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Abstract 

A power distribution network that demonstrates resilience has the ability to minimize the 

duration and severity of power outages, ensure uninterrupted service delivery, and enhance overall 

reliability. Resilience in this context refers to the network's capacity to withstand and quickly 

recover from disruptive events, such as equipment failures, natural disasters, or cyber attacks. By 

effectively mitigating the effects of such incidents, a resilient power distribution network can 

contribute to enhanced operational performance, customer satisfaction, and economic 

productivity. The implementation of microgrids as a response to power outages constitutes a viable 

approach for enhancing the resilience of the system.  

In this work, a novel method for service restoration based on dynamic microgrid formation 

and deep reinforcement learning is proposed. To this end, microgrid formation-based service 

restoration is formulated as a Markov decision process. Then, by utilizing the node cell and route 

model concept, every distributed generation unit equipped with the black-start capability traverses 

the power system, thereby restoring power to the lines and nodes it visits. The deep Q-network is 

employed as a means to achieve optimal policy control, which guides agents in the selection of 

node cells that result in maximum load pick-up while adhering to operational constraints.  

In the next step, a solution has been proposed for the switch placement problem in 

distribution networks, which results in a substantial improvement in service restoration. 

Accordingly, an effective algorithm, utilizing binary particle swarm optimization, is employed to 

optimize the placement of switches in distribution networks. The input data necessary for the 

proposed algorithm comprises information related to the power system topology and load point 

data. The fitness of the solution is assessed by minimizing the unsupplied loads and the number of 

switches placed in distribution networks.  

The proposed methods are validated using a large-scale unbalanced distribution system 

consisting of 404 nodes, which is operated by Saskatoon Light and Power, a local utility in 

Saskatoon, Canada. Additionally, a balanced IEEE 33-node test system is also utilized for 

validation purposes. 
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1 Introduction 

1.1 Service Restoration in Distribution networks 

Over the past few decades, large-scale blackouts and extreme weather events have been 

increasing, power system infrastructures must be designed and maintained to be able to withstand 

and recover from such outages/events [1], [2]. Improving resiliency of power systems is urgently 

needed considering significant impact of power outages on critical services, economics, and public 

safety [3], [4], [5]. For instance, devastating impacts of hurricanes, Harvey, Irma, and Maria, in 

2017 resulted in significant damages to utility infrastructure and widespread power disruptions [6]. 

Effective service restoration to rapidly restore power to customers following an outage is essential. 

In the United States, distribution networks account for more than 90% of power outages 

[7]. Unplanned incidents, such as fallen trees, lightning strikes, storms, and equipment 

malfunctions, and planned activities, such as regular maintenance and equipment installation, can 

all lead to power outages in distribution systems. Once power outages are identified and isolated, 

the distribution service restoration (DSR) procedure is initiated to expedite recovery of disrupted 

loads [8].  

Previously, distribution utilities created pre-determined solutions for a wide range of fault 

scenarios [9], and most companies developed their own restoration plans. However, a fully pre-

planned restoration approach for distribution networks has two drawbacks, which make them 

unsuitable for our modern power grids: 1) it is impractical to account for all potential fault 

scenarios in advance via the offline analysis; and 2) pre-planned scenarios are based on fixed 

assumptions of input data related to network infrastructure/topology and load consumption, which 

may be unreliable and subject to change. 

Traditional passive distribution networks, which do not include active components, such 

as generators or voltage regulators, solely rely on topological reconfigurations for the restoration 

process, which involves transferring the load from the off/outage feeder to neighbouring feeders 

via tie-lines equipped with tie-switches [10]. Currently, distribution systems are transitioning to 

active distribution systems (ADS) due to a growing number of controllable devices, including 

distributed generation (DG) units, microgrids (MGs), and remotely-controllable switches, which 
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can actively regulate the voltage and frequency [11]. For active distribution systems, an advanced 

distribution service restoration (DSR) framework is critical to achieve optimal restoration 

solutions. 

1.2 Motivation and Problem Statement  

Recently, conventional distribution grids have experienced substantial changes [12], and 

electric utilities aim to reduce losses and improve system reliability, and integrate more renewable 

energy sources and energy storage units at the distribution level. To promote renewable energy 

sources integration, microgrid (MGs) serves as an effective solution. Microgrids are essentially 

small-scale power systems that can operate in grid-connected or island modes, providing greater 

flexibility and resilience during power outages. Microgrids have the ability to operate 

independently, so they can provide power to critical loads during disturbances and facilitate faster 

service restoration [13]. IEEE Std1547.4-2011 defines microgrids as intentionally designed 

systems that can enhance reliability by supplying power to the islanded portion of the distribution 

network during outages/disturbances, alleviate overloading issues, and enable disconnection and 

reconnection to the main distribution network [14]. 

Self-healing is a key attribute of smart grids, defined as the ability to autonomously restore 

services following a fault [15]. By incorporating solar PV panels, wind turbines, backup 

generators, and remotely controlled switches, distribution systems can be partitioned into multiple 

self-sufficient microgrids, enabling a self-healing distribution network. One major challenge is to 

determine effective boundaries of microgrids during contingencies. The current research on 

microgrid formation for service restoration can be classified into two types [16]: 1) predetermined 

microgrids with specified switching status and network configuration, which do not consider 

system operating conditions and customer priorities, and they mainly focus on optimal operation 

of distributed energy resources [12]; and 2) dynamic microgrids, which aim to find optimal 

boundary during a fault to minimize the outage duration and disrupted load [15]. 

Mathematical programming [17], [18] and heuristic search methodologies [12], [19] are 

commonly employed to identify optimal boundaries of microgrids. A new operational approach 

for distribution systems is proposed in [18], where multiple dynamic microgrids are formed and 

energized by DGs from a radial distribution system in real-time operations. The objective is to 

restore critical loads during a power outage. The approach involves formulating a mixed-integer 
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linear program (MILP) to optimize the critical load pickup while ensuring self-adequacy and 

operational constraints by controlling remotely controlled switches and DGs. In [17], the microgrid 

formation for service restoration is proposed as a mixed-integer non-linear programming (MINLP) 

model, and a commercial solver, DCOPT, is employed solve the optimization problem. In [12], an 

optimization algorithm based on tabu search and a graph theory-based method are proposed to 

partition a distribution network into multiple virtual microgrids. In [19], a heuristic methodology 

is proposed to efficiently solve the post-disturbance microgrid formation to maximize load pickup.  

For mathematical programming methods, it is crucial to create a precise mathematical 

model, but it is a time-consuming process and may not always be practical for certain applications. 

The model-based approaches may also encounter difficulties in modelling complex objects, 

integrating new features, and maintaining computational efficiency when applied to large systems. 

Heuristic-based methods utilize heuristic algorithms to obtain solutions for complex optimization 

problems, but they cannot identify the optimal solution. Restoring electrical service during a 

natural disaster is a critical task that demands quick and accurate actions. Both mathematical and 

heuristic-based methods have been developed to solve complex optimization problems for service 

restoration, but they may not be suitable for real-time applications that require fast and precise 

results. This is particularly true in the context of natural disasters, where conditions are often 

uncertain and prone to change. The time-consuming nature of mathematical-based methods and 

the approximate nature of heuristic-based methods may limit their effectiveness in providing the 

rapid and accurate response needed for successful service restoration during a disaster. Therefore, 

alternative approaches that can balance speed, accuracy, and adaptability are needed to ensure that 

service restoration is effective and timely. 

Since dynamic microgrid formation-based service restoration involves a sequence of 

decisions, it can be conceptualized as a Markov decision process [20]. Deep reinforcement learning 

(DRL)-based algorithms can be employed to address this problem through an iterative solution 

procedure. DRL involves continuous interactions with the environment and gathering of feedback, 

which facilitates increased adaptability of the MG formation scheme to variable conditions. DRL 

algorithm’s adaptive nature allows it to learn from feedback and modify its behaviour, accordingly, 

makes it well-suited for real-time applications that may experience rapid changes in conditions, 

such as those that occur during natural disasters. Therefore, a well-trained DRL model can quickly 



 

4 

 

provide an online scheme for dynamic microgrid formation as a service restoration strategy, 

ensuring uninterrupted power supply to critical loads. 

DRL has become increasingly popular to address complex problems in power systems, 

including voltage control [21], electrical vehicle charging navigation [22], demand response [23], 

microgrid power management [24], and enhancing resilience of distribution networks [25]. 

However, there is very limited research done on DRL-based microgrid (MG) formation for service 

restoration in the literature due to challenges associated with implementing a feasible radial 

topology and a high number of reconfigurations required in a large system.  

Optimal switch placement is another crucial factor that influences performance and 

reliability of distribution systems, especially during service restoration [26]. In active distribution 

networks, sectionalizing and automatic switches play a key role in isolating faulted areas to prevent 

cascading failures and reduce customer outages. Sectionalizing switches in distribution systems 

are expensive, so potential investment costs must be balanced with the system reliability 

improvement. The optimal switch placement in distribution systems with distributed generation 

sources is addressed in [27] through a combined approach of mixed fuzzy logic and ant colony 

algorithm, impacts on costs and reliability are analysed using a weighted sum of objective 

functions. In [28], a three-state variation of the particle swarm optimization method is proposed to 

identify ideal number and location of sectionalizer switches in distribution networks by optimizing 

cost of the outage function. A MILP approach is introduced in [29] as an effective method for 

optimizing the system average interruption duration index.  

These approaches are effective for optimal switch placement, but they rely on the failure 

rates of the network equipment, and these parameters are often not readily available and costly to 

obtain. The mathematical-based optimization is not practical because it can only solve the problem 

effectively for small networks.  

To overcome these technical challenges, this thesis focuses on: 

 Developing a dynamic microgrid formation-based service restoration approach using 

deep reinforcement learning for distribution networks. 

 Developing optimal switch placement method to improve service restoration. 
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1.3 Objectives of the research work  

Drawing on the motivations and challenges outlined earlier, the present study sets forth the 

following research objectives: 

1.3.1 Service Restoration  

To develop a service restoration method in distribution networks, a mathematical 

optimization model for microgrid formation is developed first; a Markov decision process (MDP) 

is then defined to formulate service restoration as a sequence of decisions, which involves 

identifying key elements of the process, such as state, action, and reward; and the optimization 

problem is solved through deep reinforcement learning. The objectives of this part of the research 

are provided below: 

 Formulate a mathematical model for microgrid formation-based service restoration that 

accounts for operation and topology constraints. 

 Define a novel Markov decision process for the service restoration problem. 

 Develop a deep reinforcement learning framework and utilize deep Q-network to 

efficiently form microgrids and maximize load pick up.  

 Validate the proposed method using the IEEE 33-node test system and the real 404-

node unbalanced distribution system operated by Saskatoon Light and Power, a local 

electric utility in Saskatoon, SK, Canada. 

1.3.2 Optimal Switch Placement 

For optimal switch placement in distribution networks, a multi-objective optimization 

problem is formulated using binary particle swarm optimization to minimize unsupplied loads and 

the number of switches. The following objectives are specified for this section:  

 Develop an optimization problem for optimal switch placement in distribution 

networks using binary particle swarm optimization algorithm to minimize unsupplied 

loads and the number of switches. 

 Validate the proposed method using the IEEE 33-node test system and the real 404-

node unbalanced distribution system operated by Saskatoon Light and Power. 

 Evaluate service restoration using optimally placed switches.     
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1.4 Thesis Outline 

This thesis is in manuscript format, and includes six chapters as explained below: 

Chapter 1 presents an introduction of the thesis. 

Chapter 2 is a literature review for microgrid formation techniques in active distribution 

networks, it has been published in IEEE Access in April 2022. 

Chapter 3 presents a new approach for dynamic microgrid formation-based service 

restoration using deep reinforcement learning in distribution networks. The method considers 

operational and structural constraints of microgrids and is formulated as a Markov decision process 

(MDP). Optimal control strategies for microgrid formation are obtained through the utilization of 

a deep Q-network. By utilizing the deep Q-learning method, a new algorithm is proposed for the 

agent to select actions in the process of microgrid formation, which guarantees the feasibility of a 

radial structure. 

Chapter 4 proposes an optimal switch placement method using a multi-objective 

optimization through binary particle swarm algorithm. 

Chapter 6 provides a summary of the thesis, highlighting key findings and future research 

directions. 
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2 Microgrid Formation Techniques in Active Distribution Networks: A 

Review 

2.1 Abstract   

1  Microgrid formation is a promising solution to enhance resiliency of distribution 

networks. The self-adequacy feature of a microgrid enables continuity of power supply through 

distributed generation (DG) units during severe faults and natural disasters. In this paper, different 

methods commonly used to partition a distribution network into multiple microgrids are presented, 

including the graph theory, heuristic rule-based algorithm, cluster-based technique, and mixed 

integer programming. Advantages and disadvantages of these techniques and future research 

directions are presented. This review provides an excellent summary on service restoration through 

microgrid formation, and offers a valuable reference for researchers working on grid 

modernization of distribution networks.  

Keywords. Distribution networks, microgrid formation, resiliency, reliability, service 

restoration.     
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2.2 Introduction 

The resiliency improvement of power systems against extreme events is an essential aspect 

of the system design and operation [1], [2]. Extreme events can be either natural disasters or cyber-

attacks, which not only affect the continuity of electrical service for a considerable number of 

consumers, but may also cause significant financial losses. For example, more than 50,000 

electricity customers were knocked out of service due to weather disasters in the United States [1], 

and over $1 billion financial losses were caused by eight weather disasters (i.e., flooding, storms, 

and hurricanes) during the first half of 2016. In August 2017, the hurricane Harvey caused a total 

of $180 billion losses, and many towns were left without power for several weeks [3]. Other 

extreme weather events are shown in Table 2.1, which have caused catastrophic damages to power 

systems, resulting in massive power outages [1], [4]–[6]. These blackouts within bulk power 

networks across the globe indicate vulnerability of power systems, and their resiliency 

improvement is a fundamental task for power system operators. 

Table 2.1. Major blackouts across the globe. 

Country Date Reference 

Australia 2016 [40] 

Ukraine 2015 [41] 

India 2012 [42] 

US 2012 [1] 

China 2008 [43] 

 

Resiliency is defined as the power grid’s capability to with- stand and recover quickly from 

severe incidents, react properly to changing conditions, and prevent future events [2]. Figure 2.1 

illustrates the performance of a resilient system and a conventional system under extreme events 

[4]. 

 

Figure 2.1. A resilience performance curve [4]. 
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The power supply of the system is P0 at time t1 when a severe incidence happens. At time 

t2, the power supply of the system quickly decreases to its minimum amount (Pmin−R for a resilient 

system and Pmin−C for a conventional system). The restoration is started for resilient and 

conventional systems at time t3 and t4, respectively. The normal power supply P0 is resumed for 

resilient and conventional systems at time t5 and t6, respectively. Therefore, a resilient system 

equipped with resiliency-boosted strategies shows better performance in terms of load restoration.  

The system’s resiliency and resilience-based models have been recently investigated in 

[5]–[7]. In [8], a theoretical tutorial system is proposed to train distribution system opera- tors to 

effectively respond to emergencies. The study in [9] proposes a cooperative agents-based system 

for service restoration through artificial intelligence methods. In [10], a framework using a fuzzy 

logic is developed to manage out- ages. In [11], weather data are used to examine the probability 

of blackouts. The duration and frequency of occurrences have also been projected by selecting 

appropriate disaster response approaches. 

Based on our literature review, techniques and strategies to improve the resiliency of 

distribution networks from both planning and operation point of view are provided in Figure 2.2 

(a). An effective planning must be conducted prior to undesirable incidents to prepare for and 

lessen the impact of upcoming disasters. The disaster-specific planning may include hardening 

schemes [12], resource allocation [13], [14], prediction [15], repair crews [16], and switch design 

[17], [18]. Hardening of distribution networks refers to making the infrastructure sturdier and 

consequently more durable to failure, so that serious damages due to natural disasters can be 

minimized, and the restoration time can be reduced accordingly [12]. The system recovery 

capability can be improved by availability of spare and reliable resources, and their pre- event 

allocation [14]. Prediction models are used to forecast power outages, possible damages and 

restoration time; utilities can use these models to plan corrective actions prior to incidences [15]. 

Repair crews play a prominent role in recovering power systems after extreme events, proper 

management and optimal number of repair crews can improve the system resiliency [16]. 

After a power outage occurs, the imperative mission for system operators is to restore 

distribution networks as fast as possible to support critical loads and minimize financial losses to 

customers. Load restoration can be generally divided into conventional techniques [19], [20], 

automation [21], [22], and microgrid formation [23]–[25]. 
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Figure 2.2. (a) Resiliency improvement strategies in power distribution networks, (b) Islanding in power 

system. 

In conventional technique, the load from the off-outage area is transferred to the adjacent 

feeder through tie-lines and tie-switches [19]. Automation in distribution networks realized 

through sensors, communication networks, and remotely controlled switches can help distribution 

network operators to detect and separate faulty areas and recover unsupplied load by opening or 

closing remotely controlled switches after severe events [21]. 

Optimal implementation of switches in distribution networks aim to enhance service 

restoration process by designing an efficient sequence of switching operations [17]. The study of 

optimal placement of sectionalizer in radial distribution networks is conducted in [18], and an 

algorithm based on tree structure and dynamic programming is proposed to find sectionalizing 

switch locations while minimizing the cost of outages and improving reliability of the system. Ref 

[17] studies upgrading manual switches to remotely controlled switches to improve service 

restoration in distribution networks, where a greedy rule-based algorithm is used to maximize load 

restoration and minimize the investment cost. 
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However, during natural disasters, the distribution network may lose its connection with 

the main grid, and is not able to supply loads. In this case, traditional restoration techniques may 

not work properly. To address this issue, microgrid formation/islanding can be a promising 

solution because loads can be fed through local distributed generators within microgrids [23]. 

Figure 2.2 shows different types of islanding in power systems, which can be categorized 

into two groups [26]: planned islanding and unplanned islanding.  Planned islanding, also known 

as intentional islanding, is initiated by power system operators or supervisory control and data 

acquisition (SCADA) systems; while unplanned islanding usually occurs due to faults in the 

system [27]. Sudden unplanned islanding should be detected quickly, it may trigger all control 

operations to maintain power generation and delivery despite islanding separation [26]. 

Both planned and unplanned islanding operations could be used in service restoration for 

distribution networks during severe events to supply load in their original or extended boundary. 

Based on their boundary [28]: microgrids can be divided into pre-determined microgrids and 

dynamic microgrids. A pre-determined microgrid has a fixed boundary, which is determined based 

on the supply adequacy, maximum distribution coverage, and reliability indices [29]–[32]. In [29], 

a systematic approach is proposed to sectionalize a distribution network into several virtual 

microgrids with optimized self-adequacy. An optimum design of microgrids in distribution 

networks based on reliability index, and active power and reactive power balance for the supply-

security purpose is proposed in [30], [31]. In [32], the maximum coverage criterion, and optimized 

communication and control infrastructure are used to partition a distribution network into several 

microgrids. 

