist. This assessment may also lead to the cancer being missed and the patient 

being misdiagnosed, by its high susceptible to error in nature. This could happen by 

viewing of a large number of images to detect a small number of cancers. The complex 

radiologic structure of the breast, the nature of mammographic characteristics of early 

breast cancer and even radiologists fatigue. For every thousand cases analyzed by a 

radiologist, only 3 to 4 are cancerous and thus an abnormality may be overlooked. As a 

result, radiologists fail to detect 10-30% of cancers [40,41]  in these false-negative 

results, most of them caused by missing lesions which are evident retrospectively. To 

overcome the known limitation of human observes, a second reading of screening 

mammograms by another radiologist has been implemented at many sites. Rapid and 

continuing advantages in computer technology, computer prompting technology have 

increased the interest to enable the radiologist to act as their own second reader and the 

final decision is made by the radiologist. One example of this is computer aided 

detection (CAD) system in screening mammography. Previous studies have shown that 

CAD detection systems have improved radiologists accuracy of detection in breast 

cancer. Computer aided diagnosis (CAD) system for aiding in the decision between 
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follow up and biopsy are still being developed. Mammographic image analysis is a 

challenging task for the following reasons: 

 It needs to be the nearly perfect since the efficacy of CAD systems have very 

serious implications. 

 This is an extremely challenging image analysis task because the large 

variability in the appearance of abnormal condition. 

 The abnormalities are often hidden in dense breast tissue, and this makes 

detection difficult. 

3.2 Classical Imaging Processing  

Digital imaging processing has been widely used in a variety of application areas, it is 

used for tasks such as pattern recognition or classification schemes. 

Imaging processing is a special 2D version of signal processing; therefore the methods 

and structures are established similar to those of signal processing. As this area has a 

long history, there are a number of methods that need to be described. Generally in most 

cases there are several steps which are undertaken; these steps are shown in figure 3-1. 

The imaging processing will first start with pre-processing, after that the image might 

undergo segmentation which is typically followed by analysis feature extraction. There 

is a feature selection step to select the extracted features from the last step. Finally, there 

is a recognition classification depending on what the aim the image processing is.   
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3.2.1 Pre-processing 

In this stage, data is often complex and time consuming; they are not quite fit for the 

system to process. Especially the medical imaging, it is common that they are not stored 

in a conventional image format as the data needs to be processed by programs. In the 

meanwhile, it might need to define a region of Interest (ROI), or then it may be 

necessary to perform adjustment on brightness and contrast or to rotate the image. It 

may be necessary to rescale the image size to fit with the critical certainty. 

In CAD system, how the image is obtained is an important part of imaging processing 

of mammograms. The digitization techniques vary from different departments. For 

examples, Digital Database for Screening Mammography has used three different 

digitizer (described in Section 5). Each of the digitizer uses a different mapping from 

grey level to intensity. It needs to be noticed that a good performance using one capture 

scheme may give bad results when applied to an alternative technology. As well as to 

capture the image, some pre-processing might be performed. In CAD system, the key 

Sensing / Pre-processing 

Segmentation 

Feature Extraction 

Feature Selection 

Classification 

Figure 3-1A typical flow of pattern recognition of image processing 



54 

 

aim of this step is to improve the contrast so that the microcalcifications can be seen in 

dense breast tissue and the masses can be differentiated. To achieve this, different 

approaches include histogram equalization, filtering, curve fitting and contrast 

stretching at both local and global views have been used in different pieces of research. 

Chan et al. [42] investigated the application of unsharp masking for digital 

mammography. Receiver operating characteristics (ROC) studies showed that unsharp 

masking improved the detestability of calcifications in digital mammograms. However, 

the method increased noise and caused some artefacts in the images.  

3.2.2 Segmentation 

The aim of this step is to assign one pixel into one or a certain number of regions. In 

this step, pixels are partitioned for making the further steps easier. In medical images, it 

might simplify the image representation to help locate the objects or boundary. 

Typically, it tried to divide the foreground and background. For mammograms, it tries 

to separate the target of suspicion from the imaging. To achieve this, there are different 

methods. The most common one is thresholding of region based approach. It creates a 

binary image by thresholding and using the results to represent background or 

foreground, and therefore, two areas have been achieved. The disadvantage is the 

threshold which needs to be adapted, as colour shading in images varies a lot. There is 

some statistics approach to achieve segmentation stage as well. The segmentation area 

could be chosen with certainty by selecting certain areas from the image histogram. This 

principle works similarly to spatial domain and frequency domain so the general 

procedures are the same. Additionally, other methods have been developed such as edge 

detection with subsequent operation to close the gap between the edges. Region based 

approaches such as seeding with a single pixel and growth in a region to be segmented. 
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For example, to provide a brief explanation of the technologies. Certain locations are 

selected as seed points, and without any information these seed points would be all 

pixels in the image. For example, a microcalcification might be expected to have a grey 

level over a certain threshold in order to remove some pixels from consideration. 

Starting from the seed regions growing, if the neighbouring pixels are examined for 

some similar properties to the seed, or they both followed some pattern from the seed, 

then they are included in the region. The same is also done for their neighbours. A seed 

can then be included when it has successful grown in a region around it. There is 

another method called k-nearest neighbour algorithm. It is a clustering algorithm that 

partitions an image into k clusters, which is similar to the region growing method but 

involving an extra step of using statistics to confirm the regions are well formed.  

3.2.3 Feature Extraction 

 Once segmentation is completed there might be a selection of microcalcifications 

which needs to be described in terms of features. These features are collected in the 

stage of feature extraction. Classification stages applies on these features and statistical 

properties, the right features and properties are carefully selected because a good quality 

of classification is the key to classifying any given data. Features in image processing 

means real numbers obtained by applying mathematical expression to image data. From 

the simple examples is the mean grey level amongst a set of pixels. The reason for 

extracting features in image processing is that they can provide powerful measures of 

the properties of the image beyond what can obviously be seen by looking at the pixels. 

A large number of pixels can be reduced to a smaller number of features which provides 

a concise measurement of the properties of the image. Features  can then be extracted 

from the spatial domain or from the frequency domain though here the former will be 
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the focus. Features could be divided into two catalogues: textures based features and 

morphological based features. 

 Texture based feature 

A number of texture features are described in [43]based on simple statistics. One of 

these is the nth moment of the grey level z around the mean. Variance, the second 

moment and the third moment were widely used: 

        𝝁 𝒛 =   𝐳𝐢 − 𝐦 𝐧𝐩(𝐳𝐢)
𝑳−𝟏

𝒊=𝟎
                                                                                                  Equation 3-3-1    

 The mean is defined as normal as: 

         𝒎 =  𝐳𝐢𝐩(𝐳𝐢)
𝑳−𝟏

𝒊=𝟎
                                                                                                               Equation 3-3-2      

 Normalization by dividing by (L-1)
n
 . 

3.2.4 Morphological features 

Morphological features are often referred to as shape feature and  are useful in the 

classification of microcalcifications. [44] provide several pieces of information about 

various features of benign and malignant calcifications. Such as, benign calcification 

has a round ring like shape and has  well defined borders. Malignant ones have varying 

shapes and poorly defined borders.  

Morphological or shape features are an alternative way of describing a 

microcalcification or any object in an image that we are trying to classify. Some simple 

features based on the boundary are as follows: 
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 Length of the boundary  

 Diameter of the boundary = max[D(pi, pj)] where D is distance and pi and pj are 

2 points, given that most shapes are not perfect circles.  

 Orientation is another useful feature and taken with magnitude makes up the 

major axis of the microcalcification  

 Compactness takes the length of a shape and divides it by the number of pixels 

in the shape.  

 Statistical moments can be taken by using a segment of a boundary. A straight 

line is taken from one end of the segment to the other and statistics are taken 

based on the distances of the pixels on the boundary from this straight line.  

3.2.5 Using Pixel Values 

Instead of getting and applying the features into the network, it is also possible to apply 

raw pixels to the network and train on them. One of the strengths of an evolutionary 

algorithm is that it can discover new solutions that a conventional design would never 

uncover and it does this by its random nature. If conventional features are extracted to 

be fed into the network, then this puts a major limit on what the network can achieve in 

an absolute sense. Feeding the raw pixel values in, essentially gives the network less 

limitation to extract the information it decides to be the most important. However, in 
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order to converge on a solution, there is the possibility of a much larger network and 

many generations may be needed, which takes a longer runtime. 

 

3.3 Feature selection 

Feature selection can be regarded in the same way as image enhancements, this stage is 

not required as a complete pattern recognition system works. Many neural network 

based papers [45] did not use a feature selection stage. At the end of the feature 

extraction stage there might be a very large number of features. If a statistical classifier 

has been used, it is not helpful to have so many features. It may make a longer running 

time and the likelihood is that the features may not be relevant to the benign and 

malignant lesions. Thus, the advantage is in selecting the features that are most relevant. 

Genetic Algorithms have been used in the feature selection method successfully. In [46]  

it states that with a chromosome, which is the length of the total number of features 

available, each gene in the chromosome represents a part of which is 1 or 0 where 1 

indicates a particular chromosome is  included. There is a population of random 

chromosome and for each one classification is performed. A new population is 

generated using parent selection, crossover and mutation. When the parents are selected 

it is designed so that the ones which resulted in a more accurate classification are more 

likely to be chosen. This continued for either a certain number of population generations 

or for a  certain level of classification eventually obtained.  
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3.4 Classification of microcalcifications 

Microcalcifications in mammograms appear as relatively bright regions due to the 

higher X-ray attenuation coefficient (or density) of calcium, as compared with normal 

breast tissue. Microcalcifications present within dense masses or are superimposed by 

dense tissues. In the process of acquisition mammograms these present as low grey-

level differences or contrast with respect to their local background. On the other hand, 

Microcalcifications present against a background of fat or low-density tissue and would 

possess higher differences and contrast. Malignant Microcalcifications grow to be 

numerous, clustered, small, varying in size and shape, angular, irregularly shaped, and 

branching in orientation [47] [48].On the other hand, Microcalcifications for benign 

cases are generally larger, more rounded, smaller in number, more diffusely distributed, 

and more homogeneous in size and shape. The detection and classification of 

microcalcifications has been extensively studied, with many authors reporting on 

several successful approaches to this task. A recent survey by Cheng et al. [49]lists 

almost 200 references on computer-aided detection and classification of 

microcalcifications, including methods for the visual enhancement of 

microcalcifications, segmentation, detection, analysis of malignancy, and strategies for 

the evaluation of detection algorithms.  

El-Naqa et al. [50] used support vector machines to detect microcalcification clusters. 

The algorithm was tested using 76 mammograms, containing 1120 microcalcifications. 

A sensitivity of 94% was reported, at one false positive per image. An improvement of 

the method was published by Wei et al. [51] using a relevance vector machine. A 

database of 141 mammograms containing microcalcifications was used to test the 
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algorithm. The method achieved a sensitivity of 90% at one false positive per image. 

The statistical performance of the method was similar to that of the method of El-Naqa 

et al. [50] , but the authors reported a 35-fold improvement in computational speed. Yu 

et al. [52]used a wavelet filter for the detection of microcalcifications, and a Markov 

random field model to obtain textural features from the neighbourhood of every 

detected calcification. The Markov-random-field-based textural features, along with 

three auxiliary textural features (the mean pixel value, the gray-level variance, and a 

measure of edge density), were used to reject false positives. The method was evaluated 

using 20 mammograms containing 25 areas of clustered microcalcifications. A 

sensitivity of 92% was obtained, at 0.75 false positive per image.  

[52] developed a technique for the detection of clustered microcalcifications which is 

comprised of two parts: detection of potential microcalcification pixels, and delineation 

of individual microcalcifications by the elimination of false positives. The first part 

involves the extraction of features based on wavelet decomposition and gray-level 

statistics, followed by a neural-network classifier. The detection of individual objects 

requires a vector of 31 features related to gray-level statistics and shape factors, 

followed by a second neural-network classifier. A database of 40 mammograms 

containing 105 clusters of calcifications was used to assess the performance of the 

proposed algorithm: a sensitivity of 90% was attained with 0.5 false positive per image.  

[53]compared four groups of features according to their discriminate power in 

separating microcalcifications into the benign and malignant categories. The 

microcalcifications were segmented using an automated method, and several features 

were extracted. Each feature belonged to one of the following four categories: multi-

wavelet-based features, wavelet-based features, Haralick‗s texture features [54]and 
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shape features. Within each group, a feature-selection procedure based on genetic 

algorithms was employed to identify the most-suitable features for use with a k-nearest-

neighbour classification scheme. The classification performance of each group of 

features was then determined using ROC analysis. The area under the ROC curve 

obtained ranged from 0.84 to 0.89, and it was observed that the multi-wavelet features 

gave the best performance, followed by the shape features.  

3.5 Neural Network  

Artificial Neural Networks (ANNs) are computational models inspired in the natural 

neurons. ANNs have been used in the areas such as machine learning and pattern 

recognition.  When speaking about ANN it is necessary to distinguish between ANN 

and Biological Neural Networks (BNN). For a better understanding how ANN works, it 

is helpful to understand the basic principles of BNN, although BNN is not understood in 

its full complexity in this days.  

A human brain is a piece of grey and jelly style material. It does not working as CPU 

which is only working by using single or a few processing units. The surface of a brain 

looks like an outside layer of walnuts,  and there are approximately 10
10

 of neurons 

have been compressed in the grey matter of human cerebral cortex, even a brain of ant 

has 10
4
 neurons.  

At the first 9 months of human life, neurons at brain has been produced by 25,000 

per minutes , an individual neuron can be described as consisting of three sections : the 

cell body, the axon and the dendrites, has been showed in Figure 3-2. The cell body is 

the main part of the neuron. The dendrites are originating in the cell body and are 
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branching into the surroundings like fibres. The main task is that dendrites have to fulfil 

to act as inputs to the cell so that the cell body can receive signals from other cells. 

Unlike the other cells in other parts of human body, each neuron has an axon is 

connected to the cell body as a fibre, the length of each axon could be extended to 

several centimetres, and then branches at its end into many small outputs called axon 

terminals  in order  to transfer the neurons output signal to different directions. The 

axons and dendrites of different neurons can then make connections (synapses) and fire 

their signals through those synapses.  

 

 

 

 

 

It is not entirely clear that how neurons work, however as far as they have been 

understood the sum of input signals might trigger the synapse to fir an output signal. 

The output signal is an electrical spike of very short duration, this might trigger some 

other neurons inputs which again cause another neuron to fire a spike of its own. It has 

been noticed that not all inputs of a neuron have the same significance. During a process 

of learning, the neurons simply connect to the other neurons by using their synapses, 

however the process is completely random and complex. When comparing the ANN 

and BNN it could be said that in both cases neurons are  arranged in some sort of 

Figure 3-2 Natural neurons 
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network where individual neurons fire  signals depending on their inputs signals. ANN's 

individual neuron does not have a particular shape, it is also a great difference between 

BNN and ANN. To simulate the physical properties of BNN as well as possible, , 

neurons of ANN are usually designed to have a number of different inputs, these inputs 

are weighted to simulate different significance. These inputs are summed up and if the 

resulting value is a above pre determined threshold, then the neuron fire a signal. The 

output of this particular neuron will be used by any other neurons or even the entire 

output of the network. As the two states of a brain neuron : excitory or inhibitory, the 

practical implementation of ANN means that the signal of neuron would be binary as 

there either is a signal or there is not. Figure 3-3 shows the structure of an artificial 

neuron. It basically consists of inputs like synapses in natural neuron; the inputs are 

multiplied by weights which could be seen as the strength of the respective signals; and 

then computed by a mathematical function which determines the activation of the 

neuron. Another function computes the output of the artificial neuron. If the network 

has n inputs in total, and the input could be x1, x2, x3, ..., xn,, ad each of the input should 

have a corresponding weight w1,w2,w3,...wn , the transfer function   could be the sum of 

all weight and inputs:  =  xn × wn𝑛
𝑗 =0 . 

 

 

 

 

 
Figure 3-3 An artificial neuron 

Input 

Output 
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The higher a weight of an artificial neuron is, the stronger the input which is multiplied 

by it will be. The desired output could be obtained by adjusting the weights of artificial 

neurons. If the ANN contains hundreds or thousands of neurons, algorithms could be 

found to adjust weights of the ANN in order to obtain the desired output from the 

network. This process of adjusting the weights is called learning or training. 

One major difference of ANN and BNN is : neurons of ANN are positioned in a grid of 

structures while there is no recognizable BNN structure. It means that ANN are made 

up by different layers, with each layer having a defined number of neurons. Figure 3-4 

shows the first layer is called the input layer, which is connected to the input signals that 

are to be processed. The last layer of the ANN is the output layer, which is providing 

the processed signals. These are two layers in neurons may be connected to any signals 

on the outside of network. Any inter medium columns would not be accessible for 

neither the overall inputs nor outputs for using in ANN. These middle layers are called 

hidden layers. The hidden layers are required in order to allow the NN to learn a special 

behaviour, but cannot be influenced from the outside. The number of neurons in one 

layer may differ from the number of neurons in another layer, although for simplicity 

the number of neurons are kept constant in all hidden layers. Figure 3-4shows an 

example of the construction of a neural network, it is called feedforward neural network 

which was the first and simplest type of ANN. In this network, the signal moves in only 

one direction, forward, from the input nodes, through the hidden nodes and to the output 

nodes. There are no cycles or loops in the network.      
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The most interest in NN is the possibility of learning. The learning process in ANNs is 

implemented by examples, and is achieved by adjusting the connection weights and the 

network function.. Generally, there are three types of learning processes: supervised, 

unsupervised and reinforcement. Supervised learning is based on the direct comparison 

between the actual output and the expected output. The optimization algorithm could be 

used to adjust the connection weights in order to minimise the error. Reinforcement 

learning is a special case of supervised learning; it is o only based on whether the output 

is correct. Unsupervised learning is only based on the correlation of the input data.  

NNs are capable of pattern recognition in computer aided diagnosis, particularly the 

applications of mammography. There are a number of researches which have been used 

ANN based on its advantage. 

Figure 3-4 An example of an ANN 

Output layer Input layer 

Hidden layers 
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ANN could be used as a part of CAD system and used an ANN combination with 

classifier. ANN can be used for the detection of microcalcifications. Some other 

examples have using ANN are as a full CAD system.  

Paper Procedure Results 

[55] ANN was used for a whole 

CAD system as well as only 

parts of the system.  

Reported a better approach 

where ANN was used in 

conjunction of other methods 

[56] Applied ANN with error-back 

-propagation algorithm 

Sensitivity was increased from 

90%b to 95%. 

[57] ANN was used for detection 

system. 

A 87% detection rate . 
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4 Evolutionary Algorithm  

Evolutionary Computation (EC) is based on nature observations and it involves two 

main subsets: Swarm intelligent and Evolutionary Algorithm.  

Swarm Intelligent (SI) is a technique which is based on the studies around the behaviour 

of self organised systems, the natural example is ant colonies where the groups are 

working with simple rules and there is no centralised control structures, which means 

the individuals are only interacting locally with each other within the environment. The 

interactions between the agents of individuals are often leads to an emergence of global 

behaviour. The expression of SI was introduced by Gerardo Beni and Jing Wang in 

1989 in the context of cellular robotic system [58] .  

The other area is Evolutionary Algorithm (EA). In Artificial Intelligent, EA is a generic 

population based metaheuristic optimization algorithm. The interested area about EA as 

a technique that develops an ability to solve a problem by learning, especially for the 

problems which are extremely complex or with unknown solutions. It is suitable for the 

development of solutions in areas such as image processing, Roger Alsing used genetic 

programming to create specific painting of Mona Lisa [59]. Based on the 

implementation details and the nature of particular applied problems, EA has been 

differed into four major fields Evolutionary Programming (EP), Evolutionary Strategies 

(ES), Genetic Algorithm (GA), Genetic Programming (GP). 
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4.1 Biological principles 

Evolutionary algorithm is based on the principle of Darwin's theory of survival of the 

fittest as well as a number of biological principles. Therefore, an EA is inspired by 

biological evolution such as mutation, selection and crossover. These methods are 

principally the same for the algorithms of EA however they might implement varies in 

each technique.  

4.1.1 Darwin's Theory 

British naturalist Charles Robert Darwin has first made the discovery of evolutionary 

theories. The book "The Origin of Species" in 1859 has explained Darwin's theory in 

details. He mentioned that all species on earth evolved over the time from one or few 

ancestors. There was a widely nowadays accepted idea that human descended from apes 

that descended from other mammals. With all human life this could be traced back to a 

simple form in water.  

There are five observations which he made in nature and these observations have been 

summarised by Ernst Mayr [60]. Firstly, Species have great fertility and produce more 

offspring than they can grow. Secondly, the size of the populations roughly remain the 

same, although loads of the offspring are born, with a significant amount of them not 

surviving. Thirdly, food resources are limited but are relatively constant most of the 

time. All three of these observations show an inference that in such an environment, 

individuals have struggled for survival. The other two observations are : in sexually 

reproducing species, generally no two individuals are identical, variation is spreading 

out, much of these variations is inheritable. 
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From these, there may be inferred that in a world of stable populations, each individual 

must struggle to survive, those with the best characteristics will be survived and the 

desirable traits will be passed over on to their offspring. These good characteristics are 

inherited followed by generations and become dominant around populations through the 

time. It means that all only the individuals which fulfil certain criteria have a good 

chance of survival rate. The concept is called natural selection. By the definition of 

fitness, individuals with greater fitness are more likely to contribute to offspring for the 

next generation, while individuals with lesser fitness are more likely to die early or fail 

to reproduce. It is also referred to this as survival of the fittest. When Darwin mentioned 

these observations, he did not know what the genetics were, however he made basic 

observations about genetic fundamentals. Therefore Darwin's theory of evolution are 

summarised as follows:  

Variation There is Variation in Every Population. 

Competition Organisms Compete for limited resources 

Offspring Organisms produce more Offspring than can survive 

Genetics Organisms pass Genetic traits on to their offspring 

Natural Selection Those organisms with the Most Beneficial Traits are more likely to Survive and 

Reproduce. 

Table 4-1The summarised Darwin's theory of evolution 
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Some variations are helpful. For example, any variation that increases an antelope‘s 

speed may help it elude predators; any variation that increases water retention in a 

desert plant will favour survival rate of this plant in order to reach maturity. Those 

animals and plants which survive to maturity and are able to reproduce become the 

parents of the next generation, passing on the genes for the successful variation.  

Darwin called the process by which benefit variations are passed from generation to 

generation natural selection. He made many important observations on the relationship 

of individual variation to survival. During his stay on the Galapagos Islands [61], 

Darwin noted that the populations of tortoises on each island had physical features so 

that people could often tell which island an animal came from just simply by looking it.  

Natural selection is commonly referred to as survival of the fittest. Fittest means that 

organisms must not only survive to adulthood, but they must also actually reproduce. If 

they do not reproduce, their genes are not passed on to the next generation. Evolution 

occurs only when advantageous genetic variations are passed along and become 

represented with increasing frequency in succeeding generations.  

4.1.2 Biological Background 

A particular characteristic of an organism is evolution and this occurs through changes 

in heritable traits. Inherited traits are controlled by genes and these complete set of 

genes in an organism's genome is called genotype. This complete set of observable traits 

which show up the behaviour of an organism is called phenotype. Many aspects of an 

organism's phenotype are not inherited, because these traits come from the interaction of 

its genotype with the environment.   
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Heritable traits are passed from one generation to the next through DNA which is a 

molecule and it encodes genetic information. [62] Introduced that DNA is a long 

polymer which composed of 4 bases, and the sequence of bases in a particular DNA 

molecule will specify the genetic information. Before a cell divides, the DNA is copied, 

so that both of the two cells inherit the DNA sequence. Genes are a portions of a DNA 

molecule and are used to specify a functional unit , therefore different genes have 

different sequences of bases. In cells, the long string of DNA forming the condensed 

structures is called chromosomes. In a chromosome, locus is the specific location of a 

DNA sequence. If the DNA sequence at a locus varies between individuals, the different 

forms of this sequence are called alleles. DNA sequences can change through mutation 

to produce new alleles. If a mutation occurs in a gene, the new allele may affect the trait 

and finally change the phenotype of the organism. 

 

4.1.3 Biological Methods 

The natural inspired selection, crossover and mutation are the three main methods to 

achieve evolution. They are also giving benefits to achieve minor genetic changes in 

offspring; it means it does not need to produce the exact copies from parents to enlarge 

the search spaces. The success of these methods are dependent on how and which 

technique they are used. Usually selection will be the first to apply, then combination 

and finally mutation.  
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4.1.3.1 Selection 

Selection is the process which allows the best individuals to be chosen for mating. This 

follows Darwin's idea of survival and competition. The unit of selection can be the 

individual or it can be another level within the hierarchy of biological organisation, such 

as genes, cells or even organisms.  

In nature, a certain selection of individuals is taking place, according to Darwin's theory, 

the strongest or fittest individuals survive and the weak individual disappears. One of 

the natural selection examples is choosing the king of lions. For example, the male lion 

will fight to each other to be the king of their group. Once the young male lions reach to 

a certain age, the male adult lion will attack or kill the young lions to make sure he is 

the only male lion in the group. 

Inspired by this concept, selection works similar in programming; it is also the first 

method out of three to be applied to an evolution algorithm. Basically, it takes a certain 

number of individuals from a population, by calculating the best fitness through a 

fitness function, select the individual which has the best fitness score. The fitness 

function is based on what results are expected for. In some case, selection is used to find 

individuals that survive and to get rid of the individuals that are not fit enough. 

However, the chosen individuals are usually selected for reproduction which also 

concludes the mutation and crossover.  

 

http://en.wikipedia.org/wiki/Unit_of_selection
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4.1.3.2 Mutation 

In biology, mutation is "the process or an instant changing of a small part of an 

individual's structure" [63]. In genetics, mutation "changes the structure of a gene, 

results a variant form and may be transmitted to subsequent generations" [63]. In nature, 

mutations occur spontaneously and can be induced.  It could happen as a result of 

radiation under certain environmental factors or as an error that occurs in DNA 

replication.  

4.2 Evolutionary Algorithms (EA) 

An EA is a computational optimisation algorithm which is strongly inspired by 

Darwin's biological evolution concepts.  Each EA consists of a population of potential 

solutions to the optimisation problem which alternated at generations on an artificial 

timeline via mutation and recombination. At each generation, potential solutions are 

selected from population, according to their fitness , so that better population ones are to 

be obtained in the new population. This artificial evolution cycle continues until a 

potential solution has meet the requirements. This cycle is formed in Figure 4-1 as 

follows: 
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4.2.1 Population 

The population in EA is like a number of individuals in biological evolution. Each 

individual of population consist of a genotype. A genotype represent a potential solution 

to the problem. Each genotype consists of a number of genes, each gene consists of a 

parameter or part of the solution. Depending on the types of EA, the population size 

could be different and the number of genes in a genotype can be binary numbers, 

integers, real numbers or possible combination.  

