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Abstract Camera networks have gained increased impor-
tance in recent years. Existing approaches mostly use point
correspondences between different camera views to calibrate
such systems. However, it is often difficult or even impossible
to establish such correspondences. But even without feature
point correspondences between different camera views, if the
cameras are temporally synchronized then the data from the
cameras are strongly linked together by the motion corre-
spondence: all the cameras observe the same motion. The
present article therefore develops the necessary theory to use
this motion correspondence for general rigid as well as pla-
nar rigid motions. Given multiple static affine cameras which
observe a rigidly moving object and track feature points
located on this object, what can be said about the resulting
point trajectories? Are there any useful algebraic constraints
hidden in the data? Is a 3D reconstruction of the scene pos-
sible even if there are no point correspondences between the
different cameras? And if so, how many points are suffi-
cient? Is there an algorithm which warrants finding the cor-
rect solution to this highly non-convex problem? This article
addresses these questions and thereby introduces the concept
of low-dimensional motion subspaces. The constraints pro-
vided by these motion subspaces enable an algorithm which
ensures finding the correct solution to this non-convex recon-
struction problem. The algorithm is based on multilinear
analysis, matrix and tensor factorizations. Our new approach
can handle extreme configurations, e.g. a camera in a camera
network tracking only one single point. Results on synthetic
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as well as on real data sequences act as a proof of concept
for the presented insights.

Keywords Computer vision · 3D reconstruction ·Structure
from motion ·Multilinear factorizations · Tensor algebra

1 Introduction

1.1 Related Work and Motivation

Factorization-based solutions to the structure from motion
(SfM) problem have been heavily investigated and extended
ever since Tomasi’s and Kanade’s (1992) seminal work about
rigid factorizations. Such factorization based approaches
enjoy interesting properties: e.g.given an almost affine
camera these techniques provide an optimal, closed-form1

solution using only non-iterative techniques from linear
algebra. The factorization approach, which is based on the
singular value decomposition of a data matrix, has been fur-
ther extended to multi-body motion segmentation (Tron and
Vidal 2007), to perspective cameras (Sturm and Triggs 1996),
non-rigid objects (Bregler et al. 2000; Torresani et al. 2001;
Brand 2001, 2005; Wang et al. 2008), and articulated
objects (Yan and Pollefeys 2008; Tresadern and Reid 2005).
More flexible methods which can deal with missing data
entries in the data matrix have been proposed in order to

1 Throughout this paper, the term closed-form solution denotes a solu-
tion which is given by following a fixed number of prescribed, non-
iterative steps. Solutions provided by algorithms which iteratively refine
a current best guess are thus not closed-form solutions. Stretching the
notion of closed-form solutions a little further, algorithms involving
matrix factorization steps such as the singular value decomposition will
still be considered as closed-form, even though nowadays such matrix
decompositions are often implemented iteratively.
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overcome shortcomings of singular value based decompo-
sitions which can not cope with such situations (Bregler et
al. 2000; Hartley and Schaffalitzky 2004; Wang et al. 2008;
Guerreiro and Aguiar 2002). These approaches are all based
on a method known as the alternating least squares method
which is a well-known algorithm in the multilinear algebra
community (a short introduction to this method will be given
in Sect. 10).

We therefore propose in Sect. 4 to model the data as a ten-
sor rather than a matrix because this provides valuable insight
into the algebraic structure of the factorization and allows to
draw from tensor decomposition techniques in related fields.
By doing so rigid factorizations can be extended from the
monocular setting to the multi-camera setup where the cam-
eras are assumed to be static w.r.t. each other and to be well
approximated with an affine camera model. At this point we
would like to mention that there is a duality in the motion
interpretation: static cameras observing a moving rigid object
are completely equivalent to a moving rigid camera rig in an
otherwise static rigid world. Therefore, all our reasonings
also apply to the case of a moving rigid camera rig. Several
methods (Torresani et al. 2001; Bue and de Agapito 2006)
already extended the factorization approach to a two-camera
setup and Svoboda et al. (2005) proposed a projective multi-
camera self calibration method based on rank-4 factoriza-
tions. Unfortunately, these methods all require feature point
correspondences between the camera views to be known.
Computing correspondences across a wide baseline is a dif-
ficult problem in itself and sometimes even impossible to
solve (think of two cameras which point at two completely
different sides of the rigid object or of two cameras attached
to a camera rig whose field of view do not intersect at all).

Sequences from two camera views have also been investi-
gated (Zelnik-Manor and Irani 2006) in order to temporally
synchronize the cameras or to find correspondences between
the camera views. Non-factorization based methods have
been proposed to deal with non-overlapping camera views,
e.g.hand-eye-calibration (Daniilidis 1999) or mirror-based
(Kumar et al. 2008). These methods make strong assumptions
about the captured data of each camera since in a first step,
a reconstruction for each camera is usually computed sepa-
rately. Wolf’s and Zomet’s (2006) approach is most closely
related to ours. In this work, a two-camera setting is inves-
tigated where the points tracked by the second camera are
assumed to be expressible as a linear combination of the
points in the first camera. This formulation even covers non-
rigid deformations. However, the available data from the
two cameras are treated asymmetrically and are not fused
uniformly into one consistent solution. Even worse, if the
first sequence cannot provide a robust estimate of the whole
motion and structure on its own then this method is doomed
to failure. In contrast, our method readily fuses partial obser-
vations from any number of cameras into one consistent and

more robust solution. The monocular structure from planar
motion problem has previously attracted some interest (Li
and Chellappa 2005; Vidal and Oliensis 2002). However,
these approaches either resort to iterative solutions or require
additional information, like the relative position of the plane
of rotation w.r.t. the camera.

1.2 Paper Overview

The present article targets the difficult situation where no fea-
ture point correspondences between different camera views
are available or where it is even impossible to establish
such correspondences due to occlusions: each camera is thus
allowed to track its own set of feature points. The only avail-
able correspondence between the cameras is the motion cor-
respondence: all the cameras observe the same rigid motion.
This article presents a thorough analysis of the geometric and
algebraic structure contained in 2D feature point trajectories
in the camera image planes. It unifies our previous analysis
for general rigid motions (Angst and Pollefeys 2009) with our
analysis of planar rigid motion (Angst and Pollefeys 2010).
Planar motions are probably the most important special case
of rigid motions. Vehicles moving on the street, traffic sur-
veillance and analysis represent prominent examples. Even
data from a camera rig mounted on a moving car behaves
according to the above described setting: the camera rig can
be considered as stationary and the whole surrounding world
as a moving rigid object. Because the car is moving on the
ground plane, the motion is restricted to a planar motion.

We decided to use a tensor-based formulation of the affine
SfM factorization problem. The reasons which have lead to
this decision will be explained shortly in Sect. 1.3. For the
specific SfM problem at hand, there are two major insights
gained by such a tensorial formulation:

(i) As a theoretical contribution, the formulation readily
reveals that any trajectory seen by any camera is restricted
to a low dimensional linear subspace, specifically to a
13D motion subspace for general rigid motions and to a
5D motion subspace for planar rigid motions.

(ii) In practical terms, the rank constraint of the motion sub-
spaces together with the knowledge of the algebraic struc-
ture contained in the data enables a closed-form solution
to the SfM problem, for both the general rigid motions
(Sect. 7) and the planar rigid motions (Sect. 8).

It is interesting to note that even though the multilinear for-
mulation stays almost the same for both the general and
the planar rigid motions, the actual algorithm to compute
a closed-form solution changes drastically. Our algorithms
introduce several new techniques and tricks which might
prove useful for other factorization problems, as well.
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Fig. 1 The data tensor W containing the feature point tracks can be
viewed as a linear combination of third-order tensors each of which
equals the outer product of three vectors (so called simple tensors). The
coefficients for this linear combination are stored in the core tensor S,
which in our case simply consists of only 13 non-zero entries (visual-
ized as black squares). Stacking all the vectors of these simple tensors
according to their mode next to each other reveals the motion matrix M,
the camera matrix C, and the coordinates of the points S. The difficulty
lies in decomposing the given data tensor into these 13 simple tensors
in the presence of missing data entries

The applicability of our algorithm is shown on synthetic
as well as on real data sequences in Sects. 11 and 12. We
even show how to calibrate a camera which only tracks one
single feature point which is not in correspondence with any
other point tracked by any other camera. The paper con-
cludes in Sect. 13 by presenting some ideas for potential
future research.

1.3 Why Tensors?

As we will derive in Sect. 4, the algebraic constraints hidden
in feature point trajectories due to a common rigid motion
are most easily captured by a trilinear tensor interpretation.
This enables an intuitive and concise formulation and inter-
pretation of the data, as visualized in Fig. 1 (The notation
used in this figure will described in detail in Sect. 4).

Getting familiar with tensor formulations requires some
effort, but as we will shortly see in more detail in the upcom-
ing sections, tensor notation offers several advantages to
formalize and unify the various factorization approaches.
Firstly, the derivation of rank constraints on certain matrices
follows directly from tensor decomposition analysis (Sect. 4).
This avoids a cumbersome formulation on how to reorder
the coordinates of feature point tracks into a matrix. Sec-
ondly, ambiguities (Sect. 5) and degenerate cases (Sect. 9)
are discovered more easily and proofs are simplified. Finally,
a tensor-based formulation establishes a link to other fields

of research dealing with similar problems, such as microar-
ray data analysis in bioinformatics, blind source separation
problems in signal processing, or collaborative filtering in
machine learning. A common formulation shared between
different communities allows to share ideas more easily.
For example iterative schemes (like the ones presented in
Sect. 10) developed especially for multilinear problems can
easily be applied if a more general framework and notation
is at hand.

2 Notation

The following notation will be used throughout the paper.
Matrices are denoted with bold upper case letters A whereas
vectors are bold lower case a. We use calligraphic letters A
for tensors. Matrices built up from multiple submatrices are
enclosed whenever possible by square brackets [· · · ], vec-

tors built from multiple subvectors by round brackets
(...
)
.

The identity matrix of dimension D × D is denoted as ID .
A∗ denotes the Moore–Penrose pseudo-inverse of matrix A.
The orthogonal projection matrix onto the column space of
a matrix A is denoted as PA. The projection matrix onto the
orthogonal complement of the column space of A is P

⊥
A =

I − PA. A matrix whose columns span the orthogonal com-
plement of the columns of matrix A is denoted as [A]⊥. Con-
catenation of multiple matrices indexed with a sub- or super-
script i is represented with arrows. For example, [⇓i Ai ]
concatenates all the matrices Ai below each other, implicitly
assuming that each of them consists of the same number of
columns. The operator stacks multiple matrices Ak into
a block-diagonal matrix [ Ak]. The Matlab® standard
indexing notation is used for the slicing operation (cutting
out certain rows and columns of a matrix), so A[i : j,k:l] cor-
responds to the submatrix of A which is given by selecting
rows i to j and columns k to l. The cross product between two
three-vectors can be formulated as a matrix-vector product

where [a]× denotes the skew-symmetric cross-product matrix
built from the indices of vector a.

K is the total number of static cameras, k ∈ {1, . . . , K }
denotes one specific camera, F is the total number of
observed frames and f ∈ {1, . . . , F} labels one specific
frame. The number of tracked feature points in camera k
is given by Nk . Coordinates in an affine world coordinate
frame will be denoted with a tilde Ã whereas coordinates in
an Euclidean frame will simply be stated as a bold letter A.
As we will see later on, some matrices appearing in our for-
mulation must comply with a certain algebraic structure. A
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matrix which spans the same subspace as matrix A but which
does not comply with the algebraic structure for A prescribed
by the problem at hand is denoted with a hat Â.

3 Multilinear Algebra

Concepts from tensor calculus will be introduced in this sec-
tion. More specifically the mode-i product and the Tucker
tensor decomposition (Tucker 1966) are defined and several
relationships between tensors, the Kronecker product⊗, and
the vec (·)-operator are stated. We refer to (Lathauwer et al.
2000; Magnus and Neudecker 1999; Kolda and Bader 2009)
for an introductory text on multilinear algebra, tensor opera-
tions and decomposition.

3.1 Tensors and the Tucker Tensor Decomposition

Tensors express multilinear relationships between variables
and are thus a generalization of entities used in linear alge-
bra, i.e., vectors (first-order tensors) and matrices (second-
order tensors). A tensor of order n can be thought of as a
n-dimensional array of numbers. Varying the i th index of
a tensor while keeping the remaining indices fixed defines
the mode-i vectors. An important tool for the analysis and
usage of tensors is the mode-i product. The mode-i prod-
uct B = A ×i M is a tensor-valued bivariate function of
a nth-order tensor A ∈ R

I1×I2×···×In and a Ji -by-Ii matrix
M. The resulting tensor B is given by left-multiplying all
the mode-i vectors by the matrix M. The tensor B is still
of order n, the dimension of the mode-i vectors however
changed from Ii to Ji . An efficient and easy way to compute
such a mode-i product is to flatten the tensor A along its i th-
mode (which means stacking all the mode-i vectors of A into
one big matrix A(i) ∈ R

Ii×∏n
j �=i I j ) and to left-multiply by

the matrix M. This provides the resulting flattened version
of B(i) = MA(i). A straight forward reordering of the ele-
ments of this flattened tensor leads to the tensor B. Note that
the order in which the mode-i vectors are put next to each
other is unimportant as long as the reshaping of B(i) into a
tensor B is performed consistently. Interestingly, the order in
which the mode-i products are applied to a tensor does not
matter, as long as they are applied along different modes. So
for example we have (A×1 U1)×2 U2 = (A×2 U2)×1 U1,
and thus we simply write A×1 U1 ×2 U2.