A dynamic microgrid has boundaries that can be expanded or shrunk, while still maintains 

a balance between power generation and load demand. To avoid imbalance between local 

distributed generation (DG) units and loads, or to maximize the load pick-up during extreme events 

are main reasons that microgrids have dynamic boundaries. In [33], microgrid formation with 

flexible boundaries is proposed to improve reliability and resiliency of distribution networks. 

To solve optimization problems associated with microgrid formation, the genetic algorithm 

and mixed integer linear programming can be used. In [34], smart switches are used as automatic 

sectionalizers to determine flexible boundaries of microgrids during natural disasters. In [35], 

adaptive self-adequate microgrids using dynamic boundaries is proposed, where clusters of nodes 

based on self-adequacy measures are built first, each cluster is then assigned with an agent with 
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the capability of supervisory control of all power generation sources within the cluster, 

communication with customers’ smart meters within the cluster, and communication with 

neighbors’ agents. Afterward, desirable adaptive microgrids can be formed by merging a group of 

clusters. Ref [2] proposes the formation of adaptive microgrids using graph theory and load 

switching sequence. Microgrid formation based on time and location of faults using mixed integer 

programming is presented in [36]. 

Planned microgrid formation/islanding can be used to supply load for expected conditions, 

such as maintenance in upstream grids [27]. Microgrids in island mode can provide electricity to 

remote communities, where the expansion of power systems is not economical [37]. Islanded 

microgrids can also improve energy security for critical load demands of industrials and militaries 

[38], reduce power losses, and improve voltage profile, power quality, and reliability [39]. 

In this paper, a comprehensive literature review is conducted on service restoration through 

microgrid formation techniques in distribution networks. The main contribution of the paper 

includes: 

1. Various microgrid formation methods and their advantages and disadvantages are 

discussed. 

2. Control and economic prospects of microgrids are summarized. 

3. Future research directions are recommended. 

The paper is arranged as follows: microgrid construction models and microgrid control are 

provided in Sections 2.3 and 2.4. Section 2.5 introduces microgrid economic prospect. Section 2.6 

discusses advantages and disadvantages of microgrid formation algorithms and future research 

directions. The conclusion is drawn in Section 2.7. 

2.3 Microgrid Construction Models  

The most challenging aspect of the distribution network’s partitioning is to form an optimal 

microgrid while maintain operational constraints, such as power balance and voltage limits at each 

node [44], [45]. Existing microgrid formation strategies can be broadly categorized into four 

techniques as shown in Figure 2.3 [12]: heuristic rule-based strategy [46], mixed integer linear 

programming (MILP) [14], [47], graph theory [48], and cluster-based models [49]. The cluster-

based models can be categorized into 1) spectral clustering, 2) hierarchical algorithms, and 3) K-

Means approach. 
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Figure 2.3. The summary of microgrid formation techniques. 

2.3.1 Graph Theory-based Technique  

Graph theory employs mathematical formulations to specify pairwise relations between 

objects. Each graph is composed of vertices and edges, which are also known as nodes and links, 

respectively. In power distribution networks, the graph-based concepts, such as graph partitioning, 

spanning tree, and spanning forest, are used to form microgrids in two different topologies: 1) 

loop-based microgrid topology, and 2) radial-based microgrid topology. In [2], both radial and 

loop-based microgrid topologies are considered as part of the load restoration strategy. The 

linearized DisFlow model is employed to consider power flow and voltage characteristics in each 

constructed microgrid. In [50], spanning tree and spanning forest concepts are applied to form 

post-disturbance radial-based microgrids energized by DGs. The LinDistFlow model is also used 

to satisfy operational constraints. In [51], the graph partitioning technique and linear integer 

programming are proposed to form an optimal loop-based microgrid to improve system reliability. 

In the following subsections, radial- and loop-based models are discussed. 

2.3.1.1 Loop-based Model 

The graph partitioning concept, which is employed to determine potential loops based 

on existing DG units, sectionalizes a graph G with the vertex set V and the edge set E into 

the Q subset (V1,.,.,.Vi,..., VQ), so that Vi ⊂ V , Vi ∩ Vj  = ∅ for i  I= j. In distribution 

systems, energized buses and distribution lines are defined as the vertex set and the edge set of 

the graph, respectively. Objective functions may include the maximization of load pick-up, 
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minimization of switching operations, generation-load balancing, minimization of neighboring 

loops interactions, and combinations of the above. The graph partitioning is composed of three 

stages, 1) coarsening, 2) partitioning, and 3) uncoarsening [52]. 

A. Stage1: Coarsening 

The coarsening stage iteratively simplifies the distribution network graph until it can no 

longer be partitioned. The Shortest Edge Machine (SEM) is widely employed in this process. An 

initial node is firstly selected randomly and matched with the nearest adjacent node. Afterward, 

the nodes are combined into a single node and the process is repeated until all possible matches in 

the graph have been achieved. This process will end when the number of nodes reaches an 

established percentage of the original number. The graphs shown in Figure 2.4 and Figure 2.5 

demonstrate the coarsening process using the IEEE 37-bus distribution network. Figure 2.4 (a) 

indicates the coarsening first iteration, where each red line indicates that the two nodes should be 

merged according to the SEM strategy. The outcome of the first iteration is shown in Figure 2.4 

(b), in which the number of nodes is decreased from 37 to 23. The second iteration of coarsening 

is illustrated in Figure 2.5 (a), and its outcome is shown in Figure 2.5 (b). The coarsening process 

will end in the second iteration because the number of nodes is decreased to 16, which meets the 

termination criterion (obtaining less than 50% of the original number of nodes of the graph) [52]. 

 

Figure 2.4. The coarsening first iteration in the graph partitioning technique [52]. 
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Figure 2.5. The coarsening second iteration in the graph partitioning technique [52]. 

B. Stage2: Partitioning 

In partitioning stage, the graph obtained in the last iteration of coarsening process is 

partitioned into Q parts. The heuristic approaches, such as Kernighan-Lin (KL) and Greedy Graph 

Growing Partitioning (GGGP) algorithms, are used in [52]. With the GGGP algorithms, the 

solution is found by selecting the initial vertex and expanding it to comprise a large part of the 

graph. Since the main goal of service restoration is to form microgrids with self-healing 

capabilities, the potential cluster is expanded around controllable DGs. Power mismatches and the 

distance between nodes are employed to ensure that growing loops satisfy power balancing and 

the nearest nodes are used [52]. The partitioning stops when all nodes are covered by the loops. 

This process is shown in Figure 2.6, which includes three iterations, and the ultimate outcome is 

shown in Figure 2.6 (c). Since four controllable DG sources are present, four potential microgrids 

are formed, and four points evolve autonomously from those sources in Figure 2.6 (a). The process 

terminates once all nodes are covered by one of the loops in Figure 2.6 (c). 
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Figure 2.6. The partitioning stage in the graph partitioning technique [52]. 

C. Stage 3: Uncoarsening 

In uncoarsening stage, the partitions obtained in previous stage should be reversed into the 

original graph based on the sequence of coarsening process. Refinement strategies, such as KL 

algorithm, should be employed. In this algorithm, the edge weight serves as a criterion to transfer 

a vertex between neighboring loops. However, it is more logical to consider power balancing 

criterion in microgrid formation to transfer nodes between adjacent loops. This modification 

should be implemented for refinement when used in microgrid formation [52]. 

Figure 2.7 illustrates the uncoarsening process, which also contains two iterations because 

the graph coarsening is also performed in two iterations. The first and second iterations of 

uncoarsening are demonstrated in Figure 2.7 (a) and Figure 2.7 (c), respectively; the refinement is 

shown in Figure 2.7 (b) and Figure 2.7 (d) based on the power mismatch amount in per unit. In the 

first iteration of the refinement, Node 20 is transferred from the lower left loop to the upper left 

loop to balance the power. 
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Figure 2.7. Uncoarsening stage in the graph partitioning technique [52]. 

2.3.1.2 Radial-based Model 

The radial topology in distribution networks can be defined as a graph, where all nodes are 

put together into one energy source node without any loops. Two graph-based concepts, spanning 

tree and spanning forest, are used to model the radiality constraint in the microgrid formation 

problem. A spanning tree is a graph connecting all nodes with links without forming any loops. A 

spanning forest is a graph, whose connected constituents are spanning trees. 

Distribution networks may be modelled with graphs consisting of vertexes and edges as 

shown in Figure 2.8 [53]. There are controllable switches at the edges of this graph, and the source 

nodes have feeders connected to the main grid, or to DG units. The fundamental loops of a graph 

defined by vectors, whose values are edges of the constructed loops, should be specified. 

In Figure 2.9, there are four loops, C1 to C4, defined by the following vectors: 
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V 1 = {10, 11, 12} 

V 2 = {1, 2, 3, 4, 5, 6, 8, 9, 10, 11} 

V 3 = {1, 2, 3, 13, 14, 16, 17, 18} 

V 4 = {15, 16, 17, 18}. 

These fundamental loops can be categorized as real loops (C2 and C3) and virtual loops 

(C1 and C4). The virtual loops are those with DG units and the frequency control capability. The 

frequency control is one fundamental requirement for power systems operation. In island mode, 

microgrids must be able to realize voltage and frequency control through their controllers. DGs 

are usually connected to power systems with interfacing power electronics converters, which 

enables advanced controllers to be designed to realize frequency control [54]. Frequency control 

has been widely studied for DGs in microgrids [55], [56]. In [55], a dual-stage fractional order 

proportional integral derivative (PID) controller is used to improve the frequency control of 

microgrids when operating in island mode, and the imperialist competitive algorithm is 

implemented to optimize the PID gains. The Fuzzy tilt integral derivative using a filter and the 

double integral control are employed for frequency control of DGs in [56], and coefficients of the 

controller are optimized through the Whale optimization algorithm. 

Following the designation of fundamental loops, spanning tree and spanning forest 

algorithms are employed to determine microgrid formation, taking into account the radiality 

constraint and the load supply. The spanning tree in a graph is not used with all nodes connected, 

thus some edges should be eliminated. A spanning forest, which is a graph with several trees, is 

used to model a distribution network [50]. To create a spanning forest and ensure the radiality of 

the network, it is sufficient to open only one switch in each loop that is not shared with any adjacent 

loop. In addition, if the switch is selected from virtual loops, a microgrid energized by DGs is 

formed. For instance, if switches 10 and 17 are opened, two microgrids (MG1 and MG2) are 

formed (Figure 2.9). Accordingly, by considering the switch status as a decision variable in the 

optimization problem, optimal microgrids are formed in load restoration process. 
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Figure 2.8. The distribution network graph in a normal mode [53]. 

 

Figure 2.9. The distribution network graph in a self-healing mode [53]. 

2.3.2 Heuristic Rule-based Algorithm 

Heuristic rule-based algorithms employ heuristics or rules to find solutions. The goal of 

this method is to solve the problem within an acceptable time frame. The solution may not be the 

best, but it is near the optimal one. As this algorithm is computationally efficient, it can be used in 

the optimization problem with many decision variables. The microgrid formation problem based 

on the heuristic rule-based algorithm utilizes rules to achieve solutions. 

In [46], a post-disturbance microgrid construction solution is proposed for medium to large 

distribution networks using the heuristic algorithm in three steps. In the first step, DG units are 

placed optimally without considering microgrid formation constraints. Load dispatch, nodal 
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balance, line flow, generation placement, and voltage constraints are considered in the 

optimization problem with the objective of maximizing the load pick-up. Locations of DGs are 

provided in the first step. In the second step, the non-isolated nodes are clustered into microgrids 

using k-means method and DG nodes are considered as centroids. The network configuration for 

the constructed microgrids must meet the total load demand. In the third step, the dispatch 

assessment is implemented, where the capacity of the constructed microgrids is evaluated based 

on power system operation constraints. Figure 2.10 illustrates the heuristic method process in 

microgrid formation. 

In [57], [58], a decentralized multiagent system (MAS) strategy and the heuristic rule-

based algorithm are employed to form microgrids using load priority and switching operations as 

objective functions. The following ten steps are proposed, and the controlled DG unit is used as 

the power source for critical load restoration [58]: 

• Step 1: entire nodes = a set of all nodes, which is demanded by the DG agent for restoration. 

• Step 2: node to restore = a set of the nodes to be restored is selected by calculating the 

objective function (i.e., load priority order) and following the branch 

current limits, voltage limits, and consumed power constraints. 

• Step 3: min priority load = the least priority node in the node to restore set. 

• Step 4: lower priority nodes = a set of nodes in the entire nodes with a priority less than min 

priority node. 

• Step 5: new loads to restore are initialized as a set of the nodes from nodes to restore by 

removing the min priority node. 

• Step 6: the new load to restore is chosen from lower priority nodes, based on the load priority 

objective and operational constraints. 

• Step 7: max priority node = the highest priority node chosen from the new nodes to restore 

set. 

• Step 8: priority factor = the priority order of min priority node divided by the priority order 

of max priority node. 

• Step 9: Compute the number of switching operations for nodes to restore and new nodes to 

restore as X and Y , respectively. 
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Step 10: If Y smaller than X multiplied by priority factor, then nodes to restore is new nodes 

to restore and go to Step 4. Else, lower priority nodes = lower priority nodes – max priority nodes. 

If lower priority nodes is an empty set, the algorithm ends, else go to Step 6. 

Figure 2.11 shows the islanding of the 119-bus test system using the above-mentioned 

heuristic rule-based algorithm. In out of service areas, each dispatchable DG unit with the 

assistance of other types of renewable-based DGs build an individual microgrid to restore critical 

loads with an optimum number of switching operations. 

 

Figure 2.10. The flowchart of microgrid construction using the heuristic method [46]. 
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Figure 2.11. Microgrid formation of the 119-bust test system [57]. 

2.3.3 Clustering Algorithm 

The clustering analysis splits a set of objects into uniform groups based on similarity 

measures, so the similarity of objects in one constructed group is greater than that in another group. 

Three clustering algorithms including spectral clustering [59], hierarchical algorithm [60], and k-

means method [61] are widely used in distribution network partitioning. 

2.3.3.1 Spectral Clustering 

Spectral clustering is a type of graph partitioning that uses the affinity between two 

components within the dataset, which is the computational coupling between two nodes in power 

systems [59]. Since this method clusters buses by using the affinity matrix, buses with a greater 

affinity become a cluster. It is required that the affinity matrix must be obtained with high accuracy. 

The affinity between any two nodes is determined by the Hessian matrix related to AC optimal 

power flow. The Hessian matrix is the second derivative of the Lagrange function, and a larger 

amount of entry in this matrix indicates a stronger coupling. 
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To calculate the Hessian matrix, AC optimal power flow must be performed. After 

computing the Hessian matrix, the spectral clustering method is used to group buses with greater 

affinity together. The process of partitioning a distribution network with B buses into N clusters 

using spectral clustering is given by [59] as follows: 

 Determine the components of the affinity matrix based on 𝐴𝑖,𝑗 = (1 −

𝑤)∑ ∑ |𝐻𝑘.𝑙| + 𝑤 ∗ 𝑌𝑖,𝑗
𝑛
𝑙=1

𝑚
𝑘=1 if i ≠ j and set Aii=0. 

 Form the diagonal matrix D based on 𝐷𝑖,𝑖 = ∑ 𝐴𝑖,𝑛
𝐵
𝑛=1   and build the matrix  𝑃 =

𝐷−1/2𝐴𝐷−1/2. 

 Specify the N largest eigenvalues associated with the matrix P and construct the matrix V 

by stacking the eigenvectors in columns. To have unit length, normalize the V’s rows.  

 Consider each row of V as a data point and group these data points into N partitions using 

an algorithm, such as k-means or hierarchical. 

  Give bus i to cluster A if row i of V was given to cluster A. 

 Yi,j is the component of the admittance matrix, and w is the affinity weight. 

In [62], an adaptive spectral splitting technique is proposed. The primary splitting of the 

distribution network is achieved through the spectral clustering strategy first. When the primary 

partitioning is obtained, the boundary nodes/buses transfer from the present location to the neigh- 

boring partition in every iteration to acquire the corresponding power balance ratio of each 

partition, which is defined as a ratio of the total power demand to the total generation capacity, 

while maintaining power balance constraints. 

2.3.3.2 Hierarchical Algorithm 

In hierarchical clustering, nodes are grouped into hierarchical structures based on power 

system specifications of the line including average power flow or line impedance (admittance), 

and the obtained results are known as tree or dendrogram. A dendrogram’s root point corresponds 

to the entire set of nodes, whereas each leaf represents a separate node. To what degree the nodes 

are similar to each other is shown by intermediate points. The distance between clusters or objects 

can be determined by the dendrogram height. Dendrograms can be cut at various levels to gain the 

final clustering results [63]. Figure 2.12 depicts the dendrogram related to IEEE 39-bus test system 

in which at the height level one, the blue, green, yellow and red clusters are formed; cutting 
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dendrogram at the height level three will result in combining the green and red clusters and forming 

three islands. 

 

Figure 2.12. Hierarchical algorithm, the dendrogram of IEEE 39-bus test system [49]. 

2.3.3.3 K-means Method 

The K-means algorithm falls into centroid or distance-based algorithms, and the distances 

are computed to assign an object to a cluster with its own centroid point [61]. The purpose of K-

means method is to partition the network with n nodes into k clusters and to ensure that the 

distances are minimal within each cluster. This strategy begins by selecting k nodes randomly as 

initial centroid points within the networks. The remaining nodes are assigned to the closest among 

them. After that, the centroids are repositioned from each cluster to ensure that there is a minimum 

distance between the centroid and any other node within the cluster. Afterward, the distance 

between each node and k points is calculated, and the node is assigned to a cluster with the nearest 

centroid. 

In this method, k centroid points are moved in succession until they reach a minimal 

threshold, and a stable cluster is obtained. In the distribution network’s partitioning, nodes with 

controllable DGs are regarded as centroid points, and the electrical distance is utilized for distance 

metric. The process of the K-means algorithm is illustrated in Figure 2.13. 
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Figure 2.13. The K-means algorithm [64]. 

2.3.4 Mixed Integer Linear Programming  

Mixed integer linear programming (MILP) is a mathematical optimization problem with 

integer decision variables, linear objective functions and constraints. This approach is broadly used 

in load restoration and microgrid formation [23], [33], [65]. Ref. [21] develops a MILP to form a 

microgrid energized by DGs through controlling the status of remotely controlled switches after 

natural disasters, where critical load pick-up is maximized with self-adequacy and operational 

constraints satisfied. 

In [65], a MILP-based method is proposed to form multiple microgrids to restore 

prioritized load in distribution networks after extreme events. Flexible microgrid formation is 

investigated in [33], where MILP is used to solve the optimization problem based on utility profits 

and customer satisfactions. Implementation of MILP-based microgrids requires a large number of 
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control variables. To address this problem, a MILP with radiality constraints is proposed in [66]. 

In the MILP- based method, the following constraints must be satisfied when forming a microgrid: 

 Splitting constraints. 