Figure 4-1Evolutionary cycle of an EA 

Generate population 

Evaluate population 

Selection Process Produce offspring 
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4.2.2 Evaluation  

The evaluation stage in an EA is that the individuals of the population are assessed to 

see if they present good solutions to the problem. When using EAs, fitness function is 

used to determine the evaluations and give a reward to an individual, this individual 

could form a solution to the problem.  

4.2.3 Selection  

Once the population has been evaluated and each individual is assigned fitness. The 

selection process takes over. It is inspired by natural evolution, and select member of 

individuals and these individuals will be promoted to the next generation. The actual 

selections varies between EAs but all the selection tries to promote sub-standard 

individuals.  

4.2.4 Reproduction 

Once the individual has been chosen to be parents, they are used to produce a number of 

offspring's so the population is always of an equal size. In order to produce offspring the 

genotype s of the parents undergo crossover/mutation operators. 

The crossover operator exchanges genetic material from two parents to produce two 

offspring. Crossover operator is a dependent on the genotype representation which vary 

between EAs. 

The mutation operator is also very dependent on the genotype representation used by 

the EA, and therefore can vary in its effect on the genotype. In most EAs, both 

crossover and mutation operators are probabilistic and happen at a centre rate in 

genotype. .  
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4.3 Genetic Algorithm 

In the computer science field of artificial intelligence, a genetic algorithm (GA) has 

been mentioned by J.H.Holland from Michigan University, USA in 1975. It is a search 

heuristic which mimics the process of natural evolution. GA is a subset of evolutionary 

algorithm (EA) which generate solutions to optimization problems which using 

techniques inspired by biological evolution: reproduction, mutation, recombination, 

selection and crossover.  

In a typical genetic algorithm, a population of string encodes individuals or phenotype 

to an optimization problem, that‘s because GA is a search based on Darwin‘s theory of 

evolution: 

 Darwin‘s theory of evolution. The most important part of Darwin‘s theory of 

evolution is the survival of the fittest and surviving individuals reproduce, 

propagate favourable characteristics. Each species starts getting more adapted to 

the environment in their development process. The basic characteristics were 

passed over to the further generations, and the off springs mutate to be different 

from their parents. When the surviving environment changes, only those who 

can adapt to the individual characteristics of the environment in order to remains. 

 Mendelian inheritance. It is a scientific theory of the genetics information that 

are encoded in the cells which known as genes in a chromosome. The different 

position of gene is represented in different characteristics. Therefore, the 

individuals which were produced by each genes have some kind of ‗resilience‘ 

to the environment. Mutation and recombination also produced offsprings who 
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could fit the environment better. Followed by the law of survival of the fittest, 

the fitter genetic structure could stay over. 

Therefore, there are several conceptions from evolution and genetic theory.  

 String. This represents as chromosomes or the genotype of the genome in 

genetics. 

 Population. The set of individuals is population, the number of individuals in a 

set is called population size, string is the elements in population. 

 Gene. Gene is the element in the string, it represents the characteristics of 

individual. For example, if a string = 1011, therefore 1, 0, 1, 1 theses four 

elements are called Gene, and their values are Alletes.  

Flow Chart explanation of GA: 

 Create a random initial population: An initial population is created by a random 

selection of solutions. These solutions have been seen as represented by 

chromosomes as in living organisms. A chromosome is a packet of genetic 

information organized in a standard way that defines completely and individual 

solution. The genetic structure enables the solution to be manipulated. The 

genetic operands enables the solutions to reproduces and evolve. 

  Evaluate fitness: a value for fitness is assigned to each solution depending on 

how close it actually is to solve the problem. Therefore the problem is needed to 

define and model it, simulate it or have a data set as sample answers. Each 

possible solution has to be tested in the problem and the answer is evaluated on 
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how good it is. The overall mark of each solution relative to all the marks of all 

solutions produces a fitness ranking. 

 Produce next generation: Those chromosomes with a high fitness value are more 

likely to reproduce offspring; the population of next generation will be produced 

using the genetic operators. Reproduction by copy or crossover and mutation 

will be applied to the chromosomes according to the selection rule. This rule 

states that the fitter and individual is , the higher the probability it has to 

reproduce.  

 Next generation or termination: if the population in the last generation contains a 

solution that produces an output that is close enough or equal to the desired 

answer then the problem has been solved. If this is not the case, then next 

generation will go through the same process as their parents did, and the 

evolution will continue. A termination criterion that always must be included is 

time out. Since one drawback of Evolution Programming is that is very difficult 

to know if the ideal termination criterion is going to satisfied or when . 

 

4.3.1 Genetic programming 

Genetic programming (GP) is a biological evolution inspired methodologically that uses 

computer programs to perform a user defined task, it is a specification of Genetic 

Algorithm where each individual is computer programmed.  

Genetic programming (GP) is the newest group member of EA. GP started to become 

more widely known after publication of John Koza‘s book in 1992 Stanford 
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University,USA. He mentioned that programs are expressed in GP as syntax trees rather 

than code line, e.g. as LISP and used this LISP expression for solving a differential 

equation. [64]Nowadays LISP is still widely used by researchers in AI. 

In 1981, Forsyth use GP as artificial intelligence, he used the primitive functions such 

as AND, OR, NOT and the arithmetic operations +,-, times and multiple to predicting 

British soccer results. In a syntax tree, programs can be written in the form of trees data 

structure. For example, the simple expression min((a+b),(a-(c*d)) becomes: 

                          (min (+ a b)(- a ( * c d))) 

The basic tree program representation used in genetic program is shown in figure 4-2. In 

the notation , it could see the expression and their syntax trees could be seen. In this 

example the program represented by the tree is equal to 𝑥3 + 2𝑥2 + 3𝑥 + 4.  The 

terminals "x" and "1" are in square background, the nodes "+" and "×" have a square 

shaped background.  
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 Figure 4-2basic tree as program representation used in genetic programming

The tree includes nodes and links, the node indicates the instructions to execute such as 

+,-. The links indicate the arguments for each instruction. In more advanced forms of 

GP, programs can be composed of multiple components therefore the representation 

used in GP will be a set of trees grouped together under a node called root, all the 

individual tree will be called branch.  

Just like in any other Evolutionary Algorithm, Genetic Programming works according 

to evolutionary principles. This includes using techniques like selection, mutation and 

crossover. In term of selection it needs to be differentiated between parental selection 

and survival selection. While the survival selection is based on a generational 

replacement, the parent selection is strictly executed on the bases of their according 

fitness. The excitation of mutation in GP has been introduced as a random change 

within the tree structure, based on fitness, parents have been selected probabilistically 
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for mutation. On each node of parent, mutation operation randomly pick up a node and 

detect sub tree at the picked node, this node will be seen as mutation point and the then 

new sub tree at this point has been grow in same way as generated trees for initial 

random population. The offspring produced by mutation is a syntactically valid 

executable program. It has turned out that selection and mutation work quite well for 

GP.  Crossover has been implemented as an exchange of sub-trees, there are two 

versions of crossover operations: sexual recombination and two offspring version.  

sexual recombination operation occurred on two parents which have been selected 

probabilistically based on fitness, then randomly pick a node from each of the two 

parental programs. Then these two sub trees have been switched and rooted at the two 

picked points.  The other crossover operation happened on  two offsprings.     There is a 

downside of crossover which is it allows any branch of a tree to be exchanged with any 

other brand of another tree. Therefore the resulting children are not of the same size as 

their parents. The effect of the growing size of trees have been described as bloat and is 

the most commonly described side effect of crossover in GP. Many researchers have 

been trying to find solutions to avoid bloat while introduce crossover.                                                                                                                                                                                                

4.4 Cartesian Genetic Programming  

Cartesian Genetic programming was first developed by Julian Miller [65][3] for the 

purpose of evolving digital circuits. The name of Cartesian Genetic Programming first 

came up from [66] in 1999 by representing a program of two dimensional array as 

‗Cartesian‘ and was proposed as a general programming form of genetic programming 

in 2000 [67]. Rather than using trees representing computer program it uses n-

dimensional array (typically n is 1 or 2) or network of functions, it could be seen as 
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genetic programming generalized from trees to acyclic graphs where the nodes and 

edges connections are functions. The functions are not in the form of programming 

language, they can be the simple logic gates such as AND gate. The advantages of CGP 

are: implicit reuse of expression due to its graphical representation; reuse of functional 

redundancy. [68] 

4.4.1 General form of CGP 

CGP representation consists of a network of nodes, where each node is having the same 

number of inputs and one output. The dimensions of the network have to be specified to 

fulfil special needs if necessary. For a successful application it is, however , advisable to 

have more than just one column as the network nodes will have to use the outputs of 

previous nodes, which is not possible if all nodes are arranged in one column. However, 

if all nodes are arranged in one single row the nodes have the maximum number of 

possible inputs. Although some say this arrangement is the idea one for CGP, there are 

also arguments for using multiple rows. One advantage of having multiple rows is for 

example an easier implementation in hardware should one decide to built some 

application.  

Each node consists of a basic set of information: inputs and functions. Each network of 

nodes has a certain number of inputs and usually one output, although multiple outputs 

are possible. For each component it is possible to bind to any other component that is 

further towards to the input.  It is not possible to bind any component in the same 

column because this would lead to potential recursive loops, this is forbidden in CGP. 

An example of such a network is showed below: 
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In this example, there are 3 inputs to the overall network, which in this case is one 

dimensional. The outputs of the nodes are normally not specifically stated but were 

added in brackets in this example. The outputs are then used as inputs for later 

components. The first two numbers are the two inputs that are used in each node. The 

third number in roman number is the function which needs to be defined in a separated 

function set. It is known that the function set of this example must has at least 3 

functions. It is possible that not all nodes or inputs are used to produce the output. In 

fact. in some cases it can happen that the input is connected directly to the output. I the 

given example the node providing output 11 is not used for producing the network 

output and is therefore redundant. One major difference between GP and CGP is that 

CGP has a limited number of available nodes and has the ability to reuse data rather 

than processing the same data twice. In GP, not possible to reuse data because this 

means that smaller branches would be used by some bigger branches ones. This reuse in 

code can reduce bloat as one operation only implemented once, rather than once for 

every branch. CGP thus remains a constant size and presents a certain flexibility. 

Because of this, a simple change in CGP could have a much wider impact on the result 

than GP.  

inputs: 0 1 2 

output:  10   

1 2 III (3)  0 0 I (4)  0 1 III (5)  3 4 III (6)  4 5 II (7) 2 7 I (8)  6 7 I (9)  8 9 II (10)  6 8 II (11) 

Figure 4-3 An example of CGP genotype 
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A mutation operator used could alter both the present function within a grid cell and the 

connection between components. For example, Mutations can make active genes 

become inactive and inactive genes becomes one of the several things that can happen. 

This is beneficial in evolutionary search. [74][10]  

In CGP either the inputs to a node might be mutated or the function used to calculate the 

nodes output from these inputs. The mutation impact is therefore dependent on the 

position and the kind of the mutation. The type of mutations shows as below ;  

Type of genes: Type of mutations: 

Function gene Gene will be mutated to a new 

random chosen function from valid 

functions.  

Connection gene Gene will be mutated to a new valid 

random chosen connection gene. 

Output gene  Gene will be mutated to a new valid 

output connection. 

An example is showed below in Figure 4-5 and the equivalent tree structure of CGP in 

figure 4-6 
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inputs: 0 1 2 

output: 6  10   

1 2 III (3)  0 0 I (4)  0 1 III (5)  3 4 III (6)  4 5 II (7) 2 7 I (8)  6 7 I (9)  8 9 II (10)  6 8 II (11) 

inputs: 0 1 2 

output: 11   

1 2 III (3)  0 0 I (4)  0 1 III (5)  3 4 III (6)  4 5 II (7) 2 7 I (8)  6 7 I (9)  8 9 II (10)  6 8 II (11) 

Figure 4-4 An example of the genotype of CGP 

Figure 4-5 Equivalent tree structure of CGP 
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In this example, the only parameter that has been mutated and has changed is the 

networks output, which has been mutated from node 10 to 11. Node 11 has not been 

used previously and has changed from being redundant to being in use while node 9 and 

10 have been made redundant. It is also very obvious that one simple mutation had a 

very severe impact on the function structure. It shows that mutation can have minor as 

well as major influence on the networks structure and therefore has ability to produce 

rather diverse offspring. Therefore, mutation is a powerful operator of
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4.4.2 Decoding a CGP genotype 

In the decoding process, inactive genes in non-coding genes are not processed. Figure 

4.6 shows how the CGP genotype is decoded to produce a phenotype.

 

Figure 4-6an example of decoding procedure for a CGP genotype for the two bit multiplier problem from [8] 

(a) Output OA connects to the output of node 4, move to node 4. 

(b) Node 4 connects to the program inputs o and 2, therefore output OA has been 

decoded, and move to output OB. 
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(c) Output OB connected to the output of node 9, move to node 9. 

(d) Node 9 connected to the output of node 5 and 7, move to node 5 and 7. 

(e) Node 5 and 7 connected to the program inputs 0, 3, 1 and 2, therefore output OB has 

been decoded, and move to output OC. 

(f) Output OC connected to the output of node 12, move to node 12. 

(g) Node 12 connect to the output of node 8 and 11, move to the node 8 and 11. 

(h) Output of node 11 connected to the output of node 5 and 7, node 5 , 7 and 8 

connected to the program inputs of 0,1,2 and 3, therefore output OC has been 

decoded and move to output OD. 

The procedures continue until output OD has been decoded (step (i) and (j) 

respectively, when all outputs are decoded, the genotype is fully decoded.  

4.4.3 Evolutionary Strategy   

In CGP, a form of μ+λ evolutionary strategy (in general μ=1, λ=4) is often used, this 

give a population size of μ+λ. The μ value indicates the number of individuals promoted 

to the next generation as parents and the λ value indicates the number of offspring 

generated from the promoted parents. [9][7] [75][11]  

This has the form: (For example of 1+4)  

 randomly generate the population size of 5 programs  
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 calculate the fitness of the population  

 select the fittest of the population as the parent  

 Mutate the parent to generate 4offspring to form the new population  

 Select a new parent, by following:  

If any offspring have the best fitness which is better than the parent, this offspring 

becomes the new parent  

Else if there are many offspring have the same fitness as the parent, one of them has 

been randomly chosen as the new parent. Due to CGP chromosome have large number 

of inactive genes, so with small numbers of mutation different, population members 

could decode to the same phenotype.  

Else the current parent remains as the parent.  

A Recombination (Crossover) doesn‘t seem to add anything [7], however if there are 

multiple chromosomes with independent fitness assessment then it helps a LOT. [9]  

Each functions are chosen to use on the CGP network and will have an important effect 

on the fitness achieve. In this project, considering that the Pattern recognition is 

normally evolving mathematical techniques; therefore a good selection of mathematical 

functions would be necessary. There is no way to be sure which function is the ideal 

without experiments but the functions available could make a lot of potentially varied 

and powerful networks to be evolved.  
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CGP has been shown to perform well within a wide range of problem domain. The 

applicants of CGP so far: Digital Circuit Design, Mathematical functions, Control 

systems, Image processing, Medical diagnosis, Bio-informatics, Developmental Neural 

Architectures, Evolutionary Art, Artificial Life, Optimization problems.[7] 

4.4.4 Example of CGP 

CGP can represent many different kinds of computational structures. The example is the 

initial aim of CGP, using CGP genotype to encode a digital circuit. Figure 5.4 shows a 

CGP genotype and the corresponding phenotype that across in the evolution of a 2-bit 

parallel multiplier. 

 

Figure 4-7A CGP genotype-phenotype for a 2 bit multiplier circuits [copy from [76][12]] 

In this graph, CGP genotype parameters are: 
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nc = 10,   nr = 10,  l = 10. 

The CGP genotype represents a digital circuits for two bits parallel multiplier, it 

multiplies two by two bits number together, therefore, this circuit contains four inputs 

and four outputs, there are four logic gates which are represented as primitive functions 

in function set. The underline function genes in the genotype encodes the function of 

each node, from the look-up function table, the functions are: AND(0), AND with one 

input invert (1), XOR(2) and OR(3). The addresses are shown in each program input 

and node in the genotype and phenotype. Node 6 and 10 are inactive areas of the 

genotype and have been shown as grey.  

4.4.5 Strengths and weaknesses of CGP 

CGP has the strength that no assumptions are made, since it is GA based, it works by 

randomly searching the full solution space allowing solutions to occur that could not 

occur with conventional techniques. One of the most powerful techniques at the 

moment in image processing is the use of wavelet. Effectively a transformation similar 

to Fourier Transform but in this offer, both scale and frequencies information instead of 

just spatial domain information or just frequency, proven by M.Sifuzzamanln‘s article 

called ‗Application of Wavelet Transform and its Advantages Compared to Fourier 

Transform‘. However whilst being sophisticated it is still quite conventional with 

implementation involving blocks of filter banks. For the basis or mother wavelet only 

one of 3 or 4 families (such as Haar wavelet) tend to be used because a lot is known 

about them, not just because it is the best for the problem. CGP is far less conventional 

and solutions could involve what appears to be random arrangements of adders, 

multipliers, filters, comparators, functions to calculate means or else. 
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CGP has been shown to perform well within a wide range of problem domain. In 

Miller‘s lecture notes about CGP, it shows that the applicants of CGP so far: Digital 

Circuit Design, Mathematical functions, Control systems, Image processing, Medical 

diagnosis, Bio-informatics, Developmental Neural Architectures, Evolutionary Art, 

Artificial Life, Optimization problems.  

CGP has proven useful in image processing [71]already, for example, it has been found 

useful effectively in removing noise from an image, and it is quite likely that it can be 

used in processing mammogram. 

4.5 Multi-Chromosome CGP Network 

Multi chromosomes have been used in a number of ways within GP. One of the first 

was by Hillis [77] . He co-evolved genotypes comprising 15 pairs of chromosomes to 

produce minimal sorting networks that were capable of outperforming human designs. 

Cavill [78] discovered that the use of multi-chromosomes and also having multiple 

copies of chromosomes within the representation is advantageous to evolution on 

symbolic regression problems. Using a 2-stage crossover operator , similar 

chromosomes from 2 parents are paired using chromosome shuffling and then a n-point 

crossover is used to exchange material between the pairs of chromosomes. 

4.5.1 Multi-Chromosomes Representation  

The difference between CGP and a multi-chromosome CGP network is that the multi-

chromosome CGP genotype is divided into a number of equal length chromosomes, 

each chromosome could see as an individual single chromosome CGP network. The 

Number of chromosomes present in the genotype of an individual is depended upon by 
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the number of program outputs required by the problem, as each chromosome is 

connected to a single program output. This allows that a large difficult problem with 

multiple outputs to be broken down into many smaller problem with an individual 

output. The idea of it is making the problem easier to solve. By allowing each small 

problem to be encoded in a chromosome, the whole problem is encoded in a single 

genotype. Each chromosome contains an equal number of nodes, and been treated as a 

genotype of an individual with single program output. As an example of multi-

chromosome CGP genotype showed in Figure 4-6: 

 

4.5.2 Multi-Chromosome Evolutionary Strategy 

Rather than assigning a single fitness value to a number of program outputs, as in single 

chromosome CGP, a fitness value is assigned to the output of each chromosome in 

multi-chromosome CGP, as each chromosome's output is also a program output.  

C3 

C1 C0 

0 0 2 2 5 6 ... 0 1 3 3 3 1 ... 

3 6 9 2 5 6 ... 

95 21 14 

Figure 4-8 an example of a Multi-chromosome CGP network encoding 

a 2 bit multiplier with four outputs (Oc0 - Oc3 ) containing four 

chromosomes (C0 - C3), each consisting of 20 nodes. 

Oc1 Oc2 Oc0 

200 

Oc3 

1 20 21 40 

41 60 



94 

 

In [77], it shows that the (1+4) multi-chromosome evolutionary strategy selecting the 

best chromosome at each position from all of the individuals in the population and 

generates a new best generation of individuals, containing the fittest chromosome at 

each position. The new best of generation individuals may not exist in the population, as 

it is a combination of the best chromosomes from all the individuals. This is so it could 

be thought of as a super individual. The multi-chromosome (1+4) evolutionary strategy 

behaves as it selects the best parts from all the individuals. The overall fitness of the 

new individual also is better or equal to the fitness of any individual in the population 

from which it was generated.  

 

4.6 Advantage of EA in mammography 

Classical image process are capable of dealing with the tasks like detection and 

classification. The major difference between EA and image processing is their structures. 

Classical image processing is based on the sequential use of existing filters and 

functions, providing solution to problems have already been solved by means of 

mathematical manipulation. Programmer needs a full understanding of the problem as 

well as the processes in which the functions and filters are used. So programmer can use 

the functions or filters in a correct order with effective parameters and all these are 

needed to solve the given problem. 

EA learns to perform the tasks and build their own internal structures with no 

consequences to the programmer. The programmer may have no understanding of how 

the algorithm processes from the given data, giving the algorithm some variability. EA 
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could deal with complete different problem. It has the ability to learn to deal with new 

situation. It may be able to change the application from one to another.  

EA is suitable for complex structure problems since it learn to evolve from a solution to 

a problem.  

The particular area of mammography is extremely complex and is therefore ideal for 

evolutionary methods. There is a main restriction for those evolutionary methods is 

presented by the available database. As they have major influence on an algorithms 

performance great care needs to be taken when making a decision for a database to be 

worked with .  
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5 Mammography Datasets 

The performance of any algorithm is only as good as the data it is trained on. More 

specifically the classes represented in the training set must consist of true examples or 

else a reliable classification will be difficult, if not impossible to achieve. This presents 

a challenge for medical applications especially where the condition under investigation 

is difficult to diagnose. Therefore, an understanding of mammograms dataset has been 

considered in this research. This chapter introduces the properties, limitations of 

medical dataset, especially for mammograms. Then the dataset which is used for 

training and testing the algorithm has been introduced. 

5.1 Medical Dataset 

Medical dataset is an organised collection of data, typically in digital form for machine 

learning. The data is typically organised to model relevant aspects of reality, they are 

applied to support processes requiring the information.  

It is essential to have data sets to support the research on the detection of breast cancer. 

There are four main reasons that datasets are not only needed but also required to be 

used in this particular thesis, shown in the following. 

 Training of learning algorithms 

Machine learning algorithm is a branch of artificial intelligent, it focuses on 

prediction based on known properties learned from training data. For example, 

as evolutionary algorithm, the performance of any EA is only as good as the data 
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it trained on, therefore a completely clear, fully detailed image data set could 

lead a better training performance of evolution algorithm. 

 Evaluation of new classifiers: 

Datasets are commonly used to evaluate new classifiers. Also to investigate 

specific properties including existing conditions and clinical features of the 

mammographic datasets which are used to evaluate a new classifier - Cartesian 

Genetic Program (CGP) in CAD systems.  

 Characterisation of different medical conditions 

Different diseases have different medical conditions with the specific symptoms 

and signs. Therefore, different datasets are more like a container to model 

different specific medical conditions. A lot of scientific research is based on the 

gathering and analysis of measurement data, especially for medical image 

research. Datasets including models and parameters are important and 

sometimes can be seen as the primary intelligent input of the research because 

they cannot be reproduced and will be necessary for longitudinal research or to 

test or check for further insights in the future.   

Medical imaging widely accepted as a special case due to its reliability. Medical 

decisions are based on the clinical tests which provide huge amount of data on patients 

and their medical conditions. For example, a pathologist analyzing biopsies to decide 

whether they are malignant or not, the radiologists planning a sequence of radiation 

doses is searching for the harms. The sizes of medical datasets varies and depends on 

several conditions such as spatial distributions, collection strategies, time consuming 

issues, etc.  
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Medical dataset drives from reality and it is not easy to simply build up. The medical 

dataset usually involve subjective clinical assessment, and often there is  no definitive 

clinical test for every  condition under investigation.  

This section provides an overview of medical image datasets for early detection of 

breast cancer. Four publically available datasets of mammograms have been introduced 

in section 5.2. Finally, a suitable new dataset for developing a novel evolutionary 

algorithm for classification of microcalcifications in mammogram is constructed in 

section 5.3.  

5.2 Medical Datasets for Detection of Breast Cancer 

There are a varieties of datasets for clinical breast cancer diagnosis and research. 

These includes  information of stages, ages, pathologic record, results of physical 

exams and recent images are included.  Research shows that early detection of 

breast cancer could improve survivals. Breast cancer screening is one kind of cancer 

screening which has been provided for an early diagnosis of breast cancer. A 

number of screening tests have been employed including: clinical and self-breast 

examinations, mammography, ultrasound, and magnetic resonance imaging. 

Following the procedure of breast screening, there is a  wide range of dataset 

modalities commonly used in clinical practice including, classic x-ray based 

mammographic image, magnetic resonance imaging which is a three-dimensional 

imaging modality more sensitive to soft tissue, ultrasound which is using high 

frequency sound wave to produce images; the parameters which have been used to 

classify breast cancer and to indicate cancer stages; the biopsies for getting tissue 

sample with information about fine-needle aspiration, nipple aspirate and ductal 
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lavage; The  traditional modalities as case notes from radiologists, oncologists  and 

pathology report are also included.  

 

5.2.1  Characteristics of Breast Cancer 

Once the cancer has been confirmed, the information includes the stage of the 

breast cancer in pathology report and it is important for doctors to make a plan of 

treatment. The stages cover the range of whether breast cancer is limited in one area 

of breast  or if  it has already spread into healthy tissues inside the breast or other 

parts of the body. There are several characteristics that can be assigned as local, 

regional and distant to determine the stages of breast cancer: invasive and non-

invasive cancer, the size of the cancer, cancer is in or not in the lymph nodes, 

whether the cancer has spread to other parts of the body. 

 The size of the cancer: size indicates how large the tumour is at its widest point. 

Doctor measures the tumour in millimetres or centimetres. The size is used to 

help the radiologist to determine the stages of the breast cancer. However it 

should be noted that the size of the tumour is not everything, because a small 

size tumour could be aggressive while the large one not.  

 Cells in Lymph nodes: as mentioned in section 2, they are easily affected by 

breast cancer cells, therefore, before the surgery to remove an invasive breast 

cancer, an examination of the lymph nodes will be involved. The more lymph 

nodes that contain cancer cells, the more serious the cancer might be. 

