359 research outputs found

    Distributed energy resources network connection considering reliability optimization using a NSGAII algorithm.

    Get PDF
    Trabalho apresentado conferência IEEE CPE-POWERENG, 4 a 6 de abril de 2017, Cádiz, EspanhaDistributed Energy Resources (DER) has been widely introduced in distribution networks in response to the increase of environmental awareness of the consumers. The benefits with the use of DER are increased with network reconfiguration, but in some countries exists the impossibility of island operation as well as the obligation to buy all the electricity generated. These limitations, in a network fault situation, causes a waste of resources, because of the unavailability of the DER. On other hand, the location of DER connection under the context of the improvement of the reliability indexes has not been studied. Thus, this paper will propose a multi objective optimization of the location of DER connection considering the switching devices placement to increase network reliability and availability of DER, minimizing at the same time the investment in equipment in a no island operation environment. For the resolution of the proposed formulation, it will be used the multi objective algorithm NSGA-II (Fast Non-dominated Sorting Genetic Algorithm). The formulation of the problem also considers a composite index made up of DER and interruption duration. This approach is applied to a real utility distribution network, with the results presented and discussed.N/

    Energy-aware routing techniques for software-defined networks

    Get PDF
    Achieving energy efficiency has recently become a key topic of networking research due to the ever-increasing power consumption and CO2 emissions generated by large data networks. This problem is becoming even more concerning and challenging given the drastic traffic increase expected over the next few years. However, the use of efficient energy-aware strategies could overturn this situation reducing the electricity consumption of Internet data transmission networks, as well as contributing to mitigate the environmental impact of other sectors. The existence of redundant network elements with high capacities is a common design practice in current network infrastructures in order to face suddenly failures or peak traffic flows. However, these additional resources remain either unused or barely used most of the time leading to an undesired energy waste. Therefore, putting into sleep mode (i.e. a low-power state) unused elements is an effective and widely-accepted strategy to decrease the consumption of data networks. In this context, SDN can be seen as an attractive solution to achieve the long-awaited energy efficiency in current communications systems, since they allow a flexible programmability suitable for this problem. This doctoral thesis tackles the problem of optimizing the power consumption in SDN through the design of energy-aware routing techniques that minimize the number of network elements required to satisfy an incoming traffic load. Different from existing related works, we focus on optimizing energy consumption in SDN with in-band control traffic in order to close this important gap in the literature and provide solutions compatible with operational backbone networks. Complementing the general aim of improving the energy efficiency in SDN, this research is also intended to cover important related features such as network performance, QoS requirements and real-time operation. Accordingly, this study gives a general perspective about the use of energy efficient routing techniques, which cover integrated routing considerations for the data and control plane traffic in SDN. By using realistic input data, significant values of switched-off links and nodes are reached, which demonstrates the great opportunity for saving energy given by our proposals. The obtained results have also validated the intrinsic trade-off between environmental and performance concerns, considering several performance indicators. These findings confirm that energy-aware routing schemes should be designed considering specific traffic requirements and performance metric bounds. Moreover, it is shown that jointly considering QoS requirements and energy awareness is an effective approach to improve, not only the power consumption, but the performance on critical parameters such as control traffic delay and blocking rate. Similarly, the proposed dynamic traffic allocation with congestion-aware rerouting is able to handle demanding traffic arrival without degrading the performance of higher priority traffic. In general, our proposals are fine-grained, easy to implement and quite balanced and effective in their results looking for a suitable and readily deployment in real-world SDN scenarios. Therefore, the conducted research and contributions reported through this document not only add to what is known about the potential of energy-aware routing techniques, but also stand as a valuable solution on the road to a sustainable networking.L'assoliment de l'eficiència energètica s'ha convertit recentment en un tema clau de recerca de xarxes a causa dels creixents nivells de consum d'energia i emissions de CO2 generats per les xarxes de dades. Aquest problema es torna cada vegada més preocupant i desafiant, donat el dràstic augment del trànsit esperat en els propers anys. No obstant això, l'ús d'estratègies energètiques eficients podria invertir aquesta situació, reduint el consum d'electricitat de les xarxes de dades d'Internet i contribuint a mitigar l'impacte ambiental d'altres sectors. L'existència d'elements de xarxa redundants i amb grans capacitats és una pràctica de disseny habitual en les infraestructures de xarxes actuals per afrontar fallades sobtades o fluxos de trànsit més elevats. Tanmateix, aquests recursos addicionals romanen poc o gens utilitzats la major part del temps, generant un desaprofitament d'energia no desitjat. Per tant, posar en mode de repòs (és a dir, un estat de baixa potència) elements no utilitzats és una estratègia efectiva i àmpliament acceptada per disminuir el consum en xarxes de dades. En aquest context, les xarxes definides per programari (SDN) es poden considerar una solució atractiva per aconseguir l'esperada eficiència energètica en els sistemes de comunicacions actuals, ja que permeten una flexible programabilitat idònia per a aquest problema. Aquesta tesi doctoral aborda el problema d'optimitzar el consum d'energia en SDN a través del disseny de tècniques d'encaminament conscients de l'energia que minimitzen la quantitat d'elements de xarxa necessaris per satisfer una càrrega de trànsit entrant. Diferent dels treballs existents, aquesta tesi es centra a optimitzar el consum d'energia en SDN amb el control de tràfic dins de banda per tancar aquesta important bretxa en la literatura i proporcionar solucions compatibles amb xarxes troncals operatives. Complementant l'objectiu general de millorar l'eficiència energètica en SDN, aquesta recerca també pretén cobrir altres importants paràmetres relacionats, com ara el rendiment de la xarxa, els requisits de qualitat de servei (QoS) i el funcionament en temps real. En conseqüència, aquest estudi ofereix una perspectiva general sobre l'ús de tècniques d'encaminament eficients energèticament, que contempla consideracions integrades per al tràfic de dades i del pla de control en SDN. Prenent dades d'entrada realistes, es van aconseguir desconnectar significatives quantitats d'enllaços i nodes, la qual cosa demostra la gran oportunitat d'estalvi d'energia que ofereixen les nostres propostes. Els resultats obtinguts també validen el estret compromís entre les preocupacions ambientals i les qüestions de rendiment de la xarxa, considerant diversos indicadors de rendiment. Aquests resultats confirmen que els esquemes d'encaminament conscients de l'energia s'han de dissenyar tenint en compte els requisits de tràfic específics i els límits desitjats de les mètriques de rendiment. A més, es demostra que, considerant conjuntament els requisits de QoS i de l'energia necessària, és un enfocament eficaç per millorar, no només el consum d'energia, sinó també el rendiment en paràmetres crítics, com la latència del tràfic de control i la probabilitat de bloqueig. De manera semblant, l'assignació dinàmica de tràfic proposta, amb re-encaminament conscient de la congestió, permet gestionar grans volums de trànsit sense degradar el rendiment de les demandes de major prioritat. En general, les nostres propostes són precises, fàcils d'implementar i bastant equilibrades i efectives en els seus resultats, buscant un desplegament adequat i fàcil en escenaris pràctics de SDN. Per tant, la recerca realitzada i les contribucions contingudes en aquest document no només afegeixen el que es coneix sobre el potencial de les tècniques d'encaminament conscients de l'energia, sinó que també representen una valuosa solució en el camí cap a una xarxa sostenibl