 Power system physical constraints. 

 Subgraph connectivity constraints. 

Mathematically, MILP optimization can be handled by branch-and-bound, branch-and-cut, 

or cutting plane approaches. Currently, several commercial optimizers, such as CPLEX, GUROBI, 

and MOSEK, are available to provide flexible, parallel-processing and high-performance solvers 

for MILP. 

According to our literature review, a summary on micro- grid formation for service 

restoration in distribution networks can be found in Table 2.2. Different studies are compared from 

application, information discovery, construction approach, objective function, and optimization 

problem aspects. 

Table 2.2. Summary of literature review on microgrid formation for service restoration in distribution 

networks. 

Reference Number 

[2
] 

[1
6

] 

[2
3

] 

[5
8

] 

[2
5

] 

[5
1

] 

[6
8

] 

[2
9

] 

[3
0

] 

[3
3

] 

[4
7

] 

[5
0

] 

[5
2

] 

[6
0

] 

[6
1

] 

[6
9

] 

[7
0

] 

Application 
Pre-determined Microgrid     *   * * *  * * * *  * 

Dynamic Microgrid * * * *  * *    *     *  

Information Discovery 
Distributed MAS Scheme   * *              

Centralized Scheme *                 

Construction Approach 

Graph Theory (Loop-Based) *            *     

Graph Theory (Radial-Based) * *    *  *  *      *  

Heuristic Rule-Based    *      * *     *  

Spectral Clustering            *  * *   

Hierarchical Algorithm            *   *   

K-Means Method           *       

MILP  * *  *  *  *       * * 

Objective Function 

Supply-adequacy        * * *   *     

Load Pickup * * * *  * *    *       

Switching Operation    *  *            

Running Cost     *         *  * * 

Power Exchange Between Microgrids        * *    *     

Islanding Success Probability          *        

Subgraph Expansion            *      

Optimization Problem 
Stochastic Problem *   *       *    *  * 

Deterministic Problem  * *  * * * * * *  * * *  *  
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2.4 Microgrid Control 

Renewable energy-based DG units in microgrids use interfacing power electronics 

converters to connect to the system, and controllers are designed and implemented on these power 

electronics converters to achieve power, voltage and frequency control of DGs and the microgrid. 

In grid-connected mode, the voltage and frequency of microgrids are governed by the utility grid, 

controllers are used for real and reactive power or power factor control. In island mode, the 

microgrid must be able to control its voltage and frequency through advanced DG controllers. 

Hierarchical control techniques are extensively utilized for microgrid control and power 

management [70], [71]. 

2.4.1 Traditional Hierarchical Control for Microgrid 

The traditional hierarchical control framework is illustrated in Figure 2.14, including 

primary, secondary, and tertiary control. The widely used primary control is droop control to adjust 

the local voltage and power, prevent system instability, and handle proper power sharing among 

DGs [70], [71]. The following well-recognized droop control technique is used to reach primary 

control objectives [71]:  

𝜔𝑀𝐺 = 𝜔
∗ −𝑚. (𝑃 − 𝑃∗) ( 2.1) 

𝐸𝑀𝐺 = 𝐸
∗ − 𝑛. (𝑄 − 𝑄∗) 

( 2.2) 

where, frequency and output voltage amplitude are detonated by 𝜔𝑀𝐺 and 𝐸𝑀𝐺 , respectively. 𝜔∗ 

and 𝐸∗ represents reference frequency and voltage amplitude, respectively. Droop coefficients are 

represented by m and n.  

The deviation of output voltage and frequency caused by primary control can be eliminated 

by secondary control [72]. The frequency and voltage restoration controllers are demonstrated in 

Fig. 14 [71]. 

𝛿𝜔 = 𝑘𝑝𝑤(𝜔𝑀𝐺
∗ − 𝜔𝑀𝐺) + 𝑘𝑖𝑤∫(𝜔𝑀𝐺

∗ − 𝜔𝑀𝐺)𝑑𝑡 + ∆𝜔𝑠 
( 2.3) 
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𝛿𝐸 = 𝑘𝑝𝐸(𝐸𝑀𝐺
∗ − 𝐸𝑀𝐺) + 𝑘𝑖𝐸∫(𝐸𝑀𝐺

∗ − 𝐸𝑀𝐺)𝑑𝑡 ( 2.4) 

The frequency and amplitude values, 𝜔𝑀𝐺 and 𝐸𝑀𝐺  inside microgrid are identified and evaluated 

by references  𝜔𝑀𝐺
∗  and 𝐸𝑀𝐺

∗ , the obtained errors through compensators, 𝛿𝜔 and 𝛿𝐸, are send to 

each unit to recover output-voltage frequency and amplitude. The secondary control parameters 

are represented by 𝑘𝑝𝑤, 𝑘𝑖𝑤, 𝑘𝑝𝐸, and 𝑘𝑖𝐸. ∆𝜔𝑠 indicates the synchronization term.  

Centralized control [73], [74] and decentralized control [65], [76] are two major techniques 

used in secondary control. For centralized control, the main drawback is its high reliance on the 

microgrid control center and the bidirectional communication structure. When the microgrid 

control center is faulted or the communication system fails, the centralized control no longer works 

well. Accordingly, the stability of the microgrid is decreased and its cost is increased [77].  

Decentralized control, on the other hand, can overcome above issues, errors caused by one 

DG will not cause a whole system’s failure, and it does not rely on communication networks, and 

can be simply expanded to several DGs, which improves the system’s scalability [78]. 

Tertiary control is employed to identify power flow to achieve optimal operation for 

economic and service restoration purposes [79]. In Figure 2.14, by calculating P/Q via the static 

bypass switch, PG and QG can be evaluated by the preferred references, P∗ and Q∗. 

𝜔𝑀𝐺
∗ = 𝑘𝑝𝑃(𝑃𝐺

∗ − 𝑃𝐺) + 𝐾𝑖𝑃∫(𝑃𝐺
∗ − 𝑃𝐺)𝑑𝑡 ( 2.5) 

𝐸𝑀𝐺
∗ = 𝑘𝑝𝑄(𝑄𝐺

∗ − 𝑄𝐺) + 𝐾𝑖𝑄∫(𝑄𝐺
∗ − 𝑄𝐺)𝑑𝑡 ( 2.6) 

The tertiary control parameters are represented by 𝑘𝑝𝑃, 𝐾𝑖𝑃, 𝑘𝑝𝑄, and𝐾𝑖𝑄. 

Power quality adjustment and economic operation can be achieved by the hierarchical 

control strategy, which enhances the flexibility of microgrids. The microgrid control center is 

utilized in this strategy to manage DGs and loads, which contributes to reliable operation of 

multiple microgrids [80]. 
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Figure 2.14. Traditional hierarchical control for microgrids [71]. 

2.4.2 Multiagent System-based Distributed Control 

Multiagent control strategy splits a large system into a number of autonomous subsystems, 

which can communicate with each other [71]. Each agent has intelligent features [81], [82]. Using 

these intelligent agents, the multiagent system-based distributed control can achieve coordinated 

operation of the entire system. Figure 2.15 demonstrates the structure of a multi- agent control-

based microgrid [71]. Various electrical components, such as wind turbine generation units, loads, 

gas turbines, and energy storage systems, are assigned to each agent. These agents observe control 

operations and the status of each electrical component, and the microgrid control center 

coordinates activities among all agents. Once there is a command from an agent, the microgrid 

control center notifies and coordinates all agents [83]. Communication and coordination are crucial 

during the entire decision-making process. Ref [84] uses the contact net protocol in such process. 

Each agent generally contains two-level control blocks: the upper-level control block 

identifies the power supply reference and demand, and measures optimal increment cost; the 
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lower-level control block applies the power reference tracking of related electrical components 

[85]. Accordingly, each agent controls local load and power generation, and exchanges 

information with other agents. 

There are many reported multiagent system-based distributed control schemes in the 

literature [86]–[91]. A multiagent distributed control with a frequency control framework is 

proposed in [86] by employing consensus method. Power sharing among distributed energy 

resources in microgrids through a multiagent-based technique is suggested in [87]. Ref [90] can 

overcome the weakness of droop control by using multiagent distributed control, and realize 

voltage and frequency control and proportional reactive power sharing among DGs. Ref [91] can 

regulate frequency, where each local controller shares information with neighboring controllers. 

 

Figure 2.15. The structure of multiagent-based microgrid [71]. 
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2.5 Microgrid Economic  

Economic benefits from microgrid formation is an essential feature to address. Microgrids 

have several economic benefits, such as load leveling and peak shaving [92], power export and net 

metering [93], loss and emission reduction [94], power quality improvement [95], and resiliency 

enhancement [96]. 

DGs and energy storage along with advanced control technologies enables flexible power 

management within a micro- grid. It can be especially economically influential when the utility’s 

Time-of-Use tariff comprises power and volumetric charges [95]. This type of tariff is usually a 

powerful motivation to facilitate peak shaving and load leveling as shown in Figure 2.16. In this 

example, an optimized load profile is achieved by implementing load shifting and peak shaving, 

which minimizes power demand and volumetric charges. 

Exporting electricity to power systems is one main source of income brought by microgrid 

formation [93]. Net metering and feed-in tariffs are two general methods used to specify surplus 

power generated by microgrids [95]. Net metering utilizes a bidirectional meter to calculate a 

customer’s net power consumption [95]. If the generation is more than the consumption, the meter 

turns backward. In the feed-in tariff method, all power producers receive a payment when they 

inject power into the system [97]. 

As microgrids are located locally, power generation can be consumed locally, which avoids 

long distance transmitting electricity, and thus, power losses along the feeders are reduced [98]. 

Power quality and the system’s reliability can be also improved because the decentralized power 

supply can better match power supply and demand locally, and the influence due to transmission 

and generation outages can be reduced [99]. Due to increasing penetration of renewable energy-

based DGs, microgrids can reduce green- house gas (GHG) emission compared to conventional 

power generation. 

Table 2.3 provides a summary of cost details for various power generation technologies, 

including their technology cost, operation and maintenance (O & M) cost, capacity factor, fuel 

cost, efficiency, GHG emission, renewable potential, and the life time [100]. DGs in microgrids 

are mainly renewable energy sources, which makes microgrid formation economically viable. 

In [101], the economic analysis is conducted for a microgrid with PV and battery storage 

in Northampton, Massachusetts, USA by considering the outage mitigation, emission reduction 

and resiliency improvement. The system is modeled using the battery storage evaluation tool for a 
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one-year period, and its efficiency is demonstrated through historical data and randomly generated 

large outages. 

A lifecycle analysis is conducted for a microgrid with wind turbines, PV, diesel generators, 

and energy storage to evaluate its commercial aspect in [102], and it shows significant reduction 

in costs of GHG emission and loss, and improvement in reliability indices. An industrial microgrid 

with PV in China is analyzed from the economic aspect in [103] regarding emission reduction 

costs, levelized energy costs, and the payback period. This study demonstrates the economic 

benefit gained by a PV-based microgrid through real microgrid output data. In [104], economic 

benefits of microgrids are assessed according to reliability improvement, emission reduction, 

power quality of services, and the lessened peak loading. 

Participation in electricity market is considered one benefit behind microgrid formation 

[105]. In the restructured electricity market, microgrids can participate in both energy and ancillary 

service markets as autonomous entities. Power generated by microgrids can be traded in electricity 

markets. The microgrid control center conducts the optimal power management of the electricity 

market, and aims to satisfy local demand during the system operation through optimal allocation 

of local energy sources [106]. Microgrids with renewable energy sources and energy storage can 

also participate in the emission trading market, where the energy price and emission data are sent 

to the microgrid control center, and the microgrid will be paid based on these data. 

 

Figure 2.16. Peak shaving and load leveling [95]. 
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Table 2.3. Cost details of various power generation technologies [100]. 

Generation 

Technology 

Capital 

Cost 

($/MW) 

O & 

M 

Cost 

($/M) 

Fuel 

Cost 

($/MWh) 

Capacity 

Factor 

Efficiency 

(%) 

GHG 

Emission 

(tCO2/MWh) 

Renewable 

Potential 

(MW) 

Lifetime 

(years) 

Hydro 1260 28 - 0.46 85 - 1400 40 

Wind 1620 43 - 0.37 30 - 2400 25 

Solar 2160 27 - 0.25 30 - 6487 30 

Geothermal 1200 30 - 0.7 20 - 3442 30 

Coal Fired 1125 35 6.14 0.75 38 1.08 - 30 

Coal IGCC 1315 28 6.14 0.8 43 1.08 - 30 

Gas Fired 810 21 30.7 0.85 47 0.5 - 30 

Gas IGCC 510 8 30.7 0.8 57 0.5 - 25 

Biomass 1900 43 5.86 0.75 35 0 4807 25 

Nuclear 2070 45 3.07 0.85 33 - - 40 

2.6 Advantages and Disadvantages of Microgrid Formation Algorithms, and Future 

Research Direction 

2.6.1 Advantages and Disadvantages of Microgrid Formation Algorithms  

A fast and effective service restoration strategy is vital to improve resiliency of distribution 

networks. Due to high penetration of DGs, microgrid formation can be an effective strategy to 

enhance the system’s resiliency via critical load restoration during contingency. To form optimal 

microgrids, different algorithms have been reported in the literature. Each approach has its 

advantage and disadvantage, which will be discussed below: 

 The mixed integer linear programming-based techniques can provide a complete picture of 

microgrid formation by modeling all components of a distribution network in details, but 

an optimal solution can be computationally expensive or practically infeasible when the 

size of the system is large. 

 The heuristic rule-based algorithm can quickly find feasible microgrid formation after 

faults, but it needs problem-dependent information and may not guarantee an optimal 

solution. 

 The graph theory can be successful to find optimal solution rapidly in a small system, 

however, its efficiency degrades for medium to large systems since the number of trees is 

increasing, and implementing the graph partitioning concept takes time to form a 

microgrid, which makes this method unattractive in the service restoration problem. 
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 In the spectral algorithm, to determine affinity between two components, the Hessian 

matrix needs to be calculated for AC power follow at a specific operating point. Although 

this algorithm provides a reliable solution for a particular operating point, it may not be a 

promising solution for service restoration problem because the system operating condition 

varies and the partitioning should be run for many operating points. 

 The hierarchical clustering technique employs structural characteristics of distribution 

networks rather than the operating point, which makes partitioning more reasonable than 

the spectral algorithm. K-means method clusters objects by minimizing the distance within 

each cluster, but it may not be able to guarantee radiality constraints of distribution 

networks. 

Based on advantages and disadvantages of various algorithms for microgrid formation, the 

combination of different strategies may contribute to a more reliable solution for service 

restoration problem. For example, the combination of k-means method with mixed integer 

programming technique can result in less decision variables, which improves convergence speed 

of the optimization problem and satisfies operational constraints. 

2.6.2 Future Research Direction 

In the area of service restoration using microgrid formation, the distributed optimization 

technique can be a suitable method to tackle microgrid formation problem, as it decomposes a 

large optimization problem into several subproblems and handles them in a parallel fashion, and 

thus, the convergence speed increases and the global optimal solution is obtained. 

To develop efficient service restoration strategies through microgrid formation, more 

realistic models of distribution networks are needed. For example, most distribution networks have 

unbalanced configurations, which has not been sufficiently investigated in microgrid formation. 

In addition, supplying power to different types of loads (static and dynamic loads) needs to be 

further investigated following outages as each constructed microgrid must have the capability to 

manage motor starting transients as an efficient service restoration strategy. 

Artificial intelligent and machine learning-based methods can be developed in service 

restoration to realize intelligent control actions. For example, deep reinforcement learning has a 

big potential to realize microgrid formation and intelligent service restoration in distribution 

networks. 
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2.7 Conclusion  

In this paper, service restoration through microgrid formation techniques in the literature 

is extensively reviewed. Various approaches to construct microgrids are introduced, such as graph 

theory, heuristic rule-based algorithm, clustering algorithm, and mixed integer linear 

programming. Control and economic aspects of microgrids are summarized. The future research 

directions are recommended in the paper. The paper offers valuable information to engineers and 

researchers working on renewable energy sources and distribution system modernization. 
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3 Service Restoration Using Deep Reinforcement Learning and Dynamic 

Microgrid Formation in Distribution Networks 

3.1 Abstract 

A resilient power distribution network can reduce length and impact of power outages, 

maintain continuous services, and improve reliability. One effective way to enhance the system’s 

resilience is to form microgrids during outages. In this paper, a novel dynamic microgrid 

formation-based service restoration method using deep reinforcement learning is proposed, and it 

is treated as a Markov decision process (MDP) while taking operational and structural limitations 

of microgrids into account. The deep Q-network is employed to obtain optimal control strategies 

for microgrid formation. We have introduced a new way for the agent to choose actions when 

building a microgrid using the deep Q-learning method, which ensures that the microgrid has a 

feasible radial structure. The proposed service restoration method enables real-time computing to 

facilitate online formation of dynamic microgrids and adapts to changing conditions. Its 

effectiveness is validated by case studies using the modified IEEE 33-node test system and a real 

404-node distribution system operated by Saskatoon Light and Power in Saskatoon, Canada. 

3.2 Introduction 

Improving resiliency is crucial to ensure that power grids can withstand and recover from 

disruptions, such as natural disasters and cyber-attacks [1]. Service restoration capability to critical 

loads after disruptions on the main grid is a key indicator of a resilient distribution system. The 

traditional practice is to redirect affected loads from areas without power to areas with power 

through the network reconfiguration [2]. Today, forming microgrids (MGs) with dynamic 

boundaries is a promising service restoration solution to improve resiliency of distribution systems 

[3], [4]. By incorporating a variety of energy sources, such as solar panels, wind turbines and 

backup generators, along with remotely control switches, a distribution network can be partitioned 

into multiple self-adequate MGs, through which the restoration is improved and the power supply 

continuity to critical loads is maintained [5]-[9]. Optimal construction of multiple MGs to restore 
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critical loads during a fault in the primary grid is proposed in [10], [11]. In [12], distributed energy 

resources (DER) and isolate switches are allocated in a distribution network to form resilience-

oriented MGs. In [13], a two-stage service restoration method is proposed for the mobile 

emergency resource allocation, MG formation, and sequential service restoration for 

contingencies. In [14], a self-healing control strategy is proposed to minimize unused capacities 

of distributed generation (DG) for service restoration in islanded mode during a contingency.  

The main challenge of a multi-MGs formation problem is to find the most suitable topology 

that satisfies various operational constraints. Mathematical programming [15]–[17] and heuristic 

search [18], [19] approaches are commonly used to achieve the topology determination. In [15], a 

novel mixed-integer linear programming (MILP) method is used to create an optimization model 

to form MGs in distribution networks after a disturbance. In [16], a MILP-based service restoration 

method is developed to determine the optimal hardening plan, allocation of DGs, and topology 

reconfiguration, which ensures that a predetermined level of load is supplied after natural disasters. 