 Spreading: Whether the cancer has grown to other parts of the body beyond the 

breast. 
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 Invasive or non-invasive breast cancer: Breast cancer normally starts to grow 

from two parts, either in the lobules cells which are the milk producing glands, 

or the ducts which are the passages which drains milk from the lobules to the 

nipple. Non-invasive cancer sometimes is called carcinoma in situ, it stays in the 

milk ducts or lobules in the breast and do not grow into normal tissues or cross 

the edge of the breast. Invasive cancer does grow into healthy tissues. Most of 

the breast cancers belong to the invasive cancer type, however it really depends 

on the patients' treatments and how the patients respond to the treatments. Figure 

5-1 and 5-2 shows the differences of the normal cells, non-invasive cells and 

invasive cells of breast cancer.       

 

 

                                                                                                                                                                                                                                                                                                             

 

 

 

 

 

Figure 5-2Invasive cell from [127] 

 

Figure 5-2Non-invasive cell from [127] 
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Cancers do not always remain as single invasive or non-invasive. That means part of the 

cancer has been grow in normal breast tissues, part of the cancer and part of tissue has 

been spread in other parts of the body. In most cases, breast cancer can be classified as 

follows:                                                                                                                                                          

DCIS (Ductal Carcinoma In situ): DCIS is the most common non-invasive breast 

cancer which stays inside the milk duct. Ductal carcinoma in situ (DCIS) is a sign that 

cells in some ducts of the breast have started to transform as cancer cells. It is a 

preliminary stage to invasive cancer. ‗In situ‘ means that cancer is ‗remaining confined 

to the duct‘. DCIS develops from a normal duct that would typically have one layer of 

cells as an outer boundary. If the cell developed more than should and form an 

additional regular layer around the boundary the condition would be called Hyperplasia. 

If additional cells of a hyperplasia takes an irregular form, the condition is called an 

atypical hyperplasia. If the condition keeps growing uncontrolled, it is called DCIS. It is 

important because it is close to the stage on early detection of breast cancer. Even it is 

not developed into cancer yet, most cancer grows in ducts, if untreated, DCIS leads I 

about 30%-50% of all cases turns into invasive cancer [12].   

LCIS (Lobular Carcinoma In Situ): LCIS is an overgrowth of cells that stay inside 

the lobule. It is not a true cancer; more like a warning sign of an increased risk for 

developing an invasive cancer in the future. 

IDC (Invasive Dutal Carcinoma): The most common type of breast cancer, invasive 

ductal carcinoma begins in the milk duct, has grown into the surrounding normal tissue 

inside the breast. 

http://www.breastcancer.org/symptoms/types/lcis/
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ILC (Invasive Lobular Carcinoma): ILC starts inside the lobule but grows into the 

surrounding normal tissue inside the breast. 

Inflammatory Breast Cancer: Inflammatory breast cancer is a fast-growing form of 

breast cancer that usually starts with the reddening and swelling of the breast, instead of 

a distinct lump. 

[78] estimates that 90% of all breast cancers are ductal cancer and only 10% are lobular 

cancer.                                                  

The stages of cancer represent how big the cancer tumour is and whether the cancer has 

spread. The stages are important because they help the professionals to make the best 

treatment plan for the patients. The main types of staging system are the number of 

systems and the  TNM (Tumour, Node, and Metastasis)  system which is the system for 

providing more details about how the cancer looks and behaves. These two types of 

staging systems are shown on table 5-1 and 5-2. 

 

 

 

 

 

 

http://www.breastcancer.org/symptoms/types/ilc/
http://www.breastcancer.org/symptoms/types/inflammatory/
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Table 5-1TNM staging system 

Letters:  

Category: Description 

T : Size 

TX Tumour cannot be measured or found. 

 

T0 There is no evidence to show the primary 

tumour. 

 

Tis Cancer is ‗in situ‘,  means that the tumour has 

not started  to grow into other parts of the body. 

 

T1-4 1 to 4 represent the size of the tumours and the 

chance that tumour could extend to chest wall or 

skin.   

N:  

Lymph node 

involvement 

NX Tumour cannot be measured or found. 

 

N0 There is no evidence to show the primary 

tumour. 

 

N1-3 1 to 4 represent the size of the tumours and the 

chance that tumour could extend to neighbouring 
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breast tissue.  

M: Metastasis 

MX Metastasis cannot be found. 

 

M0 There is no distant metastasis. 

 

M1 Distant metastasis is present. 
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Table 5-2Number staging system 

N umbers:  

Category: Description 

Stage 0  Non-invasive breast cancer 

Stage 1  The tumour is smaller than 2cm; 

No  cancer cells in lymph node; 

The cancer has not spread from breast. 

Stage 2 2A Tumour is smaller than 2cm and has spread to 

lymph node; or tumour is bigger than 2cm but 

smaller than 5cm and has not spread to lymph 

node. 

 2B Tumour is smaller than 5cm and has spread to 

lymph node

or tumour is bigger than 5cm but has not spread 

to lymph node. 
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Stage 3 3A there is no tumour in breast, and cancer in lump 

node is smaller than 5cm ad has spread to lymph 

nodes

 3B There are cancer cells in lymph nodes and the 

cancer has spread to the tissue nearby the breast 

and may attach the skin or muscle which is 

surrounded. 

 3C The cancer has spread to lymph nodes and below 

the breastbone, near the neck or under the 

collarbone. 

Stage 4  Metastatic invasive breast cancer which has 

spread over breast and lymph nodes to other 

organs of the body. 
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5.2.2 Mammogram Datasets Properties 

A number of range of screening methods commonly used in clinical practice include 

mammography, MRI, Ultrasound which to achieve an earlier diagnosis. The dataset of it 

is an important dataset in the whole breast datasets. These varieties of breast screen give 

different properties of breast screening dataset in which the mammogram dataset plays a 

very important role. Therefore mammogram dataset plays a very important role in 

breast screening datasets. Most of the public mammogram datasets are digitized, 

because digital mammography overcomes several technologies limitation associated 

with screen film mammography. This section identifies several aspects of the image 

characteristics of mammogram data, including intensity properties such as contrast, 

spatial properties such as texture and structure properties such as breast density

5.2.2.1 Full Frame Digitized Mammogram 

 Overview 

The images in mammogram dataset are in digital form, it could be achieved by either 

digitizing the screen film mammograms or using the digital mammogram machine. 

Digital mammogram is and will rapidly be forming the basic of modern radiology 

process to replace the traditional filmed radiography in many health institutions. Digital 

mammogram data is a capture in digital form, it means that the digital mammogram 

data are sampled spatially and in signal level.  

The most significant property for digital mammogram is it separates the process of 

image acquisition from the image storage, image display. This helps to optimize of each 
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of the separated functions and give flexibilities in the adjustment of image display 

characteristics. A well optimized digital mammogram data provide these advantages: 

These dataset has more efficient acquisition.  

 Digital mammogram data is captured in numerical form. 

 The amount or characteristics of X-ray exposure does not affect the control of 

display brightness and contrast. 

 Digital mammogram could use image processing to adapt data for matching 

visual performance such as eyes, and also could overcome limitation of the 

display devices. 

 The digital mammogram data could be used to evaluate and compare the 

performance of a number of technologies such as quantitative imaging 

techniques, Computer aided diagnosis system, contrast imaging, 

telemammography. 

 Digital mammography or full frame digitized mammography has the abilities to 

remove other structural pattern such as fixed noise.  

To record digitized mammogram, the equipment need special x-ray detectors to perform 

digitized mammogram.  [79] stated that digital detectors have properties on increasing 

efficiency on absorbing the incident x-ray photons, a linear response over a wide range 

of radiation has enhancement on visibility of subtle contrast differences between the 

normal background tissue and tumour. 

In several public datasets, they use different digitizer to digitize the screen film 

mammograms. For example, The Digital Database for Screening Mammography 
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(DDSM) database used four different digitized scanners with different sampling rates to 

digitize the screen filmed mammograms. They have different grey levels:  

Table 5-3 The sampling rate, number of gray levels (M. Heath, 2000) 

Digitizer Sampling Rate (microns) Gray Levels (bits) 

DBA M2100 ImageClear 42 16 

Howtek 960 43.5 12 

Lumisys 200 Laser 50 12 

Howtek MultiRad850 43.5 12 

 

 Spatial Sampling Properties  

Both the spatial and intensity distribution of the X-ray transmission pattern are sampled 

to form the digital mammogram. For digitized mammography, in spatial domain, the 

interval between pitch samples and the response profile of the detector element (del) 

will determine the spatial resolution of the imaging system [80]. The basic difference 

between the detectors used for both screen film mammography and digitized 
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mammography is that the signal varies more or less continuously in spatial and intensity 

domains for screen film mammograms, however the analogue signal is sampled from 

the detector of a digital mammography system. In mammogram dataset, the data spatial 

sampling has been achieved by different detectors using different approaches; however 

there are some important common concepts to all systems. For example, a detector has 

been divided into detector elements which are also called del. In image acquisition, 

every signal detector element provides one or a set of discrete X-ray measurements. 

These measurements are used to contribute to the image data. Figure 5-3 has showed a 

simplest example, the signal from one del will provide the information displayed in one 

pixel of the final image. The del will array at centre to centre distance or pitch p. A 

detector element contains an active region whose dimension is d. Dels are spaced at one 

pitch p, non-sensitive edge area on del, the fraction of the area which is sensitive to X-

rays (𝑑2/𝑝2), can be less than 1.   

 



 

Figure 5-3 The concept form of detector element and spatial sampling from [80] 

d 

d 

Detector element pitch p 
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[81]  mentioned that digitization improved abilities of detection larger, low contrast 

subject, but did not change on small objects. His experiment also approved that to a 

relatively low spatial resolution of 0.1 mm /pixel does not achieve high quality 

diagnosis performance in digital mammography.  

5.2.2.2 Image Properties of Mammogram Data 

 Image properties 

Spatial resolution is measured commonly in line-pairs per millimetre (p/mm) or cycles 

per mm, and is used for indicating the size of the smallest visible object structure by 

using a low kilo voltage and high mAs value. In the meanwhile, it increases the contrast 

while reducing noise which are the conditions that are very different from the exposure 

parameters used in diagnostic setting. Spatial resolutions improve the sharpness of the 

images and allow better detection performance on a really small detailed image. Spatial 

resolution is measured by a X-ray phantom through the alternating bars and spaces. A 

high spatial resolution improves the morphological analysis of microcalcifications [82].  

5.2.2.3 Ages

In the case of breast cancer, most statistics show that there is a steady increase of 

incident cases in the group of women from 50 to 70 years old. Therefore, EU 

recommends that breast cancer screening for women between the age of 50 to 69 

[83] .In the member states of EU, the target age for breast cancer screening varied from 

47 to 74 years old. In the UK, the National Health Service (NHS) invite all women 

between 50 and 70 years old for breast screening on every three years [31].Also, the 

women aged over 70 are not explicitly invited to screen, however they still can arrange 
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screening if they want. It needs to noticed that, in UK, NHS has started to extend their 

breast screening programme to invite women in their late 40s and up to 73 years old, 

and this is expected to be completed by 2016.  

                

 

Figure 5-4 Average number of cases per year and Age specified incident rate per 100,000  in UK 2011-2013 

copy from [85]  

According to Figure 5-4, age groups from 50 to 70 years old still remains at the main 

peak values. Other age groups around the NHS screening age group also have a high 

risk in breast cancer development, therefore it is reasonably understandable for NHS to 

rearrange the age group from 50-70 years old to 47-73 years old, since the age group 

between 45 to 49 years old also has a high average number of breast cancer cases and 

incident rate. In addition, the age group of female above 70 years old are still welcome 

to  attend the screening programme and there is no age limitation for older women on 

their breast screening.  That is because it is easier to catch the disease in older women, 
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therefore, there is also a disagreement about the usefulness and benefit of screening for 

women older than 70. There is a discussion about whether women around 40s should 

join the screening routine all over the world. There is no significant evidence to show 

that women in their 40s should be screened, however [84] used two different databases 

and reported that mammography screening reduces breast cancer mortality by 15% for 

women aged 39 to 49.   

The world health organisation (WHO) compared the 10 most common causes of  death 

by country and income group for women between 20 to 59 years old [85] .  There were 

223,000 deaths of women who were aged 20 to 59 caused by breast cancer worldwide. 

It was the sixth most common cause of death worldwide for women aged 20 to 59. The 

further statistics followed up by comparing the 10 most common causes of death in a 

country by income catalogue. In women aged 20 to 59, breast cancer was the fourth 

cause of death for women in mid-income countries; and the first common cause of death 

in high-income countries in other words western countries. [29] show that breast cancer 

mortality in the geographical distribution of the EU, where breast cancer occurrences 

appears mainly in Western, Middle and Eastern parts of  the EU. UK has the highest 

mortality rates of cancer occurrences while Netherlands, North-Western France, 

Western Germany, the Czech Republic, Hungary, and parts of Romania and Bulgaria 

also present high rates; whereas, north and south of that band has lower mortality rate.  

5.2.2.4   Reliability 

Mammogram is a high contrast, high resolution film and designed specifically for 

creating a detailed image of the breast. There are eight typical kinds of abnormalities 

revealed with a mammogram which have been mentioned in Chapter 2. Usually, a 
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mammographic abnormality is followed up first by additional imaging studies such as 

Ultrasound, and if the area is suspicious a sample of tissue may be sent for biopsy. The 

leading risk factor for the development of breast cancer is being a female.  The second 

important risk factor is age.  

 Sensitivity 

Sensitivity of mammogram is in the proportion of breast cancer that can be detected 

when the breast cancer exist. Sensitivity relies on a number of factors, such as lesion 

size, breast tissue density, and age, the hormone state of the tumour, image quality and 

skill of the radiologists. According to the Cancer stats report about breast screening in 

UK in 2003 [86], the sensitivity of mammograms for women aged between 50 and 69 

have been estimate to be from 69% to 90%, for women aged 40 to 49, the sensitivity is 

lower at about 62% to 71%.  

However, mammography is less effective in finding cancers in women younger than 50 

because the breast tissue is still denser compared to the fatty breast tissue for women 

over 50. Therefore, the early stage breast cancers in young women are harder to find by 

using screened mammograms. [87] shows that young women have more false positive 

mammograms and additional imaging but fewer biopsies than older women. [88] did 

one study about the  examination of 576 women who had invasive breast cancer 

following a mammogram to determine whether it was denser tissue, or that faster 

growing tumours for young women could cause lower sensitivity. They found that 

―greater breast density explained most (68%) of the decreased mammographic 

sensitivity in younger women at 12 months. Whereas at 24 months, rapid tumour 

growth and breast density explained approximately equal proportions of the interval 
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cancers.‖Research shows that the use of computer aided diagnosis systems may help to 

diagnose more breast cancer using mammography. 

 Positive Predictive Value 

Although the use of the mammogram has shown its reliability in the early stages of 

breast cancer detection, a positive predictive value has been recognized as the number 

of cancers diagnosed per recommended number of biopsies.  In the UK, 6% to 8% of 

women are recalled for further tests after their first screening indicates cancer [86]. 

 Investigator Bias 

Different trials have been introduced to document the capacity of mammography to the 

diagnosis of breast cancer, or the early detection of breast cancer. These trials also show 

that the survival rate of cancer is higher in screened women than in non-screened 

women [32] [86]. However, these comparisons are susceptible to a number of important 

biases.  

Lead time bias: 

Survival time from the diagnosis of cancer in mammography includes the time between 

detection and the time in which breast cancer would have been detected by clinical 

symptoms. However, this time does not include the survival time of finding breast 

cancer as a result of symptoms.  

Length bias 
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Mammography detects a cancer when the cancer is preclinical and this duration is not 

fixed. If breast cancer has a long preclinical time, this cancer probably could be detected 

by screening, and this kind of cancer is more likely to grow slowly and has a good 

prognoses. 

Over-diagnosis bias: 

Screening may find a cancer which grows really slow and maybe never needs to be 

clinical. This is an extreme form of length bias [89].  

Healthy volunteer bias: 

The screening population may be healthier than the general population.  

 Impartiality 

BI-RADS stands for Breast Imaging-Reporting and Data System and it is established by 

American College of Radiology. BI-RADS are a quality assurance tool designed to 

standardize mammography reporting where it reduces the confusion in breast imaging.  

BI-RADS system is now adapted for use with Ultrasound and MRI.  It is a quality 

assurance tool originally designed for mammography. Terms have been developed to 

describe breast density, lesion features, impression, and recommendations [90]. This 

system forces the radiologist to assign each case into a different catalogue, and then 

accurate statistics will be counted to evaluate the radiologists‘ work. BI-RADS 

classifications have also helped in monitoring breast cancer diagnosis, treatment and the 

supporting of breast cancer research, are also easy to calculate statistically. 
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In UK, the Royal College of Radiologists Breast Group standard scoring system is for 

improving the communications between the referrals and the radiologists. It helps avoid 

ambiguity which may cause mismanagement of patients [91].  It is recommended that 

this standard be used in the reporting of all breast imaging examinations in the U.K. In 

the national institution in the UK, the patients‘ management is based on the principle of 

the ‗triple test‘ which are clinical examination, imaging and needle sampling. If the 

clinical results are suspicious or the overall imaging results are 3, 4 or 5, the needle 

sampling will be paramount.  

Table 5-4 shows the standard U.K.RCRBG scores system and BI-RADS catalogues 

with associated meanings and there is third similar five points system developed by the 

Australian National Breast Cancer Centre. BI-RADS are widely used through North 

America and some parts of Europe, RCRBG scoring system is applicable in UK 

practices, NBCC is in collaboration with the Royal Australian and New Zealand 

College Radiologists.  

 

Table 5-4 Comparison of imaging classification systems from (A.J. Maxwella, 2009) 

Category BI-RADS NBCC RCRBG 

0 Incomplete 

assessment: 
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Need to view prior 

studies and complete 

additional imaging 

1 Negative, continue 

routine screening.  

No significant 

abnormality.  

No significant 

abnormality. 

2 Benign, continue 

routine screening. 

Benign finding. 

No further image 

is request.  

Benign finding. 

3 Probably Benign, 

malignancy chance 

<2% 

Indeterminate 

findings. 

Requires further 

investigation 

usually FNA core 

biopsy.  

Indeterminate/probably 

benign findings. 

There is a small risk of 

malignancy, further 

investigation is 

indicated.  

4 Suspicious 

abnormality, coming 

with biopsy or needle 

biopsy. 

Suspicious 

findings of 

malignancy. 

Requires further 

Findings suspicious of 

malignancy. 

There is a moderate 
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investigation. 

May require 

excision biopsy 

risk of 

malignancy. Further 

investigation 

is indicated. 

5 High suspicious 

malignant: 

Biopsy and treatment 

are necessary. 

 

Malignant 

findings, requires 

further 

investigation, 

even if non-

excision 

sampling is 

benign. 

Findings highly 

suspicious of 

malignancy. 

There is a high risk of 

malignancy. 

Further investigation is 

indicated. 

6 Biopsy proven 

malignancy, treatment 

and pending 
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5.2.3 Existing Mammogram Datasets 

Within mammographic research, there are difficulties with  the datasets which cannot be 

simply generated;  therefore the new dataset has to be taken from an existing dataset. 

Between different datasets, there are a great many differences which have to be taken 

into account. There are several different publically available datasets and many 

privately constructed datasets of mammograms for breast cancer research. There are 

currently four public datasets which have been widely used for different researches. 

They are Nijmegen database, Mammographic Image Analysis Society (MIAS) database, 

University of South Florida Digital Mammography Database for Screening (DDSM) 

and Lawrence Livermore/University of California (LLNL/UCSF) Database. The 

advance could provide broad range information for CAD system. It remains to be 

difficult to compare the performance of different algorithms without meaningful 

datasets. It is not meaningful to compare different systems if the systems are not tested 

in the same dataset.  

5.2.3.1 Nijmegen Dataset 

Nijmegen dataset is known as the first public database for screening mammography. It 

consists of 40 images, since it is no longer available, therefore it cannot be invested any 

further.  

5.2.3.2 The Mammography Imaging Analysis Society Dataset (MIAS) 

The MIAS database has been build up by the University of Manchester and was 

completed in 1994. It has 322 images of different sizes and has a later adapted to form 

the Mini-Mias dataset. The Mini-MIAS has a number of selected images scaled in 
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1024×1024 pixels and have been centred in the matrix. It needs to be noticed that the 

Mini-MIAS have a lower quality than original ones.  

The MIAS database is no longer available, and the Mini-MIAS database has been 

consistently cited for many years but it has failed to represent all the cases of 

mammograms. 

5.2.3.3 Digital Database for Screening Mammography Dataset (DDSM) 

DDSM first completed on 1999. The examinations of the present cases have been taken 

between 1988 and 1999. There are 2620 cases in total; four standard views from each 

case were digitized on one of four different mammography screen exams. The DDSM 

contains mammograms obtained from Massachusetts General Hospital, Wake Forest 

University School of Medicine, Sacred Heart Hospital and Washington University of St. 

Louis School of Medicine. 

 

 

(a) right in CC (b) Left in MLO (c) Left in MLO (d) Left in CC 

Figure 5-5 A  DDSM example case containing mammograms show left and  right standard views :cranio-caudal (CC) 

and mediolateral-oblique (MLO) [7] 



122 

 

 

Each case in DDSM contains the patient age, the screening exam date, the date on 

which the mammograms were digitized and ACR breast density which was marked by 

an expert radiologist. Each marking contains a subtlety value and a radiologist‘ 

description using the BI-RADS™ lexicon. 

 

Table 5-5 Contents of DDSM dataset [92] 

 

Institution 

 

Digitizer 

Number of cases by most sere finding  

Total 

Normal Benign 

without 

Call-

back 

Benign Malignant 

MGH DBA M2100 

Image Clear 

430 0 0 97 527 

Howtek 960 78 0 446 323 847 
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WFU Lumisys 200 

Laser 

82 93 126 159 490 

SH 0 48 202 234 484 

WU Howtek 

MultiRad850 

105 0 96 101 302 

Total 695 141 870 914 2620 

 

Several software tools are available for the user to download from the database website, 

these tools simplify the most common tasks, such as case selection, data extraction and 

performance evaluation.  

DDSM database is an infinitely larger database and is stored in a format which is not 

conductive to use quickly.  

5.2.3.4 The Lawrence Livermore National Laboratory Database (LLNL) 

The LLNL has been built in cooperation with the University of California in San 

Francisco. It has been completed in 1996 and contained 50 cases. Furthermore, the 

LLNL dataset has been specialised in microcalcifications. In these 50 cases, 20 cases 
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show benign microcalcifications and 12 are suspicious calcifications and 8 are 

malignant calcifications.  

However, the LLNL dataset is no longer publically available. 

5.2.3.5 Other Datasets 

In additional to those existing datasets, other datasets exist which have not been made 

public or are part of partly published project.  

 eDiaMonD project 

eDiaMonD project project is a grid computing project for the distribution 

information on breast cancer treatment promising a vast dataset of digital 

mammogram images. However, this project has been terminated in 2004 due to 

a lack of success. 

The IRMA project [93] 

This database is the dataset containing the texture pattern extracted from 

digitized mammograms of different BI-RADS classes. It collects mammograms 

image data from DDSM, MIAS, LLNL and RWTH databases and extracted 

patches and resized the image data to 128×128 pixel. The dataset could be 

catalogued into two different slots: 

12er_patches contains 2796 patches of 12 classes, each with 233 images; 

20er_patches contains 880 patches of 20 classes, each with 44 images. 

They are used for image retrieval and computer-aided diagnosis.  
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5.2.3.6 Limitation of Mammograms datasets 

There are available summarized essentials of mammography datasets when subjective 

evaluation is involved as multiple assessors. Medical datasets are more sensible than 

other datasets based on their natures and effects. A good mammography dataset requires 

multiple assessors to provide greater confidence. Since the diagnosis of screening 

mammogram has a high false positive rate and the high risk of false positive, in some 

areas, there are two radiologists who  are required to diagnose one mammogram to try 

to  avoid any misdiagnosis and later may even use a biopsy to provide more diagnostic 

confidence.  

However, a huge amount of raw information has disadvantages as these may confuse 

the system and decrease decision accuracy. These datasets have uniformity, but actual 

performance evaluation methodologies related to data selection is lacking consistency in 

for example: 

 Classification confidence. 

 Classification confidence represents the level of suspicion about malignancy on 

imaging. These levels are numerically categorised, however there are significant 

variations in the definitions of each numerical category between different areas. 

 demographic spread 

There are significant variations between countries in breast cancer [7], this is 

also true of diagnosis and survival rates. Figure 1 shows the rate in age-

standardised per 100000 women between high-income and low-middle income 

countries in 2004.   

 Diagnosis 
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The radiologists in different areas have been trained differently to classify 

mammograms; this may lead to confusion and potential error when staff moves 

between areas. 
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6 Design the Multi-Chromosomes Cartesian Genetic 

Programming (MCGP)  network for automated analysis 

mammograms 

The aim of project is to investigate the suitability of the new algorithm called multi-

chromosomes Genetic Programming network (MCGP) as described previously to 

ensure a reliable diagnosis of mammograms as part of a CAD system. For automated 

analysis of mammograms, it is possible to apply raw pixels to the network and train on 

them. One of the strengths of an evolutional algorithm is that can discover new 

solutions a conventional design would never uncover and it does this by its random 

nature. If conventional features are extracted to be fed into the network, then this puts a 

major limit on what the network can achieve in an absolute sense. Putting the raw pixel 

values in essentially free the network to extract whatever information it decides is most 

important. The downside is that in order to cover on a solution there is the possibility a 

much larger network may be needed. This increases the runtime which could already be 

a problem which MCGP has the potential to overcome

This chapter describes the experimental methods in detail that will be used in automated 

analysis of microcalcifications. Methods include dataset used for experiment, details of 

the new representation of Evolutionary Algorithm, which is also used for the application 

and details of performance measurement. 

6.1 Experimental dataset 

 In the entire research, an algorithm of MCGP (as described in Chapter 4) has been used 

as a solution to automated assessment of microcalcifications in mammograms. 
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Therefore the microcalcifications mammogram images have been obtained. The data for 

both the training and testing the algorithm was obtained from the LLNL database. As 

described in Section 5 compared to other databases, specialising in microcalcifications 

of the LLNL database is outbalance by the disadvantages of this database. No 

information has been found as to exactly how many malignancy calcification cases were 

found in the other three public databases. The other three public databases also contains 

masses and asymmetries.  

In total 31 images were created, of which 13 contained malignant microcalcifications 

images and 18 benign microcalcifications images from 5 separate patients. 