Given that the measured data can be modeled as a tensor,
various algorithms exist to analyze the underlying algebraic
structure of the process which generated the measured data
and also to decompose the data tensor into more meaning-
ful parts. The most prominent two tensor decompositions
are the canonical decomposition (aka. parallel factor model
PARAFAC) (Carroll and Chang 1970; Harshman 1970) and

the Tucker decomposition (Tucker 1966). A more recent
decomposition (Lathauwer et al. 2000), the higher order sin-
gular value decomposition, extends the Tucker decomposi-
tion by imposing certain orthogonality constraints. However,
the Tucker decomposition without orthogonality constraints
is the most suitable tensor decomposition for our purposes
because it reveals the underlying mode-i subspaces with-
out imposing unnecessary orthogonality constraints on them.
The mode-i subspace is the span of all the mode-i vectors of
a tensor. The Tucker decomposition of a nth-order tensor A
expresses the tensor as n mode-i products between a smaller
core tensor S ∈ R

r1×...rn and n matrices Mi ∈ R
Ii×ri

A = S ×1 M1 ×2 M2 ×3 · · · ×n Mn, (1)

where the columns of Mi represent a basis for the mode-i sub-
space. If for all ri < Ii , the Tucker decomposition provides
a dimensionality reduction since the number of parameters
decreases when using a smaller core tensor. This representa-
tion is exact if each mode-i subspace is indeed only of dimen-
sion ri < Ii , otherwise the Tucker decomposition provides a
suitable low-dimensional approximation to the original data
tensor (Lathauwer et al. 2000). Unfortunately, the Tucker
decomposition is known to be non-unique since a basis trans-
formation applied to the mode-i subspace can be compen-
sated by the mode-i product of the core tensor with the inverse
of this linear transformation S×i M = (S×i Q−1)×i [Mi Q].
This fact will become important in Sect. 5.

3.2 The Kronecker Product and the vec ()-operator

The Kronecker product⊗ is closely related to the tensor prod-
uct, it is not by accident that both products share the very same
symbol. The Kronecker product is a matrix-valued bilinear
product of two matrices and generalizes the bilinear outer
product of vectors abT to matrices. Throughout this section,
let A ∈ R

m×n and B ∈ R
p×q . Then A ⊗ B ∈ R

mp×nq is a
block structured matrix where the (i, j)th block equals the
matrix B scaled by the (i, j)th element of A. This implies
for example that the first column of A ⊗ B equals the vec-

torized outer product vec
(

B:,1AT:,1
)

of the first column of

A and B. Here, the vectorization operator vec (A) has been
used which is usually defined in matrix calculus as the vec-
tor which results by stacking all the columns of matrix A
into a column vector. We also define a permutation matrix
Tm,n ∈ R

mn×mn such that vec
(
AT

) = Tm,nvec (A).
The Kronecker product is helpful in rewriting matrix equa-

tions of the form AXBT = C which is equivalent to

vec (C) = vec
(
AXBT

) = [B⊗ A]vec (X) . (2)

If the number of rows and columns of the matrices A, B, C,
and D are such that AC and BD can be formed, then the
mixed-product property of the Kronecker product states that

123



244 Int J Comput Vis (2013) 103:240–266

[A⊗ B][C⊗ D] = [AC] ⊗ [BD]. (3)

Closer inspection of Eq. (1) reveals a first link between the
Kronecker product and tensors: the tensor A is actually a sum
of n-fold outer products M1,(:,i1)⊗· · ·⊗Mn,(:,in) (these prod-
ucts are also known as decomposable, simple, or pure tensors)
weighted by the corresponding entry of the core tensor

A = ∑

1≤i1≤ri ,...,1≤in≤rn

Si1,...,in M1,(:,i1) ⊗ · · · ⊗Mn,(:,in). (4)

The Kronecker product provides a link between the Tucker
decomposition and ordinary matrix multiplication. Specifi-
cally, given a Tucker decomposition A = S×1 M1×2 · · ·×n

Mn , the flattened tensor A(i) along mode i is then given by

A(i) =MiS(i)
[
M1 ⊗ · · · ⊗Mi−1 ⊗Mi+1 ⊗ · · · ⊗Mn

]T
,

or equivalently vec (A) = [M1 ⊗ · · · ⊗Mn] vec (S) (assum-
ing a consistent vectorization of the tensor entries). The pre-
vious equations clearly show the relation to Eq. (2): The core
tensor generalizes the matrix X in Eq. (2) by capturing inter-
actions between more than just two subspaces (induced by
the column and row span of matrix C in Eq. (2)).

A slight variation of the Kronecker product is the Khatri-
Rao product A 	 B ∈ R

mn×p which is defined for two
matrices A ∈ R

m×p and B ∈ R
n×p with the same num-

ber of columns. Specifically, the Khatri-Rao product takes
the columnwise Kronecker product between corresponding
pairs of columns A 	 B = [⇒i A:,i ⊗ B:,i

]
. The Khatri-

Rao product also enjoys a product property for matrices of
appropriate dimensions [C⊗ D] [A	 B] = [CA	 DB].

3.3 Solving Multilinear Matrix Equations

The paper is heavily based on multilinear matrix and tensor
notations. As we will see, this representations facilitates rea-
soning about specific problem instances. Eventually how-
ever, often a linear least squares problem has to be solved
for the unknowns or the Jacobian with respect to a matrix
unknown has to be computed. Linear systems in standard
form Ax = b can be readily solved with any least-squares
method of choice (e.g. with QR-decomposition or singular-
value decomposition) and analytical Jacobians allow for
more efficient implementation of iterative methods. Thus,
there is a need to do matrix calculus, but unfortunately
there is no clear consensus on how to do calculus with
matrix unknowns. We stick with the concepts introduced in
(Magnus and Neudecker 1999) and refer the interested reader
to this reference for details which go beyond the following
brief introduction.

Knowing how to rewrite the three following instances of
matrix equations allows to express all the matrix equations
mentioned in the paper in standard form (these identities will
become especially handy in Appendix A and Appendix B).

(i) The Matrix Equation AXB = C: The Jacobian of AXB
w.r.t. x = vec (X) is Jx = BT ⊗ A which leads to the
linear system in standard form Jxx = vec (C).

(ii) The equation vec (X⊗ Y): Let X ∈ R
m×n and Y ∈

R
p×q . Then the following identities hold:

vec (X⊗ Y) = [
In ⊗ Tq,m ⊗ Ip

]
(vec (X)⊗ vec (Y))

= [
In ⊗ Tq,m ⊗ Ip

] ·
[Imn ⊗ vec (Y)] vec (X) (5)

= [
In ⊗ Tq,m ⊗ Ip

] ·
[
vec (X)⊗ Ipq

]
vec (Y) (6)

(iii) The Matrix Equation X ⊗ Y = C: Let X ∈ R
m×n and

Y ∈ R
p×q . Using the previous identity, we see that the

Jacobian w.r.t. the vectorized unknowns x = vec (X) and
y = vec (Y) is

Jx,y =
[
In ⊗ Tq,m ⊗ Ip

] ·
[
Imn ⊗ vec (Y) , vec (X)⊗ Ipq

]
. (7)

The bilinear matrix equation X⊗Y = C is thus equiva-
lent to

Jx,y

(
vec (X)

vec (Y)

)
= vec (C) . (8)

4 Applying Tensor Algebra to SfM Problems

This section applies the techniques introduced in Sect. 3 to
the structure-from-motion (SfM) problem for affine cameras.
The rigid monocular affine SfM problem was introduced in
the seminal work by Tomasi and Kanade (1992). In the fol-
lowing two sections, this approach is extended to the case of
multiple cameras, firstly when the cameras observe general
rigid motions, and secondly when the cameras observe a pla-
nar motion. Throughout the derivation, we ask the reader to
keep the illustration in Fig. 1 in mind which shows a graphi-
cal illustration of the tensor decomposition of the structure-
from-motion data tensor.

4.1 General Rigid Motion: 13D Motion Subspace

For the following derivation, the x- and y-axis of a cam-
era are initially treated separately. Hence, 1D projections
of 3D points onto a single camera axis will be considered
first. The affine projection W[k, f,n] of the nth feature point
with homogeneous coordinates sn ∈ R

4×1 undergoing a rigid
motion

[
R f t f

]
at frame f , onto the kth affine camera axis

cT
k ∈ R

1×4 reads like
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W[k, f,n] = cT
k

[
R f t f

0 1

]
sn = vec

([
R f t f

0 1

])T [
sn ⊗ ck

]

=
[
vec

(
R f

)T tT
f 1

]
S( f )

[
sn ⊗ ck

]
, (9)

where the Kronecker product property of Eq. (2) and
W[k, f,n] = WT[k, f,n] ∈ R was used in the second step. In

the last line, we introduced the core tensor S ∈ R
4×13×4

flattened along the temporal mode in order to get rid of the
zero columns from the vectorized rigid motion. This flattened
tensor thus looks like

S( f ) =
[

I3 ⊗
[
I3 03×1

]
09×4

04×12 I4

]
∈ R

13×16. (10)

We recall that by Eq. (4), the core tensor captures the inter-
actions between the involved subspaces of the data ten-
sor. The camera axes of all the K cameras can be stacked
vertically into a camera matrix C = [⇓k cT

k

] ∈ R
2K×4

(each camera has a x- and y-axis). In a similar way, the
tracked feature points can be stacked into a structure matrix
S = [⇒n sn

] ∈ R
4×∑k Nk . By introducing the motion matrix

M =
[
⇓ f

[
vec

(
R f

)T tT
f 1

]]
∈ R

F×13

we finally get the equation for the coordinates of the trajectory
of the nth feature point projected onto the kth camera axis
W[k,:,n] = MS( f )[ST[:,n] ⊗ C[k,:]]T . Fixing a column order-
ing scheme ⇒n,k consistent with the Kronecker product,
we derive the equation for a third-order data tensor W ∈
R

2K×F×∑k Nk flattened along the temporal mode f

W( f ) =
[⇒n,k W[k,:,n]

] =MS( f )[ST ⊗ C]T . (11)

This leads to the following

Observation 1 Any trajectory over F frames of a feature
point on an object which transforms rigidly according to R f

and t f at frame f and observed by any static affine camera
axis is restricted to lie in a 13-dimensional subspace of a F-
dimensional linear space. This subspace is spanned by the
columns of the rigid motion matrix

M =
[
⇓ f

[
vec

(
R f

)T tT
f 1

]]
∈ R

F×13, (12)

and is independent of both the camera axis and the coordi-
nates of the feature point.

Equation (11) exactly corresponds to a Tucker decomposi-
tion of the data tensor flattened along the temporal mode
with a core tensor S. The original tensor is therefore given
by consistently reordering the elements of the flattened core
tensor into a third order tensor S ∈ R

4×13×4 and by apply-
ing the three mode-i products between the core tensor and

the mode- f , mode-k, and mode-n subspaces M, C, and ST ,
respectively:

W = S × f M×k C×n ST (13)

Note that f, k, and n are used for readability reasons as labels
for the mode-i product along the temporal mode, the mode
of the camera axes, or the mode of the feature points, respec-
tively. This derivation clearly shows the trilinear nature of
the image coordinates of the projected feature trajectories.

4.2 Planar Rigid Motion: 5D Motion Subspace

The rotation around an axis a by an angle α can be expressed
as a rotation matrix Ra,α = cos αI3 + (1 − cos α)aaT +
sin α [a]×. Rotation matrices Ra,α around a fixed axis a are
thus restricted to a three dimensional subspace in nine dimen-
sional Euclidean ambient space

vec (R) = [
vec (I3) vec

(
aaT

)
vec

(
[a]×

)]
⎛

⎝
cos α

1− cos α

sin α

⎞

⎠ .

Let the columns of V = [a]⊥ ∈ R
3×2 denote an orthonormal

basis for the orthogonal complement of the rotation axis a,
i.e. these columns span the plane orthogonal to the rotation
axis. A rigid motion induced by this plane (i.e. the rotation
is around the plane normal and the translations are restricted
to shifts inside the plane) is then given by
⎛

⎝
vec

(
Ra,α

)

vec (Vt)
1

⎞

⎠

=
⎡

⎣
vec (I3) vec

(
aaT

)
vec

(
[a]×

)
09×2

03×1 03×1 03×1 V
1 1 0 01×2

⎤

⎦

⎛

⎜⎜
⎝

cos α

1− cos α

sin α

t

⎞

⎟⎟
⎠ ,

(14)

which shows that any rigid motion in this plane is restricted
to a five dimensional subspace of 13-dimensional (or 16 if
zero-entries are not disregarded) Euclidean space. Interest-
ingly, by noting that the space of symmetric rank-1 matrices
vec

(
aaT

)
considered as a linear space is 6-dimensional, we

see that rotations around at least five different axes of rotation
are required to span the full 13-dimensional space (the vec-
tor space of skew-symmetric matrices [a]× is 3-dimensional
and thus rotations around three different axes already span
this space, whereas the identity matrix is also symmetric and
therefore only 5 remaining linear degrees of freedom of the
3× 3-symmetric rank-1 matrices must be provided by addi-
tional rotation axes).