The MG formation problem is formulated as a mixed-integer non-linear programming (MINLP) 

model in [17], and a commercial solver, DCOPT, is used to address the optimization problem. A 

heuristic-based method is proposed to identify optimal reconfiguration of a large-scale distribution 

network in [18]. In [19], a tabu search optimization algorithm and a graph theory-based method 

are used to form several virtual MGs in a distribution network. These MG formation strategies are 

primarily focused on present conditions/environment. However, conditions during a natural 

disaster may be uncertain and prone to change [20], causing constructed MGs lose their 

effectiveness or get damaged.  

To use mathematical programming methods, creating a precise mathematical model is 

essential, but this process can be time-consuming, and thus, may become not practical. Model-

based schemes may also have difficulty to model complex objects, integrate new features, and 

maintain efficiency for large systems. To overcome these challenges, novel adaptive dynamic MG 

formation strategies are urgently needed for distribution networks.  

Deep reinforcement learning (DRL) continuously interacts with the environment and 

gathers feedback, so it can form MGs that are adaptable to variable conditions [21]. DRL is 

effective in handling Markov decision process (MDP), and becomes popular to tackle many 

problems in power systems, such as voltage control [22], electrical vehicles charging navigation 

[23], demand response [24], MG power management [25], and resiliency improvement of 
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distribution networks [26]. However, to implement a feasible radial topology, a high number of 

reconfiguration actions are required for a large system. To date, service restoration methods using 

DRL-based MG formation are very limited in the literature.   

In this paper, a novel dynamic microgrid formation-based service restoration method using 

deep reinforcement learning for distribution networks is proposed. We have adopted the node cell 

and route model concept in [1] to start the process. Each DG with the black-start capability is 

treated as an energization agent, and it travels through the system to energize lines and nodes it 

visits. Using the node cell concept, nodes connected by non-switchable lines are grouped into a 

single unit, known as a “node cell”, and all nodes within a node cell are activated simultaneously 

when an energization agent visits, which greatly reduces the search space. Next, the deep Q-

network algorithm guides the agent to select the node cell and pick up as many loads as possible 

while following operational constraints. To ensure radiality constraints for each constructed MG, 

we propose a novel algorithm to pick up node cells by an energization agent. A simulator-based 

environment is created using the software, OpenDSS, integrated for power flow studies. A 

simulator offers a variety of features and can perform a range of tasks, and thus, facilitates complex 

object-oriented learning, and new features can be integrated through agent-environment 

interactions in a simulator. This adaptable capability makes simulators suitable for real-world 

application.  

The main contributions of this paper include:  

 Proposed a novel dynamic MG formation-based service restoration method using 

DRL in distribution networks.  

 Developed a new DRL framework through MDP to form dynamic MGs by 

incorporating the node cell and route model concept (The deep Q-network is trained 

offline, and then used for online decision-making to provide fast, near-optimal 

solutions).  

 Validated the proposed method using the IEEE 33-node system and a real 

unbalanced three-phase 404-node distribution system operated by Saskatoon Light 

and Power, a Canadian electric utility in Saskatoon, Canada. 

The paper is organized as follows: the proposed method is introduced in Section 3.3; its 

problem formulation is given in Section 3.4; the DRL algorithm is provided in Section 3.5; the 
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proposed approach is validated by case studies in Sections 3.6 and 3.7; and conclusions are drawn 

in Section 3.8. 

3.3 The Proposed Service Restoration Method Using Deep Reinforcement Learning 

Modern distribution systems with renewable DGs and controllable devices have significant 

potential to enhance service restoration. In this paper, the proposed service restoration method can 

maximize the restored load by forming multiple dynamic microgrids. DRL is trained offline and 

then applied online for fast and efficient decision-making. DRL is used to create control actions, 

while ensures that operational and topological constraints are met.  

The proposed service restoration method can be implemented by the following eight steps 

(Figure 3.1). 

Step 1: Define the problem and set up the environment as an MDP. The objective of the 

service restoration, state and action spaces, and rewards or penalties related to different actions are 

defined. 

Step 2: Data collection and preprocessing. Gather data on the electrical distribution 

system, including details on generation and load. To establish an appropriate input format for the 

neural network, the data are preprocessed. 

Step 3: Node Cell Formation. The node cell concept is used to convert a distribution 

network to a smaller simplified network with only switchable lines. 

Step 4: Fault isolation. Open upstream switches of node cells containing faults.  

Step 5: Deep reinforcement learning model construction. Construct a deep neural network-

based reinforcement learning model that is capable of making decisions for service restoration. 

The model consists of an input layer that receives data on the state of the distribution network, and 

an output layer that generates a probability distribution for possible actions. 

Step 6:  Model training using the deep Q-learning approach. Train the deep reinforcement 

learning model using the preprocessed data and a Q-learning approach, which involves optimizing 

the model's decision-making process based on rewards and penalties associated with different 

actions. 

Step 7: Model testing and evaluation. Test the trained deep reinforcement learning model 

using a new dataset to evaluate its performance in correctly restoring loads in the distribution 

network. This step ensures the effectiveness and accuracy of the trained model.  
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Step 8: Real-world deployment of the trained model. Deploy the trained deep 

reinforcement learning model in a real-world distribution network for service restoration once it 

has demonstrated satisfactory performance. This involves integrating the model into the 

operational environment of the distribution network and utilizing it to guide actual service 

restoration decisions based on its learned decision-making capabilities. 

Start

Define the problem and set 

up the environment as an 

MDP

Data collection and 

preprocessing. 

Fault isolation

Build the DRL neural 

network

Test the DRL  neural 

network

Train the DRL  neural 

network

Yes

NO

Deploy the DRL neural 

network for real word 

application

Does DRL neural 

network perform 

accurately? 

End

Output MG formation-based 

service restoration for the 

distribution network 

undergoing fault

Actual distribution 

network undergoing 

fault
Do steps 2-4

Node Cell Formation

Output selected node 

cells and activate their 

corresponding switches

Run power flow by 

OpenDSS

Are 

operation 

constraints 

satisfied? 

Yes

NO

 

Figure 3.1. The flow chart of the proposed service restoration method through dynamic MG formation 

and DRL in distribution networks. 
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3.4 Problem Formulation 

In this section, the MG formation-based service restoration problem is formulated and its 

MDP formulation is presented. 

3.4.1 Microgrid Formation-based Service Restoration 

A graph G = (V, E) is used to represent the distribution network, where V and E refer to 

the sets of nodes and edges, respectively, |V| = N, |E| = L At each node i in V, there is a load that 

demands active and reactive power, 𝓅𝑖 and 𝓆𝑖, respectively. Before converting the MG formation-

based service restoration problem into a MDP, the object, operation and topology constraints are 

discussed to lay the foundation for the MDP elements definition. 

1) Objective function: The restoration aims to maximize the amount of restored priority-

weighted loads based on the capacity of DGs. The objective function is expressed by 

OF = max∑𝓏𝑖𝓌𝑖𝒫𝑖
𝑖∈𝑉

 
( 3.1) 

 

where 𝒫𝑖 is the restored load. 𝓏𝑖 is a binary variable determining if load i is picked up. 𝓌𝑖 is the 

priority weight of load i. 

2) Operational constraints: The linearized DistFlow model [10] is used to represent 

operational constraints in MG formation-based service restoration. ( 3.2) and ( 3.3) ensure active 

and reactive power balance, respectively. 

𝒫𝑖
ℊ
− 𝓏𝑖𝓅𝑖 +∑ 𝒫𝑗𝑖

ℬℛ −∑ 𝒫𝑖𝑗
ℬℛ

(𝑖,𝑗)∈𝐸
= 0, ∀𝑖 ∈ 𝑉

(𝑗,𝑖)∈𝐸
 

( 3.2) 

𝒬𝑖
ℊ
− 𝓏𝑖𝓆𝑖 +∑ 𝒬𝑗𝑖

ℬℛ −∑ 𝒬𝑖𝑗
ℬℛ

(𝑖,𝑗)∈𝐸
= 0, ∀𝑖 ∈ 𝑉

(𝑗,𝑖)∈𝐸
 ( 3.3) 

where 𝒫𝑖
ℊ

 and 𝒬𝑖
ℊ

 are active and reactive power output of DGs at node i, respectively. 𝓅𝑖 and 𝓆𝑖 

are real and reactive demand of the load at node i, respectively. Real and reactive power flow on 

branch (i, j) are 𝒫𝑖𝑗
ℬℛ and 𝒬𝑖𝑗

ℬℛ, respectively. Limits for DG output power are expressed by ( 3.4). 
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𝒫𝑚
𝑚𝑖𝑛 ≤ 𝒫𝑚

ℊ
≤ 𝒫𝑚

𝑚𝑎𝑥
,  𝒬𝑚

𝑚𝑖𝑛 ≤ 𝒬𝑚
ℊ
≤ 𝒬𝑚

𝑚𝑎𝑥
, ∀𝑚 ∈ 𝑉𝐷𝐺 ( 3.4) 

where 𝒫𝑚
𝑚𝑎𝑥

 and 𝒫𝑚
𝑚𝑖𝑛 are upper and lower limits of active power output of DGs, respectively. 

𝒬𝑚
𝑚𝑎𝑥

 and 𝒬𝑚
𝑚𝑖𝑛 are upper and lower limits of reactive power output of DGs, respectively. 𝑉𝐷𝐺 is 

the set of nodes containing DGs. ( 3.5) enforces the relation between the voltage difference of two 

end nodes and the power flow of each closed line. 

−𝑀(1 − 𝛼𝑖𝑗)  +
(𝑟𝑖𝑗 . 𝒫𝑖𝑗

ℬℛ + 𝑥𝑖𝑗 . 𝒬𝑖𝑗
ℬℛ)

𝜈0
≤ 𝜐𝑗 − 𝜐𝑖 ≤ 𝑀(1 − 𝛼𝑖𝑗)  +

(𝑟𝑖𝑗 . 𝒫𝑖𝑗
ℬℛ + 𝑥𝑖𝑗 . 𝒬𝑖𝑗

ℬℛ)

𝜈0
, ∀(𝑖, 𝑗) ∈ 𝐸 ( 3.5) 

where 𝛼𝑖𝑗 is a binary variable with a value of 1 if line (i, j) is closed, and 0 if otherwise. 𝑟𝑖𝑗 and 𝑥𝑖𝑗 

are the resistance and reactance of line (i, j), respectively. 𝜈0 is the reference voltage. In order to 

ensure that the voltages at two unconnected buses remain separated, the Big M method is 

employed. The range of the voltage (𝜐𝑖) is defined as  

𝜐𝑚𝑖𝑛 ≤ 𝜐𝑖 ≤ 𝜐𝑚𝑎𝑥 ( 3.6) 

where ν𝑚𝑎𝑥 and ν𝑚𝑖𝑛 are the maximum and minimum voltage magnitude squared. Safe margins 

should be maintained for line loading conditions. 

−𝒫𝑖𝑗
𝑚𝑎𝑥 ≤ 𝛼𝑖𝑗 . 𝒫𝑖𝑗

ℬℛ ≤ 𝒫𝑖𝑗
𝑚𝑎𝑥 ( 3.7) 

−𝑄𝑖𝑗
𝑚𝑎𝑥 ≤ 𝛼𝑖𝑗 . 𝑄𝑖𝑗

ℬℛ ≤ 𝑄𝑖𝑗
𝑚𝑎𝑥 ( 3.8) 

3) Topological constraints: The multicommodity flow-based model [15] is widely used 

to ensure a radial topology of MGs. The topological constrains are provided as follows: 

∑ ℱ𝑗𝑖𝑠
𝑘 − ∑ ℱ𝑖𝑠𝑗

𝑘 + 1 = 0,  ∀ 𝑘 ∈ 𝑉\𝑖𝑠
(𝑖𝑠,𝑗)∈𝐸(𝑗, 𝑖𝑠)∈𝐸

 
( 3.9) 
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∑ ℱ𝑗𝑘
𝑘 − ∑ ℱ𝑘𝑗

𝑘 − 1 = 0 ,        ∀ 𝑘 ∈ 𝑉\𝑖𝑠
(𝑘,𝑗)∈𝐸(𝑗, 𝑘)∈𝐸

 ( 3.10) 

∑ ℱ𝑗𝑖
𝑘 − ∑ ℱ𝑖𝑗

𝑘 = 0,  ∀ 𝑘 ∈ 𝑉\𝑖𝑠, ∀ 𝑖 ∈ 𝑉{𝑘, 𝑖𝑠}

(𝑖,𝑗)∈𝐸(𝑗, 𝑖)∈𝐸

 
( 3.11) 

0 ≤ ℱ𝑖𝑗
𝑘 ≤ 𝜆𝑖𝑗 ,  0 ≤ ℱ𝑗𝑖

𝑘 ≤ 𝜆𝑗𝑖 ,  ∀ 𝑘 ∈ 𝑉\𝑖𝑠,  (i, j) ∈ 𝐸 ( 3.12) 

∑ 𝜆𝑖𝑗 + 𝜆𝑗𝑖 − |𝑉| + 1 = 0

(𝑖,𝑗)∈𝐸

 
( 3.13) 

𝜆𝑖𝑗 + 𝜆𝑗𝑖 = 𝜎𝑖𝑗,  ∀(i, j) ∈ 𝐸 
( 3.14) 

𝛼𝑖𝑗 − 𝜎𝑖𝑗  ≤ 0 ( 3.15) 

where ℱ𝑖𝑗
𝑘  is the flow of electric power (commodity) k from nodes i to j. 𝜆𝑖𝑗 is a binary variable 

with a value of 1 if arc (i, j) is part of the directed spanning tree, and 0 if otherwise. 𝜎𝑖𝑗 represents 

a fictitious status of branch (i, j), it is 1 when closed, and 0 when otherwise. 𝑖𝑠 is the index for the 

substation or DG buses.  

The constraints ( 3.9) - ( 3.14) are used to create this fictitious tree-like structure, which is 

called a "spanning tree". The spanning tree connects all the nodes in the network, but it may not 

be the same as the actual physical layout of the network. The constraint ( 3.15) is used to restrict 

the network to only use certain connections in the spanning tree that are specified by a variable 

called σ. Detailed explanation of these constraints can be found in [15]. 

3.4.2 Modeling Microgrid Formation-based Service Restoration as a Markov Decision 

Process 

Markov Decision Process (MDP) is a mathematical framework that is used to model 

decision-making problems. In an MDP, the decision-maker makes a sequence of decisions over 

time, and the outcomes of those decisions depend on the current state of the system, and the actions 

taken by the decision-maker. MG-based service restoration in power systems is a decision-making 
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problem that can be formulated as an MDP. In service restoration, the goal is to restore power to 

customers after an outage by selectively closing and opening switches in the distribution network. 

By formulating MG-based service restoration as an MDP, the decision-making problem can be 

broken down into a sequence of simpler decision problems, where the decision-maker (agent) must 

choose which load should be picked up based on the current state of the network and the expected 

future outcomes of each decision. A MDP can be defined by following elements. 

State 𝒔𝒎,𝒕 ∈ 𝑺: The state of the MG formation for service restoration consists of: 1) the 

current location of the agent, 𝐿𝐴𝑚,𝑡, 2) all visited node cells, 𝑉𝑁𝑡, 3) the load condition, 𝑃𝑡, and 4) 

the remaining capacity of the DG, 𝐶𝑚,𝑡. 

𝑠𝑚,𝑡 = [𝐿𝐴𝑚,𝑡, 𝑉𝑁𝑡, 𝑃𝑡, 𝐶𝑚,𝑡] ( 3.16) 

Action 𝒂𝒎,𝒕 ∈ 𝑨: The action is to pick up a node cell and switch on a corresponding branch. 

Nodes connected by non-switchable lines are treated as a node cell, and all nodes within a node 

cell are activated and supplied power simultaneously if this node cell is visited by an energization 

agent. The simplified network topology only contains node cells and switchable lines, and the 

action space contains only candidate node cells. The agents travel through the network, chooses 

node cells by following topological constraints, and ensures that: 1) each MG is isolated from other 

MGs, and 2) all constructed MGs operate in a tree topology to ensure radiality constraints. This 

problem is built over a graph 𝒢(𝒱, ℰ), where the node cell is represented by node 𝑛 ∈ 𝒱, and the 

energization path is indicated by edge 𝑒 ∈ 𝐸, which connects two node cells. The adjacent 𝒱 × 𝒱 

matrix A is used to represent this graph, its element 𝑎𝑖𝑗 is 1 when there is an edge from node cells 

𝑖 to 𝑗, and 0 when there is no such edge. For an agent to choose a node cell as an action, there 

should be a connection between its current position or all previously visited node cells and the 

candidate node cell to maintain connectivity within a MG.  

To ensure the radiality operation of a MG, the following steps should be followed when an 

agent wants to take an action: 

Step 1: The energization path must begin from either a DG or a substation. 

Step 2:  When an agent travels, its path shouldn’t include any loop, i.e., a node cell cannot 

be visited more than once.  
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Step 3: The agent can pick up a node cell only if its upstream node cell has already been 

energized.   

Power generation in the system is observed by agents. Agents select the next node cell to 

visit at each step based on their current power capacity. If an agent chooses the next location to 

visit, all loads within the selected node cell will be restored at the same time. When an agent 

restores a node cell, its capacity is updated as follows: 

𝒫𝑚,𝑡
𝑚𝑎𝑥 = 𝒫𝑚

𝑚𝑎𝑥
− ∑ ∑𝒫𝑙,𝑘

𝐿

𝑡−1

𝑘=1𝑙∈𝑁𝑡−1
𝐿

 

( 3.17) 

𝒬𝑚,𝑡
𝑚𝑎𝑥 = 𝒬𝑚

𝑚𝑎𝑥
− ∑ ∑𝒬𝑙,𝑘

𝐿

𝑡−1

𝑘=1𝑙∈𝑁𝑡−1
𝐿

 

( 3.18) 

 

where 𝒫𝑚,𝑡
𝑚𝑎𝑥  and  𝒬𝑚,𝑡

𝑚𝑎𝑥  are the maximum active and reactive power of DG m at time t, 

respectively. 𝒫𝑚
𝑚𝑎𝑥

and 𝒬𝑚
𝑚𝑎𝑥

are the maximum active and reactive power capacities of DG m, 

respectively. 𝒫𝑙
𝐿 and 𝒬𝑙

𝐿 are active and reactive power demand of node cell l. The second term of 

( 3.17) and ( 3.18) indicates the amount of active and reactive power being restored already. 