6.1.1  Region of Interests (ROIs) 

As a result of image restriction of the available data, there is a reduction of image size 

as a region of interest (ROI) has been marked from original mammograms and supplied 

by Dr. Eddy Munday. Each ROI has a size of 128 ×128 pixels . If the ROI has to be 

chosen to be 256 ×256 pixels, that is because the ROI of 256 ×256 pixels would have 

contain too many relatively large areas of surrounding tissue and extremely smaller 

areas of malignant microcalcifications. As a description in [94], one critical feature of 

the development of malignant microcalcifications is that when the surrounding tissue 

under these conditions grows to an approximate radius of 180 µm, then necrosis or cell 

death might be reached. This is because the tumour has grown beyond this size and any 

tissue outside this radius could be diagnosed as benign, a making the situation not 

suitable for a classification stage. Therefore a smaller ROI with 180×180 pixels haves 

relatively the best conditions which still contain a significant amount of healthy tissues, 

as microcalcifications takes about 5% of the ROI. One ROI is featuring at least one 
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microcalcification, this selection provides 31 ROIs from the dataset of 18 containing 

benign microcalcifications and 13 containing malignant microcalcifications.  

Using raw pixels values to classify the mammograms approach, it can therefore be 

appreciated that any processing using MCGP network on full field mammograms will 

take an unacceptably long time. Subsequently, the mammograms will have to be 

partitioned in to smaller part images to make feasible processing.  

6.1.2 Grid Structure for Segmentation Representation 

The segmentation is developed as a sequential representation providing a different 

approach for filtering an image. The segmentation representation theoretically allows 

for parallel processing, the aim is to break down the overall problem into a number of 

sub-problems which offers potential to be processed in parallel.  

Images containing different information are split into different parts. Based on this 

representation of segmentation, some areas contain microcalcifications which may 

differ greatly. There are also some areas which regularly holds fairly similar 

information since they contain only a breast tissue background. 

Therefore, the whole image has been divided into smaller parts, using a MCGP network, 

it was decided that one image is divided up into equally sized parts of non-overlapping 

rectangular shapes. The basic principle is shown in Figure 6-1.  
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Since the image size is fixed and the number of image parts depends on the size of the 

sub-image. For the particular experiment image of 128×128 pixels, the size of the sub-

image needs to be rectangular or squared so the whole image could be divided exactly 

into an integer number of parts. A greater number of image segmentation means that the 

size of individual image segments becomes smaller. Having too many sub-images will 

result in a large network; therefore [95] did experiments to find out the best size for a 

sub-image by using the CGP network. The results show that a sub-image sized 8×8 

pixels gives the best performance between fitness and best average fitness. As a result, 

128×128 pixels ROI have been divided into 256 non-overlapping 8×8 pixels areas or 

parts.  Figure 5-8 shows the process from choosing a ROI and then logically divided 

into 256 parts and the status of each part labelled as either being benign or malignant 

according to the radiologist.   

 

 

 

 

Segmentation 

grid Image 
Image has been divided into 

equal, non-overlap parts 

Figure 6-1Process for grid structure of segmentation  representation 
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6.1.3 Additional information for dataset 

As each ROI has been divided into 256 parts, each part could be seen as a small image 

with 8×8 pixels with 8 bit grey scale. For each pixel, it has a range between '0' to '255' 

Figure 6-2 A ROI has been point out by the expert and then be devided into 256 equal non-overlapping 

parts 
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in order to process pixel values of 8 bit depth. The detection by radiologists of 

microcalcification will use the grey shading and the white oral in the figure 

representation and mammogram ROI, as respectively have been provided by the 

radiologist experts. Two additional data files are one to one mappings of the original 

ROIs which are provided by radiologists.  The values of these additions are in a smaller 

range than the pixel values in ROIs. These additions will be used as reference materials 

in order to achieve a better training system; it is also used on evaluating the 

performance of the algorithm in the following chapter.  

6.1.3.1 White Pixel Value (WPV) 

For ROIs only with benign microcalcifications, one of the corresponding additional files 

is on the pixel level by using ‗0‘ to indicate breast tissue pixel and '1' for whether this 

pixel contains information of microcalcifications.  Therefore, there is a respective parts 

file which has then been generated for each region of interest, which simply provides 

the respective number of white (or to be precise, non-zero intensity) pixels for each 

section of the image. Since each part only has 64 pixels, therefore the range of white 

scale values is from 0 to 64. These white pixels count numbers will be called white 

pixel value (WPV) in work. The other one also uses ‗0‘ and ‗1‘ but in a level of ‗part‘. 

For each part, there is an indication of ‗0‘ to indicate benign tissue located on that part 

and the number '1' to indicate that that particular part contains microcalcifications. 
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a) Original ROI with 256 equal non-overlapping parts 

b)  Corresponding to ROI, '0' indicate breast 

tissue,'1' indicate existing microcalcifications 
c) File representation of white pixels count from 

respective parts of mammogram ROI 

Figure 6-3 An example of additional data for ROIs only with benign microcalcifications 
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Figure 6-3 shows one example of a ROI (Figure a) has been divided into 256 parts and 

each part has a relatively ‗0‘ or ‗1‘ to indicate microcalcifications in part level (Figure b) 

and 'white' pixel value in pixel level (Figure c).   

6.1.3.2 ROIs only with malignant microcalcifications  

Similarly as the ROIs with benign microcalcifications, after each image, is logically 

divided into 256 parts, the status of each part labelled as either being benign or 

malignant according to the radiologist.  The number of pixels containing information of 

malignant microcalcifications in one part have been provided by radiologists as well. ‗0‘ 

is used to indicate not only benign microcalcifications but also breast tissue and ‗1‘ is 

used to indicate malignant microcalcifications. Therefore, the corresponding data for 

benign ROIs are fully ‗0‘s since there is no malignant microcalcifications.  
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Figure 6-4 An example of additional data for ROIs only with malignant microcalcifications 
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6.1.4 K-Fold Cross Validation 

The performance of any algorithm is only as good as the data it trained on. Presenting 

the algorithm with a variety of images leads to the algorithms ability to deal with 

different problems and provide strong results. In other words, it could also be 

understood with the greater the number and diversity of the problems an algorithm is 

trained, the more stable and strong the results will be obtained. Therefore in order to 

obtain statistically meaningful measures of performance, computer learning algorithms 

should be trained and tested on large datasets. There are 31 images from 8 patients 

included in the training and testing together in dataset. The relatively small number of 

images available to train and test the CGP network has required that k-fold cross 

validation be used [12] . In this method, the original sample is randomly partitioned into 

k subsamples, each subsample is used as the validation data and the remaining k-1 

subsamples are the test data, then the process repeats k times with the folds, each time it 

makes a different k subsample as the validation data. The advantage of k-fold cross 

validation is that repeated random sub-sampling leads to all samples being used for both 

training and validation, and each sample is used for validation exactly once. [96] The 

main advantage of cross validation is that all cases in the data set are used for testing.  

The main disadvantage is that for each different data set, different classifiers may be 

learned. 

For detection of microcalcifications stage:  

Only 18 benign microcalcifications mammogram images will be used to train and test 

algorithm. As described in chapter 2, benign and malignant microcalcifications have 

different characters, since the detection of microcalcifications stage is a pre stage to 
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determine whether MCGP has strength to classify microcalcifications on mammograms, 

therefore only using benign microcalcifications mammograms images will reduce the 

complexity of this algorithm and could lead to more stable and clearer results. Therefore, 

there are two experiments which are used to assign the images into the fold in different 

ways. There are 5 patients for 18 images, so in total there are 5 sub folds for each 

experiment, and each fold could be treated as a sub-experiment of one experiment. In 

the first experiment, the images of each patient are used as the testing data in 5 different 

folds, as shown in table 6-1. In the second experiment, a random selection of images are 

used from the patients as the training data, the images for the same patient could be 

partitioned across several folds, as shown in table 6-2. In both table 6-1 and 6-2, the 5 

letters are used to represent the different patients' names, followed by a series of 

numbers to separate the different images which have come from the same patient. For 

the purpose of this investigation two experiments are conducted, each with the data 

assigned to the folds in a different way. In the first experiment, all images associated 

with each patient are used to form a separate fold; in the second experiment, images 

from each patient are distributed across several folds.  This assignment is summarized 

in Tables 6-1 and 6-2 and is intended to investigate the power of the algorithm to detect 

microcalcifications from a particular patient. For each fold in tables 6-1 and 6-2, the 

remaining images are used to train the network.   
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Table 6-1Patient-centered assignment of images for k-fold cross validation  

Fold 1 Fold 2 Fold 3 Fold 4 Fold 5 

Patient A: 

Image 1 

Patient B: Image 

1 

Patient C: Image 

1 

Patient D: 

Image 1 

Patient E: Image 

1 

Patient A: 

Image 2 

Patient B: Image 

2 

Patient C: Image 

2 

Patient D: 

Image 2 

Patient E: Image 

2 

Patient A: 

Image 3 

Patient B: Image 

3 

Patient C: Image 

3 
 

Patient E: Image 

3 

 
Patient B: Image 

4 

Patient C: Image 

4 
  

  
Patient C: Image 

5 
  

  
Patient C: Image 

6 
  

 

Table 6-2 Distributed assignment of images for k-fold cross validation  

Fold 1 Fold 2 Fold 3 Fold 4 Fold 5 

Patient D: 

Image 1 

Patient B: Image 

1 

Patient E: Image 

1 

Patient D: 

Image 2 

Patient E: Image 

2 

Patient C: Image 

2 

Patient E: Image 

3 

Patient C: Image 

6 

Patient C: Image 

3 

Patient C: Image 

4 

Patient B: Image 

2 

Patient C: Image 

1 

Patient B: Image 

4 

Patient A: 

Image 3 

Patient C: Image 

5 

Patient A: 

Image 2 

Patient A: 

Image 1 
  

Patient B: Image 

3 

 

For classification of microcalcifications stage:  

There are 31 images from 8 patients which will be used in this stage to train or test the 

algorithm. All these images contain one or two microcalcifications that are either benign 

or malignant. Similar to experiment on detection of microcalcifications, there are two 

experiments are conducted on classification of microcalcifications, each with the data 

assigned to the folds in a different way. In the first experiment, which is summarized in 

table 6-3, patients are used to form a separate fold; in the second experiment which is 
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summarized in table 6-4, images from the same patient are distributed across several 

folds. In both tables, the letter ‗M‘ represents a malignant image and letter ‗B‘ refers to 

a benign image. For each fold in tables 6-3 and 6-4, the remaining images are used to 

train the network.   

Table 6-3 Patient -centred assignment of images for k-fold cross validation 

Fold 1 Fold 2 Fold 3 Fold 4 Fold 5 

Patient A M 1 Patient C M 1 Patient D M 1 Patient F M 1 Patient bwrcc M 1 

Patient A M 2 Patient C M 2 Patient D M 2 Patient F M 2 Patient bwrcc M 2 

Patient B B 1 Patient C M 3 Patient E B 1 Patient F M 3 Patient H M3 

Patient B B 2 Patient C B1 Patient E B 2 Patient G B 2 Patient I B1 

Patient B B 3 Patient C B2 Patient E B 3 Patient G B 2 Patient I B2 

Patient B B 4 Patient C B3 Patient E B 4  Patient I B3 

  Patient E B 5   

  Patient E B 6   

Table 6-4 Distributed assignment of images for k-fold cross validation 

Fold 1 Fold 2 Fold 3 Fold 4 Fold 5 

Patient A M 1 Patient A M 2 Patient C M 3 Patient C M 2 Patient F M 2 

Patient C M 1 Patient F M 1 Patient D M 3 Patient D M 2 Patient H M 2 

Patient D M 1 Patient H M 1 Patient H B 3 Patient E B 3 Patient B B 4 

Patient C B1 Patient E B2 Patient C B3 Patient C B 2 Patient E B 4 

Patient B B 1 Patient A B1 Patient B B 3 Patient B B 2 Patient E B 5 

Patient E B 4 Patient IB1 Patient E B 6 Patient G B 2 Patient I B2 

  Patient IB 3   

 

6.2 MCGP Network Design 

The premise for this Multi-chromosomes CGP (described in Chapter 4) approach is for 

a physically large size of mammograms. Traditionally, the current technology provides 
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a pixel size of 50µm
2
 which is equal as a full field mammogram of 4800×6000 pixels 

[97]. Each chromosome in multi-chromosomes could be seen as an independent CGP 

chromosome network, the whole collection of multiple CGP chromosomes are used to 

evolve a single mammogram. This would be like a whole team of experts working 

together to solve a particular task, and this will improve the reliability and  be  highly  

effective.  

Crossover or combination has not been involved within this network since it has not 

been found to be beneficial in CGP especially [98]. Therefore, it has been perceived that 

better evolutionary processes are obtained using mutation only. 

As a result of segmentation of the parts in Section 6.1.1, each ROI image has 256 equal, 

non-overlapping sub-images. Having segments of equal size and shape ensures that 

chromosomes evaluating those parts could be identical. This provides a way of 

introducing multiple chromosomes. Therefore, each sub-image gets assigned its own 

chromosome; this means that the whole problem of evolving one large image is broken 

down into a range of small sub-problems. Each genotype contains 256 independent 

CGP chromosomes and each chromosome is encoding one sub-problem. In addition, 

each chromosome is a working individual at the same time; therefore, high levels of 

efficiency have been achieved to make the system work faster.  
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As each ROI part get its own CGP network assigned, the respective network is only 

responsble for generating the output value for one particular image part it is assigned to. 

Since the input values are pixel values, the output value from one CGP network is also 

in a range of [0,255] which can be re-arranged to compare with WPV to that part.  

Networks assigned with sub-images 

+ 

Sub-images from one ROI MCGP networks 

Figure 6-5Multi-chromosome CGP network has been assigned to individual sub-image 
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8×8 

inputs 

A ROI with equal non 

overlapped 256 parts 

MCGP output with 256 CGP 

outputs 

one part with 

8×8 piexls 

1 

output 

Output has a 

range from 0 to 

255 

one CGP 

network  

(output +1)/4 

Output has a re 

arrangment from 0 to 64 

MCGP network with 256 single 

CGP networks 

Figure 6-6 The working procedure for MCGP network 
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6.2.1 Parameters 

There are several parameters needed in order to choose and to let the algorithm give the 

best performance. Since the numbers of chromosomes have been decided, there was a 

need to decide on a size of each chromosome CGP network. 

 These are two aspects as the following has had to be considered:  

Firstly, the network needs to be considered big enough to allow free evolution. 

Generally, the larger the single chromosome networks will often lead the higher fitness 

score; this also means there will be a large variety of possible binding abilities. 

Secondly, there is a desire to design a small single chromosome network to reduce the 

limit of the computational demand needed for evolving this network [99].  

In [95], it has been shown that the ideal combination of fitness and minimum size was 

found to be a network size of 32 rows and 128 columns. This affords redundancy 

proven to be advantaged in evolution of CGP networks by [100]. However, in this work, 

the rows will be chosen as 1, the number of columns will be chosen as 500 as minor. 

That is because; firstly, the number of rows will not affect the performance of the 

algorithm; secondly, since a multiple chromosome network has been chosen, the 

individual single chromosome network needs to be as simple as possible. This will 

make sure there is a better vision of the inside the CGP network. In this work, MCGP 

are used to evolve a single mammogram. A generalized form of the 1+ 4 evolutionary 

strategy has been used in which each chromosome is selected.  This has the form:  

(1+4) Multi-chromosome Evolutionary Strategy 
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1) Generate initial population of  1+4 programs randomly  

2) Evaluate fitness of the population  

3) Select the fittest of the population as the parent  

4) Mutate the parent to generate 4 offspring to form the new population  

5) Select a new parent  using the following rules:  

            for all i chromosomes in [0, 256): 

              5.1) If an offspring chromosome i has a better or equal fitness that the parent           

chromosome i then the offspring chromosome i is as the new parent chromosome i. 

              5.2) Else if there are offspring chromosome i with the same fitness as the 

parent chromosome i, one of them is randomly selected to be the new parent 

chromosome i. 

              5.3)  Else the current parent chromosome i remains as the parent chromosome i.  

        6)  Go to step 4 unless the maximum number of generations has been reached.  

The higher the number of generations, the better the fitness results will achieve. 

However efficiency of the network needs a binding for the number of generations.  In 

order to lead the network to have enough room to approve the performance, with a 

reasonable evolution time, the number of generations will be set as fixed at as 10000. A 

mutation operator can alter both the function present within a grid cell and the 

connections between components.  A good mutation rate is important because mutation 
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plays a crucial part in the evolution of CGP networks. There are two different areas that 

need to be mutated, the connections of individual nodes made with other nodes and the 

functions used for calculating the output of the respective node. In order to investigate 

the effect of the mutation rate value to resulting fitness value, it was decided to execute 

the algorithm using different mutation rate values. To make the results comparable all 

settings other than the mutation rates were kept same. The average fitness values are 

shown in table 6-1 with different mutation rates. 

Table 6-5 Mutation rates 

 

 

 

The results show that there are two peak values for mutation rates at 0.1% and 1%, 

therefore it can be said that the mutation rate should be about 1% or less to achieve a 

good fitness. However there are the same peak values so that it is hard to tell which 

value should be used. Mutation rate 1% and 0.5% have the same results.  It was decided 

to use 1% for the algorithm in the experiment, the reason is 1% has a peak value and is 

the binding of the mutation rate, besides it is easy to calculate. It means that 5 genes 

were mutated from the parent to make each offspring (0.25% of 500*4+1 genes). 

Table 6-6 The summary of the parameter values used for the evolution of the MCGP network 

Mutation rate % Average fitness 

 0.1 0.9324 

0.25 0.9301 

0.5 0.9310 

1.0 0.9310 

3 0.9204 

5 0.9100 

Parameter Value 

Number of generations 10000 



146 

 

 

For each experiment, the network programming has been set to run 20 times in order to 

give 20 individual results for the same experiment, this is to make sure that all the 

experiment results are constant and stable, based on the performance of the network. 

One of the measures, which are used to direct address the algorithm‘s, is to involve the 

image pixel value was function set. The function set has a great effect on the speed of 

evolution and also on the performance of an algorithm; therefore a suitable function set 

is really important. A bad function set, if used, might lead more time to find a good 

result. The complex multiplexer was used for the function node, due to the fact it 

contains, not only  logical AND/OR gate, but the whole algorithm works on a binary 

classification. The multiplexer functions represent binary IF statements and have been 

shown to be effective when CGP chromosomes operate on the binary data [101]. 

Assuming the 8 bit binary inputs from the image are defined as x,y and z, the function 

defines as follows:  

f0 = x.z´ + y.z ,   f1` = x.z´ + y´.z                                                              Equation 6-1                        

Population_size 5 

Percent of mutation rate 0.25 

Number of runs in total 20 

Number of rows in each CGP network 1 

Number of rows in each CGP network 500 

Levels_back 500 

No parts per image  256 (16×16) 

Part size 8×8 

Function sets f0 = x.z´ + y.z ,   f1` = x.z´ + y´.z                                                               
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The symbols ‗.‘‘+‘ and ‗,‘ indicated 8 bit bitwise logical AND/OR operations and even 

more complement operations. 

6.3 Performance Measurement 

6.3.1 Confusion Matrix 

Confusion Matrix is a visualisation tool that can be used for evaluation of the 

performance of a classifier, in this paper, MCGP. Based on this theory, it could 

determine certain quality measurements for the performance, such as a receiver 

operating characteristic (ROC) curve.  

The confusion matrix consists of two rows and two columns. The two rows represent 

the outcome of the prediction value or the fact or the condition determined by a gold 

standard. The two columns represent the outcome of the test that is to be evaluated. 

Both fact and test are divided into two options: a positive or a negative classification. 

As a result there are four different categories a test can fall into: a true positive (TP) 

classification , a true negative (TN) classification, a false negative (FN) classification, 

where a condition has not been found by the test and a false positive (FP) classification 

where the test has wrongly indicated a find.  The full confusion matrix shown in Figure 

6-6.  
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Figure 6-7 Confusion Matrix 

Depending on the four values of TP, TN, FP, FN, it could determine other measures. 

The most common measures are sensibility, specificity and precision.  

 The precision is also called positive predictive value (PPV) which is the chance 

of having cancer given a positive test result.  

PPV = TP / (TP+FP) 

 Sensitivity is also called the true positive rate (TPR), or called hit rate and recall, 

it is the proportion of patients that tested cancer (positive) and prediction is  

cancer (TP) of all the patients that actually have cancer (TP+FN).  

TPR = TP / (TP+FN) 

Sensitivity can be seen as the probability the test result is cancer given that the 

patients have the cancer. With higher sensitivity, fewer actual cases of the 

disease go undetected. 

 Specificity is also called true negative rate (TNR) which is the proportion of 

patients that tested benign and the prediction is benign (TN) of all the patients 

that actually have no cancer (TN+FP).  

TNR = TN / (TN+FP) 
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Specificity can be looked at as the probability that the test result is benign 

(negative) given that the patient is not sick. With higher specificity, fewer 

healthy people are labelled as sick. 

 The false positive rate (FPR) also called false alarm rate = False positive/Total 

Negatives.  

FPR = FP / (TN+FP) 

As  there are cases in which it might be possible to achieve a high TPR but a low NPR 

and vice-versa, it in general advisable to have at least two measures or a measure that 

combines different of the previously mentioned measures.  

The sensitivity and specificity, as well as the performance of the classifier, can be 

visualized and studied using the Receiver operating characteristic (ROC)  curve, also 

called sensitivity curve. To draw an ROC curve, only the true positive rate (TPR) and 

false positive rate (FPR) are needed . The TPR defines how many correct positive 

results occur among all positive samples available during the test. FPR, on the other 

hand, defines how many incorrect positive results occur among all negative samples 

available during the test. 

A ROC space is defined by FPR and TPR as x and y axes respectively, which depicts 

relative trade-offs between true positive (benefits) and false positive (costs). Since TPR 

is equivalent to sensitivity and FPR is equal to 1- specificity, the ROC graph is 

sometimes called the sensitivity vs. 1-specificity plot. Each prediction result or instance 

of a confusion matrix represents one point in the ROC space. 
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 Figure 6-8 shows an example of a typical ROC curve. ROC analysis is used in clinical 

epidemiology to quantify how accurately medical diagnostic tests can discriminate 

between two patient states, typically referred to as benign and cancer [100] . ROC 

analysis is used in clinical epidemiology to quantify how accurately medical diagnostic 

systems) can discriminate between two patient states, typically referred to as "cancer" 

and "benign" [101].  

 

Figure 6-8 An example of  ROC curve copy from [104] 

In figure 6-8, Test A and B are examples of ROC curve, test B has a greater 

discriminate capacity than test A. Maximizing sensitivity corresponding to some large y 

value on the ROC curve. Maximizing specificity corresponds to a small x value on the 

ROC curve. Therefore a good first choice for a test cut off value is that value which 

corresponds to a point on the ROC curve nearest to the upper left corner of the ROC 

graph. This is not always true,  in some screening applications it is important not to miss 
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detecting an abnormal therefore it is more important to maximize sensitivity minimize 

FN than to maximize specificity. In this case the optimal cut-off  point on the ROC 

curve will move from the vicinity of the upper left corner over toward the upper right 

corner.    An ROC curve lying on the diagonal line reflects the performance of a 

diagnostic test that is no better than chance level. The diagonal line y = x represents the 

strategy of randomly guessing a class. For example, if a classifier randomly guesses the 

positive class half the time, it can be expected to get half the positives and half the 

negatives correct; this yield s the point (0.5, 0.5) in ROC space. 

The area under the curve (AUC) summarizes the entire location of the ROC curve rather 

than depending on a specific operating point [103]. The AUC is an effective and 

combined measure of sensitivity and specificity that describes the inherent validity of 

diagnostic tests . [104] If the AUC area is equal to 1.0 then the ROC curve consists of 

two straight lines, one vertical from 0,0 to 0,1 and the next horizontal from 0,1 to 1,1. 

This means that the test is 100% accurate because both the sensitivity and specificity are 

1.0 s there are no false positive and no false negatives. On the other side a test that 

cannot discriminate between normal and abnormal corresponding to an ROC curve that 

is the diagonal line from 0,0 to 1,1. The ROC are for this line is 0.5. ROC curve areas 

are typically between 0.5 and 1.0 like shown in Figure 6-8. 

 

In this paper, the measure of the performance is called Matthews Correlation 

Coefficient (MCC).  MCC could be calculated from a confusion matrix straight away, 

and used well on a binary classification. It can be used as a single value for the 

evaluation of test. The MCC is calculated in Equation 6-2 and in a range of [-1, 1].  
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MCC =1 represents a perfect prediction; MCC=0 means random prediction and -1 

indicates the faulty prediction. 

𝑴𝑪𝑪 =
𝐓𝐏×𝐓𝐍−𝐅𝐏×𝐅𝐍

  𝐓𝐏+𝐅𝐏  𝐓𝐏+𝐅𝐍  𝐓𝐍+𝐅𝐏 (𝐓𝐍+𝐅𝐍)
                                                                       Equation 6-2  
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7 The Multi-Chromosome CGP on Mammograms Experiment 

Results 

There are two stages of experiments processed in this chapter and they are the detection 

of microcalcifications and classification of microcalcifications. Detection of 

microcalcifications is the pre-stage to investigate the suitability of MCGP into 

mammogram applications before it is used to diagnosis mammograms. Therefore, a 

MCGP network is constructed to detect microcalcifications and will be used to classify 

microcalcifications. The Centre of Gravity has been applied to evaluate the detection 

system and Matthews Correlation Coefficient is used to evaluate the performance of 

classification of microcalcifications. There are some further experiments with 

interesting results which are described in this chapter.  

7.1 Detection of Microcalcifications on Mammograms 

The detection of microcalcifications is the development of MCGP, and specifically, the 

potential to train the algorithm to successfully locate microcalcifications within the 

mammogram. It is important to state that the motivation is not merely to detect 

microcalcifications.  

7.1.1 Design Stage 

As described above, each chromosome in MCGP is used to work on one part of a whole 

ROI image as using the raw pixel values. Therefore a well organised network inputs 

will lead a better efficiency for the MCGP performance. The network was designed to 

deal with a range of values from 0 to 255 in order to process pixel values of 8 bit depth. 

The output of the program encoded in each chromosome is automatically an integer 
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between 0 and 255. This means the ratio between inputs and outputs is different when 

the detection is supposed to be performed. White pixel values (WPV) are used to be the 

ideal value to represent the intensity of white pixels for microcalcifications. The WPV 

has a value between ‗0‘ and ‗64‘, and it represents how many ‗microcalcification‘ pixels 

counted in one part (8×8) image. The range of values that were allowed from one 

chromosome CGP network is not changeable, this means the CGP network only returns 

a value between ‗0‘ and ‗255‘ because the value of inputs is from '0' to '255', this value 

needs to be assigned the meaning of how many microcalcification pixels could CGP 

detect in part of the image. The fitness function is giving the meaning about the 

potential of differences by comparing the ideal WPV to the output of CGP, and gives a 

value for the difference of these two for this performance. If fitness is equal to 0, then 

CGP could detect microcalcifications in that part successfully. Therefore, the output of 

one CGP chromosome needs to be rescaled by adding 1 first and then be divided by 4 to 

arrive at a number between 0 and 64. To calculate the fitness of a particular 

chromosome i (i is the serial number fir 256 parts in one ROI image), the 64 grey scale 

pixel values is applied from a unique section of the image as the input to the encoded 

program and compare the output of the program, Di with the known number of 

microcalcifications pixels in the image section ( WPV) (a number between 0 and 64). 