Plugging the representation Eq. (14) into the motion
matrix of Eq. (12) we get
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M = [⇓ f (cos α f , (1− cos α f ), sin α f , tT
f )] ·

⎡

⎢⎢⎢
⎣

vec (I3)
T 01×3 1

vec
(
aaT

)T
01×3 1

vec
(
[a]×

)T 01×3 0
02×9 VT 02×1

⎤

⎥⎥⎥
⎦

, (15)

which shows that the temporally varying variables separate
from the temporally constant variables, namely the axis of
rotation a and the plane of rotation V. When combining
Eq. (15) with Eq. (11), the temporally constant matrix built
from the axis of rotation and plane of rotation can be absorbed
into a new core tensor

C( f ) =

⎡

⎢⎢⎢
⎣

vec (I3)
T 01×3 1

vec
(
aaT

)T
01×3 1

vec
(
[a]×

)T 01×3 0
02×9 VT 02×1

⎤

⎥⎥⎥
⎦

[
I3 ⊗

[
I3 03×1

]
09×4

04×12 I4

]

︸ ︷︷ ︸
=S( f )

∈ R
5×16

(16)

and the number of columns in the new planar motion matrix

M = [⇓ f (cos α f , (1− cos α f ), sin α f , tT
f )] (17)

hence reduces to 5. The resulting matrix is exactly the same
as the data tensor flattened along the temporal mode W =
W( f ) = MC( f )

[
S⊗ CT

]
, in contrast to the general rigid

motion this time the matrix is only of rank 5. The data tensor
is thus described again as a Tucker tensor decomposition
W = C×kC× f M×nST ∈ R

2K×F×N with slightly modified
motion matrix M ∈ R

F×5 (see Eq. (17)) and core tensor C ∈
R

4×5×4 as given in Eq. (16). We summarize these findings in

Observation 2 Any trajectory over F frames of a feature
point on an object which transforms rigidly in a plane (with
plane normal a and orthogonal complement V = [a]⊥ ∈
R

3×2) according to Ra,α f and Vt f at frame f and observed
by any static affine camera axis is restricted to lie in a
5-dimensional subspace of a F-dimensional linear space.
This subspace is spanned by the columns of the planar rigid
motion matrix

M = [⇓ f (cos α f , (1− cos α f ), sin α f , tT
f )] ∈ R

F×5, (18)

and is independent of both the camera axis and the coordi-
nates of the feature point.

5 Ambiguities

Due to inherent gauge freedoms, a matrix or tensor factor-
ization (and thus also a 3D reconstruction) is never unique.
This section presents ambiguities arising in multi-camera
structure-from-motion problems. Thanks to the tensor for-
mulation, the derivation of such ambiguities is rather straight-
forward, at least for the general rigid motion case. Note that

these gauge freedoms will lead to rank deficient linear sys-
tems (e.g.see Sect. 7) since there is an infinite number of valid
solutions. In order to solve these linear systems, it is para-
mount to know the dimensionality of their nullspace which
is revealed by an analysis of the ambiguities. Furthermore,
the algorithm for planar rigid motions in Sect. 8 is strongly
based on exploiting the ambiguities due to the inherent gauge
freedom in order to derive a closed-form solution.

5.1 Multi-Camera Rigid Motion

The Tucker decomposition is known to be non-unique since
a basis transformation applied to the mode-i subspace can
be compensated by the mode-i product of the core tensor
with the inverse of this linear transformation A ×i Mi =
(A ×i Qi ) ×i Mi Q

−1
i (see Sect. 3.1). This would obvi-

ously result in changing the entries of the known core tensor
(Eq. (10)). However, affine transformations of the camera
matrix and points can be compensated by a suitable trans-
formation of the motion subspace keeping the known core
tensor thus unchanged. Let

QC =
[

RC tC

01×3 1

]
and QS =

[
RS tS

01×3 1

]

denote two affine transformations of the global camera refer-
ence frame and the global point reference frame, respectively.
The factorization is obviously ambiguous

W[:, f,:] = CQ−1
C QC

[
R f t f

01×3 1

]
QSQ−1

S S. (19)

In tensor notation, this equation looks like

W =
(
S ×k QC × f QM ×n QT

S

)

×kCQ−1
C × f MQ−1

M ×n

[
ST Q−T

S

]
,

where QM denotes an appropriate transformation of the
motion matrix. Now the question is, how does this trans-
formation QM have to look like in order to compensate for
the affine transformations of the cameras and the points, i.e.
such that the core tensor does not change? We can simply
solve for QM in the equation S = S × f QM ×k QC ×n QT

S
which leads to

QM = S( f )[Q−T
S ⊗Q−1

C ]T ST
( f ). (20)

The inverse of this transformation is then applied to the
motion matrix M ← MQ−1

M which compensates for the
affine transformations of the cameras and points. Note that
even if we are working in an Euclidean reference frame
(which means that the motion matrix fulfills certain rota-
tional constraints) and the transformation applied to the
camera and point matrices are Euclidean transformations
then the implied motion matrix MQ−1

M still fulfills the rota-
tional constraints. This clearly shows that the factorization
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is only unique up to two affine resp. two Euclidean trans-
formations QS and QC which should not come as a sur-
prise since Eq. (9) is a product involving three factors and
hence two ambiguities arise between these factors as shown
in Eq. (19).

5.2 Multi-Camera Planar Rigid Motion

A similar reasoning as in the previous section also applies in
the case of planar rigid motions. The factorization is again
ambiguous

W[:, f,:] = CQ−1
C QC

[
Ra,α f Vt f

01×3 1

]
QSQ−1

S S. (21)

The planar case however requires a distinction between two
components of a transformation: Any transformation can
be decomposed into a component which solely acts on the
space spanned by the plane of motion and a component
which captures the remaining transformation. We refer to
the former component as a transformation inside the plane
whereas the latter is called a transformation outside the plane.
Analogously to the fact that the plane at infinity is invariant
under affine transformations, the plane of rotation is invari-
ant (not point-wise, though!) under transformations inside
the plane.

Interestingly in contrast to general rigid motions, only
transformations QC and QS which are restricted to similarity
transformations inside the plane of motion can be compen-
sated by a corresponding transformation QM of the reference
frame of the motion matrix without changing the core ten-
sor C. In mathematical terms, the overconstrained system
C×k QC × f QM ×n QT

S = C can be solved exactly for QM ,

i.e. QM = C( f )

[
Q−1

S ⊗Q−T
C

]
C∗( f ) if the transformations

QC and QS are restricted to similarity transformations inside
the plane of motion. Since the first three columns of MQ−1

M
should still lead to proper rotations, the scaling factor of the
similarity transformations of the cameras and points must
cancel each other. The reconstruction restricted to the plane
of motion is thus unique up to two similarity transformations
with reciprocal scaling (one for the cameras and one for the
points). Only transformations, whose restrictions to the plane
of motion are similarity transformations with reciprocal scal-
ings, seem to allow a solution to C×k QC× f QM×n QT

S = C.
This fact will be important later on in our algorithm: Let us
assume that a motion matrix has been found whose restric-
tion to the plane of motion has proper algebraic structure,
then we are guaranteed that the reconstruction restricted to
this plane is uniquely determined up to a similarity transfor-
mation, which is a stronger guarantee than just being unique
up to an affine transformation.

Transformations of the points or cameras outside the plane
of rotation can not be compensated by a transformation of

the motion. A out-of-plane transformation of the cameras has
to be compensated directly by a suitable transformation of

the points. Let Za,λ =
[
V a

]
diag (I2, λ)

[
V a

]T
be a scaling

along the rotation axis, R an arbitrary rotation matrix, and
t‖ = aβ a translation along the rotation axis. With the camera
and point transformations

QC =
[

RZa,λ −RZa,λt‖
01×3 1

]
and QS =

[
Z−1

a,λRT t‖
01×3 1

]

it can be shown that Ca,V×k QC×n QT
S = CRa,RV where Ca,V

denotes the core tensor with rotation axis a and orthogonal
complement V. Note that neither the scaling nor the trans-
lation along the rotation axis influences the core tensor or
the motion matrix. Hence, there is a scaling and translation
ambiguity along the axis of rotation.

In the problem we are targeting, there are no point corre-
spondences between different cameras. In this situation there
is a per camera scale and translation ambiguity along the rota-
tion axis. There is still only one global out-of-plane rotation
ambiguity: the transformation of the plane of rotation is still
linked to the other cameras through the commonly observed
planar motion, even in the presence of missing correspon-
dences. Fortunately, as we will see later, the scale ambiguity
along the rotation axis can be resolved by using orthogonal-
ity and equality of norm constraints on the camera axes. The
translation ambiguities along the rotation axis however can
not be resolved without correspondences between different
camera views. Nevertheless, by registering the centroids of
the points observed by each camera to the same height along
the rotation axis, a solution close to the ground truth can
usually be recovered.

6 Rank-4 versus Rank-8 Factorization

We first state the classical factorization approach for rigid
motions for one single camera (Tomasi and Kanade 1992)
in our tensor formulation. We recall the dual interpretation:
either we can think of the data being generated by a mov-
ing rigid object observed by a static camera or by a mov-
ing camera observing a stationary rigid object. Let us first
stick with the latter interpretation. The rigid motion is then
absorbed in a temporally varying sequence of camera matri-

ces C f = C
[

R f t f

01×3 1

]
∈ R

2×4. The projections of the

points S = [⇒n sn] ∈ R
4×N are collected in a matrix

W = [⇓ f C f
]

[⇒n sn] ∈ R
2F×N , (22)

which is maximally of rank 4 due to the rank theorem. So
where is the connection to our previously derived tensor for-
mulation? By closer inspection of Eq. (22), we note that this
data matrix actually exposes the structure matrix and thus
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equals the transpose of the previously described data ten-
sor flattened along the mode of the points W = WT

(n) =
[M⊗ C] ST

(n)S with the motion matrix as given in Eq. (12).
Here, the duality of the interpretation whether the camera or
the structure is moving is clearly revealed.

Decomposing this data matrix using the rank-4 singular
value decomposition

W = U�VT = [U�
1
2 ][� 1

2 VT ] = P̂Ŝ (23)

results in an affine reconstruction of the moving camera

matrices P̂ = U�
1
2 and the structure matrix Ŝ = �

1
2 VT .

The affine reconstruction can be upgraded via a corrective
transformation to a similarity reconstruction by computing
the least squares solution of an overconstrained system of
linear equations which ensures the orthogonality and equal-
ity of norms conditions between the two rows of the camera
rotation matrix. (Brand 2001) nicely describes the algorithm
to compute this corrective transformation.

Later, we will see that the flattening along the temporal
mode W( f ) is more revealing than the flattening along the
mode of the points. This is related to Akhter et al.’s (2011)
notion of duality between trajectory and shape space for non-
rigid motions. Note that our tensor formulation shows these
results more explicitly and easily, together with all the ambi-
guities due to the inherent gauge freedoms. We note, that in
the single camera case, W( f ) will maximally be of rank 8
instead of 13. This is due to the fact that the rank of a Kro-
necker product between two matrices equals the product of
the rank of its two factors. The rank of matrix C is only two
in the single camera case, and hence the matrix ST ⊗ C in
Eq. (11) is of rank 8. Interestingly, for rigid planar motions,
even a single camera already spans the complete 5D motion
space since the rank of W( f ) will be upper bounded by 5
anyway.

The major question in the upcoming two sections is how to
find a corrective transformation when multiple cameras are
observing the very same rigid body motion, but no feature
point correspondences between different cameras are avail-
able. This corrective transformation should ensure orthogo-
nality constraints on rotation or camera matrices as well as
ensure a correct algebraic Kronecker structure. This problem
is closely linked to the problem of finding a corrective trans-
formation in non-rigid SfM formulations using blend shapes.
We refer to (Xiao et al. 2004) for some insights on how to
compute the corrective transformation in closed-form in the
case of the non-rigid blend shape formulation.

7 Rank-13 Factorization

With the previously derived formulation, our problem can be
restated in the following way. Given the knowledge of certain

elements of the third-order tensor W , compute the underly-
ing mode- f , mode-n, and mode-k subspaces (M, ST , and
C, respectively) which generate the data tensor according
to Eq. (13). Our problem thus essentially boils down to a
multilinear tensor factorization problem. If there is no miss-
ing data, i.e. ∀k, f, n : W[k, f,n] is known, the computation
of the Tucker decomposition (Tucker 1966) is straight for-
ward and the unknown subspaces M, S, and C are directly
revealed by this decomposition. Missing entries in the data
tensor however prevent the application of the standard Tucker
decomposition algorithm. If the pattern of missing entries
is completely unstructured, we must resort to iterative fac-
torization methods. The problem of matrix factorization in
the presence of missing or outlying measurements pops up
in many different fields of research, such as bioinformat-
ics, signal processing, and collaborative filtering. We think
this is an interesting route of research and needs further
investigation. We only glimpse at the tip of the iceberg of
iterative techniques in Sect. 10 bearing in mind that there
are many different approaches to attack factorization prob-
lems with general patterns of missing entries (see e.g.Aguiar
et al. (2008) for an algebraically oriented approach for bilin-
ear matrix factorizations if the pattern of missing entries fol-
lows a certain pattern known as the Young diagram and ref-
erences therein for other approaches). This paper however
focuses on how a certain pattern of missing entries can be
combined with the very specific structure of the SfM prob-
lem in order to derive a closed-form solution. This solution is
based on several sequential steps which are summarized by
Algorithm 1 from high level whereas the upcoming sections
provide a detailed description of each individual step.

7.1 Missing Correspondences

Let us now consider the setting where each camera k observes
its own set of feature points Sk ∈ R

4×Nk and hence, there
are no correspondences available between different camera
views. In this case, each camera no longer observes every
point, i.e., there are tuples (k, n) for which the value W[k, f,n]
is unknown. Without loss of generality we can assume that
the points in S are given by stacking the individual Sk next
to each other S = [⇒k Sk

]
. As we can see in Fig. 2, only
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Fig. 2 If there are no feature point correspondences between differ-
ent camera views then the data tensor W has many missing data entries
(missing data entries are visualized transparently). Along the third order
data tensor itself, its three flattened versions are shown as well. Note
that only W( f ) has completely known columns which allows to com-

pute a basis of the motion subspace span (M). Due to the block-diagonal
structure of the known data entries, the remaining two flattened tensors
cannot be used to compute a consistent subspace for the camera matrices
or the coordinates of the points

the flattened tensor W( f ) along the temporal mode f con-
tains some columns whose entries are all known, amongst
many completely unknown columns. These known columns
however still span the complete 13-dimensional mode- f sub-
space. Analogously to the well-known rank-4 factorization
approach, this rank-13 constraint can be used to robustly
decompose the known 2

∑
k Nk columns of the flattened

data tensor W( f ) with a singular value decomposition into
a product of two rank-13 matrices. Formally, the data ten-
sor Wk ∈ R

2×F×Nk of each camera is flattened along the
temporal mode and the resulting matrices Wk = Wk

( f ) =
MS( f )[Sk ⊗ Ck T ] are concatenated column-wise in a com-
bined data matrix W = [⇒k Wk]. A rank-13 matrix factor-
ization (e.g. with SVD W = U�VT ) reveals the two factors
M̂ = U ∈ R

F×13 and Â = �VT ∈ R
13×2

∑
k Nk which

fulfill

W =MS( f )

[
⇓k Sk T ⊗ Ck

]T = [M̂Q][Q−1Â]. (24)

This factorization separates the temporally varying compo-
nent (the motion) from temporally static component (the
points and the cameras). The factorization is possible since
all the cameras share the same temporally varying component
as all of them observe the same rigid motion. However, as
indicated with an unknown 13-by-13 transformation matrix
Q, the factorization provided by the singular value decompo-
sition does not conform to the correct algebraic structure of
the flattened tensor along the temporal mode. For example,

the second factor S( f )

[
⇓k Sk T ⊗ Ck

]T
must have a specific

algebraic structure induced by the Kronecker-product but a
general rank-13 factorization will yield a matrix Â which
does not conform to this structure. The main problem is there-
fore to find a corrective transformation Q which establishes
a correct algebraic structure in M̂Q and in Q−1Â.

