16 research outputs found

    Multipacket Routing on Rings

    Get PDF
    We study multipacket routing problems. We divide the multipacket routing problem into two classes, namely, distance limited and bisection limited routing problems. Then, we concentrate on rings of processors. Having a full understanding of the multipacket routing problem on rings is essential before trying to attack the problem for the more general case of r-dimensional meshes and tori. We prove a new lower bound of 2n/3 routing steps for the case of distance limited routing problems. We also give an algorithm that tightens this lower bound. For bisection limited problems, we present an algorithm that completes the routing in near optimal time

    Optimal Algorithms for Multipacket Routing Problems on Rings

    Get PDF
    We study multipacket routing problems. We divide the multipacket routing problem into two classes, namely, distance limited and bisection limited routing problems. Then, we concentrate on rings of processors. We prove a new lower bound of 2n/ 3 routing steps for the case of distance limited routing problems. We also give an algorithm that tightens this lower bound. For bisection limited problems the lower bound is kn/ 4,k \u3e2, where k is the number of packets per processor. The trivial algorithm needs in the worst case k | n /2| steps to terminate. An algorithm that completes the routing in kn /4 + 2.5 n routing steps is given. We define the class of pure routing algorithms and we demonstrate that new lower bounds hold if the routing is to be done by an algorithm in this class

    MAC for Networks with Multipacket Reception Capability and Spatially Distributed Nodes

    Get PDF

    A study of topologies and protocols for fiber optic local area network

    Get PDF
    The emergence of new applications requiring high data traffic necessitates the development of high speed local area networks. Optical fiber is selected as the transmission medium due to its inherent advantages over other possible media and the dual optical bus architecture is shown to be the most suitable topology. Asynchronous access protocols, including token, random, hybrid random/token, and virtual token schemes, are developed and analyzed. Exact expressions for insertion delay and utilization at light and heavy load are derived, and intermediate load behavior is investigated by simulation. A new tokenless adaptive scheme whose control depends only on the detection of activity on the channel is shown to outperform round-robin schemes under uneven loads and multipacket traffic and to perform optimally at light load. An approximate solution to the queueing delay for an oscillating polling scheme under chaining is obtained and results are compared with simulation. Solutions to the problem of building systems with a large number of stations are presented, including maximization of the number of optical couplers, and the use of passive star/bus topologies, bridges and gateways

    Network Protocols

    Get PDF

    Congestion control in interconnected computer networks

    Get PDF
    Ankara : The Department of Computer Engineering and Information Sciences and the Institute of Engineering and Sciences of Bilkent Univ. , 1988.Thesis (Master's) -- Bilkent University, 1988.Includes bibliographical references leaves 62-65.A computer network has a collection of resources shared by multiple users. The capacity of the resources is limited, and if the user demands exceed the capacity, the network becomes ’congested’. The congestion causes a degradation in system performance. In interconnected networks there are two classes of traffic within a network. One class is the local traffic that is generated and transmitted within the network. The other class is the internetwork traffic transmitted to or from other networks. In this thesis, the effect of internetwork traffic on the performance of a network is investigated. Computer simulation of an interconnected network model is provided in order to evaluate the effectiveness of a window-based congestion control mechanism on preventing congestion in gateways and in attached networks caused by the overload of internetwork traffic. Also two dynamic window congestion control algorithms are provided and studied. These algorithms provide further control to window mechanism by adjusting the window size in accordance with the availability of the network resources at the destination. Dynamic algorithms are evaluated comparing them with static window control.Ulusoy, ÖzgürM.S

    Floorplan-Aware High Performance NoC Design

    Full text link
    Las actuales arquitecturas de m�ltiples n�cleos como los chip multiprocesadores (CMP) y soluciones multiprocesador para sistemas dentro del chip (MPSoCs) han adoptado a las redes dentro del chip (NoC) como elemento -ptimo para la inter-conexi-n de los diversos elementos de dichos sistemas. En este sentido, fabricantes de CMPs y MPSoCs han adoptado NoCs sencillas, generalmente con una topolog'a en malla o anillo, ya que son suficientes para satisfacer las necesidades de los sistemas actuales. Sin embargo a medida que los requerimientos del sistema -- baja latencia y alto rendimiento -- se hacen m�s exigentes, estas redes tan simples dejan de ser una soluci-n real. As', la comunidad investigadora ha propuesto y analizado NoCs m�s complejas. No obstante, estas soluciones son m�s dif'ciles de implementar -- especialmente los enlaces largos -- haciendo que este tipo de topolog'as complejas sean demasiado costosas o incluso inviables. En esta tesis, presentamos una metodolog'a de dise-o que minimiza la p�rdida de prestaciones de la red debido a su implementaci-n real. Los principales problemas que se encuentran al implementar una NoC son los conmutadores y los enlaces largos. En esta tesis, el conmutador se ha hecho modular, es decir, formado como uni-n de m-dulos m�s peque-os. En nuestro caso, los m-dulos son id�nticos, donde cada m-dulo es capaz de arbitrar, conmutar, y almacenar los mensajes que le llegan. Posteriormente, flexibilizamos la colocaci-n de estos m-dulos en el chip, permitiendo que m-dulos de un mismo conmutador est�n distribuidos por el chip. Esta metodolog'a de dise-o la hemos aplicado a diferentes escenarios. Primeramente, hemos introducido nuestro conmutador modular en NoCs con topolog'as conocidas como la malla 2D. Los resultados muestran como la modularidad y la distribuci-n del conmutador reducen la latencia y el consumo de potencia de la red. En segundo lugar, hemos utilizado nuestra metodolog'a de dise-o para implementar un crossbar distribuidRoca Pérez, A. (2012). Floorplan-Aware High Performance NoC Design [Tesis doctoral no publicada]. Universitat Politècnica de València. https://doi.org/10.4995/Thesis/10251/17844Palanci

    Analysis of algorithms for online routing and scheduling in networks

    Get PDF
    We study situations in which an algorithm must make decisions about how to best route and schedule data transfer requests in a communication network before each transfer leaves its source. For some situations, such as those requiring quality of service guarantees, this is essential. For other situations, doing work in advance can simplify decisions in transit and increase the speed of the network. In order to reflect realistic scenarios, we require that our algorithms be online, or make their decisions without knowing future requests. We measure the efficiency of an online algorithm by its competitive ratio, which is the maximum ratio, over all request sequences, of the cost of the online algorithm\u27s solution to that of an optimal solution constructed by knowing all the requests in advance.;We identify and study two distinct variations of this general problem. In the first, data transfer requests are permanent virtual circuit requests in a circuit-switched network and the goal is to minimize the network congestion caused by the route assignment. In the second variation, data transfer requests are packets in a packet-switched network and the goal is to minimize the makespan of the schedule, or the time that the last packet reaches its destination. We present new lower bounds on the competitive ratio of any online algorithm with respect to both network congestion and makespan.;We consider two greedy online algorithms for permanent virtual circuit routing on arbitrary networks with unit capacity links, and prove both lower and upper bounds on their competitive ratios. While these greedy algorithms are not optimal, they can be expected to perform well in many circumstances and require less time to make a decision, when compared to a previously discovered asymptotically optimal online algorithm. For the online packet routing and scheduling problem, we consider an algorithm which simply assigns to each packet a priority based upon its arrival time. No packet is delayed by another packet with a lower priority. We analyze the competitive ratio of this algorithm on linear array, tree, and ring networks

    Progress Report : 1991 - 1994

    Get PDF
    corecore