    Microgrid Formation-based Service Restoration Using Deep Reinforcement Learning and Optimal Switch Placement in Distribution Networks

    Get PDF
    A power distribution network that demonstrates resilience has the ability to minimize the duration and severity of power outages, ensure uninterrupted service delivery, and enhance overall reliability. Resilience in this context refers to the network's capacity to withstand and quickly recover from disruptive events, such as equipment failures, natural disasters, or cyber attacks. By effectively mitigating the effects of such incidents, a resilient power distribution network can contribute to enhanced operational performance, customer satisfaction, and economic productivity. The implementation of microgrids as a response to power outages constitutes a viable approach for enhancing the resilience of the system. In this work, a novel method for service restoration based on dynamic microgrid formation and deep reinforcement learning is proposed. To this end, microgrid formation-based service restoration is formulated as a Markov decision process. Then, by utilizing the node cell and route model concept, every distributed generation unit equipped with the black-start capability traverses the power system, thereby restoring power to the lines and nodes it visits. The deep Q-network is employed as a means to achieve optimal policy control, which guides agents in the selection of node cells that result in maximum load pick-up while adhering to operational constraints. In the next step, a solution has been proposed for the switch placement problem in distribution networks, which results in a substantial improvement in service restoration. Accordingly, an effective algorithm, utilizing binary particle swarm optimization, is employed to optimize the placement of switches in distribution networks. The input data necessary for the proposed algorithm comprises information related to the power system topology and load point data. The fitness of the solution is assessed by minimizing the unsupplied loads and the number of switches placed in distribution networks. The proposed methods are validated using a large-scale unbalanced distribution system consisting of 404 nodes, which is operated by Saskatoon Light and Power, a local utility in Saskatoon, Canada. Additionally, a balanced IEEE 33-node test system is also utilized for validation purposes

    Modified Dragonfly Optimisation for Distributed Energy Mix in Distribution Networks

    Get PDF
    This article presents a two-stage optimization model aiming to determine optimal energy mix in distribution networks, i.e., battery energy storage, fuel cell, and wind turbines. It aims to alleviate the impact of high renewable penetration on the systems. To solve the proposed complex optimization model, a standard variant of the dragonfly algorithm (DA) has been improved and then applied to find the optimal mix of distributed energy resources. The suggested improvements are validated before their application. A heuristic approach has also been introduced to solve the second stage problem that determines the optimal power dispatch of battery energy storage as per the size suggested by the first stage. The proposed framework was implemented on a benchmark 33-bus and a practical Indian 108-bus distribution network over different test cases. The proposed model for energy mix and modified DA technique has significantly enhanced the operational performance of the network in terms of average annual energy loss reduction, node voltage profiles, and demand fluctuation caused by renewables

    Improving reliability on distribution systems by network reconfiguration and optimal device placement.

