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Abstract

Motion capture has revolutionized entertainment and influenced fields as diverse as
the arts, sports, and medicine. This is despite the limitation that it tracks only a small
set of surface points. On the other hand, 3D scanning techniques digitize complete
surfaces of static objects, but are not applicable to moving shapes. I present methods
that overcome both limitations, and can obtain the moving geometry of dynamic
shapes (such as people and clothes in motion) and analyze it in order to advance
computer animation. Further understanding of dynamic shapes will enable various
industries to enhance virtual characters, advance robot locomotion, improve sports
performance, and aid in medical rehabilitation, thus directly affecting our daily lives.

My methods efficiently recover much of the expressiveness of dynamic shapes from
the silhouettes alone. Furthermore, the reconstruction quality is greatly improved by
including surface orientations (normals). In order to make reconstruction more prac-
tical, I strive to capture dynamic shapes in their natural environment, which I do by
using hybrid inertial and acoustic sensors. After capture, the reconstructed dynamic
shapes are analyzed in order to enhance their utility. My algorithms then allow ani-
mators to generate novel motions, such as transferring facial performances from one
actor onto another using multilinear models. The presented research provides some of
the first and most accurate reconstructions of complex moving surfaces, and is among
the few approaches that establish a relationship between different dynamic shapes.

Thesis Supervisor: Dr. Jovan Popovid
Title: Associate Professor
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Chapter 1

Introduction

Figure 1-1: Dynamic shapes are complex and include bulging muscles, flapping
clothes, and subtle facial expressions (pictures are from floydmayweatherjr.org, geoci-
ties.com/Athens/3067, and movie "Dumb and Dumber"). Understanding these com-
plexities has implications in entertainment, education, sports, robotics, and medicine.

The ability to understand dynamic shapes, such as people and clothes in motion,

impacts many industries. This is clearly evident from the success of the motion

capture technology (Metamotion, PhaseSpace, Vicon, Xsens). Even though mocap

is able to assess only a small number of surface points on these dynamic shapes

(Figure 1-2 left), it has revolutionized entertainment and influenced fields as diverse as

the arts, sports, and medicine. It is used to produce life-like body and face motions for

virtual characters in computer games (EA Sports), animated movies (Disney, Pixar)

and feature films (ILM). It is enabling new forms of human-computer interaction,

............



where users can control virtual characters [57] or electronic devices (GypsyMIDI) with

their body motions. Athletes use it to analyze and improve their sports performance

(www. iClub. net). Physicians are exploring its application to physical rehabilitation

(www.ndigital.com).

Understanding dynamic shapes more comprehensively, and analyzing their com-

plete surfaces rather than just a few points, would enhance all the abovementioned

applications and transform other fields as well. In computer vision, capturing and

analyzing scenes is fundamental, and often those scenes contain dynamic shapes. Un-

derstanding them helps us control appliances with hand gestures [68, 52], track people

[37, 56, 144], or recognize faces (www. omron. com/r-d/coretech/vision/okao .html).

In robotics, researchers have engineered robots that can serve us refreshments (world.

honda.com/ASIMO), carry our backpacks (www.bostondynamics.com), and even im-

itate our facial expressions (www.hansonrobotics.com). In order to better interact

with people and perform human tasks such as repair satellites, manipulate paper,

or fold laundry, robots need to understand how dynamic shapes deform. In biome-

chanics, understanding the motion of bones and muscles can help people move more

efficiently (advbiom.com), improve their sports performance (www.retul.com), and

avoid injuries (www. exponent .com/injury-causation). Finally, in medicine, under-

standing dynamic shapes can aid rehabilitation (www.mercurybiomechanics.com),

track tumor growths [135], even analyze fetal heart beats [63].

Although dynamic shapes are important in many fields, they are complex and hard

to model (Figure 1-1). They come in a large variety of forms and sizes, and deform in

unique and complicated manners. Our muscles bulge, our clothes dynamically flap,

our facial expressions are finely tuned to convey many subtle emotions. Coping with

this complexity stands in the way of enhanced and broader usage of dynamic shapes

in computer systems today.

While the coarse motion estimates obtained with mocap cannot fully represent the

complexities of dynamic shapes, sophisticated surface scanning methods (Figure 1-

2 right) attempt to do so by recovering complete surfaces of objects to within a

millimeter precision [93, 71, 77, 79]. However, only a limited number of them can



Figure 1-2: Traditional motion capture (left) tracks only a small number of points

on dynamic shapes, yet is extensively used in entertainment, sports, education, and
biomechanics (picture taken from [Kirk 2005]). At the same time, static surface
reconstruction (right) has reached high level of sophistication, but is not applicable

to moving shapes (picture taken from [Levoy 2000]). We want to reconstruct and
analyze detailed moving surfaces of dynamic shapes.

possibly be adapted to dynamic shapes. For example, binocular and multi-view stereo

offer convenience and dynamic capture, although they provide detailed data only in

high-texture regions. Active 3D scanning based on structured light provides high-

quality static meshes, but does not scale well to moving scenes or large working

volumes. Photometric stereo (active shape from shading) offers high-quality geometric

detail in the form of normal maps, but it remains difficult to combine the normal maps

from multiple views. Template-based regularization may be applied to any of these

methods, often with visually-compelling results, but the ultimate quality depends on

the similarity of the actual surface to the template.

Because of their complexity, dynamic shapes are also hard to animate. This

is most often done by hand using keyframing and procedural deformations. Adding

detail with this approach is tedious because it requires setting hundreds of parameters.

As a result, most animated characters appear to wear skin-tight garments that move

stiffly without flowing. Procedural approaches that take physics into account can

generate these details with more ease and efficiency, but they are difficult to control

when the goal is to match a particular motion or performance.

In this thesis we provide tools for reconstruction and analysis of moving surfaces,



Figure 1-3: We provide tools to reconstruct dynamic shapes very efficiently from
silhouettes (left), very precisely from normal maps (middle), and very practically
from hybrid sensors (right).

opening new possibilities for application of complex dynamic shapes. Mirroring the

traditional mo-cap, we capture the detailed moving surfaces of real objects in order

to obtain compelling high-quality models. The ability to modify the recorded shapes

is also vitally important. They need to be edited, transformed, interpolated, and

recomposed so that new high-quality surfaces can be animated as easily as skeletons.

In Chapter 2 [150], we describe a system that reconstructs the moving surface of

people and dynamic clothes by molding a template shape to fit multi-view silhouettes

(Figure 1-3 left). Our method is one of the first and most efficient ways to obtain

detailed surfaces for fast and complex motions. We show that the silhouettes contain

enough geometric information to plausibly reconstruct body articulation, bulging

muscles, and flapping clothes. The output mesh animations are fully corresponded

making them suitable for texturing, editing, and model fitting. They can be readily

used for virtual characters in games and animated movies, as well as to analyze

complex human motions such as breakdancing.

In Chapter 3 [152], we enhance the quality of the reconstructed moving surfaces

by also processing multi-view normal maps (Figure 1-3 middle). While normal maps

require additional hardware resources (i.e. controlled lighting), they add detailed

information in the interiors of the silhouttes, which allows us to obtain correct folds

on the clothes to within millimeters of the true surface, even without the a-priori

shape template. As a result, we can capture arbitrary moving surfaces such as actors

with props and shapes with changing topology. While this method does not produce



Figure 1-4: We provide methods to transfer facial performances between different
faces (left), as well as full-body motions between different characters (right).

watertight corresponded surfaces, it yields data ideal for the geometry processing

community, who can aggregate our surfaces into watertight and corresponded moving

meshes. The high precision of our output meshes means that they can be used

in high-end feature film production, as well as for various biometric and material

measurements.

In Chapter 4 [149], we explore a possible approach to capturing dynamic shapes

in their natural environments using hybrid inertial and acoustic sensors (Figure 1-3

right). Our method combines intertial measurements of different points on the body

with acoustic time-of-flight between them in order to recover high-precision high-

frequency body pose. Hybrid sensors make capture more practical by not relying on

expensive and highly-controlled studio settings. They could allow anyone to capture

motions anywhere for long periods of time, making this approach ideal for biomedical

analysis and physical rehabilitation without extrenuously burdening the users.

In Chapter 5 [151), we move from reconstruction onto analysis of dynamic shapes

with a goal to edit, combine and learn from the captured surface motions in order to

generate novel surface motions and extend the usefulness of the captured data. We

demonstrate a method that fits a multilinear model to the captured faces in order

to transfer performances from one face to another (Figure 1-4 left). The multilinear

model simplifies the process of face animation by naturally encoding individual id-

iosyncracies (such as style of smiling) and providing separate sets of parameters for

identity, expression and speech. This means that we can change one set of parameters



(e.g. identity) while keeping the others (expression and speech) fixed. In this manner,

our method can animate the digital face of an expensive actor with a performance

of a cheap actor, making sure that the likeness, individuality and mannerism of the

expensive actor is preserved.

In Chapter 6, we summarize our findings and discuss possible future directions,

including improved surface capture by further processing the reconstructions from

normals (Chapter 3), and transferring not just facial performances, but full-body

motions between very different characters (Figure 1-4 right) [12].

The presented methods can be used to improve virtual characters in entertain-

ment and education, as well as to simplify the laborious process of animating them.

They show potential for enhancing human-computer interaction and improving the

application of biomechanics to medicine and rehabilitation. As motion capture has

become commonplace across a wide variety of fields, moving surfaces will become an

enhanced way of capturing, viewing, analyzing and editing dynamic shapes rich with

surface details.



Chapter 2

Reconstruction of Dynamic Shapes

from Silhouettes

Input images Output meshes Pose/Color/Shape edit

Figure 2-1: Our methods for pose tracking and non-rigid shape matching make it
possible to extract a mesh animation with full correspondence (middle) from multi-
view video data (left), allowing easy editing of pose, texture and geometry (right).

In this chapter we address the challenging problem of reconstructing the moving

geometry of dynamic shapes (e.g. human actors) with a template-based approach.

We "mold" a 3D template of the subject to fit the silhouettes obtained from mul-

tiple cameras surrounding the scene. This method efficiently obtains consistently-

parameterized moving meshes that are suitable for visualization and editing. How-

ever, the surface detail in-between the contours is interpolated from the template and

does not exactly match the observed motions. Nevertheless, the reconstructed sur-

faces convey the flavor and the dynamics of the captured actors by recovering their

body pose, deforming skin and flapping clothes.



Our system processes a set of synchronized background-subtracted videos that

provide a record of a human performance from multiple viewpoints. The silhouette

from each viewpoint corresponds to a cone of rays from the camera origin through

all points of the subject. The intersection of these cones approximates the subject's

shape and is called the visual hull. Our method first uses the visual hulls to track

the skeletal pose of the performer. In especially difficult frames, the user can specify

constraints for joint positions, allowing for more robust tracking than is possible with

fully automatic methods. Our system then deforms a template mesh of the performer

to fit the recovered pose and the silhouettes at each frame. The output is suitable

for editing because the template ensures frame-to-frame correspondence. Figure 2-1

shows a few representative results and some sample edits.

Our pipeline makes use of two novel techniques. The first is a geometric pose

tracking method fast enough to incorporate interactively provided user constraints.

This is essential because no current automatic method can track the skeleton perfectly

across all frames in a setting such as ours: motions are fast and complex, performers

wear loose clothing, textures are poor, and the visual hull is ambiguous (e.g., crossing

hands). The second novel technique is an iterative method for deforming a template

mesh to match the observed silhouettes while preserving the detail in the template.

This allows us to capture the secondary deformations, such as flapping clothing, that

make the motion appear natural. Together these techniques enable us to process more

challenging data faster and obtain higher quality results than previously possible.

2.1 Previous Work

Traditional motion capture estimates skeleton motion using information from markers

or sensors on the body. While these systems are accurate, they still require manual

adjustments to clean up recorded data. Furthermore, recording requires skin-tight

garments to ensure that markers move rigidly with the corresponding limb. Markerless

motion capture addresses these limitations by estimating pose directly from multi-

view video [99, 37, 140, 49]. However, these methods are less reliable when limbs are



not clearly distinguishable (e.g., when arms are close to the body). Manual clean-up

is often necessary, but the above methods do not discuss ways to assist in this process.

Pose estimation does not capture the fine detail on the surface of the shape. Richer

templates with more degrees of freedom can capture time-varying geometric detail

better. Sand et al. [127] capture some of those effects with silhouette-bounded needles

radiating from each bone, without maintaining frame-to-frame correspondence. Park

and Hodgins [109] improve on these results to record detailed bulging and jiggling

using a traditional motion-capture system with many markers. Other researchers have

shown how to design patterns that can be printed on clothing to enable highly detailed

estimation of garment motion [128, 165]. Markers, either attached or printed, make

it less convenient to record arbitrary human performances in casual clothing. Purely

vision-based techniques rely on texture cues to track motion of a few carefully selected

points [51, 50]. These approaches are not as reliable on fast motions, especially when

there are few textures cues (e.g., pants in Figure 2-1).

Template-based Static carving

Figure 2-2: Applying static carving techniques can result in topology issues, such as
the connected feet and arm in this frame while template-based reconstruction ensures
a consistent topology.

The multi-view stereo literature provides a powerful collection of tools for recover-

ing a single static mesh [129]. Some of the best methods produce extremely accurate

results but they are computationally expensive, requiring an hour of computation

.. .. .. ........................................ . ...... .. ........... ....... .... .. ... ....



or more for a single frame [82, 70, 61]. Faster carving methods sacrifice quality but

capture meshes at speeds more practical for processing video streams [122, 134, 75].

These methods do not make assumptions about the observed deformations and ge-

ometry, allowing them to capture arbitrary deforming surfaces, not just articulated

characters. They, however, do not always reconstruct the topology correctly and

produce uncorresponded results (Figure 2-2). Our approach is much faster and it

generates mesh animations with frame-to-frame vertex correspondence.

Our approach maintains correspondence by matching a single mesh template to

every frame in the sequence. Using a template mesh leads to faster algorithms and

allows interpolation of regions where data is unavailable. Articulated templates are

often used to improve pose tracking, but they do not deform to capture details in the

video [33, 138, 37, 6, 39, 9]. A template based on implicit surfaces [117] can capture

time-varying detail, but does not produce corresponded meshes. To learn a skinning

model, Allen et al. [4] obtain corresponded shapes for different poses by matching a

subdivision surface template to range data.

Our processing pipeline is most similar to the work of de Aguiar and colleagues [48]

who also estimate the skeleton configuration before deforming the template mesh to

match the data. Both approaches use Laplacian coordinates to preserve mesh detail

while satisfying silhouette constraints (their method also uses texture constraints).

A critical difference is that they sample the mesh and drive the samples towards

the visual hull, while we sample the contours and pull only the closest mesh points

to our samples. Because most of the correct surface is not on the visual hull, their

method tends to distort the shape and needs strong regularization as well as reliable

texture cues. In contrast, we only pull those vertices to the visual hull that are likely

to be on it and can therefore match the contours more closely. Hence, our method

performs significantly better on images with poor texture cues and strong silhouette

cues. Additionally, our method is over an order of magnitude faster, which allowed

us to develop an interactive user interface to assist pose correction. These differences

enable us to capture mesh animations even for fast and complex human motions.



Silhouettes Template Visual Hull LBS Shape Estimate Edits

Figure 2-3: From left to right, our system starts with a stream of silhouette videos
and a rigged template mesh. At every frame, it fits the skeleton to the visual hull,
deforms the template using linear blend skinning (LBS), and adjusts the deformed
template to fit the silhouettes. The user can then easily edit the geometry or texture
of the entire motion.

2.2 Overview

A multi-view studio provides a set of synchronized high-definition silhouette videos

by recording a performance from several angles using multiple calibrated cameras.

Our software pipeline, shown in Figure 2-3, also uses a template mesh rigged with

a skeleton that matches the physical dimensions of the performer: the skeleton is

positioned within the template mesh and each vertex is assigned a weight that is used

to deform the template with linear blend skinning (LBS). Our software outputs a

sequence of joint configurations and vertex positions to represent the pose and shape

of the performer in every frame of the multi-view sequence.

The software pipeline proceeds in two stages: skeleton tracking and surface re-

finement. In the first stage (Section 2.3), the system optimizes the fit of the skeleton

to the visual hull at each time step. The system tracks most simple motions au-

tomatically, but may fail on very complex motions. In such cases an easy manual

intervention can be used to correct the skeleton. In the second stage (Section 2.4),

our system deforms the template according to the skeleton and adjusts its surface to

better match the silhouettes.

..............
.. .......... ...



2.3 Pose Estimation

During the pose estimation stage, we fit the skeleton to the visual hull in each frame.

Our objective is to position the bones deeply into the visual hull and to maintain the

temporal smoothness. Evaluating this objective requires computing the distance to

the visual hull and we develop an efficient method for this task. Additionally, our

objective incorporates information provided by the user for especially difficult frames.

To optimize the objective, we iterate through the frames in order and find the best

pose for each frame, while providing visual feedback of the progress to the user and

allowing user corrections. To propagate user constraints backwards, we make another

pass over the frames in reverse order.

2.3.1 Objective Function

Pose estimation recovers the pose by minimizing an objective function that is a

weighted combination of four terms. The first term ED pushes the bones towards

the medial axis of the visual hull, the second term E improves the temporal smooth-

ness of the motion, the third term ER pulls the end effectors into the extremities, and

the fourth term EU enforces the user constraints:

arg min WDEDO() + WTET(O) + WRER(O) - wUEu(O)),

where 0 represents the degrees of freedom of the skeleton and the scalar weights w

determine the relative importance of the depth, temporal, refinement, and user terms.

The vector 0 consists of joint angles (in radians) and the root translation (in meters).

Joint limits constrain it to lie in a range.

Depth (ED) The true deformed object is completely contained inside the visual

hull. Therefore, we require that in a good fit, the distance from a point on the skeleton

to the visual hull surface be no less than the distance from the corresponding point

on the template skeleton to the surface of the template. Let pi be samples on the



bones of the skeleton and let ri be corresponding distances to the template surface

(so if pi is in the middle of the femur, r1 is roughly the thigh radius at that point). In

a particular frame, let d(p) be the distance from a point p to the visual hull surface.

We wish to penalize d(pi) < ri, so we set

ED(O) =7y(d(pi(6)) - ri),

where -y(x) is a smooth function that is approximately -x when x is negative and

approximately 0 when x is positive. Using four evenly spaced samples per bone

provides a good compromise between performance and accuracy.

Temporal Smoothness (ET) During the forward pass, we enforce smoothness by

penalizing deviation from the previous frame: ET(Ot) = ||6t - t-1||2. During the

reverse pass, we penalize deviation from the next and the previous frame:

ET(Ot) = ||6t - Ot- 112 + ||t - Ot+1| 2.

Refinement From Shape Estimation (ER) Because the depth term tends to

pull the bones to the inside of the visual hull, the end effectors (hands, feet, and

head) often do not extend all the way into the extremities. To enhance the skeleton

fit, we use our shape estimation algorithm (described in Section 2.4) to move these

joints into place. After an initial optimization with WR set to 0, we run an iteration

of shape estimation. This pulls the template vertices towards the correct surface

locations. For each end effector j, we look at the portion of the surface that is nearly

rigidly bound to that joint. Let Am, be the vector by which the center of mass of

that portion moves as a result of shape estimation. We translate each joint by Am,

by setting

ER(0) -- qj(0) - (q, (0) + Amy)112 ,

where gj(6) is the position of joint j and 60 is the joint angle vector after the initial

optimization. We repeat this process twice to obtain the final pose.



