41 research outputs found

    Multilinear Factorizations for Multi-Camera Rigid Structure from Motion Problems

    Get PDF
    Camera networks have gained increased importance in recent years. Existing approaches mostly use point correspondences between different camera views to calibrate such systems. However, it is often difficult or even impossible to establish such correspondences. But even without feature point correspondences between different camera views, if the cameras are temporally synchronized then the data from the cameras are strongly linked together by the motion correspondence: all the cameras observe the same motion. The present article therefore develops the necessary theory to use this motion correspondence for general rigid as well as planar rigid motions. Given multiple static affine cameras which observe a rigidly moving object and track feature points located on this object, what can be said about the resulting point trajectories? Are there any useful algebraic constraints hidden in the data? Is a 3D reconstruction of the scene possible even if there are no point correspondences between the different cameras? And if so, how many points are sufficient? Is there an algorithm which warrants finding the correct solution to this highly non-convex problem? This article addresses these questions and thereby introduces the concept of low-dimensional motion subspaces. The constraints provided by these motion subspaces enable an algorithm which ensures finding the correct solution to this non-convex reconstruction problem. The algorithm is based on multilinear analysis, matrix and tensor factorizations. Our new approach can handle extreme configurations, e.g. a camera in a camera network tracking only one single point. Results on synthetic as well as on real data sequences act as a proof of concept for the presented insight

    Tensor Decompositions for Signal Processing Applications From Two-way to Multiway Component Analysis

    Full text link
    The widespread use of multi-sensor technology and the emergence of big datasets has highlighted the limitations of standard flat-view matrix models and the necessity to move towards more versatile data analysis tools. We show that higher-order tensors (i.e., multiway arrays) enable such a fundamental paradigm shift towards models that are essentially polynomial and whose uniqueness, unlike the matrix methods, is guaranteed under verymild and natural conditions. Benefiting fromthe power ofmultilinear algebra as theirmathematical backbone, data analysis techniques using tensor decompositions are shown to have great flexibility in the choice of constraints that match data properties, and to find more general latent components in the data than matrix-based methods. A comprehensive introduction to tensor decompositions is provided from a signal processing perspective, starting from the algebraic foundations, via basic Canonical Polyadic and Tucker models, through to advanced cause-effect and multi-view data analysis schemes. We show that tensor decompositions enable natural generalizations of some commonly used signal processing paradigms, such as canonical correlation and subspace techniques, signal separation, linear regression, feature extraction and classification. We also cover computational aspects, and point out how ideas from compressed sensing and scientific computing may be used for addressing the otherwise unmanageable storage and manipulation problems associated with big datasets. The concepts are supported by illustrative real world case studies illuminating the benefits of the tensor framework, as efficient and promising tools for modern signal processing, data analysis and machine learning applications; these benefits also extend to vector/matrix data through tensorization. Keywords: ICA, NMF, CPD, Tucker decomposition, HOSVD, tensor networks, Tensor Train

    Tensor displays: compressive light field synthesis using multilayer displays with directional backlighting

    Get PDF
    We introduce tensor displays: a family of compressive light field displays comprising all architectures employing a stack of time-multiplexed, light-attenuating layers illuminated by uniform or directional backlighting (i.e., any low-resolution light field emitter). We show that the light field emitted by an N-layer, M-frame tensor display can be represented by an Nth-order, rank-M tensor. Using this representation we introduce a unified optimization framework, based on nonnegative tensor factorization (NTF), encompassing all tensor display architectures. This framework is the first to allow joint multilayer, multiframe light field decompositions, significantly reducing artifacts observed with prior multilayer-only and multiframe-only decompositions; it is also the first optimization method for designs combining multiple layers with directional backlighting. We verify the benefits and limitations of tensor displays by constructing a prototype using modified LCD panels and a custom integral imaging backlight. Our efficient, GPU-based NTF implementation enables interactive applications. Through simulations and experiments we show that tensor displays reveal practical architectures with greater depths of field, wider fields of view, and thinner form factors, compared to prior automultiscopic displays.United States. Defense Advanced Research Projects Agency (DARPA SCENICC program)National Science Foundation (U.S.) (NSF Grant IIS-1116452)United States. Defense Advanced Research Projects Agency (DARPA MOSAIC program)United States. Defense Advanced Research Projects Agency (DARPA Young Faculty Award)Alfred P. Sloan Foundation (Fellowship