    Get PDF
    Masters Degree. University of KwaZulu-Natal, Durban.A distribution system without reliable networks impacts production; hinders economy and affects day to day activities of its customers who demand uninterrupted supply of high quality. All power utilities try to minimize costs but simultaneously strive to provide reliable supply and achieve customer satisfaction. This research has focused on predicting and thereafter improving the South African distribution network reliability. Predictive reliability modelling ensures that utilities are better informed to make decisions which will improve supply to customers. An algorithm based on Binary Particle Swarm Optimization (BPSO) was implemented to optimize distribution network configuration as well as supplemental device placement on the system. The effects on reliability, network performance and system efficiency were considered. The methodology was applied to three distribution networks in KwaZulu-Natal, each with diverse topology, environmental exposure and causes of failure. The radial operation of distribution networks as well as the practical equipment limitations was considered when determining the optimal configuration. The failure rates and repair duration calculated unique to each network was used to model the performance of each component type. Historical performance data of the networks was used as a comparison to the key performance indicators obtained from DigSILENT PowerFactory simulations to ensure accuracy and evaluate any improvement on the system. The results of a case study display improvements in System Average Interruption Duration Index (SAIDI) of up to 20% and improvements in System Average Interruption Frequency Index (SAIFI) of up to 24% after reconfiguration. The reconfiguration also reduced the system losses in some cases. Network reconfiguration provides improved reliable supply without the need for capital investment and expenditure by the utility. The BPSO algorithm is further used to optimally place and locate switches and reclosers on the networks to achieve maximum improvement in reliability for minimal cost. The results show that the discounted future benefit of adding additional protection devices to a network is approximately R27 million over a twenty-five-year period. The maximum SAIDI improvement from adding reclosers to a network was 21%, proving that additional device placement is a cost-effective means to improve system reliability