7.2 Stratified Corrective Transformation

Inspired by stratified upgrades for projective structure-from-
motion reconstructions (where the plane at infinity is fixed
first and after that, the image of the absolute conic is com-
puted, see Chap. 10.4 in Hartley and Zisserman (2004)
for more details.), we propose to use a stratified approach
to compute the unknown corrective transformation matrix
Q = Qa f f Q−1

kronQmetric. Qa f f isolates the camera trans-

lations from the remaining rows of Â and thus resembles
an affine upgrade. The correct algebraic Kronecker-structure
of an affine version Ã of A is enforced by Q−1

kron , whereas
Qmetric finally performs a similarity upgrade. The following
subsections present each step in detail.

7.2.1 Affine Upgrade

The first step in computing Q consists in transforming the
last column of the motion matrix M̂ such that it conforms
to the one vector 1 of M. We will call this step the affine
upgrade. Specifically, we solve for qa f f in 1F×1 = M̂qa f f .
A guaranteed non-singular affine upgrade is then given by
Qa f f =

[[
qa f f

]
⊥ qa f f

]
, where

[
qa f f

]
⊥ denotes an orthog-

onal basis for the nullspace of qa f f . We cannot gain any
more knowledge by analyzing M̂, yet. We therefore turn our
attention toward Â.

7.2.2 Computing Affine Cameras

As previously mentioned, in this step we look for a transfor-
mation Qkron which ensures the correct algebraic structure
of an affine reconstruction

Ã = QkronQ−1
a f f Â = S( f )

[
⇓k S̃k T ⊗ C̃k

]T
. (25)
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This is a bilinear problem in the unknowns Qkron, S̃, and
C̃. Since the product between Q−1

kron and Qmetric should not
modify the last column of Qa f f anymore, the last column of
Q−1

metricQkron has to be equal to (01×12, 1)T . This together
with the fact that the structure of Qmetric must follow the
structure in Eq. (20) implies that the last column of Qkron

equals (01×12, 1)T and thus only the first 12 columns of Qkron

are actually unknown. By realizing that the last row of S̃
corresponds to the one vector we see that the last four rows of
Eq. (25) actually describe an over-determined linear problem
in the 4·12+2K ·4 unknowns of Qkron,[10:13,1:12] and C̃. The
resulting system can be solved linearly in the least-squared
sense (see Appendix A for details).

7.2.3 Camera Self-Calibration

A self calibration approach can be used by assuming zero
skew, principal point at origin, and a known aspect ratio
equal to 1. This yields a diagonal intrinsic camera matrix
Kk = diag (sk, sk, 1) and we can use self-calibration meth-
ods using the dual quadric, see Hartley and Zisserman (2004),
Sect. 19.3. Since we computed affine camera matrices, the

dual quadric is of the form �∗∞ =
[

�3×3 03×1

01×4

]
, which

means we only require at least three rather than four cameras
observing the scene to compute symmetric �∗∞. However, if
there is no prior knowledge about the intrinsic camera matri-
ces available, if there are only two cameras, or if we are not
only interested in the camera matrices but also in the rigid
transformations and the points observed by the cameras, the
steps explained in the next subsections are necessary.

7.2.4 Enforcing the Kronecker-Structure

Once an affine camera matrix C̃ is known, the originally
bilinear problem reduces to a linear one

Ã = S( f )[⇓k S̃k T ⊗ C̃k]T = QkronQ−1
a f f Â (26)

in the unknowns S̃k and Qkron . This is again an over-
determined linear problem with 3

∑
k Nk + 9 · 12 unknowns

since the last four rows and the last column of Qkron are
already known and the last column of S̃ should equal the
constant one vector (Appendix B provides details on how to
set up and solve this system).

7.2.5 Metric Upgrade

There is not enough information contained in S( f )(S̃T ⊗
C̃)T = QkronQ−1

a f f Â to perform the metric upgrade and we
thus have to turn our attention again to the rigid motion matrix
M̂. However, in contrast to Sect. 7.2.1, an affine reconstruc-
tion with a valid Kronecker structure of the rigid motion is

now available. Thus, the metric correction matrix Qmetric

must fulfill the algebraic structure derived in Eq. (20). We
are therefore looking for affine transformations QC and QS

such that

M =
[
⇓ f

(
(vec

(
R f

)
)T , tT

f , 1
)]

(27)

=
[
⇓ f

(
(vec

(
R̃ f

)
)T , t̃T

f , 1
)]

︸ ︷︷ ︸
=M̃=M̂Qa f f Q−1

kron

S( f )[QT
S ⊗QC ]T ST

( f )︸ ︷︷ ︸
=Qmetric

conforms to an Euclidean rigid motion matrix. Let

QS =
[

T−1
S tS

01×3 1

]
and QC =

[
TC tC

01×3 1

]
.

Using the Kronecker product property of Eq. (2), the above
equation Eq. (27) is equivalent to the set of equations

R f = TC R̃ f T−1
S (28)

t f = TC R̃ f tS + TC t̃ f + tC (29)

for f ∈ {1 . . . F}. Eq. (28) is in turn equivalent to TC R̃ f =
R f TS . Since R f is a rotation matrix we have

[
TC R̃ f

]T [
TC R̃ f

]
= [

R f TS
]T [R f TS

]
(30)

= R̃T
f TT

C TC R̃ f = TT
S TS . (31)

This set of equations is linear in symmetric TT
C TC and TT

S TS

and can be solved by similar techniques as the one pre-
sented in (Brand 2001, 2005) for the rigid case. Each frame
provides 6 constraints on the 12 unknowns and a solution
for TT

C TC and TT
S TS can be found given sufficiently many

frames are available. A final eigenvalue decomposition of
these symmetric matrices finally yields the matrices TS and
TC . These matrices are then used to render Eq. (29) linear in
the unknowns, i.e., the translations tS, tC , and t f . This pro-
vides 3F constraints on the 3F + 6 unknowns. The resulting
linear system therefore has a six dimensional solution space
which accounts for the six degrees of freedoms for choosing
tC and tS . Note that we have not made use of any orthog-
onality constraints on the camera axes. These orthogonality
constraints implicitly imply a scaled orthographic camera
model, whereas our factorization algorithm can deal with
general affine cameras.

Note that on the other hand, if the dual quadric Q∗∞ has
been used to perform the similarity upgrade of the cameras
(implicitly assuming a special form for the intrinsic calibra-
tion matrix), TC can be fixed to the identity and is no longer
required to be treated as an unknown. All the experiments
in Sect. 11 are computed without the camera self-calibration
approach of Sect. 7.2.3.
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8 Rank-5 Factorization

In contrast to a rank-13 motion subspace, one camera is suf-
ficient in order to span the complete 5 dimensional motion
subspace of a planar motion. This leads to the following
idea: Intuitively, a separate reconstruction can be made for
each camera. These separate reconstructions are unique up to
the ambiguities mentioned previously. This especially means
that the reconstruction of each camera restricted to (or pro-
jected onto) the plane of rotation is a valid similarity recon-
struction, i.e. the individual reconstructions are expressed in
varying coordinate reference frames which, however, only
differ from each other by similarity transformations. Using
knowledge from the 5D-motion subspace, these reconstruc-
tions can then be aligned in a consistent world reference
frame. If the additional assumption is made that the two cam-
era axes of each camera are orthogonal and have equal norm
(the norm can vary between different cameras) then the coor-
dinate frame of the reconstruction can be upgraded to a sim-
ilarity frame in all three dimensions. We thus end up with a
consistent 3D-reconstruction.

There is a major drawback in the above algorithmic sketch.
The fact that all the cameras observe the very same rigid
motion is only used in the final step to align all the individual
reconstructions. It is a desirable property that the information
from all the cameras should be fused right at the first stage
of the algorithm in order to get a more robust reconstruction.
Furthermore, in order to compute the initial reconstruction
of a camera, this camera needs to track at least two points.
If the camera tracks only one feature point, a reconstruc-
tion based solely on this camera is not possible: at least two
points are necessary to span the 5D-motion subspace. The
algorithm which is presented in the upcoming sections on
the other hand does not suffer from these shortcomings. The
algorithm fuses the information from all the cameras right
at the first stage and works even when each camera tracks
only one single point. Last but not least, the algorithm pro-
vides a closed-form solution. Again, Algorithm 2 provides an

overview of the multiple sequential steps whereas the fol-
lowing sections give detailed explanations.

8.1 Rank-5 Factorization

In a similar spirit to Sect. 7, we can fuse the data from all
the cameras in order to compute a consistent estimate of the
motion matrix. But this time, a rank-5 factorization of the
combined data matrix W = [⇒k Wk

( f )] reveals the correct

column span span (M) = span
(

M̂
)

of the motion matrix

W = M̂Â = [⇓ f cos α f 1− cos α f sin α f t f,1 t f,2
]

︸ ︷︷ ︸
=M̂Q

·

C( f )

[
⇒k Sk ⊗ Ck T

]

︸ ︷︷ ︸
=Q−1Â

, (32)

where we have introduced the corrective transformation Q ∈
R

5×5 in order to establish the correct algebraic structure. If
all the cameras only track two points in total, the combined
data matrix W will then only consist of four columns and
thus a rank-5 factorization is obviously impossible. Luckily,
we know that the first two columns of the motion matrix in
Eq. (17) should sum to the constant one vector. Hence, only
a rank 4 factorization of the data matrix W is performed, the
resulting motion matrix is augmented with the constant one
vector M̂← [M̂, 1F×1] and the second factor is adapted cor-
respondingly Â← [ÂT , 02N×1]T . The rest of the algorithm
remains the same.

The corrective transformation is again computed in a
piecewise (or stratified) way. Specifically, the corrective
transformation is split into three separate transformations
Q = Qtr igQ−1

orient Q
−1
transl where the transformation Qtr ig

establishes the correct trigonometric structure on the first
three columns of the motion matrix, Qorient aligns the ori-
entations of the cameras in a consistent similarity reference
frame, and Qtransl is related to correctly translate the recon-
struction. The individual steps are described in detail in the
next sections (Fig. 3).

8.2 Trigonometric Structure

The first three columns of Q = [q1, q2, q3, q4, q5] can be
solved for in the following way: since M̂[ f,:]qi qT

i M̂T[ f,:] =
M[ f,i]2 we have

1 = M̂[ f,:]
[
(q1 + q2)(q1 + q2)

T
]

M̂T[ f,:]

= (
cos α f + (1− cos α f )

)2 (33)

1 = M̂[ f,:]
[
q1qT

1 + q3qT
3

]
M̂T[ f,:] = cos2 α f + sin2 α f .
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Fig. 3 Visual representation of the rank-5 factorization. Missing data entries due to missing correspondences between different cameras are
depicted transparently

These observations lead to F constraints on symmetric rank-
2 matrix q1qT

1 + q3qT
3 , symmetric rank-1 matrix (q1 +

q2)(q1+q2)
T , or symmetric rank-3 matrix b

[
q1qT

1 +q3qT
3

]+
(1− b)(q1 + q2)(q1 + q2)

T with b ∈ R:

1 = M̂[ f,:]
[
(q1 + q2)(q1 + q2)

T
]

M̂T[ f,:]

= M̂[ f,:]
[
q1qT

1 + q3qT
3

]
M̂T[ f,:] (34)

= M̂[ f,:]
[
b
[
q1qT

1 + q3qT
3

]

+(1− b)
[
q1qT

1 + q2qT
2

]]
M̂T[ f,:]

These F equations are linear in the unknown symmetric
matrices and result in a one dimensional solution space (since
there is a valid solution for any b ∈ R). Appendix C shows
how to extract the solution vectors q1, q2, and q3 from this
one dimensional solution space. Once this is done, the cor-
rective transformation Qtr ig =

[
q1 q2 q3

[
q1, q2, q3

]
⊥
]

is

applied to the first factor M̂Qtr ig which establishes the cor-
rect trigonometric structure in the first three columns. The
inverse of this transformation is applied to the second factor
Ã = Q−1

tr igÂ. Note that the structure of the first three columns
of the motion matrix should not get modified anymore and
hence any further corrective transformation must have upper
block-diagonal structure with an identity matrix of dimen-
sion 3 in the upper left corner. The inverse of such an upper
block-diagonal matrix has exactly the same non-zero pattern,
i.e.

QtranslQorient =
[

I3 Q3×2

02×3 I2

] [
I3 03×2

02×3 Q2×2

]

=
[

I3 Q3×2

02×3 Q2×2

]
.