    Generalizations of the projective reconstruction theorem

    Get PDF
    We present generalizations of the classic theorem of projective reconstruction as a tool for the design and analysis of the projective reconstruction algorithms. Our main focus is algorithms such as bundle adjustment and factorization-based techniques, which try to solve the projective equations directly for the structure points and projection matrices, rather than the so called tensor-based approaches. First, we consider the classic case of 3D to 2D projections. Our new theorem shows that projective reconstruction is possible under a much weaker restriction than requiring, a priori, that all estimated projective depths are nonzero. By completely specifying possible forms of wrong configurations when some of the projective depths are allowed to be zero, the theory enables us to present a class of depth constraints under which any reconstruction of cameras and points projecting into given image points is projectively equivalent to the true camera-point configuration. This is very useful for the design and analysis of different factorization-based algorithms. Here, we analyse several constraints used in the literature using our theory, and also demonstrate how our theory can be used for the design of new constraints with desirable properties. The next part of the thesis is devoted to projective reconstruction in arbitrary dimensions, which is important due to its applications in the analysis of dynamical scenes. The current theory, due to Hartley and Schaffalitzky, is based on the Grassmann tensor, generalizing the notions of Fundamental matrix, trifocal tensor and quardifocal tensor used for 3D to 2D projections. We extend their work by giving a theory whose point of departure is the projective equations rather than the Grassmann tensor. First, we prove the uniqueness of the Grassmann tensor corresponding to each set of image points, a question that remained open in the work of Hartley and Schaffalitzky. Then, we show that projective equivalence follows from the set of projective equations, provided that the depths are all nonzero. Finally, we classify possible wrong solutions to the projective factorization problem, where not all the projective depths are restricted to be nonzero. We test our theory experimentally by running the factorization based algorithms for rigid structure and motion in the case of 3D to 2D projections. We further run simulations for projections from higher dimensions. In each case, we present examples demonstrating how the algorithm can converge to the degenerate solutions introduced in the earlier chapters. We also show how the use of proper constraints can result in a better performance in terms of finding a correct solution

    Non-acyclicity of coset lattices and generation of finite groups

    Get PDF

    Reconstruction and analysis of dynamic shapes

    Get PDF
    Thesis (Ph. D.)--Massachusetts Institute of Technology, Dept. of Electrical Engineering and Computer Science, 2010.Cataloged from PDF version of thesis.Includes bibliographical references (p. 122-141).Motion capture has revolutionized entertainment and influenced fields as diverse as the arts, sports, and medicine. This is despite the limitation that it tracks only a small set of surface points. On the other hand, 3D scanning techniques digitize complete surfaces of static objects, but are not applicable to moving shapes. I present methods that overcome both limitations, and can obtain the moving geometry of dynamic shapes (such as people and clothes in motion) and analyze it in order to advance computer animation. Further understanding of dynamic shapes will enable various industries to enhance virtual characters, advance robot locomotion, improve sports performance, and aid in medical rehabilitation, thus directly affecting our daily lives. My methods efficiently recover much of the expressiveness of dynamic shapes from the silhouettes alone. Furthermore, the reconstruction quality is greatly improved by including surface orientations (normals). In order to make reconstruction more practical, I strive to capture dynamic shapes in their natural environment, which I do by using hybrid inertial and acoustic sensors. After capture, the reconstructed dynamic shapes are analyzed in order to enhance their utility. My algorithms then allow animators to generate novel motions, such as transferring facial performances from one actor onto another using multi-linear models. The presented research provides some of the first and most accurate reconstructions of complex moving surfaces, and is among the few approaches that establish a relationship between different dynamic shapes.by Daniel Vlasic.Ph.D

