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Abstract

We study multipacket routing problems. We divide the multipacket routing
problem mto two classes, namely, distance limited and bisectidn limited rout-
ing problems. Then, we concentrate on rings of processors. We prove a new
lower bound of 2n/3 routing steps for the case of distance limited routing prob-
lems. We also give an algorithm that ’s_ightens. this lower bound. For bisection
limited problems the lower bound 1s kn/4, % > 2, where % is the number of
‘packets per processor. The trivial algorithm needs in the worst case k|n/2]
steps to terminate. An algorithm that completes the routing in kn/4 + 2.5n
routir;g steps 1s given. We define the class of pure routing algorithms and we

demonstrate that new lower bounds hold if the routing is to be done by an

algorithin in this class.
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3 ntroduction

A great deal of work has been devoted to the study of the packet routing problem [1}-[16].
This is because the packet routing problem is closely related to parallel computation.
Through the routing of messages {packets) we are able to emulate shared memory [14].
More generally, for a parallel computer to be computationally effective, it must be able
to route messages from their origin processors to their destination processors fast and
with small, preferably constant size gueues. These queues are created while two or more
packets are waiting to cross the same communication channel.

In this paper, we consider two types of packet routing problems, namely, distance
limited and bisection lirniled routing problems, a distinction which is based on the number
of packets each processor has to route. We concentrate on permutation problems on a ring
of processors. The reason for doing so, is because, before trying to attack the problem for
the more general case of r-dimensional meshes and tori, we must have a full understanding
of the problem in its simplest form. We prove a new lower bound for distance limited
problems on rings and we give an algorithm that matches the lower bound. For the case
of bisection limited routing problems. we present an algorithm that routes the packets in
near optimal time.

Surprisingly, not too much attention has be given to the packet routing problem on
rings. According to our knowledge, it is the first time that an in depth investigation is
attempted. The majority of the previous work on packet routing problems on multidi-
mentional meshes focuses in the two dimensional case. Probabilistic (2, 10, 13, 15, 16] as
well as deterministic {3, 4, 5, 6, 8, 9, 10, 12, 15] algorithms have been proposed. All of
these aigorithms try to minimize the number of routing steps required to complete the

routing and the size of the extra memory used for queueing purposes. The only work on

r-dimensional meshes, r > 2, 1s by Kunde 4, 5.
A ring of n precessors is defined to be a graph G = (V| £) where, V = {iJi =
0,1,2,..,n—1} and £ = {(z.¢ = Lmodn)r = 0,1,...,n — 1}. Set V represents the

processors while set £ represents the communication links between them. At any step,
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each processor can comnn‘znica{.e with both of its neighbors.

We define the distance along the shortest path between processors P = 1 and ¢ = J,
denoted D (P, (), to be the minimum number of links {edges) that .a packet has to traverse
starting from processor P and destined for processor (). Obviously, D,(P, @} = D(Q, P)._
Formally, for processors P = 7 and ) = j we define D,(P, @) = min{lj —|,n ~ |7 ~ 1]}
The notation [zy]s. will be used to denote the distance fro.m processor x to processor
y in direction dir. dir can be clockwise (cw) or counter-clockwise {ccw). Observe that
(2Y)ew = 1 = [Y2]cw = 1~ [2Y]icw. For clarity reasons, in the rest of the paper processor i
will be denoted by P,. We also assume that the ring is lied down in such a way that the
processor numbers increase in the clockwise direction. |

In a permutation routing préblem each processor has one packet to transmit to any
other }.)rocessor. At the end, each processor receives exactly one packet. In the multipacket
permutation problem each processor has k packets all of which are destined for the same
processor. At the end, each processor receives exactly & packets. Formally, a multipacket
permutation problem R on a ring can be defined as a triple < n, %, F > where n is the
number of processors on the ring, & is the number of packets per processor, and F is a
function F: {0,1,...,n—1} = {0,1,...,n — 1} such that F defines a permutétion. The
multipacké; permutation problem arises when a single packet in the permutation rout-
ing problem consists of & flits. Some work has already been done on square meshes for
this case: Symvonis and Makedon [10, 15] treated the & flits as an unbreakable “snake”,
while Kunde and Tensi [6] routéd the flits of a packet independently. More recently, Ra-
jasekaran and Raghavachari [13] presented randomized algorithms using both approaches
and Kunde [5} derived a new deterministic algorithm for the case where the packets are
routed independeﬁtly. Up to now no work has been done on rings.