The procedure of selecting an action by agents is demonstrated in algorithm 1 below. 
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Algorithm 1: Action Selection 

1: for agent m = 1 to number of agents do 

2:      Observe state 𝒔𝒎,𝒕 and adjacent matrix 

3:        Condition1 = False, Condtion2 = False, Condtion3 

= False 

4:       Select action 

Via exploration or exploitation  

5:       if selected action not in visited nodes  

6:              Condition1 = True 

7:         end if 

8:       if selected action load ≤ agent DG capacity 

9:             Condition2 = True 

11:           end if 

12:      Check the connection between selected action and 

agent current position or visited 

            Nodes 

13:       if there is any connection 

14:             Condition3 = True 

15:         end if 

16:       if Condition1 and Condtion2 and Condition3 

17:              Take action 

18:               break 

19:         else: 

20:             select another action and check three 

conditions again 

21:          end if 

22:     if agent couldn’t take any action 

23:          agent’s done = True   

24:     end if 

25: end for      

Reward 𝓻𝒎,𝒕(𝒔𝒕, 𝒂𝒕): The agents fulfill the power balance, branch limits, and voltage 

constraints while taking actions. There are two methods in the literature to address the MDP under 

constraints: 1) use a safety layer to tune control actions, and 2) add penalty functions to the reward 

signal. In this paper, the second method is adopted using penalty terms to solve a constrained MDP 

with the following reward signal: 

𝓇𝑚,𝑡 = 𝑤𝑙𝒟𝑙 + 𝐶𝑝 + 𝐶𝑞 + 𝐶𝑏 + 𝐶𝑣 ( 3.19) 

𝒟𝑙 = √𝒫𝑙
𝐿2 + 𝒬𝑙

𝐿2 ( 3.20) 

 

𝐶𝑝 = {
−|∆𝒫| |∆𝒫| ≤ 𝜕𝑝

−𝜂 ∗ |∆𝒫| |∆𝒫| > 𝜕𝑝
 ( 3.21) 
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𝐶𝑞 = {
−|∆𝒬| |∆𝒬| ≤ 𝜕𝑞

−𝜂 ∗ |∆𝒬| |∆𝒬| > 𝜕𝑞
 ( 3.22) 

∆𝒫 =∑( ∑ 𝒫ℎ𝑖
ℬℛ

ℎ:(ℎ,𝑖)∈𝐵

+ 𝒫𝑖
ℊ
− ∑ 𝒫𝑖𝑗

ℬℛ

𝑗:(𝑖,𝑗)∈𝐵

− 𝒫𝑡
𝐿)

𝑁

𝑖=1

 
( 3.23) 

 

∆𝒬 =∑( ∑ 𝒬ℎ𝑖
ℬℛ

ℎ:(ℎ,𝑖)∈𝐵

+ 𝑄𝑖
ℊ
− ∑ 𝒬𝑖𝑗

ℬℛ

𝑗:(𝑖,𝑗)∈𝐵

− 𝒬𝑡
𝐿)

𝑁

𝑖=1

 
( 3.24) 

 

𝐶𝑏 = − ∑ (𝑚𝑎𝑥(0,𝒫𝑖𝑗
ℬℛ − 𝒫𝑖𝑗

𝑚𝑎𝑥) + 𝑚𝑎𝑥(0,−𝒫𝑖𝑗
𝑚𝑎𝑥 − 𝒫𝑖𝑗

ℬℛ))
(𝑖,𝑗)∈𝐵

− ∑ (𝑚𝑎𝑥(0, 𝒬𝑖𝑗
ℬℛ − 𝒬𝑖𝑗

𝑚𝑎𝑥) + 𝑚𝑎𝑥(0,−𝒬𝑖𝑗
𝑚𝑎𝑥 − 𝒬𝑖𝑗

ℬℛ))
(𝑖,𝑗)∈𝐵

 

( 3.25) 

 

𝐶𝑣 = −∑(𝑚𝑎𝑥(𝒱𝑖 − 𝒱
𝑚𝑎𝑥, 0) + 𝑚𝑎𝑥(𝒱𝑚𝑖𝑛 − 𝒱𝑖, 0))

𝑁

𝑖=1

 
( 3.26) 

 

where 𝒟𝑙 is of node cell l obtained by ( 3.20). Active and reactive power imbalances are ∆𝒫 and 

∆𝒬, respectively. The first term of ( 3.19), 𝑤𝑙𝒟𝑙 , represents the load pick-up with its priority 

weight. 𝐶𝑝 and 𝐶𝑞 are penalty terms for active and reactive power imbalance, obtained by ( 3.21) 

and ( 3.22), respectively. ∆𝒫 and ∆𝒬 are computed by ( 3.23) and ( 3.24), respectively. 𝐶𝑏 is the 

penalty term for the branch limit violation, calculated by ( 3.25). 𝐶𝑣  is a penalty term for the 

voltage limit violation, calculated by( 3.26). 𝜕𝑝 and 𝜕𝑞 are thresholds to maintain power imbalance 

within a permissible range. 𝜂 is a penalty factor when power imbalance is greater than a threshold.   

3.5 Deep Reinforcement Learning Algorithm for Service Restoration  

Reinforcement learning (RL) concerns about decision making, and how intelligent agents 

take actions in an environment to maximize the cumulative reward [27]. The agent interacts with 

the environment in discrete time steps, and receives the state of an environment, based on which 
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the agent takes action to alter the state of the environment. Then the environment will send the 

agent a reward for the current time step, and the state for the next time step. The primary purpose 

of RL is to identify the best strategy that yields the highest long-term reward through the best 

combination of actions. A RL algorithm can tackle problems expressed as MDP. In Section III, 

the MG formation-based service restoration problem has been designed as an MDP. The optimal 

solution of this problem can then be identified using the Deep Q-learning algorithm. 

3.5.1 Deep Q-Learning 

The deep Q-learning algorithm is the core concept in RL, and it takes advantage of the 

strength of deep learning to improve the learning capability [29]. A deep Q-network (DQN) is 

utilized to approximate Q-values (the estimated optimal future values) that the agent will learn. 

The input of a DQN is the state of the environment, its outputs are Q-values for available actions, 

and these Q-values are updated iteratively. For a policy 𝜑, which is a neural network, and maps its 

input to output, the Q-value function 𝒬𝜑(𝑠𝑚,𝑡, 𝑎𝑚,𝑡) is formulated as follows [30]: 

𝒬𝜑(𝑠𝑚,𝑡, 𝑎𝑚,𝑡) = 𝔼 [∑ 𝛾𝑡
′−𝑡[𝓇𝑚,𝑡′(𝑠𝑚,𝑡′ , 𝑎𝑚,𝑡′)]

𝑇

𝑡′=𝑡

]

=  𝔼[𝓇𝑚,𝑡 + 𝛾𝒬
𝜑(𝑠𝑚,𝑡+1, 𝜑(𝑠𝑚,𝑡+1)] 

( 3.27) 

 

where 𝒬𝜑(𝑠𝑚,𝑡, 𝑎𝑚,𝑡) is the expected Q-value for state-action pair 𝑠𝑚,𝑡 and 𝑎𝑚,𝑡 at time step t.  𝛾 

is the discount factor. 𝓇𝑚,𝑡 is the immediate reward at time step t. The Q-value is a measure of the 

expected cumulative reward that the agent can achieve by taking a specific action 𝑎𝑚,𝑡  in a 

particular state 𝑠𝑚,𝑡, considering the policy φ as the decision-making mechanism.  The DRL aims 

to find an optimal policy 𝜑∗ to achieve the maximum expected cumulative reward. In a DQN, the 

neural network with parameters 𝜗 , 𝒬(𝑠𝑚,𝑡, 𝑎𝑚,𝑡|𝜗), is trained to minimize the following loss 

function, ℒ(𝜗), known as a mean-squared Bellman error [30]: 

ℒ(𝜗) = [𝓇𝑚,𝑡+𝛾𝑚𝑎𝑥𝑎𝑚,𝑡+1
𝒬(𝑠𝑚,𝑡+1, 𝑎𝑚,𝑡+1|𝜗)−𝒬(𝑠𝑚,𝑡,𝑎𝑚,𝑡|𝜗)]

2

 
( 3.28) 

where 1st term represents the immediate reward obtained by the agent for taking action 𝑎𝑚,𝑡 in 
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state 𝑠𝑚,𝑡, the 2nd term reflects the estimated future rewards that the agent can obtain by selecting 

the best action in the next state, and the 3rd term represents the current estimated Q-value for the 

current state-action pair (𝑠𝑚,𝑡, 𝑎𝑚,𝑡),obtained from the neural network with parameters ϑ. 

By minimizing the loss function in ( 3.28( 3.27), a DQN learns to produce Q-values, 

leading to proper selection of actions. To minimize this loss, the Adam optimization algorithm is 

used as follows: 

𝜗 ← 𝐴𝑑𝑎𝑚(𝜗, 𝛻𝜗ℒ(𝜗)) ( 3.29) 

where ∇𝜗 is the policy gradient. 

3.5.2 Enhance learning process of deep reinforcement learning 

One essential part of DRL is to ensure the Q-network learn appropriate reactions in the 

MDP. Three most successful approaches are the Epsilon-greedy-based exploration, the fixed Q-

network, and the experience replay. 

3.5.2.1 Epsilon-greedy-based exploration 

Due to the random initialization of weights and biases in the Q-network prior to training, 

it is challenging to recognize actions that result in the greatest long-term reward. At the start of 

training, instead of relying solely on the Q-network to select actions, the agent can randomly select 

actions to explore all potential outcomes and receive a satisfactory reward. After being trained, the 

agent can then exploit the environment by selecting actions based on the DQN approximation. The 

epsilon-greedy strategy is an effective way to balance exploration and exploitation in deep 

reinforcement learning, allowing the agent to efficiently learn and adapt its actions to achieve 

optimal performance in the environment. The agent makes random action choices with a 

probability of epsilon (ε), allowing it to explore different actions and gather information about 

their associated rewards and consequences. The exploration rate (ε) can be adjusted using an 

exponential decay, and its value gradually decreases over the course of Q-network training. At 

each time step, the agent generates a random number between 0 and 1. If the generated number is 

below the exploration rate, the agent selects the action with the highest Q-value; otherwise, the 

agent randomly selects an action. The exploration rate ε is formulated by 
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휀 = 휀𝐹 + (휀𝑖𝑛𝑡 − 휀𝐹) ∗ 𝑒
−𝜀𝑑𝑒𝑐𝑎𝑦∗𝑒𝑝𝑖𝑠𝑜𝑑𝑒 ( 3.30) 

where  휀𝐹 , 휀𝑖𝑛𝑡 , and 휀𝑑𝑒𝑐𝑎𝑦  are the final, initial, and decay rate of exploration, respectively. 

𝑒𝑝𝑖𝑠𝑜𝑑𝑒 is the episode number. 

3.5.2.2 Fixed Q-network 

Determining the maximum Q-value of the next state and the Q-value of the current state 

using the same Q-network during an update process and loss calculation may cause overestimation 

in deep Q-learning. To address this concern, a separate Q-network, known as the target Q-network, 

is established to obtain the Q-value of the next state. The target Q-network has the same structure 

and parameters as the Q-network, and it is periodically updated with the Q-network parameters 

during training.  

ℒ(𝜗) =

{
 
 

 
 [𝓇𝑚,𝑡 − 𝒬(𝑠𝑚,𝑡,𝑎𝑚,𝑡|𝜗)]

2
𝑡 = 𝑇

[
𝓇𝑚,𝑡 + 𝛾max

𝑎𝑚,𝑡+1

𝒬𝑇𝑎𝑟𝑔𝑒𝑡(𝑠𝑚,𝑡+1, 𝑎𝑚,𝑡+1|𝜗
𝑇𝑎𝑟𝑔𝑒𝑡)

−𝒬(𝑠𝑚,𝑡,𝑎𝑚,𝑡|𝜗)
]

2

𝑡 ≠ 𝑇
 

( 3.31) 

 

where 𝒬𝑇𝑎𝑟𝑔𝑒𝑡 is the expected Q-value for the target Q-network. 𝜗𝑇𝑎𝑟𝑔𝑒𝑡 are the neural network 

parameters for the target Q-network. 

3.5.2.3 Experience replay and multi-buffers 

The DQN can be trained based on prior experiences. For this purpose, an experience replay 

mechanism with memory and replay components is employed. This mechanism stores the agent’s 

experiences (the state, action, reward, and next state at time step t) in the memory. Once enough 

experiences have been stored, the replay process is initiated, and a random selection of experiences 

is drawn from the memory. This helps to remove any bias due to correlations between data 

samples. The learning of DQN also relies heavily on the stored experiences, so aligning 

experiences with high reward values can enhance its learning and lead to improved selection of 

actions. As a result, a multi-buffer approach with two memories is employed. The first memory 



 

65 

 

(memo1), denoted as the "original memory," is used to store all the experiences collected during 

the training process. The second memory (memo2), referred to as the "reward-based memory," is 

specifically designed to store experiences with high reward values extracted from the original 

memory. Subsequently, the Q-network is trained using mini-batch that is generated from two 

separate memories, memo1 and memo2. During the training process, mini-batch (( 3.34)) is 

randomly sampled from both memories. This allows for a diverse set of experiences to be used for 

training.  

𝑚𝑒𝑚𝑜1 = [… , (𝑠𝑚,𝑡, 𝑎𝑚,𝑡, 𝑟𝑚,𝑡, 𝑠𝑚,𝑡+1), … ] ( 3.32) 

𝑚𝑒𝑚𝑜2 = [… , (𝑠𝑚,𝑡, 𝑎𝑚,𝑡, 𝓇𝑚,𝑡
†, 𝑠𝑚,𝑡+1), … ] ( 3.33) 

𝑚𝑖𝑛𝑖𝑏𝑎𝑡𝑐ℎ = [
𝑟𝑎𝑛𝑑𝑜𝑚. 𝑠𝑎𝑚𝑝𝑙𝑒(𝑚𝑒𝑚𝑜1, 𝐵𝑎𝑡𝑐ℎ𝑆𝑖𝑧𝑒1
𝑟𝑎𝑛𝑑𝑜𝑚. 𝑠𝑎𝑚𝑝𝑙𝑒(𝑚𝑒𝑚𝑜2, 𝐵𝑎𝑡𝑐ℎ𝑆𝑖𝑧𝑒2

] ( 3.34) 

The batch sizes, denoted as BatchSize1 and BatchSize2, represent the number of samples 

used in each training step from the first and second memories, respectively. 

3.5.3 Offline Training and Online Applications of the Proposed Method 

The framework of the proposed method, including offline training and online applications, 

is shown in Figure 3.2. During the training phase, the agent interacts with a simulator-based 

environment that provides feedback (𝑆𝑡, 𝐴𝑡, 𝑟𝑡, 𝑆𝑡+1) based on the agent’s actions. The feedback, 

referred to as experience, is saved in the replay memory and later utilized to train the deep Q-

network and adjust parameters of the neural network. The training ends when a set number of steps 

have been completed and the loss function reaches the threshold. Afterwards, the trained Q-

network is saved as the policy Q-network, and used in online applications for service restoration 

during faults. The input layer of the policy Q-network receives the state of a distribution system, 

and optimal MGs are formed by selecting actions with the highest Q-values in the output layer of 

the policy Q-network. 
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Figure 3.2. The framework of DRL for MG-formation-based service restoration. 

3.6 Validation Using IEEE 33-Node Test System 

The proposed method is first validated through case studies using the modified IEEE 33-

node test system with demand of 3.715 MW and 2.3 MVAr. Pytorch 1.10 and Python 3.9 are used 

to solve the proposed DRL-based service restoration problem. 

3.6.1 The Modified IEEE 33-Node Test System 

The modified IEEE 33-node test system, as shown in Figure 3.3, is used in this paper. It 

contains ten switchable lines and three DGs. Table 3.1 shows parameters of DGs (BSDG means 

black-start DG, and DDG means dispatchable DG). The node cell concept is used to convert the 

original 33-node test system into a simplified 14-node-cell system with only switchable lines, as 

shown in Figure 3.4. The hyper-parameter settings of the DQN for the test system are shown in 

Table 3.2. 
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Figure 3.3.The modified IEEE 33-node test system. 

Table 3.1. DG parameters for the modified IEEE 33-node test system 

Parameters DG1 DG2 DG3 

Node 1 33 18 

𝑃𝑔
𝑚𝑎𝑥(𝑀𝑊) 1.5 1.2 1 

𝑃𝑔
min(𝑀𝑊) 0.15 0.1 0.1 

𝑄𝑔
𝑚𝑎𝑥(𝑀𝑉𝑎𝑟) 1.2 1 0.8 

𝑄𝑔
𝑚𝑖𝑛(𝑀𝑉𝑎𝑟) -0.9 -0.8 -0.8 

Status BSDG/DDG BSDG/DDG BSDG/DDG 

 

 

Figure 3.4.The simplified IEEE 33-node test system with 14 node cells. 
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Table 3.2.Hyper-parameter Settings of the DQN for the Modified IEEE 33-Node Test System 

Hyper-parameters Values 

Number of Hidden Layer 3 

No. of neurons in hidden layers 50, 50, 50 

Learning rate 0.001 

Reward discount factor 0.999 

Activation function of output layer Linear  

Activation function of hidden layers ReLU 

Optimizer Adam 

Replay memory size 100000 

휀𝑚𝑖𝑛 0.01 

휀𝑚𝑎𝑥 1 

휀𝑑𝑒𝑐𝑎𝑦  0.001 

Target update 10 

Hyper-parameters Values 

 

3.6.2 Training 

The structure of the Q-network is established during training as a neural network with three 

fully-connected linear layers, all of which have rectified linear units (ReLU). The input layer has 

the same number of neurons as the state parameters; the hidden layers contain 50 ReLU neurons 

each; and the output layer has the same number of neurons as the size of the action space. 

 The training of the proposed method using the test system is performed for 10,000 

episodes. The policy Q-network parameters ϑ are initialized with random values. During each 

episode, an agent selects an action based on the current state of the environment, then this action 

is applied to the environment, which transitions the agent to a new state, and generates a reward 

signal. Afterward, the current state, action, reward, and next state are saved in a replay memory. 

After storing enough experiences, they are used to train the Q-network by minimizing the loss 

function calculated in ( 3.28)). The convergence process of the training loss is shown in Figure 

3.5. Figure 3.5 shows, as the episode number increases, the average loss of training decreases. 

After the loss becomes relatively stable with small oscillations, the original DQN can reasonably 

judge the performance of actions and form dynamic MGs for service restoration during system 

outages. 
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Figure 3.5. The average loss in the training process. 

3.6.3 Testing and Implementation 

After the DQN is trained properly and learned to make decisions, the following four case 

studies with different fault scenarios are conducted to test the DQN model and implement it for 

online applications. 

3.6.3.1 Case1 

In Case 1, a fault occurs at the substation (Figure 3.6), and the substation must be isolated 

from the rest of the system. Accordingly, a switch is opened between Node cells 1 and 12 (Figure 

3.4) to clear the fault. Note when faulty areas are isolated by opening switches, their connection 

status in the adjacent matrix will be changed from 1 to 0. In Case 1, before the fault, the connection 

status between Node cells 1 and 12 was 1 in the adjacent matrix; after the fault, it became 0, i.e., 

no energization path between the two node cells, so energization agents will not visit node cell 12 

during their travels through the system.  