    Plane + Parallax, Tensors and Factorization

    Full text link

    Robust and Accurate Structure from Motion of Rigid and Nonrigid Objects

    Get PDF
    As a central theme in computer vision, the problem of 3D structure and motion recovery from image sequences has been widely studied during the past three decades, and considerable progress has been made in theory, as well as in prac- tice. However, there are still several challenges remaining, including algorithm robustness and accuracy, especially for nonrigid modeling. The thesis focuses on solving these challenges and several new robust and accurate algorithms have been proposed. The first part of the thesis reviews the state-of-the-art techniques of structure and motion factorization. First, an introduction of structure from motion and some mathematical background of the technique is presented. Then, the general idea and different formulations of structure from motion for rigid and nonrigid objects are discussed. The second part covers the proposed quasi-perspective projection model and its application to structure and motion factorization. Previous algorithms are based on either a simplified affine assumption or a complicated full perspective projection model. The affine model is widely adopted due to its simplicity, whereas the extension to full perspective suffers from recovering projective depths. A quasi-perspective model is proposed to fill the gap between the two models. It is more accurate than the affine model from both theoretical analysis and experimental studies. More geometric properties of the model are investigated in the context of one- and two-view geometry. Finally, the model was applied to structure from motion and a framework of rigid and nonrigid factorization under quasi-perspective assumption is established. The last part of the thesis is focused on the robustness and three new al- gorithms are proposed. First, a spatial-and-temporal-weighted factorization algorithm is proposed to handle significant image noise, where the uncertainty of image measurement is estimated from a new perspective by virtue of repro- jection residuals. Second, a rank-4 affine factorization algorithm is proposed to avoid the difficulty of image alignment with erroneous data, followed by a robust factorization scheme that can work with missing and outlying data. Third, the robust algorithm is extended to nonrigid scenarios and a new augmented nonrigid factorization algorithm is proposed to handle imperfect tracking data. The main contributions of the thesis are as follows: The proposed quasi- perspective projection model fills the gap between the simplicity of the affine model and the accuracy of the perspective model. Its application to structure and motion factorization greatly increases the efficiency and accuracy of the algorithm. The proposed robust algorithms do not require prior information of image measurement and greatly improve the overall accuracy and robustness of previous approaches. Moreover, the algorithms can also be applied directly to structure from motion of nonrigid objects

    Dynamic brain networks explored by structure-revealing methods

    Get PDF
    The human brain is a complex system able to continuously adapt. How and where brain activity is modulated by behavior can be studied with functional magnetic resonance imaging (fMRI), a non-invasive neuroimaging technique with excellent spatial resolution and whole-brain coverage. FMRI scans of healthy adults completing a variety of behavioral tasks have greatly contributed to our understanding of the functional role of individual brain regions. However, by statistically analyzing each region independently, these studies ignore that brain regions act in concert rather than in unison. Thus, many studies since have instead examined how brain regions interact. Surprisingly, structured interactions between distinct brain regions not only occur during behavioral tasks but also while a subject rests quietly in the MRI scanner. Multiple groups of regions interact very strongly with each other and not only do these groups bear a striking resemblance to the sets of regions co-activated in tasks, but many of these interactions are also progressively disrupted in neurological diseases. This suggests that spontaneous fluctuations in activity can provide novel insights into fundamental organizing principles of the human brain in health and disease. Many techniques to date have segregated regions into spatially distinct networks, which ignores that any brain region can take part in multiple networks across time. A more natural view is to estimate dynamic brain networks that allow flexible functional interactions (or connectivity) over time. The estimation and analysis of such dynamic functional interactions is the subject of this dissertation. We take the perspective that dynamic brain networks evolve in a low-dimensional space and can be described by a small number of characteristic spatiotemporal patterns. Our proposed approaches are based on well-established statistical methods, such as principal component analysis (PCA), sparse matrix decompositions, temporal clustering, as well as a multiscale analysis by novel graph wavelet designs. We adapt and extend these methods to the analysis of dynamic brain networks. We show that PCA and its higher-order equivalent can identify co-varying functional interactions, which reveal disturbed dynamic properties in multiple sclerosis and which are related to the timing of stimuli for task studies, respectively. Further we show that sparse matrix decompositions provide a valid alternative approach to PCA and improve interpretability of the identified patterns. Finally, assuming an even simpler low-dimensional space and the exclusive temporal expression of individual patterns, we show that specific transient interactions of the medial prefrontal cortex are disturbed in aging and relate to impaired memory

    Recent Advances in Robust Control

    Get PDF
    Robust control has been a topic of active research in the last three decades culminating in H_2/H_\infty and \mu design methods followed by research on parametric robustness, initially motivated by Kharitonov's theorem, the extension to non-linear time delay systems, and other more recent methods. The two volumes of Recent Advances in Robust Control give a selective overview of recent theoretical developments and present selected application examples. The volumes comprise 39 contributions covering various theoretical aspects as well as different application areas. The first volume covers selected problems in the theory of robust control and its application to robotic and electromechanical systems. The second volume is dedicated to special topics in robust control and problem specific solutions. Recent Advances in Robust Control will be a valuable reference for those interested in the recent theoretical advances and for researchers working in the broad field of robotics and mechatronics
    corecore