The remainder of the paper is organized into‘srections as follows. In Section 2, we
define the ciésses of distance limited and bisection fimited routing problems. In Section 3,
we concentrate on distance limited problems on rings of n processors. We presen.t a lower
bound of .2n/3 steps, and we give an algorithm that .matches that bound. In Section 4,

we investigate the bisection limited problem on a ring of n processors. The known lower
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bound for this problem is An/4 routing steps. We present an algorithm thac routes any
problem in at most kn/4 + 2.5n routing steps. In Section 3, wé define the class of pure
roﬁting algorithms and we demonstrate that new lower bounds hold if the routing is to
be done by an algorithm in this class. Finally, in Section 6, we discuss furthfsr work that

has to be done in this area.

2 Two Types of ROuting Problems

We obtain lower. bounds on the number of steps required to solve a routing problem using
two different arguments, The first one is a, lower bound based on the maximum distance
a packet has to travel (distance bound). The second one is based on the bisection bound of
the network used. Then, the lower bound 1s max(distance 5ouﬁd, bisection bound). For
the case of r—dimensiona] meshes of side-length n, the distance bound 1s #{n — 1) and the
bisection bound is nk/2 , where &k is the number of packets each processor holds. Thus,
the lower bound on the number of steps required to solve the multipacket permutation
routing problem on the r-dimensional mesh is max{r(n — 1}, nk/2}. Similarly, for the
r-dimensional torus (‘a,n. r-dimensional mesh with wrap-around connections), the lower
bound is max{r(n — 1)/2, nk/4}.

It is clear from the above that we can divide the routing problems into two categories:
the bisection limited problems and the distance limited problems. A problem is bisection-
limited if the bisection lower bound 15 greater than the distance lower bound. Otherwise,
we say that the problem 1s distance limited. For r-dimensional meshes and tori, we
obtain that a problem is distance limited if the number of packets per processor.is k< 2r.
Otherwise it 1s bisection-limited.

It should be pointed out that the division of the routing problems into the two cate-
gories is based on worst case scenarios. Thus, there are problems that, according to the
above distinction, are biseclion limuted, (b = 2 for”rings), and still can be solved in less
time than that indicated by the distance linmit. Oune such trivial example 1s when all pro-

cessors have packets destined for the processors immediately after them in the clockwise



Figure 1: The instance of the permutation routing problem that requires 2n/3 steps.

direction. Obviously, this routing problem can be solved in k steps.
In the rest of the paper we will concentrate on rings of processors. For a ring (7 = 1)

the problem is distance limited if & < 2 and bisection limited otherwise.
3 Distance Limited Routing Problem on a Ring

In what follows, we demonstrate a better lower bound for the case of distance limited
routing pré"blems on rings. The channel utilization of the network is taken into consider-

ation in order to obtain the new lower bound. Then, we give an algorithm that matches

the lower bound.

3.1 Lower Bound on a Ring of Processors

Let us assume that we have a ring of n processors, n 1 a multiple of 3, and we want
to route a multipacket permutation on it. Fach processor has two packets that will be
routed independently. Consider the following situation: Initially, F; contains 2 packets
destined for P42 jmodn, 0 <1 < n (Figure 1). |

Hence, in the counter-clockwise direction, each packet has to travel distance 2n/3. If
some packet decides to move in the counter-clockwise direction, then at least 2n/3 steps
are required, since the distance between origin and destination is exactly 2n/3 in that

direction. So, if we want to achieve a better routing time, we have to send all packets
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in the clockwire direction. In this case, each of a total of 2n packets will travel for n/3
steps. Then, the total movement (number of wire crossings) is 2n%/3: Since all packets
n

are moving in the same direction, only n communication links are used. Hence, this

movement requires at least 2n/3 routing steps to be accompiished. Thus, we have: .
Theorein 1 There is a distance limated permutation routing problem on a ring of n pro-
cessors that requires 2n/3 routing steps for ifs solution.

3.2 An Algorithm that Tightens the Lower Bound

An algorithm that tightens the lower bound given in Theorem 1 is the following:

Algorithm Route on.a Ring. !