Incorrect Fit User Intervention

Figure 2-4: An incorrectly fit skeleton is fixed by the user dragging the wrist joint.
Our system repositions the hand joint automatically to fit the visual hull.

User Constraints (Eu) When the user interrupts the forward pass and drags a

joint j to a new position on the screen, our system interprets that as a constraint

on the vertex to lie on the ray that projects to that position. We incorporate this

constraint by adding a point-to-ray squared distance term to Eu:

Eu(0) = I[|(q (6) - ou) x ru|| 2 ,
UEU

where U is the set of user constraints, j, ou and ru are the joint index, ray origin

and ray unit direction, respectively, for constraint u. To constrain a joint completely,

the user needs to specify the constraint from two different views. The user is also

allowed to remove the refinement constraints.

Weights Our rationale in choosing the weights is that we want the depth term

to be stronger than the temporal smoothness term, the estimation-from-refinement

constraints to override the depth term, and the user constraints to override everything.

Because the error terms ED, ET, ER, and Eu have units of m, rad2 (our conversion

constant between radians and meters is 1), m2 , and in 2 , our weights have inverse

....................................
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units. The actual weights we use are WD= 5, WT = 1, WR= 500, wu = 5000, but as

discussed in Section 2.5.2, our method is not overly sensitive to their precise values.

2.3.2 Distance Evaluation

Without optimization, the most expensive part of the objective function evaluation

would be computing d(pi) for the depth term. To ensure interactive performance

for user corrections, the evaluation of the distance to the visual hull must be fast.

Because computing a full 3D distance field would take too much time per frame, we

make use of the fact that the visual hull is the intersection of eight cones and most

of the evaluations are inside the intersection.

In general, if we have several objects, the distance field inside their intersection is

the minimum of their individual distance fields. So if we could quickly evaluate the

distance field inside each cone, we would be able to quickly evaluate the distance field

inside the visual hull. Let di(p) be the distance to the boundary of cone i and let oi be

the origin of that cone. Note that for an arbitrary scalar a, di(oi+a(p -oi)) = a di(p).

This lets us compute di at every point on the camera image plane, and then evaluate

di everywhere else just by scaling. This formulation corrects an earlier observation

that uses image-space distances instead of point-ray distances [59].

To compute di on the image plane, we adapt a vector distance transform algorithm

[43]. We initialize di to zero on the contour pixels and rather than propagating a 2D

vector to the nearest pixel during the scans, we propagate the nearest ray.

When the distance needs to be computed outside the visual hull, that skeleton

joint is far from where it should be and we don't need as much accuracy. In this case,

we use a KD-tree to compute the distance to a polygonal approximation of the visual

hull. We extract this polygonal approximation by evaluating the distance field near

the visual hull boundary and then running marching cubes.



2.3.3 Processing

Because our objective function is nonlinear in joint angles, we use SNOPT [74] to find

a local minimum from an initial guess. The first frame has no good initial guess and

needs manual constraints to fit the skeleton properly. The second frame is initialized

to the solution for the first frame. During the rest of the forward pass, we use the

linear prediction from the previous two frames 20 tI - Ot-2 as an initial guess for

frame t.

The user can interrupt the tracking if it fails and view the scene from any direction

(including original camera views). The user can then fix the pose by dragging joints

to their correct positions on the screen (Figure 2-4), defining rays on which those

joints must lie. These constraints are incorporated into the objective function and

the skeleton is reoptimized several times per second. This enables the user to position

a joint interactively and observe the effect on the rest of the skeleton.

After all frames have been processed, our system performs an additional optimiza-

tion pass over all the frames in reverse order during which the user does not specify

additional constraints. The initial guess for a frame during this pass is the solution

for that frame from the forward pass. The temporal smoothness term in the objective

function allows user constraints and other information to be propagated backwards

during the reverse pass.

2.4 Shape Estimation

After recovering skeletal poses for the whole sequence, shape estimation deforms the

template mesh for each frame. A naive way of doing this is to put the template into

the skeleton pose using linear blend skinning. While resembling the true shape in

overall deformation, the resulting shape does not respect the silhouettes and exhibits

artifacts at bent joints (Figure 2-5, left). We designed an iterative method for non-

rigid shape matching using Laplacian coordinates that corrects this problem. The

algorithm begins with a smoothed version of the LBS mesh as the initial guess. At

each iteration, it reintroduces part of the original template detail and also introduces



LBS Initial Shape Final Shape

Figure 2-5: The template deformed with LBS suffers from artifacts around joints and
does not fit the silhouettes. Our method smooths it and constrains it to the contours,
gradually reintroducing detail. The result after several iterations has the detail of the
original template, fits the silhouettes, and does not have LBS artifacts.

vertex position constraints that bring the shape closer to the contours in each camera.

To enhance temporal consistency we interleave a bilateral filter on the meshes with

these iterations. The resulting shapes match the silhouettes while still resembling the

undeformed template.

2.4.1 Laplacian Coordinates

We convert our template mesh to Laplacian coordinates [3, 97] in order to represent

the iteratively deforming shape. Let VT be the n x 3 matrix storing the template

mesh vertex coordinates. Then Laplacian coordinates L are generated with:

L = AVT

where A is the n x n mesh Laplacian matrix (cotangent weights work best [101]).

Laplacian coordinates are well-suited for our algorithm because they encode all of the

geometric detail of our template. In addition, they let us constrain a subset of the

.. .................... ........



Algorithm 1 Shape Estimation

1: k <- number of frames

2: for t = 1 to k do

3: (CLBS, PLBS) <- nearly-rigid vertices
4: Vt <- solve Equation 2.1

5: end for

6: V1..k <- TemporalFilter(Vl..k)
7: for WL = 0 to 1, step 0.2: do

8: fort= 1 tokdo
9: L' +- Laplacian coordinates rotated using LBS

10: (CsIL, PSIL) <- silhouette constraints using current Vt
11: Vt <- solve Equation 2.2

12: end for
13: V1..k +- TenporalFilter(V1..k)
14: end for

vertices and the remaining vertices will be appropriately interpolated. Furthermore,

we can control the smoothness of the shape by scaling the coordinate vectors.

We recover the Euclidean vertex coordinates V from the Laplacian coordinates

and vertex position constraints by solving the following linear least squares system:

arg min|( V - wLL l2 + wcIICV - P||2

where the m x 3 matrix P contains the target positions of m constrained vertices,

with the rows of the m x n matrix C having 1's at the corresponding columns. To

constrain a point on the mesh that is not a vertex, we put its barycentric coordinates

into the appropriate row of C instead. The first term ensures detail preservation, with

the weight WL determining how smooth the resulting mesh will be (0 is the smoothest,

while 1 incorporates the full detail of the original mesh). The second term ensures that

the constraints are satisfied, and the weight wC determines how much it is weighted

compared to the Laplacian coordinates term. We use soft constraints rather than

hard ones so that we can balance fitting to the contours against the reproduction of

detail from the template mesh.



2.4.2 Non-Rigid Shape Matching

We do not know initially which points on the mesh should be constrained to which

points on the contours. We determine this iteratively (Algorithm 1), starting from a

mesh deformed using only the recovered pose. The initial and final shapes for one of

the frames are shown in Figure 2-5. The mesh does not match the silhouette perfectly

because of our use of soft constraints and silhouette sampling.

Initialization (Lines 2-5) The LBS-deformed mesh is a poor initial guess for

shape estimation because of skinning artifacts near the joints. However, the vertices

that are attached mostly to a single bone are acceptable, as they deform almost

rigidly. Therefore, for our initial guess, we constrain the nearly-rigid vertices (whose

LBS weight is at least .95 for a single bone) and smoothly interpolate the rest of the

mesh by scaling the Laplacian coordinates to zero. We solve:

arg min ||AV112 + WC||CLBSV - PLBS2112)

where we set wC = 1000, and fill PLBS and CLBS with the nearly-rigid LBS vertices

and their indices. This results in the non-rigid regions being smoothed-out, as shown

in Figure 2-5 (middle), alleviating problems such as over-folding and self-intersections.

Iteration (Lines 7-14) After obtaining the initial shape, we perform several it-

erations that bring it into better agreement with the silhouettes. We compute each

subsequent shape estimate by solving

argrmin (|AV - WLL'J2 +WC CSILV - PSIL 2 (2.2)

where wC = 1000 and CSIL is filled with barycentric coordinates of surface points that

are constrained to points on contour rays (as described below). The target locations

are stored in PSIL. Rows of L' contain transformed Laplacian coordinates f' for the

current frame. This is necessary because changes in the subject's pose rotate portions
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Figure 2-6: We deform the template to fit the silhouettes by constraining at most one
surface point to each contour sample ray (top). Adjusting the template by pulling the
closest surface point toward each contour sample (bottom left) exacerbates folding
effects, while preferring the points in the direction normal to the contour (bottom
right) helps diminish these effects.

of the surface and Laplacian coordinates are not rotation-invariant. For vertex i, we

transform its Laplacian coordinate vector ei (ith row of L) by a linear combination of

the bone rotations:

where R is the rotation of bone j, and b is that bone's LBS weight for vertex i.

During our six iterations, we gradually increase WL from 0 (completely smooth) to 1

(full original detail).

Silhouette Constraints (Line 10) At every iteration we use the silhouette con-

tours to determine CSIL, the surface points that need to be constrained, and PSIL,



the locations on the contour rays to which they should be constrained. Every ray

from a camera origin through the contour is tangent to the subject. We therefore

sample the contours (every 10 pixels) and look for constraints to make the estimated

shape tangent to each sampled ray. For each ray, we find a point on the mesh that

should be pulled towards that ray. If the ray is outside the reconstructed shape, we

use the closest point on the shape to the ray. If the ray intersects the reconstructed

shape, we find the point on the ray that's deepest inside the shape and use the point

on the shape closest to it. Figure 2-6 (top) illustrates both of these cases. To prevent

the surface from folding in on itself (Figure 2-6, bottom), we distort the distance to

the shape by preferring vertices that are in the normal direction of the ray (obtained

using the outward facing silhouette normal). We scale the distance metric by 0.25

in this direction. To avoid incorrect constraints, we do not constrain points that are

farther than 5cm (in the scaled metric) from the ray or whose mesh normal differs by

more than 900 from the silhouette normal. The resulting closest points are used to fill

in PSIL and CSIL in Equation 2.2. Figure 2-5 (middle) shows the contour constraints

pulling on various surface points for a frame in one camera.

Temporal Filtering (Lines 6 and 13) Minor tracking errors and temporal in-

consistency in the contour samples causes the estimated shapes in neighboring frames

to exhibit "texture sliding" [7] even if the subject is stationary: though the surface

appears smooth and fixed, the underlying triangulation wobbles around. Simply ap-

plying temporal smoothing on the mesh vertices works poorly because it causes large

deviations from the data when the subject is moving quickly. We therefore apply a

bilateral smoothing filter:

V- - 2v've +vii <-v ±

where vt is the vertex i at time t. In our implementation o = 0.07m. We apply a pass

of this filter twice after each shape estimation iteration. Texture sliding artifacts are

most visible when the object is static, and our bilateral filter greatly reduces them.



Visual hull Our reconstruction LBS

Figure 2-7: Our reconstruction has more detail than the visual hull and fits the data
better than the template deformed using LBS.

2.5 Results

We tested our method on eleven sequences with five subjects captured in two different

studios. The accompanying video demonstrates the ability of our method to produce

meshes that capture fine motion details for very fast and challenging motions. Fig-

ure 2-10 shows reconstructed shapes from five of these sequences. We evaluate our

algorithm according to several criteria: computation efficiency, the amount of user

interaction needed, and robustness to parameter changes. We demonstrate the utility

of our resulting meshes by applying a static texture and a geometric deformation to

some sequences.

2.5.1 Experimental Setup

We have data sets from two different sources. In both cases the setup consists of a

ring of eight cameras looking down at the performer. The first data set was provided

by Starck and Hilton [134]. Their video streams are recorded at 25 FPS at 1920 by

1080 pixel resolution. The second source was our studio where we capture video at

1600 by 1200 resolution also at 25 FPS. We calibrated our cameras using an LED



and software by Svoboda et al. [137].

The template mesh may be obtained by various means, such as 3D scanning [93],
static multi-view stereo of a single frame [129], or manual modeling (as in [109]). For

the Starck and Hilton data set, we use a good frame obtained by their multi-view

stereo method [134] as the template. For our data sets we use a 3D scan of the

performer (see Figure 2-10) obtained with a Cyberware scanner. Each template mesh

was decimated to 10,000 vertices.

We manually built 40-DOF skeletons to fit the dimensions of each performer and

embedded them within the template meshes (Figure 2-3, left). We attached each mesh

to its skeleton with linear blend skinning using weights generated with Pinocchio [11].

2.5.2 Performance

Computation The processing was done on a 2.4 GHz Intel Core 2 Duo with 2GB

of RAM. For the 175 frame Samba sequence, the forward pass of pose estimation

ran at 4.3 seconds per frame while the backward pass added another 3.3 seconds per

frame (some computations are reused). Shape estimation took 4.8 seconds per frame,

making the total processing time about 12.4 seconds per frame, or 36 minutes for the

whole sequence. User supervision is only necessary for the forward pass, which took

a total of 12.5 minutes for this sequence. Timings for all of the processed sequences

are shown in Table 2.1.

Accuracy Our method enforces the surface to fit the silhouettes and retain the

detail of the template. The average silhouette error (percentage mismatch between

the reconstructed and captured silhouettes) is below 8% for our motions, and below

15% for Starck and Hilton motions. The average distortion (percentage edge length

change between the reconstructed surface and the template) is below 13% for all

motions. Per-sequence errors are reported in the rightmost columns of Table 2.1. We

were unable to assess the 3D accuracy of the reconstructed surfaces, as there are no

ground truth moving surfaces for our data.



Sequence Total Fixed Total Frame Silhouette Edge
Frames Frames Time Time Error Error

Flashkick 250 4 57m 13.7s 11.64% 12.65%

Headstand 250 7 61m 14.6s 12.46% 11.50%

Kickup 220 1 531 14.5s 12.73% 12.51%

Lock 250 13 64m 15.4s 14.10% 11.22%

Walkpose 66 0 16m 14.5s 11.05% 10.64%

Bouncing 175 4 40m 13.7s 6.11% 10.14%

Crane 175 0 32m 11.0s 6.27% 8.69%

Handstand 175 2 40m 13.7s 6.67% 13.27%

Jumping 150 2 32m 12.8s 7.18% 10.76%
Samba 175 0 36m 12.3s 7.44% 8.83%

Swing 150 5 33m 13.2s 7.78% 10.40%

Table 2.1: We tested our algorithm on eleven different motions. We captured the

bottom six sequences, while the top five were provided by Starck and Hilton. For each

sequence we report the total number of frames, the number of trames requiring user

intervention, the total processing time, the per-frame processing time, the average

silhouette error (the percentage of the reconstructed silhouette that did not agree

with the captured silhouette, and the average edge error (the percentage change in

edge length as compared to the template).

User Interaction The provided interface allows an experienced user to fix a frame

with a poorly fitted skeleton in under 20 seconds most of the time. As the user drags

a joint constraint, the solver updates the skeleton several times per second, providing

immediate feedback. Keyboard shortcuts let the user inspect the fit overlaid on

the video images, allowing quick evaluation of the skeleton fit quality. We tracked

each sequence and provided manual constraints necessary to reconstruct it correctly.

Table 2.1 shows the number of frames that needed user constraints.

Sensitivity to Constants Our method depends on a number of manually chosen

constants. These include error function weights for the pose estimation and the

silhouette constraint parameters for the shape estimation. There was no need for

extensive tuning of their values and we did not run into complicated interactions

between them. We experimented with random changes to several of these parameters

and found that the results are reasonable even when they are varied over a range of

almost an order of magnitude.



Figure 2-8: Frame-to-frame correspondence allows a static texture to be easily applied
to the entire motion.

2.5.3 Editing

The reconstructed mesh sequence is ideal for editing the entire motion. A texture

applied to the template is trivially propagated throughout the motion (Figure 2-8). A

geometry edit to the mesh can be propagated through all or part of the motion using

deformation transfer (see Figure 2-9) [136] or Kircher and Garland's method [87]. It

is also possible to train a better skinning model than LBS such as [157] and use it

with new skeletal data or to generate new poses (Figure 2-1, right), using deformation

transfer to apply details that the skinning model does not capture.

2.6 Discussion

Our approach demonstrates that by taking advantage of geometric information in

the silhouettes, we can obtain detailed mesh animations with full correspondence and

correct topology. The output mesh animations are suitable for editing with methods

such as texturing and deformation transfer. The key insight is to use skeletal pose

estimation for gross deformation followed by iterative non-rigid shape matching to fit

the image data. Moreover, an interactive mechanism for correcting occasional pose

. . .......... . .. .........................................



Figure 2-9: Top row: the template mesh and two frames of animation. Bottom row:
the template mesh geometry is edited and the change is propagated to the two frames
using deformation transfer.

estimation mistakes allowed us to obtain high-quality tracking of complex sequences

with little effort. Our results show that silhouettes alone can convey rich and complex

visual details despite inaccuracies away from the contours.

Limitations. Because our method only relies on silhouettes, it is completely im-

mune to color noise, lighting, and color calibration problems. However, this reliance

leads to two limitations. First, our method cannot reproduce the surface accurately

away from the contours: it has to rely on the template to interpolate geometric infor-

mation. This is especially problematic for unarticulated objects such as long scarves,

faces, or flowing hair. Using color information in a manner that does not sacrifice

robustness would improve their reconstruction. Second, our method is sensitive to

errors in the silhouettes, and will produce incorrect geometry when visual hulls are

noisy. However, this is not a serious problem in a studio setting where chroma-keying

methods can be used to obtain clean silhouettes.

............................................... ..... ..
. .. .. ....... W_



We found that the quality of the output animation strongly depends on the quality

of the template. While a space-carved template can convey the character of the

motion convincingly, the final appearance is much better for templates with accurate

and high-resolution detail, such as those obtained with a laser scanner. Additionally,

pose estimation is sensitive to the accuracy of the template skeleton proportions and

degrees of freedom. Fine-tuning the skeleton is currently a manual task, but it may

be possible to extract an improved skeleton automatically from our output sequences

and use it to improve tracking of the same performer.

Another issue we have not completely addressed is texture sliding, which is still

occasionally visible despite bilateral filtering. We believe that this problem traces

back to temporally inconsistent ray constraints used in shape estimation. A possible

remedy is to permit motions of a constrained point within the tangent plane of the

silhouette cone. This would allow more natural configurations of the mesh and the

resulting optimization procedure would still be efficient to solve.

Future Work. An interesting application of our results would be to learn a model

of shape motion that takes clothing and dynamics into account. Such a model could

simplify mesh animation from skeletal motion capture data and retain the details

acquired during performance. Another possible future direction would be to provide

an interface to edit and clean up the output mesh sequences, similar to our user

interface for pose correction. Standard mesh editing techniques are not well suited

for this purpose because they do not account for temporal consistency. An integrated

mesh-editing framework could take advantage of the video data to assist the user and

improve reconstruction.