    Energy-aware routing techniques for software-defined networks

    Get PDF
    Achieving energy efficiency has recently become a key topic of networking research due to the ever-increasing power consumption and CO2 emissions generated by large data networks. This problem is becoming even more concerning and challenging given the drastic traffic increase expected over the next few years. However, the use of efficient energy-aware strategies could overturn this situation reducing the electricity consumption of Internet data transmission networks, as well as contributing to mitigate the environmental impact of other sectors. The existence of redundant network elements with high capacities is a common design practice in current network infrastructures in order to face suddenly failures or peak traffic flows. However, these additional resources remain either unused or barely used most of the time leading to an undesired energy waste. Therefore, putting into sleep mode (i.e. a low-power state) unused elements is an effective and widely-accepted strategy to decrease the consumption of data networks. In this context, SDN can be seen as an attractive solution to achieve the long-awaited energy efficiency in current communications systems, since they allow a flexible programmability suitable for this problem. This doctoral thesis tackles the problem of optimizing the power consumption in SDN through the design of energy-aware routing techniques that minimize the number of network elements required to satisfy an incoming traffic load. Different from existing related works, we focus on optimizing energy consumption in SDN with in-band control traffic in order to close this important gap in the literature and provide solutions compatible with operational backbone networks. Complementing the general aim of improving the energy efficiency in SDN, this research is also intended to cover important related features such as network performance, QoS requirements and real-time operation. Accordingly, this study gives a general perspective about the use of energy efficient routing techniques, which cover integrated routing considerations for the data and control plane traffic in SDN. By using realistic input data, significant values of switched-off links and nodes are reached, which demonstrates the great opportunity for saving energy given by our proposals. The obtained results have also validated the intrinsic trade-off between environmental and performance concerns, considering several performance indicators. These findings confirm that energy-aware routing schemes should be designed considering specific traffic requirements and performance metric bounds. Moreover, it is shown that jointly considering QoS requirements and energy awareness is an effective approach to improve, not only the power consumption, but the performance on critical parameters such as control traffic delay and blocking rate. Similarly, the proposed dynamic traffic allocation with congestion-aware rerouting is able to handle demanding traffic arrival without degrading the performance of higher priority traffic. In general, our proposals are fine-grained, easy to implement and quite balanced and effective in their results looking for a suitable and readily deployment in real-world SDN scenarios. Therefore, the conducted research and contributions reported through this document not only add to what is known about the potential of energy-aware routing techniques, but also stand as a valuable solution on the road to a sustainable networking.L'assoliment de l'eficiència energètica s'ha convertit recentment en un tema clau de recerca de xarxes a causa dels creixents nivells de consum d'energia i emissions de CO2 generats per les xarxes de dades. Aquest problema es torna cada vegada més preocupant i desafiant, donat el dràstic augment del trànsit esperat en els propers anys. No obstant això, l'ús d'estratègies energètiques eficients podria invertir aquesta situació, reduint el consum d'electricitat de les xarxes de dades d'Internet i contribuint a mitigar l'impacte ambiental d'altres sectors. L'existència d'elements de xarxa redundants i amb grans capacitats és una pràctica de disseny habitual en les infraestructures de xarxes actuals per afrontar fallades sobtades o fluxos de trànsit més elevats. Tanmateix, aquests recursos addicionals romanen poc o gens utilitzats la major part del temps, generant un desaprofitament d'energia no desitjat. Per tant, posar en mode de repòs (és a dir, un estat de baixa potència) elements no utilitzats és una estratègia efectiva i àmpliament acceptada per disminuir el consum en xarxes de dades. En aquest context, les xarxes definides per programari (SDN) es poden considerar una solució atractiva per aconseguir l'esperada eficiència energètica en els sistemes de comunicacions actuals, ja que permeten una flexible programabilitat idònia per a aquest problema. Aquesta tesi doctoral aborda el problema d'optimitzar el consum d'energia en SDN a través del disseny de tècniques d'encaminament conscients de l'energia que minimitzen la quantitat d'elements de xarxa necessaris per satisfer una càrrega de trànsit entrant. Diferent dels treballs existents, aquesta tesi es centra a optimitzar el consum d'energia en SDN amb el control de tràfic dins de banda per tancar aquesta important bretxa en la literatura i proporcionar solucions compatibles amb xarxes troncals operatives. Complementant l'objectiu general de millorar l'eficiència energètica en SDN, aquesta recerca també pretén cobrir altres importants paràmetres relacionats, com ara el rendiment de la xarxa, els requisits de qualitat de servei (QoS) i el funcionament en temps real. En conseqüència, aquest estudi ofereix una perspectiva general sobre l'ús de tècniques d'encaminament eficients energèticament, que contempla consideracions integrades per al tràfic de dades i del pla de control en SDN. Prenent dades d'entrada realistes, es van aconseguir desconnectar significatives quantitats d'enllaços i nodes, la qual cosa demostra la gran oportunitat d'estalvi d'energia que ofereixen les nostres propostes. Els resultats obtinguts també validen el estret compromís entre les preocupacions ambientals i les qüestions de rendiment de la xarxa, considerant diversos indicadors de rendiment. Aquests resultats confirmen que els esquemes d'encaminament conscients de l'energia s'han de dissenyar tenint en compte els requisits de tràfic específics i els límits desitjats de les mètriques de rendiment. A més, es demostra que, considerant conjuntament els requisits de QoS i de l'energia necessària, és un enfocament eficaç per millorar, no només el consum d'energia, sinó també el rendiment en paràmetres crítics, com la latència del tràfic de control i la probabilitat de bloqueig. De manera semblant, l'assignació dinàmica de tràfic proposta, amb re-encaminament conscient de la congestió, permet gestionar grans volums de trànsit sense degradar el rendiment de les demandes de major prioritat. En general, les nostres propostes són precises, fàcils d'implementar i bastant equilibrades i efectives en els seus resultats, buscant un desplegament adequat i fàcil en escenaris pràctics de SDN. Per tant, la recerca realitzada i les contribucions contingudes en aquest document no només afegeixen el que es coneix sobre el potencial de les tècniques d'encaminament conscients de l'energia, sinó que també representen una valuosa solució en el camí cap a una xarxa sosteniblePostprint (published version

    Energy Management of Distributed Generation Systems

    Get PDF
    The book contains 10 chapters, and it is divided into four sections. The first section includes three chapters, providing an overview of Energy Management of Distributed Systems. It outlines typical concepts, such as Demand-Side Management, Demand Response, Distributed, and Hierarchical Control for Smart Micro-Grids. The second section contains three chapters and presents different control algorithms, software architectures, and simulation tools dedicated to Energy Management Systems. In the third section, the importance and the role of energy storage technology in a Distribution System, describing and comparing different types of energy storage systems, is shown. The fourth section shows how to identify and address potential threats for a Home Energy Management System. Finally, the fifth section discusses about Economical Optimization of Operational Cost for Micro-Grids, pointing out the effect of renewable energy sources, active loads, and energy storage systems on economic operation
    corecore