At step 1 BEach processor determines the minimum distance its packets have to travel,
say s, where 0 < 5 < 2. [t also determines the direction in which the packets have

to travel so that their distance to the destination is s. Let this direction be denoted
by K {cw or cew).
s [fs< ‘%1, then both packets are send in direction K.
e If [2] < s < 2 then the processor sends one packet in the cw direction and
one i the cew direction.
at step 7,¢ > 1 Each processor transmits a packet toward its destination, if it has one.

A processor never changes the direction of a packet.

The packet that has to go further in a given direction has higher priority.

Lemma 1 If Algorithm Route_on_a_Ring_I 1s used for the rouling of a distance limited
permutation routing problem then, at any time t, any processor has at most 2, packets

that want to move in the same direction.

Proof The Lemma is obvious, since: 1) each processor transmits a packet toward a given

direction, if it has one, 11} at any step, 1t can recelve at most one packet that must be
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Figure 2: The ring is divided into three sections that are used in the proof of Lemma 2.

sent in that direction, and, iii} the initial load of each processor is at most ? packets that

want to travel in the same direction.

Definition A cut ¢, is defined to be the edge that connects Py 1ymodn and P,

Lemma 2 [f Algorithm Route on_a_Ring_1 15 used for the routing of a distance limited

permutation routing problem, then there are at most 2[n/3] packets that want to cross

any cut in the same direction.

Proof Without loss of generality, we consider cut czrzy and we examine packets moving
only in the clockwise direction. The proof for the counter-clockwise movement is syminet-
ric. Let P@,...,Pi’é}]_l constitute segment A4 of the ring, and Pygq, ...,Pz[%}]__l constitute
segment B of the ring (Figure 2),

[nitially, each processor in segment A4 has at most 1 packet that wants to move in the
clockwise direction and also wants to cross the cut. Assume that the number of packets
in segment A that want to cross the cut is m , 0 < m < [n/31. Then, these packets
must be destined for segment ', where Foray, .., Pooy constitute segment ', Since we
are examiﬁing permutation routing, for any packet in segment A that wants to cross the
cut m the clockwise direction, there must exist a unique destination in segment C'. This

means that, there exist m positions in segment (', none of which can be the destination
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ol a packet initially in segment B, Thus, in segment 3, there must exist at most il —m
processors that have packets destined for segment . In the worst case, all of these
processors will send 2 packets toward the cut. The remaining m processors in segment B
will send all together at most 1 packet toward the cut. So, the total number of packets
which are initially in segment 5 and want to cross the cut is at most 2([n/3] —m) +m.
This implies that the total number of packets that want to cross the cut in the clockwise

direction is at most (2[n/3] — m)+m = 2[n/3]. s

Theorem 2 Using Algorithm Route_on_a_Ring_1, a distance imited permutation routing

problem on a ring of n processors can be solved in 2[n /3] steps.

Proof In order to prove this, we need to show that all packets that want to cross any
cut in a given direction, will do so after 2{n/3] steps. Without loss of generality, let
us consider cut Fornmy41 {the edge immediately after ngﬁ in the clockwise direction).
We simulate the routing process as follows: Assume that we have two tapes, tape 4 and
B. Tape A has 2[n/3] cells and can move to the right. Tape B has [n/3] cells, is not
allowed to move, and is placed, initially, on top of the [n/3] rightmost cells of tape A.
Fach cell of a tape can hold at most one pebble. A pebble represents a packet that wants
to cross the cut in the clockwise direction. If a pebble is placed on a cell of tape B, then
a pebble must also exist on the underlying cell of tape 4. We now observe that, initially,
we have the following situation: If x pebbles are on tape B, then at least u cells in the
[n/3] leftmost positions of tape A are empty. We associate the :** pebble of tape B,
0 <i < 2[n/3], where we count from left to right, with the :** empty cell [hole) of tape
A, where we count from right to lelt (Figure 3}, This is a 1-1 relation.