We hope that we can support further improvement of mesh capture and processing

techniques by sharing our data with other researchers (http: //graphics. csail.

mit.edu/mesh-animation/).



Figure 2-10: Background-subtracted video frames (top) and the corresponding recov-
ered shapes (bottom) for three subjects in five sequences.



Chapter 3

Reconstruction of Dynamic Shapes

from Photometric Normals

Figure 3-1: Our system rapidly acquires images under varying illumination in order to
compute photometric normals from multiple viewpoints. The normals are then used
to reconstruct detailed mesh sequences of dynamic shapes such as human performers.

In the previous chapter we have obtained moving 3D surfaces by deforming a

template shape to fit the silhouettes from multiple views. This approach was very ef-

ficient and yielded compelling reconstructions of deforming skin and flapping clothes.

However, since the silhouettes do not convey any surface information in their interior,

the reconstructed surface detail came mainly from the template. In this chapter, we

describe a practical system that measures the photometric normals and uses them to

reconstruct the detailed moving surfaces of dynamic shapes. Since the normal maps

(as opposed to silhouettes) contain an abundance of surface detail, we no longer need

a template shape, which makes this approach more flexible. In addition, the recon-



structed surface detail closely matches the true detail, i.e. we obtain the correct

folds and wrinkles on the clothes. The large amount of measured data increases the

memory and computation requirements of this method, while the lack of a template

means that, due to visibility, portions of the surface cannot be reliably recovered.

Nevertheless, this method yields moving surfaces of unprecedented quality.

Our system captures highly detailed 3D geometry of an actor's performance at

sixty frames per second. We begin by acquiring normal maps from a small number

of views (i.e., 8 or 9), using a novel variant of photometric stereo based on a small

set of view-independent time-multiplexed light patterns produced by a large lighting

dome (Section 3.2.1). In contrast to many existing systems, we use only four spherical

lighting patterns (Section 3.2.2) to obtain a frame of geometry, which offers numer-

ous practical advantages in acquiring detailed geometrry of full-body performances.

The spherical nature of the lighting patterns ensures that each camera, irrespective

of its relative location, gains photometric information at each frame. This makes

the patterns particularly well-suited for capturing performances from all viewpoints.

Furthermore, the large extent of the lighting patterns improves the robustness of the

light/camera calibration, as well as allowing the irradiance to be better distributed

than with bright point-light sources, and improving actor comfort.

Our reconstruction pipeline is split into several stages to make the large amount of

data more manageable. Our algorithm processes the multi-view normal maps together

with the corresponding silhouettes to produce high-resolution meshes independently

for each time frame. We first integrate each normal map to obtain an initial surface

per view, and estimate the locations of depth discontinuities (Section 3.3.1). The

visual hull, obtained as the intersection of silhouettes, provides constraints on the

integration as well as an initial rough estimate for depth discontinuities. Next, we

match the partial surfaces and deform them to improve their mutual fit (Section 3.3.2).

We evaluate several matching metrics, including ones based on local shape rather than

color. Finally, we use volumetric merging to combine the separate views into a single

surface (Section 3.3.3). We use this surface as an improved proxy replacing the visual

hull in a second pass. The final meshes are computed independently between time



frames, and recover the majority of a dynamic shape with high quality at sixty frames

per second.

Compared to existing systems, our work represents an advance in the combination

of high frame rate (60 Hz.), large working volume (human-size), and high spatial res-

olution (millimeter-scale) necessary for practical, high-quality performance capture.

To achieve this, we make contributions in both the capture and reconstruction stages

of our pipeline. First, we obtain high-quality high-frame rate normal maps using

photometric stereo with spherical lighting. This photometric configuration is more

comfortable to the subject, and is easier to construct, calibrate, and time-multiplex

than other active illumination schemes. Second, we present a pipeline partitioned into

stages that avoids expensive data-intensive optimization strategies on which some re-

cent methods rely. This is more efficient in storage and computation, is trivially

parallelizable, and scales well for large data volumes. Third, we demonstrate that

matching neighboring views using a surface-based metric yields better and more ro-

bust correspondences than image-based approaches, for a sparse view sampling with

a wide baseline such as ours.

We anticipate that data from our system (http://graphics.csail.mit.edu/

dynamic-shape/) will have immediate impact on several problems within geometry

processing and physical animation. First, because of our high resolution and our abil-

ity to capture surfaces without color detail, we obtain data suitable for analyzing and

validating physical simulation models for materials such as cloth. Second, our data

is ideally suited as input to algorithms that perform temporal registration and merg-

ing of geometry, which have recently received considerable interest in the geometry

processing community [156, 83, 95, 131, 170, 155]. Looking ahead, we believe that

it will be the combination of capture systems such as ours and temporal processing

algorithms that will enable detailed full-body performance capture, resulting in even

more believable virtual humans in movies and games.



3.1 Previous Work

Our methods are related to work from the following four research areas: (1) multi-

view stereo and volumetric carving, (2) real-time structured light, (3) template-based

approaches for performance capture, and (4) multi-view photometric stereo. We will

describe the most relevant work in each of these categories.

Multi-view (Wide-baseline) Stereo and Volumetric Carving Multi-view stereo

and volumetric space carving approaches use multiple, sparsely spaced cameras to ob-

serve a scene from different viewpoints. The color information is employed to carve

out the space until the scene is photo-consistent [130] or the color information is

matched along multiple epipolar lines [107]. Recent approaches additionally employ

global optimization to take into account smoothness constraints as well as the silhou-

ettes of the object [61, 154, 70, 82]. A comprehensive evaluation of many approaches

has been conducted by Seitz and colleagues [129].

Several characteristics of these methods make it difficult to apply them to high-

quality dynamic motion capture. In particular, their performance is highest with

dense texture and many camera viewpoints. However, for dynamic capture the num-

ber of camera locations is often limited (as opposed to static capture, for which a

single camera may be moved to many locations), and the viewpoints must contain

separate physical cameras (whose geometric and photometric properties must be cal-

ibrated). Although there have been systems that use more than 50 cameras [122], a

typical system for dynamic scene acquisition [134] might use only 8 cameras. Due to

these challenges, reconstruction quality for moving surfaces has typically been lower

than for static objects.

Real-time Structured Light Several methods capture dynamic facial perfor-

mance geometry using structured illumination, usually emitted from a video pro-

jector onto the subject, and observed from a single viewpoint [125, 45, 171, 172].

While these systems can achieve impressive results for small (e.g., face size) working

volumes, extending them to the two-meter working volumes required for full-body



performance capture and to multi-view point capture is difficult due to numerous

technical limitations of video projectors, such as limited spatial resolution, limited

depth of field, and diminishing light levels with increasing working volume.

Template-based Approaches for Performance Capture Geometric templates

(3D models of the subjects) can be used to aid in performance capture, for example

by deforming them to match (possibly sparse) multiview data, or using them for hole-

filling and parameterization. Caranza et al. [33] use a generic template and deform

it using silhouette data from different view points. Theobalt et al. [138] further

estimate surface reflectance and dynamic normal maps. Corazza et al. [40] also use

a generic template, but deform it to the visual hull. Bradley et al. [22] combine

multi-view stereo and a template to obtain moving garments. Starck and Hilton [133]

employ silhouettes, stereo, and feature cues to refine a generic humanoid model. Balan

and colleagues [9] use silhouettes from multiple viewpoints to estimate parameters of

SCAPE [6]-a low-dimensional geometric body model derived from a large collection

of static 3D scans. Zhang and colleagues [171] capture facial performances using a

multi-camera and projector system. The resulting 3D geometry is regularized with

a 3D face template. Most recently, some approaches have used high-quality, person-

specific static 3D scans as templates [50, 150, 47]. These are deformed by tracking

points on the surface of the object or by using silhouettes and photometric constraints.

The main advantage of template-based methods is that the prior model provides

the correct connectivity and topology for the output mesh sequence. This minimizes

major artifacts, while also reducing the search space and consequently running time.

Furthermore, temporal correspondence is automatically provided since the meshes for

all frames share the same parameterization. Therefore, missing data can be interpo-

lated from other frames. However, template-based approaches have significant disad-

vantages. The quality of the output is low when generic 3D templates are used. The

templates do not capture many person-specific details. Using high-quality, person-

specific templates requires using an additional 3D range scanner (e.g., Cyberware).

Furthermore, deformation details (such as cloth folds) can be baked into the template,



and it is difficult to modify or remove them as the corresponding geometric features

appear and disappear during the performance. Finally, template-based approaches

cannot deal with atypical geometry and props often used during performances.

Multi-view Photometric Stereo The work on multi-view photometric stereo is

the most similar to ours. Bernardini et al. [15] combine 3D range data with multiple

normal maps acquired from different viewpoints. These normal maps are used directly

during rendering and are not fused with the range data. Nehab and colleagues [104]

fuse range data with a single normal map obtained using photometric stereo. The

resulting geometry preserves high-frequency details from the normal maps while tak-

ing on the overall shape (i.e., low frequencies) of the range data. Nevertheless, this

method still requires initial 3D geometry of reasonable quality, and does not address

how to combine data from multiple normal maps.

Ahmed et al. [2] use a template and silhouettes to estimate the large-scale geome-

try of a performance. Geometric details are added by estimating normals, simultane-

ously with reflectance properties. In contrast, we do not require geometric templates

or reflectance estimation. Campbell et al. [31] jointly incorporate data captured from

multiple views to reconstruct a single shape using a volumetric approach. While el-

egant in theory, these approaches scale poorly to larger datasets. For example, to

obtain millimeter precision in a two meter working volume requires a 20003 volumet-

ric grid, which easily occupies several gigabytes of memory. Furthermore, solving a

large volumetric optimization rapidly becomes computationally intensive.

Lim et al. [96] use a sparse set of 3D features to construct a rough depth-map.

Using this depth-map, normal directions are computed for each depth-map location.

While the quality of the results is high, the method relies on the existence of detectable

features, which are not always readily available. Joshi and Kriegman [85] employ a

graph-cut method to find dense correspondences based on a multi-view matching cost

function that combines multi-view and photometric stereo. A depth-map from these

dense correspondences is fused with photometric normals to yield a high quality shape

using a non-iterative method. Unlike the method presented here, this method requires



having a large number of views (at least 3) of each surface point, and is limited to

2.5D shapes.

The most similar methods to ours are those by Vogiatzis et al. [153], and Hernan-

dez et al. [79]. These methods combine shading and silhouettes from different view-

points, acquired with a turntable, to derive a 3D geometric model. In contrast, our

approach captures dynamic scenes and requires fewer views (8 to 9 as opposed to 36).

The method of Vogiatzis et al. performs a local search (essentially gradient descent)

to establish correspondences between views. While this is appropriate if adjacent

viewpoints are spatially nearby, it can fail to converge to the right correspondence

if cameras are 45 degrees apart, as in our system. Furthermore, these methods rely

on accurate silhouettes, which can be difficult to obtain in multi-camera setups with

active illumination. Finally, our approach explicitly deals with surface discontinuities,

which is necessary to obtain correct surfaces for nontrivial performances.

Summary We argue that practical capture of dynamic geometry requires a method

that:

" reconstructs full 3D geometry (as compared to 2.5D depth maps) using a small

number of views.

" does not use templates, and can handle arbitrary topology.

" remains computationally tractable for high working-volume-to-resolution ratios

(several thousand to one) and high frame rates.

" handles fast and complex motion.

The tradeoffs and design decisions made in designing our system are based specifically

on satisfying all of these requirements.

3.2 Hardware System and Image Processing

In this section we will discuss our hardware system, and the necessary image process-

ing to compute high-quality normal maps for multi-view dynamic performance cap-



ture. We start by describing the hardware setup and calibration in Subsection 3.2.1.

Next, in Subsection 3.2.2 we introduce a novel photometric normal estimation algo-

rithm and its corresponding active illumination conditions. We conclude this section

by a detailed discussion of additional optimization strategies and implementation

details.

3.2.1 Acquisition Setup and Calibration

Setup We employ a variant of photometric stereo to compute per-camera and per-

pixel normal information. This requires an active illumination setup. We use a

device similar to the system built by Einarsson and colleagues [58]. This lighting

device consists of the top two-thirds of an 8-meter, 6th-frequency geodesic sphere

with 1,200 regularly-spaced individually controllable light sources, of which 901 are

on the sphere and the rest are placed on the floor. A central area is reserved for

the subject, and therefore it does not contain any floor lights. We capture dynamic

performances at a 1024 x 1024 resolution with eight Vision Research V5.1 cameras.

The cameras are placed on the sphere around the subject, at an approximate height of

1.7 meters relative to the central performance area. An optional ninth camera looks

down onto the performer from the top of the dome. The performances are captured

at a constant rate of 240fps, and the geometry is acquired at an effective rate of 60fps.

Figure 3-2 shows our capture setup, with two selected cameras marked in red and the

performance area marked in green.

Calibration Our system requires geometric and photometric calibration of all cam-

eras. We use the LED waving technique of Svoboda et al. [137] in order to calibrate

the intrinsic and extrinsic camera parameters. We photometrically calibrate the cam-

eras by capturing a Macbeth Color Checker under uniform illumination and then solve

for the optimal color transfer matrix for each camera.

Silhouettes Our geometry processing algorithms require silhouettes and corre-

sponding visual hulls of the subject in order to provide an initial guess for the surface



Figure 3-2: Our acquisition setup consists of 1200 individually controllable light
sources. Eight cameras (two of which are marked in red) are placed around the
setup aimed at the performance area (marked in green). An additional ninth camera
looks down from the top of the dome onto the performance area.

reconstruction. We use a combination of background subtraction and chroma-keying

to automatically extract approximate silhouettes. Though higher quality could be

obtained with user assistance, this would be impractical (because so many frames

need to be processed) and also unnecessary, since the resulting visual hulls are only

used as a rough guide in the initial phase of the geometry reconstruction. However,

it is important that the silhouettes not contain spurious holes, so small gaps in the

foreground are detected and filled by comparing color statistics (i.e., average and

variance) inside and outside the hole.

............................... ................. . .. ...... . ... . . .. ......... ..........



3.2.2 Multi-view Photometric Normals

Illumination Design Simultaneously acquiring images for computing photomet-

ric normals from multiple viewpoints imposes specific conditions on the design of

active illumination patterns. First, capturing data-streams from multiple cameras

produces a huge amount of data. Our main objective is to minimize the number of

required lighting conditions, and thus the number of captured frames. This allows

us to maximize an effective frame rate of our capture system and enable using non-

specialized (i.e., high-speed) cameras at sufficiently high resolutions. Second, longer

exposure times cause motion blur which degrades the quality of the normal estima-

tion. Therefore, to minimize motion blur, we need to minimize camera exposure, and

consequently maximize the light levels on the subject. Large area light sources make

it easier to maintain a high total light intensity, while remaining comfortable for the

subject. Third, to obtain high quality normal estimates, we would like to maximize

the signal-to-noise ratio of our measurements.

While conventional photometric stereo [168] is able to estimate normals in a wide

range of applications, it has the disadvantage that it only uses a single light source

at a time to illuminate the subject. This can result in a low signal-to-noise ratio

(i.e., many pixels with low intensity values). Furthermore, a significant number of

light sources needs to be placed around the subject in order to obtain a sufficient

number of unoccluded directional samples for each pixel in each camera. Recently,

Ma et al. [98] proposed to use spherical gradient illumination to compute per-pixel

normal information. The spherical gradient patterns cover the full sphere of incident

lighting directions. They are well suited for multi-camera systems and result in a

better signal-to-noise ratio. However, these patterns require careful calibration of

the emitted illumination conditions such that they exactly conform to the theoretical

gradients (both geometrically and radiometrically).

Inspired by [98], we propose a novel set of binary half-on illumination patterns

that cover half of the sphere of incident directions. They are tailored to efficiently

compute photometric normals for multi-view performance captures. Specifically, we



Figure 3-3: Captured frames under binary half-on illumination patterns. A complete
set plus an additional full-on condition is shown. The insets depict the illumination
condition used in each frame. The red and blue arrows indicate the forward and
backward motion compensation respectively. High-quality geometry is reconstructed
for every full-on tracking frame.

employ two sets of 3 illumination patterns. The first set consists of three patterns

X, Y, and Z defined by

X(x, y, z) = 1, if x > 0' (3.1)
0, otherwise,

with x2 + y2 + z2 = 1. Y and Z are similarly defined. The second set consists

of the complements XY, and 2 of the first set, i.e. X(x, y, z) =1 - X(x, y, z).

We also add a full-on tracking frame F once every four frames in order to improve

the temporal alignment and to compensate for motion over the multiple lighting

conditions. To summarize, we illuminate the subject repeatedly with the following

eight illumination patterns: [X, Y, Z, F, X, Y, Z, F]. Figure 3-3 shows a subject under

these illumination conditions.

Normal Estimation Let us initially assume that there is no subject motion during

eight consecutive frames; furthermore, let's assume that all surfaces are diffuse. We

can reconstruct a normal for each surface point based on the observed radiance under

eight lighting conditions. This requires solving a system with three unknowns: the

normal direction (2 unknowns), and surface albedo (1 unknown). While it is possible

to compute an analytical solution for this system, the solution will be dependent on

how accurately the physically emitted illumination conditions match the assumptions

(in intensity and geometrical configuration).

Instead, we use a data-driven approach that improves robustness and facilitates

... - I .......................... ................ ..... .......... .



calibration. By capturing a known shape with a known BRDF during a calibration

step, we can establish a relationship between the observed radiance and normal direc-

tion. In our case we use a grey diffuse sphere, and treat the conversion from observed

radiance to normal direction as a multi-dimensional lookup problem where the key is

defined as F, with k = [Ix - IX, Iy - IyIz - Iz], and I, is the observed radiance

under illumination p E {X, X, Y) Y, Z, Z}. Normalizing the lookup key removes any

dependence of surface albedo from the key.

During calibration we capture a grey diffuse sphere under the binary half-on illu-

mination conditions. For each camera view we extract the sphere's pixels, and create

a vector similar to k. We then store these vectors in a kD-tree together with their

respective normals. When estimating the normals of a performance frame, we create

a similar normalized vector for each camera pixel, search for the best match in the

kD-tree, and retrieve the associated normal. In order to further improve the quality

and minimize the effects of measurement noise during calibration, we search for the

N best matches, and compute the output normal n as the weighted sum:

N

n = Z(max k - kHll -||k - kill) ni, (3.2)

and renormalize it.

Our normal estimation algorithm has a number of advantages. First, the illu-

mination conditions are binary and therefore they are easier to create in practice.

Second, the number and positioning of the cameras is independent of the number and

orientation of the lighting conditions. For any possible camera location, all lighting

conditions yield sufficient information to compute photometric normals. Finally, this

procedure requires very little calibration: a single photograph per camera, per lighting

condition of a calibration object with known geometry. The calibration and normal

computation is robust to modest variations in light source intensities and light source

distribution. Furthermore, the computed photometric normals are in camera space,

and thus independent of any (multi-view) camera calibration, further improving the

robustness of the calibration. In light of the necessary complexity of our setup, this



data-driven approach with easily calibratable sub-parts makes the whole acquisition

process better manageable.