Then '1' is used to minus the difference of rearranged output and WPV to convert the 

best fitness from '0' to '1'.  

The equation for calculating fitness is shown in equation7-2.  The principle of the 

fitness function is shown in algorithm 1. The number of white pixel values of each part 

is Mi; the output of chrosome i is Di. There have been two used fitness functions in the 

work reported. The linear fitness of a single chromosome, i, fitness is defined as follows: 



155 

 

𝒇𝒊𝒕𝒏𝒆𝒔𝒔 =
𝟏

𝒊
  𝟏 −  

𝑫𝐢+𝟏

𝟒
− 𝑴𝒊  

𝟐𝟓𝟔

𝒊=𝟏
                                                                   Equation 7-1  

𝒇𝒊𝒕𝒏𝒆𝒔𝒔 =
𝟏

𝒊
  𝟏/  

𝑫𝐢+𝟏

𝟒
+ 𝑴𝒊  

𝟐𝟓𝟔

𝒊=𝟏
                                                                                                                 Equation 7-2 

 

The fitness of the genotype is by summing all the chromosome fitness up and dividing 

by the number of chromosomes (256). The non-linear function penalizes the difference 

between the CGP output and the true microcalcification counts to a large extent than the 

linear fitness. 

Table 7-1Assignment of patient images for k-fold cross validation and use of fitness function in experimental 

investigations 

Experiment k-folds assignment Fitness function 

1 Patient-centered Liner 

2 Patient-centered Non-linear 

3 Distributed Liner 

4 Distributed Non-liner 

 

7.1.2 Training Stage 

Both linear and non-linear fitness functions have also been employed.  A summary of 

these experiments, provided for the purpose of reference when considering results, is 

detailed in Table 6-5. A summary of the parameter values used for the evolution of the 

CGP networks for each experiment is given in Table 6-4. Fitness results for the training 

of the respective CGP networks are shown in Figure 6-2. 

Algorithm 1 simple fitness calculation 

fitness_value = 1-|number of whitepixel values of each part – (network_output+1)/4| 
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Figure 7-1 Average Fitness for Training Images 

The average and best fitness values are shown in Figure 7-2. From the figure 7-2, it 

shows the experiments 1 and 3 with the linear function giving a little better average 

performance with the experiments 2 and 4 with the nonlinear function. However, the 

best fitness of the 4 experiments is nearly one. Also, there is a no difference in the 

fitness between patient-centred (Experiment 1, 2) and randomly k folds assignment 

(Experiment 3, 4) for the cross validation. This indicates that the CGP networks 

detecting microcalcification is not dependent on a patient‗s examples.  
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Figure 7-2Average fitness values training the algorithm on the detection of microcalcifications 

Table 7-2 Training algorithm on detection of microcalcifications 

 

Figure 7-2 shows the development of the average fitness values over the training stage 

of 10000 generations. The average fitness increases when generations increase and 

reach to peak generation at 6101 and then increases smoothly on the following 

generation. The maximum average fitness is 0.9817, however there is still a small 

difference between the best fitness and the perfect '1' fitness. One explanation for this 

would be the fact that each chromosome has detected that there are some 

microcalcifications pixels on that part.  However, it cannot generate the exact numbers 

of microcalcification pixels as WPV in that part and therefore, an error that affects the 

fitness value has been caused. Although the fitness in train stage is not 'perfect', the high 

fitness value still indicates that the MCGP gives a good performance.  
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7.1.3 Testing Stage  

The resulting MCGP algorithm from training stage is then tested using the images from 

the partitioned testing image sets shown in Table 7-1 and 7-2.   

 

Figure 7-3 Average Fitness for Testing Images 

The test result for the respective experiments is shown in Figure 7-3. It confirms the 

analysis in the training experiments. To give a fair comparison with the networks, the 

linear fitness function is applied to evaluate the data from the CGP networks which 

were trained using nonlinear fitness function in experiment 2 and 4 from Table 7-1. 

Therefore there is little tiny difference in the test performance between linear fitness and 

nonlinear trained network and suggests that the alternative schemes offer little benefit 

over each other. It should be noted that although CGP networks where trained using 

non-linear fitness functions in experiments 2 and 4, the linear fitness function was used 

to evaluate their performance on the test set of data, to enable a fair comparison with 

those networks evolved in experiments 1 and 3. 
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An example of the microcalcifications detected by an evolved network is given in 

Figure 7-5, which resulted from presenting the test image illustrated in Figure 7-4. 

 

 Figure 7-4 shows that there is one microcalcification in a grey shadow in ROI, it is 

WPV with density of microcalcification pixels supplied by radiologists. Figure 6-5 

Figure 7-5 Corresponding MCGP outputs on detection of microcalcifications 

Figure 7-4 An example of ROI with WPV for each parts 
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shows the outputs from the MCGP network. The grey parts are the MCGP algorithms 

detecting the parts which contain microcalcifications. There are generally two areas of 

the microcalcifications in the result, one is with a small value and one is with a large 

value. The area contains a large output value on a similar area of microcalcification 

stays on the original ROI. It could tell visually that MCGP delivered a relatively good 

result to detect microcalcifications, however it is still processed some small non 

expected value. The major reason might be that, there are too many breast tissues and 

less microcalcification pixels, since each chromosome CGP network only deals with 

one part of the image.  

7.1.4 Evaluation 

In order to get better performance, a threshold is used to alter a higher scale to assigning 

the meaning of WPV to be upper level and the meaning of breast tissue to the lower 

level. After each chromosome CGP network produced output, it will be rescaled firstly 

to a WPV range from 0 to 64, then this output value will be added by a threshold. The 

threshold is interpreted as an indication of microcalcifications. For the outputs of 

MCGP, if the outputs' values are equal to or above the threshold, the outputs' values will 

remain same, else 0.  

A set of threshold with valid values [0, 2, 4, 6, 8] are applied to the output of the multi-

chromosomes CGP network for an image. Threshold=0 represents that no threshold is 

applied to the output of CGP. The maximum threshold value is 8 that is because the 

original WPV for benign microcalcifications is in part a relatively small number and the 

outputs from MCGP network; this ensures that for every image in 4 experiments there is 

at least one part in the CGP output that has a non-zero value.  
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An example of the outputs of MCGP network applied to the thresholds is shown in 

Figure 7-6.The input ROI of this example is shown on Figure 7-4. The grey parts are 

those with their outputs after threshold and in this particular case. 

 

(a) MCGP outputs after threshold '2'  
(b) MCGP outputs after threshold '4'  

(c) MCGP outputs after threshold '6'  and '8' 

Figure 7-6 MCGP outputs after threshold applied for the corresponding ROI from Figure 6-5 
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The most common method to evaluate the detection is ROC curve, however it is not 

used   in  this   experiment   since    there    are    a    lot    of    0s    indicating    the  

non- microcalcifications in the image, and this gives a large number of negative cases 

which leads to the false positive rate being too small to form a curve. For the stage of 

detection of microcalcifications, the locations of microcalcifications are important and 

it is the factor to determine the performance of the network, therefore the centre of 

gravity (COG) is applied. COG is a geometric property of any objects; it is the average 

location of the weight of an object. COG is an important indicator for the centre point 

of an irregular shape with a different density; it is commonly used in statistics to 

design the static structures. In this case, a COG is calculated to locate the centre of a 

microcalcifications area, if I compare the location of COG of one microcalcifications 

area of the image, we would say around this COG, there is an area of 

microcalcifications.  

In this experiment, there are 18 benign images used for detecting of microcalcifications, 

16 images have only one unique area of microcalcifications individually, 2 images have 

2 areas of microcalcifications. Therefore, for the images that have 2 areas of 

microcalcifications, the image needs to be divided into 2 equally sized non-overlapped 

parts and each part has one unique area of microcalcifications, then calculate the COG 

for each microcalcifications area in one image part. For example, Figure 6-6 above 

shows an image with 2 areas of microcalcifications, and this image could be divided 

into an area with the rows between rows [1, 8] and an area with rows between [9, 16], 

the general form of CGP network of this image is shown on Figure 6-7. 
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Figure 7-7 an image with 2 areas of microcalcifications 

 

The COG is used here to determine the location of a single microcalcifications 

distribution centre. It treats the distribution of a single microcalcification as the function 

only of the weight and the location the microcalcifications. The weight of each part 

could be seen as the white pixel number on this part.  For a 2 dimensional image which 

has 256 equally sized non-overlapping parts which could be seen as a grid of 16 by 16, 

the centre of gravity COG (COGx, COGy) of an area of microcalcifications is defined as 

the average of the sum of the co-ordinates values (rxi , ryi). For each part i who has 

microcalcifications, weighted by its rescaled output for part i, since the output for each 

Figure 7-8 general form of CGP network of an original image with 2 areas of microcalcifications has been 

divided into 2 parts 
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part of ROI is in a range of [0,255],  to make it into WPV range of [0,64], for COG of 

the microcalcifications of input image,  mi is the WPV : 

𝒎𝒊 =   
𝒐𝒖𝒕𝒑𝒖𝒕

𝒊
+𝟏

𝟒
                                                                                                                                         Equation 7-3 

𝑪𝑶𝑮𝒙 =  
 𝒓𝒙𝒊𝒎𝒊

𝟐𝟓𝟔
𝟏

 𝒎𝒊
𝟐𝟓𝟔
𝟏

       𝑪𝑶𝑮𝒚 =  
 𝒓𝒚𝒊𝒎𝒊

𝟐𝟓𝟔
𝟏

 𝒎𝒊
𝟐𝟓𝟔
𝟏

                                                                          Equation 7-4 

After the COG of the input image (COGx, COGy) and the COG of the output of the 

CGP network (COG'x, COG'y) have been generated, COG differences shows as: 

𝐶𝑂𝐺 𝐷𝑖𝑓𝑓𝑒𝑟𝑒𝑛𝑐𝑒𝑠 =   𝐶𝑂𝐺𝑥 − 𝐶𝑂𝐺 ′𝑥 2 +  𝐶𝑂𝐺𝑦 − 𝐶𝑂𝐺 ′𝑦 2 

Equation 7-5  

However, COG calculation has the limitations of calculating Location: (i) it could only 

locate the centre of the microcalcifications area in the image without giving the exact 

size of the area. To calculate the area of determining one uniform area of 

microcalcifications in one image.  To overcome these, binary number '0' and '1' are used 

as weight. For the input image and CGP the microcalcifications further investigation is 

needed. (ii) One COG is only output, '0' is indicating non-microcalcifications and '1' is 

indicating microcalcifications, this could be used to replace the white pixel values on 

each part. For the input image, if the white pixel value of each part is not zero, and then 

replace the white pixel number to '1' to indicate the microcalcifications, others are '0'. 

For the output of MCGP, if the output value is not zero, then mi for COG become '1', 

otherwise mi stays at zero. For calculating the COG for the input ROI, if WPV is not 

zero, mi is '1', others is '0'.  For the images have 2 areas of microcalcifications as Figure 

6-8, the total image has been divided into two equal areas and calculate COG for 

individual area then add them together to get the average.  

Then the difference of COG between the MCGP network's input and output is 

calculated by Equation 7-5, it is used to evaluate the ideal result for the COG difference 
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which is equal to 0.  Since COG is measured under the scale of parts if the COG 

difference is smaller than 1, it shows the centre of gravity for both input and output are 

located at the same part in the image.  If the COG difference is in a range of 1 to 4, it 

shows that the MCGP detected microcalcifications on the surrounding area of the 

original microcalcifications; if COG difference is larger than 4, it shows a random 

detection.  COG difference will be used to evaluate the performance of algorithm to 

detect microcalcifications.  

 

The average differences of COG results of the 4 experiments (discussed in Table 6-1) 

are in Figure 7-9. It shows a generally small difference of the centre of gravity between 

the input and the output of MCGP network, but a better performance using the nonlinear 

fitness function than the linear function. It is apparent, however, that there is little 

difference in COG between patient-centered and distributed k-folds assignment for the 

cross-validation exercise. This shows that the MCGP networks have evolved a generic 

Figure 7-9 Average and best difference values for centre of gravity 
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microcalcifications detector that is not dependent on a particular set of patients. From 

the results, it could be said that the multi chromosomes of CGP network could detect 

the microcalcifications in mammograms successfully. 

 

The average of the COG differences results for the different thresholds in Figure 6-10, 

shows a general low difference of COG for the thresholds [0, 2, 4, 6, 8]. The dark grey 

bar is the average COG differences after threshold have been applied; the light grey bar 

is for the best COG  differences for applying threshold, therefore the weight for COG 

calculation is scaled to 1. Threshold 0 gives the results when calculating the COG 

differences which does not involve a threshold, and for any thresholds over 8. Some of 

the test images or the outputs of the network could not find COG differences, that is due 

to the output values are too small to apply to any large threshold. It is apparent; there is 

a little difference for the results of threshold 0 to 6 and then a better performance 8. This 

Figure 7-10 The average result of 4 experiments for different values of threshold 
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can be interpreted positively; it indicates that the MCGP network outputs have small 

differences of COG white pixel values on each part to the relative image input. 

This stage has described a novel multi-chromosomes CGP network applied to the 

detection of microcalcifications in mammograms, as an important stage towards using 

the same multiple chromosomes CGP network evolutionary algorithm for the 

classification of mammograms. The results presented here have demonstrated that the 

method is very encouraging. 

7.2 Classification of microcalcifications  

The MCGP network is applied by classification of microcalcifications in this stage 

Detection of microcalcifications could be seen as a binary classification as '0' for breast 

tissue and '1' for malignant microcalcifications. Besides, the aim of detection of 

microcalcifications, it is an important stage towards to the aim of the entire work. 

Therefore, the developed MCGP algorithm for detection of microcalcifications is 

applied to classify microcalcifications. This MCGP network will be trained to classify 

microcalcifications on mammograms to automatic diagnosis microcalcifications on 

mammograms.  

A number of changes are considered, with the ranging starting from input images. The 

total of 31 images from the dataset are applied in the MCGP network. The training and 

testing images have been introduced in Chapter 5 after k fold cross validations. There 

are still 4 different experiments based on catalogues by patients and randomly chosen 

for test images, even if it has shown that there were no differences between patient-

centres. (Experiment 1, 2) and randomly k folds assignment (Experiment 3, 4) for the 
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cross validation in stage of detection of microcalcifications. In these dataset, both 

malignant and benign images are used to train the system, and the training and testing 

are followed by Table 6-3 and 6-4.  

From Chapter 2, the features of malignant microcalcifications are small and hard to 

locate. Only lets MCGP learning the features on malignancy microcalcifications, in 

order to avoiding any misdiagnosis. As mentioned in Chapter 6, after the 31 ROI 

images are logically segmented into 256 parts, the status of each part labelled as either 

being benign or malignant according to the radiologists. Both benign and malignant 

ROI‘s have WPVs for microcalcifications have different meanings as mentioned in last 

chapter. In the malignant image, all the microcalcifications which have been indicated 

by the radiologist on the images are malignant, therefore the white pixel values which 

are the non-zero intensity pixels for each part of the malignant. However for benign 

images in classification stage, the WPV values are no longer staying the same, they 

have been rescaled. Instead of having WPV values for benign microcalcifications, they 

all have '0's as the representation that there are no malignancy microcalcifications in 

benign images. Therefore, an example of representation of the intensity of 

microcalcifications of ROI will look as follows: 
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In figure 6-11, the benign case is on the left, it contains all zero WPV parts since there 

are no cancerous microcalcifications pixels. The malignancy ROI contains WPV in 

parts is on the right, there are two areas of malignant microcalcifications. The WPV 

values are relatively large numbers and means a high intensity of pixels containing 

malignancy microcalcification information. 

The output for each single chromosome will remind as previous experiment stage, 

which is in a range of 0 to 255. Therefore the outputs of an entire MCGP network will 

be a mapping of 256 parts, in each part , the output has a range of 0 to 255. Since the 

input ROIs contain both benign and malignant pixels, and the standard WPV for fitness 

function has altered to suit on both benign and malignant images, therefore the 256 

MCGP outputs in a good performance could be predicted : 

 The results of 256 outputs of individual chromosomes expected  for Benign 

mammograms: 

1). All zeros outputs from the 256 chromosomes; 

2) Few low values of outputs from the 256 chromosomes.  

Figure 7-11 an example of representation of non zero intensity pixel counts for benign(Left) and 

malignant(Right) ROIs 
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 The results of 256 outputs of individual chromosomes expected for malignancy 

mammograms: 

1). A number of large value of outputs from the 256 chromosomes; 

2). A large number of non-zero outputs from the 256 chromosomes stay on or 

surrounding on the corresponding parts which are supposed to contain malignant 

microcalcifications the relative 256 parts.  

 

This ends that there will be 3 possible results expected from the MCGP classification 

algorithm: the malignant image, the benign image, and the image with the likelihood 

of malignancy. The larger number one chromosome output is, the more numbers of 

malignancy microcalcifications pixels in one part of ROI has classified.  If the output 

of each chromosome has a big value, it could be represented as a malignancy part, if it 

has a small or zero value, it could be represented as a benign part. Therefore, a 

threshold (T1) is applied to assign the meaning of benignity to the lower level and the 

meaning of malignancy to the higher level.  

During the process of training the algorithm to perform detection of 

microcalcifications, the number of outputs of MCGP network is equal to the number 

of inputs.  Since this stage is for classification of microcalcifications, a binary 

classification with a value either '0' or '1' indicating a malignancy or a benignity is the 

For the training stage, threshold is applied on each chromosome CGP 

network  in order to filter the small value before fitness calculated: 

 

if ( CGP output > threshold(T1)) 

         CGP output =  CGP output; 

Else  

         CGP output = 0; 
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result expected. As the whole MCGP network was designed to deal with a range of 

values from '0' to '255' in order to process pixel values of a 8 bit depth, an additional 

mechanism was needed to convert this output range to a single classification integer. 

In order to achieve this, a fixed threshold was introduced. The MCGP network output 

value was then compared to the threshold (T2) to determine the classification. 

 

Fitness is calculated by comparing the binary output and the diagnosed information 

which is supplied by a radiologist. 

 

If  Output of MCGP network =1 && the input image is a 

malignant image, 

        Then fitness of chromosome +1;  

If  Output of MCGP network =0 && the input image is a 

benign image, 

         Then fitness of chromosome +1; 

Else  

         Fitness +0;  

 

After each chromosome CGP output has been rescaled, number of 

malignant parts is by counting the number of the parts which 

contain outputs of one chromosome bigger than '0' to generate an 

integer, threshold T2 is applied here to give a binary classification, 

which '0' indicate benign and '1' indicate malignant : 

If number of Malignant parts≥ Threshold T2 

        then  the input image is malignant 

        Output of MCGP = 1; 

else 

        then  the input image is Benign 

        Output of MCGP network = 0; 
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The fitness of MCGP network =
1

256
 fitness of chromosome i0

𝑖=255         Equation 7-6 

The perfect fitness of MCGP network is 1, it means all single chromosome CGP 

networks have classified microcalcifications successfully in 256 parts. 

7.2.1 Training stage of the Algorithm 

The experiment uses parameters values based on Chapter 6 as described in table 6-6. All 

four experiments described by table 6-5 were carried out with the same parameters.  

The experiment is based on four experiments of k fold validation. Since it is a large 

scale of results represented for the same experiment, the fitness results will be 

calculated in average and the best or the worse fitness results also showed. The training 

results for the algorithm on the classification of microcalcifications shows in table 7-3: 

 

 

 

 

Best fitness Average fitness Worst fitness 

0.99 0.98 0.7 

Table 7-3 Fitness results on the classification of microcalcifications 
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As Figure 7-10 and Table 7-3 show, the MCGP network produce results showing good 

performance in training stage. It shows that the best fitness scores are almost 1, with the 

worst fitness scores being 0.7. The dark grey bar is the average fitness of all training 

results in experiment1, with a ±1 standard deviation. The light grey bar represents the 

best training fitness result with a standard deviation ±1.  These mean that the MCGP 

network has been fully trained to achieve the best fitness score as 1. For the average 

fitness for all four experiments being nearly the same, there is a no difference in the 

fitness between patient-centred (Experiment 1, 2) and randomly k folds assignment 

(Experiment 3, 4) for the cross validation. This indicates that the MCGP networks 

classifying microcalcifications is not dependent on a patient‗s examples. From Table 7-

3, the worst fitness is 0.7 and best fitness is 0.99. It shows the range of improvement is 

about 3% and it could be said that the algorithm is mainly improving the worst fitness. 

One explanation for this would be the fact that there are most parts of the ROIs showing 

benign tissues so the most algorithms in training are mainly trained with the benign 

7-12 the average fitness for each experiment 
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image parts. The chromosome CGP trained with these benign parts is therefore a good 

classifier for benign tissue. The development of average fitness against generations for 

all 4 experiments have been shown on Figure 7-13 and shows the ability of MCGP 

algorithm in learning to classify the microcalcifications.  

 

7.2.2 Testing Stage 

The resulting Algorithm was then tested using images from Table 6-3 and 6-4 from the 

LLNL database that were not used for training the algorithm. The fitness testing results 

shows from Table 7-4 and the average fitness for 4 experiments (described in Charpter 

7) has been shown in Figure 7-10.  

7-13 The average fitness values training the algorithm on the classification of microcalcifications 
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Figure 7-14Average and best fitness for 4 experiments of testing results 

The testing phase shows slightly lower fitness values than the training phase, however it 

is still in good value, with the average fitness for these 4 experiments as above 0.935 

and the best fitness value has reached 0.9683 which is really near to 1.  

Table 7-4 Average results of 4 experiments of testing MCGP network 

 Confusion Matrix (Average value) Statistics  

Experiments Bb Bm Mb Mm TP TN  FP FN MCC 

Experiment1 5 13 13 0 0 0.28 0.72 1 -0.75 

Experiment2 5 13 13 0 0 0.28 0.72 1 -0.75 

Experiment3 5 13 13 0 0 0.28 0.72 1 -0.75 

0.92

0.925

0.93

0.935

0.94

0.945

0.95

0.955

0.96

0.965
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Experiment14 5 13 13 0 0 0.28 0.72 1 -0.75 

Table 7-4 shows the average results of a further breakdown for the best chromosomes 

from each MCGP network and contains both the confusion matrices as well as 

additional statistics measures. In confusion matrix, the first character B and M is 

indicating the actual classification and the second character b and m is indicating the 

predicted classification. These numbers link the value of TP, TN, FP, FN and values of 

MCC (Chapter 6) which is used to measure of performance of system are given.  

Comparing the values of Table 7-4, FN rates are 1s; this means that all of the images 

were classified incorrectly. The values of MCCs stay as negative values indicated the 

faulty prediction have occurred.  

In order to get the better performance of the system, a closer look of the outputs of 256 

chromosome of a MCGP network for an 256 parts of testing image have been formed. 

This is due to the property of MCGP network which contains individual non-overlapped 

sub-networks. An example is shown in Figure 7-15 with one actual malignant testing 

image and Figure 7-16 for an actual benign images.  Both of the figures contain the 

WPVs in 256 parts indicated by radiologist on the top of the figure, then the output of 

MCGP network with 256 individual chromosome outputs, the bottom is the differences 

between the WPVs and outputs in the corresponding part.  
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Figure 7-15Testing output results  of MCGP for a Malignant ROI 
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Even the fitness for the testing phase is high; however it could be seen that the outputs 

of each chromosome CGP network produced small values of outputs for malignant 

image and relatively big number for benign images.  These results are completely 

Figure 7-16Test output results of MCGP for a benign ROI 
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opposite to the expected MCGP output results. To improve the performance of the 

system in testing stage,  a threshold  in a range of [0, 64] has to applied to assign 

benignity and malignancy. The value of threshold could not be so big otherwise there 

will be FN classification; however it could not be too small which would lead to FP 

classification. A middle range of [16, 32] threshold is used to apply on the assignment.  

Due to the outputs for the malignancy testing images, any value below 16 has inferred a 

misdiagnosis for the MCGP network. One example has been shown in Figure 7-18. 

Figure 7-19 is the outputs of MCGP for a malignancy image as input (also as Figure 7-

15), it could be noticed that after a threshold valued at 32 is applied, there is no non zero 

outputs in MCGP output network. It shows the MCGP network give a FN when 

threshold = 32. When threshold = 16, almost all the output parts become 0 and the non-

zero output parts are actually a benign part of the corresponding input WPVs. The same 

as the MCGP outputs from benign image is applied by a threshold. It shows that after a 

threshold=16 has been applied, there is still a few non zero parts left on the MCGP 

outputs. Table 7-5 indicated that the MCGP network would give a wrong diagnosis in 

classifying benign microcalcifications.  

Table 7-5 Results for voting with threshold on the output of each chromosome network 

 Confusion Matrix (Average 

value) 

Statistics  

Experiments Bb Bm Mb Mm TP TN  FP FN MCC 

Threshold 16 0 18 13 0 0 0 1 1 -1 

Threshold 32 0 18 13 0 0 0 1 1 -1 
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Figure 7-17 The corresponding outputs of MCGP network to Figure 7-15 is applied by threshold=16 
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7.2.3 Further experimentation 

7.2.3.1 Training and Testing with a different threshold and bias strategy 

Considering the malignant microcalcifications are very small, most image parts will 

contain benign tissue surroundings for the classification when dividing the image into 

image parts. During training this leads to one chromosome CGP network that might not 

have had to deal with the classification of a malignant part at all. This means that some 

particular chromosome CGP networks will be specialised in classifying benign image 

properties while only few chromosome CGP networks are trained to recognise a 

malignant microcalcifications part. This is the problem that might arise from that and is 

the inability to classify malignancy during the test phase. In order to overcome this 

Figure 7-18 The corresponding outputs of MCGP network to Figure 7-15 is applied by threshold=32 
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problem, in the training stage a bias has been used to deal with the issue that there are 

more benign parts than malignant parts in the training images. Since the bias added on, 

the fitness function has altered to give the best training. The Threshold and bias 

algorithm is described below and applied in the training stage and the testing stage 

remained same. 

 

For the training stage, threshold is applied on each chromosome CGP network  in order 

to filter the small value before fitness calculated: 

 

if ( CGP output > threshold) 

         CGP output =  CGP output; 

Else  

         CGP output = 0; 

 

Then bias is applied on fitness function to reduce the weight of zero WPV parts when 

the network is trained.  

 

The fitness function : 

 

If  (CGP output > 0 && number_white_pixels >0) 

        Fitness of chromosome = 1; 

Else if (CGP output = 0 && number_white_pixels =0) 

        Fitness of chromosome = 1/bias; 

Else  

        Fitness = 0. 