Neow, we start moving tape A to the right. In the worst case, each pebble in tape B will
drop Into its corresponding hole in tape A. Since the whole tape A will cross the cut after
exactly 2{n/3| steps, all pebbles cross the cut in at most 2[n/3] steps. Thus, all packets

that want to cross the cut can do so in 2[n/3] steps. 1



Tape B <
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Figure 3: The simulation of the routing by two tapes as used in the proof of Theorem 2.
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4 Bisection Limited Routing Problem on a Ring

In this section, we consider bisection limited problems on rings of n processors. Recall,
from Section 2, that a problem is bisection limited for rings when k, the number of packets
per processor, is greater than 2. The lower bound based on the bisection of the ring is
kn/4. The trivial greedy algorithm that routes each packet along the shortest path to
its destination takes, in the worst case, at least k|n/2| steps. To see that, consider the
situation where the packets at P, are destined for -‘D(h'»i_lzlj}modn' If we consider any cut,
then the packets from all the [n/2] processors behind it in the direction that the routing
takes place want to cross it. There are k[n/2] such packets and they need at least kln/2|
steps to do so.

In the following section we describe an algorithm that completes the routing in the
worst case after &n/4 + 2.5n routing steps. In the special case where n and k are even

the algorithm takes at most &n/4 + 1.5n routing steps.

4.1 The Algorithm

Before we proceed with the description of the algorithm, we need to give some definitions
for certain variables we use: Let S, denote the distance that the packets initially located
at F; have to travel along the shortest path to their destination. $; can be written as
Si= Am, 0 < A < 1/2, where A is a coefficient used in our algorithm. Our algorithm
routes a fraction of the packets which are initially at P along the shortest path to their

destination, and routes the remaining packets along the longest path. The number of
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packets that are routed along the shortest path and are originatea at P, is denoted by 7,.

Algorithm Route on a Ring 2

At step 1 A0 < ¢ < n, determunes the number of packets o, 1t will send along the

shortest path using the following rule:
o =k~ | A\k|

It then adds o, out of the & packets to a quene associated with the link on the

shortest path, and the remaining packets to the queue associated with the other

iink.
The packets at the front of the queues are transmitted.

at step £, > 1 Bach processor transmits a packet toward its destination, if it has one.
A processor never changes the direction of a packet.

The packets are transmitted using a FIFO policy .

Our efforts to analyze Algorithm Houte_on_a_ Hing.2 in a way similar to the analysis
of Algorithm Route on_a Ring.1 were not successful. In particular, we were not able to
introduce in a proof of that kind the fact that the routing problem is a permutation. So,
we proceed with a totally different approach. Again, we consider the number of packets
that cross any cut in any direction. But now, we prove that the given routing problem
is “easier” to be solved than a special kind of routing problem for which we can make
statements regarding its complexity. An upper bound obtained for this special problem
will clearly be an upper bound on the initial (and “easier”) routing problem. It is the first
time that this method for proving upper bounds on routing algorithms is applied in such
an extend. A first simple proof of that type was introduced by Symvonis and Makedon
in [10, 15].

Definition A half-ring of a ring consisting of n processors, n is even, is any section of

the ring consisting of exactly n/2 consecuiive processors.



Note that a half-.ring is wei defined Qniy on rings that consist of an even number of
processor. It is undefined when there is an odd number of processors on the ring.
Definition Two half-rings of the same ring of processors are said to be disjoint if they
share no common processor.

Obviously a ring of n processors, n is even, is made up by two disjoint half-rings and

there n different decompositions of a ring into two disjoint half-rings.
Definition A multipacket routing problem on a ring of n processors, n is even, is said
to be symmetric with respect to cut ¢; if all the packets at the half-ring composed by
P, P(ngl)modn are destined for the half-ring composed by P(w%)modn, ooy Plicymodn
and vice versa. lf a multipacket routing problem is not symmetric with respect to cut ¢,
then it is called asymmetric {with respect to cut ¢;).

Again, a symmetric (asymmetric) multipacket routing problem with respect to cut ¢

1s well defined only for rings consisting of an even number of processors.

Lemma 3 Assume a ring of n processors, n is even, any cut ¢;, any direction, and an
asymmetric multipacket permutation routing problem with respect to cut ¢; of initial load of
k packets per processor that is to be routed. Alse assume that Algorithm Route_on_a_Ring.2
15 used for the routing. Then, there exists ¢ symmetric multipacket permutation problem
with respect to cut c; of ineiial load of k -+ 1 packets per processor such that, if it 1s routed
using Algorithm Route_on_a Ring. 2 and the extra packet is sent towards the cut in the
direction under consideration, 1t will send al least as many packets to cross the cut in the
given direction as the initial asymmetric routing problem. (Informally we can say that the

new routing problem s “harder”.)

