970 research outputs found

    Sparse Transfer Learning for Interactive Video Search Reranking

    Get PDF
    Visual reranking is effective to improve the performance of the text-based video search. However, existing reranking algorithms can only achieve limited improvement because of the well-known semantic gap between low level visual features and high level semantic concepts. In this paper, we adopt interactive video search reranking to bridge the semantic gap by introducing user's labeling effort. We propose a novel dimension reduction tool, termed sparse transfer learning (STL), to effectively and efficiently encode user's labeling information. STL is particularly designed for interactive video search reranking. Technically, it a) considers the pair-wise discriminative information to maximally separate labeled query relevant samples from labeled query irrelevant ones, b) achieves a sparse representation for the subspace to encodes user's intention by applying the elastic net penalty, and c) propagates user's labeling information from labeled samples to unlabeled samples by using the data distribution knowledge. We conducted extensive experiments on the TRECVID 2005, 2006 and 2007 benchmark datasets and compared STL with popular dimension reduction algorithms. We report superior performance by using the proposed STL based interactive video search reranking.Comment: 17 page

    Recent Advances in Transfer Learning for Cross-Dataset Visual Recognition: A Problem-Oriented Perspective

    Get PDF
    This paper takes a problem-oriented perspective and presents a comprehensive review of transfer learning methods, both shallow and deep, for cross-dataset visual recognition. Specifically, it categorises the cross-dataset recognition into seventeen problems based on a set of carefully chosen data and label attributes. Such a problem-oriented taxonomy has allowed us to examine how different transfer learning approaches tackle each problem and how well each problem has been researched to date. The comprehensive problem-oriented review of the advances in transfer learning with respect to the problem has not only revealed the challenges in transfer learning for visual recognition, but also the problems (e.g. eight of the seventeen problems) that have been scarcely studied. This survey not only presents an up-to-date technical review for researchers, but also a systematic approach and a reference for a machine learning practitioner to categorise a real problem and to look up for a possible solution accordingly

    A convex formulation for semi-supervised multi-label feature selection

    Full text link
    Copyright © 2014, Association for the Advancement of Artificial Intelligence (www.aaai.org). All rights reserved. Explosive growth of multimedia data has brought challenge of how to efficiently browse, retrieve and organize these data. Under this circumstance, different approaches have been proposed to facilitate multimedia analysis. Several semi-supervised feature selection algorithms have been proposed to exploit both labeled and unlabeled data. However, they are implemented based on graphs, such that they cannot handle large-scale datasets. How to conduct semi-supervised feature selection on large-scale datasets has become a challenging research problem. Moreover, existing multi-label feature selection algorithms rely on eigen-decomposition with heavy computational burden, which further prevent current feature selection algorithms from being applied for big data. In this paper, we propose a novel convex semi-supervised multi-label feature selection algorithm, which can be applied to large-scale datasets. We evaluate performance of the proposed algorithm over five benchmark datasets and compare the results with state- of-the-art supervised and semi-supervised feature selection algorithms as well as baseline using all features. The experimental results demonstrate that our proposed algorithm consistently achieve superiors performances

    Learning Multimodal Latent Attributes

    Get PDF
    Abstract—The rapid development of social media sharing has created a huge demand for automatic media classification and annotation techniques. Attribute learning has emerged as a promising paradigm for bridging the semantic gap and addressing data sparsity via transferring attribute knowledge in object recognition and relatively simple action classification. In this paper, we address the task of attribute learning for understanding multimedia data with sparse and incomplete labels. In particular we focus on videos of social group activities, which are particularly challenging and topical examples of this task because of their multi-modal content and complex and unstructured nature relative to the density of annotations. To solve this problem, we (1) introduce a concept of semi-latent attribute space, expressing user-defined and latent attributes in a unified framework, and (2) propose a novel scalable probabilistic topic model for learning multi-modal semi-latent attributes, which dramatically reduces requirements for an exhaustive accurate attribute ontology and expensive annotation effort. We show that our framework is able to exploit latent attributes to outperform contemporary approaches for addressing a variety of realistic multimedia sparse data learning tasks including: multi-task learning, learning with label noise, N-shot transfer learning and importantly zero-shot learning

    Cross-domain web image annotation

    Get PDF
    In recent years, cross-domain learning algorithms have attracted much attention to solve labeled data insufficient problem. However, these cross-domain learning algorithms cannot be applied for subspace learning, which plays a key role in multimedia, e.g., web image annotation. This paper envisions the cross-domain discriminative subspace learning and provides an effective solution to cross-domain subspace learning. In particular, we propose the cross-domain discriminative Hessian Eigenmaps or CDHE for short. CDHE connects the training and the testing samples by minimizing the quadratic distance between the distribution of the training samples and that of the testing samples. Therefore, a common subspace for data representation can be preserved. We basically expect the discriminative information to separate the concepts in the training set can be shared to separate the concepts in the testing set as well and thus we have a chance to address above cross-domain problem duly. The margin maximization is duly adopted in CDHE so the discriminative information for separating different classes can be well preserved. Finally, CDHE encodes the local geometry of each training class in the local tangent space which is locally isometric to the data manifold and thus can locally preserve the intra-class local geometry. Experimental evidence on real world image datasets demonstrates the effectiveness of CDHE for cross-domain web image annotation. © 2009 IEEE.published_or_final_versionThe IEEE International Conference on Data Mining Workshops (ICDMW) 2009, Miami, FL., 6 December 2009. In Proceedings of the IEEE International Conference on Data Mining, 2009, p. 184-18

    Temporal Model Adaptation for Person Re-Identification

    Full text link
    Person re-identification is an open and challenging problem in computer vision. Majority of the efforts have been spent either to design the best feature representation or to learn the optimal matching metric. Most approaches have neglected the problem of adapting the selected features or the learned model over time. To address such a problem, we propose a temporal model adaptation scheme with human in the loop. We first introduce a similarity-dissimilarity learning method which can be trained in an incremental fashion by means of a stochastic alternating directions methods of multipliers optimization procedure. Then, to achieve temporal adaptation with limited human effort, we exploit a graph-based approach to present the user only the most informative probe-gallery matches that should be used to update the model. Results on three datasets have shown that our approach performs on par or even better than state-of-the-art approaches while reducing the manual pairwise labeling effort by about 80%
    • …
    corecore