As shown in Figure 3.6, three MGs powered by three black-start DGs are formed in Case 

1. They can restore 76.31% of active power and 82.61% of reactive power of the entire load, and 

the computational time for restoration is 0.0004951 seconds. The system is only partially restored 

as the total capacity of DGs are less than the total load demand. Node numbers and the amount of 

power restored by each MG are shown in Table 3.3. Table 3.4 shows the output power of DGs 

when restoring load in Case 1. 
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Figure 3.6.Three microgrids formed in the modified IEEE 33-node test system using DQN (Case 1). 

Table 3.3. Restored nodes and power of the modified IEEE 33-node test system using DQN (Case 1) 

Microgrid  Restored  

nodes 

Restored 

loads (kW) 

Restored 

loads 

(kVar) 

MG1 1, 2, 3, 4, 5, 6, 23, 24, 

25 

1360 680 

MG2 26, 27, 28, 29, 30, 31, 

32, 33 

920 950 

MG3 11, 12, 13, 14, 15, 16, 

17, 18 

555 270 

𝑇𝑜𝑡𝑎𝑙 𝑟𝑒𝑠𝑜𝑡𝑜𝑟𝑒𝑑𝑙𝑜𝑎𝑑

𝑇𝑜𝑡𝑎𝑙 𝑙𝑜𝑎𝑑
 *100 76.31% 82.61% 

Computational time (Seconds) 0.0004951 

Table 3.4. DG Output Power of the Modified IEEE 33-node Test System (Case 1) 

Generation Active power (kW) Reactive power 

(kVar) 

DG1 1383.08 694.84 

DG2 935.09 967.74 

DG3 560.91 276 

 

Figure 3.7 provides a sequential visualization of the restoration path using a learned DQN. 

The energization agents are coordinated to restore load through the following rules: 1) no loops 

are formed, 2) the maximum loads are picked up, and 3) DGs energize node cells based on their 

power capacity. For example, the energization agent connected to Node 18 in Figure 3.6 doesn’t 

have enough capacity to energize Node cell 6 in Step 4. In Step 5, energization agents in yellow 



 

71 

 

circles can pick up Node cell 2, 4 or 6, and node cell 4 is eventually selected due to the highest 

load pick-up and the power balance constraints. 

The voltage profile of the system after forming three MGs is shown in Figure 3.8. Some 

nodal voltages are omitted in Figure 3.8 because they are not energized. Phase voltages of all 

energized buses are within an acceptable range between 0.95 p.u. and 1.05 p.u. Active and reactive 

power losses for each formed MG are shown in Figure 3.9. 
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Figure 3.7. The restoration sequences of modified IEEE 33-node system using the DQN in case1.

 

Figure 3.8. Voltage profile of the modified IEEE 33-node test system after forming three MGs (Case 1). 
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Figure 3.9. Power losses of the modified IEEE 33-node test system in each MG (Case 1). 

3.6.3.2 Case2 

In Case 2, the substation and the line between nodes 24 and 25 are both faulted in Figure 

3.10. Accordingly, Node cells 12 and 4 (Figure 3.4) are isolated from the rest of the system by 

opening switches, their connection status with the upstream node cells are altered in the adjacent 

matrix, and they will not be picked up by an energization agent and remain isolated without power 

during the fault. 

The system is partitioned into three MGs as shown in Figure 3.10, each is powered by one 

black-start DG. Table 3.5 shows the restored node numbers, the amount of active and reactive 

power restored. Table 3.6 shows the output power of DGs. 74.97% of active power and 80.43% of 

reactive power for the entire load are restored with an execution time of 0.0004345 seconds. Figure 

3.11 and Figure 3.12 indicate the voltage profile of the system after service restoration and power 

losses in each MG, respectively. 
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Figure 3.10. Microgrid formation of the modified IEEE 33-node test system using DQN (Case 2). 

Table 3.5. Restored Nodes and Power of the Modified IEEE 33-node Test System using DQN (Case 2) 

Microgrid  Restored nodes Restored loads 

(kW) 

Restored 

loads (kVar) 

MG1 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 

19, 20, 21, 22 

1310 630 

MG2 26, 27, 28, 29, 30, 31, 32, 

33 

920 950 

MG3 11, 12, 13, 14, 15, 16, 17, 

18 

555 270 

𝑇𝑜𝑡𝑎𝑙 𝑟𝑒𝑠𝑜𝑡𝑜𝑟𝑒𝑑𝑙𝑜𝑎𝑑

𝑇𝑜𝑡𝑎𝑙 𝑙𝑜𝑎𝑑
 *100 74.97% 80.43% 

Computational time (Seconds) 0.0004345 

 

Table 3.6. DG output power of the modified IEEE 33-node test system (Case 2) 

Generation Active power (kW) Reactive power (kVar) 

DG1 1325.07 640.73 

DG2 935.09 967.74 

DG3 560.91 276 
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Figure 3.11. Voltage profile of the modified IEEE 33-node test system after forming three MGs (Case 2). 

 

Figure 3.12.  Power losses of the modified IEEE 33-node test system in each MG (Case 2). 

3.6.3.3 Case3 

In Case 3, the substation and DG3 connected to node 18 each have a fault (Figure 3.13), 

and they are disconnected from the rest of the system by opening switches. Based on available two 

black-start DGs, DG1 and DG2, 61.37 % of active power and 70.87 % of reactive power for the 

entire load are restored by forming two MGs in Figure 3.13. The computational time is 0.0004035 

seconds in Case 3. Table 3.7 shows the restored node numbers and active and reactive power 

restored. Table 3.8 shows the output power of DGs in Case 3. Figure 3.14 and Figure 3.15 show 
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the voltage profile of the system after service restoration and power losses in each MG, 

respectively. 
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Figure 3.13. Microgrid formation of modified IEEE 33-node system using DQN for Case3. 

Table 3.7. Restored nodes and power of the modified IEEE 33-node test system using DQN (Case 3) 

Microgrid  Restored Nodes Restored loads 

(kW) 

Restored loads 

(kVar) 

MG1 1, 2, 3, 4, 5, 6, 23, 24, 

25 

1360 680 

MG2 26, 27, 28, 29, 30, 31, 

32, 33 

920 950 

𝑇𝑜𝑡𝑎𝑙 𝑟𝑒𝑠𝑜𝑡𝑜𝑟𝑒𝑑𝑙𝑜𝑎𝑑

𝑇𝑜𝑡𝑎𝑙 𝑙𝑜𝑎𝑑
 *100 61.37 % 70.87% 

computational time (s) 0.0004035 

Table 3.8. DG output power of the modified IEEE 33-node test system (Case 3) 

Generation Active power (kW) Reactive power (kVar) 

DG1 1383.08 694.83 

DG2 935.09 967.74 

DG3 - - 
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Figure 3.14.Voltage profile of the modified IEEE 33-node test system after forming two MGs (Case 3). 

 

Figure 3.15. Power losses of the modified IEEE 33-node test system in each MG (Case 3). 

3.6.3.4 Case4 

In Case 4, four faults occur at the substation, the line between nodes 24 and 25, the line 

between nodes 13 and 14, and the line between nodes 28 and 29 in Figure 3.16.  Accordingly, node 

cells 12, 4, 7, and 10 in Figure 3.4 are isolated from the rest of the system by opening switches, 

and they will not be selected by energization agents. Using three black-start DGs, three MGs are 

formed to restore loads in Figure 3.16. The restored node numbers and restored active and reactive 

power are shown in Table 3.9. Table 3.10 shows the output power of DGs. 57.07% of active power 

and 42.61% of reactive power of the entire load are restored with the computational time of 



 

77 

 

0.0004714 seconds. The voltage profile of the system after restoration is shown in Figure 3.17. 

Power losses in each MG are shown in Figure 3.18. 
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Figure 3.16. Microgrid formation of the modified IEEE 33-node test system using DQN (Case 4). 

Table 3.9. Restored nodes and power of the modified IEEE 33-node test system using DQN (Case 4) 

Microgrid  Restored Nodes Restored loads (kW) Restored loads 

(kVar) 

MG1 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 

19, 20, 26, 27 

1430 680 

MG2 31, 32, 33 420 210 

MG3 15, 16, 17, 18 270 90 
𝑇𝑜𝑡𝑎𝑙 𝑟𝑒𝑠𝑜𝑡𝑜𝑟𝑒𝑑𝑙𝑜𝑎𝑑

𝑇𝑜𝑡𝑎𝑙 𝑙𝑜𝑎𝑑
 *100 57.07% 42.61% 

computational time (Seconds) 0.0004714 
 

Table 3.10. DG output power of the modified IEEE 33-node test system (Case 4) 

Generation Active power (kW) Reactive power (kVar) 

DG1 1449.28 693.34 

DG2 420.52 210.78 

DG3 270.40 90.40 
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Figure 3.17.  Voltage profile of the modified IEEE 33-node test system after forming three MGs (Case 4). 

 

 

Figure 3.18. Power losses of the modified IEEE 33-node test system in each MG (Case 4).  

3.6.4 Performance Comparison with Existing Methods  

The proposed restoration method is compared to three existing methods in [10], [11] and 

[15] for critical loads restoration through MG formation. Ref. [10] uses normal single-commodity 

flow-based radiality constraints, requires that each subgraph must be a connected graph, and the 

quantity of closed branches must match the number of subgraphs subtracted from the total number 

of nodes. Ref. [11] employs the node clustering method to form MGs, allocates each node to a 

DG, and ensure constraints for connectivity, branch-node, and clustering nodes are met. Ref. [15] 
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uses the directed multicommodity flow-based model of the spanning tree constraints to form MGs. 

All three models in [10], [11] and [15] are formulated as a MILP problem and solved using 

commercial optimization solvers.  

To compare the proposed method in this paper with three existing methods in [10], [11] 

and [15], a case study in [15] with the IEEE 33-node test system is used. The system topology, 

including information of the fault location, and the placement of DGs and switches, can be found 

in [15]. Table 3.11 shows the comparison regarding restored loads and computational time. It is 

found that the proposed method can restore more loads than the methods in [10]  and [11], but is 

on par with the method in [15]. However, from the computational time perspective, the proposed 

method outperforms all three existing methods. Table 3.12 shows the number of variables and 

constraints in MG formation models in [11], [10], and [15], in which N, 𝑁𝑟, 𝑁𝑔, 𝑁𝑜, 𝑁𝑐, 𝐿, 𝐿𝑜, and  

𝐿𝑐 represent the total nodes, substation nodes, DG nodes, faulted open nodes, faulted closed nodes, 

branches, faulted open branches, and faulted close branches, respectively. For a large system, a 

large number of variables/ constraints are involved, which can greatly increase the computational 

time and makes their practical use infeasible. However, the proposed method is model-free, can 

be trained offline and used online to make quick and efficient decisions.  

Table 3.11.Comparison among the proposed method and three existing methods in [10], [11], and [15] for 

service restoration using the modified IEEE 33-node test system 

Model Restored load 

(kW) 

Restoration ratio (%) Computational time 

(s) 

[11] 1500 40.37% 0.56 

[10] 1820 49% 0.75 

[15] 2575 69.31% 0.49 

The proposed method 2575 69.31% 0.003912 

Table 3.12. The number of variables and constraints for three existing methods [15] 

 Model [11] Model [10] Model [15] 

Number of 

binary Variables 
2𝑁(𝑁𝑟 +𝑁𝑔) + 𝑁 + 𝐿 𝑁 + 𝐿 2𝑁 + 3𝐿 

Number of 

continuous 

variable 

4𝑁(𝑁𝑟 + 𝑁𝑔) 𝑁 + 3(𝑁𝑟 + 𝑁𝑔) + 3𝐿 2𝑁. 𝐿 + 𝑁

+ 2(𝑁𝑟 + 𝑁𝑔) + 𝐿 

Number of 

constraints  
(11𝑁 − 2𝑁𝑟 − 2𝑁𝑔 + 1)(𝑁𝑟 +

𝑁𝑔) + 2𝑁 + 𝑁𝑜 +𝑁𝑐 + 𝐿 +

𝐿𝑜 + 𝐿𝑐   

3𝑁 + 3(𝑁𝑟 + 𝑁𝑔) + 𝑁𝑜 +

𝑁𝑐 + 5𝐿 + 𝐿𝑜 + 𝐿𝑐 + 1  

𝑁2 + 2𝑁. 𝐿 + 3𝑁 +

2(𝑁𝑟 + 𝑁𝑔) + 𝑁𝑜 +

𝑁𝑐 + 3𝐿 + 𝐿𝑜 + 𝐿𝑐 +
1  
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3.7 Validation Using a Real Large Distribution Network 

The proposed method is further validated using a real 404-node distribution system. This 

system is one substation within a large distribution network operated by Saskatoon Light and 

Power in Saskatoon, Canada. The system model was developed using practical data of lines and 

load of two feeders within the substation provided by Saskatoon Light and Power. The feeders are 

supplied by the 25/14.4 kV, 33.3 MVA substation. The demand for active and reactive power are 

11.605 MW and 7.192 MVar, respectively. The system model in this study was modified with ten 

black-start DGs, and DG parameters are shown in Table 3.13. The original 404-node system is 

converted to a simplified system with only switchable lines through the node cell concept, as 

shown in Figure 3.19. The switch locations are assumed in the system model. To assess online 

performance of the proposed algorithm after training, three scenarios are conducted for this system 

using Python and OpenDSS. 

Table 3.13.DG parameters in the modified 404-node system model 

Name Node 𝑃𝑔
𝑚𝑎𝑥/𝑃𝑔

min(𝑀𝑊)  𝑄𝑔
𝑚𝑎𝑥/𝑄𝑔

𝑚𝑖𝑛(𝑀𝑉𝑎𝑟)  Status 

DG1 1 1.05/0.1 0.8/-0.5 BSDG/DDG 

DG2 313 0.9/0.09 0.7/-0.5 BSDG/DDG 

DG3 82 0.9/0.09 0.7/-0.5 BSDG/DDG 

DG4 147 1.05/0.1 0.8/-0.5 BSDG/DDG 

DG5 230 1.2/0.12 0.9/-0.6 BSDG/DDG 

DG6 101 1.2/0.12 0.9/-0.6 BSDG/DDG 

DG7 183 1.5/0.15 1.2/-0.9 BSDG/DDG 

DG8 391 0.5/0.05 0.4/-0.2 BSDG/DDG 

DG9 337 0.5/0.05 0.4/-0.2 BSDG/DDG 

DG10 279 1.5/0.15 1.2/-0.9 BSDG/DDG 
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Figure 3.19. The simplified system with 32 node cells through the node cell concept. 

3.7.1 Scenario 1 

In Scenario 1, a fault occurs at the substation as shown in Figure 3.20. To isolate the 

affected region, the substation switches are activated and isolate the fault. Ten MGs have been 

formed (Figure 3.20). Restoration agents energize node cells while ensuring operational and 

topological constraints are met.  

Table 3.14 shows the restored node cell numbers, and 80.66% restored power of the total 

load with a computational time of 0.013406 seconds. Due to security and power flow constraints, 

19.34% of the load has been shed. The DG output power are shown in Table 3.15. The voltage 
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profile of the restored system is shown inFigure 3.21. Voltage profile of the 404-node system after 

restoration (Scenario 1).Figure 3.21, and all bus voltages are within acceptable limits. Power losses 

within each formed MG are shown in Figure 3.22.  

Table 3.14. Restored node cells and power of the modified 404-node system using DQN (Scenario 1) 

Microgrid  Restored node cells  Restored loads 

(kW) 

Restored loads (kVar) 

MG1 N1, N2, N3, N4, N5, 

N10,  

1041.2500 645.3088 

MG2 N6, N7 795.8125 493.2003 

MG3 N8, N9 825.5625 511.6377 

MG4 N16, N17 937.1250 580.7780 

MG5 N20, N21, N23 1041.2500 645.3089 

MG6 N12, N13 1194.4750 740.2614 

MG7 N24, N25, N26, N27 1404.9438 870.7086 

MG8 N32 446.2500 276.5635 

MG9 N28, N30, N31 476.0000 294.9983 

MG10 N18 1197.4375 742.1051 
𝑇𝑜𝑡𝑎𝑙 𝑟𝑒𝑠𝑜𝑡𝑜𝑟𝑒𝑑𝑙𝑜𝑎𝑑

𝑇𝑜𝑡𝑎𝑙 𝑙𝑜𝑎𝑑
 *100 80.66% 80.66% 

computational time (s) 0.013406 

Table 3.15. DG output power for the modified 404-node system (Scenario 1) 

Generation Active power (kW) Reactive power (kVar) 

DG1 1043.3627 648.6241 

DG2 795.8640 493.6421 

DG3 826.1352 512.4591 

DG4 937.3487 582.1107 

DG5 1041.4337 646.9206 

DG6 1194.6908 740.5647 

DG7 1405.8361 872.0588 

DG8 446.2943 277.8089 

DG9 476.2291 250.7190 

DG10 1197.6440 742.7900 
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Figure 3.20. Microgrid formation of the 404-node system using DQN (Scenario 1). 
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Figure 3.21. Voltage profile of the 404-node system after restoration (Scenario 1). 

 

Figure 3.22. Power losses in each MG for the 404-node system (Scenario 1). 

3.7.2 Scenario 2 

In Scenario 2, 10 faults are applied to the substation and several places in the system as 

shown in Figure 3.23, and ten MGs are formed. Each MG is energized by a DG. In an effort to 

restore load, restoration agents work within bounds of the topological and operational constraints 

to select node cells. Table 3.16 shows the restored node cell numbers, and 63.72% restored power 

of the total load with a computational time of 0.013716 Seconds. The DG output power are shown 
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in Table 3.17. The voltage profile following the service restoration is shown in Figure 3.24. Power 

losses of each formed MG are shown in Figure 3.25. 

Table 3.16. The restored node cells and power of the 404-node system using DQN (Scenario 2) 

Microgrid  Restored node cells  Restored loads 

(kW) 

Restored loads 

(kVar) 

MG1 N1, N2, N3, N10, N11 699.1250 433.2788 

MG2 N4, N5, N6 810.6875 502.4190 

MG3 N8, N9 825.5625 511.6377 

MG4 N15, N16 699.1250 433.2788 

MG5 N21, N22, N23 899.9375 557.7318 

MG6 N13, N14 820.8150 508.6877 

MG7 N25, N26, N27 594.2563 368.2896 

MG8 N32 446.2500 276.5635 

MG9 N28, N30 401.6250 248.9048 

MG10 N18 1197.4375 742.1051 
𝑇𝑜𝑡𝑎𝑙 𝑟𝑒𝑠𝑜𝑡𝑜𝑟𝑒𝑑𝑙𝑜𝑎𝑑

𝑇𝑜𝑡𝑎𝑙 𝑙𝑜𝑎𝑑
 *100 63.72% 63.72% 

computational time (Seconds) 0.013716 

Table 3.17 .DG output power for the 404-node system (Scenario 2) 

Generation Active power (kW) Reactive power (kVar) 

DG1 700.1227 438.2869 

DG2 810.8950 503.0603 

DG3 826.1352 512.4591 

DG4 699.1989 433.8761 

DG5 900.0551 560.7991 

DG6 820.9023 509.2373 

DG7 594.3471 368.8613 

DG8 446.2943 277.8089 

DG9 401.8250 249.5012 

DG10 1197.6440 742.78998 
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Figure 3.23. Microgrid formation of the 404-node system using DQN (Scenario 2). 
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Figure 3.24.Voltage profile of the 404-node system after restoration (Scenario 2). 