 

There are several experiments which have been carried out to evaluate the combination 

value of bias and threshold. Both the threshold and the bias are given a range of [1, 64], 

'1' means that there is no bias and threshold applied in the system, '64' is a middle-value 

to test whether the improvement could lead to a better performance. After trials runs, the 

best average fitness occurs when bias= 30, threshold = 30, the MCGP network training 

fitness =0.502.  In the testing stage, the performance results as follows: 
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Table 7-6 Results for applying bias on training system 

 Confusion Matrix (Average value) Statistics  

Experiments Bb Bm Mb Mm TP TN  FP FN MCC 

Experiment1 1 17 13 0 0 0.17 0.83 1 -0.84 

Experiment2 0 18 13 0 0 0 1 1 -1 

Experiment3 1 17 13 0 0 0.17 0.83 1 -0.84 

Experiment14 0 18 13 0 0 0 1 1 -1 

From the numbers given in Figure 7-6 the algorithm with adding bias and changing 

fitness still cannot provide a positive performance of classifying microcalcifications. 

With the FN values equal to 1, it meant that the malignancy is always failed to detected, 

the new approach by adding bias and changing thresholds could not help to provide 

better performance.  

The example of 256 chromosomes outputs of testing image results are shown in Figure 

7-19.  
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Figure 7-19 shows a MCGP outputs when bias=30 is applied on the fitness function to 

reduce the weight of benign microcalcifications or non microcalcification parts and 

threshold applied to assign the malignancy and benignity. On the output results, it 

shows that the each chromosome over classified malignant microcalcifications in each 

part of ROI, it leaded that the MCGP network over classified malignant 

microcalcifications. It delivered relatively smaller values for the parts which truly 

contain malignant microcalcifications and relatively large values for the parts which 

contains breast tissues or benign microcalcifications. The results from this experiment 

delivered a message that adding bias and threshold could not solve the indicated 

problem. MCGP algorithm does not have a good performance in this experiment.  

Figure 7-19MCGP outputs with bias and thresholds 
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7.2.3.2 Single Chromosome CGP network  

The previous experiments showed that the performance of MCGP network on 

classification of microcalcifications is desirable. The MCGP network contains 256 

individual single chromosome CGP networks, each single chromosome network is 

working on one equal non-overlapped part of a ROI. Therefore, for one particular single 

chromosome CGP sub network, may only be trained on the benign part of the training 

images, but is used to classify the malignant part in testing images. This could cause a 

problem which is, this intelligent single chromosome CGP network never ever learnt 

enough information.  Although in the MCGP network training stage, the best genotype 

to represent the entire network has been recorded and used on the testing stage, this non 

or less training algorithm problem is still not solved. Therefore, to solve this problem, 

instead of putting all 256 Chromosomes CGP network for 256 parts in one image, only 

one chromosome CGP network is trained through all 256 parts of one image. The 

working procedure shows as follows: 
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Since the single chromosome CGP network is the subject of the MCG network, the 

parameters, which are used to construct single chromosomes, the CGP networks in both 

cases remain the same as table 6-6.  

The single chromosome CGP network is applied to train each individual parts of the 

image. For classification stages, there are a number of parts only containing benign 

microcalcification information, or surrounding the breast tissue and less parts containing 

malignant microcalcifications. Training results shown in Table 7-7 and Figure 7-20. The 

fitness function will be the same as Equation 6-1 and 6-2 for both linear and non-linear 

fitness functions: 

Table 7-7 average and best fitness for single chromosome CGP network training stage 

 Average Fitness Best Fitness Worst Fitness 

Experiment 1 0.97 0.99 0.51 

Experiment 2 0.96 0.99 0.55 

Experiment 3 0.97 0.99 0.34 

Experiment 4 0.97 0.99 0.55 

 

A ROI with equal nonoverlapped 

256 parts 

one CGP 

network  
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.   

Table 7-8 Confusion Matrix for the testing results of system 

Confusion Matrix (Average 

value) 

Statistics  

Bb Bm Mb Mm TP TN  FP FN MCC 

2 16 13 0 0 0.125 0.875 1 -0.88 

 

From the training results, the single chromosome CGP network has been created to 

classify microcalcifications into benign and malignant cases. Table 7-6 shows the 

fitness of the training stages.  These mean that the single chromosome CGP  network 

Figure 7-20 Training results of single chromosome CGP network 
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has been fully trained to achieve the best fitness score as 1.  From Table 7-8 , it could 

find that the single chromosome CGP network had same problem with the MCGP 

network which provide better fitness values on training stages and bad performance on 

testing stages. Figure 7-20, the malignant outputs started to contain larger numbers of 

outputs valued on the benign image output. However it also the output larger numbers 

for benign microcalcifications that shows that the single chromosome CGP network 

starts to learn from the malignant microcalcification information.  However it still 

cannot deliver a good performance.   

7.2.4 Discussion 

In this chapter, MCGP network has successfully detected the location and surround 

areas of microcalcifications by apply MCGP network in a mammogram dataset with 

microcalcification indicators. The detection of microcalcifications is not the entire 

automatic analysis of mammograms however it is one of the important part. The 

successful detection strongly showed the potentials of Multi chromosomes Cartesian 

Genetic Programming (MCGP) as a new, evolutionary algorithm on the area of 

automatic analysis mammograms. It also indicated that the advantages of evolutionary 

algorithm that they are based on learning how to do a task rather than just following the 

mathematics formula or sequential orders.   

The limitation of self learning algorithm is it requests a reliable dataset to train the 

algorithm.  To delivering a good performance on an algorithm, there are two important 

issues: 1) A suitable Algorithm which has the ability to solve the problem; 2) An 

reliable dataset to train the algorithm. The detection of microcalcifications by using 

MCGP have showed its good performance, however the performance of classification of 
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microcalcifications has failed by using same algorithms for detection stage and leave a 

problem that the algorithm has a better training results and a bad testing results, the 

better training results indicated that this new evolutionary algorithms are showing its the 

benefit on learning how to do a task and potential to automatic analysing mammograms. 

However the bad testing results are the evidence of a non reliable dataset cause 

problems on the performance of evolutionary algorithms; especially it is under the 

circumstances that there are different experiments have been carried out for optimizing 

the MCGP network in order to solve the problems. This leading the reason of non 

desired performance results of MCGP network on classification of microcalcifications  

is  due to a non-reliable dataset.  

Here are 4 examples of data training images, they are from this LLNL dataset and have 

been used to train the MCGP network for automated analysis of mammograms.  

    

 

These 4 different images, (a)-(c) contains malignant microcalcifications, with image (d) 

being a benign image. All the 4 images have different contrast and low quality (a) 

images. This information could easily confuse the CGP system when it is on the training 

stages. The contrast of the images are not united, the differences of features between 

malignant and benign  microcalcifications are not clear in these images, the features of 

(a) (b) (d) (c) 
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benign and malignant microcalcifications are leading confusing for MCGP network. All 

these issues could cause the MCGP network  learn how to classify benignancy  and 

malignancy microcalcifications not properly or miss- learning the typical features or 

over trained the system in training stage which leading a failure performance on testing 

stage.  As the survey reviews dataset has been mentioned in chapter 5, a reliable, trusted 

dataset which the data has been selected and supplied under same circumstances is one 

of the important key for the successful automatic analysis on mammograms by using 

evolutionary algorithm. A new dataset that is overcome the existing problems has been 

introduced in Chapter 8.  
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8 Conclusion 

8.1   Summary of work undertaken 

8.1.1 Motivation – Diagnosis cancer in mammograms for screening 

Breast cancer is the leading cause of death in women. The diagnosis of breast cancer at 

the earlier stage may be particularly important since it provides early treatment. The 

death rate of breast cancer has fallen since the breast screening program was introduced. 

The main method for screening patients is the mammogram - a high resolution x-ray of 

the breast. The hard work is the early detection of any tissues abnormality and 

confirmation of their cancerous natures. In addition, finding abnormalities on very early 

stages can also be affected by poor quality of image and other problems that might show 

on a mammogram. The process of identifying and evaluating signs of cancer from 

mammogram is a very difficult and time consuming task which requires fully trained 

radiologists. However, by natural and exposed to human error, there is a chance that 

cancer will be missed and patients being misdiagnosed. Computer aided diagnosis 

system has been introduced with the aim to achieve a more accurate and reliable 

diagnosis. 

The two powerful indicators to evaluate mammograms are masses and 

microcalcifications. In general, masses are more difficult to classify than 

microcalcifications. Microcalcifications are small calcium deposits which occur as 

secretion from the ductal structures which have been thickened and dried. They can 

have the most benign cases but could also indicate malignancy. They are common on 

mammograms and their appearance increases with age. Over a decade, there are many 



192 

 

researches on the application of CAD system, and many of them evolved image 

processing of digital mammogram. A typical approach is pattern recognition scheme 

with sensing, segmentation, feature extraction, selection and classification. Evolutionary 

algorithm particularly genetic algorithm has previews been used with success in CAD 

feature selection system. Evolutionary algorithm, particularly genetic algorithm has 

previously been used with success in CAD feature selection system, the limitation of 

using evolutionary algorithm is prompted to investigate the potential benefit in the 

classification of microcalcifications.  

8.1.2 Complexity and scale of problem Requires novel learning technology – 

evolutionary algorithm 

To automatically analysis images especially medical image as mammograms is a 

complex and difficult job requiring a reliable algorithm and a suitable dataset since a 

good performance of an algorithm is the data it is trained on. In the real world, this is a 

challenge.    

Since CAD system has a few problems on finding a system detection which does not 

necessarily have been detected by the radiologist, this might lead to the system not 

being trained correctly. Most CAD systems are based on classical imaging 

programming operations that are limited to the general understanding of how 

malignancy are found, as well as the limitations of CAD on practical implementation 

and classical image processing operations. To overcome this, evolutionary algorithms 

have the great advantage that they are based on learning how to do a task rather than 

just following a sequence of orders. EA has the great advantage that they are based on 

learning how to do a task rather than just following the mathematics formula or 
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sequential orders. EA contains programming technologies which simulate evolutionary 

behaviour of nature. The flexibility and learning ability of EA make it to be a good 

algorithm on automatic evaluating mammograms. In this work, it is decided to use 

Cartesian Genetic Programming for the representative EA to automatically analysis of 

mammograms. CGP is a special kind of Genetic Programming which is as a part of EA. 

Based on the aim of investigating the potential of EA on automatic analysis of 

Mammograms, the new representation CGP called Multi-chromosome CGP algorithm 

has been developed.  Its structure determined that MCGP algorithm is an entire network 

consists of a number of small single chromosome networks. Therefore an entire 

mammogram is divided into a number of sub-images in order to divide one big problem 

into many small sub problems. 

8.1.3 Suitable medical dataset required to train and evaluate algorithms 

8.1.3.1 Medical datasets have common problems 

Despite that EA have benefited from the traditional CAD system, there is also limitation 

from it. The performance of this algorithm require a good training database, more 

specifically, the classes represented in the training set must consist of true examples or 

reliable classes.  However, the good mammograms dataset is a major challenge. For 

traditional methods, the dataset is critical and yet obtaining one is not straightforward. 

An obvious approach would be to obtain access to a database that has already been 

prepared. A common problem is the clinical protocol under which the data obtained is 

not similar to the requirement for the target.  
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With world spread adoption of computer based health system, the digitized 

mammogram image has increased significantly. As mammographic screening has been 

used on the early detection of breast cancer, a large number of public databases are or 

have been available in the past.  However the quality, size and reliability of the data 

available are not under the same requirements. Also most of these databases have 

drawback which make them inappropriate for study.  

In Mammogram dataset, most of them are digitized mammography; there are different 

digitizer equipments to get the measurements. However different scanner from different 

manufactures will digitize the analogue films in slightly different ways, therefore some 

X-ray film are classified by an algorithm based on which scanner was used in the 

digitization process. 

8.1.3.2  Research has concluded that no suitable dataset currently exists 

A special volume of data has been extracted from LLNL for the use in evaluating CGP 

that on classification of micro calcifications in Chapter 6.  Additionally, according to 

the performance of MCGP working on the LLNL dataset, there are limitations with this 

dataset to evaluate the algorithm. In fact, that the LLNL dataset which has been used is 

relatively outdated. Based on the Implementation of this work, the non reliable dataset 

is the cause that the system could not provide a good performance on automatic 

diagnosis cancerous on mammograms. Such as there is no standard resolution for the 

images, the contrast differences cause the algorithm‘s confusion. The limited number of 

training data could not provide enough information to let the algorithm learn properly. 

Different formats and sources could generate artifacts that may interfere with training of 

algorithms.  
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8.1.4 Implementation challenging and experimental results  

The multi-chromosome CGP network could not give a good performance on the 

provided dataset; it is not because Multi-chromosomes CGP is not working properly, 

the experimental results have shown that MCGP could detect microcalcifications on 

mammograms which leads to potentially providing a confident diagnosis. However, 

when the MCGP network is used on the classification stage, the extra information 

required to train the network from dataset could not be gained. The non-reliability of 

this dataset caused MCGP network confusion when it tries to learn classification.   

8.1.5 Creating a new dataset 

For mammography, it is difficult as the data cannot be simply being generated due to 

the medical situation of mammograms. However, as mentioned in section 5.2,  several 

publically available datasets have their disadvantages. Therefore, to construct a 

clinically validated database of mammograms   is an important stage for the whole work, 

that‘s because the entire project requires a dataset to be absolutely stable, reliable, 

accurate and suitable to train and test the effectiveness of the EAs developed in 

diagnostic support in breast mammography. Heading towards on this aim, the 

acknowledgement of an expected mammogram dataset is introduced, and  a new YDH 

dataset has been produced based on the needs, objectives and purpose of this project, 

information on the tools used [107] by the user interface is also available to this section.  
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8.1.5.1 Contents of the New Dataset 

In order to construct a new dataset, it requires clinical co-operation to provide sufficient 

conditions and information to build up a well-served complete mammogram image data 

for the diagnosis of microcalcifications in mammogram.   

8.1.5.2 YDH Mammography Images 

This dataset contains mammograms obtained from York District Hospital, therefore, 

YDH has been chosen as the name of the new dataset.  

The number of patients required is one of the statistical justifications to show whether 

the performance of the algorithm is affected by specific patients. Normally, this 

information comes from the clinical record. This also shows the availability of patients 

by showing different aspects of the records of one case from a single patient. [108] 

indicated that in order to obtain statistical justification for measurements of the 

performance of the algorithm, it should be tested on a large dataset.  

The dataset contains the patient age, screening exam date, and the date when the 

mammogram was digitized. The patient‘s name or symbol name could also be shown in 

the dataset; this may help the radiologist for following up diagnosis or for statistics.   

8.1.5.3 Type of mammogram  

 The dataset needs to indicate whether the data is film screen mammograms or 

full digitized mammograms. If it is a film screen mammogram, the sampling rate, 
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number of grey levels and equation to estimate optical density from grey value 

for the scanner used to digitize the mammograms needs to be recorded.  

 Based on chapter 2, the four standard views (medio-latra oblique and cranio 

caudal) from each side of the breast for one patient are indicated in the dataset.  

 

MLO 

Left 

Right 

                  CC 

Left 

Right 

 

 What circumstances under which the mammograms have been taken.  

Screening exam screening  

Routine 

Follow up 

diagnosis 

Guiding 

biopsy 

 

Therefore, the data could be assigned into different volumes according to 

the severity of the findings.  

Normal Benign without call 

back 

Benign Malignant 
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 In Mammogram dataset, most of them are digitized mammography which are 

digitized by different scanners, therefore a standard unit digitizer to digitize 

mammograms is necessary.  

 To avoid any confusion made by algorithm, the data shares same contrast, pixel 

per inches and sample rate.  

 Image format need to be united in order to present a reliable dataset for training 

the evolutionary algorithms especially it has been highly recommended by itself 

learning motivation. 

Similar to the existing LLNL dataset, however still different,  the image format has been 

suggested with the common format as  follows: 

 The file will be a text file, and it contains 2 parts:  

Header:  

FILENAME: original image file name  

XRES: image x resolution  

YRES: image x resolution  

IRES: image intensity resolution (e.g. 255 grey-levels)  

MAN: digitizer manufacturer and model  

Time: when to select the ROI  
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Marking Scheme: from 1 to 5 

Body:  

Pixel X coordinate and pixel Y coordinate (repeated for all pixels within area of 

selection  

TYPE: structure type (e.g. MICROCALC or MASS)  

RATING: cancer risk - HIGH, MEDIUM or LOW  

CONFIDENCE: confidence of rate - HIGH, MEDIUM or LOW  

RATER: rate's initials  

 Marking scheme 

There will be two marking schemes.  One will mark the boundary of ROI as a larger 

marking core.  Then the secondary smaller marking scheme will be used to mark the 

core of speculated mass or cluster of microcalcifications. 

These marking schemes, which would be used by two radiologists, could result in a 

more confident diagnosis 

There could be two fully trained radiologists to mark up the frame and ROI which 

contains the suspicious mass or microcalcifications.  Each marking contains a 

descriptive value.  This value is specified by mammography radiologists using the 

UK scoring system called RCRBG which will maintain confidence in classification. 
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 User Interface 

Once the mammogram data in DICOM files have been supplied by YDH experts, a 

full trained radiologist starts to segment the Region of Interests by using 

Mammogram Data Acquisition System which is a user interface created by 

Christopher Booth, supervised by Dr. Steve Smith. This software user interface 

especially designed for this new data images would allow the user to convert images 

without changing the image quality. There are 1,237 images which are allowed to 

batch in this software. It would help the radiologist to zoom in the image in order to 

get a closer look. Once the radiologist has selected the Region of Interests, the 

images will be saved in one of the  four conversion format-BMP, PNG, BMP+ 

additional information output as text file, PNG+ additional information output as 

text file.  

 Pre-processing for image data 

Once the ROI has been selected by a radiologist, the data image needs to be 

segmented into smaller sub-images. In order to let Multi-chromosome CGP network 

learn properly, the sub-image for the new dataset is no long non-overlapping. There 

is a sliding window operation which will be used. Figure 8-1 shows how sliding 

window works. The particular window used 8×8 pixel sized mask, every time this 

mask only slides 4 pixels length to the left or right or up or down and record the 

pixels into a new 8×8 sub-images. After the window slides through the whole image, 

there will be an 8×8 sub-images. Then each chromosome from a multi-chromosome 

CGP network randomly chooses one sub-image as its training inputs. This will 

ensure that each chromosome learns all the information from the training image to 
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avoid any miss training. In addition, all the sub-images contains information of 

microcalcification from different angles, making sure the edge of the 

microcalcifications will not be missed out.   

 

8.1.6 An example of new image data file  

The new data are generated by the contents of YDH dataset. Here is one of example 

about a new image dat file, dat. files are converted by the data images of dataset and 

they are commonly used on the input training and testing images for evolutionary 

algorithms , on the application of  auto detected microcalcifications . 
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Window Window 

Figure 8-1Sliding window 
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8.2 Hypothesis revisited 

The work presented in this thesis addressed the following hypothesis: 

―Multi-chromosome Cartesian Genetic programming is an effective evolutionary 

algorithm to facilitate automatic analysis of mammograms.‖  

Based on the aim of excess investigation in the potential benefit of MCGP on a 

confident automatic analysis of microcalcifications on mammograms, a Multi-

chromosome CGP network is developed to classify microcalcifications by using the raw 

pixel values. This self-learning algorithm has great advantages that they are based on 

learning how to do a task rather than just follow a sequence of orders. To achieve this, it 

relies on its training data. Two experiments have been designed towards the main aim, 

one is applying MCGP network on detection of microcalcifications, this stage is to 

investigates the suitability of whether MCGP could successfully apply on such a 

complex application. Both of the experiments are using LLNL dataset. From the results, 

it clearly showed that MCGP algorithm could deliver a confident detection of 

microcalcifications on mammograms; this is demonstrated on the paper [109].  On the 

stage of classification microcalcifications, a range of experiments have to implemented 

to approve that:  MCGP could not perform a confident classification microcalcifications 

based on the non-suitable dataset This problem indicates that the appropriate datasets of 

equal importance to algorithms when looking for a solution to automated assessment of 

mammograms. 
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The new dataset has been provided with several standards to meet the requirement of 

the studies; multiple chromosomes CGP is still a promising approach since it has 

already showed the potential on detecting microcalcifications.  

8.3   Further work 

During limited time, there is still some work which could help to evaluate this automatic 

Automated Analysis Evolutionary Algorithms.  

8.3.1 Create new datasets to known specification and hence characteristics 

A standard new dataset which have been introduced particularly for this algorithm, with 

the aim to avoid any problems caused by the current dataset. In this dataset, data has 

been formatted into a new standard format. The new dat. has been generated to fit into 

the MCGP network for the investigation.  

8.3.2 Test EAs developed 

Once the new dataset has been used to train the system, the stage of test of developed by 

MCGP for classification of microcalcifications could be brought to the table again.   

There is a new approach called sliding window mask which could be used to train the 

MCGP.   

The fitness function has been changed since the reference number used to compare with 

the CGP output is a range from 0-5 to indicate the diagnosis confidence. Therefore the 

new fitness function is: 
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CGP output is in a range of 0-255, which should add 45 then divided by 6: 

If the rescaled CGP output is in range of 0-50 then it rescaled into 0;  

Else if the rescaled CGP output is in range of 51-100 then it rescaled into 1;  

If the rescaled CGP output is in range of 101-150 then it rescaled into 2;  

. 

Then the number of parts which have the number 0 needs to be calculated, stored as 

NUM_0; 

Then the number of parts which have the number 1 need to be calculated, stored as 

NUM_1; 

Then the number of parts which have the number 2 needs to be calculated, stored as 

NUM_2; 

Then the number of parts which have the number 3 needs to be calculated, stored as 

NUM_3; 

Then the number of parts which have the number 4 needs to be calculated, stored as 

NUM_4; 

Then the number of parts which have the number 5 needs to be calculated, stored as 

NUM_5; 

Then the total fitness will be the largest number of NUM_0 to NUM_5.  

The network has been constructed by the author, with the new dataset and new 

structured network which could be used to determine the potential benefit of MCGP on 

automatic analysis of microcalcifications on mammograms.  The programming code is 

enclosed in the Appendix. 
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Appendix 

MCGP code for Classfication of mammograms 

 

#include <stdio.h> 

#include <stdlib.h> 

#include <string.h> 

#include <math.h> 

#include "cgp_breast2.h" 

 

 

/* validate cgp program command line and create file strings for .par 

and .data files */ 

void validate_command_line(int argc, char* argv[], char parfile[]) 

{ 

 puts(""); 

 puts("*********    WELCOME TO CARTESIAN GENETIC PROGRAMMING      

*********");  

 puts("********* Validating command line arguments to cgp program 

*********"); 

 

 if (argc!=2) 

 { 

  puts("INCORRECT NUMBER OF ARGUMENTS"); 

  puts("Type cgp <file.par> then return"); 

  exit(1); 

 } 

 if (strlen(argv[1])>(MAX_NUM_LETTERS-1)) 

 { 

     puts("filename for parameter file is too long"); 

  printf("It should be less than %d 

characters\n",MAX_NUM_LETTERS); 

  exit(2); 

 } 

 strcpy(parfile,argv[1]); 

 

} 

 

/* creates the list of training images and reads their names into an 

array 

   also calculates how many training images are provided */ 

void get_image_names(int train) 

{ 

 

 FILE *fp; 

 

 /* create list of files to be processed */ 

 if (train) 

 { 

  system("dir *_train.dat /B > list.txt"); 

  fp = fopen("list.txt","r"); 

  if (!fp) 

  { 

   puts("Error. Cannot find file list.txt"); 

   exit(0); 
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  } 

 } 

 else 

 { 

  system("dir *.tst /B > list-test.txt"); 

  fp = fopen("list-test.txt","r"); 

  if (!fp) 

  { 

   puts("Error. Cannot find file list-test.txt"); 

   exit(0); 

  } 

 } 

 

 

 num_images =0; 

 do 

 { 

 

  if (feof(fp)) 

   break; 

 

  fscanf(fp,"%s",image_names[num_images]); 

 

  num_images++; 

 

 } 

 while (!feof(fp)); 

 

 if (num_images == 0) 

 { 

  puts("Empty list of images"); 

  exit(0); 

 } 

 

 num_images--; 

 

} 

 

/* creates the list of test images and reads their names into an array 

   also calculates how many training images are provided  

   Added so that a test score can be provided during evolution */ 

void test_get_image_names(void) 

{ 

 

 FILE *fp; 

 

 /* create list of files to be processed */ 

 system("dir *.tst /B > list-test.txt"); 

 fp = fopen("list-test.txt","r"); 

 if (!fp) 

 { 

   puts("Error. Cannot find file list-test.txt"); 

   exit(0); 

 } 

 

 test_num_images =0; 

 do 

 { 

 

  if (feof(fp)) 
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   break; 

 

  fscanf(fp,"%s",test_image_names[test_num_images]); 

 

  test_num_images++; 

 

 } 

 while (!feof(fp)); 

 

 if (test_num_images == 0) 

 { 

  puts("Empty list of images"); 

  exit(0); 

 } 

 

 test_num_images--; 

 

} 

 

/* reads the image data as a .dat file (pgm image file with extra info) 

   also calculates some program globals 

*/ 

void read_data(char datafile[], int image) 

{ 

    int  i,j; 

    char dummy[MAX_NUM_LETTERS]; 

 char imagefilename[MAX_NUM_LETTERS]; 

    FILE* fp; 

 

    fp=fopen(datafile,"r"); 

    if (!fp) 

    { 

        puts("ERROR. Missing data file"); 

        exit(1); 

    } 

    else 

    { 

       fscanf(fp,"%s",imagefilename); 

    fscanf(fp,"%s %d",dummy,&malignancy_level); 

       fscanf(fp,"%s %d",dummy,&num_inputs); 

    if (num_inputs > MAX_NUM_INPUTS) 

    { 

     printf("\nERROR. num_inputs must be less 

than %d\n",MAX_NUM_INPUTS); 

     exit(0); 

    } 

       fscanf(fp,"%s %d",dummy,&num_xparts); 

       fscanf(fp,"%s %d",dummy,&num_yparts); 

       fscanf(fp,"%s %d",dummy,&num_parts_per_image[image]); 

    if (num_parts_per_image[image] > MAX_NUM_PRODUCTS) 

    { 

     printf("\nERROR. num_parts must be less 

than %d\n",MAX_NUM_PRODUCTS); 

     exit(0); 

    } 

  

       for (i=0;i<num_parts_per_image[image];i++) 

       { 

          for(j=0;j<num_inputs;j++) 

              fscanf(fp,"%u", &data_inputs[image][i][j]); 
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//    fscanf(fp,"%u", &number_white_pixels[image][i]); 

    } 

       fclose(fp); 

 

    } 

} 

 