8.3 Euclidean Camera Reference Frame

No more information can be extracted from the motion matrix
and thus, we turn our attention to the second factor Ã which

after applying a proper transformation should have the fol-
lowing algebraic form

A =
[

I3 Q3×2

02×3 Q2×2

]
Ã = C( f )

[
⇒k Sk ⊗ Ck T

]
. (35)

This is a particularly tricky instance of a bilinear system of
equations in Q3×2, Q2×2, Sk , and Ck . Based on our experi-
ences, even algebraic computer software does not succeed in
finding a closed-form solution. Nevertheless, we succeeded
in deriving manually a solution using geometric intuition and
reasoning.

8.3.1 Projection onto Plane of Motion

Equation (35) together with the known matrix C( f ) in Eq. (16)

tells that Ã[4:5,:] =
[
⇒k 11×Nk ⊗

[
Ck[:,1:3]VQ−T

2×2

]T
]

, which

means that the columns of Ã[4:5,:] contain the coordinates
(w.r.t. the basis V) of the projection of the rows of the camera
matrices (barring the translational component) onto the plane
of rotation. These coordinates however have been distorted
with a common, but unknown transformation Q2×2. This
observation motivates the fact to restrict the reconstruction
first to the plane of rotation. Such a step requires a projection
of the available data onto the plane of rotation. Appendix D
shows that this can be done by subtracting the second from
the first row and keeping the third row of Eq. (35)
[

1 −1 0
0 0 1

]
Ã[1:3,:] +

[
1 −1 0
0 0 1

]
Q3×2

︸ ︷︷ ︸
=T2×2

Ã[4:5,:]

=
[

vec (PV)T

vec
(
[a]×

)T

]
[
⇒k

[
PVSk[1:3,:]

]
⊗
[
PVCk[:,1:3]

T
]]

︸ ︷︷ ︸

=
[

vec (PV)T

vec
(
[a]×

)T

]

·
[
⇒k

[
PVSk[1:3,:]

]
⊗ [VQ2×2

] [
Q−1

2×2VT Ck[:,1:3]
T
]]

.

(36)
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In the last step we have used PV = VQ2×2Q−1
2×2VT and

the parenthesis in the last term should stress out that for all

the cameras the term Q−1
2×2VT Ck[:,1:3]

T
can be read off from

Ã[4:5,:]. The unknowns of this bilinear equation are the points
and the 2-by-2 transformations T2×2 and Q2×2.

8.3.2 Per-Camera Reconstruction in the Plane of Rotation

Equation (36) describes a reconstruction problem in a plane
which is still bilinear. As with any rigid reconstruction, there
are several gauge freedoms. Specifically, the origin and the
orientation of the reference frame can be chosen arbitrarily2.
In the planar case, this means a 2D offset and the orientation
of one 2D vector can be chosen freely. In the following we
will make use of the gauge freedoms in order to render this
bilinear problem in multiple sequential linear problems. The
reconstruction procedure described in the upcoming para-
graphs could be applied to one single camera. This would
provide T2×2 and Q2×2 which could then be used to solve
for the points in the remaining cameras. However, increased
robustness can be achieved by solving the sequential linear
problems for each camera separately and aligning the results
in a final step in a consistent coordinate frame. For each cam-
era, the gauge freedoms will be fixed in a different way which
enables the computation of a reconstruction for each camera.
The reference frames of the reconstructions then differ only
by similarity transformations. This fact will be used in the
next section in order to register all the reconstructions in a
globally consistent reference frame.

In single camera rigid factorizations, the translational
gauge freedoms are usually chosen such that the centroid
of the points matches the origin of the coordinate system, i.e.
1
N S1N×1 = 0. We will make the same choice 1

Nk
Sk1Nk×1 =

0 on a per-camera basis. Let Ãk denote the columns of Ã
corresponding to camera k. By closer inspection of Eq. (36)
and with the Kronecker product property of Eq. (3) we get
[[

1 −1 0
0 0 1

]
Ãk[1:3,:] + T2×2Ãk

[4:5,:]
] [

1

Nk
1Nk×1 ⊗ I2

]

=
[

vec (PV)T

vec
(
[a]×

)T

]

·
(

PVSk[1:3,:]
1

Nk
1Nk×1

)
⊗
(
PVCk[:,1:3]

T
)
= 02×2. (37)

The last equation followed since the centroid has been chosen
as the origin. The above linear system consists of four linearly
independent equations which can readily be solved for the
four unknowns in T2×2.

2 The first three columns of the motion matrix have already been fixed
and the translation of the cameras has been lost by the projection step.
Thus, there is only one planar similarity transformation left from the
two mentioned in Sect. 5.

The remaining two gauge freedoms are due to the arbitrary
choice of the orientation of the coordinate frame inside the
plane of rotation. These gauge freedoms can be chosen s.t.
the first row

(
1 0

)
Ck[:,1:3]V of the kth camera matrix equals

the known row
(
1 0

)
Ck[:,1:3]VQ−T

2×2. Such a choice poses two
constraints on Q2×2

(
1 0

)
Ck[:,1:3]V =

(
1 0

) [
Ck[:,1:3]VQ−T

2×2

]

= (
1 0

) [
Ck[:,1:3]VQ−T

2×2

]
QT

2×2. (38)

Knowing T2×2 as well as the first row of Ck[:,1:3]V implies
that the remaining unknowns in every second column of
Ãk (i.e. the columns which depend on the first row) are
only the points. This results in 2Nk linear equations in the
2Nk unknowns of the projected point coordinates PVSk[1:3,:].
After solving this system, only the entries of Q2×2 are not
yet known. The two linear constraints of Eq. (38) enable
a reparameterization with only two parameters Q2×2 =
Q0 + λ1Q1 + λ2Q2. Inserting this parameterization into
Eq. (36) and considering only every other second column
(i.e. the columns corresponding to the second row of the
camera) leads to a linear system in λ1 and λ2 with 2Nk lin-
ear equations. The linear least squares solution provides the
values for λ1 and λ2.

The above procedure works fine as long as every camera
tracks at least two points. Otherwise the computation of λ1

and λ2 in the final step will fail because of our choice to set
the mean to the origin. The coordinates of the single point are
then equal to the zero vector and hence, this single point does
not provide any constraints on the two unknowns. In order
to avoid this problem we use the following trick: instead
of choosing the origin as the mean of the points which are
tracked by the camera currently under investigation, the ori-
gin is rather fixed at the mean of the points of another camera.
Such a choice is perfectly fine as the origin can be chosen
arbitrarily. The computation of T2×2 for camera k is there-
fore based on the data of another camera k′ �= k. This trick
allows to compute a reconstruction even for cameras which
only track one single point.

8.3.3 Registration in a Common Frame Inside the Plane
of Motion

After the previous per-camera reconstruction, the camera
matrix restricted to the plane of motion Ck[:,1:3]PV is known

for each camera. Let C̃k denotes its first three columns whose
projection onto the plane of rotation is correct up to a reg-
istration with a 2-by-2 scaled rotation matrix λkRk . On the
other hand, we also know the projections Ck[:,1:3]VQ−T

2×2 of the
camera matrices onto the plane of rotation up to an unknown
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distortion transformation Q2×2 which is the same for all the
cameras. This implies C̃kVRkλk = Ck[:,1:3]VQ−T

2×2 and thus

C̃kVVT C̃k,T λ2
k

=
[
Ck[:,1:3]VQ−T

2×2

]
QT

2×2Q2×2

[
Q−1

2×2VT Ck[:,1:3]
T
]

.

This is a linear system in the three unknowns of symmetric
QT

2×2Q2×2 and K scale factors λ2
k which is again solved in

the least squares sense. Doing so provides a least squares
estimate of the three unknowns of QT

2×2Q2×2. An eigen-
value decomposition E�ET = QT

2×2Q2×2 provides a mean

to recover Q2×2 = ET �
1
2 which allows to express the pro-

jections of the camera matrices

Ck[:,1:3]PV =
[
Ck[:,1:3]VQ−T

2×2

]
QT

2×2VT

onto the plane in one single similarity frame.

8.3.4 Orthogonality and Equality of Norm Constraints

As has been previously mentioned in Sect. 5.2, the cor-
rect scaling along the rotation axis can only be recovered
by using additional constraints, like the orthogonality and
equal norm constraints on the two camera axes of a camera
(which implicitly assumes a partially known intrinsic calibra-
tion matrix). These constraints will be used in the following
to compute the remaining projection of the camera matrix
onto the axis of rotation. Due to Ck[:,1:3] = Ck[:,1:3][PV + Pa]
and PVPa = 0 we get

λ2
kI2 = Ck[:,1:3]Ck T

[:,1:3]
= Ck[:,1:3]PVCk[:,1:3]

T + Ck[:,1:3]PaCk[:,1:3]
T

.

Thanks to the previous registration step, the projections
Ck[:,1:3]PV are known for all cameras. As

Ck[:,1:3]PaCk[:,1:3]
T = Ck[:,1:3]aaT Ck[:,1:3]

T

and replacing Ck[:,1:3]a by wk , the unknowns of the above
equation become λk and the two components of the vec-
tor wk . This results in K independent second-order polyno-
mial system of equations with three independent equations
in the three unknowns wk and λk . Straight-forward alge-
braic manipulation will reveal the closed-form solution to
this system (see Appendix E for details). Once wk is recov-
ered, the camera matrix is given by solving the linear system

Ck[:,1:3] [PV, a] =
[
Ck[:,1:3]PV, wk

]
. The solution of the poly-

nomial equation is unique up to the sign. This means that
there is a per-camera sign ambiguity along the axis of rota-
tion. Note that this is not a shortcoming of our algorithm,
but this ambiguity is rather inherent due to the planar motion
setting. However, the qualitative orientations of the cameras

w.r.t. the rotation axis are often known. For example, the cam-
eras might be known to observe a motion on the ground plane.
Then the axis of rotation should point upwards in the cam-
era images, otherwise the camera is mounted upside-down.
Using this additional assumption, the sign ambiguity can be
resolved.

Using the orthogonality and equality of norm constraints,
it is tempting to omit the registration step in the plane of
rotation and to directly set up the system of equations

λ2
kI2 = Ck[:,1:3]Ck[:,1:3]

T

= Ck[:,1:3]PVCk[:,1:3]
T + Ck[:,1:3]PaCk T

[:,1:3]
=
[
Ck[:,1:3]VQ−T

2×2

]
QT

2×2Q2×2

[
Q−1

2×2VT Ck[:,1:3]
T
]

+wkwk T

in the three unknowns of QT
2×2Q2×2, the 2K unknowns of

wk , and the K unknowns λ2
k . Interestingly, these constraints

on the camera axes are insufficient to compute a valid matrix
Q2×2 and valid vectors wk , even using non-linear local opti-
mization methods (there are solutions with residuum 0 which
however turn out to be invalid solutions). Moreover, exper-
iments showed that this nonlinear formulation suffers from
many local minima. This observation justifies the need for
the registration step in the plane of motion.

8.3.5 Final Step

Once the first three columns of the camera matrices are
known in an Euclidean reference frame, the first three rows
in Eq. (35) become linear in the unknowns Q3×2, S, and the
camera translations. A least squares approach again provides
the solutions to the unknowns of this overdetermined linear
system. The linear system has a 4+K -dimensional nullspace
in the noisefree case: 4 degrees of freedom due to the planar
translational ambiguities (planar translation of the points or
the cameras can be compensated by the planar motion) and
K degrees of freedom for the per-camera translation ambi-
guities along the axis of rotation.

9 Minimal Configurations

Our two algorithms require the union of all the feature trajec-
tories spanning the complete 13- respectively 5-dimensional
motion space. This poses constraints on the minimal number
of camera axes, feature points, and on the rigid motion. In
typical situations, the number of frames F is much larger than
13 or 5 and we can assume the rigid motion being general
enough such that the whole 13 resp. 5 dimensional motion
subspace gets explored. On the other hand, the constraints on
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the minimal number of camera axes and feature points are
more interesting.

The derivation of Eq. (13) assumed a rank-4 structure
matrix S. This assumption is violated if the observed object is
planar. Our algorithm currently cannot handle such situations
and thus planar objects represent degenerated cases. Note
however that each camera is allowed to track feature points
which lie in a plane, as long as they are not contained in a
common plane and the combined structure matrix

[⇒k Sk
]

is thus non-planar (see also the evaluation of the real data
sequence in Sect. 11.2).

As mentioned in Sect. 8, the algorithm for the rank-5 fac-
torization can handle even the minimal case of just two points
being tracked, either by one single camera, or by two cam-
eras each of them tracking one point. Thus, the discussion
about minimal configurations for the rank-5 case is less inter-
esting than for the rank-13 factorization. A detailed look at
the algorithm for the rank-13 factorization however reveals
surprising properties, but requires some considerable effort
using facts from tensor product spaces. The reward is some
deeper insight in linear independence relationships in tensor
product spaces.

9.1 Digression to Linear Independence in Tensor Product
Spaces

Let us assume we are given full column-rank matrices Ai ∈
R

m×rAi and Bi ∈ R
n×rBi for i = 1, . . . , n. We compute the

Kronecker products Ci = Ai ⊗ Bi and ask ourselves how
long the columns of the resulting matrices continue to be lin-
early independent, i.e. when does the matrix C = [⇒i Ci ]
become rank-deficient. As long as either the columns of Ai

are linearly independent from all the columns of previous
A j with j < i or the columns of Bi are linearly inde-
pendent from all the columns of previous B j with j < i ,
concatenating the Kronecker product Ci = Ai ⊗ Bi to
C = [C1, . . . , Ci−1] increases the latter’s rank by rAi rBi

and hence the columns stay linearly independent. However,
as soon as both the columns of Ak and Bk become linearly
dependent w.r.t. the columns of the previous matrices Ai and
Bi with i < k, the resulting columns of the Kronecker prod-
uct Ak⊗Bk might become linearly dependent on the columns
of previous Kronecker products. In order to show that, the
columns of Ak and Bk are expressed as a linear combination
of the columns of the previous matrices

Ak = [⇒i<k Ai ]
[⇓i<k Xi

] =
∑

i<k

Ai Xi (39)

Bk = [⇒i<k Bi ]
[⇓i<k Yi

] =
∑

i<k

Bi Yi . (40)

Due to the bilinearity and the product property of the Kro-
necker product, it holds

Ak ⊗ Bk =
⎡

⎣
∑

i<k

Ai Xi

⎤

⎦⊗
⎡

⎣
∑

j<k

B j Y j

⎤

⎦

=
∑

i<k

[Ai ⊗ Bi ]︸ ︷︷ ︸
previously existing vectors

[Xi ⊗ Yi ]+

∑

i<k, j<k,i �= j

[
Ai ⊗ B j

]

︸ ︷︷ ︸
new linearly independent vectors

[
Xi ⊗ Y j

]
.