 

Figure 3.25.  Power losses in each MG for the 404-node system (Scenario 2). 

3.7.3 Scenario 3 

In Scenario 3, a new fault develops at DG3 for Scenario 2, i.e., DG3 has a permanent fault 

in addition to all faults of Scenario 2. As shown in Figure 3.26, nine MGs are formed using nine 

black-start DGs in the system. Following DG3’s fault, operational boundaries of MG1 and MG2 

must be adjusted from Scenario 2 to ensure the maximum load pickup. Table 3.18 shows the 

restored node cells, and 58.72% restored power of the total load with an execution time of 

0.013825 seconds. The DG output power after service restoration is shown in Table 3.19. The 
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voltage profile after restoration is shown in Figure 3.27. Figure 3.28 shows power losses in each 

MG.  

The proposed MG formation-based service restoration using DRL has shown promising 

results in a real large 404-node distribution system by efficiently and quickly restoring as many 

loads as possible. When a new condition arises, MGs can also adjust their boundaries to pick up 

the maximum amount of load. 

Table 3.18. The restored node cells and power of the 404-node system using DQN (Scenario 3) 

Microgrid  Restored node cells  Restored loads 

(kW) 

Restored loads (kVar) 

MG1 N1, N2, N3, N4, N10, N11 1026.3750 636.0901 

MG2 N5, N6, N8 728.8750 451.7161 

MG3 N15, N16 699.1250 433.2788 

MG4 N21, N22, N23 899.9375 557.7318 

MG5 N13, N14 820.8150 508.6877 

MG6 N25, N26, N27 594.2563 368.2896 

MG7 N32 446.2500 276.5635 

MG8 N28, N30 401.6250 248.9048 

MG9 N18 1197.4375 742.1051 
𝑇𝑜𝑡𝑎𝑙 𝑟𝑒𝑠𝑜𝑡𝑜𝑟𝑒𝑑𝑙𝑜𝑎𝑑

𝑇𝑜𝑡𝑎𝑙 𝑙𝑜𝑎𝑑
 *100 58.72% 58.72% 

computational time (Seconds) 0.013825 

Table 3.19. DG output power for the 404-node system (Scenario 3) 

Generation Active power (kW) Reactive power (kVar) 

DG1 1028.2354 442.0463 

DG2 729.0638 452.6724 

DG3 - - 

DG4 699.1989 433.8761 

DG5 900.0551 560.7991 

DG6 820.9023 509.2373 

DG7 594.3471 368.8613 

DG8 446.2943 277.8089 

DG9 401.8250 249.5012 

DG10 1197.6440 742.7900 
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Figure 3.26. Microgrid formation of the 404-node system using DQN (Scenario 3). 
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Figure 3.27. Voltage profile of the 404-node system after restoration (Scenario 3). 

 

Figure 3.28.  Power losses in each MG for the 404-node system (Scenario 3). 

 

3.8 Conclusion 

In this paper, a novel dynamic microgrid formation-based service restoration method using 

deep reinforcement learning for distribution networks is proposed. Through the deep Q-learning 

technique and a simulator-based environment, the deep reinforcement learning algorithm can 

effectively learn the optimal control policy and form dynamic microgrids during contingencies for 

rapid service restoration. It can be trained offline first, and then used in online applications. The 

proposed method is validated using the modified IEEE 33-node test system and a real large 404-
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node distribution system from Saskatoon Light and Power in Saskatoon, Canada. Case studies 

using a real large distribution system with a very short computational time prove the great potential 

of the proposed method in large scale distribution grids’ online applications. Further development 

of this method can lead to a powerful tool for electric utilities to realize self-healing and service 

restoration in distribution grids.    

3.9 Appendix 

As the first step for a given system, the node cell concept will be used to convert the original 

system to a simplified system with only node cells and switchable lines. The following two tables 

show each node cell corresponds to the node numbers of the original system within it for the 

modified IEEE 33-node test system in Section V, and the large 404-node system in Section VI. 

Table 3.20. Node cell mapping for the modified IEEE 33-node test system 

Node Cell Corresponding Nodes 

Node cell 1 1, 2 

Node cell 2 19, 20, 21, 22 

Node cell 3 3 

Node cell 4 23, 24, 25 

Node cell 5 4, 5, 6 

Node cell 6 7, 8, 9, 10 

Node cell 7 11, 12, 13, 14 

Node cell 8 15, 16, 17, 18 

Node cell 9 26, 27 

Node cell 10 28, 29, 30 

Node cell 11 31, 32, 33 
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   Table 3.21. node cell mapping for the 404-node system 

Node Cell Corresponding Nodes 

Node cell 1 1, 2, 3, 336 

Node cell 2 4, 5, 6, 7, 8, 9, 10, 11, 12, 13 

Node cell 3 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27 

Node cell 4 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41 

Node cell 5 291, 292, 293, 294, 295, 296, 297, 298, 299, 300, 301, 302 

Node cell 6 303, 304, 305, 306, 307, 308, 309, 310, 311, 312, 313, 314 

Node cell 7 315, 316, 317, 318, 319, 320, 321, 322, 323, 324, 325, 326, 327, 328, 329, 

330, 331, 332, 333, 334, 335 

Node cell 8 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57 

Node cell 9 58, 59. 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 

78, 79, 80, 81, 82, 83, 84 

Node cell 10 85, 86, 87, 88, 89, 90, 91, 92, 93, 94 

Node cell 11 95, 96, 97, 98, 99 

Node cell 12 169, 170, 171, 172, 173, 174, 175, 176, 177, 178, 179, 180, 181, 182 

Node cell 13 101, 102, 103, 104, 105, 106, 107, 108, 109, 110, 111 

Node cell 14 112, 113, 114, 115, 116, 117, 118, 119, 120, 121, 122, 123 

Node cell 15 124, 125, 126, 127, 128, 129, 130, 131, 132, 133, 134, 135, 136, 137, 138, 

139, 140, 141, 142 

Node cell 16 143, 144, 145, 146, 147, 148, 149, 150 

Node cell 17 151, 152, 153, 154, 155, 156, 157, 158, 159, 160, 161, 162, 163, 164, 165, 

166 

Node cell 18 269, 270, 271, 272, 273, 274, 275, 276, 277, 278, 279, 280, 281, 282 

Node cell 19 254, 255, 256, 257, 258, 259, 260, 261, 262, 263, 264, 265, 266, 267, 268 

Node cell 20 238, 239, 240, 241, 242, 243, 244, 245, 246, 247, 248, 249, 250, 251, 252, 

253  

Node cell 21 230, 231, 232, 233, 234, 235, 236, 237 

Node cell 22 283, 284, 285, 286, 287, 288, 289, 290 

Node cell 23 222, 223, 224, 225, 226, 227, 228, 229 

Node cell 24 211, 212, 213, 214, 215, 216, 217, 218, 219, 220, 221 

Node cell 25 201, 202, 203, 204, 205, 206, 207, 208, 209, 210 

Node cell 26 183, 187, 188, 189, 190, 191, 192, 193, 194, 195, 196, 197, 198, 199, 200 

Node cell 27 184, 185, 186 

Node cell 28 337, 338, 339, 340, 341, 342, 343, 344, 345, 346, 347, 348, 349, 350, 351, 

352, 353, 354, 355, 356 

Node cell 29 358, 359, 360, 361, 362, 401 

Node cell 30 357, 363, 364, 365, 366, 367, 368, 369 

Node cell 31 370, 371, 372, 373, 374, 375, 376 

Node cell 32 377, 400, 378, 379, 380, 381, 382, 383, 384, 385, 386, 387, 388, 389, 390, 

391, 392, 393, 394, 395, 396, 397, 398, 399, 402, 403 
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4 Optimal Switch Placement to Enhance Microgrid Formation-based 

Service Restoration Using Reinforcement Learning in Distribution 

Networks  

4.1 Abstract 

In this paper, an effective optimal switch placement method is proposed using the binary 

particle swarm optimization to minimize unsupplied loads and the total number of switches as the 

objective function through the multiobjective optimization technique. The optimally placed 

switches offer a significant improvement on service restoration when compared to randomly 

placed switches, which has been proven using our previously proposed dynamic microgrid 

formation and deep reinforcement learning-based service restoration method. Case studies are 

performed to validate these methods using the IEEE 33-node test system and a real 404-node 

distribution network system operated by Saskatoon Light and Power in Canada. 

4.2 Introduction 

Uninterrupted reliable power supply in distribution networks is a primary concern for 

distribution system operators [1]. To improve reliability, electric utilities are making significant 

investments in their systems [2], [3]. Faults are inevitable in distribution grids, and proactive 

measures must be taken to mitigate negative impact of such events. Protection and isolation 

devices, including circuit breakers, reclosers, and remote-controlled switches, can significantly 

improve the reliability of the system. Modern automated distribution networks rely heavily on 

sectionalizing and automatic switches, which are instrumental in isolating faulted areas when 

potential faults arise. This proactive measure has a direct positive impact on reducing customer 

outages. However, sectionalizing switches have a relatively high cost, so system planners must 

ensure optimal placement of these switching devices considering a trade-off between potential 

investment costs and reliability improvement.  

Identifying optimal locations of switches in a distribution system requires optimization 

techniques [4]. Conducting optimization can be computationally expensive, and often exhibits 
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multiple local optima, necessitating global search methods, such as population-based algorithms, 

to generate reliable outcomes [5], [6]. Heuristic evaluation techniques, including the genetic 

algorithm (GA) [7], ant colony algorithm (ACO) [8], particle swarm optimization (PSO) [9] and 

immune algorithm (IA) [10], have been extensively use to address a diverse range of combinatorial 

problems, including the power system analysis and control system design. In [8], a combination 

of the mixed fuzzy logic and ACO methods are used for optimal switch placement in a distribution 

system featuring distributed generation (DG) sources, and the weighted sum of objective functions 

is used to analyze impacts on both economic costs and the network reliability. In [10], IA is 

employed to determine optimal placement of switching devices with the objective to minimize 

both investment costs of line switches and the total cost of customer service outages. In [7], a 

hybrid algorithm incorporating both fuzzy logic and genetic algorithms (GAs) is utilized to 

improve the system average interruption duration index, but this algorithm requires a considerable 

number of network parameters. In [9], a three-state variation of the PSO method is introduced to 

determine optimal number and position of sectionalizer switches in distribution networks with the 

cost of outage as the objective function.   

Integer programming is another class of methods to solve optimization problems for 

optimal switch placement. In [11], an effective method for optimizing the system average 

interruption duration index is introduced using a mixed integer linear programming (MILP) 

approach. MILP is used in [12] to minimize customer outage costs in networks with and without 

alternative supply paths. To simultaneously optimize allocation of sectionalizing switches and 

protective devices, mixed integer nonlinear programming (MINLP) techniques are employed in 

[13], and the optimization problem can be solved by commercial solvers using the branch-and-

bound algorithm. As the complexity of optimization problems increases, the number of test 

solutions in the branch and bound algorithm grows exponentially, which limits the size of the 

network that can be effectively solved.  

In this paper, an effective algorithm based on the binary particle swarm optimization 

(BPSO) is used to optimize the switch placement in distribution networks. Input information 

required for the proposed algorithm includes the power system topology and load point data. To 

evaluate the fitness of the solution, the objective function minimizes unsupplied loads and the 

number of switches.  

We have proposed a dynamic microgrid (MG) formation-based service restoration method 
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using deep reinforcement learning (DRL) for distribution systems previously, but the number of 

switches and their locations in the system are assumed. To further improve the restoration 

performance using this method, optimal switch placement appears to be a necessary step. In this 

paper, optimal placement of switches is firstly conducted, then the results are used in the proposed 

service restoration to evaluate if a better restoration can be achieved.      

The main contributions of the paper include  

1) An effective optimal switch placement is proposed using the binary particle swarm 

optimization with minimizing unsupplied loads and the total number of switches as the 

objective function. 

2) The optimally placed switches are then used in the proposed dynamic microgrid 

formation-based service restoration method using DRL. The IEEE 33-node test system 

and a real 404-node distribution system operated by Saskatoon Light and Power, a 

Canadian electric utility in Saskatoon, Canada, are used for validations. 

The paper is arranged as follows: In Section 4.3, the problem formulation is presented; in 

Section 4.4, the proposed algorithm for switch placement is explained; the effectiveness of the 

proposed approach is then evaluated in Sections 4.5 and 4.6, utilizing both the IEEE 33-node 

system and a practical distribution network from Saskatoon Light and Power, respectively; finally, 

Section 4.7 presents the concluding remarks of this study. 

4.3 Problem Formulation 

The proposed BPSO algorithm for switch placement in this study is inspired by the binary 

variant of the PSO, which is an adaptation of the original continuous version introduced in [14] 

initially. The algorithm can determine a switch configuration in the system that effectively 

minimizes unsupplied loads with the network topology and the demand associated with each load 

point as parameters. The network topology is represented by using the graph theory, and an 

incidence matrix is established with details, such as nodes, edges, weights, and their respective 

interconnections in the network under investigation. 

4.3.1 Particle Swarm Optimization Algorithm 

Swarm intelligence-inspired optimization techniques, such as PSO, have gained popularity 

due to their inherent flexibility and robustness traits. PSO leverages the principle of swarming 
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theory in conjunction with the evolutionary computation to achieve optimal outcomes. The swarm 

population, which comprises of M agents, each containing N particles, is effectively represented 

by a M  N matrix. Each swarm serves as an agent to address a N-dimensional optimization 

problem at hand. A larger value of M indicates a higher degree of exploration within the solution 

space. The revised version of the original PSO approach presented in [15] offers an alternative 

interpretation of the concept of position and velocity in discrete values. In this approach, each 

particle's position is restricted to a binary value, 0 or 1. Meanwhile, the particle's velocity is 

measured by the number of bits that change in each iteration as defined by ( 4.1),  and it is updated 

throughout the process accordingly. 

𝑉𝑖+1 = 𝑉𝑖 + 𝐶1. 𝑅𝑎𝑛𝑑1. ∆𝑋1,𝑖 + 𝐶2. 𝑅𝑎𝑛𝑑2. ∆𝑋2,𝑖 ( 4.1) 

∆𝑋1,𝑖 = 𝑝𝑏𝑒𝑠𝑡𝑖 − 𝑋𝑖 ( 4.2) 

∆𝑋2,𝑖 = 𝑔𝑏𝑒𝑠𝑡𝑖 − 𝑋𝑖 ( 4.3) 

where 𝐶1 and 𝐶2 are learning factors. 𝑅𝑎𝑛𝑑1 and 𝑅𝑎𝑛𝑑2 are randomly generated values within the 

range of [0, 1]. The particle best value (𝑝𝑏𝑒𝑠𝑡), the global best value (𝑔𝑏𝑒𝑠𝑡), and the particle 

position (X) are integers in {0, 1}.  𝑉𝑖  is a probability value in the range of [0, 1]. A logical 

transformation, known as 𝑆(𝑉𝑖), is used in this paper, which can be precisely defined by the 

following rule: 

𝑋𝑖 = {
1 𝑟𝑎𝑛𝑑(0, 1) < 𝑆(𝑉𝑖)
0 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

 
( 4.4) 

𝑆(𝑉𝑖) =  
1

1 + exp (−𝑉𝑖)
 ( 4.5) 

where 𝑆(𝑉𝑖) is the sigmoid transformation. The term 𝑟𝑎𝑛𝑑(0, 1) refers to a randomly generated 

number that follows a uniform distribution in the range of [0, 1].  

Within each iteration (i), the particles associated with each agent are randomly initialized 

as either 1 or 0 to obtain the initial solution. The fitness of the current solution is then evaluated 
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by calculating the objective function. Once the results for all agents are calculated, the 𝑝𝑏𝑒𝑠𝑡 value 

is also determined. The most appropriate 𝑝𝑏𝑒𝑠𝑡  value from the set of 𝑝𝑏𝑒𝑠𝑡  for all agents at 

iteration i is then assigned to 𝑔𝑏𝑒𝑠𝑡. After incrementing the proposed solution by 1, a new iteration 

starts, and the fitness of the subsequent solution is once again evaluated using the objective 

function. If a better-fitted outcome is discovered, 𝑔𝑏𝑒𝑠𝑡 is updated accordingly. The procedure 

terminates once a specified number of iterations is reached or a particular objective function value 

is achieved, at this point, 𝑔𝑏𝑒𝑠𝑡 is the final solution of the problem.  

The output of the discrete PSO for the switch placement problem are Boolean values (1 or 

0), 1 means a switch in the respective branch, and 0 means no switch. Each swarm's dimension 

(dim) is related to the maximum number of potential switches within a distribution network, which 

can be represented as follows: 

𝑑𝑖𝑚 = 𝑁𝐶 + 𝑁𝑂 − 𝐶𝐵 ( 4.6) 

where NC, NO, and CB denote the total number of branches in the distribution network, the number 

of normally open switches, and the number of circuit breakers, respectively. 

4.3.2 Objective Function 

The objective function evaluates solutions of each particle swarm, which only relies on the 

network topology and the demand of customer per load point, and does not involve any reliability 

data, i.e. it is independent of the failure rates of network components. Each solution (x) has a 

collection of switches that minimize the number of affected customers (unsupplied) in the event 

of outages. This procedure effectively simplifies the objective function. In this switch placement 

algorithm, the objective function (OF) includes two member functions, 𝐹𝑈𝐿 and 𝐹𝑁𝑆𝑊 . The 

function 𝐹𝑈𝐿  calculates the number of unsupplied loads due to outages, and the function 𝐹𝑁𝑆𝑊 

determines the number of switches included in the solution x. When there is a fault in the network, 

some switches are opened to isolate the fault while ensuring that the maximum possible load is 

supplied. The objective function is expressed as follows: 

𝑂𝐹(𝑥) =  𝑤𝑢𝐹𝑈𝐿(𝑥) + 𝑤𝑟𝐹𝑁𝑆𝑊(𝑥) ( 4.7) 
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where 𝑤𝑢 and 𝑤𝑟 are weight coefficients used to determine the relative importance of different 

objective terms, and can be selected based on priorities of stakeholders. These weight coefficients 

must follow constrains in (8) and (9). 