 

/* reads the image data as a .dat file (pgm image file with extra info) 

   also calculates some program globals 

*/ 

void test_read_data(char datafile[], int image) 

{ 

    int  i,j; 

    char dummy[MAX_NUM_LETTERS]; 

 char imagefilename[MAX_NUM_LETTERS]; 

    FILE* fp; 

 

    fp=fopen(datafile,"r"); 

    if (!fp) 

    { 

        puts("ERROR. Missing data file"); 

        exit(1); 

    } 

    else 

    { 

       fscanf(fp,"%s",imagefilename); 

    fscanf(fp,"%s %d",dummy,&malignancy_level); 

       fscanf(fp,"%s %d",dummy,&num_inputs); 

    if (num_inputs > MAX_NUM_INPUTS) 

    { 

     printf("\nERROR. num_inputs must be less 

than %d\n",MAX_NUM_INPUTS); 

     exit(0); 

    } 

       fscanf(fp,"%s %d",dummy,&num_xparts); 

       fscanf(fp,"%s %d",dummy,&num_yparts); 

       fscanf(fp,"%s %d",dummy,&test_num_parts_per_image[image]); 

    if (test_num_parts_per_image[image] > MAX_NUM_PRODUCTS) 

    { 

     printf("\nERROR. num_parts must be less 

than %d\n",MAX_NUM_PRODUCTS); 

     exit(0); 

    } 

  

       for (i=0;i<test_num_parts_per_image[image];i++) 

       { 

          for(j=0;j<num_inputs;j++) 

              fscanf(fp,"%u", &test_data_inputs[image][i][j]); 

    fscanf(fp,"%u", &test_number_white_pixels[image][i]); 

    } 

       fclose(fp); 

 

    } 

} 

 

/* read from the parameter file all the global parameters */ 

void get_parameters(char parfile[]) 

{ 

 int  i; 
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 char dummy[50]; 

 FILE* fp;  

 

 printf("\n********* Reading parameters defined in %s 

*********\n",parfile); 

 fp=fopen(parfile,"r"); 

 if (!fp) 

 { 

  printf("Missing file: %s\n",parfile); 

  exit(1); 

 } 

 fscanf(fp,"%d %s",&population_size,dummy); 

 fscanf(fp,"%lf %s",&per_cent_mutate,dummy); 

 fscanf(fp,"%d %s",&num_generations,dummy); 

 fscanf(fp,"%d %s",&num_runs_total,dummy); 

 fscanf(fp,"%d %s",&num_rows,dummy); 

 fscanf(fp,"%d %s",&num_cols,dummy); 

 fscanf(fp,"%d %s",&levels_back,dummy); 

 fscanf(fp,"%d %s",&progress_report,dummy); 

 fscanf(fp,"%d %s",&report_interval,dummy); 

 fscanf(fp,"%u %s",&global_seed,dummy); 

 fscanf(fp,"%d %s",&save_best_chrom,dummy); 

 fscanf(fp,"%d %s",&run_from_chrom,dummy); 

 fscanf(fp,"%d %s",&malignancy_threshold,dummy); 

 fscanf(fp,"%d %s",&linear_fitness,dummy); 

 

 num_chromosomes = 1; 

 

 /* assigned global constants */ 

 num_functions=0; 

 num_genes_per_node=3; 

 

 num_outputs = 1; 

 

 for (i=0;i<MAX_NUM_FUNCTIONS;i++) 

 { 

  fscanf(fp,"%d %s",&number[i],&node_types[i]); 

  if (number[i]) 

  { 

   allowed_functions[num_functions]=i; 

   num_functions++; 

   if (i>15) 

    num_genes_per_node=4; 

  } 

 } 

 fclose(fp); 

 

 /* get training image names */ 

 get_image_names(1); 

 

 printf("\nReading image data\n"); 

 for (i = 0; i < num_images; i++) 

 { 

  read_data(image_names[i],i); 

 } 

 

 /* get testing image names and test data */ 

 test_get_image_names(); 

 

 printf("\nReading test image data\n"); 
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 for (i = 0; i < test_num_images; i++) 

 { 

  test_read_data(test_image_names[i],i); 

 } 

 

 //printf("\nnum_rows is %d\n", num_rows); 

 //printf("\nnum_cols is %d\n", num_cols); 

 //printf("\nnum_genes_per_node is %d\n", num_genes_per_node); 

 

 //exit(0); 

 

 /* assigned global constants */ 

 num_nodes=num_rows*num_cols; 

    num_genes=num_genes_per_node*num_nodes+num_outputs; 

 

 

 //printf("\nnum_images is %d\n", num_images); 

 

 //printf("\nnum_genes is %d\n", num_genes); 

 

 //exit(0); 

 

    end_count=num_inputs+num_nodes; 

 

 perfect_fitness = 1.0; 

 

 

 /* initialise output (used in cgp decoding) */ 

    for (i=0;i<end_count+num_outputs;i++) 

       output[i]=0; 

 

 if (population_size > MAX_POPULATION_SIZE) 

 { 

  printf("Too large a population size 

(<= %d)\n",MAX_POPULATION_SIZE); 

  exit(0); 

 } 

 

 if (num_chromosomes > MAX_NUM_CHROMOSOMES) 

 { 

  printf("Too many chromosomes requested 

(<= %d)\n",MAX_NUM_CHROMOSOMES); 

  exit(0); 

 } 

 

 if (num_genes > MAX_NUM_GENES) 

 { 

  printf("Too many genes selected (<= %d)\n",MAX_NUM_GENES); 

  exit(0); 

 } 

 

 if (num_runs_total < 1) 

 { 

  puts("Number of runs of EA must be at least 1"); 

  exit(0); 

 } 

 else if (num_runs_total > MAX_NUM_RUNS) 

 { 

  printf("Number of runs of EA must be less than %d\n", 

MAX_NUM_RUNS); 
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  exit(0); 

 } 

 

 if (num_genes < 10) 

 { 

  puts("Number of genes/bits must be at least 10"); 

  exit(0); 

 } 

 

 if ((progress_report < 0) || (progress_report > 3)) 

 { 

  puts("Progress report parameter must be less than 4"); 

  exit(0); 

 } 

 

 if (levels_back > num_cols) 

 { 

  puts("levels_back parameter must be less than or equal to 

number of columns"); 

  exit(0); 

 

 } 

 

 srand(global_seed); 

 

 puts("********* Beginning execution *********"); 

} 

 

/* write out parameter values in results file */ 

void write_cgp_info(char command[], char filename[MAX_NUM_LETTERS]) 

{ 

 int  i; 

 FILE* fp; 

 

 fp=fopen(filename,"w"); 

 fprintf(fp,"The program is        %s\n",command); 

 fprintf(fp, "The training image files are. Need to add these\n"); 

 fprintf(fp,"population_size is    %d\n",population_size); 

 fprintf(fp,"mutation rate is      %6.2lf\n",per_cent_mutate); 

 fprintf(fp,"num_generations is    %d\n",num_generations); 

 fprintf(fp,"num_runs is           %d\n",num_runs_total); 

 fprintf(fp,"num_rows is           %d\n",num_rows); 

 fprintf(fp,"num_cols is           %d\n",num_cols); 

 fprintf(fp,"levels_back is        %d\n",levels_back); 

 fprintf(fp,"progress report is    %d\n",progress_report); 

 fprintf(fp,"report interval is    %d\n",report_interval); 

 fprintf(fp,"global_seed is        %u\n",global_seed); 

 fprintf(fp,"save_best_chrom is    %d\n",save_best_chrom); 

 fprintf(fp,"run_from_chrom is     %d\n",run_from_chrom); 

 fprintf(fp,"malignancy_threshold is  %d\n",malignancy_threshold); 

 fprintf(fp,"linear_fitness is  %d\n",linear_fitness); 

 

 for (i=0;i<MAX_NUM_FUNCTIONS;i++) 

 { 

  fprintf(fp,"%d %s\n",number[i],node_types[i]); 

 } 

 fprintf(fp,"\nHere are the Results\n"); 

 fclose(fp); 

} 
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/*  returns a random integer between 0 and range-1 */ 

int newrand(int range) 

{ 

    int temp; 

 

    temp=rand() % range; 

    return(temp); 

} 

 

 

/* prints out all the chromosome in a geneotype both with and without 

active genes */ 

void fprint_a_user_readable_genotype(int** genotype, char name[], int 

append) 

{ 

 int k; 

 

 for (k = 0; k < num_chromosomes; k++) 

 { 

 

  fprint_a_user_readable_chromosome(genotype[k], name, 

append); 

 

  fprint_active_genes(genotype[k],name); 

 } 

} 

 

/* prints a chromosome to a file 

   when append is 1, the function appends the information to the file 

   when append is 0, the function creates a new file 

*/ 

void fprint_a_user_readable_chromosome(int* chromosome, char name[], 

int append) 

{ 

   int  i, node_label; 

   int      write_bracket=1; 

   FILE* fp; 

 

   if (append) 

    fp=fopen(name,"a"); 

   else 

    fp=fopen(name,"w"); 

 

 

   node_label = num_inputs-1; 

   for (i=0;i<num_nodes*num_genes_per_node;i++) 

   { 

      if ((i+1)%num_genes_per_node == 0) 

   { 

   node_label++; 

   fprintf(fp,"[%d]:%d)\t",chromosome[i],node_label); 

   write_bracket = 1; 

   } 

      else 

   { 

   if (write_bracket) 

   fprintf(fp,"("); 

 

         fprintf(fp,"%d,",chromosome[i]); 
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   write_bracket = 0; 

   } 

   } 

   fprintf(fp,"\t\t"); 

   for (i=0;i<num_outputs;i++) 

      fprintf(fp," %d",chromosome[num_nodes*num_genes_per_node+i]); 

   fprintf(fp,"\n\n"); 

   fclose(fp); 

} 

 

void fprint_a_genotype(int** genotype,char name[], int append) 

{ 

 int i; 

 

 for (i = 0; i < num_chromosomes; i++) 

  fprint_a_chromosome(genotype[i],name,append); 

} 

 

/* prints a chromosome to a file 

   This is in usual cgp format - not very readable 

   when append is 1, the function appends the information to the file 

   when append is 0, the function creates a new file 

*/ 

void fprint_a_chromosome(int* chromosome, char name[], int append) 

{ 

   int  i; 

   FILE* fp; 

 

   if (append) 

    fp=fopen(name,"a"); 

   else 

    fp=fopen(name,"w"); 

 

   for (i=0;i<num_genes;i++) 

   { 

      if ((i+1)%num_genes_per_node == 0) 

   fprintf(fp,"%d\t",chromosome[i]); 

      else 

         fprintf(fp,"%d ",chromosome[i]); 

   } 

   fprintf(fp,"\t\t"); 

   for (i=0;i<num_outputs;i++) 

      fprintf(fp," %d",chromosome[num_nodes*num_genes_per_node+i]); 

   fprintf(fp,"\n\n"); 

   fclose(fp); 

} 

 

/* prints a chromosome to the screen */ 

void print_a_chromosome(int* chromosome) 

{ 

   int i; 

 

   for (i=0;i<num_nodes*num_genes_per_node;i++) 

   { 

      if ((i+1)%num_genes_per_node == 0) 

  printf(" %d\t",chromosome[i]); 

      else 

         printf(" %d",chromosome[i]); 

   } 

   printf("\t\t"); 
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   for (i=0;i<num_outputs;i++) 

      printf(" %d",chromosome[num_nodes*num_genes_per_node+i]); 

   printf("\n"); 

} 

 

/* creates the active chromosome. This is the same as 

   the chromosome, except all junk entries are -1 

*/ 

void get_nodes_used(int* chromosome, int node_used[]) 

{ 

 int  i,j,index;  

 int  address[MAX_NUM_GENES_PER_NODE]; 

 int* active_chromosome = NULL; 

 

 active_chromosome = create_chromosome_space(); 

 

 for (i=0;i<num_genes;i++) 

  active_chromosome[i]=-1; 

 for (i=num_genes-num_outputs;i<num_genes;i++) 

  active_chromosome[i]=chromosome[i]; 

 

 /* first look at chromosome and identify gates not used */ 

 /* these are all the outputs of gates which do not appear in the 

chromosome */ 

 for (i=0;i<num_nodes+num_inputs;i++) 

  node_used[i]=0; 

 /* all the nodes whose output is given by the output genes are 

active */ 

 for (i=num_genes-num_outputs;i<num_genes;i++) 

  node_used[chromosome[i]]=1; 

 

 for (i=num_nodes+num_inputs-1;i>=num_inputs;i--) 

 { 

  if (node_used[i]) 

  { 

   /* get input addresses and type of this gate */ 

   index=num_genes_per_node*(i-num_inputs); 

   for (j=0;j<num_genes_per_node;j++) 

   { 

    address[j]=chromosome[index+j]; 

    active_chromosome[index+j]=address[j]; 

   } 

   if ((address[num_genes_per_node-1]==2) || 

(address[num_genes_per_node-1]==4)) 

   { 

    node_used[address[0]]=1; 

   } 

   else if ((address[num_genes_per_node-1]==3) || 

(address[num_genes_per_node-1]==5)) 

   { 

    node_used[address[1]]=1; 

   } 

   else if ((address[num_genes_per_node-1]>=6) && 

(address[num_genes_per_node-1]<=15)) 

   { 

    node_used[address[0]]=1; 

    node_used[address[1]]=1; 

   } 

   else if (address[num_genes_per_node-1]>15) 

   { 
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    node_used[address[0]]=1; 

    node_used[address[1]]=1; 

    node_used[address[2]]=1; 

   } 

  } 

 }   

 

   free(active_chromosome); 

} 

 

 

/* prints out a chromosome showing inactive genes as -1 */ 

void fprint_active_genes(int* chromosome,char name[30]) 

{ 

 int  i,j,index,node_label,write_bracket = 1; 

 int  num_unused_nodes=0; 

 int  num_nodes_active; 

 int  node_used[MAX_OUTPUT_SIZE]; 

 int* active_chromosome = NULL; 

 int  address[MAX_NUM_GENES_PER_NODE]; 

 FILE* fp; 

 

 

 active_chromosome = create_chromosome_space(); 

 

 fp=fopen(name,"a"); 

 

 fprintf(fp,"Inactive genes in this chromosome are marked with 

*\n"); 

 

 

 for (i=0;i<num_genes;i++) 

  active_chromosome[i]=-1; 

 for (i=num_genes-num_outputs;i<num_genes;i++) 

  active_chromosome[i]=chromosome[i]; 

 

 /* first look at chromosome and identify gates not used */ 

 /* these are all the outputs of gates which do not appear in the 

chromosome */ 

 for (i=0;i<num_nodes+num_inputs;i++) 

  node_used[i]=0; 

 /* all the nodes whose output is given by the output genes are 

active */ 

 for (i=num_genes-num_outputs;i<num_genes;i++) 

  node_used[chromosome[i]]=1; 

 

 for (i=num_nodes+num_inputs-1;i>=num_inputs;i--) 

 { 

  if (node_used[i]) 

  { 

   /* get input addresses and type of this gate */ 

   index=num_genes_per_node*(i-num_inputs); 

   for (j=0;j<num_genes_per_node;j++) 

   { 

    address[j]=chromosome[index+j]; 

    active_chromosome[index+j]=address[j]; 

   } 

   if ((address[num_genes_per_node-1]==2) || 

(address[num_genes_per_node-1]==4)) 

   { 



217 

 

    node_used[address[0]]=1; 

   } 

   else if ((address[num_genes_per_node-1]==3) || 

(address[num_genes_per_node-1]==5)) 

   { 

    node_used[address[1]]=1; 

   } 

   else if ((address[num_genes_per_node-1]>=6) && 

(address[num_genes_per_node-1]<=15)) 

   { 

    node_used[address[0]]=1; 

    node_used[address[1]]=1; 

   } 

   else if (address[num_genes_per_node-1]>15) 

   { 

    node_used[address[0]]=1; 

    node_used[address[1]]=1; 

    node_used[address[2]]=1; 

   } 

  } 

 } 

 

   node_label = num_inputs-1; 

   for (i=0;i<num_nodes*num_genes_per_node;i++) 

   { 

    if ((i+1)%num_genes_per_node == 0) 

    { 

     node_label++; 

     if (active_chromosome[i]<0) 

      fprintf(fp,"[*]:%d)\t",node_label); 

     else 

      

fprintf(fp,"[%d]:%d)\t",active_chromosome[i],node_label); 

           write_bracket = 1; 

    } 

    else 

    { 

   if (write_bracket == 1) 

    fprintf(fp,"("); 

 

      if (active_chromosome[i]<0) 

   fprintf(fp,"*,"); 

   else 

   fprintf(fp,"%d,",active_chromosome[i]); 

 

   write_bracket = 0; 

    } 

   } 

   fprintf(fp,"\t\t"); 

   for (i=0;i<num_outputs;i++) 

      

fprintf(fp," %d",active_chromosome[num_nodes*num_genes_per_node+i]); 

    

   for (i=num_inputs;i<num_inputs+num_nodes;i++) 

    if (!node_used[i]) 

     num_unused_nodes++; 

   num_nodes_active=num_nodes-num_unused_nodes; 

 

   fprintf(fp,"\nnumber of active gates is %d\n\n",num_nodes_active); 

   fclose(fp); 
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   free(active_chromosome); 

} 

 

/* this routine works out how many nodes are active */ 

int get_num_nodes_active(int* chromosome) 

{ 

 int   i,j,index; 

    int   address[MAX_NUM_GENES_PER_NODE]; 

 int   num_unused_nodes=0,num_nodes_active; 

 int   node_used[MAX_OUTPUT_SIZE]; 

 

 /* first look at chromosome and identify gates not used 

    these are all the outputs of gates which  

    do not appear in the chromosome */ 

 

 for (i=0;i<num_nodes+num_inputs;i++) 

  node_used[i]=0; 

 /* all the nodes whose output is given by the output genes are 

active */ 

 for (i=num_genes-num_outputs;i<num_genes;i++) 

  node_used[chromosome[i]]=1; 

 

 for (i=num_nodes+num_inputs-1;i>=num_inputs;i--) 

 { 

 

  if (node_used[i]) 

  { 

   /* get input addresses and type of this gate */ 

   index=num_genes_per_node*(i-num_inputs); 

   for (j=0;j<num_genes_per_node;j++) 

    address[j]=chromosome[index+j]; 

 

   if ((address[num_genes_per_node-1]==2) || 

(address[num_genes_per_node-1]==4)) 

   { 

    node_used[address[0]]=1; 

   } 

   else if ((address[num_genes_per_node-1]==3) || 

(address[num_genes_per_node-1]==5)) 

   { 

    node_used[address[1]]=1; 

   } 

   else if ((address[num_genes_per_node-1]>=6) && 

(address[num_genes_per_node-1]<=15)) 

   { 

    node_used[address[0]]=1; 

    node_used[address[1]]=1; 

   } 

   else if (address[num_genes_per_node-1]>15) 

   { 

    node_used[address[0]]=1; 

    node_used[address[1]]=1; 

    node_used[address[2]]=1; 

   } 

  } 

 } 

  

 for (i=num_inputs;i<num_inputs+num_nodes;i++) 

      if (!node_used[i]) 
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         num_unused_nodes++; 

 

 num_nodes_active=num_nodes-num_unused_nodes; 

 

 return num_nodes_active; 

 

} 

 

/* generate a starting population 

   from a chromosome read from a file (cgp.chr) 

*/ 

void read_from_chrom(int*** genotypes) 

{ 

 int   i,j,k; 

 FILE* fp; 

 

    fp=fopen("cgp.gen","r"); 

    if (!fp) 

    { 

  puts("Missing file cgp.gen (contains a genotype"); 

        exit(1); 

    } 

    else 

 { 

        /* make starting population copies of loaded chromosome */ 

  for (j=0;j<population_size;j++) 

        { 

   if (j==0) 

            { 

    k=0; 

    do 

    { 

     for (i=0;i<num_genes;i++) 

     

 fscanf(fp,"%d",&genotypes[j][k][i]); 

     k++; 

    } 

    while (!feof(fp)); 

 

    if ((k-1)!=num_chromosomes) 

    { 

     puts("ERROR. Number of chromosomes in 

cgp.gen does not match the expected number"); 

     puts("Check the number of chromosomes in 

the .par file"); 

     exit(0); 

    } 

            } 

            else 

            { 

    for (k=0;k<num_chromosomes;k++) 

     for (i=0;i<num_genes;i++) 

     

 genotypes[j][k][i]=genotypes[0][k][i]; 

            } 

        } 

  fclose(fp); 

 } 

} 
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/* This calculates the limits that are used in the calculation 

   of allowed gene values (alleles) */ 

void get_gene_limits(int column, int* limit_min, int* limit) 

{ 

 int limit_max; 

 

 limit_max=num_inputs+column*num_rows; 

 if (column<levels_back) 

  *limit_min=0; 

 else 

  *limit_min=num_inputs+(column-levels_back)*num_rows; 

 

 *limit=limit_max-(*limit_min); 

} 

 

/* returns a random valid connection gene that 

   obeys the constraints imposed by levels_back.  

   Also allows program inputs to disobey levels_back */ 

int get_connection_gene(int limit_min, int limit) 

{ 

 int limit_datas, rand_num; 

 int gene; 

 

 if (limit_min==0) 

  gene = newrand(limit); 

 else /* allows inputs to disobey levels_back */ 

 { 

  limit_datas = limit+num_inputs; 

  rand_num = newrand(limit_datas); 

  if (rand_num<limit) 

   gene = rand_num+limit_min; 

  else 

   gene = rand_num-limit; 

 } 

 

 return gene; 

} 

 

/* returns a random valid function gene */ 

int get_function_gene(void) 

{ 

 return allowed_functions[newrand(num_functions)]; 

} 

 

/* returns a random valid output gene */ 

int get_output_gene(void) 

{ 

 int limit_min,limit; 

 int output_gene; 

  

 limit_min=num_inputs+(num_cols-levels_back)*num_rows; 

 limit=levels_back*num_rows; 

 

    output_gene = newrand(limit)+limit_min; 

  

 return output_gene; 

} 

 

/* Calculates output of node in 8-bit format */ 

unsigned  char node_type(unsigned char in[MAX_NUM_GENES_PER_NODE], 
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                     unsigned code) 

{ 

   unsigned char result; 

 

   if (code==0)      /* constants */ 

      result=0; 

   else if (code==1) 

      result=MAXNUM; 

   else if (code==2) /* wire and inverter */ 

      result=in[0]; 

   else if (code==3) 

      result=in[1]; 

   else if (code==4) 

      result=~in[0]; 

   else if (code==5) 

      result=~in[1]; 

   else if (code==6) /* two input gate functions */ 

      result=(in[0] & in[1]); 

   else if (code==7) 

      result=(in[0] & ~in[1]); 

   else if (code==8) 

      result=(~in[0] & in[1]); 

   else if (code==9) 

      result=(~in[0] & ~in[1]); 

   else if (code==10) 

      result=(in[0]^in[1]); 

   else if (code==11) 

      result=(~in[0]^in[1]); 

   else if (code==12) 

      result=(in[0] | in[1]); 

   else if (code==13) 

      result=(in[0] | ~in[1]); 

   else if (code==14) 

      result=(~in[0] | in[1]); 

   else if (code==15) 

      result=(~in[0] | ~in[1]); 

   else if (code==16)  /* mux functions */ 

      result=((in[0] & ~in[2]) | (in[1] & in[2])); 

   else if (code==17) 

      result=((in[0] & ~in[2]) | (~in[1] & in[2])); 

   else if (code==18) 

      result=((~in[0] & ~in[2]) | (in[1] & in[2])); 

   else if (code==19) 

      result=((~in[0] & ~in[2]) | (~in[1] & in[2])); 

 

   return result; 

} 

 

/* Decodes a single cgp chromosome and executes it on a part. 