The matrix resulting from the first sum is for sure linearly
dependent on the previous matrices, as Ai ⊗ Bi capture the
previously already existing vectors. The second sum however
can result in new potentially linearly independent vectors. We
need to answer the question: under which circumstances can
we be sure that no Ai ⊗ B j with i �= j contributes to an
increase of the rank? A case distinction is necessary in order
to answer this question.

1. Assume all the columns of Ai with i < k are linearly
independent and also all the columns of Bi with i < k
are linearly independent. Then the representation in the
coefficients Xi and Yi in Eqs. (39) and (40) is unique.
The only way Ak ⊗ Bk not to increase the rank is if all
the Xi ⊗Y j = 0 with i �= j . Ignoring trivial cases where
either Xi = 0 for all i < k or Y j = 0 for all j < k,
this in turn implies Xi = 0 and Yi = 0 for all i except at
most one, say for i = 1. Hence, only one single summand
Xi ⊗Yi in the first sum can be non-zero. These cases are
thus easy to spot.

2. Assume the columns of Ai with i < k are already linearly
dependent, whereas the columns of Bi with i < k are
linearly independent. This implies that the representation
in Eq. (39) is no longer unique. This is important, as the
reasoning in the previous case for Ak⊗Bk not to increase
the rank no longer applies. Consider for example the case
where we have k−1 different representations of the form
Ak = Ai Xi . Then we can deduce

Ak ⊗ Bk =
∑

j<k

Ak ⊗ B j Y j =
∑

j<k

A j X j ⊗ B j Y j

=
∑

j<k

[
A j ⊗ B j

] [
X j ⊗ Y j

]
,

which shows that the new columns of Ak ⊗Bk are just a
linear combination of previously existing A j ⊗ B j with
j < k and hence the rank does not increase. This example
shows that these cases are no longer as easy to spot as
the cases described previously. As we will see in the next
section, this example exactly covers the situation when
the first camera tracks at least 4 points.
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Table 1 Minimal cases: The number of points per camera (for example, (N1, N2) means the first camera observes N1 points whereas the second
tracks N2 points) and whether the linear algorithm of Sect. 7.2 succeeds in computing a valid factorization or not (summarized in the last row)

# points per camera (3, N2 ≥ 4) (4, 4) (1, 3, 3) (2, 3, 3) (2, 2, N3 ≥ 4) (2, 2, 2, 2) (2, 2, 2, 3) (2, 2, 2, 2, 2)

rank (A)
?= 13 rank (A) ≤ 12 13 = 13 13 = 13 13 = 13 13 = 13 13 = 13 13 = 13 13 = 13

Sect. 7.2 applicable × � × � × × � �
The first condition states that the observed points should span the complete 13-dimensional mode- f subspace. The second condition ensures that
valid affine camera matrices are computable (see Sect. 7.2.2). Note that any additional data can only support the algorithm (e.g.if (N1, N2) works
then (N ′1, N ′2, N3) with N ′1 ≥ N1 and N ′2 ≥ N2 works as well, even if N3 = 1)

9.2 Returning to Rank-13 Factorizations

We realize that especially the second cases are more dif-
ficult to discover and might require detailed knowledge of
the specific problem at hand. Therefore, let us look at a
specific example which also sheds some light on the rela-
tionship between the previous reasonings and our rank-13
factorization problem. Assume a full rank S1 ∈ R

4×4, two
equal s2 = s3 = S1x ∈ R

4×1, two linearly independent
C1 ∈ R

3×2 and c2 ∈ R
3×1, and finally a linearly dependent

c3 = [C1, c2]
(

y1

y2

)
∈ R

3×1. Of course, the matrix S1 can

be interpreted as the points tracked by the first camera, the
matrix C1 as the first camera matrix, c2 and c3 as the first and
second camera axes of the second camera, and s2 = s3 as a
point observed by the second camera. This setup leads to

S1 ⊗ C1 → 4 · 2basis vectors

s2 ⊗ c2 = S1x⊗ c2 → 1 additional basis vector

s3 ⊗ c3 = s3 ⊗ [C1, c2]
(

y1

y2

)

= S1x⊗ C1y1 + s2 ⊗ c2y2

= [S1 ⊗ C1][x⊗ y1] + [s2 ⊗ c2][I4 ⊗ y2]
→ no new basis vectors.

In the last step, we concluded that s3 ⊗ c3 does not provide
any new linearly independent vector since it is expressible
as a linear combination of previously existing vectors. The
important observation is the following: if the first camera
tracks at least four points then the second camera axis of any
additional camera does only provide linearly dependent data
(the second camera axis is redundant so to speak). A detailed
analysis for each possible minimal case similar to the one
above leads to the results summarized in Table 1. Note that for
some cases, even though the rank of their mode- f subspace
is 13, the computation of the affine cameras (Sect. 7.2.2) still
fails because the points do not provide enough linear indepen-
dent constraints for solving the linear system of Eq. (25) due
to reasons akin to the one shown above. Interestingly, exper-
iments showed that direct nonlinear iterative minimization
such as the ones presented in Sect. 10 sometimes succeeded
in solving

S( f )[⇓k S̃k T ⊗ C̃k]T = QkronQ−1
a f f Â

for C̃k, S̃k , and Qkron in cases where the linear algorithm was
not applicable.

10 Iterative Optimization

Even though the algorithmic part of this paper focuses on
the closed-form factorization based solution, due to practi-
cal reasons there is without doubt a need for iterative opti-
mization methods: Firstly, the solution given by the linear
algorithm described in Sect. 7.2 is suboptimal w.r.t. the tri-
linear nature of the data because sequentially solving linear
problems might transfer errors from a previous step to the
current step. This is especially true for data which originates
from projective cameras. However, as our experiments with
synthetic and real world data showed, the above mentioned
closed-form solution still provides an accurate initial guess
for an iterative non-linear optimization scheme. Secondly, in
real world examples, it is often difficult to track feature points
over all the frames even for just one camera. Feature points
are usually only trackable over a couple of frames. They dis-
appear and new ones will emerge. Each trajectory then has
some missing entries and the factorization approach using
a singular value decomposition is thus no longer applica-
ble. However, thanks to the tensor formulation in Eq. (13)
we know how the underlying algebraic structure of our data
should look like and this still provides strong constraints on
the known data entries. Thus, provided enough entries are
known, these entries can be used to compute a valid Tucker
tensor decomposition with an iterative algorithm.

As a starting point for further work in multilinear factor-
ization methods with missing entries, we provide two algo-
rithms which proved to work very well in our application.
(Chen 2008) recently analyzed several iterative algorithms
for bilinear matrix factorization problems with missing
entries, amongst others the alternating least squares (ALS)
method and the Wiberg algorithm. The extension of the ALS
algorithm to our multilinear setting is apparent once we real-
ize that the data can be modeled as a third order tensor.
This tensor can then be flattened along its three modes in
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alternation. A linear closed form solution is found for the
subspace which has been exposed by flattening the tensor
while keeping the remaining two subspace estimates fixed
and by only considering the known entries. The Wiberg algo-
rithm, which was originally developed for bilinear problems,
can be adapted to the matrix factorization of W( f ) where the
gradient is taken with respect to the unknown camera and
structure matrices C resp. S. In all our experiments, both the
ALS and Wiberg optimization methods converged after just
very few iterations (roughly 5 to 10 iterations) in a minimum
when initialized with the closed-form solution. The closed-
form solution thus seems to suit perfectly as an initial guess
for an iterative refinement.

The ALS method is a first-order gradient based scheme
(not steepest descent, however!). It is well known that the
convergence behavior of ALS methods for general tensor
decompositions with missing entries is very instable: at the
beginning of the iterations the convergence is quite fast. Mul-
tilinear factorization problems have many plateaus where the
local gradients approach zero. It is in these areas where the
ALS scheme often gets stuck and the convergence then flat-
lines. In these circumstances it is advantageous to switch to
a second-order method like Newton’s method or the Wiberg
algorithm. Based on our experience, the combination of ALS
with the Wiberg algorithm proves to be very suitable to gen-
eral tensor factorizations with missing entries. The next two
sections therefore shortly provide an introduction to these
methods, shown at the example of rigid multi-camera fac-
torization. With the tools presented in Sect. 3.3, it should be
possible to apply these ideas to other multilinear matrix and
tensor equations.

10.1 Alternating Least Squares

A Rank-13 factorization minimizes the Frobenius norm
between the data matrix W( f ) and its best rank-13 approx-
imation. This can be rewritten as a sum of squares over all
the elements of the matrix

� = 1

2

∥
∥∥∥MS( f )

(
ST ⊗ C

)T −W( f )

∥
∥∥∥

2

F
(41)

= 1

2

∑

f,k,n

(
M[ f,:]S( f )

(
ST[:,n] ⊗ C[k,:]

)T −W[ f,k,n]
)2

.

We introduce w( f ) = vec
(W( f )

)
, w(k) = vec

(W(k)

)
, and

w(n) = vec
(W(n)

)
in addition to m = vec (M) , c =

vec (C), and s = vec (S). The sum of squares problem
in Eq. (41) is then equivalent to � = 1

2 ‖r‖22 with the
residuum

r =
[(

ST ⊗ C
)ST

( f ) ⊗ IF

]
m− w( f ) (42)

= [
�
]

k→ f

([(
ST ⊗M

)ST
(k) ⊗ I2K

]
c − w(k)

)

= [
�
]

n→ f

([(
MT ⊗ C

)ST
(n) ⊗ IN

]
s− w(n)

)
,

where Eq. (2) has been used to expose the unknown vectors
m, c, and s and the row-permutation matrices 	k→ f and
	n→ f reorder the rows of the residuum to match those of
Eq. (42). For later reference, we also note the partial deriva-
tives of the residuum

∂mr =
[(

ST ⊗ C
)ST

( f ) ⊗ IF

]

∂cr = [
�
]

k→ f

[(
ST ⊗M

)ST
(k) ⊗ I2K

]

∂sr =
[
�
]

n→ f

[(
MT ⊗ C

)ST
(n) ⊗ IN

]
.

With this notation in place, the ALS algorithm is easily
explained as a cyclic block-coordinate gradient descent algo-
rithm which alternates its descent directions according to the
partial derivatives of � w.r.t. m, c, and s (see Algorithm 3). If
there are unknown entries in data tensor W , then these entries
are simply omitted in the sum of squares which corresponds
to only considering the known rows of the residuum vector
r. The ALS algorithm can be slightly optimized by making
use of the known constant one-vector of the motion matrix
M and the known homogeneous coordinate of the points S.
Moreover, the linear systems can be formulated without vec-
torizing the unknowns which leads to smaller linear systems.

10.2 Wiberg Algorithm

Throughout this derivation we have to distinguish between
the partial derivative ∂xf of a function f w.r.t. input argument
x and the total derivative dxf of f w.r.t. input argument x. The
latter might require the application of the chain-rule, as we
will see later.

The Wiberg algorithm is a variation of the Gauss–Newton
algorithm with an interleaved variable projection step. Thus,
we again minimize the norm � = 1

2‖r‖22 of the residuum

r =
[(

ST ⊗ C
)ST

( f ) ⊗ IF

]
m− w( f ), (43)
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but this time Eq. (43) is considered as a function of only c and
s since a least-squares, closed-form solution for m is easily
computable if c and s are fixed (m is therefore considered
as a function of c and s). In analogy to Gauss–Newton, a
second-order Taylor expansion of the objective function at
the current i th iteration is minimized
(

dc
ds

)
= arg min

dc,ds

(
�ci ,si + rT dci ,si r

(
dc
ds

)

+1

2

(
dc
ds

)T

Hci ,si

(
dc
ds

))

(44)

with approximative Hessian Hci ,si ≈ dci ,si r
T dci ,si r. This

minimization problem has the same minimum as the linear
least squares problem

(
dc
ds

)
= arg min

dc,ds

(∥
∥∥∥r + dci ,si

(
dc
ds

)∥∥∥∥

2

2

)

which will be solved instead of the Taylor expansion. The
method is complete, if we can find an expression for the total
derivative dci ,si r.

Since � is a sum of squares, a critical point of � must
fulfill

0 = ∂m� = (∂mr)T r =
[(

ST ⊗ C
)ST

( f ) ⊗ IF

]T
r. (45)

As the left-hand side of Eq. (45) equals the constant zero-
vector, its total derivative w.r.t. c and s is also zero and hence
with the product rule

0 = dc,s

(
(∂mr)T r

)

= dc,s

(
(∂mr)T

)
r + (∂mr)T dc,sr. (46)

With a similar justification as in the Gauss–Newton algo-
rithm, the multiplication between the residuum and its second
order derivative is assumed to be negligible dc,s

(
(∂mr)T ) r ≈

0. This approximation together with the chain-rule for total
derivatives

dc,sr = ∂mr∂c,sm+ ∂c,sr (47)

allows to rewrite Eq. (46) as

0 = (∂mr)T dc,sr

= (∂mr)T (∂mr∂c,sm+ ∂c,sr
)

(48)

This last equation provides us with an estimate for the partial
derivative of m considered as a function of c and s

∂c,sm = −
(
(∂mr)T ∂mr

)−1
(∂mr)T ∂c,sr (49)

Finally, an approximation of the sought after total derivative
is given by (Eqs. (47), (49))

dc,sr =
[
−∂mr

(
(∂mr)T ∂mr

)−1
(∂mr)T + I

]
∂c,sr

= P
⊥
∂rr∂c,sr.