The presented data-driven method shares some similarities with [80], where an

object of known geometry is used to assist in determining photometric normals. The

main difference is that they assume a known (point source) lighting configuration

and unknown BRDF, while we assume a Lambertian BRDF and an unknown lighting

configuration.

3.2.3 Implementation

In this section we discuss additional implementation details that are necessary in

order to compute high-quality normal maps.

Multiple Calibration Spheres In the previous section, we have assumed that

the incident illumination generated by a given illumination pattern is the same in

the whole performance area (i.e., the lights sources are at infinity). However, in the

current system this assumption does not hold. For example, the lower third of the

light-sphere is placed much closer to the subject. This creates a significantly different

illumination depending on the distance to the floor. In order to compensate for this

effect, we use multiple normal lookup tables, which depend on the position in the

performance volume. We capture images of the grey spheres at 7 different heights.

During normal estimation, we compute an output normal by linearly interpolating

between normals computed from the two closest in height calibration spheres.

Motion Compensation In the previous section we have also assumed that the

subject does not move during the capture of eight illumination conditions required

to compute normal maps. In practice, this assumption also does not hold. In order

to compensate for subject motion, we compute both forward and backward optical

flow between consecutive tracking frames. By assuming a linear motion between full-

on tracking frames, we flow the intermediate images under the binary illumination

conditions to the central tracking frame. A normal map is then computer for every



tracking frame. In our implementation we use the variational approach by Brox et

al. [30] to compute the optical flow. We show the direction of the optical flow to a

single key frame in Figure 3-3. The forward and backward flows are illustrated using

the red and blue arrows, respectively. Note that because we have a tracking frame

every 4 frames, and the two sets of illumination conditions are complementary to each

other, we can compute 2 sets of normal maps per 8 frame cycle.

Optical flow is able to correct for most of the subject's motions. However, flow

computation can fail near or at occlusion boundaries. Therefore, we estimate the

confidence for both forward and backward flow. The flow confidence is computed for

each pixel as the L' error of the difference between the tracking frame and the flowed

neighboring tracking frame. If this error is below some threshold, we compute the

normal as detailed before. Otherwise, the normal is not computed and marked as

invalid. When reconstructing the final geometry, we rely on normal estimates from

different viewpoints and hole filling to correct for invalid marked normals.

Impact of Albedo Another factor that can negatively impact the quality of the

estimated photometric normals is the low albedo of the surface points. In particular,

camera noise dominates when imaging surface points with low albedo. In this case,

the estimated photometric normals become noisy. Similarly, oversaturated pixels lead

to incorrectly computed normals. Therefore, we only estimate normals for pixels that

have normalized intensities between 0.03 and 0.97. Since albedo is a view-independent

quantity, we rely on hole filling to deal with surface points with low albedo.

3.3 Reconstruction

The multi-view normal maps reproduce the high-resolution geometric detail present

in the surface. We combine the information from the normal maps to reconstruct

a complete 3D mesh in a three-stage process. First, for each view separately, we

integrate a surface from the normal map. During this process, the visual hull acts

as a "proxy": it provides rough constraints for the overall position of the integrated



surface. Second, we use a similarity metric based on illumination, reconstructed

local surface shape, or both to match neighboring views and smoothly deform the

integrated surfaces in order to improve their fit. Again, we use the visual hull as a

proxy, this time to constrain the possible matches. Finally, we merge the matched

surfaces into a single mesh and optionally fill in the holes. The resulting closed mesh

is now an excellent approximation to the true shape of the surface, and in particular is

a better surface proxy than the visual hull. Therefore, we may repeat all three stages

of our reconstruction algorithm, using the new proxy mesh instead of the visual hull

wherever needed. The output of the second pass of our algorithm is the final mesh,
as we have observed little quality improvement from further passes.

3.3.1 Single-View Surface Reconstruction

We begin by integrating individual normal maps into partial surface meshes. We rep-

resent the surface as a depth image, centered at the corresponding camera viewpoint

(i.e., the value at each pixel determines how far along the camera ray the surface

point lies).

We pose the integration problem as an optimization process, in which the depth

values are the unknowns and the observed normals provide constraints. In particular,

we enforce that the 3D vector between two neighboring depth samples i and j be

perpendicular to the average of the measured normals at those pixels. With only

the normals as constraints, the reconstruction problem would be ill-posed: it would

be possible to move the surface forward or back while still satisfying the constraints.

Therefore, we use the visual hull or the proxy mesh to provide (soft) depth constraints

on the reconstruction. The optimization is formulated as a linear system:

arg min ((ni + nj) T (ri zi - ry zj))2 + ae (zi - 24 )2, (3.3)

where for a pixel i: zi is the distance to the surface along the corresponding ray

direction ri, ni is the measured normal, and si is a possible depth constraint at

that pixel-the depth of the visual hull or the proxy, if available. The parameter
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Figure 3-4: For a particular view (a), we use the normal map (b) in order to integrate
the initial surface (c). Better surfaces are obtained when we detect large depth
discontinuities (d). The normal maps after reconstruction are smoother than the
original normal maps, but remove the initial bias, which can be seen in the legs (e).

a determines the relative strengths of the normal and depth constraints. We set it

to be low (10-6), corresponding approximately to the inverse of the number of our

surface points. In the second pass, we expect the proxy mesh to be more accurate,

so we increase the weight on the depth constraints by setting a to 10- 5.

The optimization process that computes surfaces according to Equation 3.3 does

not intrinsically take into account depth discontinuities. However, integrating nor-

mals across depth discontinuities may cause significant distortions, as is evident in

Figure 3-4c, where the legs are connected to the rim of the dress. In order to avoid

this issue, we must remove the pixels straddling the depth discontinuities from the

linear system (Equation 3.3). However, detecting depth discontinuities is a difficult

problem. We have experimented with a variety of heuristics (e.g., maxima of color

and normal gradients, local integrability measures), and have found that the follow-

ing two simple strategies produce good results. First, large visual hull discontinuities

are usually located near the true discontinuities. Removing pixels along them helps

keep the surface free of large distortions. In addition to the large visual hull depth
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Figure 3-5: Results (surfaces and normals) of several matching strategies on two data
sets. Our surface-based metric yields the overall best results, especially in regions
that lack texture or are shadowed. This is visible in the first row by zooming in and
comparing the reconstructed legs. In the second row, only the surface-based metric
does not push the waist inward.

discontinuities, our matching algorithm (described in the next subsection) identifies

more precise discontinuities, defined as locations at which the surface jumps by more

than 1 cm per pixel. Together, these heuristics alleviate depth discontinuity issues

and allow the legs to integrate closer to the center of the skirt in our example (Fig-

ure 3-4d). In the second pass, all the detected discontinuities are closer to their true

locations, making the integrated mesh even more precise.

Overall our method is fairly robust with respect to the quality of the visual hull.

The accuracy of the visual hull mainly plays a role in determining the depth discon-

tinuities. The closer the visual hull is to the true surface, the more complete our

reconstruction will be. If the visual hull's depth discontinuities are far from the true

depth discontinuities, then the pixels that are mistakenly connected to a wrong part

of the performer (e.g., the leg connected to skirt) will be disregarded (and thus lost

from the reconstruction) by the matching phase described below.

3.3.2 Pairwise Matching

Individual integrated surfaces contain the high-frequency details that are present in

the normal maps. However, these surfaces rarely match exactly because of the bias

Original
Image

I



in the normals (due to self-occlusion for example), and so cannot yet be merged into

a single model. To correct for this distortion, we warp the surface based on matches

computed between pairs of neighboring views.

Metrics for Matching We have experimented with a number of matching metrics

to perform the correspondences, two based on images alone and two that rely on the

integrated surfaces. Our first image-based metric uses only pixel windows under the

spherical full-on illumination condition, and therefore reduces to traditional stereo

matching. Our second metric is based on comparing an "image stack" of the six

illumination conditions. We have found that this increases robustness in many areas

that have little color texture, but significant geometric variation.

In practice, the performance of both image-based metrics is limited by different

amounts of foreshortening between different views: different views of a region on a

surface will not, in general, appear the same from different cameras. Therefore, we

have also compared metrics that match the integrated surfaces. Since the distortion

is low-frequency, we can assume that a small 3D surface patch in one view and the

corresponding patch in the neighboring view will differ only by a rigid transformation.

Therefore, we can compare small surface patches (e.g., 5 x 5 pixels) by computing the

mean surface-to-surface distance under the optimal rigid-body alignment. Specifically,

given a pair of surfaces ("left" and "right"), we compute the matching error between

a point on the left surface and a point on the right surface as follows. First, we find

a window of depth samples around the left point. Then, we render the right surface

from the left camera's point of view, and find a window of depth samples around the

projection of the right point. We assume that the two windows of points correspond,

solve for the optimal rigid-body alignment, and compute the mean distance between

the pairs of points in the windows. Then, to obtain a symmetric matching score, we

repeat the computation with the roles of left and right reversed (i.e., rendering the

left mesh into the right camera and finding the windows of samples there). We take

the maximum of the two mean distances as the matching error.

Our final matching metric also relies on aligning surface patches, but takes the



matching error to be the difference between image stacks (under different illumina-

tion) projected onto the surface. In areas of significant color detail, this improves

discriminability over surface-distance-based matching, while retaining the advantage

of compensating for foreshortening. However, we have found that in areas of little

texture the surface-distance-based metric is superior.

We have compared these four metrics on a variety of datasets, as illustrated in

Figure 3-5. As expected, the illumination-stack metric yields better surfaces than

simple image-based matching, but, due to the wide baseline, still produces wrong

matches. The projected-illumination metric further improves the reconstruction, but

exhibits artifacts in shadowed regions. On the whole, we have found that the surface-

based metric usually yields the least noisy surfaces.

Global Correspondence To find the best match for a point in the left view, we

only need to explore the points in the right view that project to the corresponding

epipolar line. Therefore, a simple matching strategy would be to simply take the

point with minimum matching error as the correspondence. A more robust approach

that takes into account surface continuity considers a whole epipolar plane (e.g.,
a plane passing through a point in the left view and both of the camera centers)
at the same time. We sample this plane by stepping one pixel at a time in each

view. We evaluate our matching error on the resulting grid and find the lowest-

cost path from one corner to the opposite corner (Figure 3-6). In particular, we

use the 4-step method described by Criminisi et al. [41] to perform the search. In

addition to finding the best matches, this algorithm detects depth discontinuities.

We use these depth discontinuities during surface integration. Note that we do not

enforce smoothness across the sampled planes directly. However, some smoothness is

indirectly incorporated because each surface patch spans several epipolar planes.

Good surface matches define absolute depth constraints at certain pixels in each

of the views. After computing these matches for all views, we deform the integrated

surface to fit these constraints while preserving its high-frequency detail. We achieve
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Figure 3-6: We match the surfaces in neighboring views one epipolar plane at a time
(a). Each plane defines a grid of matching errors, where the lowest cost path yields
the surface matches (b,c). The green portions of this path denote good matches, while
red lines denote depth discontinuities. In the second pass (c), we use the proxy mesh
(blue line) to guide this search and only evaluate the nearby matching errors. Light
blue denotes points outside the visual hull, while points in pink are not considered in
the second pass.

this with a thin-plate offset:

arg min [ [ (di - dj)2 + # (di - (1j)2, (3.4)
i i

where the depth offset di of each pixel i should be equal to the offset di obtained

from the matching. These offsets are smoothly interpolated by pulling di toward the

centroid of its neighboring offsets dj. Because the thin-plate offset may introduce

significant deformations in parts of the mesh that are far from the constraints, we

discard these regions (using a threshold on distance to the nearest constraint point).

Applying the depth offsets obtained from Equation 3.4 aligns all surfaces much

closer (Figure 3-7). The surfaces are still not perfectly aligned, since the matches

are computed on a pixel grid. We address the remaining misalignment errors in the

surface merging stage.

................
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Figure 3-7: The integrated surfaces before matching (left) are far from each other,
while the deformed surfaces after matching (right) are much closer to each other.
Within each pair, the leftmost visualization shows the two meshes (in different colors)
overlaid on each other, while the rightmost visualization is a color-coding of mesh-to-
mesh distance.

3.3.3 Multi-view Surface Reconstruction

After the integration, matching, and deformation stages are performed on all views,

we must merge the aligned, yet still logically separate surfaces into a single mesh.

In addition, we must accoint for the regions in which no data was available, by

performing hole-filling.

Merging We merge the eight aligned surfaces using the Volumetric Range Image

Processing (VRIP) algorithm [42]. This is a volumetric method that allows for some

residual misalignment between scans by averaging signed-distance ramps along the

line-of-sight of each mesh. We set the ramp-length to 6 cm. to allow for worst-case

misalignment, and reconstruct using a 2 mm. voxel size, which approximately matches

the average resolution of our raw data. We also modify the weight computation of

VRIP: in addition to weighting each point dependent on its distance to the nearest

mesh boundary (to provide for smooth blending) and the cosine of its normal with the

view direction (to downweight foreshortened data), we also include a term inversely

proportional to the distance between the sample and its camera. The latter down-

it it
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Figure 3-8: From left: false-color visualization of eight meshes after integration,
matching, and deformation; result of initial volumetric merging; result of hole-filling;
similar visualizations after second-pass matching.

weights regions of sparsely-sampled data, and is of greater benefit in our setup (in

which the distance to the camera can vary significantly) than in typical 3D scanners.

A sample result of the merging step is shown in Figure 3-8. In the first column, we

show the meshes that are inputs to the merging, with the output of VRIP in the

second column.

Hole Filling As can be seen, the merged mesh contains regions in which there is

no surface, typically due to occlusion. Several approaches have been proposed to fill

such holes, using techniques such as space carving [42] and volumetric diffusion [44].

In our case, we wish to combine information similar to that used in the two above

techniques: we would like to fill small holes smoothly, yet for larger holes we wish to

use the information present in the visual hull.

Our hole-filling approach uses the Poisson Surface Reconstruction algorithm of

Kazhdan et al. [86]. As input, we provide oriented point samples taken from both the

VRIP reconstruction and the visual hull, giving significantly lower weight (0.01) to

the latter. We have found that this produces smooth fills, and draws the final surface



towards the visual hull in regions of significant missing data. Moreover, the method

guarantees a watertight manifold output, as shown in the result in Figure 3-8, third

column. This mesh may now be used as the proxy mesh, instead of the visual hull,
in the second pass of matching. The result of this second pass, together with the

merged meshes, are shown in the right half of Figure 3-8.

We have also experimented with using Poisson Surface Reconstruction for both

merging and hole-filling simultaneously (by using samples from the original meshes

rather than the VRIP reconstruction). However, we have found that in regions of

significant residual misalignment this results in more smoothing. This is because

the Poisson problem inherently treats the influence of each point as isotropic, and

hence does not preserve detail as well as VRIP's oriented signed-distance ramps when

the merged surface is far from the original samples. We therefore believe that the

combination of the two algorithms produces better results than either alone.

Using the visual hull for hole filling is noisy and can yield incorrect topology.

This is why we only use it in the first pass, to produce a watertight proxy surface

for the second pass. Our final meshes are suitable for filling using more sophisticated

approaches, which exploit temporal coherence to aggregate information from multiple

frames. This is an active area of research [156, 83, 95, 131, 170, 155], and lies outside

the scope of this paper.

3.4 Results

We have acquired and processed five different sequences, including people wearing

loose clothing, long skirts, and even a subject covered with a linen sheet. The recon-

structions are presented throughout this paper and in Figures 3-1 and 3-9, which show

a number of individual frames from our sequences. Note that the normals used for

rendering are the geometrical (computed) normals, not the (measured) normals from

the normals maps. Reprojecting and embossing photometrically measured normals

would yield even better results, but would not represent the true quality of the recon-

structeed geometry. Additional results, including complete animations, are presented



Figure 3-9: Each row shows an original image, the corresponding normal map, the
reconstructed surface, the hole-filled surface, as well as a novel view of the recon-
structed and hole-filled surface for a captured performance. Note that hole-filling was
not applied to the versions of these results shown in the accompanying video.
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Sequence Coverage Normal deviation Normal deviation (local)
Abhijeet 85.90% 15.000 1.890
Ghost 92.26% 14.030 1.260
Jay 81.27% 14.760 2.040
Saskia 88.77% 12.180 1.410

Table 3.1: For each of our four test sequences we report (1) the percentage of mea-
sured normals that yielded an actual surface, (2) the angular deviation between the
reconstructed and measured normals, and (3) the angular deviation between the nor-
mal difference within a vertex neighborhood and the corresponding difference in the
measured normals.

in the supplementary video.

These sequences demonstrate that our system can correctly handle characters per-

forming fast motions, as well as non-articulated characters for which template-based

approaches fail. Many of our sequences have few or no textured areas, making them

challenging for any type of stereo matching algorithm. In contrast, the analogous

difficult situation for our algorithm is surfaces that lack geometric detail. However,

in these regions, the smoothing performed by our algorithms is the correct action.

Computation Time We typically run the software on a 2.4 GHz PC with at least

2GB of RAM. The total computation time to obtain one final mesh is about an hour,

and no user assistance is required. However, most parts of our code have not been

optimized or parallelized, which leads us to believe that this time can be significantly

reduced. In the current implementation, typical running times of the parts of the

pipeline are: normal map computation with motion compensation: 50 min; first

pass: 8 min; second pass: 5 min; and merging: 2 min. Normal map computation

is dominated by the optical flow (two per camera), while the reconstruction spends

most of its time computing the surface matches. While the total processing time is

an hour per frame, it should be noted that this includes processing of the raw 240Hz

video streams using non-optimized optical flow code. Using a GPU based optical

implementation, or a less accurate but more efficient algorithm, could greatly reduce

this pre-processing time. The actual processing time starting from the normal maps

is only 10 to 15 minutes per frame.



Accuracy Table 3.1 summarizes several accuracy measurements. For each sequence

we report the overall percentage of the measured normals that is covered by the recon-

structed surfaces. About 10 - -15% of the measured samples are not reconstructed

due to matching difficulties. We also report the normal deviation between the mea-

sured and the reconstructed normals. This number is larger than desired (up to 15')

due to the initial normal bias (Figure 3-4 b and e). The final column reports the local

normal deviation: specifically, the angle between a vertex and its neighbors is com-

pared to the angle between the measured normal for that vertex and the measured

normals for the neighbors. As expected, this deviation is smaller (less than 20).

3.5 Discussion

In this work we have made the deliberate choice of not integrating multiple steps

together to obtain a potentially more unified or optimized pipeline. Capturing and

processing high quality detailed performance geometry is a complex task that requires

significant amounts of hardware, calibration and processing, and rapidly produces

huge amounts of data. We therefore try to keep our system as modular as possible.

This greatly improves the robustness of the calibration, eases data management, and

increases the amount of parallelism in the processing.

Our pipeline currently does not enforce temporal correspondences nor apply tem-

poral filtering. However, we have observed only minor flickering in the matched

regions of our meshes. This suggests that our reconstructions are quite close to the

true surfaces. While temporal filtering could potentially be used to further smooth

the results, it would also remove desirable details of mesh animations. Temporal

registration of the acquired mesh sequences could improve the surface coverage by

accumulating information through time. However, this is still a very active area of

research [103, 126, 112, 35]. The choice and evaluation of a particular algorithm,

or design of a new algorithm, falls outside the scope of this work. Nevertheless, we

designed our acquisition and data processing pipeline so that these algorithms can

operate as a post-process on our data.