𝑤𝑢 + 𝑤𝑟 = 1      ( 4.8) 

𝑤𝑢, 𝑤𝑟 ≥ 0 ( 4.9) 

In the initial stage, the weight coefficients are set as 𝑤𝑢 = 1 and 𝑤𝑟 = 0, indicating that the 

priority is to supply more loads than minimizing the cost to determine a benchmark value for the 

number of switches. In the second stage, the weight of the cost objective function is assigned a 

nonzero value. In case studies, the values of 𝑤𝑢 and 𝑤𝑟 are both set to 0.5, reflecting an equal 

importance and priority of both objectives. Other weight coefficients are also used in this study to 

show their influences. When 𝑤𝑢 > 𝑤𝑟 , the optimization algorithm prioritizes presenting more 

reliable but expensive solutions; when 𝑤𝑢 > 𝑤𝑟, the algorithm presents a cheaper but less reliable 

solutions.  

The 𝐹𝑈𝐿 function can be expressed as follows: 

𝐹𝑈𝐿 = 
∑ 𝑑𝑗
𝐵
𝑗=1

𝑇𝐷
 

( 4.10) 

where B is the total number of branches in the distribution network. 𝑑𝑗  is the amount of load 

demand that is switched off due to a fault on the jth branch. TD is the total amount of load demand 

that are normally supplied by the distribution network. Therefore, the function 𝐹𝑈𝐿 evaluates the 

amount of demand that remains unsupplied by a specific set of switches, considering all possible 

contingencies.  

The 𝐹𝑁𝑆𝑊  function can be expressed as follows: 

𝐹𝑁𝑆𝑊 = 
𝑁𝑥
𝑇𝑆

 
( 4.11) 

𝐹𝑁𝑆𝑊 is calculated by taking into account the number of switches in the current iteration solution, 
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denoted by 𝑁𝑥 , and the number of switches obtained from the first stage algorithm solution, 

denoted by TS of the 𝑥𝑔𝑏𝑒𝑠𝑡.  

4.4 The Switch Placement Algorithm 

The proposed BPSO-based switch placement approach can be implemented by following 

the steps:  

1) Step 1: Topology information. A distribution network is represented by the graph theory 

to define nodes, edges, weight, and their relationships.  

2) Step 2: Initialization. A swarm of particles are randomly initialized with positions and 

velocities in the search space. 

3) Step 3: Evaluation. The fitness of each particle in the swarm is evaluated using ( 4.7). ( 

4.10) for each proposed solution (𝑥𝑖 ) of iteration i is determined by analyzing all 

contingencies by 

3.1 Assuming a contingency on branch j. 

3.2 Finding the shortest path between the source node and the source-side node of a 

short circuit. 

3.3 Locating a normally closed switch along this path and deactivating it to isolate the 

fault. If there is no such switch available, the circuit breaker or recloser of the feeder 

must be opened to isolate the fault. 

3.4 Identifying a normally closed switch between the other node of the short circuit and 

the last node of the feeder and opening it to achieve complete isolation of the fault. 

3.5 Identifying all load points that become isolated as a result of opening a normally 

closed switch. 

4) Step 4: Update 𝑝𝑏𝑒𝑠𝑡. For each particle, update its 𝑝𝑏𝑒𝑠𝑡 if the current position has a better 

fitness than the previous 𝑝𝑏𝑒𝑠𝑡. 

5) Step 5: Update 𝑔𝑏𝑒𝑠𝑡. Update 𝑔𝑏𝑒𝑠𝑡 for the swarm based on the particle with the best 

fitness among all 𝑝𝑏𝑒𝑠𝑡. 

6) Step 6: Update velocity.  Update the velocity of each particle using ( 4.1)-( 4.3).  

7) Step 7: Update position. Update the position of each particle using ( 4.4) and ( 4.5). 

8) Step 8: First stage termination. Repeat Steps 3 to 7 until a termination criterion is met for 
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the first stage, reaching a maximum number of iterations.  

9) Step 9: Update information for the second stage. Update weight coefficients, 𝑤𝑢 and 𝑤𝑟, 

and the number of the maximum iteration (IterMax).  

10)  Step 10: The second stage termination. Randomly initialize a swarm of particles with 

position and velocities, then repeat Steps 3 to 7 until a termination criterion is met for the 

second stage.  

11)  Step 11: State solution: State 𝑔𝑏𝑒𝑠𝑡 as a final solution for determining the optimal switch 

configuration in the distribution network.  

The flowchart of the proposed switch placement algorithm is shown in Figure 4.1, where s 

is the stage number, i is the iteration number, a is the swarm number, and A is the swarm size. 
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Figure 4.1. Flowchart of the proposed switch placement algorithm. 

4.5 Validation of the Proposed Switch Placement Method Using the IEEE 33-node Test 

System 

To validate the proposed switch placement method, the IEEE 33-node test system in Figure 

4.2 is used in this paper. It has 32 lines with a demand of 3.715 MW and 2.3 MVAr. We first 

analyze the switch placement problem, and then evaluate their impact on the microgrid formation-
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based service restoration using deep reinforcement learning.  Python 3.9 is used to solve the 

optimization problem. 

 

Figure 4.2. The IEEE 33-node test system [16]. 

4.5.1 The Switch Placement Optimization 

The BPSO is applied to find an optimal configuration of switches shown in Table 4.1. 

Three solutions are compared based on the priority weights of objectives, the number of switches, 

the best solution OF value, the worst solution OF value, the mean OF value, standard deviation 

(STD), and the switch locations. For solution 1, the weight coefficients 𝑤𝑢 and 𝑤𝑟 are both set to 

0.5, leading to a total of 15 switches placed, and the switch locations are provided in Table 4.1. By 

installing switches at these specified locations, the network can be reconfigured to isolate faults 

and reroute power in case of outages, thereby minimizing the number of customers affected. 

Distribution grid operators consider various factors, such as load demand, line capacity, reliability, 

and cost-effectiveness, when determining the number of switches to be installed on lines [17], [18].  

To demonstrate the effect of different factors, two different weight priorities to minimize 

unsupplied loads and the number of switches are considered in addition to equal weight. The choice 

of weight values for the two objectives in the objective function has a significant impact on the 

number of switches and the overall objective function value. Compared to Solution 1, Solution 2 

places more weight on reducing unsupplied loads, resulting in a lower objective function value of 

0.62431 and a total of 19 switches installed. Solution 3 places more weight on minimizing the 

number of switches installed, resulting in a higher objective function value of 0.7901 and a total 

of 7 switches installed. Therefore, different weight values can be selected to achieve the desired 
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balance between unsupplied loads and the number of switches installed. 

To evaluate the performance of the proposed optimization method, objective function (OF) 

values are analyzed for the best and worst solutions, and the mean and standard deviation (STD) 

of OF values for all solutions. For Solution 1 the best solution is the one with the lowest OF value 

of 0.7182, and the worst solution is the one with the highest OF value of 0.7869. The mean of the 

OF values is 0.7467, which is the average OF value of all solutions found by the algorithm; and 

the STD of the OF values is 0.0169, which represents the spread of the OF values around the mean. 

A low STD value indicates that the solutions found by the algorithm are consistently good. 

Table 4.1. Comparative analysis of switching solutions with different objective weights in IEEE 33-node 

system 

 

Solution 

(#) 

Priority 

Weights 

of 

Objectives 

Number 

of 

Switches  

Best 

Solution 

OF 

Worst 

Solution 

OF 

Mean STD Switch Location 

1 

𝑊𝑢 = 0.5 

and 𝑊𝑟 = 

0.5 

15 0.7182 0.7869 0.7467 0.0169 

(Substation, 1), (3, 4), (6, 7), (8, 9), 

(10, 11), (14, 15), (2, 19), (20, 21), 

(3, 23), (23, 24), (24, 25), (6, 26), 

(27, 28), (29, 30), (31, 32)  

2 

𝑊𝑢 = 0.6 

and 𝑊𝑟 = 

0.4 
19  0.6243 0.6754 0.6507 0.0193 

(Substation, 1), (2, 3), (3, 4), (5, 6), 

(6, 7), (7, 8), (8, 9), (11, 12), (14, 

15), (16, 17), (19, 20), (3, 23), (23, 

24), (24, 25), (6, 26), (27, 28), (29, 

30), (30, 31), (31, 32)  

3 

𝑊𝑢 = 0.4 

and 𝑊𝑟 = 

0.6 

7 0.7901 0.8484 0.8199 0.0209 

(Substation, 1) (12, 13), (13, 14), 

(14, 15), (3, 23), (23, 24), (24, 25) 

 

4.5.2 Service Restoration through Microgrid Formation using Deep Reinforcement 

Learning 

Using our previously proposed dynamic microgrid formation and deep reinforcement 

learning-based service restoration method, the optimal switch placement can significantly improve 

restoration in distribution networks compared to randomly placed switches with arbitrary numbers 

and locations, as shown in Table 4.2. The improvement of 10.84% of active power demand and 

65.29% of reactive power demand have been made compared to randomly placed switches. The 

graphical representation of the microgrid formation-based service restoration method using 

optimal switch placement for the IEEE 33-node test system is depicted in Figure 4.3, forming three 
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microgrids.  

Table 4.2. Comparison of MG-based service restoration using DRL: optimal vs random switch placement 

Microgrid  Restored Nodes Restored loads (kW) Restored loads (kVar) 

MG1 

Optimal switch 

placement 

Randomly switch 

Placement  

Optimal 

switch 

placement 

Randomly 

switch 

Placement 

Optimal 

switch 

placement 

Randomly 

switch 

Placement 

1, 2, 3, 4, 5, 6, 7, 

8, 9, 10, 23, 24 

1, 2, 3, 4, 5, 6, 7, 8, 

9, 10, 19, 20, 26, 27 

1460 1430 720 680 

MG2 30, 31, 32, 33 31, 32, 33 620 420 810 210 

MG3 15, 16, 17, 18 15, 16, 17, 18 270 270 90 90 
𝑇𝑜𝑡𝑎𝑙 𝑟𝑒𝑠𝑜𝑡𝑜𝑟𝑒𝑑𝑙𝑜𝑎𝑑

𝑇𝑜𝑡𝑎𝑙 𝑙𝑜𝑎𝑑
 *100 63.26% 57.07% 70.43% 42.61% 

Service Restoration Improvement 10.84% 65.29% 

 

DG1

DG2

DG3

MG1

MG2

MG3

 

Figure 4.3. Microgrid formation-based service restoration in IEEE 33-node test system. 

4.6 Validation Through a Real Large 404-node Distribution System 

The proposed method is further verified through a real 404-node distribution system 

consisting of two distribution feeders. This system is one 25/14.4 kV, 33.3 MVA substation in the 

distribution network operated by Saskatoon Light and Power in Saskatoon, Canada, with a real 

power demand of 11.605 MW and a reactive power demand of 7.192 MVar. The system model 

was developed using the data provided by Saskatoon Light and Power.  

4.6.1 Switch Placement Optimization 

Through the utilization of the novel BPSO-based switch placement approach, the optimal 
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configurations of switches for varying priority coefficients of objectives have been obtained, as 

depicted in Table 4.3. For Solution 1, a total of 40 switches are required, located at specific lines 

in the network with the same weights of 0.5 for both objective functions. The second solution 

prioritizes minimizing the unsupplied loads, achieved a lower OF value of 0.5957 and 56 switches. 

The third solution emphasizes reducing the number of switches, obtained a higher OF value of 

0.84098 and 27 switches. Their objective function (OF) values for the best and worst solutions, 

along with the mean and STD of the OF values for all the solutions are shown in this table.   

4.6.2 Service Restoration through Microgrid Formation using Deep Reinforcement 

Learning 

To demonstrate the influence of optimal switch placement on service restoration using the 

proposed restoration method, the real 404-node system is used. First, the system is converted into 

node cells, which only contain switchable lines. Figure 4.4 provides a graphical representation of 

this conversion. The appendix contains tables that present the correspondence between node cells 

and their respective node numbers in the original system for both optimal and random switch 

placement strategies. 

The results of this study is shown in Table 4.4.  An improvement of 6.5% of active power 

and 7% of reactive power can be achieved when compared to randomly placed switches.  

Figure 4.5 illustrates the graphical representation of the microgrid formation-based service 

restoration approach employed in the 404-node system with ten microgrids formed.  
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Table 4.3.Comparative Analysis of Switching Solutions with Different Objective Weights in the real 

world system 

 

Solution 

(#) 

Priority 

Weights 

of 

Objectives 

Number 

of 

Switches  

Best 

Solution 

OF 

Worst 

Solution 

OF 

Mean STD Switch Location 

1 
𝑊𝑢 = 0.5 

and 𝑊𝑟 = 

0.5 

40 0.60771 0.61545 0.6128 0.0027 

(Substation, 1), (4, 6), (14, 15), 

(28, 30), (293, 298), (298, 299), 

(307, 309), (311, 313), (316, 318), 

(325, 327), (327, 329), (42, 43), 

(56, 58), (61, 64), (74, 76), (95, 

96), (100, 169), (172, 174), (101, 

104), (108, 110), (112, 113), (125, 

127), (122, 124), (147, 151), (152, 

155), (95, 183), (207, 209), (218, 

220), (226, 228), (230, 238), (240, 

242), (246, 250), (263, 265), (265, 

269), (279, 151), (Substation, 

337), ( 357, 358), (365, 366), 

(365, 370), (377, 378) 

2 
𝑊𝑢 = 0.6 

and 𝑊𝑟 = 

0.4 

56 0.5957 0.61005 0.60468 0.005 

(Substation, 1), (6, 8), (12, 14), 

(15, 20), (22, 24), (28, 30), (36, 

38), (293, 294), (299, 301), (305, 

307), (311, 313), (316, 318), (323, 

325), (325, 327), (42, 43), (47, 

48), (52, 54), (58, 61), (61, 64), 

(74, 76), (14, 85), (85, 87), (87, 

89), (95, 96), (100, 169), (101, 

104), (112, 113), (118, 122), (122, 

124), (124, 136), (139, 141), (145, 

147), (155, 157), (160, 162), (162, 

164), ('95', '183'), ('189', '191'), 

('195', '196'), (205, 207), (220, 

222), (222, 226), (228, 230), (230, 

231), (244, 246), (261, 263), (265, 

269), (269, 271), (271, 273), (279, 

151), (Substation, 337), (345, 

347), (351, 353), (353, 355), (365, 

370), (377, 378), (382, 391) 

3 
𝑊𝑢 = 0.4 

and 𝑊𝑟 = 

0.6 

27 0.84098 0.85605 0.84830 0.0057 

(Substation, 1), (28, 30), (298, 

303), (313, 315), (321, 323), (329, 

331), (47, 48), (72, 74), (78, 80), 

(89, 91), (98, 100), (110, 112), 

(118, 122), (129, 131), (124, 136), 

(138, 139), (191, 193), (193, 195), 

('196', 198), (218, 220), (230, 

283), (250, 254), (279, 151), (0, 

337), (347, 349), (372, 373), (395, 

397) 
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Figure 4.4. Node cells formation of Saskatoon Light and Power system.  

Table 4.4. Comparison of MG-based service restoration using DRL: optimal vs random switch placement 

Microgrid  Restored Node Cells Restored loads (kW) Restored loads (kVar) 

MG1 

Optimal switch 

placement 

Randomly switch 

Placement  

Optimal 

switch 

placement 

Randomly 

switch 

Placement 

Optimal 

switch 

placement 

Randomly 

switch 

Placement 

N1, N2, N3, N4 N1, N2, N3, N10, 

N11 

989.1875 699.1250 626.8714 433.2788 

MG2 N5, N6, N7, N8, N9 N4, N5, N6 632.1875 810.6875 391.79461 502.4190 

MG3 N12, N13, N14, N15 N8, N9 825.5625 825.5625 511.6377 511.6377 

MG4 N22, N23 N15, N16 699.125 699.1250 433.27879 433.2788 

MG5 N28, N29 N21, N22, N23 944.5625 899.9375 585.3872 557.7318 

MG6 N16, N19, N20, N21 N13, N14 917.49 820.8150 577.82791 508.6877 

MG7 N26 N25, N26, N27 575.6625 594.2563 356.7650 368.2896 

MG8 N39 N32 446.25 446.2500 276.5609 276.5635 

MG9 N35, N37 N28, N30 401.625 401.6250 248.9048 248.9048 

MG10 N33, N34 N18 1442.875 1197.4375 894.2136 742.1051 
𝑇𝑜𝑡𝑎𝑙 𝑟𝑒𝑠𝑜𝑡𝑜𝑟𝑒𝑑𝑙𝑜𝑎𝑑

𝑇𝑜𝑡𝑎𝑙 𝑙𝑜𝑎𝑑
 *100 67.85% 63.72% 68.18 % 63.72% 

Service Restoration Improvement 6.5 % 7 % 
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Figure 4.5. Microgrid formation-based service restoration in the Saskatoon Light and Power distribution 

network. 
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4.7 Conclusion 

In this paper, a multi-objective BPSO-based optimization algorithm is proposed for the 

optimal placement of switches by considering two objective functions: minimizing the number of 

unsupplied loads and installed switches. The optimization with different weight values for the 

objective functions is considered. The optimally placed switches are used in our previously 

proposed dynamic microgrid formation and deep reinforcement learning-based service restoration 

method, significant improvement of restored load can be made compared to randomly placed 

switches. This is validated by IEEE 33-node test system, and the 404-node Saskatoon light and 

Power system.  
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5 Conclusions and Future Work  

 

5.1 Summary and Conclusions  

In this thesis, a service restoration method in distribution networks through dynamic 

microgrid formation and deep reinforcement learning is proposed. By using the deep Q-learning 

technique within a simulated environment, the proposed deep reinforcement learning algorithm is 

capable of acquiring an optimal control policy, enabling dynamic formation of microgrids during 

contingencies, thus facilitating a swift service restoration. An initial offline training phase can be 

conducted to establish the model’s learning, which can subsequently be employed for online 

applications. The proposed method is verified using the IEEE 33-node test system, and a real 404-

node distribution system from Saskatoon Light and Power.  

To illustrate the critical role of optimal switch placement to improve service restoration in 

distribution networks, an optimal switch placement method is introduced through a multi-objective 

optimization algorithm based on BPSO. The algorithm considers two objective functions: 

minimizing unsupplied loads and the number of switches. The optimization process incorporates 

different weight values assigned to the objective functions, allowing a flexible trade-off analysis 

between the two objectives. The switches are then used with the proposed service restoration 

method to evaluate the improvement on restored loads. The proposed approach is validated using 

the IEEE 33-node test system and the real 404-node distribution system from Saskatoon Light and 

Power.  

5.2 Future Work 

The following recommendations are suggested for the future research: 

1) A safe deep reinforcement learning approach can be developed to effectively 

address the Markov Decision Process (MDP) under various constraints for service 

restoration. This method incorporates safety layer in training section to ensure safe 

behaviors of the reinforcement learning agent during the decision-making process. 

2) To accurately model the service restoration problem in distribution networks, it is 

necessary to incorporate dynamic behaviors of induction motor loads and 
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distributed generators (DGs), taking into account transient operational constraints, 

such as voltage dips and over-current limits during the starting of induction motor 

loads. This modification in the problem formulation allows for a more realistic and 

comprehensive consideration of transient behaviors of the system, leading to 

improved decision-making and effective service restoration strategies.  
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