In the last equation, the projection matrix P
⊥
∂rr onto the

orthogonal complement of the columns (i.e. the column
nullspace) of ∂mr has been introduced. Note that the
residuum is also expressible in terms of this projection matrix
r = −P

⊥
∂rrw. Now, we have everything in place to state the

Wiberg algorithm applied to our trilinear factorization prob-
lem (Algorithm 4).

11 Results: Rank-13 Factorization

The steps described in Sects. 7.2.1, 7.2.2, and 7.2.4 were
applied sequentially to synthetically generated data and to a
real data sequence in order to get an initial estimate for an
iterative non-linear refinement. The ALS scheme was then
iterated up to 10 times, with the previously computed solu-
tion as an initial guess. This already provided a very good
reconstruction which could be even further improved by per-
forming a couple of Wiberg iterations with the ALS solution
as initialization. Finally, the metric upgrade was performed
as described in Sect. 7.2.5. Because the metric upgrade step
is based on a least squares formulation, orthogonality con-
straints are not enforced strictly on the rotation matrices of
the rigid motion and the resulting motion is thus not perfectly
rigid. Perfectly rigid motions can be enforced if required in
a supplemental step. We computed a polar decomposition of
the matrix R f = RP at every frame, replaced R f by R and
ignored the non-rotational part P 3.

3 The polar decomposition A = RP provides the optimal approxi-
mation R ≈ A of a matrix A with an orthogonal matrix R w.r.t. the
Frobenius-norm R = arg minQ ‖A−Q‖F subject to QT Q = I.
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11.1 Synthetic Data

For the synthetic data experiments, the cameras were mod-
eled as similar to the ones used for the real data experiments
as possible (pixel density of 1080 pixels

4.035 mm , image resolution of
1920×1080 ). The rigid motion was generated by specifying
5 keyframes and interpolating in between using third-order
splines. We randomly picked 5 axes of rotation and rotation
angles (which were limited to a maximum of 45◦). The trans-
lation vector of the rigid motions and the feature points were
drawn from a normal distribution with a standard deviation
of 5 cm. K = 4 cameras with focal length f = 90 mm were
placed randomly 7.5 m apart from the scene pointing toward
the origin each of which tracked Nk = 10 feature points over
100 frames. 2D trajectories generated with this approach are
visualized in Fig. 4a.

Firstly, the robustness with respect to isotropic Gaussian
noise on the coordinates of the projected feature points was
investigated. The synthetic data was generated with an affine
camera model for this experiment. Inspecting Fig. 4b shows
that our algorithm with non-strict orthogonality constraints
even slightly overfits the ground truth. This is mainly due
to the fact that the rigidity of the motion was not strictly
imposed. Enforcing truly rigid motions using polar decom-
positions increased the root mean squared (RMS) error

1
√

F
∑

k Nk

∥∥∥W−MS( f )

[
⇒k Sk ⊗ Ck T

]∥∥∥
F

(50)

of the reprojected moving points slightly.
Secondly, the influence of the distance between cameras

and rigid object was investigated. The magnification factor
was set to a constant of m = 61 mm

5 m which can be interpreted
as choosing a focal length of 61 mm with an average distance
between camera and rigid object of 5 m. In order to keep the
magnification factor constant, the focal length of the cameras
was updated accordingly while changing the distance. In this
second experiment the data was generated with projective

camera models and noise with a standard deviation of σ = 10
pixels was added to the projections in order to make the
experiment more realistic (Fig. 4c).

In a third synthetic experiment, the stability of the method
w.r.t. the number of points observed per camera is investi-
gated. The data has been generated in the same way as for
the first experiment, but this time with K = 6 affine cameras.
The method has been applied several times to an increasing
number of points visible per camera by adding additional fea-
ture trajectories (each camera still tracked a different set of
points). Figure 5 shows the results of this experiment. From
this figure, we can conclude that the method is stable to a fair
amount of noise if at least 3–4 points are tracked per camera.
The more extreme cases of just 2 points per camera seem to
be substantially less robust w.r.t. noise.

The influence of an increasing number of cameras is
shown in a last synthetic experiment. The total number of
points N = ∑

k Nk was held fixed but the number of affine
cameras K varied. For each K , the N points were split into
evenly sized disjoint subsets. Based on the results in Fig. 6,
our methods does not seem to depend strongly on the number
of cameras.

Combining the results from Fig. 6 with Fig. 5, we con-
clude that the method is considerably robust as soon as there
is sufficient redundancy in the input data. For example, the
accuracy decreases slightly in the K = 6 with Nk = 2 case
as seen in Fig. 5, however in the case K = 10 with Nk = 2
shown in Fig. 6 the accuracy stays more or less the same.

11.2 Real Data Sequence

We evaluated our algorithm on a real sequence of a rotat-
ing rigid box. The cameras recorded in a resolution of
1920 × 1080 pixels. In order to ease the tracking we used a
template based tracking algorithm (Wagner and Schmalstieg
2007) which provides 5 points per template (the 4 vertices
and the middle point). The cameras were not aware of the fact

(a) (b) (c)

Fig. 4 Synthetic data experiments: The green line corresponds to the
error between ground truth and noisy projections, the red line is the error
of our algorithm where the orthogonality constraints on rotation matri-
ces are not enforced strictly whereas the blue line shows the resulting

error if exact rigid rotations are enforced with a polar decomposition.
The orange line shows the error of the optimal affine camera approxi-
mation to the projective cameras in the absence of noise
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Fig. 5 Synthetic data experiment showing the influence of an increas-
ing number of points observed per camera while holding the number of
cameras fixed: The x-axis shows the number of points tracked in each
of the K = 6 cameras whereas the y-axis shows the resulting RMS.
The continuous lines show the error when the orthogonality constraints
on rotation matrices are not strictly enforced and the dashed lines show
the result after applying a subsequent polar decomposition in order to
enforce exact rotation matrices. The dotted lines show the error of the
ground truth reconstruction, i.e.they show the error due to the noise in
the data. The amount of noise added to the images varied between 0
and 5 pixels

that they might have tracked the very same feature points (i.e.,
no correspondences were established between different cam-
era views). Each camera tracked two templates which were
located on the same side of the box and hence, the structure of
the points tracked by one single camera was actually planar.
As the results show, our algorithm can handle this configura-
tion. Figure 7 shows the accuracy of the reconstruction. Cam-
eras 1, 4, and 6 tracked the templates on the front facing plane
of the box (these templates are drawn in cyan, magenta, and
red color), cameras 2 and 5 tracked the templates on another
side of the box (blue and yellow), whereas camera 3 was
the only camera which tracked the templates on the opposite
side (green). Note that a template which was tracked by more
than two cameras gets reconstructed at almost the very same
location in space, even though the algorithm is intentionally
unaware of such correspondences. Since affine camera poses
suffer from a depth ambiguity along the z-axis, all the cam-
eras are drawn with the same distance to the scene. The size
of the image plane however encodes the scaling factor of the
cameras (the larger the image plane, the further away the
camera) and together with a known focal length this would
determine the distance along the z-axis. In our experiments,
cameras 2 and 5 (4 and 6) have an almost parallel image plane,
but camera 5 (6) was placed slightly further away from the

Fig. 6 Synthetic data experiment showing the influence of an increas-
ing number of cameras while holding the total number of points
fixed: The x-axis shows the number of cameras whereas the y-axis
shows the resulting RMS. The total number of points was fixed to
N = ∑

k Nk = 20 and the number of points per cameras was split
evenly (e.g.for K = 2 each camera observed 10 points and for K = 10
cameras each camera observed 2 points). The line patterns encode the
same semantics as in Fig. 5

box. A RMS of about 12.3 pixels resulted by using our lin-
ear algorithm to initialize 5 iterations of the ALS algorithm.
Additional 5 iterations with the Wiberg optimization finally
gave a RMS of about 2.6 pixels. Enforcing true rigid motions
as a last step increased the RMS of the reconstruction to about
8.5 pixels. All the results shown in Figs. 7 and 8 are based
on the reconstruction which enforces true rigid motions.

In a second experiment, we tried how robustly our
algorithm can handle a camera which only tracks one sin-
gle feature point. We therefore excluded all but one feature
trajectory in camera 3 and run the same algorithm again.
The resulting reconstruction again had a RMS of about 2.6
pixels, respectively 8.5 pixels with enforced rotation matri-
ces. Figure 8 compares this reconstruction with the previous
reconstruction which used all the 10 feature points per cam-
era. This result shows that the new rank-13 constraint can be
used to calibrate cameras which only track one single point
which is not in correspondence with any other point tracked
by the remaining cameras.

12 Evaluation: Rank-5 Factorization

If synthetic data is generated with affine cameras and with-
out noise, the algorithm expectedly finds the exact solution
in closed-form, even for the case of only two cameras each
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1st Camera 2nd Camera 3rd Camera

4th Camera 5th Camera 6th Camera

(a) Example Frames (b) 3D view of reconstruction (c) Closeup view

Fig. 7 Resulting reconstruction of the real data sequence. a The repro-
jection of feature points (red circles) into three camera views along with
the ground truth (blue crosses) for one specific frame (the frames are
cropped in order to fit in the figure). b A 3D view of the reconstructed

camera poses together with the points of the box at one specific frame.
c A closeup view of the reconstructed points at this frame (Color figure
online)

Fig. 8 Comparison between two reconstructions of the real data
sequence: All the 10 feature points per camera view are used for the
first reconstruction (feature points are drawn as dots). In contrast, for
the second reconstruction (feature points drawn as circles), the right-
most camera 3 only tracked one single feature point (black arrow). The
pose and the tracked feature point of the third camera nonetheless got
reconstructed very accurately. The cameras of the first (second) recon-
struction are visualized semi-transparently in blue (red) color. The areas
of overlap thus appear in violet color (Color figure online)

of them tracking one single point. Based on our experi-
ence with synthetic data according to a more realistic setting
(i.e. projective camera models with realistic internal parame-
ters, some noise and plausible planar motions) we concluded
that the robustness of the algorithm strongly depends on the
observed motion. This is actually an expected behavior. If the
motion clearly spans the 5D motion subspace, the algorithm
works robustly. However, if a dimension of this subspace is
not explored sufficiently, noise will overrule this dimension
and the reconstruction will deteriorate.

As a proof of concept the algorithm has been applied to
a real data sequence. Figure 9 shows the results of a real
sequence with four cameras observing the planar motion of a
rigid box. This time, no iterative refinement has been applied
to the closed-form solution provided by the rank-5 factor-
ization. The translation ambiguity along the rotation axis
has been resolved such that the centroids of the front-facing
tags share the same coordinate along the axis of rotation. A
template based tracker (Wagner and Schmalstieg 2007) has
been used to generate the feature trajectories. Each camera
tracked between 10 and 20 points. Even though some cam-
eras actually tracked the very same points, the algorithm was
purposely not aware of these correspondences. Such hidden
correspondences allow to evaluate the accuracy of the recon-
struction. Based on the overlapping area of the 3D model of
the tracked feature tags, we conclude that the algorithm suc-
ceeds in computing an accurate reconstruction given the fact
that the reconstruction is based on the approximate affine
camera model and the solution is given in a non-iterative
closed-form. The reprojection error of the closed-form solu-
tion is

1
√

F
∑

k Nk

∥∥∥W−MC( f )

[
⇒k Sk ⊗ Ck T

]∥∥∥
F
= 7.5 pixels,

where the resolution of the cameras is 1920 × 1080. A suc-
cessive nonlinear refinement step still based on the affine
camera model did not improve the reprojection error. This
provides evidence that most of the error is due to the discrep-
ancy between the employed affine camera approximation and
the real projective cameras and not due to the sub-optimal
sequential steps of the closed-form solution.
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Fig. 9 Reconstruction of a planarly moving box: The right image
shows a close-up view of the reconstructed structure (tags tracked by
one specific camera share the same color). Two cameras have been posi-

tioned slightly below respectively above the remaining other cameras
which is nicely captured by the reconstruction (Color figure online)

13 Conclusions and Future Work

This article brought together the ideas previously presented in
Angst and Pollefeys (2009) and Angst and Pollefeys (2010).
Specifically, this article presented a unified analysis of rigidly
moving objects, for general rigid motions as well as for the
special case of planar rigid motions (Sect. 4). The key insight
was that any trajectory of any point seen by any camera is
restricted to a low-dimensional subspace, namely to a 13-
dimensional subspace for general rigid motions and to a 5-
dimensional subspace for planar rigid motions. The theoret-
ical insights gained thereby enabled the development of two
algorithms, which provide a closed-form solution to the SfM
reconstruction problem where no feature point correspon-
dences between the different camera views exist (Sects. 7,
8). The cameras are only assumed to track feature points on
a commonly observed moving rigid object. The motion cor-
respondence, namely that all the cameras observe the same
rigid motion, was captured by a 13D respectively by a 5D
motion subspace. Tensorial notation provided us with the
necessary tools and insights to derive two non-iterative algo-
rithms which provide a closed-form solution. The first algo-
rithm handles the case of general rigid motions and is based
on a rank-13 factorization, whereas the second algorithm is
applicable when the observed rigid motion is planar and is
based on a rank-5 factorization. Even though the setup for
the two algorithms is almost the same, the steps required to
compute a closed-form solution largely differ. These indi-
vidual steps introduced several ideas and tricks which might
prove useful for other factorization problems, as well. The
algorithms were evaluated on synthetic data and have been
shown to work on real data sequences (Sects. 11 and 12).