Proof Without loss of generality, we concentrate in the number of packets that cross
the cut in the clockwise direction. A diameter that passes through the cut divides the
ring into two disjoint half-rings. Half-ring A consists of P, ..., P(1+%4)1nodn and half-ring
B consists of P(H%)modn, o B iimodn. We will show how to transform any asymmetric
multipacket routing problem (with respect to cut ¢;) of initial load of & paékets t0 a

symmetric problem {with respect to cut ¢} of initial load of k + 1 packets. Furthermore,
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the number of packets that cross the cut in the new routing problem is greater or equal
with the number of packets that cross the cut if the original problem is routed. (Both
problems are routed by Algorithm Route on.a_Ring.2.)

First observe that if there is a processor in half-ring A that has packets destined for
another processor in half-ring A, then, there exist a processor in half-ring B that has
packets destined for a processor in half-ring B. The above observation follows from the
pigeonhole principle.

Our transformation consists by picking two processors, one in each half-ring, that have
packets destined for the half-ring they belong. Then, the destinations will be switched.
By performing the above transformation for at most n/2 times, we will get a symmetric
multipacket routing problem (with respect to cut ¢;). Now it remains to prove that if we
load each processor at the new problem with one additional packet which is to be routed
towards the cut, the new problem sends at least as many packets to cross the cut as the
mnitial one (and thus, it is “harder”). We distinguish four cases.

Case 1 N
cut

The packets at processors a and ¢ are destined for processors b and d, respectively.
After the switch of the destinations, the packets at processor a are destined for
processor d and the packets at processor ¢ are destined for processor 5. Observe
that before the switch no packet wants to cross the cut in the clockwise direction.
We remind the reader that in this case as well as in the rest of this section, the
routing 1s done by Algorithm Route_on_a Ring 2. After the switch, a portion of the
packets located at processor a might cross the cut in the clockwise direction. So,

the new problem sends at least as many packets to cross the cut as the original one.
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Case 2 o
cut

a d

The packets at processors b and ¢ are destined for processors a and d, respectively.
After the switch of the destinations, the packets at processor b are destined for
processor d and the packets at processor ¢ are destined for processor a. Observe
that before and after the switch only packets that are initially located at processor
b will cross the cut in the clockwise direction. After the switch, at least the same
number of packets will cross the cut in the clockwise direction since the distance
the packets have to travel in that direction is reduced.

Case 3 .
Tlctlt

a d
The packets at processors ¢ and d are destined for processors b and ¢, respectively.
After the switch of the destinations, the packets at processor a are destined for
processor ¢ and the packets at processor 4 are destined for processor b. Before the
switch only packets initially located at processor 4 will cross the cut in the clockwise
direction while, after the switch, only packets located at processor e will do so. But
the number of packets that cross the cut now, is greater or equal than before. This

is because the distance the packels which cross the cut have to travel is reduced.



Case 4 ) .
cut

The packets at processors b and d are destined for processors a and c, respectively.
After the switch of the destinations, the packets at processor b are destined for
processor ¢ and the packets at processor d are destined for processor a. This is the
most interesting case. Before the switch packets from both origins want {o cross
the cut while, after the switch, only packets initially located at processor b want to
do so. Before the switch, processor b sends at most (&/n)[ab]., packets towards the
cut. Processor d sends at most (&/n)led]., packets towards the cut. Thus, before
the switch, at most {(k/n){({abl., + [cd].) packets cross the cut in the clockwise
direction. Consider now the number of packets (originated at processor b) that
want to cross the cut after the switch. We have to distinguish two cases. In the first

case the packefs that cross the cut are routed along a shortest path. Then at least

(bl B b,
P O DA R N 0 [ A ) S|

S on - 7 7 o

packets will cross the cut. In the case where the packets are routed along the longest
path, the number of packets that cross the cut is at least (k/n)[cbl .. So, in any case,
after the switch at least (L/n)[cb]., — | packets will cross the cut in the clockwise
direction. But [¢bl., = [abdl., + [cdle. Thus, if we load processor b with one extra
packet and we force 1t to cross the cut in the clockwise direction, the new problem

sends at least as many packets to cross the cut as the original one.