Even though we do not perform any temporal processing, there is little flickering

noticable when playing back the processed geometries of a performance. There is

some flicker visible near the boundaries of each single-view surface, because data

is increasingly bad there, and because the decision of whether to mark a pixel as a

discontinuity is binary and independent per frame. Away from the boundary, however,

the flicker is very low, showing that we are getting close to the true geometry. Since

our resolution is very high (1,000,000 triangles, or 1 triangle per pixel), differences

in triangulation do not produce noticeable artifacts either. Finally, the temporal

coherence of the computed normals maps is very good to begin with, which reduces

the need for temporal regularization.

A second type of coherence not currently exploited by our method is inter-scanline

continuity. This could be enforced by using a Markov-Random Field formulation and

employing an optimization method such as Belief Propagation or min-cut. However,

this would require large amounts of memory and computational power.

Limitations. The computed normal maps show significant high frequency detail.

However, these normal maps also have a significant bias. This bias is different then

the bias observed in traditional photometric stereo (i.e., point light sources versus

area light sources), and is especially present in the concavities, since in these regions

a smaller-than-expected portion of the sphere of lights illuminates the surface. Fur-

thermore, the normals are typically incorrect in the hair region (due to the complex

scattering in the hair volume, which is not consistent with the Lambertian assump-

tion made by photometric stereo), and the generally low albedo of hair. The normal

maps are also noisy in areas of low albedo and in areas that were not properly aligned

during the motion compensation stage. Figure 3-4e compares the acquired input nor-

mals from one of the viewpoints and the corresponding normal map of the final model.

Observe the differences in the left leg, where the captured normals were corrupted by

the shadow cast by the dress. This figure also demonstrates that our reconstruction

pipeline introduces some smoothing of fine details: the original normal map is sharper

than the reconstruction. This smoothing is introduced at several stages during the



pipeline, including the surface integration, matching, and scan merging. Most of the

original detail, however, is retained.

The current hardware setup is fairly complex, but it should be noted that the

setup described is designed as a research prototype, not specialized to the task at

hand, and can be refined to reduce complexity and cost. First, not every light source

needs to be individually controllable. Only eight distinct groups require individual

control, corresponding to the eight quadrants of the sphere of incident directions.

Each illumination pattern would then light half of the groups at the same time.

Second, using only 10% (i.e., 120) of the number of light sources is sufficient to ac-

curately infer photometric normals from diffuse reflections. Both observations allow

us to greatly simplify the hardware setup. Furthermore, we carefully designed the

illumination conditions to require only a modest level of control and accuracy. Indi-

vidual light source intensities do not need to match due to our data-driven scheme

to infer normals. The only hard requirement is the ability to quickly toggle lights

on and off, which is automatically achieved by using LEDs. Nevertheless, we expect

our processing pipeline to work with alternative setups equally well. For example,

six individually triggered flash lights aimed away from the subject at the surrounding

walls could achieve similar illumination conditions as used in this paper, and could

be directly used to estimate normals, because of the data-driven nature of our nor-

mal estimation algorithm. Finally, even though we employ high-speed cameras, our

method is specifically designed to work at moderate frame rates that fall in the range

of what is possible with readily-available hardware such as Point Grey's Grasshopper,

which can capture at 200Hz with a 640x480 resolution.

Future Work. Though 3D capture of dynamic performances remains a challenging

problem, this paper makes progress towards acquiring high-quality mesh animations

of real-life performances. Our system uses novel hardware and image processing algo-

rithins to obtain high-quality normal maps and silhouettes from multiple viewpoints

at video rates. The surface reconstruction algorithms process this data to derive high-

quality mesh sequences. The resulting mesh sequences can be used in biomechanics



to analyze complex motions, in computer games to create next-generation characters,

and in movies to create digital doubles.

We take advantage of the high-frequency geometric information present in photometric-

stereo normal maps; therefore, our method significantly outperforms multi-view stereo

techniques that produce overly smooth surfaces due to lack of texture or photometric

calibration errors. Furthermore, our method does not require geometric templates as

input and thus it is not restricted by their limitations.

The data produced by the system (http: //graphics. csail.mit. edu/dynamic_

shape/) will stimulate more work in the geometry processing community, whose re-

search endeavors take a sequence of incomplete moving surfaces and produce the

best-fitting, congruent, water-tight moving mesh. Further processing of these mesh

sequences will prove challenging due to the shear amount of data our system is pro-

ducing (each mesh contains more than 500,000 vertices).



Chapter 4

Reconstruction of Dynamic Shapes

from Hybrid Sensors

Figure 4-1: Traditional motion-capture systems excel at recording motions within lab-

like environments but struggle with recording outdoor activities such as skiing, biking,
and driving. This limitation led us to design a wearable motion-capture system that
records human activity in both indoor and outdoor environments.

While the quality of systems that capture point and surface motions is ever in-

creasing, the majority of existing acquisition systems inhibit broader use of motion

analysis by requiring data collection within restrictive lab-like environments. As a

result, motions such as skiing and driving are simply never acquired, while others

like cycling and playing football are not recorded in their natural competitive setting.

Furthermore, recording the activities, routines, and motions of a human for an entire

day is still challenging.

In this chapter, we explore the design of a wearable self-contained system that is

capable of recording and reconstructing everyday activities such as walking, biking,

and exercising. Our design minimizes discomfort and maximizes recording time by
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prioritizing light-weight components with low power requirements. It records acoustic

and inertial information from sensors worn on the body. Inertial measurements are

provided by miniature gyroscopes and accelerometers no more than a few millimeters

in size. Each sensor also includes a miniature microphone, which is used to record

distances between pairs of sensors on the body. These distance measurements reduce

the drift common to purely inertial systems.

The reconstruction algorithm estimates body postures by combining inertial and

distance measurements with an Extended Kalman Filter that incorporates the body's

joint structure. Although it lacks the information to recover global translation and

rotation, our approach reconstructs sequences of full body postures that are visually

similar to the original motions.

Our system is not the first acoustic-inertial tracker, but it is the first such sys-

tem capable of reconstructing configurations for the entire body. We show that these

reconstructions are most accurate when combining information from all three sensor

types: gyroscopes, accelerometers, and distance measurements. The best reconstruc-

tions are still not perfect, but their quality, along with the small size and improved

versatility, suggest that our system may lead to new applications in augmented reality,

human-computer interaction, and other fields.

4.1 Previous Work

Several motion capture technologies have been proposed in the last two decades.

The advantages and disadvantages of the dominant approaches are argued in several

excellent surveys [100, 69, 81, 1621. In this brief summary, we review optical, image-

based, mechanical, magnetic, inertial, acoustic, and hybrid systems, mentioning a few

exemplary systems in each category.

Optical motion capture systems [167, 19] and modern systems manufactured by

Vicon (vicon. com), Codamotion (codamotion. com), and PhaseSpace (phasespace. com),

track retro-reflective markers or light-emitting diodes placed on the body. Exact 3D

marker locations are computed from the images recorded by the surrounding cameras



using triangulation methods. These systems are favored in the computer-animation

community and the film industry because of their exceptional accuracy and extremely

fast update rates. The major disadvantages of this approach are extreme cost and lack

of portability. To reduce cost and improve portability, some systems use a small num-

ber of markers in conjunction with standard video cameras. For example, Yokokohji

and colleagues [169] capture arm motions with a head-mounted camera.

Image-based systems [26, 46, 36] use computer vision techniques to obtain mo-

tion parameters directly from video footage without using special markers. These

approaches are less accurate than optical systems, however, they are more afford-

able and more portable. Still, they are not entirely self-contained since they rely on

one or more external cameras. Furthermore, they suffer from line-of-sight problems,

especially in the case of monocular video.

Mechanical systems, such as Meta Motion's GypsyTM (metamotion. com), require

performers to wear exoskeletons. These systems measure joint angles directly (e.g.,

using electric resistance), rather than estimating the positions of points on the body,

and can record motions almost anywhere. Exoskeletons are uncomfortable to wear for

extended time periods and impede motion, although these problems are alleviated in

some of the modern systems, such as Measurand's ShapeWrap TM (measurand.com).

Magnetic systems, such as MotionStar@ by Ascension Technology Corporation

(ascension-tech. com), detect the position and orientation using a magnetic field (ei-

ther the Earth's magnetic field or the field generated by a large coil). These systems

offer good accuracy and medium update rates with no line-of-sight problems. How-

ever, they are expensive, have high power consumption, and are sensitive to the

presence of metallic objects in the environment.

Inertial motion capture systems, such as Moven (xsens.com) and ALERT system

(verhaert. com), measure rotation of the joint angles using gyroscopes or accelerome-

ters placed on each body limb [102). Like the mechanical systems, they are portable,

but cannot measure positions and distances directly for applications that must sam-

ple the geometry of objects in the environment. More importantly, the measurements

drift by significant amounts over extended time periods. In addition, the motion of



the root cannot be reliably recovered from inertial sensors alone, although in some

cases this problem can be alleviated by detecting foot plants [64].

Acoustic systems use the time-of-flight of an audio signal to compute the marker

locations. Most current systems are not portable and handle only a small number of

markers. With the Bat system [159], an ultrasonic pulse emitter is worn by a user,

while multiple receivers are placed at fixed locations in the environment. A system

by Hazas and Ward [78] extends ultrasonic capabilities by using broadband signals;

Vallidis [145] alleviates occlusion problems with a spread-spectrum approach; Olson

and colleagues [108] are able to track receivers without known emitter locations. The

Cricket location system [120] fills the environment with a number of ultrasonic bea-

cons that send pulses along with RF signals at random times in order to minimize

possible signal interference. This allows multiple receivers to be localized indepen-

dently. A similar system is presented by Randell and Muller [121], in which the

beacons emit pulses in succession using a central controller. Lastly, the WearTrack

system [65], developed for augmented reality applications, uses one ultrasonic bea-

con placed on the user's finger and three fixed detectors placed on the head-mounted

display. This system can track the location of the finger with respect to the display,

based on time-of-flight measurements.

Hybrid systems combine multiple sensor types to alleviate their individual short-

comings. They aim to improve performance, rather than decrease cost and increase

portability. For example, an acoustic-inertial system, ConstellationTM , has been de-

veloped for indoor tracking applications [66]. The system corrects inertial drift using

ultrasonic time-of-flight measurements to compute exact distances between receivers

and ultrasonic beacons placed at known locations. Another acoustic-inertial system

[160] uses a wrist-worn microphone and a 3-axis accelerometer for gesture recogni-

tion. Similarly, MERG sensors [8] enable inertial-magnetic systems that account for

the drift by using a reference magnetic field. In the same manner, Hy-BIRDTM by

Ascension Technology Corporation (ascension-tech. com) combines optical and iner-

tial technologies to tackle occlusion problems. Finally, a combination of image-based

and inertial tracking is used for sign language recognition [25].
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Figure 4-2: System Prototype. Our system consists of an array of small, low-cost, low-
power ultrasonic sources and detectors (microphones) placed on the body (left). The
ultrasonic sources (top-middle) sequentially emit ultrasonic pulses, which are received
by the microphones (bottom-middle) and processed to yield distance measurements
for all source-microphone pairs. To increase precision and the sampling rate, as
well as to alleviate visibility problems, each sensor board is also equipped with a
3-axis gyroscope and a 3-axis accelerometer that measure rotation rates and linear
accelerations respectively (bottom-middle). The data collection is managed by a small
driver box (right) using a laptop hard disk for storage; both the driver box and the
laptop are carried by the user in a backpack.

4.2 System Prototype

Our wearable motion-capture system consists of ultrasonic and inertial subsystems,

a driver box that controls their operation, and a storage device that records the

data. During operation, the data from the two independent subsystems (the ultra-

sonic subsystem used for distance measurements and the inertial subsystem used for

measurements of accelerations and rotation rates) are acquired at each sensor board,

encoded, and jointly transmitted to the driver box. The driver box samples the sig-

nals from all the sensor boards and transfers them onto the storage drive for off-line

signal processing and pose estimation. This section describes our hardware and its

operation at a high level. More details, including individual part numbers, can be

found in the document by Adelsberger [1].



4.2.1 System Components

As illustrated in Figure 4-2, our system is controlled by a custom-built driver box

connected to a laptop using a USB interface. The driver box is also connected to

eight ultrasonic sources and eighteen sensor boards using shielded 3-wire cables. All

sensors are attached to the user's garment. The driver box provides pulse signals

to the ultrasonic sources, polls data from the sensors, and provides power to the

sensor boards. It is powered by a rechargeable Lithium-Ion battery pack with 4.4AHr

capacity, which provides several hours of safe operation (the current drawn by our

system is 1.5A). A laptop records the data to a hard drive but is not used for any

processing. We envision a commercial system that replaces the driver box and laptop,

both of which are currently carried in a backpack, with a single iPod-sized unit.

After examining the current state of transmitter/receiver technology, we have

determined that only acoustic (and in particular ultrasonic) components offer high

precision, low cost, and small size. Therefore, our signal sources employ off-the-

shelf piezoelectric transducers (Figure 4-2 top-center) to emit pulses at ultrasonic

frequencies (40 kHz). They are mounted onto small plastic plates, attached to the

garment, and wired to the pulse-generating driver box. The pulses are detected by

conventional audio microphones (Figure 4-2, bottom-center). Although they do not

exhibit optimal response in the 40 kHz range, they are able to clearly detect our

ultrasonic pulses while offering several advantages over ultrasonic detectors: they

are small in size (2.5mm3 ); they have a wide-angle response - there is no need for

accurate alignment with the sources; and they have a wide bandwidth - we do not

need to tune them to the exact frequency of the ultrasonic source. We arranged the

ultrasonic sources such that they see most of the microphones most of the time: seven

sources around the chest and belly pointing forward, with the eighth source on the

brim of a hat pointing down (Figure 4-2, left).

In addition to the microphone, each sensor board (Figure 4-2, bottom-center) is

equipped with a 3-axis rotation rate sensing unit (the gyroscope), and a 3-axis linear

acceleration sensing unit (the accelerometer). Their measurements enhance the pre-
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Figure 4-3: Sensor Operation. Our sensor boards combine acoustic and inertial data,
and send the resulting signal to the driver box, which samples and stores it onto
a hard disk. The acoustic signal sensed by the microphones (top) is amplified and
filtered to enhance the quality of the ultrasonic pulses. At the same time, the inertial
data from the gyroscopes and accelerometers (bottom) is digitally encoded by the
on-board micro-processor, ensuring faithful reconstruction with error correction code
and scrambling. The analog acoustic signal and the 13kHz digital inertial signal are
multiplexed together and transmitted on a single wire.

cision and frame rate of the ultrasonic components. Furthermore, they alleviate the

line-of-sight problems associated with acoustic signals. An on-board micro-controller

collects the inertial data, combines it with the acoustic signal, and sends it to the

driver box.

The driver box has three main tasks: to generate pulses that drive each ultra-

sonic source, sample the data from each of the sensor boards, and provide power to

all inertial and ultrasonic components. As a result, all of our data is perfectly syn-

chronized (we know exactly when the pulses are emitted with respect to each sensor

signal). The sampling rate of the A/D converters in the driver box is about 150kHz,

well above the Nyquist rate of the 40kHz ultrasonic pulses and the 13kbps inertial

data (see below). In addition, the box houses a USB hub through which the sampled

signals from each sensor board are transferred to a hard disk.

4.2.2 Ultrasonic Operation

Our ultrasonic subsystem operates similarly to a conventional acoustic ranging sys-

tem, where there is a single source and a single detector. At regular intervals, the



source emits a short burst of ultrasonic energy (a "pulse"), which is subsequently

sensed by the detector. For example, our pulses are ten cycles wide at 40 kHz. The

observed time delay ("time of flight") between the emission of the pulse and its de-

tection is proportional to the distance between the two.

As the signal propagates through the air and bounces off objects in the environ-

ment, the detector will record several pulses at different times. The earliest detected

pulse is the one that corresponds to the direct line-of-sight (LOS) and should be used

to determine distance. The subsequent reflected pulses generally will be progressively

weaker as they have to travel further through the air.

In our system, we also need to distinguish between pulses emitted by different

sources. To accomplish this, the sources emit pulses at different times in a round-

robin fashion (similarly to [121]). The time separation between pulses from different

sources must be long enough to ensure that reflected pulses from one source are not

mistaken for the LOS pulse from the next source in the sequence. We have selected

a conservative time interval of about 8 ms between the subsequent pulses. At the

average speed of sound, this corresponds to a distance of about 2.75m the pulse will

travel before another pulse is emitted by another source. We have found this to

be sufficient to ensure that the LOS pulse is considerably stronger than any reflected

pulse from a previous source. Since our system includes eight sources, each individual

source emits pulses at 64 ms intervals.

The microphone on each of our sensor boards senses the ultrasonic pulses from

all the visible ultrasonic sources. As the top row of Figure 4-3 visualizes, the corre-

sponding analog signal is amplified and filtered in order to enhance its quality in the

40kHz range. The resulting analog signal, together with the digital inertial signal, is

sent to the driver box and and stored on the laptop's hard disk.

4.2.3 Inertial Operation

Our inertial subsystem operates independently of the ultrasonic components. The

gyroscopes and accelerometers measure rotational rates and accelerations. The micro-

processor on each sensor board samples them as 10-bit quantities and accumulates
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Figure 4-4: Signal Processing. The stored data is processed off-line to yield distance
measurements from the analog acoustic data (top), and the rotation rates and ac-
celerations from the digital inertial data (bottom). Top: After isolating the acoustic
signal by band-passing the original signal around 40kHz, we compute its power en-
velope. The inflection points of the power envelope provide a robust indication of
detected pulse locations, which in turn provide estimates of distances between ultra-
sonic sources and microphones. Bottom: The digital signal is isolated by low-passing
below 13kHz, after which the scrambling pattern is used to identify the beginnings of
different samples. The descrambling and error correction recover the encoded rotation
rates and accelerations.

several readings to obtain more precise 12-bit quantities. We increase the frame

rate by not sending the internal 12-bit values. Instead, we turn them into 6-bit

values using delta modulation to maintain good precision. In addition, we employ

error-correction coding, enabling the amplitude of the digital data to be much lower

than that of the acoustic signal and therefore causing less interference. Finally, we

interleave and scramble our data with a pseudo-random sequence, which helps with

error correction and prevents the baseline drift. The resulting values from the three

gyroscope axes and the three accelerometer axes are encoded as a 13kbps digital

stream and multiplexed with the analog acoustic signal. The sampling rate of the

inertial data is 140Hz.



4.3 Signal Processing

In the signal processing stage, our system extracts distance and inertial measure-

ments from the stored sensor signals. It extracts pulse locations from the sampled

acoustic signals and converts them into distances. It also converts the digitally en-

coded inertial sensor voltages into accelerations and angular velocities. To obtain

accurate measurements for both these steps, we perform precise calibration of our

sensors. In the following section we overview both signal processing steps as well as

the calibration procedure, and refer the reader to [1] for more details.