We hope the analysis and techniques presented in this arti-
cle will be stimulating and boost potential future work. We
see several opportunities which build upon the present work.
For example, one could think of adapting the rigid motion
subspace constraints to a formulation with projective camera

models. This probably asks for iterative solutions for which
the closed-form algorithms might provide a good initializa-
tion. The low-rank constraint might also be used as a means
to temporally synchronize multiple camera streams. A draw-
back of our current method is that the methods assume the
feature tracks of each camera to be complete, i.e.the camera
succeeds in tracking its feature points at every single frame
of the sequence (see also Fig. 2). This prevents large rota-
tions of the rigid object which cause eventual occlusions.
This leads to a problem which currently enjoys interest from
a wide variety of research communities, namely the so-called
matrix completion problem. The power of iterative factoriza-
tion methods which can deal with general patterns of missing
data is not yet completely understood. The methods presented
in Sect. 10 are only a first step towards this goal. The tensor
notation introduced in this article is hopefully conducive to
transferring ideas between different communities since the
theory of matrix completion is currently rapidly evolving in
parallel in different research areas.
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Appendix A: Linear System for Affine Reconstruction
of Camera matrices

The affine camera matrices must fulfill

S( f ),[10:13,:]
[
⇓k S̃k T ⊗ C̃k

]T = Qkron,[10:13,:]Q−1
a f f Â

(51)

=
[
⇒k 11×Nk ⊗ C̃k T

]
= Qkron,[10:13,:]Q−1

a f f

[
⇒k Âk

]
,

(52)
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where we used Âk to denote the submatrix of Â due to
camera k. Let us first investigate only such a submatrix

S( f ),[10:13,:]
[
S̃k T ⊗ C̃k

]T
due to one single camera k. Vec-

torization of this matrix equation using Eq. (6) and Eq. (3)
gives

Gkvec
(

C̃k T
)
=
[
(Q−1

a f f Âk)T ⊗ I4

]
vec

(
Qkron,[10:13,:]

)

(53)

= Hkvec
(
Qkron,[10:13,1:12]

)+ bk

(54)

where the following matrices were introduced for
abbreviation

Gk = [
INk ⊗ T2,1 ⊗ I4

] [
1Nk×1 ⊗ I2·4

]
(55)

Hk =
[[
[Q−1

a f f ][1:12,:]Âk
]T ⊗ I4

]
(56)

bk =
[[
[Q−1

a f f ][13,:]Âk
]T ⊗ I4

]
vec

(
Qkron,[10:13,13]

)
. (57)

Combining each of the linear systems due to a camera in one
single linear system leads to

(58)

However, closer inspection of Eq. (52) reveals that succes-
sive rows result in the very same linear constraints. To avoid
an unnecessary increase in unknowns, we therefore only con-
sider one row i ∈ {1, 2, 3, 4} for setting up the linear system
which results in slightly changed matrices

Gk = [
INk ⊗ T2,1 ⊗ I1

] [
1Nk×1 ⊗ I2

]
(59)

Hk =
[[
[Q−1

a f f ][1:12,:]Âk
]T ⊗ I1

]
(60)

bk =
[[
[Q−1

a f f ][13,:]Âk
]T ⊗ I1

]
vec

(
Qkron,(9+i,13)

)
. (61)

The resulting over-constrained linear system reads like

(62)

which consists of only 2K + 1 · 12 unknowns instead of
4 · 2K + 4 · 12 unknowns. Note that Qkron,[10:13,13] =
(0, 0, 0, 1)T and therefore bk is only non-zero for the last row
which is associated with the camera translation. The system
matrix in Eq. 62 however has a three-dimensional nullspace,
and therefore provides four linear independent solutions for
the four rows.

Appendix B: Linear System for Affine Reconstruction
of Points

This derivation closely follows the one from Sect. 13.
Let Xk denote the non-homogeneous part of the points

Sk T =
[
Xk T

1Nk×1

]
and Pk stands for the non-translational

columns of the camera matrix Ck = [
Pk tk

]
. Using this nota-

tion, a valid affine reconstruction must fulfill

S( f ),[1:9,:][⇓k S̃k T ⊗ C̃k]T = Qkron,[1:9,:]Q−1
a f f Â (63)

=
[
⇒k X̃k ⊗ P̃k T

]
= Qkron,[1:9,:]Q−1

a f f

[
⇒k Âk

]
(64)

Vectorization of the submatrix equation due to camera k using
Eqs. (5) and (3) leads to

Gkvec
(

X̃k
)
=
[
[Q−1

a f f Âk]T ⊗ I9

]
vec

(
Qkron,[1:9,:]

)

(65)

= Hkvec
(
Qkron,[1:9,1:12]

)+ bk (66)

where the following matrices were introduced for abbrevia-
tion

Gk = [INk ⊗ T2,3 ⊗ I3][I3Nk ⊗ vec
(

P̃k T
)
] (67)

Hk =
[[
[Q−1

a f f ][1:12,:]Âk
]T ⊗ I9

]
(68)

bk =
[[
[Q−1

a f f ][13,:]Âk
]T ⊗ I9

]
vec

(
Qkron,[1:9,13]

)
. (69)

Combining again each of the linear systems due to a camera
in one single linear system leads to

(70)

A similar observation as in Sect. 13 holds true for Eq. 70.
More specifically, successive row-triples in Eq. (64) result
in the very same linear constraints. To avoid an unnecessary
increase in unknowns, we therefore only consider one row
triple for setting up the linear system which results again in
slightly changed matrices

Gk = [INk ⊗ T2,1 ⊗ I3][INk ⊗ vec
(

P̃T
k

)
] (71)

Hk =
[[
[Q−1

a f f ][1:12,:]Âk
]T ⊗ I3

]
(72)

bk =
[[
[Q−1

a f f ][13,:]Âk
]T ⊗ I3

]
vec

(
Qkron,[3i−2:3i,13]

)
.

(73)

The resulting over-constrained linear system reads like

(74)

which consists of only
∑

k Nk + 3 · 12 unknowns instead
of 3

∑
k Nk + 9 · 12 unknowns. Note that Qkron,[1:9,13] =
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09×1 and therefore bk is zero for every row-triple. However,
the system matrix has a four dimensional nullspace, which
should not come as a surprise since each basis vector of this
nullspace provides a solution to a different row triple (one
solution corresponds to the homogeneous coordinate of the
points, which we do not need to solve for).

Appendix C: Extracting Rank-Degenerate Solutions

The linear system in Eq. (34) is concisely formulated as

[
M̂T 	 M̂T

]T
K5vecs (Q) = 1, (75)

where 	 denotes the Khatri-Rao product with column-wise
block partitioning (i.e. column-wise Kronecker product),
vecs () vectorizes the upper triangular part of a matrix, and
K5 is the duplicity matrix s.t. vec (Q) = K5vecs (Q) (we
refer to reference (Magnus and Neudecker 1999) for more
details about these operators). Eq. (75) can be solved in the
least squares sense. The solution will in general have rank 3.

Let Q0 ∈ R
5×5 denote a particular solution and N ∈

R
5×5 denote the nullspace of the linear system in Eq. (75).

The particular solution and the solution of the nullspace will
be of rank 3 and will have the following parameterization
b(q1qT

1 + q3qT
3 ) + (1 − b)(q1 + q2)(q1 + q2)

T with b ∈
R in the unknown bQ0 resp. bN. In order to find the rank
deficient solutions, a third-order polynomial constraint in x
could be imposed on all the 3×3 subdeterminants of Q0+xN.
However, it is difficult to robustly combine the constraints of
all the 3-by-3 subdeterminants in one polynomial constraint.
Another approach is based on the fact, that we can readily
solve M̂(q1 + q2) = 1F×1 for the vector q1 + q2. Then we
have

P
⊥
q1+q2

[Q0 + xN] = P
⊥
q1+q2

[(
bQ0 + xbN

) [
q1qT

1 + q3qT
3

]

+ (1− bQ0 + x (1− bN)
)
(q1 + q2) (q1 + q2)T

]

= P
⊥
q1+q2

[(
bQ0 + xbN

) [
q1qT

1 + q3qT
3

]]
.

The row space of the resulting matrix reveals the span of the
rank-2 matrix q1qT

1 + q3qT
3 . This allows us to compute

P
⊥
q1qT

1 +q3qT
3

Q0P
⊥
q1qT

1 +q3qT
3

(76)

= (
1− bQ0

)
P
⊥
q1qT

1 +q3qT
3

(q1 + q2) (q1 + q2)
T

P
⊥
q1qT

1 +q3qT
3

and

P
⊥
q1qT

1 +q3qT
3

NP
⊥
q1qT

1 +q3qT
3

(77)

= (1− bN) P
⊥
q1qT

1 +q3qT
3

(q1 + q2) (q1 + q2)
T

P
⊥
q1qT

1 +q3qT
3
,

which in turn enables the computation of the fraction
1−bQ0
1−bN

.
Finally, this leads to a valid rank-2 solution

Q0 − 1− bQ0

1− bN
N =

(
bQ0 −

1− bQ0

1− bN
bN

)[
q1qT

1 + q3qT
3

]

+
(

1− bQ0 −
1− bQ0

1− bN
(1− bN)

)

︸ ︷︷ ︸
=0

(q1 + q2) (q1 + q2) .

(78)

The last step consists in decomposing the solution Q2 =
q1qT

1 + qT
3 qT

3 into the vectors q1 and q2. This can be done
with an eigenvalue decomposition of Q2 and assigning q1

and q3 the eigenvectors scaled by the square root of its cor-
responding eigenvalue.

A small detail needs to be mentioned. Because cos2 α f +
(−1− cos α f )

2 + 2 cos α f (1− cos α f ) = 1 (compare with
Eq. (33)) the second column of M̂Qtr ig might correspond to
−1−cos α f rather than 1−cos α f . However, if this happens
(which is easy to check since−1−cos α f ≤ 0 ≤ 1−cos α f ),
q2 is replaced with −q2 − 2q1 (because −(−1− cos α f )−
2 cos α f = 1− cos α f ).

Appendix D: Projection onto Plane of Rotation

This section shows how feature trajectories of planar motions
can be projected onto the plane of rotation knowing neither
the camera matrices nor the 3D coordinates of the points.
The derivation starts by subtracting the first row (the mean
of the rows could be subtracted instead as well) from the data
matrix
[
IF − 1F×1

[
1, 01×F−1

]]
W

= [
IF − 1F×1

[
1, 01×F−1

]]
MC( f )S⊗ CT

=
[
⇓ f cos α f − cos α1, sin α f − sin α1, tT

f − tT
1

]
·

⎡

⎣
1 −1 0 01×2

0 0 1 01×2

02×1 02×1 02×1 I2

⎤

⎦ C( f )S⊗ CT .

The algebraic structure of M = [⇓ f cos α f , 1− cos α f ,

sin α f , tT
f

]
together with (1 − cos α f ) − (1 − cos α1) =

− cos α f +cos α1 has been used to replace the motion matrix
M of rank 5 by a rank 4 matrix which is right multiplied
with a suitable matrix in order to get the motion matrix with
subtracted first row. It is interesting to see what happens if
this matrix is left multiplied with the second factor A =
C( f )S⊗ CT of the rank-5 decomposition
⎡

⎣
1 −1 0 01×2

0 0 1 01×2

02×1 02×1 02×1 I2

⎤

⎦ C( f )S⊗ CT
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=
⎡

⎣
vec

(
I3 − aaT

)
01×3 0

vec
(
[a]×

)
01×3 0

02×9 VT 02×1

⎤

⎦S⊗ CT

=
⎡

⎣
vec

(
P
⊥
a
)

01×3 0
vec

(
[a]×

)
01×3 0

02×9 VT
PV 02×1

⎤

⎦S⊗ CT

=
⎡

⎣
vec (PV) 01×3

vec
(
PV [a]× PV

)
01×3

02×9 VT
PV

⎤

⎦
[[

PV 03×1

01×3 1

]
S
]

⊗
[
PVCT[:,1:3]

]
.

The properties I3 − aaT = P
⊥
a = PV, [a]× = PV [a]× PV,

VT = VT
PV, and the symmetry and idempotence of orthog-

onal projection matrices have been used. This final formula
actually has a very intuitive explanation. By subtracting the
first row (or the mean of all the rows) the non-dynamic aspect
in the data is removed. The coordinates of the points along
the rotation axis remain constant, so does the camera trans-
lation. Both the point coordinates along the rotation axis and
the camera translation are thus removed by subtracting the
first row.

Appendix E: Polynomial Solution to Orthogonality
and Equality of Norm Constraints

For notational reasons, the symmetric 2-by-2 matrix
Ck[:,1:3]PVCk[:,1:3]T in

λ2
kI2 = Ck[:,1:3]Ck[:,1:3]

T

= Ck[:,1:3]PVCk[:,1:3]
T + Ck[:,1:3]PaCk[:,1:3]

T

is denoted as Gk . Thus, it follows

λ2
kI2 = Gk + wkwT

k

=
[

Gk[1,1] Gk[1,2]
Gk[1,2] Gk[2,2]

]
+
[

w2
k,[1] wk,[1]wk,[2]

wk,[1]wk,[2] w2
k,[2]

]
.

The unknown scale factor λ2
k can be eliminated by subtracting

the two equations on the diagonal from each other which
leads to the system

Gk[1,1] −Gk[2,2] + w2
k,[1] − w2

k,[2] = 0 (79)

Gk[1,2] + wk,[1]wk,[2] = 0. (80)

The second equation Eq. (80) can be solved for wk,[1] =
−Gk[1,2]

wk,[2] (if either wk,[2] = 0 or wk,[1] = 0 the above system
becomes a second-order polynomial in one unknown which
is trivial to solve). Substituting wk,[1] in Eq. (79) leads to a
polynomial in the monomials w2

k,[2] and w4
k,[2]. This polyno-

mial can be solved for w2
k,[2]which implicitly gives wk,[2] and

wk,[1]. This approach provides four solutions, two of them

are conjugate complex and the remaining two are equal up
to the sign. Hence, the solution is unique up to the sign.
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