The observation that all of the transformations needed to convert an asymmetric
multipacket problem with respect to some cut ¢, into a symmetric one with respect to the

same cub might be of that described 111 case 4 proves the lemma. ¥



Lenima 4 Assume a ming of n processors, n is even, any cut ¢;, and eny direction. Also
assume that a symmetric multipacket permutation routing problem with respect to cut ¢
of inatial load of k packets per processor is to be routed. If Algorithm Route_on_a Ring 2
is used for the routing, then the number of packets thai cross the cut in any direction is
at most equal to the number of packets chat cross the cut if a new symmetric multipacket
routing problem with respect to cut ¢; of initial load of k+2 packets per processor is routed,
where, 1 the new problem, the packets at P; are destined for P4 2)modny 0 <7 < n, and

the extra 2 packets are routed towards the cut in the given direction.

Proof Without loss of generality we consider the packets that cross the cut in the clock-
wise direction. Only packets that are originated in the half-ring defined by P2 ymodny -
Ffi1)modn Will cross the cut in that direction. We can convert the initial symmetric prob-

lem to the one defined in the lemma by executing Algorithm Symmetric_Conversion(i).

Algorithm Symmetric.Conversion(cut)
Begin
For j = 0to n—1do
Convertcut,))

End

Convert(eut,;)
Begin

o Locate the processor that has packets destined for F 4 jimoeds. Let it be

Processor a.

o Let the destination of the packets initially at FProuis 42 moarn be processor

b.



a I

i+ n/2 d={i+j) mod n i+ n/2
c=(1+j+ n/2) mod n

Figure 4: The transformation that occurs in a single iteration Convertfcut,j).

¢ Swich the destinations of the packets such that:

— The packets initially at Py %)modn are destined for Pusyjjmodn-

— The packets initially at processor a are destined for processor b.

End

The transiormation that occurs in a single execution of procedure Convert(cut,j) for
cut = 1, is illustrated in Figure 4.

We concentrate 1n the half-ring immediately before the cut 1in the clockwise direction.
Consider 1feration 7, 0 < 3 < n/2, Denote }D(vrjdr%)modn by ¢ and Py jymedn by d.
Observe that before the switch packets from processors a and ¢ want to cross the cut

in the clockwise direction. The packets originally at processor a will travel along their

shortest path. So there are at most

] i
bl < k- S . Y lad)e,) +1 =

Ty T i

T 3
fad] e,

lda]o, + 1.

3] &

k-

L

A

The packets originally at processor ¢ will travel along their longest path. So there are

at most

Thus, before the switch at most (£/n)([dal.., + [bc]w ) + 1 packets will cross the cut in the
clockwise direction.
After the switch, again, packets from both processors @ and ¢ will cross the cut. For

the packets initially at processor o we have to consider two cases, namely, when they
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travel along the shortest or the longest path. In the case where they travel along the

shortest path, at least

b oy 2} cw ¥
b — L&LH >k - __w[ab} k= E(n —~ lable,) = Aiba}m

n n 7 n

packets will cross the cut. In the case where they travel along the longest path, at least

bales (b

n n

L kaml

packets will do so. Thus, in any case, at least (k/n)[bal., ~ 1 packets originated at
processor a will cross the cut. Let us now turn our attention to the packets originated at

processor ¢. They have to travel exactly n/2 steps. We treat them as they were routed

along the shortest path. Then, at least

: ,
R B R
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packets originated at processor ¢ will cross the cut. Thus, after the switch, a total of
at least (k/n)([ba]ow + [dcfow) — 1 packets will cross the cut. Recall that the number of

packets that wanted to cross the cut before the switch was (k/n) {[da]e, + [bele, )+ 1. But,

({ba]cw -+ ;dc}cw) - ([E)C]Cw + {Cajcw + {db}cw 7§w {bc]cw) - ([da’}ﬁw + [bc]cw)

Thus, if we load processor ¢ with 2 extra packets and we route both of them towards the
cut the new routing problem sends at least the same number of packet to cross the cut. n