4.3.1 Ultrasonic Processing

We process the stored signal to extract distance measurements, noting that the mi-

crophone data are perfectly synchronized with the emitted pulses. Therefore, we can

partition the signal into frames, where each frame corresponds to the maximum dis-

tance traveled by the pulse (2.75 m, which translates to 1120 samples). As visualized

in the top row of Figure 4-4, we first band-pass the signal to eliminate all frequencies

that are outside the range of our ultrasonic sources (these include the multiplexed

13kBps digital data). Based on the specifications of the ultrasonic source, we use a

filter that is centered at 40kHz and has a width of 5kHz. Second, we square the signal,

since we are more interested in its power than in the signal itself. Third, we extract

the envelope of the signal power by applying a low-pass filter with a cut-off frequency

of 30kHz. We observe that tracking the location of the peak does not provide the

most precise distance measurement since the gradient of the signal power envelope is

low. Instead, we compute the inflection point-the point where the gradient is the

largest. In our case, this point is positioned about 40 samples after the start of the

pulse. We perform a calibration for each ultrasonic source to compute the exact offset

in the number of samples.

The power envelope of the signal can contain multiple peaks due to reflection.

Furthermore, it can contain no useful peaks if there is no direct LOS between the

source and the detector. Therefore, with each distance measurement we associate



a confidence measure w ranging from 0 (no useful measurement) to 1 (a correct

measurement). We represent the confidence measure w as a product of three factors:

signal strength (w.), temporal continuity (wt), and an angle between the ultrasonic

source normal and the detector (wa).

To incorporate the signal strength factor, we first ensure that the signal is well

above the estimated ambient noise, which we assume to be a zero-mean Gaussian. We

also normalize the peak values by multiplying them by their squared distances since

the signal strength of a spherical wave is proportional to the inverse of the squared

radius. If the resulting value is above a predetermined threshold, then w, is set to

1. Otherwise, w, decreases with the squared inverse of the difference between the

threshold and the peak value. The temporal continuity measure wt is equal to 1 if the

difference between the corresponding peak in two neighboring time instants is within

a threshold, and decreases to zero as that difference grows. The angular confidence

measure wa is computed based on the current estimates of the sensor locations. In our

implementation, Wa is set to 1 unless the angle between the ultrasonic source normal

and the vector toward the sensor is greater than 90 degrees, in which case it is set to

0, ensuring that the microphone is within the field-of-view of the ultrasonic source.

Figure 4-5 plots the confidence values for several source-sensor pairs throughout a

30-second motion exercising all joints. In general, the quality of the signal between

each source-sensor pair varies with time, depending on the motion.

4.3.2 Inertial Processing

Along with distances, we also extract the digitally encoded inertial data from the

stored signal. As depicted in the bottom row of Figure 4-4, we first isolate the inertial

portion of the signal by low-passing it with a cut-off frequency of 13kHz. We use the

known scrambling pattern to lock onto the beginning of each new inertial sample and

use thresholding to recover the bits of data. Those bits are then descrambled and

error-corrected to yield the rotation rate readings for the three gyroscope axes, and

the acceleration readings for the three accelerometer axes.

Even though the inertial readings are represented as 6-bit values, delta-modulation



Belly Ultrasonic Source

4A [Chest Sensor

Thigh Sensor ' ]

Foot Sensor Tf V1jf

Figure 4-5: Confidence values for several source-sensor pairs are plotted over a 30-
second motion exercising all joints. The belly source (left column) has a better line-
of-sight with the thigh sensor (second row), while the hat source (right column) has a
better view of the chest sensor (first row). They both see the foot sensor (third row)
equally well but for different reasons: the belly source is positioned closer, while the
hat source is better oriented.

ensures that the overall precision is not degraded. For example, if the 6-bit round-off

underestimates the acceleration in one frame, it will compensate by overestimating

in the next frame; if we were to double-integrate the delta-modulated acceleration,

the resulting position would have more than 6 bits of precision.

4.3.3 Calibration

The processed values from the ultrasonic signal correspond to the number of samples

between the pulse emission and the detected inflection point, while the values from

the inertial signal correspond to the voltages given by the inertial sensors. To convert

these values to meaningful distances, accelerations, and rotation rates, we carefully

calibrated all the components of our system.

For the ultrasonic components, we identified the offsets between the detected in-

flection points and the true pulse beginnings. These offsets differ from source to

source, but are fairly constant across different microphones. This is because our mi-

crophones are of much better quality and sensing capabilities than our sources. We

found the offsets by affixing the ultrasonic sources and microphones at several dif-

ferent locations (ranging from 30cm to 90cm apart), calculating the resulting inflec-

Hat Ultrasonic Source



tion points, and measuring the actual distances using a FARO arm contact digitizer

(faro.com). We obtained offsets for each ultrasonic source, yielding a distance er-

ror of 2.35mm mean and 1.92mm standard deviation according to our leave-one-out

experiments.

For the accelerometers and gyroscopes, we identified zero crossings and slopes

to convert their voltages to physical values assuming a linear model. Using a level,

we aligned each axis of the accelerometer along the gravity and opposite gravity.

Accumulating over a period of time, we obtained accurate estimates of ±g, and the

zero crossing as their mean. We then affixed each gyroscope to a turntable, orienting

each of its axes both up and down. The turntable was rotating at 45rpm with 0.1%

accuracy, enabling us to find the voltages corresponding to ±45rpm. We averaged

these two values to obtain the zero crossing.

4.4 Pose Estimation

Our system recovers body poses using angular velocities from gyroscopes, accel-

erations from accelerometers, and distances from the acoustic subsystem. While

some approaches use algorithms specialized to only one kind of observation (e.g.,

[106, 139, 88]), we employ the Extended Kalman Filter [72] to combine information

from all three sensor types. Extended Kalman Filter (EKF) provides a convenient,

efficient, and elegant framework for combining different types of measurements to

recover the state of a given system [163]. It incorporates a model of the system dy-

namics with its indirect observations to yield pose estimates. On a high level, EKF

evaluates the system dynamics to evolve the system state until the next observation,

then uses this observation to improve its estimate of the system state.

4.4.1 System Dynamics

The body structure provides constraints that aid the recovery of its joint configura-

tion, or pose. The pose of an articulated body is specified by the joint angles that

describe the configuration of the shoulders, elbows, and other body joints. We use



a single vector 0 to assemble all joint angles in the body. This joint structure deter-

mines the forward-kinematics equations F(O) and F(O), which are used to compute

position and orientation of any sensor.

The system state x contains joint angles, their velocities, and accelerations (0, 0,
6). Because we do not know the internal muscle forces, we assume that the change in

accelerations between frame k -1 and frame k is governed by the zero-mean Gaussian

noise w:

0 0+ 0

Xk = f (Xk-1, wk-1), (4.1)

k -- k-1

We hand tune the standard deviation of the noise term by tracking several motions.

Setting this value to 0.04 rad/s 2 works well for most of our examples.

4.4.2 System Observations

Accelerometers provide acceleration readings in the local coordinate frame of each

sensor. They sense the Earth's gravity as an upward acceleration of g even when

the body is stationary. To derive sensor accelerations as a function of body joints,

we first express the position of each sensor through forward kinematics as p = F(O).

Differentiating with respect to time and applying the chain rule yields an expression

for velocity v = JO, with J = dF/dO being the positional forward-kinematics Jacobian.

Differentiating once again, we calculate the accelerations as a = JO + JO. After

rotating into the sensor coordinate frame, we express acceleration observations at

frame k with the following function h:

= [zi] = [rot {ii# + Jii - 9 + v = h(xk, Vk), (4.2)

where rot {.} denotes the rotation from the global coordinate frame to the coordi-



nate frame of sensor i, and the standard deviation of the Gaussian noise v corresponds

to the accelerometer precision of about 0.02m/s 2.

Gyroscopes measure angular velocity in the local frame of each sensor. To derive

the angular velocity of each sensor as a function of body joints, we begin with the

forward kinematics equation for the orientation quaternion: q = F(O). Taking a

time derivative and applying the chain rule, we get 4 = I0, where I = dF/dO is

the orientational forward-kinematics Jacobian. To get angular velocity, we multiply

by the orientation quaternion conjugate and double the vector part of the resulting

quaternion: w = 2(q*4)vec = 2(F*IT)vec. In the sensor coordinate frame, angular

velocity observations at frame k are defined by the following function h:

[Zrk [rot {2(]Fi),ec } = h(Xk, Vk) (4-3)

where rot {-} denotes the rotation from the global coordinate frame to the coordi-

nate frame of sensor i, and the standard deviation of the Gaussian noise v corresponds

to the gyroscope precision of about 0.002 rad/s.

The ultrasonic subsystem provides distances between a sensor i and a source

j for all source-sensor pairs. The position of both the source and the sensor can

be computed as a function of joint angles using the positional forward kinematics

function F. Since the distance observation timings are not synchronized with the

inertial observations, we process at frame k all the distances that were measured

between frame k - 1 and k. The following function h expresses a set of distance

observations in terms of the system state:

Zk = [zij]k = [||F(OX) - F(O)| + vij]k = h(xk, Vk), (4.4)

where the standard deviation of the Gaussian noise v corresponds to the ultrasonic

subsystem precision of about 2.5mm, and is further divided by the confidence of each

distance measurement.
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Figure 4-6: Comparison to the Vicon system. Left: one frame of the captured motion
with our reconstruction to its left and Vicon reconstruction to its right. Right: a
graph of a few 3-DOF joints (neck, right shoulder, and left hip) over 30 seconds of
motion. The top three plots visualize the joint angles as reconstructed by us (red)
and Vicon (black), while the bottom plot shows the orientation difference between
our reconstruction and that of the Vicon system.

4.4.3 Extended Kalman Filter

EKF incorporates the evolution of the underlying system state x along with the

observations of the system. Each set of observations coming from accelerometers,

gyroscopes, or the acoustic subsystem, is processed sequentially using the appropriate

formulations of h and the corresponding measurement noise v.

The Kalman time update step evolves the system until it reaches the next obser-

vation, yielding an a priori (before observation) estimate of the system state x and

its covariance P:

x = f(x-1,0) (4.5)

P-= AkPk_1AgI + WkQWaT, (4.6)

where - stands for the a priori estimate, Q is the system noise covariance, A =

Of/Ox is the Jacobian of f with respect to the system parameters, and W = Of/Ow

is the Jacobian of f with respect to the system noise parameters.

The Kalman observation step uses the observation ze to improve on the a priori

estimates of the state x- and its covariance P-:



Kk P-HT(HkP-HT + VkRkV -1  (4.7)

Xk = x-+Kk(zk- h(xj, 0)) (4.8)

Pk (I - KkHk)P-, (4.9)

where K is the Kalman gain chosen to minimize the a posteriori state covariance,

R is the measurement noise covariance, H = Bh/8x is the Jacobian of h with respect

to the system parameters, and V = Bh/Dv is the Jacobian of h with respect to the

measurement noise parameters.

In our system, the noise covariance matrices (Q, R) are all diagonal, and their

elements are the variances corresponding to the aforementioned standard deviations.

All the Jacobian matrices (A, W, H, V) were computed analytically for speed.

4.4.4 Initialization

EKF is unstable if there are misalignments in the first frame because most of our

measurements are incremental. We alleviate this problem by providing good esti-

mates of the initial pose and the location of each body sensor. Our human mesh

and its skeleton match the proportions of the subject, and the sensors are manually

specified as rigid transforms in the coordinate frames of their parent bones. In addi-

tion, the subject begins each motion by holding a specified "rest" pose. As a result,

the average accelerometer reading during that pose should be aligned with gravity

(pointing upward). We exploit this fact to improve the pose of our model and tune

the sensor orientations using a gradient descent approach. We additionally refine the

inertial sensor offsets with an objective function which assures that the readings of

each sensor during the initial pose integrate to zero.
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Figure 4-7: In the treadmill motion above, the distance measurements enabled us to
avoid pose drift in the shoulder joint. Left: One frame of the treadmill motion where
the reconstruction without distances (right) drifts, while the one with distances (left)
does not. Right: A graph plotting the left shoulder joint angle for the reconstruction
with (black) and without distances (red).

4.5 Results

Our system is capable of acquiring motions ranging from biking and driving, to skiing,

table tennis, and weight lifting (Figure 4-1). The accompanying video demonstrates

its capability to reconstruct visible subtleties in recorded motions. The results are

processed at a rate of 10 frames per second and visualized without any post-processing

using an automatically skinned mesh [11].

We evaluated the accuracy of our system by comparing it with Vicon's optical mo-

tion capture system, which is known for its exceptional precision. Since we could not

collocate the optical markers with our sensors without interfering with the ultrasonic

line-of-sight, we placed them around the body according to the suggestions in the

Vicon manual. We used Vicon software to fit the same skeleton used by our system

to the optical markers, and started all the reconstructions with an identical initial

pose. To remove the effects of root drift in our reconstructions, we provided the root

transform from Vicon's reconstruction to our Kalman filter at each frame. Although

neither reconstruction is perfect, Vicon matches the original motions better, thus we

treat it as ground truth in our analysis.

The left side of Figure 4-6 shows one frame of a 30-second motion, with our recon-

..................... ...........................



Table 4.1: Different combinations of our sensors (accelerometers A, gyroscopes G,
and ultrasonic distances D) yield varying reconstruction quality as compared to the

Vicon system. We report the mean y and the standard deviation o of the orientation

differences between our reconstruction and Vicon's reconstruction for three 3-DOF

joints of the skeleton.

struction on the left and Vicon's on the right. Qualitatively, Vicon's reconstruction

matches the original motion better, although we are also able to reconstruct motion

nuances such as slight wrist flicks. In addition, optical motion capture is able to re-

cover the root transform without drift. The right side of Figure 4-6 shows plots of the

neck, right shoulder, and left hip joints over the course of this motion. We visualize

these three joints because they each have three degrees of freedom and are directly

under the root in the skeletal hierarchy, and therefore free of parent-inherited errors.

The top three plots for each joint compare the three Euler angles directly, with our

reconstruction drawn in red and Vicon's in black. The bottom plot for each joint

shows the orientation difference between the two reconstructions.

Our sensing capabilities have led us to explore multiple facets of our pose re-

covery system. We have reconstructed motions using various combinations of our

sensors. Table 4.1 summarizes our findings for the same 30-second motion visualized

in Figure 4-6. Compared to the Vicon reconstruction, the Extended Kalman Filter

performs poorly with just accelerometers, just distances, or a combination of the two.

Gyroscopes, on the other hand, provide much better reconstructions on their own,

and yield even better results in conjunction with either the distances or the accelera-

tions. The best results require using information from all available sensors. Although

Sensors Neck Right Shoulder Left Hip

P(0) o-( ) p( ) Uo() P(0) or( )
A 159.7 147.7 168.6 105.9 184.0 146.0
A+D 74.0 125.4 178.6 110.9 165.5 144.5
D 120.2 93.4 54.7 37.0 117.4 79.2

G 25.9 15.9 10.1 7.0 8.3 8.0
G+D 18.4 7.4 8.1 5.8 9.8 5.4

A+G 9.5 3.4 10.9 6.4 5.6 4.0

A+G+D 5.7 2.9 8.0 5.0 6.6 3.8



distance measurements do not have a dramatic effect on the reconstruction of activity

in Table 4.1, we have observed significant drift in several experiments. For example,

distance measurements are critical for an accurate reconstruction of the treadmill

motion in Figure 4-7.

4.6 Discussion

We have presented a wearable motion capture system prototype that is entirely self-

contained and capable of operating for extended periods of time in a large variety of

environments. Our system acquires distance measurements between a set of ultrasonic

sources and a set of sensors. Each sensor is augmented with inertial measurements

in order to improve precision and sampling rate, as well as to alleviate line-of-sight

problems. We have shown how to compute the pose of a human model directly from

these measurements using the Extended Kalman Filter and qualitatively validated

the performance of the system against a high-quality optical motion capture system.

An attractive feature of our system is its low cost, with the current component price

of around $3,000 (excluding the laptop). We believe that a much smaller version of

the system with more sensors could be mass-produced for only a few hundred dollars,

implying that this type of system could be owned and used on a daily basis by almost

anyone.

Limitations. Due to inherent physical limitations of our hardware components, we

were unable to reconstruct high-impact motions such as jumping or hard kicking.

Though sensors with wider sensing ranges are available to the detriment of precision,

we have chosen ours to maximize the trade-off between coverage and precision. Other

types of motions that we are unable to acquire with the current prototype include

interaction between multiple subjects, such as dancing. By changing the ultrasonic

source frequency of the partner, we could track each subject without interference, as

well as obtain distance measurements between points on two different subjects.

Our distance measurements depend on the speed of sound, which is affected by



temperature and, to a lesser extent, humidity. To obtain a more precise speed of

sound, one could use a digital thermometer or a calibration device prior to each

capture session. Distance measurements may also be affected by the presence of

ultrasonic noise in the environment, but we have not experienced these problems in

our experiments.

Perhaps the most significant limitation of our system is the lack of direct measure-

ments of the root transformation. Our reconstructions exhibit drift in both global

translation and rotation. We show that distance measurements help but they do not

eliminate the problem entirely: over time, root drift propagates to other joints as

well. Some of our experiments show that if we detect foot plants we can determine

the global position and orientation relative to the ground plane. Another approach

would be to use accelerometer readings for a vertical reference whenever the body is

not accelerating. A more general solution could rely on additional sensors that per-

form absolute measurements (e.g., a GPS or magnetometer) to better constrain the

root. These measurements can be incorporated into the EKF. Our evaluations, for

example, incorporate root transforms obtained by the Vicon system. We could also

compute absolute root measurements using ceiling-mounted ultrasonic sources [66] or

image-based tracking. Lastly, optimization, which is slower than Kalman filtering,

might converge to a better solution for the same sensor data.

Future Work. There are many possibilities for future work. First, we could employ

additional sensors to better constrain the root transform. Next, we could decrease

the size and cost of our system. The driver box in particular has been built almost

entirely from off-the-shelf components. By designing custom circuitry with only the

necessary hardware, we could turn it into an iPod-like device that powers the system

and stores the captured data, removing the need for a laptop. Another direction would

be to perform all of the processing on-line, which might be achieved by accumulating

several measurements before feeding them to the EKF to improve the speed. This

would allow the system to be used as an input device in a variety of augmented-reality

applications.



We should enrich motion repositories with varied data sets to further understand

human motion. Restrictive recording requirements limit the scope of current motion

data sets, which prevents the broader application of motion processing. An inexpen-

sive and versatile motion-capture system would enable the collection of extremely

large data sets. This enhanced infrastructure could then support large-scale analy-

sis of human motion, including its style, efficiency, and adaptability. The analysis

of daily human motion could even extend beyond computer graphics, and help pre-

vent repetitive stress injuries, quicken rehabilitation, and enable design of improved

computer interfaces.



Chapter 5

Analysis of Dynamic Shapes for

Face Transfer

Figure 5-1: Face Transfer with multilinear models gives animators decoupled control
over facial attributes such as identity, expression, and viseme. In this example, we
combine pose and identity from the first frame, surprised expression from the second,
and a viseme (mouth articulation for a sound midway between "oo" and "ee") from
the third. The resulting composite is blended back into the original frame.