*/ 

unsigned char output_of_chromosome_on_one_part_on_one_image(int* 

chromosome, int part, int image) 

{ 

   register int i,k; 

   unsigned int index,function_type; 

   int count; 

   /* unsigned char output_of_cgp_program; */ 

   unsigned char in[MAX_NUM_GENES_PER_NODE]; 

 

 



222 

 

   /* load data_inputs into output */ 

 

   for (i=0;i<num_inputs;i++) 

    output[i]=data_inputs[image][part][i]; 

 

   count=num_inputs; 

   index=0; 

    

 /* process nodes */ 

   for (k=0;k<num_nodes;k++) 

   { 

  for (i=0;i<num_genes_per_node-1;i++) /* get input data to 

node */ 

   in[i]=output[chromosome[index+i]]; 

 

        function_type=chromosome[index+num_genes_per_node-1]; 

          

        output[count]=node_type(in,function_type); 

 

        count++; 

 

        index=index+num_genes_per_node; 

   } 

 /* process outputs */ 

   for (i=0;i<num_outputs;i++) 

   { 

       output[count]=output[chromosome[index]]; 

       index++; 

       count++; 

   } 

    

   /* check whether the cgp produce a number above or below a 

threshold 

   indicating the presence or absence of malignancy  

 

   fit =0; 

   for (i=0;i<num_outputs;i++) 

   { 

  output_of_cgp_program = output[end_count+i]; 

 

  if (malignant == 1) 

  { 

 

   if (output_of_cgp_program >= malignancy_threshold) 

    fit++; 

  } 

  else 

  { 

   if (output_of_cgp_program < malignancy_threshold) 

    fit++; 

 

  }  

   } 

*/ 

    

   /* divide the output of cgp (which is in range 0 to 255) by 4 

      to obtain valid white pixel counts per part */ 

   return (output[count-1]+3); 

} 
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/* get the output of cgp fro one part of one image and calculate 

   a fitness according to how close the output is to the  

   white pixel count in the image part */ 

unsigned char fitness_of_chromosome_on_one_part_on_one_image(int* 

chromosome, int part, int image) 

{ 

 unsigned char outvalue; 

 unsigned char fit; 

 

    outvalue = 

output_of_chromosome_on_one_part_on_one_image(chromosome, part, image); 

 

 /* 

    if (linear_fitness) 

  fit = 1.0 - (double)abs(number_white_pixels[image][part]-

outvalue)/64.0; 

 else 

  fit = 1.0/(1.0 + 

(double)abs(number_white_pixels[image][part]-outvalue)); 

    */ 

 /* NEW FITNESS METHOD */ 

    if ((outvalue >= 0) && (outvalue <= 43)) 

    { 

  fit = 0; 

 

    } 

 else if ((outvalue > 43) && (outvalue <= 2*43)) 

    { 

  fit = 1; 

 

    } 

 else if ((outvalue > 2*43) && (outvalue <= 3*43)) 

     { 

   fit = 2; 

 

     } 

 else if ((outvalue > 3*43) && (outvalue <= 4*43)) 

     { 

   fit = 3; 

 

     } 

 else if ((outvalue > 4*43) && (outvalue <= 5*43)) 

     { 

   fit = 4; 

 

     } 

 else if ((outvalue >5*43) && (outvalue <= 6*43)) 

     { 

   fit = 5; 

 

     } 

 

 /* 

 printf("\nnumber_white_pixels[%d] 

is %u\n",part,number_white_pixels[part]); 

 printf("\noutvalue is %u\n",outvalue); 

 

 getchar(); 

 */ 
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 return fit; 

} 

 

 

 

/* exceutes the genotype of an image to determine fitness 

  Note in training an image is a small collection of parts 

  of an image 

*/ 

unsigned char fitness_of_genotype_on_one_image(int** genotype, int 

image) 

{ 

 

 int part,i; 

 int fit = 0, final_fit=0; 

 int number[5]; 

 int *pmax; 

 

 

 /* 

 printf("\nIn fitness_of_genotype_on_one_image:\n"); 

    printf("\nnum_parts_per_image[%d] is %d\n",image, 

num_parts_per_image[image]);  

 getchar(); 

    */ 

 

 for (part = 0;part < num_parts_per_image[image]; part++) 

 { 

  fit = 

fitness_of_chromosome_on_one_part_on_one_image(genotype[0],part, 

image); 

  printf("\n fit for part %d is %d\n",part, fit); 

  if (fit = 0) 

  { 

   number[0]++; 

  } 

  else if (fit = 1) 

  { 

   number[1]++; 

  } 

  else if (fit = 2) 

  { 

   number[2]++; 

  } 

  else if (fit = 3) 

  { 

   number[3]++; 

  } 

  else if (fit = 4) 

  { 

   number[4]++; 

  } 

  else if (fit = 5) 

  { 

   number[5]++; 

  } 

  /* 

        printf("\npart is %d, fitness is %8.6lf\n",part,fit); 

  getchar(); 

  */ 
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 } 

 *pmax = number[0]; 

 for (i=0; i<6;i++) 

 { 

  if (*pmax < number[i]); 

  { 

     *pmax = number[i]; 

  } 

  final_fit = i; 

 } 

 

 

 

 

 

// return fit/(double)num_parts_per_image[image]; 

 return final_fit; 

} 

 

 

/* This runs all the chromosomes on all parts  

   of a sequence of images (in .dat format) 

*/ 

int fitness_get_best_genotype(int** genotype,int** best_genotype) 

{ 

 int i; 

 int total_fitness = 0.0; 

 

 

 /* 

 printf("\nIn fitness: num_images is %d\n", num_images); 

 getchar(); 

 */ 

 

 for (i = 0 ; i < num_images; i++) 

 { 

  /* fitness on image is scaled between 0 and 1.0 */ 

//  total_fitness = total_fitness + 

fitness_of_genotype_on_one_image(genotype,i); 

  total_fitness = total_fitness + get_best_genotype(genotype, 

best_genotype); 

 } 

 

 /* final fitness is scaled by number of images 

    this means that a perfect fitness is 1.0 */ 

 return (int)(total_fitness/num_images); 

 

} 

 

/******** TESt versions of the above fitness functions */ 

 

/* Decodes a single cgp chromosome and executes it on a part. 

*/ 

unsigned char test_output_of_chromosome_on_one_part_on_one_image(int* 

chromosome, int part, int image) 

{ 

   register int i,k; 

   unsigned int index,function_type; 

   int count; 

   /* unsigned char output_of_cgp_program; */ 
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   unsigned char in[MAX_NUM_GENES_PER_NODE]; 

 

 

   /* load data_inputs into output */ 

 

   for (i=0;i<num_inputs;i++) 

    output[i]=test_data_inputs[image][part][i]; 

 

   count=num_inputs; 

   index=0; 

    

 /* process nodes */ 

   for (k=0;k<num_nodes;k++) 

   { 

  for (i=0;i<num_genes_per_node-1;i++) /* get input data to 

node */ 

   in[i]=output[chromosome[index+i]]; 

 

        function_type=chromosome[index+num_genes_per_node-1]; 

          

        output[count]=node_type(in,function_type); 

 

        count++; 

 

        index=index+num_genes_per_node; 

   } 

 /* process outputs */ 

   for (i=0;i<num_outputs;i++) 

   { 

       output[count]=output[chromosome[index]]; 

       index++; 

       count++; 

   } 

    

   /* check whether the cgp produce a number above or below a 

threshold 

   indicating the presence or absence of malignancy  

 

   fit =0; 

   for (i=0;i<num_outputs;i++) 

   { 

  output_of_cgp_program = output[end_count+i]; 

 

  if (malignant == 1) 

  { 

 

   if (output_of_cgp_program >= malignancy_threshold) 

    fit++; 

  } 

  else 

  { 

   if (output_of_cgp_program < malignancy_threshold) 

    fit++; 

 

  }  

   } 

*/ 

    

   /* divide the output of cgp (which is in range 0 to 255) by 4 

      to obtain valid white pixel counts per part */ 
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   return (output[count-1]+1)/4; 

} 

 

/* get the output of cgp fro one part of one image and calculate 

   a fitness according to how close the output is to the  

   white pixel count in the image part */ 

double test_fitness_of_chromosome_on_one_part_on_one_image(int* 

chromosome, int part, int image) 

{ 

 unsigned char outvalue; 

 double fit = 0.0; 

 

    outvalue = 

test_output_of_chromosome_on_one_part_on_one_image(chromosome, part, 

image); 

 

    if ((outvalue == 0) && (test_number_white_pixels[image][part]==0)) 

  fit = 1.0; 

 else if ((outvalue != 0) && 

(test_number_white_pixels[image][part]!=0)) 

  fit = 1.0; 

 else if ((outvalue == 0) && 

(test_number_white_pixels[image][part]!=0)) 

        fit = -1.0; 

 else if ((outvalue != 0) && 

(test_number_white_pixels[image][part] ==0)) 

  fit = -1.0; 

 

 //printf("\ntest_number_white_pixels[%d] 

is %u\n",part,test_number_white_pixels[part]); 

 //printf("\noutvalue is %u\n",outvalue); 

 

 //getchar(); 

 

 return fit; 

} 

 

 

 

/* exceutes the genotype of an image to determine fitness 

  Note in training an image is a small collection of parts 

  of an image 

*/ 

double test_fitness_of_genotype_on_one_image(int** genotype, int image) 

{ 

 

 int part; 

 double fit = 0; 

 

 /* 

 printf("\nIn fitness_of_genotype_on_one_image:\n"); 

    printf("\nnum_parts_per_image[%d] is %d\n",image, 

num_parts_per_image[image]);  

 getchar(); 

    */ 

 

 for (part = 0;part < test_num_parts_per_image[image]; part++) 

 { 
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  fit = fit + 

test_fitness_of_chromosome_on_one_part_on_one_image(genotype[0],part, 

image); 

 

  /* 

        printf("\npart is %d, fitness is %8.6lf\n",part,fit); 

  getchar(); 

  */ 

 } 

 

 

 return fit/(double)test_num_parts_per_image[image]; 

} 

 

/* This runs all the chromosomes on all parts  

   of a sequence of images (in .dat format) 

*/ 

double test_fitness(int** genotype) 

{ 

 int i; 

 double total_fitness = 0.0; 

 

 /* 

 printf("\nIn fitness: num_images is %d\n", num_images); 

 getchar(); 

 */ 

 

 for (i = 0 ; i < test_num_images; i++) 

 { 

  /* fitness on image is scaled between 0 and 1.0 */ 

  total_fitness = total_fitness + 

test_fitness_of_genotype_on_one_image(genotype,i); 

 } 

 

 /* final fitness is scaled by number of images 

    this means that a perfect fitness is 1.0 */ 

 return total_fitness/test_num_images; 

} 

 

 

/* prints out a matrix showing the output of the CGP programs for each 

part. 

   It shows original white pixels, cgp output and the difference  

   It does this for each image. 

*/ 

void fprint_best_genotype_output(int**  best_genotype, char name[], 

char imagename[], int image) 

{ 

 int part; 

 unsigned char outvalue; 

 int fitness,fit; 

 int count[5]={0,0,0,0,0}; 

 

 FILE* fp; 

 

 fp = fopen(name,"w"); 

 

 

 fprintf(fp,"White pixel values for image %s\n",imagename); 
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 fprintf(fp,"malignancy level for image %s is %d\n", imagename, 

malignancy_level); 

 

// for (part = 0; part < num_parts_per_image[image];part++) 

// { 

//  fprintf(fp, "%4u",number_white_pixels[image][part]); 

// } 

// fprintf(fp,"\n"); 

 

 fprintf(fp,"\n\nCGP output values for best genotype on 

image %s\n",imagename); 

 

 for (part = 0; part < num_parts_per_image[image];part++) 

 { 

  outvalue = 

output_of_chromosome_on_one_part_on_one_image(best_genotype[0],part, 

image); 

  fitness = 

fitness_of_chromosome_on_one_part_on_one_image(best_genotype[0],part, 

image,&count[5]); 

 

  fprintf(fp, "%4u",fitness); 

 } 

 fit = fitness_of_genotype_on_one_image(best_genotype[0], image); 

 fprintf(fp,"\n\nmalignancy_level for best genotype on image %s 

is %d\n",imagename, fit); 

 fprintf(fp,"\n"); 

    fprintf(fp,""); 

 fclose(fp); 

 

} 

 

/* prints out a matrix showing the output of the CGP programs for each 

part. 

   It shows original white pixels, cgp output. 

   It does this for each test image. 

*/ 

void fprint_best_genotype_output_on_test_image(int**  best_genotype, 

char name[], char imagename[], int image) 

{ 

 int x, y; 

 int part; 

 unsigned char outvalue; 

 

 FILE* fp; 

 

 fp = fopen(name,"w"); 

 

 

 fprintf(fp,"White pixel values for image %s\n",imagename); 

 

 part = 0; 

 for (y = 0; y < num_yparts; y++) 

 { 

  for (x = 0; x < num_xparts; x++) 

  { 

   fprintf(fp, 

"%4u",test_number_white_pixels[image][part]); 

   part++; 

  } 
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  fprintf(fp,"\n"); 

 } 

 

 fprintf(fp,"\n\nCGP output values for best genotype on 

image %s\n",imagename); 

 

 part = 0; 

 for (y = 0; y < num_yparts; y++) 

 { 

  for (x = 0; x < num_xparts; x++) 

  { 

   outvalue = 

test_output_of_chromosome_on_one_part_on_one_image(best_genotype[0],pa

rt, image); 

   part++; 

 

   fprintf(fp, "%4u",outvalue); 

  } 

  fprintf(fp,"\n"); 

 } 

 

 fclose(fp); 

 

} 

 

 

 

/* creates initial population of chromosomes 

   either having been generated from a single 

   chromosome from a file or by generating 

   an entire random population  

*/ 

void initialise(int*** genotypes) 

{ 

    int  j,k, pop_member,row,col; 

 int  count; 

    int  limit=0,limit_min=0; 

 

    if (run_from_chrom) 

    { 

  read_from_chrom(genotypes); 

    } 

    else  /* generate random population */ 

    { 

  for (pop_member = 0; pop_member < population_size; 

pop_member++) 

  { 

   for (k = 0; k < num_chromosomes; k++) 

   { 

    count = 0; 

    for (col=0;col<num_cols;col++) 

    { 

     get_gene_limits(col,&limit_min,&limit); 

 

     for (row=0;row<num_rows;row++) 

     { 

      /* connection genes */ 

      for (j=0;j<num_genes_per_node-

1;j++) 
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 genotypes[pop_member][k][count+j]=get_connection_gene(limit_min,

limit); 

 

      /* function gene */ 

     

 genotypes[pop_member][k][count+num_genes_per_node-

1]=get_function_gene(); 

      count=count+num_genes_per_node; 

     } 

    }  

    for (j=0;j<num_outputs;j++) 

    

 genotypes[pop_member][k][count+j]=get_output_gene(); 

   } /* k loop */ 

 

 

  } /* pop_member loop */ 

    } /* generate random population */ 

} /* end of function */ 

 

 

 

/* calculate best population fitness and the best genotype */ 

double  get_best_genotype(int*** genotypes, 

                          int**  best_genotype) 

 

{ 

 int i, k,j; 

    double fitness_min; 

    int output; 

    int best_member; 

 double fit; 

 

 fitness_min=5.0; 

    best_member=0; 

 

    for (i = 0; i < population_size; i++) 

    { 

  /* printf("\npop member is %d\n",i); */ 

  fit =fabs((double)malignancy_level- 

fitness_of_genotype_on_one_image(genotypes[i],i)); 

 

 

  if (fit < fitness_min) 

  { 

   fitness_min = fit; 

   best_member = i; 

  } 

 

  if (fit == perfect_fitness) /* we solved the problem, so 

stop */ 

   break; 

 } 

 

 /* here is the best chromosome */ 

 for (k = 0;k < num_chromosomes; k++) 

 { 

  for (i = 0; i < num_genes; i++) 

   best_genotype[k][i]=genotypes[best_member][k][i]; 
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 } 

 return fitness_min; 

} 

 

 

 

 

/* checks to see if the gene is not an output gene */ 

int is_not_output_gene(int gene) 

{ 

 return (gene < num_genes_per_node*num_nodes); 

} 

 

/* checks to see if the gene is a function gene */ 

int is_function_gene(int gene, int locus) 

{ 

 return (is_not_output_gene(gene) && (locus==(num_genes_per_node-

1))); 

 

} 

 

/* calculates how many mutations to do per chromosome */ 

int get_num_mutant(int num_genes, double per_cent_mutate) 

{ 

 return (int)(num_genes*per_cent_mutate/100.0); 

} 

 

/* carry out one mutation on one chromosome */ 

void mutate(int*  chromosome) 

{ 

 int which_gene,which_locus; 

 int limit,limit_min; 

 int col; 

 

 which_gene=newrand(num_genes); 

 which_locus=which_gene % num_genes_per_node; 

 

 if (is_not_output_gene(which_gene)) 

 { 

  if (is_function_gene(which_gene,which_locus)) 

  { 

   if (num_functions == 1) /* redirect the mutation to 

a connection */ 

   { 

    which_locus=newrand(num_genes_per_node-1); 

    which_gene=which_gene-num_genes_per_node-

1+which_locus; 

   } 

   chromosome[which_gene]=get_function_gene(); 

  } 

  else /* it is a connection gene */ 

  { 

   col = which_gene/(num_genes_per_node*num_rows); 

    

   get_gene_limits(col,&limit_min,&limit); 

        

  

 chromosome[which_gene]=get_connection_gene(limit_min,limit); 

  } 

 } 
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 else /* it is an output gene */ 

 { 

  chromosome[which_gene]=get_output_gene(); 

 } 

} 

 

/* find out how many mutations to do and mutate the chromosome */ 

void mutate_chromosome(int*  chromosome) 

{ 

 int i; 

 int num_mutations; 

 

 num_mutations = get_num_mutant(num_genes,per_cent_mutate); 

 

 for ( i = 0; i < num_mutations; i++) 

 { 

  mutate(chromosome); 

 } 

 

} 

 

 

void mutate_genotype(int** genotype) 

{ 

 int k; 

 

 for (k = 0; k < num_chromosomes; k++) 

  mutate_chromosome(genotype[k]); 

} 

 

 

/* (1+lambda evolutionary strategy where lamda = population size -1 

   This defines the EA algorithm note that using mu=1 and  

   lambda = population_size -1 

   should give the same. 

*/ 

void generate_new_pop_es(int*** genotypes, 

       int**  best_genotype) 

{ 

 int i,j,k; 

 

     /* copy best_chromosome into last member of chromosome array */ 

 for (k = 0; k < num_chromosomes; k++) 

 { 

  for (j = 0; j < num_genes; j++) 

   genotypes[population_size-

1][k][j]=best_genotype[k][j]; 

 } 

    /* generate new population by mutating all but last */ 

    for (i=0;i<population_size-1;i++) 

    { 

  for (k = 0; k < num_chromosomes; k++) /* copy all 

chromosomes in genotype */ 

  { 

   for (j = 0; j < num_genes; j++) /* copy  best 

genotype */ 

    genotypes[i][k][j]=best_genotype[k][j]; 

  } 

  /* mutate the genotype */ 

  mutate_genotype(genotypes[i]); 
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    } 

} 

 

 

 

/* allocate space for a single chromosome */ 

int* create_chromosome_space(void) 

{ 

 int* chromosome = NULL; 

  

 chromosome=(int*)calloc(num_genes,sizeof(int)); 

    if (chromosome==NULL) 

    { 

  printf("ERROR.Not enough memory for a chromosome of this 

length\n"); 

        exit(0); 

    } 

 return chromosome; 

} 

 

/* allocate space for a collection of chromosomes */ 

int** create_genotype_space(void) 

{ 

 int k; 

 int **genotype = NULL; 

 

 genotype =(int** )calloc(num_chromosomes,sizeof(int*)); /* 

create space for pointers to int pointers */ 

 if (genotype==NULL) 

 { 

       printf("ERROR.Can not allocate space for this many genotype 

pointers\n"); 

       exit(0); 

 } 

  

 for (k = 0;k < num_chromosomes; k++) /* create array of pointers 

to ints (genes) */ 

 { 

   genotype[k] = create_chromosome_space(); 

      if (genotype[k]==NULL) 

      { 

         printf("ERROR.Not enough memory for genotypes of this 

length\n"); 

         exit(0); 

      } 

   } 

 

 return genotype; 

} 

 

/* allocate space for population of genotypes */ 

int*** create_genotypes_space(void) 

{ 

 int i; 

 int ***genotypes = NULL; 

 

 genotypes = (int*** )calloc(population_size,sizeof(int**)); /* 

create space for pointers to int pointers */ 

 if (genotypes == NULL) 

 { 
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       printf("ERROR.Can not allocate space for this many chromosome 

pointers to pointers\n"); 

       exit(0); 

 } 

  

 for (i=0;i<population_size;i++) /* create array of pointers to 

ints (genes) */ 

 { 

  genotypes[i] = create_genotype_space(); 

  if (genotypes[i]== NULL) 

  { 

    printf("ERROR.Not enough memory for a 

genotype %d of this length\n",i); 

    exit(0); 

  } 

 } 

 

 return genotypes; 

} 

 

 

/* release memory */ 

void free_genotypes(int*** genotypes) 

{ 

 int i; 

 

 for (i = 0; i < population_size; i++) 

 { 

  free_genotype(genotypes[i]); 

 } 

 free(genotypes); 

} 

 

/* release memory */ 

void free_genotype(int** genotype) 

{ 

 int k; 

 

 for (k = 0; k < num_chromosomes; k++) 

  free_chromosome(genotype[k]); 

 

 free(genotype); 

} 

 

/* release memory */ 

void free_chromosome(int* chromosome) 

{ 

 free(chromosome); 

} 

 

/* Do a run of the EA */ 

double  EA(int* best_gen, int run,  

  char prog[MAX_NUM_LETTERS], char stat[MAX_NUM_LETTERS]) 

{ 

 int  i,gen_index; 

 double best_fit=-1e10, previous_best_fit=-1e10; 

 double  test_fit = 0.0; 

 char filename[MAX_NUM_LETTERS]; 

 int*** genotypes; 

 int** best_genotype; 



236 

 

 FILE* fp; 

 

 genotypes = create_genotypes_space(); 

 best_genotype = create_genotype_space(); 

 

 initialise(genotypes); 

 

 for (gen_index=1;gen_index<=num_generations;gen_index++) 

 { 

  if (gen_index % report_interval==0) 

   printf("\nGENERATION is %d",gen_index); 

 

  /* find new best chromosome and its fitness */ 

  /* printf("\nJust before get_best_genotype\n"); */ 

 

  best_fit = get_best_genotype(genotypes,best_genotype); 

  test_fit = test_fitness(best_genotype); 

 

 

     /* printf("\nJust after get_best_genotype\n"); */ 

 

  if (best_fit > previous_best_fit) /* we have an 

improvement */ 

  { 

        if ((progress_report > 0) && (progress_report < 3)) 

   { 

           fp=fopen(prog,"a"); 

           printf("\nGENERATION is %u Best fitness is 

now %10.8lf",gen_index,best_fit); 

           printf("\nGENERATION is %u Best test_fitness is 

now %10.8lf",gen_index,test_fit); 

 

           fprintf(fp,"\nGENERATION is %u     Best fitness is 

now %10.8lf",gen_index,best_fit); 

           fprintf(fp,"\nGENERATION is %u     Test fitness is 

now %10.8lf",gen_index,test_fit); 

 

    fprintf(fp,"\nThe chromosome is\n"); 

           fclose(fp); 

 

    if (progress_report == 1) 

           

 fprint_a_user_readable_genotype(best_genotype,prog,1); 

 

   } 

 

   if (progress_report == 3) 

   { 

    fp=fopen(stat,"a"); 

   

 fprintf(fp,"%d\t%8.6lf\t%8.6lf\n",gen_index,best_fit,test_fit); 

    fclose(fp); 

   } 

 

   *best_gen = gen_index; 

   previous_best_fit = best_fit; 

  } 

  /* jump out of run if maximum fitness acheived */ 

  if (best_fit == perfect_fitness)  

  { 
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   break; 

   gen_index++; 

  } 

  else 

  { 

   generate_new_pop_es(genotypes,best_genotype); 

  } 

 } 

 

 

 fp=fopen("cgp.txt","a"); 

 fprintf(fp,"Run %d and gen %d acheived 

fitness %10.8lf\n",run,*best_gen,best_fit); 

 fprintf(fp,"Here is the chromosome\n"); 

 fclose(fp); 

 

 fprint_a_user_readable_genotype(best_genotype,"cgp.txt",1); 

 

 /* 

 

 fprint_best_genotype_classification(best_genotype,"cgpbest-

classification.txt"); 

 */ 

 

 /* write output of cgp for all images to files */ 

 for (i = 0; i < num_images; i++) 

 { 

  sprintf(filename,"cgpbest-output-run%d-image%d.txt",run, 

i); 

  fprint_best_genotype_output(best_genotype, filename, 

image_names[i], i); 

 } 

 

 /* get testing image names. These are complete dat files */ 

 get_image_names(0); 

 

 /* read in image data for all testing images */ 

 printf("\nReading testing image data\n"); 

 for (i = 0; i < num_images; i++) 

 { 

  read_data(image_names[i],i);  

 } 

 

 

 /* write output of cgp for all images to files */ 

 for (i = 0; i < num_images; i++) 

 { 

  sprintf(filename,"cgpbest-output-run%d-

testimage%d.txt",run, i); 

  fprint_best_genotype_output_on_test_image(best_genotype, 

filename, image_names[i], i);  

 } 

 

 

 fprint_a_genotype(best_genotype,"cgp.gen",0); 

 

 free_genotypes(genotypes); 

 

 free_genotype(best_genotype); 
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 return best_fit; 

} 

 

 

/* do mutiple runs of EA and write out results */ 

void run_EA(int num_runs_total) 

{ 

 int  j; 

 int  best_gen,run; 

 double worst_of_best_fit=1.0e10,best_of_best_fit=-1e10; 

 double fitness_final=0.0; 

 char prog[20],stat[20],runstring[10]; 

 double fitnesses[1000], temp; 

 double av_fitness=0.0,av_best_gen=0.0,st_dev=0.0; 

 FILE* best; 

 FILE* fp; 

 

 for (run=0;run<num_runs_total;run++) 

 { 

 

  sprintf(runstring,"%d",run); /* store run as characters */ 

  printf("\n\nRUN %d\n",run); 

 

  if (progress_report>0) 

  { 

   strcpy(prog,"cgp"); 

   strcat(prog,runstring); 

 

   strcpy(stat,prog); 

   strcat(prog,".prg"); /* create .prg file name */ 

   strcat(stat,".txt"); /* create .txt file name */ 

 

   fp=fopen(prog,"w");  /* create empty .prg file */ 

   fclose(fp); 

 

   fp=fopen(stat,"w"); 

   fprintf(fp,"\nRUN %d\n\n",run); 

   fprintf(fp,"Gen\tfit\ttest fitness\n",run); 

   fclose(fp); 

  } 

 

  fitness_final =  EA(&best_gen,run,prog,stat); 

 

        if (fitness_final < worst_of_best_fit) 

   worst_of_best_fit=fitness_final; 

 

  if (fitness_final > best_of_best_fit) 

  { 

   best_of_best_fit=fitness_final; 

    

  } 

 

   

  fitnesses[run]=(double)fitness_final; 

  av_fitness=av_fitness+(double)fitness_final; 

  if (fitness_final == num_chromosomes) 

   av_best_gen=av_best_gen+(double)best_gen; 

   } 

 

   av_fitness=av_fitness/((double)num_runs_total); 
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   av_best_gen=av_best_gen/((double)num_runs_total); 

 

   st_dev=0.0; 

   for (j=0;j<num_runs_total;j++) 

   { 

  temp=(fitnesses[j]-av_fitness); 

  temp=temp*temp; 

  st_dev=st_dev+temp; 

   } 

 

   st_dev=st_dev/(double)num_runs_total; 

   st_dev=sqrt(st_dev); 

 

   best=fopen("cgp.txt","a"); 

   fprintf(best,"\naverage fitness  %6.4lf\n",av_fitness); 

   fprintf(best,"\nstd dev          %6.4lf\n\n",st_dev); 

   fprintf(best,"\nThe best solution of all runs  

is  %6.2lf\n",best_of_best_fit); 

   fprintf(best,"\nThe worst solution of all runs 

is  %6.2lf\n",worst_of_best_fit); 

   fprintf(best,"\nOf perfect solutions, the average number of 

generations is  %6.4lf\n",av_best_gen); 

   fclose(best); 

 

} 
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List of Abbreviations 

CGP            Cartesian Genetic Programming 

MCGP        Multi-chromosomes Cartesian Genetic Programming 

CAD           Computer Aided Detection 

CT               Computer Tomography 

CC               CranioCaudal 

DDSM         Digital Database for Screening Mammography 

DCIS           Dutual Carcinoma In Situ 

ES                Evolutionary Strategies 

EA                Evolutionary Algorithm 

EC                Evolutionary Computation 

EP                 Evolutionary Programming 

FN                False Negative 

FP                 False Positive 

GA                Genetic Algorithm 
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GP                Genetic Programming 

ISO               InferoSuperior Oblique 

LLNL           Lawerance Livermore National Laboraty 

LCIS             Lobular Carcinoma In Situ 

MRI              Magnetic Resonance Imaging 

MIAS            Mammography Imaging Analysis Society 

MLO             MedioLateral Oblique 

ML                MedioLateral 

NHS              National  Health Service 

NPV              Negative Predictive Value 

PPV               Positive Predictive Value 

|ROI               Region of Interests 

TN                 True Negative 

TNR              True Negative Rate 

TP                    True Positive 
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TPR                  True Positive Rate 
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