Up to now, we have concentrated into the case where n, the number of processors
on the ring, is even. In what follows, we describe how to augment a routing problem
on a ring that consists of an odd number of processors to a routing problem on a ring
that has one extra processor. This augmentation will never occur in practice. It 1s used
only as a tool in proving statements regarding the number of packets that cross a cut in
some direction if the number of processors in the initial problem is odd. For this reasen,
the augmentation will be defined in respect of a given cut in the initial ring and a given
direction. Informally, the augmented routing problem with respect to cut ¢; and direction

dir is obtained as follows: A new processor is placed on the ring such that it becomes
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the [n/2]1%" processor after cut ¢, in direction dir. The new processor is loaded with k&
packets that are destined for itself. Then the processors on the ring are renamed and
the initial routing problem is updated so that the destinations reflect the new names.
Figure 5 shows the results of the augmentation in a packet routing problem on a ring of
5 processors with respect to cut ¢; and both directions. Formally, we have the following
definition:

Definition Given a multipacket permutation problem R =< n,k I >, we define the

augmented multipacket permutation problem of R with respect to cut ¢; end direction dir,

dir = cw or ccw, to be;

BR b if n is even
ROl e LEF > i nis odd
where F/: {0,1,...,n} = {8,1,... ,n} is defined as:
Fi(j) = (2 + 51+ Alder)) mod . if § = (14 [2] + A(dir)) mod n
(7) = MP(MY(3))) otherwise

where
—1 if dir = cw

Aldir) = { 0 if dir = cow
and M : {0,1,...,n — 1} — {0,1....,n} is an injective function that describes the
renaming of the processors and is defined by:

[ MO < IE] + Aldir) -
A’W(J):{j TRy s IE A(dir) — 1} mod n

g+ 1  otherwise

I8



Lermnma 5 Assume a multipacket permutarion routing problem R =< n, k, ¥ > [If Al
gorithm Route_on.a.Ring.2 1s used for the routing then the number of packets that cross

any cut m any direction 15 at most:

a. knf4 -+ 1.5n ifn and k are even
b, kn/4 + 2n ifn is even and k is odd
c. knf4+2n tf n 15 odd and k is even
d. kn/4 +2.5n ifn and & are odd

Proof Without loss of generality consider cut ¢; in the clockwise direction and the
packets that cross 1t in that direction. First we prove cases a and b, i.e., when n is even.
Lemmata 3 and 4 imply that a routing problem that is symmetric with respect to cut ¢; and
has 1nitial load of k + 3 packets per processor, all destined for the processor located after
n/2 positions in the clockwise direction, will send at least an equal number of packets to
cross the cut ¢ in the clockwise direction with any other multipacket permutation routing
problem with initial load & packets per processor. {The 3 extra packets will be routed in
the clockwise direction towards the cut.) For that “harder” problem, in the case where
k is even, Algorithm Route.on.a Ring.2 will send exactly kn/4 packets to cross the cut.
In the case where & is odd, at most n/2 extra packets will cross the cut. This is caused
by the | | operator that 1s involved in the computation of o; at step 1 of the algorithm.
Now, by adding the extra How created by the 3 extra packets that are routed towards the
cut (exactly 1.5n extra packets will cross it) we get the quantiiies stated in cases a and b
of the lemma.

In the case Where n is odd, we consider the augmented problem R, (RE_  if the ccw
direction is considered). We make the following observation: If the augmented problem
1s routed using Algorithm Houteon_a_Hing.2, then the number of packets that cross cut
¢; in the clockwise direction might be reduced by at most n/2. This is because of the
renaming of the processors. The renaming causes the distances between processors to
change. So, the number of packets that a processor sends towards the cut might change
also. However, this number changes by at most 1 packet, and furthermore, it is reduced
only at the processors in the half-ring immediately before the cut in the direction under

consideration. Working in the same lines as before, in order to overcorne the above
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probiery and guarantee that the augmented problem is at least as hard as the original, we
load each processor in that half-ring with one extra packet that is routed towards the cut,
lL.e., the processors mn the half-ring before the cut in the augmented problem have &k + 1
packets. Then, cases ¢ and d are proven by Lemmata 3 and 4 and by arguing as in cases

a and b for £ even and odd, respectively. &

Theorem 3 Using Algorithm Route_on_a Ring.2, a bisection limited multipacket permu-

tation prodlem

R =<n,k F > on a rng of processors can be solved in

kn/4 + 1.5n routing steps  if n and k are even
kn/4 -+ 2n routing steps ifn is even and k 15 odd
kn/4 -+ 2n routing steps ifnois odd and k is even
d. kn/4+2.5n routing steps  if n and k are odd

o =R

Proof The theorem is implied from Lemma 5. If at every step of the algorithm one
packet wants to cross the cut, the theorem is obviously true. In the case where there is a
period during the execution of the routing algorithm that no packet crosses the cut, say
w steps, then there are u processors that do not have any packets that want to cross the

cut. Thus, the number claimed at Lemma 5 was overestimated by at least p. So, the

theorem holds. »