As the technology for reconstructing 3D surfaces of dynamic shapes advances, the

demand for thechniques that analyze such data in order to advance various applica-

tions will grow. In this chapter we describe a method that analyzes captured 3D face

shapes in order to learn the relationship between different face shapes. It can then

transfer facial performance between different faces, enabling even untrained users to

create realistic 3D face animations.

Performance-driven animation has a growing role in film production because it

allows actors to express content and mood naturally, and because the resulting ani-

mations have a degree of realism that is hard to obtain from synthesis methods [123].

... ... .. ...............
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The search for the highest quality motions has led to complex, expensive, and hard-

to-use systems. This chapter introduces new techniques for producing compelling

facial animations that are inexpensive, practical, versatile, and well suited for editing

performances and retargeting to new characters.

Face Transfer extracts performances from ordinary video footage, allowing the

transfer of facial action of actors who are unavailable for detailed measurement, in-

strumentation, or for re-recording with specialized scanning equipment. Expressions,

visemes (speech-related mouth articulations), and head motions are extracted auto-

matically, along with a performance-driven texture function. With this information

in hand, our system can either rewrite the original footage with adjusted expressions

and visemes or transfer the performance to a different face in a different footage.

Multilinear models are ideally suited for this application because they can describe

face variations with separable attributes that can be estimated from video automati-

cally. In this chapter, we estimate such a model from a data set of three-dimensional

(3D) face scans that vary according to expression, viseme, and identity. The multilin-

ear model decouples the three attributes (i.e., identity or viseme can be varied while

expression remains constant) and encodes them consistently. Thus the attribute vec-

tor that encodes a smile for one person encodes a smile for every face spanned by the

model, regardless of identity or viseme. Yet the model captures the fact that every

person smiles in a slightly different way. Separability and consistency are the key

properties that enable the transfer of a performance from one face to another without

a change in content.

Contributions. This chapter describes a general, controllable, and practical system

for facial animation. It estimates a multilinear model of human faces by examining

geometric variations between 3D face scans. In principle, given a large and varied

data set, the model can generate any face, any expression, any viseme. As proof of

concept, we estimate the model from a couple of geometric data sets: one with 15

identities and 10 expressions, and another with 16 identities, 5 expressions, and 5

visemes. Existing estimation algorithms require perfect one-to-one correspondence



between all meshes, and a mesh for every possible combination of expression, viseme,

and identity. Because acquiring the full Cartesian product of meshes and putting them

into dense correspondence is extremely difficult, this chapter introduces methods for

populating the Cartesian product from a sparse sampling of faces, and for placing

unstructured face scans into correspondence with minimal cross-coupling artifacts.

By linking the multilinear model to optical flow, we obtain a single-camera tracker

that estimates performance parameters and detailed 3D geometry from video record-

ings. The model defines a mapping from performance parameters back to 3D shape,

thus we can arbitrarily mix pose, identity, expressions, and visemes from two or more

videos and render the result back into a target video. As a result, the system pro-

vides an intuitive interface for both animators (via separably controllable attributes)

and performers (via acting). And because it does not require performers to wear

visible facial markers or to be recorded by special face-scanning equipment, it is an

inexpensive and easy-to-use facial animation system.

5.1 Related Work

Realistic facial animation remains a fundamental challenge in computer graphics.

Beginning with Parke's pioneering work [1101, desire for improved realism has driven

researchers to extend geometric models [111] with physical models of facial anatomy

[161, 92] and to combine them with non-linear finite element methods [89] in systems

that could be used for planning facial surgeries. In parallel, Williams presented a

compelling argument [166] in favor of performance-driven facial animation, which

anticipated techniques for tracking head motions and facial expressions in video [94,

60, 54, 116]. A more expensive alternative could use a 3D scanning technique [171],

if the performance can be re-recorded with such a system.

Much of the ensuing work on face estimation and tracking relied on the observation

that variation in faces is well approximated by a linear subspace of low dimension

[132]. These techniques estimate either linear coefficients for known basis shapes [14,

24] or both the basis shapes and the coefficients, simultaneously [28, 142]. In computer



graphics, the combination of accurate 3D geometry with linear texture models [115,
21] produced striking results. In addition, Blanz and Vetter [21] presented a process

for estimating the shape of a face in a single photograph, and a set of controls for

intuitive manipulation of appearance attributes (thin/fat, feminine/masculine).

These and other estimation techniques share a common challenge of decoupling

the attributes responsible for observed variations. As an early example, Pentland

and Sclaroff estimate geometry of deformable objects by decoupling linear elastic

equations into orthogonal vibration modes [113]. In this case, modal analysis uses

eigen decomposition to compute the independent vibration modes. Similar factoriza-

tions are also relied upon to separate variations due to pose and lighting, pose and

expression, identity and lighting, or style and content in general [67, 28, 55, 73, 32].

A technical limitation of these formulations is that each pair of factors must be

considered in isolation; they cannot easily decouple variations due to a combination

of more than two factors. The extension of such two-mode analysis to more modes

of variation was first introduced by Tucker [143] and later formalized and improved

on by Kroonenberg and de Leeuw [91]. These techniques were successfully applied to

multilinear analysis of images [146, 147].

This chapter describes multilinear analysis of three-dimensional (3D) data sets

and generalizes face-tracking techniques to create a unique performance-driven sys-

tem for animation of any face, any expression, and any viseme. In consideration of

similar needs, Bregler and colleagues introduced a two-dimensional method for trans-

ferring mouth shapes from one performance to another [27]. The method is ideal

for film dubbing-a problem that could also be solved without performance by first

learning the mouth shapes on a canonical data set and then generating new shapes for

different texts [62]. These methods are difficult to use for general performance-driven

animation because they cannot change emotions of a face. Although the problem can

be resolved by decoupling emotion and content via two-mode analysis [38], all three

techniques are view specific, which presents difficulties when view, illumination, or

both have to change.

Our Face Transfer learns a model of 3D facial geometry variations in order to



mode 3

mode 1
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Figure 5-2: In (a) we show a 3rd-order (3-mode) tensor T whose modes have di,
d2 , and d3 elements respectively. Depending on how we look at the data within the
tensor, we can identify three mode spaces. By viewing the data as vectors parallel
to the first mode (b), we define mode-1 space as the span of those vectors. Similarly,
mode-2 space is spanned by vectors parallel to the second mode (c), and mode-3 space
by vectors in the third mode (d).

infer a particular face shape from 2D images. Previous work combines identity and

expression spaces by copying deformations from one subject onto the geometry of

other faces [55, 20, 34]. Expression cloning [105, 136] improves on this process but

does not account for actor-specific idiosyncrasies that can be revealed by statistical

analysis of the entire data set (i.e., the mesh vertex displacements that produce a smile

should depend on who is smiling and on what they are saying at the same time). Other

powerful models of human faces have been explored [158] at the cost of making the

estimation and transfer of model parameters more difficult. This chapter describes

a method that incorporates all such information through multilinear analysis, which

naturally accommodates variations along multiple attributes.

5.2 Multilinear Algebra

Multilinear algebra is a higher order generalization of linear algebra. In this section

we provide insight behind the basic concepts needed for understanding of our Face

Transfer system. De Lathauwer's dissertation [53] provides a comprehensive treat-
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ment of this topic. Concise overviews have also been published in the graphics and

vision literature [146, 147].

Tensors. The basic mathematical object of multilinear algebra is the tensor, a

natural generalization of vectors (1t order tensors) and matrices ( 2 nd order tensors)

to multiple indices. An Nh -order tensor can be thought of as a block of data indexed

by N indices: T = (tiii2...iN). Figure 5-2 shows a 3rd-order (or 3-mode) tensor with

a total of di x d2 x d3 elements. Different modes usually correspond to particular

attributes of the data (e.g, expression, identity, etc.).

Mode Spaces. A matrix has two characteristic spaces, row and column space; a

tensor has one for each mode, hence we call them mode spaces. The di x d2 x d3

3-tensor in Figure 5-2 has three mode spaces. Viewing the data as a set of di-

dimensional vectors stored parallel to the first axis (Figure 5-2b), we can define the

mode-1 space as the span of those vectors. Similarly, mode-2 space is defined as the

span of the vectors stored parallel to the second axis, each of size d2 (Figure 5-2c).

Finally, mode-3 space is spanned by vectors in the third mode, of dimensionality d3

(Figure 5-2d). Multilinear algebra revolves around the analysis and manipulation of

these spaces.

Mode-n Product. The most obvious way of manipulating mode spaces is via linear

transformation, officially referred to as the mode-n product. It is defined between a

tensor T and a matrix M for a specific mode n, and is written as a multiplication with

a subscript: T xn M. This notation indicates a linear transformation of vectors in

T's mode-n space by the matrix M. Concretely, T x2 M would replace each mode-2

vector v (Figure 5-2c) with a transformed vector Mv.

Tensor Decomposition. One particularly useful linear transformation of mode

data is the N-mode singular value decomposition (N-mode SVD). It rotates the mode

spaces of a data tensor T producing a core tensor C, whose variance monotonically

decreases from first to last element in each mode (analogous to matrix SVD). This
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enables us to truncate the insignificant components and get a reduced model of our

data.

Mathematically, N-mode SVD can be expressed with mode products

Tx UT x 2 Ui x 3 U xN UT =C (5.1)

- T=CXlU1X2U2X3U3 ... XN UN, (5.2)

where T is the data tensor, C is the core tensor, and Uj's (or more precisely their

transposes) rotate the mode spaces. Each Uj is an orthonormal matrix whose columns

contain left singular vectors of the ith mode space, and can be computed via regular

SVD of those spaces [53]. Since variance is concentrated in one corner of the core

tensor, data can be approximated by

T ~ Creduced x 1 x 2 U 2 x 3 U3 . -xN ON, (5.3)

where Us's are truncated versions of Uj's with last few columns removed. This

truncation generally yields high quality approximations but it is not optimal-one

of several matrix-SVD properties that do not generalize in multilinear algebra. One

can obtain a better approximation with further refinement of Ui's and Creduced via

alternating least squares [53].

5.3 Multilinear Face Model

To construct the multilinear face model, we first acquire a range of 3D face scans, put

them in full correspondence, appropriately arrange them into a data tensor (Figure 5-

3), and use the N-mode SVD to compute a model that captures the face geometry

and its variation due to attributes such as identity and expression.
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expression

vertices

Figure 5-3: Data tensor for a bilinear model that varies with identity and expression;
the first mode contains vertices, while the second and third modes correspond to
expression and identity respectively. The data is arranged so that each slice along
the second mode contains the same expression (in different identities) and each slice
along the third mode contains the same identity (in different expressions). In our
trilinear experiments we have added a fourth mode, where scans in each slice share
the same viseme.

5.3.1 Face Data

We demonstrate our proof-of-concept system on two separate face models: a bilinear

model, and a trilinear model. Both were estimated from detailed 3D scans (~ 30K ver-

tices) acquired with 3dMD/3Q's structured light scanner (http: //www. 3dmd. com/)

in a process similar to regular flash photography, although our methods would apply

equally to other geometric data sets such as motion capture. As a preprocess, the

scans were smoothed using the bilateral filter [84] to eliminate some of the capture

noise. The subject pool included men, women, Caucasians, and Asians, from the

mid-20s to mid-50s.

Bilinear model. 15 subjects were scanned performing the same 10 facial expres-

sions. The expressions were picked for their familiarity as well as distinctiveness, and

include neutral, smile, frown, surprise, anger, and others. The scans were assembled
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Figure 5-4: Several faces generated by manipulating the parameters of the bilinear
model. The left two faces show our attempt of expressing disgust, an expression that
was not in the database. They only differ in identity, to demonstrate the separa-
bility of our parameters. The right two faces show surprise for two novel identities,
illustrating how the expression adjusts to identity.

into a third order (3-mode) data tensor (30K vertices x 10 expressions x 15 identi-

ties). After N-mode SVD reduction, the resulting bilinear model offers 6 knobs for

manipulating expression and 9 for identity.

Trilinear model. 16 subjects were asked to perform 5 visemes in 5 different ex-

pressions (neutral, smiling, scowling, surprised, and sad). The visemes correspond

to the boldfaced sounds in man, car, eel, too, and she. Principal components anal-

ysis of detailed speech motion capture indicated that these five expressions broadly

span the space of lip shapes, and should give a good approximate basis for all other

visemes-with the possible exception of exaggerated fricatives. The resulting fourth

order (4-mode) data tensor (30K vertices x 5 visemes x 5 expressions x 16 identi-

ties) was decomposed to yield a trilinear model providing 4 knobs for viseme, 4 for

expression, and 16 for identity (we have kept the number of knobs large since our

data sets were small).

5.3.2 Correspondence

Training meshes that are not placed in perfect correspondence can considerably mud-

dle the question of how to displace vertices to change one attribute versus another

(e.g. identity versus expression), and thus the multilinear analysis may not give a

model with good separability. We show here how to put a set of unstructured face
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scans into correspondence suitable for multilinear analysis.

Despite rapid advances in automatic parameterization of meshes (e.g., [119, 76]), it

took considerable experimentation to place many facial scans into detailed correspon-

dence. The principal complicating factors are that the scans do not have congruent

mesh boundaries, and the problem of matching widely varied lip deformations does

not appear to be well served by conformal maps or local isometric constraints. This

made it necessary to mark a small number of feature points in order to bootstrap

correspondence-finding across large deformations.

We developed a protocol for a template-fitting procedure [5, 136], which seeks a

minimal deformation of a parameterized template mesh that fits the surface implied

by the scan. The optimization objective, minimized with gradient descent, balances

overall surface similarity, proximity of manually selected feature points on the two

surfaces, and proximity of reference vertices to the nearest point on the scanned sur-

face. We manually specified 42 reference points on a reference facial mesh and on a

neutral (m-viseme) scan. After rigidly aligning the template and the scan with Pro-

crustes' alignment, we deformed the template mesh into the scan: at first, weighing

the marked correspondences heavily and afterwards emphasizing vertex proximity.

For the trilinear model, the remaining m-viseme (closed-mouth) scans were marked

with 21 features around eyebrows and lips, rigidly aligned to upper-face geometry

on the appropriate neutral scans, and then non-rigidly put into correspondence as

above. Finally, all other viseme scans were similarly put into correspondence with

the appropriate closed-mouth scan, using the 18 features marked around the lips.

5.3.3 Face Model

Equation (5.3) shows how to approximate the data tensor by mode-multiplying a

smaller core tensor with a number of truncated orthogonal matrices. Since our goal

is to output vertices as a function of attribute parameters, we can decompose the

data tensor without factoring along the mode that corresponds to vertices (mode-1),
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Figure 5-5: Faces generated by manipulating the parameters of the trilinear model.
Left to right: producing the 'oo' sound, trying to whistle, breaking into a smile, two
changes of identity, then adding a scowl.

changing Equation (5.3) to:

T ~M X2 02 X3 C3 ... XN N, (5.4)

where M can now be called the multilinear model of face geometry. Mode-multiplying

M with Cs's approximates the original data. In particular, mode-multiplying it with

one row from each Tj reconstructs exactly one original face (the one corresponding to

the attribute parameters contained in that row). Therefore, to generate an arbitrary

interpolation (or extrapolation) of original faces, we can mode-multiply the model

with a linear combination of rows for each U2 . We can write

f=M x 2 w 2T x 3 w 3 - , (5.5)

where wi is a column vector of parameters (weights) for the attribute corresponding

to ith mode, and f is a column vector of vertices describing the resulting face.

5.3.4 Missing Data

Building the multilinear model from a set of face scans requires capturing the full

Cartesian product of different face attributes, (i.e., all expressions and visemes need

to be captured for each person). Producing a full data tensor is not always practical

for large data sets. For example, a certain person might have trouble performing some
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expressions on cue, or a researcher might add a new expression to the database but be

unable reach all the previous subjects. In our case, data corruption and subsequent

unavailability of a subject led to an incomplete tensor. The problem becomes more

evident if we add age as one of the attributes, where we cannot expect to scan each

individual throughout their entire lives. In all these cases, we would still like to

include a person's successful scans in the model, and fill in the missing ones with the

most likely candidates. This process is known as imputation.

There are many possible schemes for estimating a model from incomplete data.

A naive imputation would find a complete sub-tensor, use it to estimate a smaller

model, use that to predict a missing face, use that to augment the data set, and

repeat. In a more sophisticated Bayesian setting, we would treat the missing data

as hidden variables to be MAP estimated (imputed) or marginalized out. Both ap-

proaches require many iterations over a huge data set; Bayesian methods are partic-

ularly expensive and generally require approximations for tractability. With MAP

estimation and naive imputation, the results can be highly dependent on the order of

operations. Because it fails to exploit all available constraints, the naive imputative

scheme generally produces inferior results.

Here we use an imputative scheme that exploits more available constraints than

the naive one, producing better results. The main intuition, which we formalize

below, is that any optimization criteria can be linearized in a particular tensor mode,

where it yields a matrix factorization problem with missing values. Then we leverage

existing factorization schemes for incomplete matrices, where known values contribute

a set of linear constraints on the missing values. These constraints are then combined

and solved in the least-squares sense.

Description. Our algorithm consists of two steps. First, for each mode we assemble

an incomplete matrix whose columns are the corresponding mode vectors. We then

seek a subspace decomposition that best reconstructs the known values of that matrix.

The decomposition and the known values provide a set of linear constraints for the

missing values. This can be done with off-the-shelf imputative matrix factorizations
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(e.g., PPCA [141], SPCA [124], or ISVD [23]). Typically these algorithms estimate

a low-rank subspace from the complete vectors of the mode and use that to predict

missing values in the incomplete columns (and/or update the subspace). In our

experiments we used the standard PPCA formulation for filling in missing values,

which reduces to a system of linear equations that relate unknown values to known

values through the estimated mean and covariance of the vectors in the mode space.

Second, the linear constraints are combined through the missing elements, because

they are shared across all groups of modal vectors and must be filled in with consistent

values. To that end, we collect the linear equations that determine a particular missing

value in all the modes, and solve them together. For example, if two missing values co-

occur in some mode vector, then they must be jointly estimated. We update the mean

and covariance for each decomposition and repeat the two steps until convergence.

Evaluation. Figure 5-6 contrasts the results of this method with faces predicted

by our generalization of the simple method proposed by Blanz and colleagues [20].

In their formulation the same displacement vectors that make one person smile are

copied over onto every other identity. Because our data set includes smiles for more

than one person, we extend that approach to copy their average. In this particular

example, 15% of real faces where held out of the trilinear data set and predicted by

our imputation scheme and the simple averaging scheme. Note how the multilinear

prediction is closer to the truth in most examples, even predicting some individual

idiosyncrasies in puckers and smiles. The simple averaging scheme, however, seems

to do a better job at keeping the lips sealed for closed-mouth faces (bottom row of

Figure 5-6). We could obtain better results by preferentially weighting detail around

the mouth.

In our earlier trilinear experiments, we found that ISVD-based imputations pre-

dicted how faces vary from the mean with less than 9% relative error (Frobenius norm

of the total error divided by the norm of the held-out face variations) for up to 50%

missing data. In general, the predictions are drawn towards the mean of the known

data. Closed-mouth expressions, which are under-represented in our data and thus lie
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Figure 5-6: From top to bottom: Prediction of held-out faces with our imputation
scheme (on the trilinear model), the actual face, and a simple averaging scheme.

far from the mean, were not predicted as well as other expressions. That can be fixed

by reweighting the data. Tests performed on synthetic data indicate that the quality

of imputation increases as the data set grows in size, even if significant portions of

it are missing. The reason why is that if the data is truly low-dimensional in each

of the modes, the missing samples will fall within the span and density of the known

ones.

Probabilistic Interpretation. The above algorithm fills in missing data by ap-

proximating the true multilinear distribution. The form of this approximation is made

precise by a probabilistic interpretation, which starts from a multilinear generative
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model

T = M x 2 U 2 x 3 U3 -. XNUN±+

where T and M are the data and model tensors, U is the i-th modal subspace,

and v is a Gaussian noise source. Filling in missing data according to this model

is computationally expensive. Instead, we approximate the true likelihood with a

geometric average of Gaussians

N

p(TIM, {UI}i 2 ) JJ q g(7, M, {Ui}N 2)1N.
j=2

Each Gaussian qj(T, M, M{ } 2 )

turning the tensor Equation (5.4)

Tj are the mode-j vectors of T,

M X 2 V 2 ... X -1 J-1 Xj1 U3 +1

= N(TIOJ,, o?) is found by fixing {fij}ig and

into matrix form: Tj = UjJ. Here, columns of

and the columns of J, are the mode-j vectors of

... XN ON. The resulting likelihood becomes:

N

p(TIM, {U,}i 2) J7JK(TI JJ, 0)1/N
j=2

which can be maximized efficiently.

Taking logarithms and discarding constant factors such as N and o-, we seek to

minimize the sum-squared error

N

( ||TJ -- UJJ|
J=2

Each term of the summation presents a matrix factorization problem with missing

values, where U, and Jj are treated as unknown factors of the incomplete matrix Tj,

and are solved for using PPCA as described above.
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5.4 Face Transfer

One produces animations from a multilinear model by varying the attribute parame-

ters (the elements of the wi's) as if they were dials, and generating mesh coordinates

from Equation 5.5. The N-mode SVD conveniently gives groups of dials that sepa-

rately control identity, expression and viseme. Within each group, the dials do not

correspond to semantically meaningful deformations (such as smile or frown), but

rather reflect the deformations that account for most variance. However, the dials

can be "tuned" to reflect deformations of interest through a linear transform of each

wi. This approach was successfully applied in [5] to make their body shape dials

correspond to height and weight. A similar linear scheme was employed in [21]. In

general, dial-based systems are currently used on most of the deformable models in

production, but only skilled animators can create believable animations (or even stills)

with them. To give similar power to a casual user, we have devised a method that

automatically sets model parameters from given video data. With this tool, a user

can enact a performance in front of a camera, and have it automatically transferred

to the model.

5.4.1 Face Tracking

To link the parameters of a multilinear model to video data, we use optical flow in

conjunction with the weak-perspective camera model. Using the symmetric Kanade-

Lucas-Tomasi formulation [18], we express the frame-to-frame motion of a tracked

point with a linear system:

Zd = Z(p - po) = e. (5.6)

Here, the 2-vector d describes the image-space motion of the point, also expressed as

the difference between the point's true location p and its current best guess po (if we

have no guess, then po is the location from the previous frame). Matrix Z and vector e

contain spatial and temporal intensity gradient information in the surrounding region
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[18].

Using a weak-perspective imaging model, the point position p can be expanded in

terms of rigid head-motion parameters and nonrigid facial shape parameters, which

are constrained by the multilinear model:

Z(sRf, + t - po) = e, (5.7)

where the rigid parameters consist of scale factor s, the first two rows of a 3D rota-

tion matrix R, and the image-space translation t. The 3D shape f comes from the

multilinear model through Equation (5.5), with fi indicating the ith 3D vertex being

tracked.

Solving for the pose and all the multilinear weights from a pair of frames using

Equation (5.7) is not a well-constrained problem. To simplify the computation, we use

a coordinate-descent method: we let only one of the face attributes vary at a time by

fixing all the others to their current guesses. This transforms the multilinear problem

into a linear one, as described below, which we solve with standard techniques that

simultaneously compute the rigid pose along with the linear weights from a pair of

frames [14, 24].

When we fix all but one attribute of the multilinear model, thereby making f

linear, Equation (5.7) turns into

Z(sRMm,iwm + t - PO) = e, (5.8)

where m is the mode corresponding to the non-fixed attribute. wm is a vector of

weights for that attribute, and Mm,i is the corresponding linear basis for the tracked

vertex i obtained from

Mm = M X 2 W 2 - (m-1) wTm-1) X (m+) wT ) -.. XN wT (5.9)

To get a well constrained solution for the per-frame pose (scale, rotation, and transla-

tion) as well as the model's attribute parameters (expression, identity, etc.), we track
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a number of vertices and stack the resulting linear equations into one big system.

For each pair of neighboring video frames we assemble a set of linear systems, each

one applying Equation (5.8) to one of the tracked vertices. If the currently tracked

attribute varies from frame to frame (such as expression does), we solve the set of

linear systems and proceed to the next pair of neighboring frames. If, on the other

hand, the attribute is constant across all frames (like identity), we accumulate the

mentioned linear systems from each pair of frames and solve them together as one

combined system. Solving the entire system for a pair of frames and a thousand

tracked points completes in about a millisecond. Taking into account several levels of

multi-scale and several passes through the whole video, the tracking process averages

at one frame per second.

5.4.2 Initialization

The method described above, since it is based on tracking, needs to be initialized

with the first frame alignment (pose and all the weights of the multilinear model).

We accomplish this by specifying a small number of feature points which are then

used to position the face geometry. The correspondences can be either user-provided

(which gives more flexibility and power) or automatically detected (which avoids user

intervention). We have experimented with the automatic feature detector developed

by [148], and found that it is robust and precise enough in locating a number of

key features (eye corners, nose tip, mouth corners) to give a good approximating

alignment in most cases. Imperfect alignment can be improved by tracking the first

few frames back and forth until the model snaps into a better location. Other more

powerful automated alignment approaches that take in account texture and lighting,

such as the one described in [21], could also be adapted to multilinear models.

5.5 Results

Multilinear models provide a convenient control of facial attributes. Figures 5-4 and

5-5 show example manipulations of our bilinear and trilinear models.
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Face Transfer infers the attribute parameters automatically by tracking the face in

a video. Figure 5-7A shows a few example frames acquired by tracking a face outside of

our data set. The resulting 3D shapes, shown below each frame, are generated by the

bilinear model with the mouth shapes closed-off for texturing. Because our system

tracks approximately a thousand vertices, the process is less sensitive to localized

intensity changes (e.g., around the furrow above the lip). Once we obtain the 3D

geometry, we can lift the texture from the video by assigning pixel colors to the

corresponding mesh vertices. A simple performance-driven texture function can be

obtained with the weighted sum of nearest neighbors.

All advantages of our system are combined in video rewrite applications, where

a performance is lifted from a video, altered, and seamlessly rendered back into the

video. In Figure 5-7B, we use the bilinear model to change a person's identity while

retaining the expressions from the original performance. From left to right, the figure

shows the original video, the recovered 3D shape, the modified 3D shape, and its

textured overlay over the original video (without blending and with the simple texture

model). Note how the style of smiling changes with identity. Figure 5-7C shows a

post-production example, where a repeat performance is transferred onto the old

footage. From left to right, we present the original video frame, a frame from a new

video, the new geometry, and the final modified frame (without blending). Here, we

combine the pose from the original video with the expression from the new video to

modify original expressions.

Our most challenging face transfer uses the trilinear model to transfer expressions

and visemes of a singing performance. In Figure 5-7D, the left two images show the

frames from two input videos: a target video for a subject in our data set and a

source video of a singing performance from a novel subject. The third image shows

the final composite (along with the matching geometry as seen from two viewpoints)

that combines the expressions and visemes from the source performance with the

identity shown in the target video. For best visual results, we blend [114] the face

texture from the target video (constant throughout the sequence); the mouth texture

from the source video; and the background texture, which includes the eyes peeking
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Figure 5-7: Several examples of our system: (A) A few frames of a bilinear-model
tracking of a novel face and the corresponding 3D shapes below. (B) Changing the
identity parameters of a performance tracked with the bilinear model. (C) Transfer-
ring a performance of a known identity from one video to another using the bilinear
model. In each example the mouth gap was closed to allow for texturing. (D) Using
the trilinear model to copy a singing performance from one video to another (left-to-
right: original video, singing video, and the result). (E) Altering the performance
from the previous example by adding a frown.

through the holes in the transferred geometry. In Figure 5-7E, we manually add a

frown to the geometry in the final image; the frown texture was lifted from another

frame of the same subject. With a similar technique, we can also combine facial

attributes from several videos as shown in Figure 5-1, where the pose, expressions,

and visemes are mixed from three different input videos.

5.6 Discussion

To summarize, we have shown how to estimate a highly detailed face model from

an incomplete set of face scans. The model is multilinear, and thus has the key

property of separability: different attributes, such as identity and expression, can be

manipulated independently. Thus we can change the identity and expression, but

keep the smile. Even more useful, the new smile is in the style idiosyncratic to the

new identity.

What makes this multilinear model a practical tool for animation is that we con-
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nect it directly to video, showing how to recover a time-series of poses and attribute

parameters (expressions and visemes), plus a performance-driven texture function for

an actor's face.

Our methods greatly simplify the editing of identity, performance, and facial tex-

ture in video, enabling video rewrite applications such as performance animation

(puppetry) and actor replacement. In addition, the model offers a rich source of

synthetic actors that can be controlled via video.

Limitations. Perhaps our most remarkable empirical result is that even with a

model estimated from a rather tiny data set, we can produce videorealistic results

for new source and target subjects. Further improvements can be expected when we

move to a wider variety of subjects and facial configurations.

We also see algorithmic opportunities to make aspects of the system more auto-

matic and robust. Correspondence between scans might be improved with some of

the methods shown in [90]. First-frame alignment would benefit from a successful

application of a method such as [21]. Optical flow-based tracking, which is inherently

vulnerable to imaging factors such as lighting, occlusions and specular reflections, can

be made more robust with edge and corner constraints as demonstrated in [54].

Future Work. In a production setting, the scan data would need to be expanded

to contain shape and texture information for the ears, neck, and hair, so that we can

make a larger range of head pose changes. Motions of eyes, eyelids, tongues, and

teeth, are currently modeled in the texture function or not at all; this will either

require more video data or a better solution. Finally, the texture function lifted from

video is performance specific, in that we made no effort to remove variations due to

lighting. Since we do estimate 3D shape, it may be possible to estimate and remove

lighting, given sufficiently long videos.

An intriguing prospect is that one could now build a multilinear model repre-

senting a vertex x identity x expression x viseme x age data tensor-without having to

capture each individual's face at every stage of their life. The model would provide
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animators with control dials for each of the listed attributes, so they could change an

actor's age along with their appearance and performance.
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Chapter 6

Conclusion

Dynamic shapes, such as people and clothes in motion, are important in fields ranging

from entertainment to medicine. Due to their complexity, however, they are not ex-

tensively used in these fields. To address this need, we have attempted to understand

dynamic shapes by reconstructing and analyzing their moving geometry. We have

shown how to reconstruct moving surfaces of dynamic shapes very efficiently from sil-

houettes, very accurately from normals, and very pracically from hybrid sensors. We

have also demonstrated how to re-animate these dynamic shapes under user control.

The methods presented in this thesis might help advance machine vision, robotics

and biomechanics, thus impacting our daily lives.

Reconstruction of dynamic shapes from silhouettes (Chapter 2) efficiently yields

fully-corresponded high-quality moving meshes with secondary motions such as flap-

ping clothes. These desirable qualities stem from the robustness of silhouette extrac-

tion, as well as our non-rigid surface deformation algorithm that molds an articulated

template to fit the silhouettes while preserving the template's appearance. We have

demonstrated that geometric information in the silhouettes is sufficient to describe

the overall pose, the skin deformations, and the dynamic clothing for fast and com-

plex motions such as breakdancing. However, because we only use the information at

the contours, the surface in-between the contours is not real, but interpolated from

the template. As a result, the reconstructed surface folds do not match the actual

folds on the garment. To improve the reconstruction quality (at a penalty to effi-

117



ciency), one should incorporate other visual cues such as color [471, shading [118], or

orientation (Chapter 3). Nevertheless, our output mesh animations convey the flavor

and the dynamics of the true motions, and are suitable for creating richer animated

characters in computer games and movies.

Reconstruction of dynamic shapes from normals (Chapter 3) produces moving

surfaces with unprecedented accuracy and temporal resolution without relying on a

template. Using a more elaborate setup (controllable lighting) and more involved

processing, we have captured detailed normal maps of dynamic shapes, which com-

plement the silhouette information in-between the contours. They have allowed us

to integrate partial surfaces from each camera view and merge them into a single

high-resolution mesh with full 3600 coverage of the scene. Our output surfaces are

incomplete in the regions with visibility issues but otherwise come to within mil-

limeters of the true surface, recovering the true folds on the garments. Furthermore,

these surfaces are ideally suited for the sophisticated geometry processing algorithms

[83, 95, 170, 155] that are able to aggregate a sequence of incomplete meshes into a

single complete and corresponded moving mesh. Our data will drive the advancement

of even more powerful geometry processing methods, resulting in moving meshes of fi-

delity so high that they would be readily usable for accurate biometric measurements

in medicine, as well as for digital actors in feature films.

Reconstruction of dynamic shapes from hybrid sensors (Chapter 4) can potentially

enable surface capture in natural environments. This is important for motions such

as skiing or baseball, which cannot be performed well within easily instrumentable

studios. We have demonstrated that inexpensive inertial and acoustic sensors can

be used to capture body pose for such motions outside the controlled studio envi-

ronments. The inertial sensors provide fast updates and high resolution, while the

acoustic sensors alleviate the inertial drift. While our system does not recover the

global translation and rotation, they can be obtained by using external acoustic sen-

sors [120] where possible, or including additional position (GPS) [29] and orientation

(compass) [8] sensors. Practical systems, with their affordability and flexibility, will

bring motion capture to consumers everywhere, enabling people to enhance their
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human-computer interaction, improve their sports performance, avoid injuries due to

motion and posture, even carry out physical rehabilitation.

Analysis of the reconstructed dynamic shapes increases their utility and enhances

standard animation tasks. In Chapter 5 we have learned the relation between surfaces

of different faces in order to transfer motions between them. With a simple multilinear

model we were able represent individual idiosyncrasies such as style of smiling, modify

facial performances, and transfer them from one video to another. However, our

model only describes the large-scale face motion, and does not accurately model fine

wrinkles and pore-sized detail. It also represents only the geometric surface of a

face, and none of its photometric properties. Both the fine surface detail [17] and

the color and reflectance [164] should receive equal treatment if we are to generate

photorealistic faces usable for digital actors. Enhanced face models built from many

examples will allow for a wide range of applications, from adding a smile to someone's

performance, to animating digital models of expensive actors with performances of

cheap actors.

Future research in reconstruction of dynamic shapes promises capturing complex

dynamic shapes with millimeter precision within several years. We will be able to

obtain intricate details on the surface of skin and clothes, including subtle facial ex-

pressions, i.e. laser-scan quality [93] for moving surfaces. As a result, we will improve

virtual humans and facilitate deeper understanding of dynamic shapes. With the

advancement of makerless motion capture [10] and rotation-invariant shape repre-

sentations [12], we might be able to fit an articulated dynamic shape model to the

silhouettes in real-time. This would improve human-computer interaction, allowing

our whole bodies to become an input device with many subtle degrees of freedom.

For example, one would be able to animate digital characters by enacting their mo-

tions, or control cloth animation by simply folding and waving real cloth. Finally,

we should combine different sensors in order to capture dynamic shapes and their

interaction outside the studios. This would not only increase the range of motions we

can reconstruct, but also allow for tracking people in the comfort of their homes for

the purpose of, for example, physical rehabilitation.
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On the analysis side, we strive to process the captured surfaces in order to learn

how they move and deform. We should construct art-directable digital models that

incorporate the individual traits of dynamic shapes, i.e. if an artist bends the elbow

of a character, the muscles should bulge and the sleeve should fold and flap as they

did in reality. These models should also be controlled and displayed interactively for

applications such as computer games. We have demonstrated these capabilities for

faces (Chapter 5), but, outside the scope of this thesis, we have analogously learned

the relation between full-body surfaces of different characters using a novel shape

representation called Patch-based Linear Rotation Invariant Coordinates [12]. It has

enabled us to transfer motions between very different characters, where the semantics

of the mapping are user-defined (i.e. users can map a regular walk onto a hand-walk

by providing the appropriate examples). Both of these methods (for faces and full

bodies) learn only static shape relations and ignore the dynamics. To get the most

out of our models, we should also include the dynamics. One approach to doing

so would be to fit the parameters of a physical simulation, such as cloth simulation

[16], to our reconstructed data. Novel motions would be generated by a physical

simulation, which is very general but hard to control. A more appropriate approach

would be to learn the dynamics as a function of our control parameters [13] in a

purely data-driven manner. This way the surface would mimic the deformations in

the example motions to generate novel motions. Te key properties of these enhanced

models should be control and efficiency. They would be ideal for animators, and

would potentially alleviate some of the limitations of the reconstruction methods by

enabling capture in real-time or capture outside the studios.

The Holy Grail in this line of research (Figure 6-1) is to observe dynamic shapes

move and interact in nature, reconstruct their moving surfaces, compute detailed

models that can be used to analyze the captured motions, and manipulate those

models to produce new motions that retain the style and dynamics of the captured

shapes. We should strive to close the loop and use the reconstructed models in order

to capture novel motions more easily and efficiently. We believe that adapting our

techniques to utilize sophisticated dynamic shape models and combine many different
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Learn and Enhance

Observe Reconstruct Analyze Change

Figure 6-1: We want to observe dynamic shapes interact in nature, reconstruct their
moving surfaces, analyze their motions, and change their performances. By learning

powerful models of dynamic shapes from several example motions, we can enhance
the reconstruction and analysis of these shapes anywhere.

sensors (inertial, acoustic, GPS, compass) in conjuction with cameras and projectors

could enable the reconstruction of not only body pose (Chapter 4), but complete

moving surfaces, in natural surroundings. We envision reconstructing a number of

representative high-quality motions of a dynamic shape within the studio, then using

this data in order to efficiently capture this shape anywhere.

Once we reach that goal, we will obtain enhanced dynamic 3D content for com-

puter games, virtual worlds, animated movies, and feature films. We will significantly

impact computer vision, improve the way robots understand their environment, and

inspire new research in biomechanics. We might be able to assess artistic perfor-

mances in new ways, or enable a new generation of clothes shopping. We could

enhance human-computer interaction and allow our body to become a powerful input

device. We could aid rehabilitation or prevent injury by analyzing someone's motion

throughout a day. We might be even able to record several days of activity or motions

throughout the whole life. As motion capture has become commonplace across a wide

variety of fields, moving surfaces will become an enhanced way of capturing, viewing,

analyzing and editing dynamic shapes rich with surface details.
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