5 Pure Routing Algorithms

One basic characteristic that both Algorithms Houte on ¢ Ring ! and Route on_a_Ring 2
possess is that the decision of how many packets a processor will route towards a direction
is independent of the position of the processor on the ring. Two processors that both have
packets destined after distance d in the same direction will make exactly the same decision
regarding the number of packets they route in the clockwise and the counter-clockwise
direction. The above property defines a distinct class of routing algorithms.

Definition Assume an interconnection network N on which a packet routing problem
" is to be routed. A routing algorithm with the property that the routing decisions taken
at any time ¢, by any processor P, are independent of the position of processor P on the

network, is called a pure routing algorithm.
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[t should be menfioned that, not too many routing algorithms of those proposed in
t.he literature for multidimensional meshes are pure algorithms. The algorithms that use
sorting of subnetworks as a subroutine [3, 4, 6, 8, 16, 12] certainly do not belong in this
class. The same holds for algorithms that treat corner packets differently (2, 8,12, 13]. For
2-dimensional meshes, as pure algorithms can be considered the greedy routing algorithm
that routes the packets first to the correct column and then tho the correct row, and the
algorithm proposed by Symvonis and Makedon in [9] {15, Chapter 2].

The following theorem demonstrates that different lower bounds can be obtained for
pure routing algorithms. This is done by proving an (n + 1}k/4 lower bound for the
~ bisection limited permutation problem on a ring of n processors. Recall that the general

lower bound for this problem is kn/4.

Theorem 4 There is a bisection limited permutation routing problem on a ring of n

processors that requires for its solution by any pure routing algorithm at least (n + 1)k/4

routing steps.

Proof Consider the situation where %, the number of packets per processor, is odd, the
ring consists of an even number of processors , and the packets at F; are destined for
By 2ymodn, 0 = i < n. Let k= 2u+ 1. Since we assume a pure routing algorithm, all
processors must send the same number of packets along the clockwise direction {and thus,
aloﬁg the counter-clockwise direction). There are & different decisions that the algorithm
can make. In decision d, 1 < d < k, d packets are routed along the clockwise direction
and k — d are routed along the counter-clockwise direction. If decision d was taken, the
routing will be completed after at least (n/2) max{d, k — d) steps. Then, the lower bound
is the minimum number of routing %teps needed to complete the routing if any of the d

decisions was taken. Thus, any pure algorithm needs in the worst case at least

noo. n k 7 . n n o
§1§§é1k(max(d> k—dj) = 5(51 = 5(# tl)=getg = (2p+1)



G Conclusions - Further work

In this paper, we have examined multipacket routing problems on rings. We divided these
problems mnto two categories, distance limited and bisection limited routing problems. We
presented a new lower bound for the case of distance limited problems and we gave an
algorithm that tightens the lower bound. For the case of bisection limited problems,
we presented an algorithm that solves any problem within kn/4 + 2.5n routing steps.
Thus, we have succeed to present an algorithm that approximates within an additive
factor the number of routing steps required in the worst case. The class of the pure
routing algorithms was defined, and it was demonstrated that better lower bounds can
be obtained for this class of routing algorithms.

The results presented in this paper for the case of bisection limited permutation prob-
lems were at most 2.5n routing steps away from the lower bound. An interesting problem
1s to design an algorithm that matches the lower bound. We anticipate that this algorithm
will not fall into the class of pure routing algorithms. Another problem that deserves at-
tention is to derive lower bounds for pure routing algorithms for multidimensional meshes
and tori. In this case it would be very interested if we had a lower bound that is a func-

tion of the maximum number of packets that can be accomodated at the queue of any

Processor.
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